
NAME
build - general instructions on how to build the FreeBSD system

DESCRIPTION
The sources for the FreeBSD system and its applications are contained in three directories, normally:

/usr/src "base system", loosely defined as everything required to build the system to a useful state

/usr/doc system documentation, excluding manual pages

/usr/ports

contributed applications, with a consistent interface for building and installing them, see ports(7)

These directories may be initially empty or non-existent until updated with Git (devel/git from the FreeBSD

Ports Collection).

The make(1) command is used in each of these directories to build and install the things in that directory.

Issuing the make(1) command in any directory issues the make(1) command recursively in all

subdirectories. With no target specified, the items in the directories are built and no further action is taken.

A source tree is allowed to be read-only. As described in make(1), objects are usually built in a separate

object directory hierarchy specified by the environment variable MAKEOBJDIRPREFIX, or under /usr/obj

if variable MAKEOBJDIRPREFIX is not set. The canonical object directory is described in the

documentation for the buildworld target below.

The build may be controlled by defining make(1) variables described in the ENVIRONMENT section

below, and by the variables documented in make.conf(5).

The default components included in the build are specified in the file /etc/src.conf in the source tree. To

override the default file, include the SRCCONF option in the make steps, pointing to a custom src.conf file.

For more information see src.conf(5).

The following list provides the names and actions for the targets supported by the build system:

analyze Run Clang static analyzer against all objects and present output on stdout.

check Run tests for a given subdirectory. The default directory used is ${.OBJDIR}, but the check

directory can be changed with ${CHECKDIR}.

checkworld

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



Run the FreeBSD test suite on installed world.

clean Remove any files created during the build process.

cleandepend
Remove the ${.OBJDIR}/${DEPENDFILE}* files generated by prior "make" and "make

depend" steps.

cleandir Remove the canonical object directory if it exists, or perform actions equivalent to "make clean

cleandepend" if it does not. This target will also remove an obj link in ${.CURDIR} if that

exists.

It is advisable to run "make cleandir" twice: the first invocation will remove the canonical

object directory and the second one will clean up ${.CURDIR}.

depend Generate a list of build dependencies in file ${.OBJDIR}/${DEPENDFILE}. Per-object

dependencies are generated at build time and stored in

${.OBJDIR}/${DEPENDFILE}.${OBJ}.

install Install the results of the build to the appropriate location in the installation directory hierarchy

specified in variable DESTDIR.

obj Create the canonical object directory associated with the current directory.

objlink Create a symbolic link to the canonical object directory in ${.CURDIR}.

tags Generate a tags file using the program specified in the make(1) variable CTAGS. The build

system supports ctags(1) and GNU Global.

The other supported targets under directory /usr/src are:

buildenv Spawn an interactive shell with environment variables set up for building the system or

individual components. For cross-building the target architecture needs to be specified

with make(1) variables TARGET_ARCH and TARGET.

This target is only useful after a complete toolchain (including the compiler, linker,

assembler, headers and libraries) has been built; see the toolchain target below.

buildworld Build everything but the kernel, configure files in etc, and release. The object directory can

be changed from the default /usr/obj by setting the MAKEOBJDIRPREFIX make(1)

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



variable. The actual build location prefix used depends on the WITH_UNIFIED_OBJDIR

option from src.conf(5). If enabled it is

${MAKEOBJDIRPREFIX}${.CURDIR}/${TARGET}.${TARGET_ARCH} for all

builds. If disabled it is ${MAKEOBJDIRPREFIX}${.CURDIR} for native builds, and

${MAKEOBJDIRPREFIX}/${TARGET}.${TARGET_ARCH}${.CURDIR} for cross

builds and native builds with variable CROSS_BUILD_TESTING set.

cleankernel Attempts to clean up targets built by a preceding buildkernel, or similar step, built from the

same source directory and KERNCONF.

cleanworld Attempt to clean up targets built by a preceding buildworld, or similar step, built from this

source directory.

cleanuniverse When WITH_UNIFIED_OBJDIR is enabled, attempt to clean up targets built by a

preceding buildworld, universe, or similar step, for any architecture built from this source

directory.

distributeworld
Distribute everything compiled by a preceding buildworld step. Files are placed in the

directory hierarchy specified by make(1) variable DISTDIR. This target is used while

building a release; see release(7).

native-xtools This target builds a cross-toolchain for the given TARGET and TARGET_ARCH, as well

as a select list of static userland tools for the host system. This is intended to be used in a

jail where QEMU is used to improve performance by avoiding emulating binaries that do

not need to be emulated. TARGET and TARGET_ARCH should be defined.

native-xtools-install
Installs the results to ${DESTDIR}/${NXTP} where NXTP defaults to nxb-bin. TARGET
and TARGET_ARCH must be defined.

packageworld Archive the results of distributeworld, placing the results in DISTDIR. This target is used

while building a release; see release(7).

installworld Install everything built by a preceding buildworld step into the directory hierarchy pointed

to by make(1) variable DESTDIR.

