/* * Copyright (c) 2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: src/sys/compat/ndis/subr_ntoskrnl.c,v 1.25 2004/03/04 00:17:14 wpaul Exp $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "opt_ddb.h" #define __regparm __attribute__((regparm(3))) #define FUNC void(*)(void) __stdcall static uint8_t ntoskrnl_unicode_equal(ndis_unicode_string *, ndis_unicode_string *, uint8_t); __stdcall static void ntoskrnl_unicode_copy(ndis_unicode_string *, ndis_unicode_string *); __stdcall static ndis_status ntoskrnl_unicode_to_ansi(ndis_ansi_string *, ndis_unicode_string *, uint8_t); __stdcall static ndis_status ntoskrnl_ansi_to_unicode(ndis_unicode_string *, ndis_ansi_string *, uint8_t); __stdcall static void *ntoskrnl_iobuildsynchfsdreq(uint32_t, void *, void *, uint32_t, uint32_t *, void *, void *); __stdcall static uint32_t ntoskrnl_iofcalldriver(/*void *, void * */ void); __stdcall static void ntoskrnl_iofcompletereq(/*void *, uint8_t*/ void); __stdcall static uint32_t ntoskrnl_waitforobj(nt_dispatch_header *, uint32_t, uint32_t, uint8_t, int64_t *); __stdcall static uint32_t ntoskrnl_waitforobjs(uint32_t, nt_dispatch_header **, uint32_t, uint32_t, uint32_t, uint8_t, int64_t *, wait_block *); __stdcall static void ntoskrnl_init_event(nt_kevent *, uint32_t, uint8_t); __stdcall static void ntoskrnl_clear_event(nt_kevent *); __stdcall static uint32_t ntoskrnl_read_event(nt_kevent *); __stdcall static uint32_t ntoskrnl_set_event(nt_kevent *, uint32_t, uint8_t); __stdcall static uint32_t ntoskrnl_reset_event(nt_kevent *); static void ntoskrnl_timercall(void *); __stdcall static void ntoskrnl_init_dpc(kdpc *, void *, void *); __stdcall static void ntoskrnl_init_timer(ktimer *); __stdcall static void ntoskrnl_init_timer_ex(ktimer *, uint32_t); __stdcall static uint8_t ntoskrnl_set_timer(ktimer *, int64_t, kdpc *); __stdcall static uint8_t ntoskrnl_set_timer_ex(ktimer *, int64_t, uint32_t, kdpc *); __stdcall static uint8_t ntoskrnl_cancel_timer(ktimer *); __stdcall static uint8_t ntoskrnl_read_timer(ktimer *); __stdcall static void ntoskrnl_writereg_ushort(uint16_t *, uint16_t); __stdcall static uint16_t ntoskrnl_readreg_ushort(uint16_t *); __stdcall static void ntoskrnl_writereg_ulong(uint32_t *, uint32_t); __stdcall static uint32_t ntoskrnl_readreg_ulong(uint32_t *); __stdcall static void ntoskrnl_writereg_uchar(uint8_t *, uint8_t); __stdcall static uint8_t ntoskrnl_readreg_uchar(uint8_t *); __stdcall static int64_t _allmul(int64_t, int64_t); __stdcall static int64_t _alldiv(int64_t, int64_t); __stdcall static int64_t _allrem(int64_t, int64_t); __regparm static int64_t _allshr(int64_t, uint8_t); __regparm static int64_t _allshl(int64_t, uint8_t); __stdcall static uint64_t _aullmul(uint64_t, uint64_t); __stdcall static uint64_t _aulldiv(uint64_t, uint64_t); __stdcall static uint64_t _aullrem(uint64_t, uint64_t); __regparm static uint64_t _aullshr(uint64_t, uint8_t); __regparm static uint64_t _aullshl(uint64_t, uint8_t); __stdcall static void *ntoskrnl_allocfunc(uint32_t, size_t, uint32_t); __stdcall static void ntoskrnl_freefunc(void *); static slist_entry *ntoskrnl_pushsl(slist_header *, slist_entry *); static slist_entry *ntoskrnl_popsl(slist_header *); __stdcall static void ntoskrnl_init_lookaside(paged_lookaside_list *, lookaside_alloc_func *, lookaside_free_func *, uint32_t, size_t, uint32_t, uint16_t); __stdcall static void ntoskrnl_delete_lookaside(paged_lookaside_list *); __stdcall static void ntoskrnl_init_nplookaside(npaged_lookaside_list *, lookaside_alloc_func *, lookaside_free_func *, uint32_t, size_t, uint32_t, uint16_t); __stdcall static void ntoskrnl_delete_nplookaside(npaged_lookaside_list *); __stdcall static slist_entry *ntoskrnl_push_slist(/*slist_header *, slist_entry * */ void); __stdcall static slist_entry *ntoskrnl_pop_slist(/*slist_header * */ void); __stdcall static slist_entry *ntoskrnl_push_slist_ex(/*slist_header *, slist_entry *,*/ kspin_lock *); __stdcall static slist_entry *ntoskrnl_pop_slist_ex(/*slist_header *, kspin_lock * */void); __stdcall static void ntoskrnl_lock_dpc(/*kspin_lock * */ void); __stdcall static void ntoskrnl_unlock_dpc(/*kspin_lock * */ void); __stdcall static uint32_t ntoskrnl_interlock_inc(/*volatile uint32_t * */ void); __stdcall static uint32_t ntoskrnl_interlock_dec(/*volatile uint32_t * */ void); __stdcall static void ntoskrnl_interlock_addstat(/*uint64_t, uint32_t*/ void); __stdcall static void ntoskrnl_freemdl(ndis_buffer *); __stdcall static uint32_t ntoskrnl_sizeofmdl(void *, size_t); __stdcall static void ntoskrnl_build_npaged_mdl(ndis_buffer *); __stdcall static void *ntoskrnl_mmaplockedpages(ndis_buffer *, uint8_t); __stdcall static void *ntoskrnl_mmaplockedpages_cache(ndis_buffer *, uint8_t, uint32_t, void *, uint32_t, uint32_t); __stdcall static void ntoskrnl_munmaplockedpages(void *, ndis_buffer *); __stdcall static void ntoskrnl_init_lock(kspin_lock *); __stdcall static size_t ntoskrnl_memcmp(const void *, const void *, size_t); __stdcall static void ntoskrnl_init_ansi_string(ndis_ansi_string *, char *); __stdcall static void ntoskrnl_init_unicode_string(ndis_unicode_string *, uint16_t *); __stdcall static void ntoskrnl_free_unicode_string(ndis_unicode_string *); __stdcall static void ntoskrnl_free_ansi_string(ndis_ansi_string *); __stdcall static ndis_status ntoskrnl_unicode_to_int(ndis_unicode_string *, uint32_t, uint32_t *); static int atoi (const char *); static long atol (const char *); static void ntoskrnl_time(uint64_t *); __stdcall static uint8_t ntoskrnl_wdmver(uint8_t, uint8_t); static void ntoskrnl_thrfunc(void *); __stdcall static ndis_status ntoskrnl_create_thread(ndis_handle *, uint32_t, void *, ndis_handle, void *, void *, void *); __stdcall static ndis_status ntoskrnl_thread_exit(ndis_status); __stdcall static ndis_status ntoskrnl_devprop(device_object *, uint32_t, uint32_t, void *, uint32_t *); __stdcall static void ntoskrnl_init_mutex(kmutant *, uint32_t); __stdcall static uint32_t ntoskrnl_release_mutex(kmutant *, uint8_t); __stdcall static uint32_t ntoskrnl_read_mutex(kmutant *); __stdcall static ndis_status ntoskrnl_objref(ndis_handle, uint32_t, void *, uint8_t, void **, void **); __stdcall static void ntoskrnl_objderef(/*void * */ void); __stdcall static uint32_t ntoskrnl_zwclose(ndis_handle); static uint32_t ntoskrnl_dbgprint(char *, ...); __stdcall static void ntoskrnl_debugger(void); __stdcall static void dummy(void); static struct mtx *ntoskrnl_interlock; struct mtx *ntoskrnl_dispatchlock; extern struct mtx_pool *ndis_mtxpool; static int ntoskrnl_kth = 0; static struct nt_objref_head ntoskrnl_reflist; int ntoskrnl_libinit() { ntoskrnl_interlock = mtx_pool_alloc(ndis_mtxpool); ntoskrnl_dispatchlock = mtx_pool_alloc(ndis_mtxpool); TAILQ_INIT(&ntoskrnl_reflist); return(0); } int ntoskrnl_libfini() { return(0); } __stdcall static uint8_t ntoskrnl_unicode_equal(str1, str2, caseinsensitive) ndis_unicode_string *str1; ndis_unicode_string *str2; uint8_t caseinsensitive; { int i; if (str1->nus_len != str2->nus_len) return(FALSE); for (i = 0; i < str1->nus_len; i++) { if (caseinsensitive == TRUE) { if (toupper((char)(str1->nus_buf[i] & 0xFF)) != toupper((char)(str2->nus_buf[i] & 0xFF))) return(FALSE); } else { if (str1->nus_buf[i] != str2->nus_buf[i]) return(FALSE); } } return(TRUE); } __stdcall static void ntoskrnl_unicode_copy(dest, src) ndis_unicode_string *dest; ndis_unicode_string *src; { if (dest->nus_maxlen >= src->nus_len) dest->nus_len = src->nus_len; else dest->nus_len = dest->nus_maxlen; memcpy(dest->nus_buf, src->nus_buf, dest->nus_len); return; } __stdcall static ndis_status ntoskrnl_unicode_to_ansi(dest, src, allocate) ndis_ansi_string *dest; ndis_unicode_string *src; uint8_t allocate; { char *astr = NULL; if (dest == NULL || src == NULL) return(NDIS_STATUS_FAILURE); if (allocate == TRUE) { if (ndis_unicode_to_ascii(src->nus_buf, src->nus_len, &astr)) return(NDIS_STATUS_FAILURE); dest->nas_buf = astr; dest->nas_len = dest->nas_maxlen = strlen(astr); } else { dest->nas_len = src->nus_len / 2; /* XXX */ if (dest->nas_maxlen < dest->nas_len) dest->nas_len = dest->nas_maxlen; ndis_unicode_to_ascii(src->nus_buf, dest->nas_len * 2, &dest->nas_buf); } return (NDIS_STATUS_SUCCESS); } __stdcall static ndis_status ntoskrnl_ansi_to_unicode(dest, src, allocate) ndis_unicode_string *dest; ndis_ansi_string *src; uint8_t allocate; { uint16_t *ustr = NULL; if (dest == NULL || src == NULL) return(NDIS_STATUS_FAILURE); if (allocate == TRUE) { if (ndis_ascii_to_unicode(src->nas_buf, &ustr)) return(NDIS_STATUS_FAILURE); dest->nus_buf = ustr; dest->nus_len = dest->nus_maxlen = strlen(src->nas_buf) * 2; } else { dest->nus_len = src->nas_len * 2; /* XXX */ if (dest->nus_maxlen < dest->nus_len) dest->nus_len = dest->nus_maxlen; ndis_ascii_to_unicode(src->nas_buf, &dest->nus_buf); } return (NDIS_STATUS_SUCCESS); } __stdcall static void * ntoskrnl_iobuildsynchfsdreq(func, dobj, buf, len, off, event, status) uint32_t func; void *dobj; void *buf; uint32_t len; uint32_t *off; void *event; void *status; { return(NULL); } __stdcall static uint32_t ntoskrnl_iofcalldriver(/*dobj, irp*/) { void *dobj; void *irp; __asm__ __volatile__ ("" : "=c" (dobj), "=d" (irp)); return(0); } __stdcall static void ntoskrnl_iofcompletereq(/*irp, prioboost*/) { void *irp; uint8_t prioboost; __asm__ __volatile__ ("" : "=c" (irp), "=d" (prioboost)); return; } void ntoskrnl_wakeup(arg) void *arg; { nt_dispatch_header *obj; wait_block *w; list_entry *e; struct thread *td; obj = arg; mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); obj->dh_sigstate = TRUE; e = obj->dh_waitlisthead.nle_flink; while (e != &obj->dh_waitlisthead) { w = (wait_block *)e; td = w->wb_kthread; if (td->td_proc->p_flag & P_KTHREAD) kthread_resume(td->td_proc); else wakeup(td); /* * For synchronization objects, only wake up * the first waiter. */ if (obj->dh_type == EVENT_TYPE_SYNC) break; e = e->nle_flink; } mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return; } static void ntoskrnl_time(tval) uint64_t *tval; { struct timespec ts; nanotime(&ts); *tval = (uint64_t)ts.tv_nsec / 100 + (uint64_t)ts.tv_sec * 10000000 + 11644473600; return; } /* * KeWaitForSingleObject() is a tricky beast, because it can be used * with several different object types: semaphores, timers, events, * mutexes and threads. Semaphores don't appear very often, but the * other object types are quite common. KeWaitForSingleObject() is * what's normally used to acquire a mutex, and it can be used to * wait for a thread termination. * * The Windows NDIS API is implemented in terms of Windows kernel * primitives, and some of the object manipulation is duplicated in * NDIS. For example, NDIS has timers and events, which are actually * Windows kevents and ktimers. Now, you're supposed to only use the * NDIS variants of these objects within the confines of the NDIS API, * but there are some naughty developers out there who will use * KeWaitForSingleObject() on NDIS timer and event objects, so we * have