Sundance Technology Incorporated Proprietary DO NOT DISTRIBUTE Design Specification for Rio Gigabit Ethernet MAC

November 10, 1998

Last Update: December 8, 2000 4:38 pm

1.0 Introduction

2.0 Target Applications

The target application for Rio is the network interface portion (either embedded or as part of a NIC) of a file server operating in either a full or half duplex Gigabit Ethernet LAN.

3.0 Assumptions

3.1 Gigabit only

Assumption:

L

I

I

I

I

I

I

Rio must support Gigabit Ethernet, but will not be used in 10Mbps or 100Mbps Ethernet environments. Argument:

Early adopters of Gigabit technology will deploy small, dedicated, Gigabit only LAN segments. The expense associated with Gigabit capable clients, servers, and networking gear (i.e. switches) will forgo deployment of gigabit capable workstations in heterogeneous (10/100/1000Mbps) environments. In addition, a multi speed Gigabit NIC will most likely need to support a common medium (i.e. CAT5 UTP) and the 10BASE-T, 100BASE-TX, and 1000BASE-TX standards. Since the 1000BASE-T standard is still in progress, the likelihood of a NIC with a 10/100/1000Mbps requirement is small.

3.2 GMII and SERDES PHY support

Assumption:

Rio must support two interfaces to PHY devices. Both the standard GMII and a non-standard, defacto interface popular among fiber PHY vendors (referred to as the TBI interface).

Argument:

The IEEE 802.3z Gigabit Ethernet standard specifies an extension to the MII introduced in 802.3u Fast Ethernet. The new standard interface, known as GMII is to be used for PHY and MAC device interconnection. Prior to definition of the GMII, several vendors (Amcc, Vitesse) have created PHY SERDES devices to support fiber optic (1000BASE-X) Gigabit Ethernet. These devices do not utilize the GMII, but instead have adopted a generic interface. The industry trend appears to be that GMII will be used for 1000BASE-T

(copper) and TBI will be used for 1000BASE-X (fiber optic). In order to support these legacy devices, Rio must also provide a generic TBI. The TBI should support as many PHY vendor SERDES devices as possible.

3.3 PCS included (includes 8B10B ENDEC, and Fiber auto-negotiation)

Assumption:

Rio must include the PCS portion of the Gigabit Ethernet protocol stack to support 1000BASE-X PHY devices.

Argument:

The IEEE 802.3z specification defines the GMII as the interface between the MAC and PCS layers within the Gigabit Ethernet protocol stack. None of the 1000BASE-X PHY devices support the GMII (so called SERDES devices) do not incorporate the PCS layer. Therefore, to support these PHY devices Rio must include a Gigabit Ethernet PCS.

3.4 Jumbo frame support

Assumption:

Rio must support Alteon's jumbo frame technology.

Argument:

Jumbo frames or extended frames, as defined by Alteon Networks, are frames that are larger than the 1518 octet (or 1522 octet for VLAN tagged) frames which are specified in the IEEE 802.3 standard. Alteon Networks supports a "Jumbo Frame" option on adapters and switches that allows for the extension of Ethernet frame length up to 9018 (or 9022 for VLAN tagged) octets. Microsoft and 3Com (among others) are showing support for this technology, and tests have shown a Microsoft NT server using jumbo frames has a significant performance improvement over non-jumbo frame environments when operating in a Gigabit Ethernet environment.

3.5 64 bit, 33/66MHz PCI bus support

Assumption:

Rio will support both a 32 bit and 64 bit, 33/66MHz PCI bus.

Argument:

I

Gigabit Ethernet will most likely be deployed in servers. To utilize the bandwidth provided by Gigabit Ethernet high performance machines will be required. Typically, high end servers utilize 64 bit PCI to maximize their bus bandwidth. Therefore, a 32 bit only MAC would have limited application in Gigabit enabled servers. While support for 66MHz PCI is not expected to be popular among high end servers immediately, 66MHz support is expected to be a competitive feature providing customers with an upgrade path to improve system performance without changing NICs.

4.0 Competitive Products

Sun Alteon Packet Engines Via Technologies XaQti Intel (acquired LevelOne who acquired Jato)

5.0 Interoperability & Compatibility

Rubicon must be compatible with and/or interoperate with the following devices and systems.

TABLE 1: Target Rubicon Fiber Optic Transceiver Compatibility

MANUFACTURER	TRANSCEIVER
HP	HFBR-53D5 Family, 850 nm VCSEL HFCT-53D5 Family, 1300 nm FP Laser

TABLE 2: Target Rubicon 1000BASE-X PHY Device Interoperability

MANUFACTURER	PHY DEVICE
Amcc	S2066/2061/2060/2054/2053/2046/2047
AMD	Am79761
HP	HDMP-1636A/1646A
LSI Logic	GigaBlaze Transceiver Core
ТІ	TNETE2201

TABLE 2: Target Rubicon 1000BASE-X PHY Device Interoperability

MANUFACTURER	PHY DEVICE
Vitesse	VSC7123/7133/7135

TABLE 3: Target Rubicon 1000BASE-T PHY Device Interoperability

MANUFACTURER	PHY DEVICE
Broadcomm	BCM5400
Level1	?
National Semiconductor	?

TABLE 4: Target Rubicon NIC Interoperability

MANUFACTURER	NIC
3Com	Gigabit EtherLink® Server Network Interface Card
Alteon	ACEnic
HP	1000BaseSX Gigabit Ethernet adapter cards
Intel	PRO/1000 Gigabit Server Adapter
Packet Engines	G-NIC [™] II Network Interface Card
SGI	Gigabit Ethernet adapter (Alteon OEM)
Solidum Systems	PCI NIC (technology evaluation and OEM)
Sun	GigabitEthernet™ 2.0 adapter
XaQti	Gigabit Development Kit II (GDK II)

TABLE 5: Target Rubicon Hub/Switch/Router Interoperability

MANUFACTURER	HUB/SWITCH/ROUTER
3Com	SuperStack II Hub SuperStack II Switch 9300 SuperStack II Switch 3900 SuperStack II Switch 9000 SuperStack Gigabit Ethernet Module CoreBuilder 3500 Gigabit Ethernet Module CoreBuilder 7000 Gigabit Ethernet Interface Card CoreBuilder 5000 Gigabit Ethernet Module CoreBuilder 9000 Enterprise Switch
Alteon	ACEswitch 180

MANUFACTURER	HUB/SWITCH/ROUTER
Anritsu	MultiFlowTM 1000 Multilayer Switch
Cabletron	SmartSwitch 9000 with Gigabit Ethernet module SmartSTACK Switch with Gigabit Ethernet module GIGAswitch/Ethernet (a DEC product)
Cisco	Catalyst 5509 Switching System Catalyst 5000 Gigabit Ethernet/EtherChannel mod- ules
Compaq	GIGAswitch/Ethernet (a DEC product)
Extreme Networks	Black Diamond 6800 Switch Summit1 Switch Summit4 Switch Summit24 Switch Summit28 Switch Summit Virtual Chassis SummitGbX Switch
Foundry	FastIron Workgroup Switch FastIron Backbone Switches TurboIron Backbone Switches NetIron Switching Routers TurboIron Switching Routers ServerIron Switch BigIron Switching Router FastIron II Wiring Closet Switch
HP	ProCurve Routing Switch 9308M ProCurve Routing Switch 9304M ProCurve Switch 8000M ProCurve Switch 16000M ProCurve Switch 4000M
IBM	8274 Nways LAN RouteSwitch 8271 Nways Ethernet LAN Switch 8277 Nways Ethernet RouteSwitch 8275 300 Series Switch 8275 200 Series Switch
Intel	Gigabit Express Switch
LANNET (acquired by Lucent)	Cajun P550 Gigabit Switch Cajun P220 Series Gigabit Switches Cajun M770 Switch Cajun P100 Series Switches Cajun M400 Series Switches
NetVantage	NV9200 Series Switches

TABLE 5: Target Rubicon Hub/Switch/Router Interoperability

MANUFACTURER	HUB/SWITCH/ROUTER
Nortel (acquired Bay Networks)	BayStack 350 Switch BayStack 450 Switch Accelar 1000 Series Switches Versalar IP Access Switch 15000
ODS	LANBlazer 7000 Gigabit Switch
Packet Engines	FDR [™] Gigabit Ethernet Hub PowerRail [™] 5200 Enterprise Routing Switch PowerRail [™] 2200 Enterprise Routing Switch PowerRail [™] 1000 Routing Switch
Performance Technologies	Nebula 4000 Workgroup Switch Nebula 6000 Departmental Switch Nebula 8000 Fault Tolerant Backbone Switch
Plaintree	WaveSwitch 9200 WaveSwitch 9202
XLNT	Millennium 4000 Gigabit Ethernet LAN Switch

TABLE 5: Target Rubicon Hub/Switch/Router Interoperability

TABLE 6: Primary Target Rubicon Operating Systems

CLASS	OPERATING SYSTEM
Microsoft	WINDOWS NT SERVER 4.0
	Windows NT Server Enterprise Edition
	Windows 2000 Server
Novell	Netware 4.2
	Netware 5
Linux	Kernel version 2.2.x Popular distributions: Caldera OpenLinux Debian Eonova Mandrake PHT TurboLinux (popular in Japan) Red Hat Slackware Stampede S.u.S.E. (popular in Germany and Europe)

CLASS	OPERATING SYSTEM
Microsoft	Windows NT Workstation 4.0
	Windows NT 4.0 Server Terminal Server Edition
Sun	Solaris 2.6, 2.7