If installing onto an NFS file system and running make(1) with the -j option, make sure that

rpc.lockd(8) is running on both client and server. See rc.conf(5) on how to make it start at

boot time.

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



toolchain Create the build toolchain needed to build the rest of the system. For cross-architecture

builds, this step creates a cross-toolchain.

universe For each architecture, execute a buildworld followed by a buildkernel for all kernels for

that architecture, including LINT. This command takes a long time.

kernels Like universe with WITHOUT_WORLDS defined so only the kernels for each architecture

are built.

worlds Like universe with WITHOUT_KERNELS defined so only the worlds for each architecture

are built.

targets Print a list of supported TARGET / TARGET_ARCH pairs for world and kernel targets.

tinderbox Execute the same targets as universe. In addition print a summary of all failed targets at the

end and exit with an error if there were any.

toolchains Create a build toolchain for each architecture supported by the build system.

xdev Builds and installs a cross-toolchain and sysroot for the given TARGET and

TARGET_ARCH. The sysroot contains target library and headers. The target is an alias

for xdev-build and xdev-install. The location of the files installed can be controlled with

DESTDIR. The target location in DESTDIR is ${DESTDIR}/${XDTP} where XDTP

defaults to /usr/${XDDIR} and XDDIR defaults to ${TARGET_ARCH}-freebsd.

xdev-build Builds for the xdev target.

xdev-install Installs the files for the xdev target.

xdev-links Installs autoconf-style symlinks to ${DESTDIR}/usr/bin pointing into the xdev toolchain in

${DESTDIR}/${XDTP}.

Kernel specific build targets in /usr/src are:

buildkernel Rebuild the kernel and the kernel modules. The object directory can be changed from the

default /usr/obj by setting the MAKEOBJDIRPREFIX make(1) variable.

installkernel Install the kernel and the kernel modules to directory ${DESTDIR}/boot/kernel, renaming

any pre-existing directory with this name to kernel.old if it contained the currently running

kernel. The target directory under ${DESTDIR} may be modified using the

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



INSTKERNNAME and KODIR make(1) variables.

distributekernel
Install the kernel to the directory ${DISTDIR}/kernel/boot/kernel. This target is used

while building a release; see release(7).

packages Create a pkg(7) repository containing packages that can be used to create or upgrade an

installation of the base system. The output repository is placed in the object directory,

under repo/${PKG_ABI} where PKG_ABI is the pkg(7) ABI for the build target, for

example, /usr/obj/${SRCDIR}/repo/FreeBSD:15:amd64.

packagekernel Archive the results of distributekernel, placing the results in DISTDIR. This target is used

while building a release; see release(7).

kernel Equivalent to buildkernel followed by installkernel

kernel-toolchain
Rebuild the tools needed for kernel compilation. Use this if you did not do a buildworld
first.

reinstallkernel Reinstall the kernel and the kernel modules, overwriting the contents of the target directory.

As with the installkernel target, the target directory can be specified using the make(1)

variable INSTKERNNAME.

Convenience targets for cleaning up the install destination directory denoted by variable DESTDIR include:

check-old Print a list of old files and directories in the system.

check-old-libs
Print a list of obsolete base system libraries.

delete-old Delete obsolete base system files and directories interactively. When

-DBATCH_DELETE_OLD_FILES is specified at the command line, the delete operation

will be non-interactive. The variables DESTDIR, TARGET_ARCH and TARGET should

be set as with "make installworld".

delete-old-libs
Delete obsolete base system libraries interactively. This target should only be used if no

third party software uses these libraries. When -DBATCH_DELETE_OLD_FILES is

specified at the command line, the delete operation will be non-interactive. The variables

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



DESTDIR, TARGET_ARCH and TARGET should be set as with "make installworld".

ENVIRONMENT
Variables that influence all builds include:

DEBUG_FLAGS Defines a set of debugging flags that will be used to build all userland binaries

under /usr/src. When DEBUG_FLAGS is defined, the install and installworld
targets install binaries from the current MAKEOBJDIRPREFIX without stripping,

so that debugging information is retained in the installed binaries.