to support that as well. Conseqently, our NDIS timer and event * code has to be closely tied into our ntoskrnl timer and event code, * just as it is in Windows. * * KeWaitForSingleObject() may do different things for different kinds * of objects: * * - For events, we check if the event has been signalled. If the * event is already in the signalled state, we just return immediately, * otherwise we wait for it to be set to the signalled state by someone * else calling KeSetEvent(). Events can be either synchronization or * notification events. * * - For timers, if the timer has already fired and the timer is in * the signalled state, we just return, otherwise we wait on the * timer. Unlike an event, timers get signalled automatically when * they expire rather than someone having to trip them manually. * Timers initialized with KeInitializeTimer() are always notification * events: KeInitializeTimerEx() lets you initialize a timer as * either a notification or synchronization event. * * - For mutexes, we try to acquire the mutex and if we can't, we wait * on the mutex until it's available and then grab it. When a mutex is * released, it enters the signaled state, which wakes up one of the * threads waiting to acquire it. Mutexes are always synchronization * events. * * - For threads, the only thing we do is wait until the thread object * enters a signalled state, which occurs when the thread terminates. * Threads are always notification events. * * A notification event wakes up all threads waiting on an object. A * synchronization event wakes up just one. Also, a synchronization event * is auto-clearing, which means we automatically set the event back to * the non-signalled state once the wakeup is done. * * The problem with KeWaitForSingleObject() is that it can be called * either from the main kernel 'process' or from a kthread. When sleeping * inside a kernel thread, we need to use kthread_resume(), but that * won't work in the kernel context proper. So if kthread_resume() returns * EINVAL, we need to use tsleep() instead. */ __stdcall static uint32_t ntoskrnl_waitforobj(obj, reason, mode, alertable, timeout) nt_dispatch_header *obj; uint32_t reason; uint32_t mode; uint8_t alertable; int64_t *timeout; { struct thread *td = curthread; kmutant *km; wait_block w; struct timeval tv; int error = 0; uint64_t curtime; if (obj == NULL) return(STATUS_INVALID_PARAMETER); mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); /* * See if the object is a mutex. If so, and we already own * it, then just increment the acquisition count and return. * * For any other kind of object, see if it's already in the * signalled state, and if it is, just return. If the object * is marked as a synchronization event, reset the state to * unsignalled. */ if (obj->dh_size == OTYPE_MUTEX) { km = (kmutant *)obj; if (km->km_ownerthread == NULL || km->km_ownerthread == curthread->td_proc) { obj->dh_sigstate = FALSE; km->km_acquirecnt++; km->km_ownerthread = curthread->td_proc; mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return (STATUS_SUCCESS); } } else if (obj->dh_sigstate == TRUE) { if (obj->dh_type == EVENT_TYPE_SYNC) obj->dh_sigstate = FALSE; mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return (STATUS_SUCCESS); } w.wb_object = obj; w.wb_kthread = td; INSERT_LIST_TAIL((&obj->dh_waitlisthead), (&w.wb_waitlist)); /* * The timeout value is specified in 100 nanosecond units * and can be a positive or negative number. If it's positive, * then the timeout is absolute, and we need to convert it * to an absolute offset relative to now in order to use it. * If it's negative, then the timeout is relative and we * just have to convert the units. */ if (timeout != NULL) { if (*timeout < 0) { tv.tv_sec = - (*timeout) / 10000000 ; tv.tv_usec = (- (*timeout) / 10) - (tv.tv_sec * 1000000); } else { ntoskrnl_time(&curtime); tv.tv_sec = ((*timeout) - curtime) / 10000000 ; tv.tv_usec = ((*timeout) - curtime) / 10 - (tv.tv_sec * 1000000); } } mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); if (td->td_proc->p_flag & P_KTHREAD) error = kthread_suspend(td->td_proc, timeout == NULL ? 0 : tvtohz(&tv)); else error = tsleep(td, PPAUSE|PDROP, "ndisws", timeout == NULL ? 0 : tvtohz(&tv)); mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); /* We timed out. Leave the object alone and return status. */ if (error == EWOULDBLOCK) { REMOVE_LIST_ENTRY((&w.wb_waitlist)); mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(STATUS_TIMEOUT); } /* * Mutexes are always synchronization objects, which means * if several threads are waiting to acquire it, only one will * be woken up. If that one is us, and the mutex is up for grabs, * grab it. */ if (obj->dh_size == OTYPE_MUTEX) { km = (kmutant *)obj; if (km->km_ownerthread == NULL) { km->km_ownerthread = curthread->td_proc; km->km_acquirecnt++; } } if (obj->dh_type == EVENT_TYPE_SYNC) obj->dh_sigstate = FALSE; REMOVE_LIST_ENTRY((&w.wb_waitlist)); mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(STATUS_SUCCESS); } __stdcall static uint32_t ntoskrnl_waitforobjs(cnt, obj, wtype, reason, mode, alertable, timeout, wb_array) uint32_t cnt; nt_dispatch_header *obj[]; uint32_t wtype; uint32_t reason; uint32_t mode; uint8_t alertable; int64_t *timeout; wait_block *wb_array; { struct thread *td = curthread; kmutant *km; wait_block _wb_array[THREAD_WAIT_OBJECTS]; wait_block *w; struct timeval tv; int i, wcnt = 0, widx = 0, error = 0; uint64_t curtime; struct timespec t1, t2; if (cnt > MAX_WAIT_OBJECTS) return(STATUS_INVALID_PARAMETER); if (cnt > THREAD_WAIT_OBJECTS && wb_array == NULL) return(STATUS_INVALID_PARAMETER); mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); if (wb_array == NULL) w = &_wb_array[0]; else w = wb_array; /* First pass: see if we can satisfy any waits immediately. */ for (i = 0; i < cnt; i++) { if (obj[i]->dh_size == OTYPE_MUTEX) { km = (kmutant *)obj[i]; if (km->km_ownerthread == NULL || km->km_ownerthread == curthread->td_proc) { obj[i]->dh_sigstate = FALSE; km->km_acquirecnt++; km->km_ownerthread = curthread->td_proc; if (wtype == WAITTYPE_ANY) { mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return (STATUS_WAIT_0 + i); } } } else if (obj[i]->dh_sigstate == TRUE) { if (obj[i]->dh_type == EVENT_TYPE_SYNC) obj[i]->dh_sigstate = FALSE; if (wtype == WAITTYPE_ANY) { mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return (STATUS_WAIT_0 + i); } } } /* * Second pass: set up wait for anything we can't * satisfy immediately. */ for (i = 0; i < cnt; i++) { if (obj[i]->dh_sigstate == TRUE) continue; INSERT_LIST_TAIL((&obj[i]->dh_waitlisthead), (&w[i].wb_waitlist)); w[i].wb_kthread = td; w[i].wb_object = obj[i]; wcnt++; } if (timeout != NULL) { if (*timeout < 0) { tv.tv_sec = - (*timeout) / 10000000 ; tv.tv_usec = (- (*timeout) / 10) - (tv.tv_sec * 1000000); } else { ntoskrnl_time(&curtime); tv.tv_sec = ((*timeout) - curtime) / 10000000 ; tv.tv_usec = ((*timeout) - curtime) / 10 - (tv.tv_sec * 1000000); } } while (wcnt) { nanotime(&t1); mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); if (td->td_proc->p_flag & P_KTHREAD) error = kthread_suspend(td->td_proc, timeout == NULL ? 0 : tvtohz(&tv)); else error = tsleep(td, PPAUSE|PDROP, "ndisws", timeout == NULL ? 0 : tvtohz(&tv)); mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); nanotime(&t2); for (i = 0; i < cnt; i++) { if (obj[i]->dh_size == OTYPE_MUTEX) { km = (kmutant *)obj; if (km->km_ownerthread == NULL) { km->km_ownerthread = curthread->td_proc; km->km_acquirecnt++; } } if (obj[i]->dh_sigstate == TRUE) { widx = i; if (obj[i]->dh_type == EVENT_TYPE_SYNC) obj[i]->dh_sigstate = FALSE; REMOVE_LIST_ENTRY((&w[i].wb_waitlist)); wcnt--; } } if (error || wtype == WAITTYPE_ANY) break; if (timeout != NULL) { tv.tv_sec -= (t2.tv_sec - t1.tv_sec); tv.tv_usec -= (t2.tv_nsec - t1.tv_nsec) / 1000; } } if (wcnt) { for (i = 0; i < cnt; i++) REMOVE_LIST_ENTRY((&w[i].wb_waitlist)); } if (error == EWOULDBLOCK) { mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(STATUS_TIMEOUT); } if (wtype == WAITTYPE_ANY && wcnt) { mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(STATUS_WAIT_0 + widx); } mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(STATUS_SUCCESS); } __stdcall static void ntoskrnl_writereg_ushort(reg, val) uint16_t *reg; uint16_t val; { bus_space_write_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val); return; } __stdcall static uint16_t ntoskrnl_readreg_ushort(reg) uint16_t *reg; { return(bus_space_read_2(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg)); } __stdcall static void ntoskrnl_writereg_ulong(reg, val) uint32_t *reg; uint32_t val; { bus_space_write_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val); return; } __stdcall static uint32_t ntoskrnl_readreg_ulong(reg) uint32_t *reg; { return(bus_space_read_4(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg)); } __stdcall static uint8_t ntoskrnl_readreg_uchar(reg) uint8_t *reg; { return(bus_space_read_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg)); } __stdcall static void ntoskrnl_writereg_uchar(reg, val) uint8_t *reg; uint8_t val; { bus_space_write_1(NDIS_BUS_SPACE_MEM, 0x0, (bus_size_t)reg, val); return; } __stdcall static int64_t _allmul(a, b) int64_t a; int64_t b; { return (a * b); } __stdcall static int64_t _alldiv(a, b) int64_t a; int64_t b; { return (a / b); } __stdcall static int64_t _allrem(a, b) int64_t a; int64_t b; { return (a % b); } __stdcall static uint64_t _aullmul(a, b) uint64_t a; uint64_t b; { return (a * b); } __stdcall static uint64_t _aulldiv(a, b) uint64_t a; uint64_t b; { return (a / b); } __stdcall static uint64_t _aullrem(a, b) uint64_t a; uint64_t b; { return (a % b); } __regparm static int64_t _allshl(a, b) int64_t a; uint8_t b; { return (a << b); } __regparm static uint64_t _aullshl(a, b) uint64_t a; uint8_t b; { return (a << b); } __regparm static int64_t _allshr(a, b) int64_t a; uint8_t b; { return (a >> b); } __regparm static uint64_t _aullshr(a, b) uint64_t a; uint8_t b; { return (a >> b); } static slist_entry * ntoskrnl_pushsl(head, entry) slist_header *head; slist_entry *entry; { slist_entry *oldhead; oldhead = head->slh_list.slh_next; entry->sl_next = head->slh_list.slh_next; head->slh_list.slh_next = entry; head->slh_list.slh_depth++; head->slh_list.slh_seq++; return(oldhead); } static slist_entry * ntoskrnl_popsl(head) slist_header *head; { slist_entry *first; first = head->slh_list.slh_next; if (first != NULL) { head->slh_list.slh_next = first->sl_next; head->slh_list.slh_depth--; head->slh_list.slh_seq++; } return(first); } __stdcall static void * ntoskrnl_allocfunc(pooltype, size, tag) uint32_t pooltype; size_t size; uint32_t tag; { return(malloc(size, M_DEVBUF, M_NOWAIT)); } __stdcall static void ntoskrnl_freefunc(buf) void *buf; { free(buf, M_DEVBUF); return; } __stdcall static void ntoskrnl_init_lookaside(lookaside, allocfunc, freefunc, flags, size, tag, depth) paged_lookaside_list *lookaside; lookaside_alloc_func *allocfunc; lookaside_free_func *freefunc; uint32_t flags; size_t size; uint32_t tag; uint16_t depth; { struct mtx *mtx; lookaside->nll_l.gl_size = size; lookaside->nll_l.gl_tag = tag; if (allocfunc == NULL) lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc; else lookaside->nll_l.gl_allocfunc = allocfunc; if (freefunc == NULL) lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc; else lookaside->nll_l.gl_freefunc = freefunc; mtx = mtx_pool_alloc(ndis_mtxpool); lookaside->nll_obsoletelock = (kspin_lock)mtx; lookaside->nll_l.gl_depth = LOOKASIDE_DEPTH; lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH; return; } __stdcall static void ntoskrnl_delete_lookaside(lookaside) paged_lookaside_list *lookaside; { void *buf; __stdcall void (*freefunc)(void *); freefunc = lookaside->nll_l.gl_freefunc; while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL) freefunc(buf); return; } __stdcall static void ntoskrnl_init_nplookaside(lookaside, allocfunc, freefunc, flags, size, tag, depth) npaged_lookaside_list *lookaside; lookaside_alloc_func *allocfunc; lookaside_free_func *freefunc; uint32_t flags; size_t size; uint32_t tag; uint16_t depth; { struct mtx *mtx; bzero((char *)lookaside, sizeof(npaged_lookaside_list)); if (size < sizeof(slist_entry)) lookaside->nll_l.gl_size = sizeof(slist_entry); else lookaside->nll_l.gl_size = size; lookaside->nll_l.gl_tag = tag; if (allocfunc == NULL) lookaside->nll_l.gl_allocfunc = ntoskrnl_allocfunc; else lookaside->nll_l.gl_allocfunc = allocfunc; if (freefunc == NULL) lookaside->nll_l.gl_freefunc = ntoskrnl_freefunc; else lookaside->nll_l.gl_freefunc = freefunc; mtx = mtx_pool_alloc(ndis_mtxpool); lookaside->nll_obsoletelock = (kspin_lock)mtx; lookaside->nll_l.gl_depth = LOOKASIDE_DEPTH; lookaside->nll_l.gl_maxdepth = LOOKASIDE_DEPTH; return; } __stdcall static void ntoskrnl_delete_nplookaside(lookaside) npaged_lookaside_list *lookaside; { void *buf; __stdcall void (*freefunc)(void *); freefunc = lookaside->nll_l.gl_freefunc; while((buf = ntoskrnl_popsl(&lookaside->nll_l.gl_listhead)) != NULL) freefunc(buf); return; } /* * Note: the interlocked slist push and pop routines are * declared to be _fastcall in Windows. gcc 3.4 is supposed * to have support for this calling convention, however we * don't have that version available yet, so we kludge things * up using some inline assembly. */ __stdcall static slist_entry * ntoskrnl_push_slist(/*head, entry*/ void) { slist_header *head; slist_entry *entry; slist_entry *oldhead; __asm__ __volatile__ ("" : "=c" (head), "=d" (entry)); mtx_pool_lock(ndis_mtxpool, ntoskrnl_interlock); oldhead = ntoskrnl_pushsl(head, entry); mtx_pool_unlock(ndis_mtxpool, ntoskrnl_interlock); return(oldhead); } __stdcall static slist_entry * ntoskrnl_pop_slist(/*head*/ void) { slist_header *head; slist_entry *first; __asm__ __volatile__ ("" : "=c" (head)); mtx_pool_lock(ndis_mtxpool, ntoskrnl_interlock); first = ntoskrnl_popsl(head); mtx_pool_unlock(ndis_mtxpool, ntoskrnl_interlock); return(first); } __stdcall static slist_entry * ntoskrnl_push_slist_ex(/*head, entry,*/ lock) kspin_lock *lock; { slist_header *head; slist_entry *entry; slist_entry *oldhead; __asm__ __volatile__ ("" : "=c" (head), "=d" (entry)); mtx_pool_lock(ndis_mtxpool, (struct mtx *)*lock); oldhead = ntoskrnl_pushsl(head, entry); mtx_pool_unlock(ndis_mtxpool, (struct mtx *)*lock); return(oldhead); } __stdcall static slist_entry * ntoskrnl_pop_slist_ex(/*head, lock*/ void) { slist_header *head; kspin_lock *lock; slist_entry *first; __asm__ __volatile__ ("" : "=c" (head), "=d" (lock)); mtx_pool_lock(ndis_mtxpool, (struct mtx *)*lock); first = ntoskrnl_popsl(head); mtx_pool_unlock(ndis_mtxpool, (struct mtx *)*lock); return(first); } __stdcall static void ntoskrnl_lock_dpc(/*lock*/ void) { kspin_lock *lock; __asm__ __volatile__ ("" : "=c" (lock)); mtx_pool_lock(ndis_mtxpool, (struct mtx *)*lock); return; } __stdcall static void ntoskrnl_unlock_dpc(/*lock*/ void) { kspin_lock *lock; __asm__ __volatile__ ("" : "=c" (lock)); mtx_pool_unlock(ndis_mtxpool, (struct mtx *)*lock); return; } __stdcall static uint32_t ntoskrnl_interlock_inc(/*addend*/ void) { volatile uint32_t *addend; __asm__ __volatile__ ("" : "=c" (addend)); atomic_add_long((volatile u_long *)addend, 1); return(*addend); } __stdcall static uint32_t ntoskrnl_interlock_dec(/*addend*/ void) { volatile uint32_t *addend; __asm__ __volatile__ ("" : "=c" (addend)); atomic_subtract_long((volatile u_long *)addend, 1); return(*addend); } __stdcall static void ntoskrnl_interlock_addstat(/*addend, inc*/) { uint64_t *addend; uint32_t inc; __asm__ __volatile__ ("" : "=c" (addend), "=d" (inc)); mtx_pool_lock(ndis_mtxpool, ntoskrnl_interlock); *addend += inc; mtx_pool_unlock(ndis_mtxpool, ntoskrnl_interlock); return; }; __stdcall static void ntoskrnl_freemdl(mdl) ndis_buffer *mdl; { ndis_buffer *head; if (mdl == NULL || mdl->nb_process == NULL) return; head = mdl->nb_process; if (head->nb_flags != 0x1) return; mdl->nb_next = head->nb_next; head->nb_next = mdl; /* Decrement count of busy buffers. */ head->nb_bytecount--; /* * If the pool has been marked for deletion and there are * no more buffers outstanding, nuke the pool. */ if (head->nb_byteoffset && head->nb_bytecount == 0) free(head, M_DEVBUF); return; } __stdcall static uint32_t ntoskrnl_sizeofmdl(vaddr, len) void *vaddr; size_t len; { uint32_t l; l = sizeof(struct ndis_buffer) + (sizeof(uint32_t) * SPAN_PAGES(vaddr, len)); return(l); } __stdcall static void ntoskrnl_build_npaged_mdl(mdl) ndis_buffer *mdl; { mdl->nb_mappedsystemva = (char *)mdl->nb_startva + mdl->nb_byteoffset; return; } __stdcall static void * ntoskrnl_mmaplockedpages(buf, accessmode) ndis_buffer *buf; uint8_t accessmode; { return(MDL_VA(buf)); } __stdcall static void * ntoskrnl_mmaplockedpages_cache(buf, accessmode, cachetype, vaddr, bugcheck, prio) ndis_buffer *buf; uint8_t accessmode; uint32_t cachetype; void *vaddr; uint32_t bugcheck; uint32_t prio; { return(MDL_VA(buf)); } __stdcall static void ntoskrnl_munmaplockedpages(vaddr, buf) void *vaddr; ndis_buffer *buf; { return; } /* * The KeInitializeSpinLock(), KefAcquireSpinLockAtDpcLevel() * and KefReleaseSpinLockFromDpcLevel() appear to be analagous * to splnet()/splx() in their use. We can't create a new mutex * lock here because there is no complimentary KeFreeSpinLock() * function. Instead, we grab a mutex from the mutex pool. */ __stdcall static void ntoskrnl_init_lock(lock) kspin_lock *lock; { *lock = (kspin_lock)mtx_pool_alloc(ndis_mtxpool); return; } __stdcall static size_t ntoskrnl_memcmp(s1, s2, len) const void *s1; const void *s2; size_t len; { size_t i, total = 0; uint8_t *m1, *m2; m1 = __DECONST(char *, s1); m2 = __DECONST(char *, s2); for (i = 0; i < len; i++) { if (m1[i] == m2[i]) total++; } return(total); } __stdcall static void ntoskrnl_init_ansi_string(dst, src) ndis_ansi_string *dst; char *src; { ndis_ansi_string *a; a = dst; if (a == NULL) return; if (src == NULL) { a->nas_len = a->nas_maxlen = 0; a->nas_buf = NULL; } else { a->nas_buf = src; a->nas_len = a->nas_maxlen = strlen(src); } return; } __stdcall static void ntoskrnl_init_unicode_string(dst, src) ndis_unicode_string *dst; uint16_t *src; { ndis_unicode_string *u; int i; u = dst; if (u == NULL) return; if (src == NULL) { u->nus_len = u->nus_maxlen = 0; u->nus_buf = NULL; } else { i = 0; while(src[i] != 0) i++; u->nus_buf = src; u->nus_len = u->nus_maxlen = i * 2; } return; } __stdcall ndis_status ntoskrnl_unicode_to_int(ustr, base, val) ndis_unicode_string *ustr; uint32_t base; uint32_t *val; { uint16_t *uchr; int len, neg = 0; char abuf[64]; char *astr; uchr = ustr->nus_buf; len = ustr->nus_len; bzero(abuf, sizeof(abuf)); if ((char)((*uchr) & 0xFF) == '-') { neg = 1; uchr++; len -= 2; } else if ((char)((*uchr) & 0xFF) == '+') { neg = 0; uchr++; len -= 2; } if (base == 0) { if ((char)((*uchr) & 0xFF) == 'b') { base = 2; uchr++; len -= 2; } else if ((char)((*uchr) & 0xFF) == 'o') { base = 8; uchr++; len -= 2; } else if ((char)((*uchr) & 0xFF) == 'x') { base = 16; uchr++; len -= 2; } else base = 10; } astr = abuf; if (neg) { strcpy(astr, "-"); astr++; } ndis_unicode_to_ascii(uchr, len, &astr); *val = strtoul(abuf, NULL, base); return(NDIS_STATUS_SUCCESS); } __stdcall static void ntoskrnl_free_unicode_string(ustr) ndis_unicode_string *ustr; { if (ustr->nus_buf == NULL) return; free(ustr->nus_buf, M_DEVBUF); ustr->nus_buf = NULL; return; } __stdcall static void ntoskrnl_free_ansi_string(astr) ndis_ansi_string *astr; { if (astr->nas_buf == NULL) return; free(astr->nas_buf, M_DEVBUF); astr->nas_buf = NULL; return; } static int atoi(str) const char *str; { return (int)strtol(str, (char **)NULL, 10); } static long atol(str) const char *str; { return strtol(str, (char **)NULL, 10); } __stdcall static uint8_t ntoskrnl_wdmver(major, minor) uint8_t major; uint8_t minor; { if (major == WDM_MAJOR && minor == WDM_MINOR_WINXP) return(TRUE); return(FALSE); } __stdcall static ndis_status ntoskrnl_devprop(devobj, regprop, buflen, prop, reslen) device_object *devobj; uint32_t regprop; uint32_t buflen; void *prop; uint32_t *reslen; { ndis_miniport_block *block; block = devobj->do_rsvd; switch (regprop) { case DEVPROP_DRIVER_KEYNAME: ndis_ascii_to_unicode(__DECONST(char *, device_get_nameunit(block->nmb_dev)), (uint16_t **)&prop); *reslen = strlen(device_get_nameunit(block->nmb_dev)) * 2; break; default: return(STATUS_INVALID_PARAMETER_2); break; } return(STATUS_SUCCESS); } __stdcall static void ntoskrnl_init_mutex(kmutex, level) kmutant *kmutex; uint32_t level; { INIT_LIST_HEAD((&kmutex->km_header.dh_waitlisthead)); kmutex->km_abandoned = FALSE; kmutex->km_apcdisable = 1; kmutex->km_header.dh_sigstate = TRUE; kmutex->km_header.dh_type = EVENT_TYPE_SYNC; kmutex->km_header.dh_size = OTYPE_MUTEX; kmutex->km_acquirecnt = 0; kmutex->km_ownerthread = NULL; return; } __stdcall static uint32_t ntoskrnl_release_mutex(kmutex, kwait) kmutant *kmutex; uint8_t kwait; { mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); if (kmutex->km_ownerthread != curthread->td_proc) { mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(STATUS_MUTANT_NOT_OWNED); } kmutex->km_acquirecnt--; if (kmutex->km_acquirecnt == 0) { kmutex->km_ownerthread = NULL; mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); ntoskrnl_wakeup(&kmutex->km_header); } else mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(kmutex->km_acquirecnt); } __stdcall static uint32_t ntoskrnl_read_mutex(kmutex) kmutant *kmutex; { return(kmutex->km_header.dh_sigstate); } __stdcall static void ntoskrnl_init_event(kevent, type, state) nt_kevent *kevent; uint32_t type; uint8_t state; { INIT_LIST_HEAD((&kevent->k_header.dh_waitlisthead)); kevent->k_header.dh_sigstate = state; kevent->k_header.dh_type = type; kevent->k_header.dh_size = OTYPE_EVENT; return; } __stdcall static uint32_t ntoskrnl_reset_event(kevent) nt_kevent *kevent; { uint32_t prevstate; mtx_pool_lock(ndis_mtxpool, ntoskrnl_dispatchlock); prevstate = kevent->k_header.dh_sigstate; kevent->k_header.dh_sigstate = FALSE; mtx_pool_unlock(ndis_mtxpool, ntoskrnl_dispatchlock); return(prevstate); } __stdcall static uint32_t ntoskrnl_set_event(kevent, increment, kwait) nt_kevent *kevent; uint32_t increment; uint8_t kwait; { uint32_t prevstate; prevstate = kevent->k_header.dh_sigstate; ntoskrnl_wakeup(&kevent->k_header); return(prevstate); } __stdcall static void ntoskrnl_clear_event(kevent) nt_kevent *kevent; { kevent->k_header.dh_sigstate = FALSE; return; } __stdcall static uint32_t ntoskrnl_read_event(kevent) nt_kevent *kevent; { return(kevent->k_header.dh_sigstate); } __stdcall static ndis_status ntoskrnl_objref(handle, reqaccess, otype, accessmode, object, handleinfo) ndis_handle handle; uint32_t reqaccess; void *otype; uint8_t accessmode; void **object; void **handleinfo; { nt_objref *nr; nr = malloc(sizeof(nt_objref), M_DEVBUF, M_NOWAIT|M_ZERO); if (nr == NULL) return(NDIS_STATUS_FAILURE); INIT_LIST_HEAD((&nr->no_dh.dh_waitlisthead)); nr->no_obj = handle; nr->no_dh.dh_size = OTYPE_THREAD; TAILQ_INSERT_TAIL(&ntoskrnl_reflist, nr, link); *object = nr; return(NDIS_STATUS_SUCCESS); } __stdcall static void ntoskrnl_objderef(/*object*/void) { void *object; nt_objref *nr; __asm__ __volatile__ ("" : "=c" (object)); nr = object; TAILQ_REMOVE(&ntoskrnl_reflist, nr, link); free(nr, M_DEVBUF); return; } __stdcall static uint32_t ntoskrnl_zwclose(handle) ndis_handle handle; { return(STATUS_SUCCESS); } /* * This is here just in case the thread returns without calling * PsTerminateSystemThread(). */ static void ntoskrnl_thrfunc(arg) void *arg; { thread_context *thrctx; __stdcall uint32_t (*tfunc)(void *); void *tctx; uint32_t rval; thrctx = arg; tfunc = thrctx->tc_thrfunc; tctx = thrctx->tc_thrctx; free(thrctx, M_TEMP); rval = tfunc(tctx); ntoskrnl_thread_exit(rval); return; /* notreached */ } __stdcall static ndis_status ntoskrnl_create_thread(handle, reqaccess, objattrs, phandle, clientid, thrfunc, thrctx) ndis_handle *handle; uint32_t reqaccess; void *objattrs; ndis_handle phandle; void *clientid; void *thrfunc; void *thrctx; { int error; char tname[128]; thread_context *tc; struct proc *p; tc = malloc(sizeof(thread_context), M_TEMP, M_NOWAIT); if (tc == NULL) return(NDIS_STATUS_FAILURE); tc->tc_thrctx = thrctx; tc->tc_thrfunc = thrfunc; sprintf(tname, "windows kthread %d", ntoskrnl_kth); error = kthread_create(ntoskrnl_thrfunc, tc, &p, RFHIGHPID, 0, tname); *handle = p; ntoskrnl_kth++; return(error); } /* * In Windows, the exit of a thread is an event that you're allowed * to wait on, assuming you've obtained a reference to the thread using * ObReferenceObjectByHandle(). Unfortunately, the only way we can * simulate this behavior is to register each thread we create in a * reference list, and if someone holds a reference to us, we poke * them. */ __stdcall static ndis_status ntoskrnl_thread_exit(status) ndis_status status; { struct nt_objref *nr; TAILQ_FOREACH(nr, &ntoskrnl_reflist, link) { if (nr->no_obj != curthread->td_proc) continue; ntoskrnl_wakeup(&nr->no_dh); break; } ntoskrnl_kth--; mtx_lock(&Giant); kthread_exit(0); return(0); /* notreached */ } static uint32_t ntoskrnl_dbgprint(char *fmt, ...) { va_list ap; if (bootverbose) { va_start(ap, fmt); vprintf(fmt, ap); } return(STATUS_SUCCESS); } __stdcall static void ntoskrnl_debugger(void) { Debugger("ntoskrnl_debugger(): breakpoint"); return; } static void ntoskrnl_timercall(arg) void *arg; { ktimer *timer; __stdcall kdpc_func timerfunc; kdpc *dpc; struct timeval tv; timer = arg; dpc = timer->k_dpc; timerfunc = (kdpc_func)dpc->k_deferedfunc; timerfunc(dpc, dpc->k_deferredctx, dpc->k_sysarg1, dpc->k_sysarg2); ntoskrnl_wakeup(&timer->k_header); /* * If this is a periodic timer, re-arm it * so it will fire again. */ if (timer->k_period) { tv.tv_sec = 0; tv.tv_usec = timer->k_period * 1000; timer->k_handle = timeout(ntoskrnl_timercall, timer, tvtohz(&tv)); } return; } __stdcall static void ntoskrnl_init_timer(timer) ktimer *timer; { if (timer == NULL) return; INIT_LIST_HEAD((&timer->k_header.dh_waitlisthead)); timer->k_header.dh_sigstate = FALSE; timer->k_header.dh_type = EVENT_TYPE_NOTIFY; timer->k_header.dh_size = OTYPE_TIMER; callout_handle_init(&timer->k_handle); return; } __stdcall static void ntoskrnl_init_timer_ex(timer, type) ktimer *timer; uint32_t type; { if (timer == NULL) return; INIT_LIST_HEAD((&timer->k_header.dh_waitlisthead)); timer->k_header.dh_sigstate = FALSE; timer->k_header.dh_type = type; timer->k_header.dh_size = OTYPE_TIMER; callout_handle_init(&timer->k_handle); return; } __stdcall static void ntoskrnl_init_dpc(dpc, dpcfunc, dpcctx) kdpc *dpc; void *dpcfunc; void *dpcctx; { if (dpc == NULL) return; dpc->k_deferedfunc = dpcfunc; dpc->k_deferredctx = dpcctx; return; } __stdcall static uint8_t ntoskrnl_set_timer_ex(timer, duetime, period, dpc) ktimer *timer; int64_t duetime; uint32_t period; kdpc *dpc; { struct timeval tv; uint64_t curtime; uint8_t pending; if (timer == NULL) return(FALSE); if (timer->k_handle.callout != NULL && callout_pending(timer->k_handle.callout)) pending = TRUE; else pending = FALSE; timer->k_duetime = duetime; timer->k_period = period; timer->k_header.dh_sigstate = FALSE; timer->k_dpc = dpc; if (duetime < 0) { tv.tv_sec = - (duetime) / 10000000 ; tv.tv_usec = (- (duetime) / 10) - (tv.tv_sec * 1000000); } else { ntoskrnl_time(&curtime); tv.tv_sec = ((duetime) - curtime) / 10000000 ; tv.tv_usec = ((duetime) - curtime) / 10 - (tv.tv_sec * 1000000); } timer->k_handle = timeout(ntoskrnl_timercall, timer, tvtohz(&tv)); return(pending); } __stdcall static uint8_t ntoskrnl_set_timer(timer, duetime, dpc) ktimer *timer; int64_t duetime; kdpc *dpc; { return (ntoskrnl_set_timer_ex(timer, duetime, 0, dpc)); } __stdcall static uint8_t ntoskrnl_cancel_timer(timer) ktimer *timer; { uint8_t pending; if (timer == NULL) return(FALSE); if (timer->k_handle.callout != NULL && callout_pending(timer->k_handle.callout)) pending = TRUE; else pending = FALSE; untimeout(ntoskrnl_timercall, timer, timer->k_handle); return(pending); } __stdcall static uint8_t ntoskrnl_read_timer(timer) ktimer *timer; { uint8_t pending; if (timer == NULL) return(FALSE); if (timer->k_handle.callout != NULL && callout_pending(timer->k_handle.callout)) pending = TRUE; else pending = FALSE; return(pending); } __stdcall static void dummy() { printf ("ntoskrnl dummy called...