TABLE 7: Secondary Target Rubicon Operating Environments

TABLE 8: Target Rubicon Systems

MANUFACTURER	SYSTEM
Dell	PowerEdge 6300/6350
Compaq	Proliant 6000/7000
DEC	AlphaServer 800/1200/DS20, Server 3300/3300R/5300/ 7300/7300R
HP	LXr 8000, LH 4/4r,
IBM	Netfinity 7000, RS/6000 260
Unisys	Aquanta 5045R/5045/5043/ES 2045R/ES 2045
SGI	320/540/O2/Origin200/200 Gigachannel/2000

5.1 Standards Compliance

Rubicon must be compliant with the following standards: IEEE 802.3 1998 Edition IEEE 802.3z,x,p,Q PCI Bus Rev 2.2 ACPI Rev 1.0

PC 2001

6.0 Features

PCI Features

- 32/64 bit bus operation
- 33/66MHz bus operation
- Bus master capability
- PCI Specification Revision 2.2 compliant

DMA Features

- Efficient DMA operation maximizes PCI bandwidth utilization
- 1 Terabyte (40 bit) address space
- Scatter, gather transmit/receive DMA
- Dynamic transmit/receive resource allocation
- Transmit and receive descriptor polling

- Transmit "interrupt-less" mode of operation
- IEEE 802.1Q Datalink Layer prioritization
- Transmit frame priority queuing
- Receive frame priority interrupts
- Receive interrupt coalescing
- Timer based interrupt mode

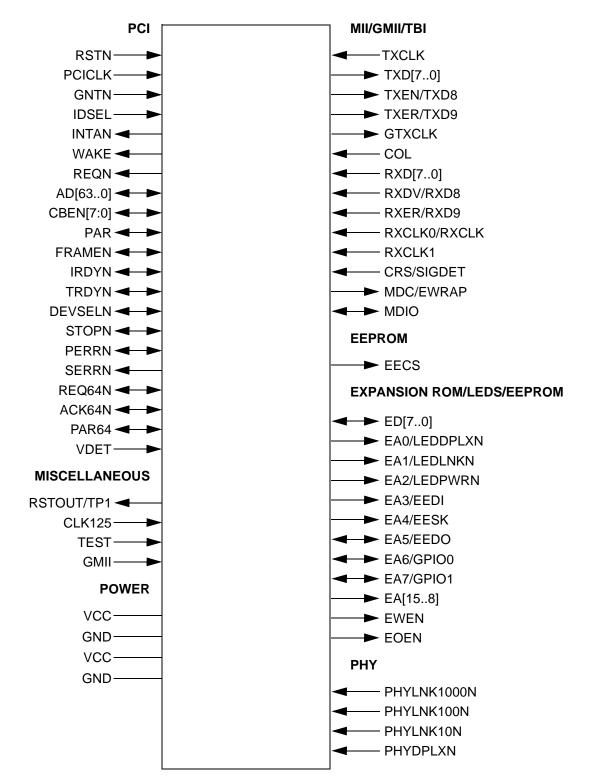
FIFO Features

- Large transmit & receive FIFO
- No external memory required
- Receive FIFO flow control thresholds
- Transmit and receive FIFO occupancy priority DMA requests
- MAC Features

I

I

- IEEE 802.3 1998 Edition compliant
- 1000Mbps, 100Mbps, 10Mbps triple speed operation
- Full wire speed support
- Half/full duplex operation
- Half duplex carrier extension and packet bursting
- Asymmetric/symmetric flow control
- Transmit and receive back to back frame support
- VLAN support
- IP, TCP, UDP checksum calculation/verification
- Rich statistic register set
- 64bit hash table for receive multicast frame filtering
- Jumbo frame support, transmit and receive
- GMII support
- MII support


Gigabit PCS Features

- For use with non-GMII enabled Gigabit PHY devices
- Ten Bit Interface (TBI)
- Bypass mode
- 1000BASE-X compliant
- 8B10B encoder/decoder
- Auto negotiation
- PCS related PHY management registers

Power Management

- WakeOnLAN support
- ACPI support

7.0 Signals

8.0 Signal Descriptions

I

|

I

I

SIGNAL NAME	SIGNAL TYPE	SIGNAL DESCRIPTION
		PCI
RSTN	INPUT	Reset, asserted LOW. RSTN will cause the Rio to reset all of its func- tional blocks. RSTN must be asserted for a minimum duration of 10 PCICLK cycles.
PCICLK	INPUT	PCI Bus Clock. This clock is used to drive the PCI bus interfaces and the internal DMA logic. All bus signals are sampled on the rising edge of PCICLK. PCICLK can operate from 0MHz to 66MHz.
GNTN	INPUT	PCI Bus Grant, asserted LOW. GNTN signals access to the PCI bus has been granted to Rio.
IDSEL	INPUT	Initialization Device Select. The IDSEL is used to select the Rio during configuration read and write transactions.
INTAN	OUTPUT	Interrupt Request, asserted LOW. The Rio asserts INTAN to request an interrupt, when any one of the programmed interrupt event occurs.
WAKE	OUTPUT	Wake Event, assertion level is programmable. The Rio asserts WAKE to signal the detection of a wake event. The WAKE signal eventually drives the PCI bus PME# signal, but is not intended to be directly con nected to PME#. See the PCI Bus Power Management Interface Specification for details on generating PME# from WAKE.
REQN	OUTPUT	Request, asserted LOW. The Rio asserts REQN to request PCI bus master operation.
AD [630]	IN/OUT	PCI Bus Address/Data. Address and data are multiplexed on the AD pins. Bits 0 through 31 carry the lower 32 bits of the physical address during the first clock cycle of a transaction, and carry data during the subsequent clock cycles. Bits 32 through 63 carry the upper 32 bits of the physical address during the first clock cycle of a transaction (if the Dual Address Cycle, or DAC command is used along with the assertion of REQ64N), and carry an additional 32 bits of data during subsequen clock cycles (if a 64 bit transaction has been negotiated through the assertion of both REQ64N and ACK64N).
CBEN [70]	IN/OUT	PCI Bus Command/Byte Enable, asserted LOW. Bus command and byte enables are multiplexed on the CBEN signals. CBEN specify the bus command during the address phase transaction, and carry byte enables during the data phase. CBEN bits 4 through 0 are reserved unless a 64 bit transaction has been negotiated through the assertion of both REQ64N and ACK64N.

TABLE 9: Rio Signal Descriptions

SIGNAL NAME	SIGNAL TYPE	SIGNAL DESCRIPTION
PAR	IN/OUT	Parity. PCI Bus parity is even across bits 0 through 31 of AD and bits 0 through 3 of CBEN. The Rio generates PAR during address and write data phases as a bus master, and during read data phase as a target. It checks for correct parity during read data phase as bus master, during every address phase as a bus slave, and during write data phases as a target.
FRAMEN	IN/OUT	PCI Bus Cycle Frame, asserted LOW. FRAMEN is asserted at the beginning of the address phase of the bus transaction and deasserted before the final transfer of the data phase of the transaction.
IRDYN	IN/OUT	Initiator Ready, asserted LOW. A bus master asserts IRDYN to indicate valid data phases on AD during write data phases, and to indicate it is ready to accept data during read data phases. A target will monitor IRDYN.
TRDYN	IN/OUT	Target Ready, asserted LOW. A bus target asserts TRDYN to indicate valid read data phases, and to indicate it is ready to accept data during write data phases. A bus master will monitor TRDYN.
DEVSELN	IN/OUT	Device Select, asserted LOW. The Rio asserts DEVSELN when it is selected as a target during a bus transaction. It monitors DEVSELN for any target to acknowledge a bus transaction initiated by the Rio.
STOPN	IN/OUT	Stop, asserted LOW. STOPN is driven by the slave target to inform the bus master to terminate the current transaction.
PERRN	IN/OUT	Parity Error, asserted LOW. The Rio asserts PERRN when it checks and detects a bus parity errors. When it is generating PAR output, the Rio monitors for any reported parity error on PERRN.
SERRN	OUTPUT	System Error, asserted LOW.
REQ64N	IN/OUT	64 Bit Transaction Request, asserted LOW. The REQ64N signal is asserted by a bus master to indicate a preference for 64 bit transactions.
ACK64N	IN/OUT	64 Bit Transaction Acknowledgment, asserted LOW. The ACK64N sig- nal is asserted by a bus target which supports 64 bit transactions in response to REQ64N assertion.
PAR64	IN/OUT	Parity. PCI Bus parity is even across bits 32 through 63 of AD and bits 4 through 7 of CBEN. The Rio generates PAR64 during address and write data phases as a bus master, and during read data phase as a target. It checks for correct parity during read data phase as bus master, during every address phase as a bus slave, and during write data phases as a target.

I

I

I

L

I

I

TABLE 9: Rio Signal Descriptions

I

SIGNAL NAME	SIGNAL TYPE	SIGNAL DESCRIPTION
VDET	INPUT	Power Detect. The Rio detects PCI bus power supply loss when VDET is LOW.
		MII/GMII/TBI
TXCLK	INPUT	Transmit Clock. TXCLK is a continuous clock supplied by the PHY to synchronize transmit data transfers when the Rubicon is configured in 10Mbps or 100Mbps Mode. The nominal rate of TXCLK is 2.5MHz for 10Mbps operation, and 25MHz for 100Mbps operation.
TXD [70]	OUTPUT	Transmit Data. Eight bits of transmit data from the transmit MAC to the PHY device. When the Rio is configured in GMII Mode, these signals represent the entire transmit data bus. TXD are synchronized to the GTXCLK. When the Rio is configured in TBI Mode, these pins represent the lower 8 bits of the 10 bit transmit data bus. TXD are synchronized with GTXCLK.
TXEN/TXD8	OUTPUT	Transmit Enable/Transmit Data Bit 9. When the Rubicon is configured in GMII mode, this signal is TXEN. When asserted, TXEN/TXD8 indi- cates to the PHY that TXD carry valid transmit data. TXEN/TXD8 is asserted with the first byte of the preamble until the last byte of the frame data. When the Rubicon is configured in TBI Mode, this signal is TXD[8], the ninth transmit data bit. TXEN/TXD8 is synchronous with GTXCLK.
TXER/TXD9	OUTPUT	Transmit Error/Transmit Data Bit 10. When the Rubicon is configured in GMII mode, this signal is TXER. When asserted, TXER/TXD9 indicates to the PHY that an error symbol should be transmitted in place of the TXD transmit data. When the Rubicon is configured in TBI Mode, this signal is TXD[9], the tenth transmit data bit. TXER/TXD9 is synchronous with GTXCLK.
GTXCLK	OUTPUT	Gigabit Transmit Clock. GTXCLK is a continuous clock supplied to the PHY to synchronize transmit data transfers when the Rubicon is configured in GMII Mode or TBI Mode. The nominal rate of GTXCLK is 125MHz.
COL	INPUT	Collision. When the Rubicon is configured in TBI Mode, COL is ignored and should be tied LOW. When the Rubicon is configured in GMII Mode, COL is asserted by the PHY to signal a collision condition is detected on the physical medium. COL is asynchronous.