DESTDIR The directory hierarchy prefix where built objects will be installed. If not set,

DESTDIR defaults to the empty string. If set, DESTDIR must specify an absolute

path.

MAKEOBJDIRPREFIX

Defines the prefix for directory names in the tree of built objects. Defaults to

/usr/obj if not defined. This variable should only be set in the environment or

/etc/src-env.conf and not via /etc/make.conf or /etc/src.conf or the command line.

MAKEOBJDIRPREFIX must specify an absolute path.

WITHOUT_WERROR If defined, compiler warnings will not cause the build to halt, even if the makefile

says otherwise.

WITH_CTF If defined, the build process will run the DTrace CTF conversion tools on built

objects.

Additionally, builds in /usr/src are influenced by the following make(1) variables:

CROSS_TOOLCHAIN Requests use of an external toolchain to build either the world or kernel. This

value of this variable can either be the full path to a file, or the base name of a

file in ${LOCALBASE}/share/toolchains. The file should be a make file which

sets variables to request an external toolchain such as XCC.

External toolchains are available in ports for both LLVM and GCC/binutils.

For external toolchains available in ports, CROSS_TOOLCHAIN should be set

to the name of the package. LLVM toolchain packages use the name

llvm<major version>. GCC toolchains provide separate packages for each

architecture and use the name ${MACHINE_ARCH}-gcc<major version>.

KERNCONF Overrides which kernel to build and install for the various kernel make targets.

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



It defaults to GENERIC.

KERNBUILDDIR Overrides the default directory to get all the opt_*.h files for building a kernel

module. Useful for stand-alone modules that depend on config(8) options.

Automatically set for modules built with a kernel.

KERNCONFDIR Overrides the directory in which KERNCONF and any files included by

KERNCONF should be found. Defaults to sys/${ARCH}/conf.

KERNFAST If set, the build target buildkernel defaults to setting NO_KERNELCLEAN,

NO_KERNELCONFIG, and NO_KERNELOBJ. When set to a value other

than 1 then KERNCONF is set to the value of KERNFAST.

LOCAL_DIRS If set, this variable supplies a list of additional directories relative to the root of

the source tree to build as part of the everything target. The directories are built

in parallel with each other, and with the base system directories. Insert a .WAIT

directive at the beginning of the LOCAL_DIRS list to ensure all base system

directories are built first. .WAIT may also be used as needed elsewhere within

the list.

LOCAL_ITOOLS If set, this variable supplies a list of additional tools that are used by the

installworld and distributeworld targets.

LOCAL_LIB_DIRS If set, this variable supplies a list of additional directories relative to the root of

the source tree to build as part of the libraries target. The directories are built in

parallel with each other, and with the base system libraries. Insert a .WAIT

directive at the beginning of the LOCAL_DIRS list to ensure all base system

libraries are built first. .WAIT may also be used as needed elsewhere within the

list.

LOCAL_MTREE If set, this variable supplies a list of additional mtrees relative to the root of the

source tree to use as part of the hierarchy target.

LOCAL_LEGACY_DIRS

If set, this variable supplies a list of additional directories relative to the root of

the source tree to build as part of the legacy target.

LOCAL_BSTOOL_DIRS If set, this variable supplies a list of additional directories relative to the root of

the source tree to build as part of the bootstrap-tools target.

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



LOCAL_TOOL_DIRS If set, this variable supplies a list of additional directories relative to the root of

the source tree to build as part of the build-tools target.

LOCAL_XTOOL_DIRS If set, this variable supplies a list of additional directories relative to the root of

the source tree to build as part of the cross-tools target.

PORTS_MODULES A list of ports with kernel modules that should be built and installed as part of

the buildkernel and installkernel process.

make PORTS_MODULES=emulators/virtualbox-ose-kmod kernel

LOCAL_MODULES A list of external kernel modules that should be built and installed as part of the

buildkernel and installkernel process. Defaults to the list of sub-directories of

LOCAL_MODULES_DIR.

LOCAL_MODULES_DIR

The directory in which to search for the kernel modules specified by

LOCAL_MODULES. Each kernel module should consist of a directory

containing a makefile. Defaults to ${LOCALBASE}/sys/modules.

SRCCONF Specify a file to override the default /etc/src.conf. The src.conf file controls the

components to build. See src.conf(5)

STRIPBIN Command to use at install time when stripping binaries. Be sure to add any

additional tools required to run STRIPBIN to the LOCAL_ITOOLS make(1)

variable before running the distributeworld or installworld targets. See

install(1) for more details.

