1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381 | #include <kooling/component/segmenter/interface.h>
#include <kooling/datamodel/distance.h>
#include <kooling/datamodel/segment.h>
#include <kooling/datamodel/sensor.h>
#include <kooling/datamodel/speed.h>
#include <kooling/datamodel/timestamp.h>
#include <kooling/geo/algorithm.h>
#include <kooling/geo/constants.h>
#include <kooling/geo/coordinate.h>
#include <kooling/system/random.h>
#include <plog/Log.h>
#include <algorithm>
#include <limits>
#include <utility>
#include <boost/range/numeric.hpp>
#include <boost/range/adaptor/transformed.hpp>
namespace kooling::component::segmenter {
using coordinate_t = kooling::geo::coordinate;
using distance_t = kooling::datamodel::distance;
using duration_t = kooling::datamodel::duration;
using fingerprint_t = kooling::datamodel::fingerprint;
using motion_type_t = kooling::datamodel::motion_type;
using sensor_data_t = kooling::datamodel::sensor_data;
using sensor_data_point_t = kooling::datamodel::sensor_data_point;
using segment_t = kooling::datamodel::segment;
using segments_t = kooling::datamodel::segments;
using timestamp_t = kooling::datamodel::timestamp;
using user_t = kooling::datamodel::user;
using speed_t = kooling::datamodel::speed;
struct validity
{
validity(const json_t& config)<--- Struct 'validity' has a constructor with 1 argument that is not explicit. [+]Struct 'validity' has a constructor with 1 argument that is not explicit. Such, so called "Converting constructors", should in general be explicit for type safety reasons as that prevents unintended implicit conversions.
: d_min_extent { distance_t::from_m(config["min_extent_m"]) }
, d_min_distance{ distance_t::from_km(config["min_distance_km"]) }
, d_min_speed { speed_t::from_kmh(config["min_speed_kmh"]) }
{}
bool check(const segment_t& segment) const
{
return (is_valid_distance(segment) || is_valid_speed(segment)) && is_valid_extent(segment);
}
private:
bool is_valid_distance(const segment_t& segment) const
{
return segment.integrated.distance >= d_min_distance;
}
bool is_valid_speed(const segment_t& segment) const
{
return segment.integrated.speed >= d_min_speed;
}
bool is_valid_extent(const segment_t& segment) const
{
using namespace boost::adaptors;
const auto centroid{ kooling::geo::centroid(
kooling::geo::make_bounding_box(
segment.range | transformed([](const auto& dp) { return dp.coord; }))) };
return std::any_of(
segment.begin, segment.end,
[¢roid, &min_extent=d_min_extent]
(const sensor_data_point_t& dp)
{
return kooling::geo::distance(centroid, dp.coord) >= min_extent;
});
}
private:
const distance_t d_min_extent;
const distance_t d_min_distance;
const speed_t d_min_speed;
};
class v1 : public interface
{
struct ctor_tag {};
public:
explicit v1(ctor_tag, const json_t&);
~v1() override = default;
static interface::pointer_type create(const json_t& config)
{
return std::make_unique<v1>(ctor_tag{}, config);
}
static std::string name()
{
return "v1";
}
void run(kooling::datamodel::user, kooling::datamodel::fingerprint, kooling::datamodel::sensor_data) override;
private:
void cleanup(sensor_data_t&) const;
std::pair<timestamp_t, segments_t> segment(const sensor_data_t&) const;<--- Shadowed declaration
bool none_as_walk(const sensor_data_t&, std::size_t) const;
bool is_fast_walk(const sensor_data_t&, std::size_t) const;
bool is_cut(const sensor_data_t&, std::size_t, std::size_t) const;
private:
const struct cleanup
{
explicit cleanup(const json_t& config)
: min_jump_angle{ config["min_jump_angle_deg"] }
, max_jump_gain{ config["max_jump_gain_ratio"] }
{}
const double min_jump_angle;
const double max_jump_gain;
} d_cleanup;
const speed_t d_max_walk_speed;
const struct cut
{
explicit cut(const json_t& config)
: max_span{ duration_t::from_h(config["max_span_h"]) }
, max_span_between{ duration_t::from_h(config["max_span_between_h"]) }
, min_speed_between{ speed_t::from_kmh(config["min_speed_between_kmh"]) }
{}
const duration_t max_span;
const duration_t max_span_between;
const speed_t min_speed_between;
} d_cut;
const struct walk_like
{
explicit walk_like(const json_t& config)
: max_distance{ distance_t::from_m(config["max_distance_m"]) }
, min_span{ duration_t::from_h(config["min_span_h"]) }
, max_speed{ speed_t::from_kmh(config["max_speed_kmh"]) }
{}
const distance_t max_distance;
const duration_t min_span;
const speed_t max_speed;
} d_walk_like;
const validity d_validity;
};
static bool registered{ factory().register_component<v1>() };
v1::v1(ctor_tag, const json_t& config)
: d_cleanup { config["cleanup"] }
, d_max_walk_speed{ speed_t::from_kmh(config["max_walk_speed_kmh"]) }
, d_cut { config["cut"] }
, d_walk_like{ config["walk_like"] }
, d_validity { config["validity"] }
{
}
void v1::run(user_t user, fingerprint_t fingerprint, sensor_data_t sensor_data)
{
const auto nof_dps{ sensor_data.size() };
cleanup(sensor_data);
auto [last_timestamp, segments]{ segment(sensor_data) };
PLOG_DEBUG
<< "Created " << segments.size() << " segments "
"out of " << nof_dps << " dps "
"for user: '" << user.user_id << "', "
"fingerprint: '" << fingerprint << "'";
d_classifier->run(std::move(user), std::move(fingerprint), std::move(segments), std::move(last_timestamp));
}
bool v1::none_as_walk(const sensor_data_t& sensor_data, std::size_t idx) const
{
using namespace kooling::datamodel::literals;
using namespace std::chrono_literals;
if (idx == 0)
{
return false;
}
const auto& fst{ sensor_data[idx - 1] };
const auto& snd{ sensor_data[idx] };
return
is_none(fst.motion_type) && is_none(snd.motion_type) &&
fst.speed < d_walk_like.max_speed && snd.speed < d_walk_like.max_speed &&
kooling::geo::distance(fst.coord, snd.coord) < d_walk_like.max_distance &&
snd.timestamp - fst.timestamp > d_walk_like.min_span;
}
bool v1::is_fast_walk(const sensor_data_t& sensor_data, std::size_t idx) const
{
if (idx == 0)
{
return false;
}
const auto& fst{ sensor_data[idx - 1] };
const auto& snd{ sensor_data[idx] };
return
is_walking(snd.motion_type) &&
kooling::geo::distance(fst.coord, snd.coord) / (snd.timestamp - fst.timestamp) > d_max_walk_speed;
}
bool v1::is_cut(const sensor_data_t& sensor_data, std::size_t size, std::size_t idx) const
{
if (idx == 0)
{
return false;
}
if (idx == size - 1)
{
const auto span{ timestamp_t::now() - sensor_data[idx].timestamp };
if (span > d_cut.max_span)
{
return true;
}
}
const auto& fst{ sensor_data[idx - 1] };
const auto& snd{ sensor_data[idx] };
const auto span{ snd.timestamp - fst.timestamp };
if (span > d_cut.max_span)
{
return true;
}
const auto speed{ kooling::geo::distance(fst.coord, snd.coord) / span };
return span > d_cut.max_span_between && speed < d_cut.min_speed_between;
}
void v1::cleanup(sensor_data_t& sensor_data) const
{
if (sensor_data.size() < 3)
{
return;
}
size_t nof_duplicated{};
size_t nof_extreme{};
double max_gain{ std::numeric_limits<double>::min() };