TABLE 9: Rio	Signal	Descriptions
--------------	--------	--------------

SIGNAL SIGNAL NAME TYPE		SIGNAL DESCRIPTION
RXD [70]	INPUT	Receive Data. 8 bits of receive data from the PHY device to the receive MAC. When the Rio is configured in GMII Mode, these signals represent the entire receive data bus. In GMII Mode, RXD are synchronized to the RXCLK0/RXCLK. When the Rio is configured in TBI Mode, these pins represent the lower 8 bits of the 10 bit receive data bus. In TBI Mode, RXD are synchronized with both RXCLK0/RXCLK and RXCLK1.
RXDV/RXD8	INPUT	Receive Data Valid/Receive Data Bit 9. When the Rubicon is config- ured in GMII Mode, this signal is RXDV, indicating valid frame data is present on the RXD pins. The PHY asserts RXDV/RXD8 before the SFD, and de-asserts it after the last data nibble of the frame. In GMII mode, RXDV/RXD8 is synchronous with RXCLK0/RXCLK. When the Rubicon is configured in TBI Mode, this signal is RXD[8], the ninth receive data bit. In TBI mode, RXDV/RXD8 is synchronous with both RXCLK0/RXCLK and RXCLK1.
RXER/RXD9	INPUT	Receive Error/Receive Data Bit 10. When the Rubicon is configured in GMII Mode, this signal is RXER, an indication from the PHY that an error has been detected during frame data reception. In GMII mode, RXER/RXD9 is synchronous with RXCLK0/RXCLK. When the Rubicon is configured in TBI Mode, this signal is RXD[9], the tenth receive data bit. In TBI mode, RXER/RXD9 is synchronous with both RXCLK0/RXCLK and RXCLK1.
RXCLK0/ RXCLK	INPUT	Receive Clock Zero. When the Rubicon is configured in GMII Mode, RXCLK0/RXCLK provide the timing reference for RXD, RXDV/RXD8, and RXER/RXD9 signals. The nominal rate for RXCLK0/RXCLK is 125MHz. When the Rubicon is configured in TBI Mode, RXCLK0/RXCLKand RXCLK1 together provide a timing reference for the 10 bit data bus defined by RXD, RXDV/RXD8, and RXER/RXD9 signals. RXCLK0/ RXCLK rising edges correspond to odd-numbered code-groups appearing on the 10 bit data bus defined by RXD, RXDV/RXD8, and RXER/RXD9 signals. RXCLK0/RXCLK and RXCLK1 are supplied by the PHY based on the receive clock recovery circuit. RXCLK0/RXCLK and RXCLK1 are 180 degrees out of phase. Nominal rate for RXCLK0/ RXCLK is 62.5MHz. RXCLK0/RXCLK may be stretched, but is never shortened.

L

TABLE 9: Rio Signal Descriptions

I

I

I

I

SIGNAL SIGNAL NAME TYPE		SIGNAL DESCRIPTION
RXCLK1	INPUT	Receive Clock One. When the Rubicon is configured in GMII Mode, RXCLK1 is ignored and should be tied LOW. When the Rubicon is configured in TBI Mode, RXCLK0/RXCLKand RXCLK1 together provide a timing reference for the 10 bit data bus defined by RXD, RXDV/RXD8, and RXER/RXD9 signals. RXCLK0/ RXCLK rising edges correspond to even-numbered code-groups appearing on the 10 bit data bus defined by RXD, RXDV/RXD8, and RXER/RXD9 signals. RXCLK0/RXCLK and RXCLK1 are supplied by the PHY based on the receive clock recovery circuit. RXCLK0/RXCLK and RXCLK1 are 180 degrees out of phase. Nominal rate for RXCLK1 is 62.5MHz. RXCLK1 may be stretched, but is never shortened.
CRS/ SIGDET	INPUT	Carrier Sense/Signal Detect. When the Rio is configured in GMII Mode, this signal is CRS, asserted by the PHY to signal a non-idle medium with either transmit or receive activity detected. CRS is asyn- chronous. When the Rubicon is configured in TBI Mode, this signal is SIGDET. Ar indication from the media transceiver that a signal is present.
MDC/ EWRAP	OUTPUT	Management Data Clock/Electrically Wrap. When the Rubicon is con- figured in GMII Mode, this signal is MDC which is used to synchronize the read and write operations of MDIO. When the Rio is configured in TBI Mode, this signal is EWRAP which is asserted HIGH to indicate the PHY device should internally loop trans mit data to the receiver, and should keep the transmitter serial outputs in a static state. MDC/EWRAP asserted LOW indicates the PHY device should operate normally.
MDIO	IN/OUT	$\begin{array}{l} \mbox{Management Data Input/Output. When the Rubicon is configured in TBI Mode, MDIO is ignored and should be tied HIGH through a resisto (10k \Omega or higher). \\ \mbox{When the Rio is configured in GMII Mode, MDIO carries management data for the management port read and write operations.} \end{array}$
		PHY INTERFACE
PHYLNK100 0N	INPUT	PHY Link 100Mbps Status, asserted LOW. PHYLNK1000N is driven by the physical layer device. It is asserted to signal a functional 1000Mbps link (link up).
PHYLNK100 N	INPUT	PHY Link 100Mbps Status, asserted LOW. PHYLNK100N is driven by the physical layer device. It is asserted to signal a functional 100Mbps link (link up).
PHYLNK10N	INPUT	PHY Link 100Mbps Status, asserted LOW. PHYLNK10N is driven by the physical layer device. It is asserted to signal a functional 10Mbps link (link up).

TABLE 9: Rio Signal Descriptions

SIGNAL NAME	SIGNAL TYPE	SIGNAL DESCRIPTION
PHYDPLXN	INPUT	PHY Duplex Status, assertion level is programmable. PHYDPLXN is driven by the physical layer device. It is asserted to indicate a full duplex link, and de-asserted to indicate a half duplex link. PHYDPLXN is undefined when PHYLNK10N is not asserted.
EEPF	ROM INTERFAC	E (SEE ALSO EXPANSION ROM INTERFACE/LED DRIVERS)
EECS	OUTPUT	EEPROM Chip Select. EECS is asserted by the Rio to access the EEPROM. EECS is connected directly to the chip select input of the EEPROM device.
	EX	PANSION ROM INTERFACE/LED DRIVERS
ED [70]	IN/OUT	Expansion ROM Data. ED provide data access to the expansion ROM
EA15/ LEDLNK10N	OUTPUT	Expansion ROM Address Bit 15/10Mbps Link Status LED. EA4/EESK is a shared pin assuming the value of bit 15 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA4/EESK is the 10Mbps Link Status LED driver signal.
EA14/ LEDLNK100 N	OUTPUT	Expansion ROM Address Bit 14/100Mbps Link Status LED. EA3/EED is a shared pin assuming the value of bit 14 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA3/EEDI is the 100Mbps Link Status LED driver signal.
EA [138]	OUTPUT	Expansion ROM Address. The EA along with EA7/GPIO1, EA6/ GPIO0, EA5/EEDO, EA4/EESK, EA3/EEDI, EA2/LEDPWRN, EA1/ LEDLNK1000N, and EA0/LEDDPLXN carry the address to the expan- sion ROM.
EA7/GPIO1	IN/OUT	Expansion ROM Address Bit 7/General Purpose Input/Output 1. EA7/ GPIO1 is a shared pin assuming the value of bit 7 of the expansion ROM address during accesses to the expansion ROM (see ExpRo- mAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA7/GPIO1 is the gen- eral purpose input/output bit 1.
EA6/GPIO0	IN/OUT	Expansion ROM Address Bit 7/General Purpose Input/Output 0. EA6/ GPIO0 is a shared pin assuming the value of bit 6 of the expansion ROM address during accesses to the expansion ROM (see ExpRo- mAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA6/GPIO0 is the gen- eral purpose input/output bit 0.