\n"); return; } image_patch_table ntoskrnl_functbl[] = { { "RtlCompareMemory", (FUNC)ntoskrnl_memcmp }, { "RtlEqualUnicodeString", (FUNC)ntoskrnl_unicode_equal }, { "RtlCopyUnicodeString", (FUNC)ntoskrnl_unicode_copy }, { "RtlUnicodeStringToAnsiString", (FUNC)ntoskrnl_unicode_to_ansi }, { "RtlAnsiStringToUnicodeString", (FUNC)ntoskrnl_ansi_to_unicode }, { "RtlInitAnsiString", (FUNC)ntoskrnl_init_ansi_string }, { "RtlInitUnicodeString", (FUNC)ntoskrnl_init_unicode_string }, { "RtlFreeAnsiString", (FUNC)ntoskrnl_free_ansi_string }, { "RtlFreeUnicodeString", (FUNC)ntoskrnl_free_unicode_string }, { "RtlUnicodeStringToInteger", (FUNC)ntoskrnl_unicode_to_int }, { "sprintf", (FUNC)sprintf }, { "vsprintf", (FUNC)vsprintf }, { "DbgPrint", (FUNC)ntoskrnl_dbgprint }, { "DbgBreakPoint", (FUNC)ntoskrnl_debugger }, { "strncmp", (FUNC)strncmp }, { "strcmp", (FUNC)strcmp }, { "strncpy", (FUNC)strncpy }, { "strcpy", (FUNC)strcpy }, { "strlen", (FUNC)strlen }, { "memcpy", (FUNC)memcpy }, { "memmove", (FUNC)memcpy }, { "memset", (FUNC)memset }, { "IofCallDriver", (FUNC)ntoskrnl_iofcalldriver }, { "IofCompleteRequest", (FUNC)ntoskrnl_iofcompletereq }, { "IoBuildSynchronousFsdRequest", (FUNC)ntoskrnl_iobuildsynchfsdreq }, { "KeWaitForSingleObject", (FUNC)ntoskrnl_waitforobj }, { "KeWaitForMultipleObjects", (FUNC)ntoskrnl_waitforobjs }, { "_allmul", (FUNC)_allmul }, { "_alldiv", (FUNC)_alldiv }, { "_allrem", (FUNC)_allrem }, { "_allshr", (FUNC)_allshr }, { "_allshl", (FUNC)_allshl }, { "_aullmul", (FUNC)_aullmul }, { "_aulldiv", (FUNC)_aulldiv }, { "_aullrem", (FUNC)_aullrem }, { "_aullshr", (FUNC)_aullshr }, { "_aullshl", (FUNC)_aullshl }, { "atoi", (FUNC)atoi }, { "atol", (FUNC)atol }, { "WRITE_REGISTER_USHORT", (FUNC)ntoskrnl_writereg_ushort }, { "READ_REGISTER_USHORT", (FUNC)ntoskrnl_readreg_ushort }, { "WRITE_REGISTER_ULONG", (FUNC)ntoskrnl_writereg_ulong }, { "READ_REGISTER_ULONG", (FUNC)ntoskrnl_readreg_ulong }, { "READ_REGISTER_UCHAR", (FUNC)ntoskrnl_readreg_uchar }, { "WRITE_REGISTER_UCHAR", (FUNC)ntoskrnl_writereg_uchar }, { "ExInitializePagedLookasideList", (FUNC)ntoskrnl_init_lookaside }, { "ExDeletePagedLookasideList", (FUNC)ntoskrnl_delete_lookaside }, { "ExInitializeNPagedLookasideList", (FUNC)ntoskrnl_init_nplookaside }, { "ExDeleteNPagedLookasideList", (FUNC)ntoskrnl_delete_nplookaside }, { "InterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist }, { "InterlockedPushEntrySList", (FUNC)ntoskrnl_push_slist }, { "ExInterlockedPopEntrySList", (FUNC)ntoskrnl_pop_slist_ex }, { "ExInterlockedPushEntrySList",(FUNC)ntoskrnl_push_slist_ex }, { "KefAcquireSpinLockAtDpcLevel", (FUNC)ntoskrnl_lock_dpc }, { "KefReleaseSpinLockFromDpcLevel", (FUNC)ntoskrnl_unlock_dpc }, { "InterlockedIncrement", (FUNC)ntoskrnl_interlock_inc }, { "InterlockedDecrement", (FUNC)ntoskrnl_interlock_dec }, { "ExInterlockedAddLargeStatistic", (FUNC)ntoskrnl_interlock_addstat }, { "IoFreeMdl", (FUNC)ntoskrnl_freemdl }, { "MmSizeOfMdl", (FUNC)ntoskrnl_sizeofmdl }, { "MmMapLockedPages", (FUNC)ntoskrnl_mmaplockedpages }, { "MmMapLockedPagesSpecifyCache", (FUNC)ntoskrnl_mmaplockedpages_cache }, { "MmUnmapLockedPages", (FUNC)ntoskrnl_munmaplockedpages }, { "MmBuildMdlForNonPagedPool", (FUNC)ntoskrnl_build_npaged_mdl }, { "KeInitializeSpinLock", (FUNC)ntoskrnl_init_lock }, { "IoIsWdmVersionAvailable", (FUNC)ntoskrnl_wdmver }, { "IoGetDeviceProperty", (FUNC)ntoskrnl_devprop }, { "KeInitializeMutex", (FUNC)ntoskrnl_init_mutex }, { "KeReleaseMutex", (FUNC)ntoskrnl_release_mutex }, { "KeReadStateMutex", (FUNC)ntoskrnl_read_mutex }, { "KeInitializeEvent", (FUNC)ntoskrnl_init_event }, { "KeSetEvent", (FUNC)ntoskrnl_set_event }, { "KeResetEvent", (FUNC)ntoskrnl_reset_event }, { "KeClearEvent", (FUNC)ntoskrnl_clear_event }, { "KeReadStateEvent", (FUNC)ntoskrnl_read_event }, { "KeInitializeTimer", (FUNC)ntoskrnl_init_timer }, { "KeInitializeTimerEx", (FUNC)ntoskrnl_init_timer_ex }, { "KeInitializeDpc", (FUNC)ntoskrnl_init_dpc }, { "KeSetTimer", (FUNC)ntoskrnl_set_timer }, { "KeSetTimerEx", (FUNC)ntoskrnl_set_timer_ex }, { "KeCancelTimer", (FUNC)ntoskrnl_cancel_timer }, { "KeReadStateTimer", (FUNC)ntoskrnl_read_timer }, { "ObReferenceObjectByHandle", (FUNC)ntoskrnl_objref }, { "ObfDereferenceObject", (FUNC)ntoskrnl_objderef }, { "ZwClose", (FUNC)ntoskrnl_zwclose }, { "PsCreateSystemThread", (FUNC)ntoskrnl_create_thread }, { "PsTerminateSystemThread", (FUNC)ntoskrnl_thread_exit }, /* * This last entry is a catch-all for any function we haven't * implemented yet. The PE import list patching routine will * use it for any function that doesn't have an explicit match * in this table. */ { NULL, (FUNC)dummy }, /* End of list. */ { NULL, NULL }, };