SUBDIR_OVERRIDE Override the default list of sub-directories and only build the sub-directory

named in this variable. If combined with buildworld then all libraries and

includes, and some of the build tools will still build as well. Specifying

-DNO_LIBS, and -DWORLDFAST will only build the specified directory as

was done historically. When combined with buildworld it is necessary to

override LOCAL_LIB_DIRS with any custom directories containing libraries.

This allows building a subset of the system in the same way as buildworld does

using its sysroot handling. This variable can also be useful when debugging

failed builds.

make some-target SUBDIR_OVERRIDE=foo/bar

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



SYSDIR Specify the location of the kernel source to override the default /usr/src/sys.

The kernel source is located in the sys subdirectory of the source tree checked

out from the src.git repository.

TARGET The target hardware platform. This is analogous to the "uname -m" output.

This is necessary to cross-build some target architectures. For example, cross-

building for ARM64 machines requires TARGET_ARCH=aarch64 and

TARGET=arm64. If not set, TARGET defaults to the current hardware

platform, unless TARGET_ARCH is also set, in which case it defaults to the

appropriate value for that architecture.

TARGET_ARCH The target machine processor architecture. This is analogous to the "uname -p"

output. Set this to cross-build for a different architecture. If not set,

TARGET_ARCH defaults to the current machine architecture, unless TARGET

is also set, in which case it defaults to the appropriate value for that platform.

Typically, one only needs to set TARGET.

Builds under directory /usr/src are also influenced by defining one or more of the following symbols, using

the -D option of make(1):

LOADER_DEFAULT_INTERP

Defines what interpreter the default loader program will have. Valid

values include "4th", "lua", and "simp". This creates the default link for

/boot/loader to the loader with that interpreter. It also determines what

interpreter is compiled into userboot.

NO_CLEANDIR If set, the build targets that clean parts of the object tree use the equivalent

of "make clean" instead of "make cleandir".

NO_CLEAN If set, no object tree files are cleaned at all. This is the default when

WITH_META_MODE is used with filemon(4) loaded. See src.conf(5)

for more details. Setting NO_CLEAN implies NO_KERNELCLEAN, so

when NO_CLEAN is set no kernel objects are cleaned either.

NO_CTF If set, the build process does not run the DTrace CTF conversion tools on

built objects.

NO_SHARE If set, the build does not descend into the /usr/src/share subdirectory (i.e.,

manual pages, locale data files, timezone data files and other

/usr/src/share files will not be rebuild from their sources).

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



NO_KERNELCLEAN If set, the build process does not run "make clean" as part of the

buildkernel target.

NO_KERNELCONFIG If set, the build process does not run config(8) as part of the buildkernel
target.

NO_KERNELOBJ If set, the build process does not run "make obj" as part of the buildkernel
target.

NO_LIBS If set, the libraries phase will be skipped.

NO_OBJWALK If set, no object directories will be created. This should only be used if

object directories were created in a previous build and no new directories

are connected.

UNIVERSE_TOOLCHAIN Requests use of the toolchain built as part of the universe target as an

external toolchain.

WORLDFAST If set, the build target buildworld defaults to setting NO_CLEAN,

NO_OBJWALK, and will skip most bootstrap phases. It will only

bootstrap libraries and build all of userland. This option should be used

only when it is known that none of the bootstrap needs changed and that

no new directories have been connected to the build.

Builds under directory /usr/doc are influenced by the following make(1) variables:

DOC_LANG

If set, restricts the documentation build to the language subdirectories specified as its content.

The default action is to build documentation for all languages.

Builds using the universe and related targets are influenced by the following make(1) variables:

JFLAG Pass the value of this variable to each make(1) invocation used to build worlds

and kernels. This can be used to enable multiple jobs within a single

architecture’s build while still building each architecture serially.

MAKE_JUST_KERNELS Only build kernels for each supported architecture.

MAKE_JUST_WORLDS Only build worlds for each supported architecture.

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



WITHOUT_WORLDS Only build kernels for each supported architecture.

WITHOUT_KERNELS Only build worlds for each supported architecture.

UNIVERSE_TARGET Execute the specified make(1) target for each supported architecture instead of

the default action of building a world and one or more kernels. This variable

implies WITHOUT_KERNELS.

USE_GCC_TOOLCHAINS

Use external GCC toolchains to build the requested targets. If the required

toolchain package for a supported architecture is not installed, the build for

that architecture is skipped.

A specific version of GCC can be used by setting the value of this variable to

the desired version (for example, "gcc14"); otherwise a default version of GCC

is used.