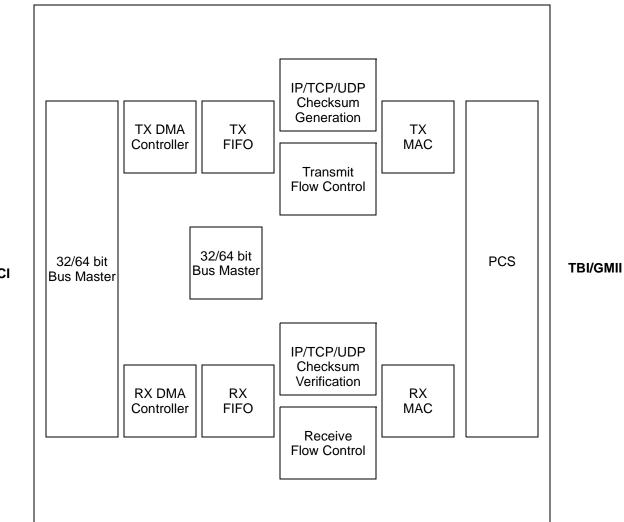
I

	SIGNAL NAME	SIGNAL TYPE	SIGNAL DESCRIPTION
I	EA5/EEDO	IN/OUT	Expansion ROM Address Bit 5/EEPROM Data Output. EA5/EEDO is a shared pin assuming the value of bit 5 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA5/EEDO is an input connected directly to the data output of the EEPROM device.
1	EA4/EESK	OUTPUT	Expansion ROM Address Bit 4/EEPROM Serial Clock. EA4/EESK is a shared pin assuming the value of bit 4 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA4/EESK is the clock (frequency 150kHz) used to synchronize the EEPROM data access with EA3/EEDI and EA5/EEDO. EA4/EESK is connected directly to the clock input of the EEPROM device.
1	EA3/EEDI	OUTPUT	Expansion ROM Address Bit 3/EEPROM Data Input. EA3/EEDI is a shared pin assuming the value of bit 3 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accessed, EA3/EEDI is the data input to an EEPROM. EA3/EEDI is connected directly to the data input of the EEPROM device.
	EA2/ LEDPWRN	OUTPUT	Expansion ROM Address Bit 2/Power Status LED. EA2/LEDPWRN is a shared pin assuming the value of bit 2 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accesses, EA2/LEDPWRN is the Power Status LED driver signal.
	EA1/ LEDLNK100 0N	OUTPUT	Expansion ROM Address Bit 2/1000Mbps Link Status LED. EA1/ LEDLNK1000N is a shared pin assuming the value of bit 2 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accesses, EA1/LEDLNK1000N is the 1000Mbps Link Status LED driver signal.
	EA0/ LEDDPLXN	OUTPUT	Expansion ROM Address Bit 2/Power Status LED. EA0/LEDDPLXN is a shared pin assuming the value of bit 2 of the expansion ROM address during accesses to the expansion ROM (see ExpRomAddr and ExpRomData registers). If the expansion ROM is not being accesses, EA0/LEDDPLXN is the Duplex Status LED driver signal.
	EWEN	OUTPUT	Expansion ROM Write Enable.
	EOEN	OUTPUT	Expansion ROM Output Enable.

TABLE 9: Rio Signal Descriptions

	SIGNAL NAME	SIGNAL TYPE	SIGNAL DESCRIPTION			
			MISCELLANEOUS			
 	RSTOUT	OUTPUT	Reset Output. RSTOUT is the reset output from the Rio. The Rio will assert RSTOUT when it is being reset. RSTOUT is intended to be used to reset other circuitry on the adapter.			
	TEST	INPUT	Test Mode. TEST asserted HIGH during reset places the Rubicon in TEST mode. For normal operation, TEST is LOW.			
	GMII INPUT		Physical Layer Mode. GMII asserted HIGH places the Rubicon in GMII Mode. GMII asserted LOW places the Rubicon in TBI Mode.			
	CLK125	INPUT	125MHz Clock. CLK125 is the reference clock used for the Rubicon's internal logic.			
		·	POWER AND GROUND			
I	VCCIO	POWER	+3.3 volt power supply for input/output circuits.			
I	GNDIO	GROUND	+3.3 volt return.			
	VCCCORE	POWER	+2.5 volt power supply for internal core logic.			
	GNDCORE	GROUND	+2.5 volt return.			

TABLE 9: Rio Signal Descriptions


9.0 Pin Designations

#	PIN NAME	#	PIN NAME	#	PIN NAME	#	PIN NAME
1	MDIO	53	AD17	105	VCCIO	157	ED5
2	MDC/EWRAP	54	AD16	106	AD62	158	ED4
3	CRS/SIGDET	55	VCCIO	107	AD61	159	ED3
4	COL	56	CBEN2	108	AD60	160	VCCIO
5	GNDIO	57	FRAMEN	109	AD59	161	ED2
6	GTXCLK	58	IRDYN	110	GNDIO	162	ED1
7	VCCIO	59	GNDIO	111	AD58	163	ED0
8	TXER/TXD9	60	TRDYN	112	AD 57	164	EA0/LEDDPLXN
9	TXEN/TXD8	61	DEVSELN	113	AD56	165	EA1/ LEDLNK1000N
10	TXD7	62	STOPN	114	VCCIO	166	GNDIO
11	TXD6	63	PERRN	115	AD55	167	EA2/LEDPWRN
12	TXD5	64	VCCIO	116	AD54	168	EA3/EEDI
13	TXD4	65	SERRN	117	AD53	169	EA4/EESK
14	GNDIO	66	PAR	118	GNDIO	170	EA5/EEDO
15	TXD3	67	CBEN1	119	AD52	171	EA6/GPIO0
16	TXD2	68	GNDIO	120	GNDCORE	172	VCCIO
17	TXD1	69	GNDCORE	121	AD51	173	EA7/GPIO1
18	GNDCORE	70	AD15	122	VCCCORE	174	GNDCORE
19	TXD0	71	VCCCORE	123	AD50	175	EA8
20	VCCCORE	72	AD14	124	AD49	176	EA9
21	TXCLK	73	AD13	125	VCCIO	177	EA10
22	WAKE	74	AD12	126	AD48	178	EA11
23	INTAN	75	VCCIO	127	AD 47	179	EA12
24	RSTN	76	AD11	128	GNDIO	180	EA13
25	VCCIO	77	AD10	129	AD46	181	VCCCORE
26	PCICLK	78	GNDIO	130	AD45	182	EA14/ LEDLNK100N
27	GNDIO	79	AD9	131	AD44	183	EA15/ LEDLNK10N
28	GNTN	80	AD8	132	AD43	184	GNDIO
29	REQN	81	CBEN0	133	AD42	185	CLK125
30	AD31	82	AD7	134	VCCIO	186	VCCIO
31	AD30	83	AD6	135	AD41	187	TEST
32	AD29	84	VCCIO	136	GNDIO	188	GMII
33	GNDIO	85	VCCCORE	137	GNDCORE	189	RSTOUT
34	GNDCORE	86	AD5	138	AD40	190	GNDCORE
35	AD28	87	GNDCORE	139	VCCCORE	191	PHYDPLXN
36	VCCCORE	88	GNDIO	140	AD39	192	PHYLNK10N
37	VCCIO	89	AD4	141	AD38	193	PHYLNK100N

TABLE 10: Rio Pin Designations

#	PIN NAME	#	PIN NAME	#	PIN NAME	#	PIN NAME
38	AD27	90	AD3	142	AD37	194	PHYLNK1000N
39	AD26	91	AD2	143	AD36	195	RXD0
40	AD25	92	AD1	144	VCCIO	196	RXD1
41	AD24	93	AD0	145	AD35	197	RXD2
42	CBEN3	94	GNDIO	146	GNDIO	198	RXD3
43	GNDIO	95	ACK64N	147	AD34	199	RXD4
44	IDSEL	96	VCCIO	148	AD33	200	RXD5
45	AD23	97	REQ64N	149	AD32	201	RXD6
46	VCCIO	98	CBEN7	150	VDET	202	RXD7
47	AD22	99	CBEN6	151	EECS	203	RXDV/RXD8
48	AD21	100	CBEN5	152	EWEN	204	RXER/RXD9
49	AD20	101	CBEN4	153	EOEN	205	GNDIO
50	AD19	102	GNDIO	154	GNDIO	206	RXCLK0/RXCLK
51	GNDIO	103	PAR64	155	ED 7	207	VCCIO
52	AD18	104	AD63	156	ED6	208	RXCLK1

TABLE 10: Rio Pin Designations

Page 20 of 227 Last Modified December 8, 2000 4:38 pm

PCI

11.0 Functional Description

11.1 PCI

The PCI Bus Interface (PBI) implements the procedures and algorithms needed to link the Rio to a PCI bus. The Rio can be either a PCI bus master or slave. The PBI is also responsible for managing the DMA interfaces and the host processor access to the Rio registers. Arbitration logic within the PBI block accepts bus requests from the TxDMA Logic and RxDMA Logic. The arbiter services the four requests in the fixed priority order of:

RxDMA Urgent Request

TxDMA Urgent Request

RxDMA Request

TxDMA Request

I

I

I

The PBI also manages interrupt generation for a host processor.

The Rio supports all of the PCI memory commands and decides on a burst-by-burst basis which command to use in order to maximize bus efficiency. The list of PCI memory commands is shown below. For all commands, "read" and "write" are with respect to the Rio (i.e. read implies the Rio obtains information from an off-chip location, write implies the Rio sends information to an off-chip location).

Memory Read (MR)

Memory Read Line (MRL)

Memory Read Multiple (MRM)

Memory Write (MW)

Memory Write Invalidate (MWI)

MR is used for all fetches of descriptor information. For reads of transmit frame data, MR, MRL, or MRM is used, depending upon the remaining number of bytes in the fragment, the amount of free space in the TxFIFO, and whether the RxDMA Logic is requesting a bus master operation.

MW is used for all descriptor writes. Writes of receive frame data use either MW or MWI, depending upon the remaining number of bytes in the fragment, the amount of frame data in the RxFIFO, and whether the TxDMA Logic is requesting a bus master operation.

The Rio provides two configuration bits to control the use of advanced memory commands. The MWIEnable bit in the ConfigCommand configuration register allows the host to enable or disable the use of MWI. The MWIDisable bit in the DMACtrl register allows the host system the ability to disable the use of MWI PCI command. MWIDisable is cleared by default, enabling MWI commands.

