
NAME
uftdi - Future Technology Devices International USB to serial UART driver

SYNOPSIS
device usb
device ucom
device uftdi

In rc.conf(5):

kld_list="uftdi"

In sysctl.conf(5):

hw.usb.uftdi.debug=1
hw.usb.uftdi.skip_jtag_interfaces=0

DESCRIPTION
The uftdi driver supports FTDI USB to serial UART devices. If the appropriate hardware is detected, the

driver will be loaded automatically by devmatch(8). If devmatch(8) is not available, load the driver

manually in rc.conf(5) or with kldload(8) at runtime. The device is accessed through the ucom(4) driver

which makes it behave like a tty(4).

Call out through this interface with applications like cu(1) or tip(1).

HARDWARE
The uftdi driver supports the following USB to serial UART controllers:

+o FTDI FT4232H

+o FTDI FT232R

+o FTDI FT230X

+o FTDI FT2232H

+o FTDI FT2232D

+o FTDI FT2232C

+o FTDI FT8U232BM

+o FTDI FT8U232AM

+o FTDI FT8U100AX

SYSCTL VARIABLES
These settings can be entered in the loader(8) prompt, set in loader.conf(5), sysctl.conf(5), or changed at

runtime with sysctl(8):

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 15.0-CURRENT May 29, 2025 FreeBSD 15.0-CURRENT



hw.usb.uftdi.debug Enable debugging messages, default ‘0’

hw.usb.uftdi.skip_jtag_interfaces

Ignore JTAG interfaces, default ‘1’

IOCTLS
Many of the supported chips provide additional functionality such as bitbang mode and the MPSSE engine

for serial bus emulation. The uftdi driver provides access to that functionality with the following ioctl(2)

calls, defined in <dev/usb/uftdiio.h>:

UFTDIIOC_RESET_IO (int)

Reset the channel to its default configuration, flush RX and TX FIFOs.

UFTDIIOC_RESET_RX (int)

Flush the RX FIFO.

UFTDIIOC_RESET_TX (int)

Flush the TX FIFO.

UFTDIIOC_SET_BITMODE (struct uftdi_bitmode)

Put the channel into the operating mode specified in mode, and set the pins indicated by ones in

iomask to output mode. The mode must be one of the uftdi_bitmodes values. Setting mode to

UFTDI_BITMODE_NONE returns the channel to standard UART mode.

enum uftdi_bitmodes

{

UFTDI_BITMODE_ASYNC = 0,

UFTDI_BITMODE_MPSSE = 1,

UFTDI_BITMODE_SYNC = 2,

UFTDI_BITMODE_CPU_EMUL = 3,

UFTDI_BITMODE_FAST_SERIAL = 4,

UFTDI_BITMODE_CBUS = 5,

UFTDI_BITMODE_NONE = 0xff,

};

struct uftdi_bitmode

{

uint8_t mode;

uint8_t iomask;

};

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 15.0-CURRENT May 29, 2025 FreeBSD 15.0-CURRENT



Manuals and application notes published by FTDI describe these modes in detail. To use most of

these modes, you first put the channel into the desired mode, then you read(2) and write(2) data

which either reflects pin state or is interpreted as MPSSE commands and parameters, depending on

the mode.

UFTDIIOC_GET_BITMODE (struct uftdi_bitmode)

Return the current bitbang mode in the mode member, and the state of the DBUS0..DBUS7 pins at

the time of the call in the iomask member. The pin state can be read while the chip is in any mode,

including UFTDI_BITMODE_NONE (UART) mode.

UFTDIIOC_SET_ERROR_CHAR (int)

Set the character which is inserted into the buffer to mark the point of an error such as FIFO

overflow.

UFTDIIOC_SET_EVENT_CHAR (int)

Set the character which causes a partial FIFO full of data to be returned immediately even if the

FIFO is not full.

UFTDIIOC_SET_LATENCY (int)

Set the amount of time to wait for a full FIFO, in milliseconds. If more than this much time elapses

without receiving a new character, any characters in the FIFO are returned.

UFTDIIOC_GET_LATENCY (int)

Get the current value of the latency timer.

UFTDIIOC_GET_HWREV (int)

Get the hardware revision number. This is the bcdDevice value from the usb_device_descriptor.

UFTDIIOC_READ_EEPROM (struct uftdi_eeio)

Read one or more words from the configuration eeprom. The FTDI chip performs eeprom I/O in

16-bit words. Set offset and length to values evenly divisible by two before the call, and the data

array will contain the requested values from eeprom after the call.

struct uftdi_eeio

{

uint16_t offset;

uint16_t length;

uint16_t data[64];

};

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 15.0-CURRENT May 29, 2025 FreeBSD 15.0-CURRENT



The FT232R chip has an internal eeprom. An external serial eeprom is optional on other FTDI

chips. The eeprom may contain 64, 128, or 256 words, depending on the part used. Multiple calls

may be needed to read or write the larger parts. When no eeprom is present, all words in the

returned data are 0xffff. An erased eeprom also reads as all 0xffff.

UFTDIIOC_WRITE_EEPROM (struct uftdi_eeio)

Write one or more words to the configuration eeprom. The uftdi_eeio values are as described for

UFTDIIOC_READ_EEPROM.

The FTDI chip does a blind write to the eeprom, and it will appear to succeed even when no eeprom

is present. To ensure a good write you must read back and verify the data. It is not necessary to

erase before writing. Any position within the eeprom can be overwritten at any time.

UFTDIIOC_ERASE_EEPROM (int)

Erase the entire eeprom. This is useful primarily for test and debugging, as there is no need to erase

before writing. To help prevent accidental erasure caused by calling the wrong ioctl, you must pass

the special value UFTDI_CONFIRM_ERASE as the argument to this ioctl.

FILES
/dev/ttyU* for callin ports

/dev/ttyU*.init

/dev/ttyU*.lock

corresponding callin initial-state and lock-state devices

/dev/cuaU* for callout ports

/dev/cuaU*.init

/dev/cuaU*.lock

corresponding callout initial-state and lock-state devices

DIAGNOSTICS
ftdi*: allocating USB transfers failed
ftdi*: skipping JTAG interface...
ftdi*: Warning: unknown FTDI device type...

SEE ALSO
cu(1), tty(4), ucom(4), usb(4)

HISTORY
The uftdi driver appeared in FreeBSD 4.8 from NetBSD 1.5.

UFTDI(4) FreeBSD Kernel Interfaces Manual UFTDI(4)

FreeBSD 15.0-CURRENT May 29, 2025 FreeBSD 15.0-CURRENT