double min_angle{ std::numeric_limits<double>::max() };
for (size_t i{ 1 }; i < sensor_data.size() - 1;)
{
const auto& prev{ sensor_data[i - 1] };
const auto& curr{ sensor_data[i ] };
const auto& next{ sensor_data[i + 1] };
if (prev.timestamp == curr.timestamp)
{
++nof_duplicated;
sensor_data.erase(std::next(sensor_data.begin(), i));
continue;
}
const auto tot_distance{
kooling::geo::distance(prev.coord, curr.coord) +
kooling::geo::distance(curr.coord, next.coord) };
const auto jump_distance{
kooling::geo::distance(prev.coord, next.coord) };
const auto jump_gain{ jump_distance.m() > 0.001 ? tot_distance.m() / jump_distance.m() : 1000 * d_cleanup.max_jump_gain };
if (jump_gain > d_cleanup.max_jump_gain)
{
const auto angle_prev{ std::atan2(prev.coord.lat() - curr.coord.lat(), prev.coord.lon() - curr.coord.lon()) };
const auto angle_next{ std::atan2(next.coord.lat() - curr.coord.lat(), next.coord.lon() - curr.coord.lon()) };
const auto angle{ std::abs(angle_next - angle_prev) };
const auto jump_angle{ kooling::geo::rad2deg(std::min(angle, kooling::geo::k_tau - angle)) };
if (jump_angle < d_cleanup.min_jump_angle)
{
max_gain = std::max(max_gain, jump_gain);
min_angle = std::min(min_angle, jump_angle);
++nof_extreme;
sensor_data.erase(std::next(sensor_data.begin(), i));
continue;
}
}
++i;
}
if (nof_duplicated != 0 || nof_extreme != 0)
{
PLOG_DEBUG
<< "Erased " << nof_duplicated << " DPs with duplicated timestamps "
<< "and " << nof_extreme << " DPs with extreme jump gain (max: "
<< max_gain << ") and/or angle (min: " << min_angle << ")";
}
}
std::pair<timestamp_t, segments_t> v1::segment(const sensor_data_t& sensor_data) const
{
const auto sensor_data_size{ sensor_data.size() };
if (sensor_data_size < 3)
{
return {};
}
timestamp_t last_timestamp;
segments_t segments;
bool in_segment{ false };
size_t first_candidate{ sensor_data_size };
for (std::size_t idx{ 0 }; idx != sensor_data_size; ++idx)
{
const bool walk{ is_walking(sensor_data[idx].motion_type) };
const bool fast_walk{ is_fast_walk(sensor_data, idx) };
const bool cut{ is_cut(sensor_data, sensor_data_size, idx) };
if (!in_segment)
{
if (fast_walk && idx > first_candidate)
{
in_segment = true;
}
else if (walk || none_as_walk(sensor_data, idx))
{
first_candidate = idx;
}
else if (cut)
{
first_candidate = idx;
in_segment = true;
}
else if (idx == first_candidate + 2)
{
in_segment = true;
}
}
else if (cut || (walk && !fast_walk))
{
auto begin { std::next(sensor_data.begin(), first_candidate) };
auto end { std::next(sensor_data.begin(), idx) };
segment_t segment{ std::move(begin), std::move(end) };<--- Shadow variable<--- Calling std::move(begin)
const auto valid{ d_validity.check(segment) };
const auto motion{ is_walking(begin->motion_type) ? std::next(begin)->motion_type : begin->motion_type };<--- Access of moved variable 'begin'.
PLOG_DEBUG
<< segment.id << ": "
<< (valid ? "Created " : "Skipped ")
<< segment.nof_dps
<< "-dp "
<< "'" << motion._to_string() << "'"
<< " segment: "
<< segment.begin->coord << " @ "
<< segment.begin->timestamp
<< " -> "
<< std::prev(segment.end)->coord << " @ "
<< std::prev(segment.end)->timestamp;
if (valid)
{
segments.push_back(std::move(segment));
}
last_timestamp = std::prev(segment.end)->timestamp;
// we want to consider this DP as the start of the next segment
first_candidate = idx;
in_segment = false;
}
}
return { last_timestamp, segments };
}
} // namespace kooling::component::segmenter
|