The Rio provides a set of registers that control the PCI burst behavior. These registers allow a trade-off to be made between PCI bus efficiency and underrun/overrun frequency. Arbitration logic within the PCI Bus Interface block accepts bus requests from the TxDMA Logic and RxDMA Logic. The TxDMA Logic uses the TxDMABurstThresh register, as described in section 11.2.1, to delay the bus request until there is enough free space in the transmit FIFO for a long, efficient burst. The TxDMA Logic can also make an urgent bus request as described in section 11.2.1, where burst efficiency is sacrificed in favor of avoiding a transmit FIFO underrun condition.

The RxDMA process is described in section 11.2.2. Typically, RxDMA requests will be forwarded to the Arbiter, however RxDMA Urgent Requests are also possible in order to prevent receive overruns. The Arbiter services the four requests in the fixed priority order as described in section 11.1.

In support of bus isolation requirements for system states in which the Rio is powered down, all Rio PCI outputs will enter the tri-state condition when the RSTN is active.

11.1.1 Reset

When the host system issues a reset to the Rio via the AsicCtrl register, a delay of at least 5ms is required before any register access should be attempted.

11.1.2 Operating Speed Changes

The Rio is capable of operating in 1000Mbps, 100Mbps, or 10Mbps mode of operation. Swithcing between these three modes must be controlled by the host system using the DebugCtrl register. Upon host system initialization of Rio, the dbSpeedSel bit within the DebugCtrl register must be set to allow for manual speed selection. When a link event interrupt is detected via the LinkEvent bit of the IntStatus register, the PhyCtrl register LinkSpeed field must be read to determine which speed at which the external Physical Layer device is operating. The dbSpeed field within the DebugCtrl register must then be set to the matching value.

11.2 DMA

I

I

The Rio implements scatter gather Direct Memory Access (DMA) for moving data from the Rio to/from the host's system memory. Two independent DMA processes are used to transfer transmit data from host system memory to the Rio (transmit DMA), and to transfer receive data from the Rio to host system memory (receive DMA).

11.2.1 Transmit DMA

To utilize the Rio to transmit data onto a Gigabit Ethernet network, the data to be transmitted must be transferred from the host's system memory to the Rio. The data bus utilized by the Rubicon for this data transfer is the PCI bus, and the method for transferring the data is DMA. The locations within system memory which contain the data to be transmitted are indicated to the Rubicon using Transmit Frame Descriptors.

The Transmit Frame Descriptor (TFD) is a data structure containing fields specifying a pointer to another TFD (the TFDNextPtr field), control information (the TFC field), and from one to 15 pointers to locations within system memory containing the Ethernet frame data (the FragInfo fields). The format of a TFD is described in section 11.10. The TFD is used to indicate to the Rio which blocks of system memory comprise the Ethernet frame data to be transmitted. Each Ethernet frame is described by one and only one TFD.

TFDs are typically grouped into linked lists (called TFD lists) within system memory by the host system. The TFDNextPtr field is used to link one TFD to the next in the list. The location of the first TFD in a TFD list is indicated to the Rio by writing the memory location of the first TFD to the TFDListPtr register. Upon reset, the TFDListPtr register contains a null value (0x000000000) indicating to the Rio that there is no data to transfer via the transmit DMA process. Once a TFD list has been created in system memory, and the location of the first TFD in the list has been written to the TFDListPtr register, the transmit DMA process begins. Once started, the Rio transmit DMA process will proceed as follows:

- 1. The Rio reads the TFC field to determine how to process the TFD. If the TFDDone bit is a logic 1, the transmit DMA process pauses and the Rio begins polling the TFDDone bit until it is a logic 0.
- 2. If any fragments are contained in the TFD, up to five FragInfo fields (based on the value in the TxBurst-Limit field of the DMACtrl register) are transferred to the Rio via a single DMA transaction.
- 3. The data fragment referenced by the FragInfo fields is transferred to the Rio via separate DMA transactions (one transaction for each fragment).
- 4. The process of transferring FragInfo fields, followed by the corresponding fragment data continues until the entire TFD has been processed by the Rio.
- 5. When the Rio finishes transferring all of the Ethernet frame fragments from host system memory, the Rio checks for a transmit FIFO underrun condition. If an underrun has occurred, the transmit DMA process is halted requiring a transmit path reset to restart.
- 6. If no transmit FIFO underrun condition occurs and if the DMACtrl register TxWriteBackDisable bit is a logic 0, the Rio sets the TFDDone bit in the TFD's TFC field to a logic 1 (indicating the Rio is finished, and the host system is now the owner of the TFD).

7. If the TFDNextPtr field in the TFD is a null value (0x000000000), the transmit DMA process pauses and the Rio begins polling the TFDNextPtr field. If the TFDNextPtr field is non zero, the Rio will proceed on to the next TFD in the list (as specified by the TFDNextPtr field) and return to step 1

There are two types of transmit DMA polling. If the TFDNextPtr field of the last TFD is 0x0000000000, the Rubicon will periodically examine (or poll) the memory location of the last TFD's TFDNextPtr field for a value other than 0x0000000000. If the TFDNextPtr field of the last TFD is not 0x0000000000, then the Rio will proceed on to the next TFD and read the new TFC. If the TFDDone bit within the TFC field is a logic 1, the Rio will periodically examine (or poll) the memory location of the new TFD's TFC field until the TFD-Done bit is a logic 0. Note, polling of the TFDDone bit within the TFC field is disabled if the DMACtrl register TxWriteBackDisable bit is a logic 1. The rate at which the Rubicon checks for a new TFDNextPtr value, or the TFDDone bit is defined by the TxDMAPollPeriod register. The host system may also force an examination (or poll) of the TFDNextPtr field or the TFC field's TFDDone bit (as applicable) using the "poll now" function of the Rio (see section 11.2.1.1.2).

There are several cases during transmit DMA operation in which host system interrupts are generated. See section 11.3.1 for details on transmit DMA interrupts.

11.2.1.1 Host System Transmit Procedure

The general procedure to accomplish a DMA transfer from host system memory to the Rubicon is shown below. The starting point for this procedure is after system start up, with the Rubicon reset and configured with appropriate register values to facilitate communication with the host system using the PCI bus.

- 1. Configure the Rubicon for transmit DMA operation (this step is typically performed only once):
- Reset the transmit data path within the Rubicon by setting the following bits in the AsicCtrl register: TxReset, DMA, FIFO, Network.
- Set the TxStartThresh register to configure when data is transmitted by the Rubicon onto a Gigabit Ethernet network. Use of the TxStartThresh register is not recommended due to the high frame rates associated with Gigabit Ethernet LAN segments (see the TxStartThresh register definition for more details).
- Set the TxDMABurstThresh register to configure when the Rubicon will make transmit DMA requests.
- Set the TxDMAUrgentThresh register to configure when the Rubicon will make urgent (i.e. high bus priority) transmit DMA requests.
- Set the TxDMAPollPeriod register.

I

I

I

I

I

- 2. The host system creates a TFD list specifying the Ethernet frame data to be transmitted (see section 11.2.1.2 for details on TFD list creation). The host system writes the value of the memory location of the first TFD in the list to the Rubicon TFDListPtr register. After the first TFD list has been created and indicated to the Rio (by writing to the TFDListPtr register), the host system does not write to the Rubicon TFDListPtr register again, unless the Rio transmit DMA process is reset.
- 3. The Rio processes the TFD list, transferring Ethernet frame data from host system memory to the transmit FIFO via one or more DMA transactions. The Rio will begin transmitting the frame transferred via DMA (the point at which the Rio begins frame transmission depends on the configuration of the TxStartThresh register and the TFC field of frame's TFD). If the Rio issues an interrupt, the host system processes the interrupt (see section 11.3.1).
- 4. To transmit additional Ethernet frames, the host system must create a new TFD list (specifying the new data to transmit), and write the value of the memory location of the first TFD in the new TFD list to the TFDNextPtr of the last TFD in the previous list. In addition, in the new TFD list the host system must set the TFDDone bit within each TFD's TFC field to a logic 0. The host system returns to step 3.
- Occasionally, while the Rio is processing a TFD list, the host system may wish to halt the processing of the current TFD list to insert one or more TFDs (to transmit high priority Ethernet frames for example). See section 11.2.1.1.1 for the TFD insertion procedure.

Finally, during idle periods between processing of TFD lists, an Ethernet frame may become ready for transmission, with a corresponding TFD list present in system memory, before the Rio poll timer expires. If the host system wishes to avoid delaying the new Ethernet frames by the time it takes for the poll period timer to expire, follow the "poll now" procedure indicated in section 11.2.1.1.2.

11.2.1.1.1 TFD Insertion

I

I

I

I

Given an existing TFD list located somewhere within system memory, currently being processed by the Rubicon but not yet completed, to insert a TFD list within the existing list (to insert high priority Ethernet frames for example):

- 1. The host system must traverse the TFD list (starting from the beginning of the current list) checking the TFDDone bit of each TFD's TFC field until a 0 value for TFDDone bit is found.
- For the first TFD with TFC field TFDDone bit set to 0 (referred to as the "break point TFD"), the host system stores the value of the TFDNextPtr field (holding the memory location of the next TFD, referred to as the "continuation TFD"), and modifies the TFDNextPtr field of the break point TFD to 0x0000000000.
- 3. The host system verifies the TFDDone bit of the break point TFD's TFC field is still 0. If the TFDDone bit of the break point TFD's TFC has changed to 1, the host system should restore the break point TFD's TFDNextPtr field to the value of the continuation TFD, and must return to step 1.
- 4. If the host system verified the TFDDone bit of the break point TFD's TFC field is still 0, then the Rio has not yet processed the break point TFD, and since the TFDNextPtr is 0x0000000000 the Rio will pause when it reaches this TFD.
- 5. The host system sets the TFDNextPtr of the last TFD in the insertion TFD list to the memory location of the continuation TFD.
- 6. The host system now modifies the TFDNextPtr of the break point TFD, changing it from 0x000000000 to the memory location holding the first TFD in the insertion TFD list.
- 7. The host system may issue a "poll now" command (see section 11.2.1.1.2), or wait for the Rio to automatically poll the TFDNextPtr of the break point TFD to resume transmit DMA operation.