TARGETS Only build the listed targets instead of each supported architecture.

EXTRA_TARGETS In addition to the supported architectures, build the semi-supported

architectures. A semi-supported architecture has build support in the FreeBSD

tree, but receives significantly less testing and is generally for fringe uses that

do not have a wide appeal.

FILES
/usr/doc/Makefile

/usr/doc/share/mk/doc.project.mk

/usr/ports/Mk/bsd.port.mk

/usr/ports/Mk/bsd.sites.mk

/usr/src/Makefile

/usr/src/Makefile.inc1 make(1) infrastructure for each tree

/usr/ports/UPDATING

/usr/src/UPDATING manual intervention required for updating each tree

/usr/share/examples/etc/make.conf

example make.conf(5)

/etc/src.conf src build configuration, see src.conf(5)

EXAMPLES
For an "approved" method of updating your system from the latest sources, please see the COMMON

ITEMS section in src/UPDATING.

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



Build and upgrade system in place
If using installed drivers such as graphics or guest drivers, check out the ports(7) tree, and specify the

drivers in src.conf(5) so they are built and installed automatically after the kernel:

git clone https://git.FreeBSD.org/ports.git /usr/ports

cat >> EOF >> /etc/src.conf

PORTS_MODULES+=graphics/drm-kmod emulators/virtualbox-ose-kmod

EOF

Check out the CURRENT branch, build it, and install, overwriting the current system:

git clone https://git.FreeBSD.org/src.git /usr/src

cd /usr/src

make -sj8 buildworld kernel

shutdown -r now

After reboot, install userspace, merge configurations, and delete old files:

cd src

etcupdate -p

make -j8 installworld

etcupdate -B

make delete-old

reboot

Build and upgrade a custom kernel in place
Create a custom kernel configuration, MYKERNEL, by including an existing configuration and using

device/nodevice and options/nooption to select and configure components:

cd src

cat >> EOF > sys/amd64/conf/MYKERNEL

include GENERIC

ident MYKERNEL

nodevice sound

EOF

After creating the new kernel configuration, build it, and install, moving the old kernel to /boot/kernel.old/:

make -j8 kernel KERNCONF=MYKERNEL

reboot

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



Build and upgrade a single piece of userspace
Rebuild and reinstall a single piece of userspace, in this case ls(1):

cd src/bin/ls

make clean all install

Build and upgrade a loadable kernel module
Rebuild and reinstall a single loadable kernel module, in this case sound(4):

cd src/sys/modules/sound

make all install clean cleandepend KMODDIR=/boot/kernel

Quickly rebuild a kernel in place
Quickly rebuild and reinstall the kernel, only recompiling the files changed since last build; note that this

will only work if the full kernel build has been completed in the past, not on a fresh source tree:

cd src

make -sj8 kernel KERNFAST=1

Cross-compiling for different architectures
To rebuild parts of FreeBSD for another CPU architecture, first prepare your source tree by building the

cross-toolchain:

cd src

make -sj8 toolchain TARGET_ARCH=aarch64

The following sequence of commands can be used to cross-build the system for the arm64 (aarch64)

architecture on a different host architecture, such as amd64:

cd /usr/src

make TARGET=arm64 buildworld buildkernel

make TARGET=arm64 DESTDIR=/clients/arm64 installworld installkernel

Afterwards, to build and install a single piece of userspace, use:

cd src/bin/ls

make buildenv TARGET_ARCH=aarch64

make clean all install DESTDIR=/clients/arm

Likewise, to quickly rebuild and reinstall the kernel, use:

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT



cd src

make buildenv TARGET_ARCH=aarch64

make -sj8 kernel KERNFAST=1 DESTDIR=/clients/arm

SEE ALSO
cc(1), install(1), make(1), make.conf(5), src.conf(5), arch(7), development(7), pkg(7), ports(7), release(7),

tests(7), config(8), etcupdate(8), reboot(8), shutdown(8)

HISTORY
The build manpage first appeared in FreeBSD 4.3.

AUTHORS
Mike W. Meyer <mwm@mired.org>

CAVEATS
Environment poisioning can cause obscure build problems, try prefixing make(1) commands with ‘env -i’

When doing a major release upgrade, booting into single user mode for installworld is required.

BUGS
Documentation on building the system is spread out over a lot of places.

BUILD(7) FreeBSD Miscellaneous Information Manual BUILD(7)

FreeBSD 15.0-CURRENT March 13, 2025 FreeBSD 15.0-CURRENT


