APPLICATION FOR UNITED STATES LETTERS PATENT

Title: NOT YET DEFINED

Inventors: John Doe

NOT YET DEFINED

ABSTRACT

[0001] Electronics is a scientific and engineering discipline that studies and applies the principles of physics to design, create, and operate devices that manipulate electrons and other electrically charged particles. Electronics is a subfield of electrical engineering, but it differs from it in that it focuses on using active devices such as transistors, diodes, and integrated circuits to control and amplify the flow of electric current and to convert it from one form to another, such as from alternating current (AC) to direct current (DC) or from analog to digital. Electronics also encompasses the fields of microelectronics, nanoelectronics, optoelectronics, and quantum electronics, which deal with the fabrication and application of electronic devices at microscopic, nanoscopic, optical, and quantum scales.

BACKGROUND

[0002] Electronics has hugely influenced the development of modern society. The identification of the electron in 1897, along with the subsequent invention of the vacuum tube which could amplify and rectify small electrical signals, inaugurated the field of electronics and the electron age.[1] Practical applications started with the invention of the diode by Ambrose Fleming and the triode by Lee De Forest in the early 1900s, which made the detection of small electrical voltages such as radio signals from a radio antenna possible with a non-mechanical device.

[0003] Vacuum tubes (thermionic valves) were the first active electronic components which controlled current flow by influencing the flow of individual electrons, [2] They were responsible for the electronics revolution of the first half of the twentieth century, [3][4] They enabled the construction of equipment that used current amplification and rectification to give us radio, television, radar, long-distance telephony and much more. The early growth of electronics was rapid, and by the 1920s, commercial radio broadcasting and communications were becoming widespread and electronic amplifiers were being used in such diverse applications as long-distance telephony and the music recording industry.

[0004] In April 1955, the IBM 608 was the first IBM product to use transistor circuits without any vacuum tubes and is believed to be the first all-transistorized calculator to be manufactured for the commercial market.[7][8] The 608 contained more than 3,000 germanium transistors. Thomas J. Watson Jr. ordered all future IBM products to use transistors in their design. From that time on transistors were almost exclusively used for computer logic and peripherals. However, early junction transistors were relatively bulky devices that were difficult to manufacture on a mass-production basis, which limited them to a number of specialised applications.

SUMMARY

[0005]

BRIEF DESCRIPTION OF DRAWINGS

DETAILED DESCRIPTION

$$PV = \frac{FV}{(1+i)^n}$$

$$e^{j\theta} = \cos(\theta) + j \cdot \sin(\theta)$$
 (1)

 $More\ details\ here:\ https://github.com/borisreitman/uspatent/$

What is claimed:

- 1. This is an independent claim.
 - 2. The method of claim ?? further comprising...
 - 3. The method of claim ?? further comprising...(a very long line of text will wrap correctly to the next line, with an appropriate indentation.)
 - 4. The method of claim ?? further comprising...
- 5. This is an independent claim.
 - 6. The method of claim ?? further comprising...
 - 7. The method of claim ?? further comprising...