11.2.1.1.2 TFD Poll Now

To force an examination, or poll, of the current TFD's TFDNextPtr field or TFC field, TFDDone bit: 1. Write to the DMACtrl register, TxDMAPollNow bit.

11.2.1.2 TFD List Considerations

TFD lists can be built within system memory using two main linked list geometries: chain and ring. TFD lists in a chain geometry are built with only the last TFD in the list containing a value of 0x0000000000 for it's TFDNextPtr field. TFD lists in a ring geometry are built such that no TFD in the list contains a value of 0x000000000 for it's TFDNextPtr field. Ring geometry TFD lists are similar to chain geometry TFD lists, except that the TFDNextPtr field for the "last" TFD in the list contains the memory location of the "first" TFD in the list.

The geometry of the TFD list is irrelevant to the Rio, and is chosen based solely on system related issues. To process a TFD list, the Rio is only concerned with two issues:

- Is the current TFD's TFC field, TFDDone bit a logic 0?
 If not, the Rio will not process the TFD, but instead will poll the TFC field, TFDDone bit until it becomes a logic 0 before processing the TFD.
- Is the current TFD's TFDNextPtr non-zero? After the Rio finishes processing the data within the TFD, it will proceed onto another TFD only if the memory location of the new TFD is found in the TFDNextPtr field of the current TFD. If a value of 0x000000000 is found in the in the TFDNextPtr field of the current TFD, the Rio transmit DMA operation will begin polling the TFDNextPtr field.

The geometry of the TFD list is relevant to the host system. A chain geometry is processed differently from a ring geometry from the host system's perspective. When new transmit data becomes available, first a

new TFD list must be created. The location of this TFD list, and the specifics of it's creation, as well as the indication of the new list to the Rio differs depending on the TFD list geometry being used by the host system.

- If the host system is utilizing a chain geometry for it's TFD lists, the host system may create the new TFD list anywhere within host system memory (with the only restriction that the location can be addressed by the Rio's transmit DMA process). The new TFD list is created with the TFC field, TFD-Done bit set to a logic 0, and the TFDNextPtr fields updated appropriately (to point from one TFD to the next in the list, with the last TFDNextPtr field set to 0x000000000). The host system then writes the memory location of the first TFD in the new TFD list to the TFDNextPtr field of the last TFD in the previous list (overwriting the 0x000000000 value which paused the Rio transmit DMA operation).
- If the host system is utilizing a ring geometry for it's TFD list, the host system must modify the existing TFD list ring. The modifications begin with the TFD following the last TFD processed by the Rio. The host modifies each TFD's TFC (leaving the TFDDone bit at a logic 1), and the FragInfo fields, but not the TFDNextPtr fields. When all of the new Ethernet frame data to be transferred has been described within the modified TFD list, the host system writes a logic 0 to the TFC field TFDDone bit of each modified TFD (which indicates to the Rio to begin processing the TFDs).

11.2.2 Receive DMA

I

I

I

To utilize the Rio to receive data from a Gigabit Ethernet network, the received data must be transferred from the Rio to the host's system memory. The data bus utilized by Rubicon for this data transfer is the PCI bus, and the method for transferring the data is DMA. The locations within system memory reserved for the received data are indicated to Rubicon using Receive Frame Descriptors.

The Receive Frame Descriptor (RFD) is a data structure containing fields specifying a pointer to another RFD (the RFDNextPtr field), status information (the RFS field), and one pointer (the FragInfo field) to a unique, contiguous block of system memory which is reserved for holding the received data. Typically, one RFD will completely specify a single received Ethernet frame. While it is possible to use multiple RFDs to describe a single Ethernet frame, it is not possible to describe multiple Ethernet frames with a single RFD. The RFD format is described in section 11.10.2.

RFDs are typically grouped into linked lists (called RFD lists) within system memory by the host system. The RFDNextPtr field is used to link RFDs within the list. The location of the first RFD in a RFD list is indicated to the Rio by writing the memory location of the first RFD to the RFDListPtr register. Upon reset, the RFDListPtr register contains a value of 0x000000000 indicating to the Rio that there is no room in host system memory reserved for received data. Once a RFD list has been created in system memory, and the location of the first RFD in the list has been written to the RFDListPtr register, the receive DMA process begins. Once started, the Rio receive DMA process will proceed as follows:

- 1. The Rio clears the Reserved(RxDMAStatus) register.
- 2. The Rio reads the RFS field for the top RFD in the RFD list.
- 3. If the RFDDone bit within the RFS field of the RFD is set, the Rio will enter polling mode and issue a RFDListEnd interrupt (if enabled via the IntEnable register RFDListEnd bit). After expiration of the poll timer, the Rio receive DMA process returns to step 2.
- 4. If the RFDDone bit within the RFS field of the RFD is a logic 0, the Rio proceeds with receive DMA operation, waiting for received data from the Gigabit Ethernet network.
- 5. When received data is ready for transfer to the host system, the Rio transfers the received data to the memory locations indicated by the RFD(s) FragInfo field.
- 6. The Rio will update the RFD's RFS field, writing a logic 1 to the RFDDone bit. If this is the first RFD for a given Ethernet frame, the Rio will write a logic 1 to the FrameStart bit within the RFD's RFS field. If the amount of received data, up to the end of the Ethernet frame, is less than or equal to the RFD fragment length, the Rio writes a logic 1 to the FrameEnd bit. Other than the RFDDone, and FrameStart bits, the remainder of the RFS field frame status bits are only written when the FrameEnd bit is written as a logic 1.

7. The Rio reads the RFD's RFDNextPtr field.

I

I

L

- 8. If the RFD's RFDNextPtr field is 0x000000000, the Rubicon will enter polling mode and issue a RFDListEnd interrupt (if enabled via the IntEnable register RFDListEnd bit). After expiration of the poll timer, the Rio receive DMA process returns to step 7.
- 9. If the RFD's RFDNextPtr field is a value other than 0x000000000 the Rio receive DMA process returns to step 2.

The rate at which Rubicon checks for a new RFDNextPtr value, or the RFDDone bit within the RFS field is defined by the RxDMAPollPeriod register. The host system may also force a examination (or poll) of the RFDNextPtr field or the RFS field's RFDDone bit (as applicable) using the "poll now" function of the Rio.

There are several cases during receive DMA operation in which host system interrupts are generated. See section 11.3.3 for details on receive DMA interrupts.

11.2.2.1 Host System Receive Procedure

The general procedure to accomplish a DMA transfer from Rio to host system memory is shown below. The start point for this procedure is after system start up, with Rio reset and configured with appropriate register values to facilitate communication with the host system using the PCI bus.

- 1. Configure the Rio for receive DMA operation (this step is typically performed only once):
- Reset the receive data path within the Rio by setting the following bits in the AsicCtrl register: RxReset, DMA, FIFO, Network.
- Set the RxEarlyThresh register to configure when data received by the Rio from a Gigabit Ethernet network is transferred to host system memory (if desired, not recommended).
- Set the RxDMABurstThresh register to configure when the Rio will make receive DMA requests.
- Set the RxDMAUrgentThresh register to configure when the Rio will make urgent (i.e. high bus priority) receive DMA requests.
- Set the RxDMAPollPeriod register to configure the Rio polling period.
- 2. Create a RFD list within system memory (see section 11.2.2.1.3 for details on RFD list creation). Write the value of the memory location holding first RFD in the list to the Rio RFDListPtr register. After the first RFD list has been created and indicated to the Rio (by writing to the RFDListPtr register), the host system does not write to the Rubicon RFDListPtr register again, unless the Rio receive DMA process is reset.
- 3. When new Ethernet frames are received the Rio processes the RFD list, transferring the received Ethernet frame data from the receive FIFO to host system memory via one or more DMA transactions. The Rio may issue a RxEarly interrupt, if configured, which the host system would process. Typically interrupts related to received Ethernet frames are coalesced (see section 11.3.4). When the host system detects (via an interrupt) that new Ethernet frame data has been transferred to system memory, the RFD list must be processed by the host system. Any errors during frame reception are indicated in the RFS fields of the RFDs corresponding to frames which encountered errors.
- 4. When additional Ethernet frames are received, the Rio will transfer this data to host system memory only if a RFD is available to receive the data. For the last RFD processed by the Rio, the host system must assure the RFD's RFDNextPtr field holds the location in system memory of the next available RFD. In addition, the host system must assure the next RFD's RFS field, RFDDone bit is a logic 0. The host system returns to step 3.

Occasionally, while the Rio is processing a RFD list, the host system may insert one or more RFDs. See section 11.2.2.1.1 for the RFD insertion procedure.

Finally, if receive DMA processing pauses (due to the Rio encountering an RFD with RFDNextPtr field set to 0x0000000000, or RFS field RFDDone bit a logic 1), the host system must eventually modify the RFD list to enable further receive DMA processing. The host system may wish for the Rio to begin processing the modified RFD list before the Rio poll timer expires. If the host system wishes to avoid delaying any

newly received Ethernet frames by the time it takes for the poll period timer to expire, follow the "poll now" procedure indicated in section 11.2.2.1.2.

11.2.2.1.1 RFD Insertion

If the host system desires to modify the RFD list (a rare requirement), follow this procedure. Given an existing RFD list located somewhere within system memory, to insert a RFD within the list the host system must:

- 1. Traverse the RFD list checking the RFDNextPtr field and the RFS field RFDDone bit of each RFD. The first RFD found whose RFDNextPtr field is 0x000000000, or whose RFS field RFDDone bit is a logic 1 is the "break point" RFD.
- 2. Store the break point RFD's RFDNextPtr value (call this the "continuation RFD"), and modify the break point RFD's RFDNextPtr to the value of the insertion RFD list.
- 3. For the last RFD in the insertion RFD list, set the RFDNextPtr field to the memory location of the continuation RFD.

11.2.2.1.2 RFD Poll Now

I

I

I

ļ

I

To force an examination, or poll, of the current RFD's RFDNextPtr field or RFS field, RFDDone bit:

1. Write to the DMACtrl register, RxDMAPollNow bit.

11.2.2.1.3 RFD List Considerations

RFD lists can be built within system memory using two main geometries: chain and ring. RFD lists in a chain geometry are built with the last RFD in the list containing a value of 0x0000000000 for it's RFDNextPtr field. RFD lists in a chain geometry are built such that no RFD in the list contains a value of 0x000000000 for it's RFDNextPtr field. Ring geometry RFD lists are similar to chain geometry RFD lists, except that the RFDNextPtr field for the "last" RFD in the list contains the memory location of the "first" RFD in the list.

The geometry of the RFD list is irrelevant to the Rio, and is chosen based solely on system related issues. To process a RFD list, the Rio is only concerned with two issues:

- Is the current RFD's RFS field, RFDDone bit a logic 0?
- If not, the Rio will not process the RFD (transfer received Ethernet frame data to the host system memory locations indicated by the RFD's FragInfo field), but instead will wait for the RFS field, RFDDone bit to become a logic 0 before processing the RFD.
- Is the current RFD's RFDNextPtr non-zero? The Rio will proceed onto another RFD only if the memory location of the new RFD is found in the RFDNextPtr field of the current RFD. If a value of 0x0000000000 is found in the in the RFDNextPtr field of the current RFD, the Rio will receive DMA operation will be paused.

The geometry of the RFD list is relevant to host system. A chain geometry is processed differently from a ring geometry from the host system's perspective. Before receive data can be transferred to host system memory, a RFD list must be created. The location of this RFD list, and the specifics of it's creation, as well as the indication of the new list to the Rio differs depending on the RFD list geometry being used by the host system.

- If the host system is utilizing a chain geometry for it's RFD lists, the host system may create RFD lists anywhere within host system memory (with the only restriction that the location can be addressed by the Rio's receive DMA process). The new RFD list is created with the RFS field, RFDDone bit set to a logic 0, and the RFDNextPtr fields updated appropriately (to point from one RFD to the next in the list, with the last RFDNextPtr field set to 0x000000000). The host system then writes the memory location of the first RFD in the new RFD list to the RFDNextPtr field of the last RFD in the previous list (overwriting the 0x000000000 value which paused the Rio receive DMA operation).
- If the host system is utilizing a ring geometry for it's RFD list, the host system must modify the existing RFD list ring. After processing the received data indicated by RFD's with their RFS field RFDDone bit

set to a logic 1, the host system must write a logic 0 to the RFS field RFDDone bit to allow the Rio to re-use the RFD.

11.3 Interrupts

I

I

I

I

The Rio generates host system processor interrupts via the PCI bus based on events related to transmit and receive DMA operation. It is the responsibility of the host system to detect these interrupts, identify the corresponding condition which caused the interrupt, and take the appropriate action.

At gigabit per second data rates, interrupts related to Gigabit Ethernet frame transmission and reception can quickly overwhelm a host system processor. The Rio incorporates several features for minimizing the number of interrupts generated. These features should be carefully understood and utilized to achieve maximum system performance in Gigabit Ethernet networks.

11.3.1 Transmit DMA Interrupts

Interrupts can be generated by the Rio based on a number of events related to transmit DMA operation:

- TxDMAComplete interrupt is issued after successful transfer of an Ethernet frame to the Rio via transmit DMA with the TxDMAIndicate bit in the TFD's TFC field is a logic 1. Use of this interrupt is not recommended due to the frequency of transmit DMA operations in a Gigabit Ethernet network.
- TxComplete interrupt (frame transmission complete without error) is issued after successful transmission of an Ethernet frame which has already been transferred to the Rio with the TxIndicate bit in the TFD's TFC field is a logic 1. A recommended use of this feature is to avoid setting the TxIndicate bit in every TFD, but instead only set the TxIndicate bit in the last TFD of a TFDList, or in every Nth frame (where N>1).
- TxComplete interrupt (frame transmission encountered an error) is issued if an error occurs during transmission of an Ethernet frame which has already been transferred to the Rio independent of the TxIndicate bit setting in the TFD's TFC field. When an error occurs, the transmit MAC of the Rio is disabled (and must be re-enabled to resume operation). Transmit DMA operation continues in spite of transmit errors except for the case of a transmit underrun error (indicated by the TxUnderrun bit in the TxStatus register). To resume transmit DMA operation after a transmit underrun error, the transmit DMA, transmit FIFO, and transmit MAC functions within Rio must be reset.
- IntRequested interrupt is issued after expiration of the Rio Countdown timer register. The Countdown timer register can be programmed to generate an interrupt at fixed intervals.

A common use of interrupts during transmit DMA operation is to determine which TFDs have been successfully transmitted so the host system can free the memory occupied by old TFDs. Interrupts however usually incur a significant cost in terms of host system performance, requiring a large percentage of processor time to service. While interrupts are expensive, memory is usually abundant, therefore a trade off which minimizes interrupts in exchange for more memory usage is desirable.

11.3.2 "Interrupt-Less" Transmit DMA

- Rio's transmit DMA can operate without generating host system processor interrupts. In this mode of operation, the host system does not set the TxIndicate or TxDMAIndicate bits in the TFC field of any TFDs used to transfer Ethernet frames from system memory. Thus, an interrupt is not issued by the Rubicon to indicate successful DMA transfer or successful transmission of each Ethernet frame. An interrupt will only be issued by the Rubicon in the event of a transmit error, but this case should be rare.
- Without the use of interrupts, the Rio provides another mechanism for the host system to determine which Ethernet frames have been successfully transmitted. This mechanism allows the host system to free memory locations holding old TFD lists. This "interrupt-less" mechanism involves using the TxFrameld field of the TxStatus register. The TxFrameld field of the TxStatus register indicates the last Ethernet frame which was successfully transmitted. Using this information, the host system can infer successful transmission of all Ethernet frames up to the frame indicated by the TxFrameld field of the TxStatus register. Thus, the host system decides when to poll the TxFrameld field of the TxStatus register (for example, when the amount of

memory occupied by old TFD lists becomes excessive) and avoid generation of processor intensive interrupts by the Rio.

11.3.3 Receive DMA Interrupts

I

I

I

Interrupts can be generated by the Rio based on a number of events related to receive DMA operation:

- RxEarly interrupt is issued after receipt of Ethernet frame data from the Gigabit Ethernet network, where the number of bytes received is greater than the value of RxEarlyThresh register. Use of this interrupt is not recommended due to the frequency of Ethernet frame receipts in a Gigabit Ethernet network.
- RxDMAComplete interrupt is issued after successful transfer of one or more Ethernet frames (based on the interrupt coalescing configuration) from the Rio to the host system memory. Interrupt coalescing should be used in conjunction with the RxDMAComplete interrupt given the frequency of frame receipts in a Gigabit Ethernet network.
- RxDMAPriority interrupt is issued if a received Ethernet frame contains a Tag Control Information field with priority greater than or equal to the priority set in the RxDMAIntCtrl register.
- RFDListEnd interrupt is issued if the end of the RFD list is reached (indicated by an RFDNextPtr field with a value of 0x000000000), or a RFD with the RFDDone bit of the RFS field with a value of logic 1 is encountered.

11.3.4 Receive DMA Interrupt Coalescing

A common use of interrupts during receive DMA operation is to indicate when new Ethernet frames have been transferred to host system memory. Interrupts however usually incur a significant cost in terms of host system performance, requiring a large percentage of processor time to service. One way to minimize the number of interrupts issued by the Rio related to receive DMA operation is to issue a single interrupt to indicate multiple Ethernet frames have been received. While minimizing interrupts can improve host system performance, it can also require more host system memory usage, and increase network latency. Therefore, a balance between interrupt frequency and network latency must be reached by the host sys-

tem to optimize performance.

RxDMAComplete interrupt coalescing is configured via the RxDMAIntCtrl register. With interrupt coalescing, the trigger for issuing a RxDMAComplete interrupt is determined by:

- the maximum number of frames transferred via receive DMA (beginning with the previous assertion of RxDMAComplete) or,
- a maximum delay from receive DMA transfer completion of the first frame (beginning with the previous assertion of RxDMAComplete) to assertion of the interrupt;

whichever occurs first.

11.4 ACPI

The Rio supports operating system directed power management according to the ACPI specification. Power management registers in the PCI configuration space, as defined by the PCI Bus Power Management Interface specification, Revision 1.0 are described in section 11.10.

11.4.1 Power Management States

The Rio supports several power management states. The PowerState field in the PowerMgmtCtrl register determines Rio's current power state. The power states are defined as follows:

- D0 Uninitialized (power state 0) is entered as a result of hardware reset, or after a transition from D3 Hot to D0. This state is the same as D0 Active except that the PCI configuration registers are uninitialized. In this state, the Rio responds to PCI configuration cycles only.
- D0 Active (power state 0) is the normal operational power state for the Rio. In this state, the PCI configuration registers have been initialized by the system, including the IoSpace, MemorySpace, and

BusMaster bits in the ConfigCommand register, so the Rio is able to respond to PCI I/O, memory and configuration cycles and can operate as a PCI master. The Rio cannot signal wake (PMEN on the PCI bus) from the D0 state.

- D1 (power state 1) is a "light-sleep" state. The Rio optionally supports this state determined by the D1Support bit in the ConfigParm word in the EEPROM. The D1 state allows transition back to D0 with no delay. In this state, the Rio responds to PCI configuration accesses, to allow the system to change the power state. In D1 the Rio does not respond to any PCI I/O or memory accesses. The Rio's function in the D1 state is to recognize wake events and link state events and pass them on to the system by asserting the PMEN signal on the PCI bus.
- D2 (power state 2) is a partial power-down state. The Rio optionally supports this state determined by the D2Support bit in the ConfigParm word in the EEPROM. D2 allows a faster transition back to D0 than is possible from the D3 state. In this state, the Rio responds to PCI configuration accesses, to allow the system to change the power state. In D2 the Rio does not respond to any PCI I/O or memory accesses. The Rio's function in the D2 state is to recognize wake events and link state events and pass them on to the system by asserting the PMEN signal on the PCI bus.
- D3 Hot (power state 3) is the full power-down state for the Rio. In D3 Hot, the Rio loses all PCI configuration information except for the value in PowerState. In this state, the Rio responds to PCI configuration accesses, to allow the system to change the power state back to D0 Uninitialized. In D3 hot, the Rio does not respond to any PCI I/O or memory accesses. The Rio's main responsibility in the D3 Hot state is to recognize wake events and link state events and signal those to the system by asserting the PMEN signal on the PCI bus.
- D3 Cold (power state undefined) is the power-off state for the Rio. The Rio does not function in this state. When power is restored, the system guarantees the assertion of hardware reset, which puts the Rio into the D0 Uninitialized state.

11.5 Wake On LAN

Wake on LAN is a key component of the IBM/Intel® Advanced Manageability Alliance (AMA) initiative. The Rio implements a portion of the Wake On LAN functionality defined by the AMA initiative. Specifically, the Rio can be configured to respond to wake up frames sent by a Wake On LAN management station.

11.5.1 Wake Events

The Rio can generate wake events to the system as a result of Wake Packet reception, Magic Packet reception, or due to a change in the link status. The WakeEvent register gives the host system control over which of these events are passed to the system. Wake events are signaled over the PCI bus using the PMEN signal.

A Wake Packet event is controlled by the WakePktEnable bit in WakeEvent register. The WakePktEnable bit has no effect when Rio is in the D0 power state, as the wake process can only take place in states D1, D2, or D3. When the Rio detects a Wake Packet, it signals a wake event on WAKE (if WAKE assertion is enabled), and sets the WakePktEvent bit in the WakeEvent register. The Rio can signal that a wake event has occurred when it receives a pre-defined frame from another station. The host system transfers a set of frame data patterns into the transmit FIFO using the TxDMA function before placing the Rio in a power-down state. Once powered down, the Rio compares receive frames with the frame patterns in the transmit FIFO. When a matching frame is received (and also passes the filtering mode set in the ReceiveMode register), a wake event is signaled.

Frame patterns are written to the transmit FIFO in a single "pseudo-packet". Prior to transferring this pseudo-packet, the host system should first set the TxReset in the AsicCtrl (to reset the transmit FIFO pointers and prevent transmission) then prepare a TFD that points to a single data buffer. The buffer should contain one or more frame patterns placed contiguously. The number of frame patterns is limited by the transmit FIFO size. The FragLen field in the TFD must exactly equal the sum of the frame pattern bytes. Also, the host system must set the WordAlign field to 'x1' in the TFC field of the TFD to prevent

frame word-alignment. Finally, the host system must write the TFD's address to the TFDListPtr register to transfer the frame into the transmit FIFO.

The frame patterns in the transmit FIFO specify which bytes in the incoming frames are to be examined. A CRC is calculated over these bytes and compared with a CRC value supplied in the frame pattern. This matching technique may result in false wake events being reported to the host system. Each wake packet pattern contains one or more byte-offset/byte-count pairs, an end-of-pattern symbol, and a 4-byte CRC value. The byte-offset indicates the number of frame bytes to be skipped in order to reach the next group of bytes to be included in the CRC calculation. The byte-count indicates the number of bytes in the next group to be included in the CRC calculation. End-of pattern, which is a byte value of 0x00, indicates the end of the pattern for that wake frame. Immediately following the end-of-pattern is a 4-byte CRC. The CRC calculation uses the same polynomial as the Ethernet MAC FCS. The pseudo packet frame patterns are described in section 11.10.

An example pseudo-packet (based on the ARP packet example from Appendix A of the "OnNow Network Device Class Power Management Specification") loaded into the transmit FIFO of the Rio is shown in Figure 1.

I

		0xc2
		0x71
		0xf4
	-1	0x10
psue pack		0x00
1		0xf3
		0x19
		0x08
		0xd7

TXFIFO

FIGURE 1: Example Psuedo Packet

I

Using the pseudo packet in Figure 1, the Rio will assert a wake event if a packet of the form shown in Figure 2 is received whereby a 32-bit CRC over the indicated bytes of the received packet yields the value 0xF31908D7.

Received Packet	Byte Offset Within Packet
	1
byte 12	0x0c
byte 13	0x0d
· 	4
byte 21	0x15
	4
byte 38	0x26
byte 39	0x27
byte 40	0x28
byte 41	0x29
	1
FIGURE 2. Example \	Nake Packet

FIGURE 2: Example Wake Packet

The Rio also supports Magic Packet[™] technology developed by Advanced Micro Devices to allow remote wake-up of a sleeping station on a network via transmission of a special frame. Once the Rio has been placed in Magic Packet mode and put to sleep, it scans all incoming frames addressed to it for a data sequence consisting of 16 consecutive repetitions of its own 48-bit Ethernet MAC StationAddress. This sequence can be located anywhere within the frame, but must be preceded by a synchronization stream. The synchronization stream is defined as 6 bytes of 0xFF. For example, if the MAC address programmed

into the StationAddress register is 0x11:22:33:44:55:66, then the Rio would be scanning for the frame data shown in Figure 3.

0x	FFFFFFFFFFF
0>	(112233445566
0x	(112233445566
0>	112233445566
0>	(112233445566
0x	(112233445566
0×	(112233445566

Received Packet

FIGURE 3: Example Magic Packet

Magic Packet wake up is controlled by the MagicPktEnable bit in the WakeEvent register. A wake event can only take place in the D1, D2, or D3 states, and the MagicPktEnable bit has no effect when the Rio is in the D0 power state. The Magic Packet must also pass the address matching criteria set in ReceiveMode register. A Magic Packet may also be a broadcast frame. When the Rio detects a Magic Packet, it signals a wake event on WAKE (if WAKE assertion is enabled), and sets the MagicPktEvent bit in the WakeEvent register.

The Rio can also signal a wake event when it senses a change in the network link state, from "link up" to "link fail", or vice versa. Link state wake is controlled by the LinkEventEnable bit in the WakeEvent register. At the time LinkEventEnable bit is set by the host system, the Rio samples the current link state. It then waits for the link state to change. If the link state changes before the Rio returns to state D0 or the LinkEventEnable bit is cleared, the LinkEvent bit is set in the WakeEvent register, and (if it is enabled) the WAKE signal is asserted.

11.6 FIFO

I

I

The Rio incorporates on chip transmit and receive FIFOs. The transmit FIFO is 16kbytes (16,384 bytes) in length while the receive FIFO is 32kbytes (32,768 bytes) in length.

11.7 MAC

I

The MAC block implements the IEEE Ethernet 802.3 Media Access Control functions with Full Duplex and Flow Control enhancements. In half duplex mode, the MAC implements the Carrier Sense Multiple Access with Collision Detect (CSMA/CD) protocol. Full duplex mode by definition does not utilize CSMA/CD, allowing data to be transmitted on demand. An optional flow control mechanism in full duplex mode is provided via the MAC Control PAUSE function. Additionally, the MAC also performs these functions in either half or full duplex mode:

- Optional transmit frame check sequence (FCS) generation
- Padding to the minimum legal frame size
- Preamble and SFD generation
- Preamble and SFD removal
- Receive frame FCS checking and optional FCS stripping
- Receive frame destination address matching
- Support for multicast and broadcast frame reception or rejection (via filtering)

In addition, the MAC is responsible for generation of hardware signals to update the internal statistics counters.

11.7.1 VLAN

Virtual Local Area Network (VLAN) technology is used to regulate broadcast and multicast traffic in switched Ethernet networks. VLAN technology utilizes Ethernet frame tagging, providing Ethernet switches a mechanism to correlate a specific Ethernet frame with a specific group of end stations. Using this correlation, Ethernet switches in a network are able to regulate broadcast and multicast VLAN tagged frames, forwarding such frames only to those nodes which are members of the same VLAN (instead of to all nodes). In this way, broadcast and multicast network utilization is minimized.

The IEEE defines VLANs as follows:

- VLANs facilitate easy administration of logical groups of stations that can communicate as if they were
 on the same LAN. They also facilitate easier administration of moves, adds and changes in members
 of these groups.
- Traffic between VLANs is restricted. Bridges forward unicast, multicast and broadcast traffic only on LAN segments that serve the VLAN to which the traffic belongs.
- As far as possible, VLANs maintain compatibility with existing bridges and end-stations.

Detailed information on VLAN implementation is located in the following standards:

- IEEE 802.1p Traffic Class Expediting and Dynamic Multicast Filtering (now part of ISO/IEC 15802-3: 1998). Introduces the concept of priority processing in Ethernet bridges and specifies the registration protocols used to disseminate switching rules between nodes and switches in a network. Also defines GMRP and GARP.
- IEEE 802.1Q Virtual Bridged Local Area Networks (also now part of ISO/IEC 15802-3: 1998). Specifies the operation of VLAN enabled Ethernet bridges, and defines the tagged frame format.
- IEEE 802.3ac Frame Extensions for Virtual Bridged Local Area Networks (VLAN) Tagging on 802.3 Networks. Modifies the IEEE 802.3 specification to accommodate tagging for VLANs as specified in IEEE 802.1Q.
- The Rio supports VLANs with the following functions:
 - Transmission and reception of VLAN tagged frames, increasing the maximum frame size by four octets.

- VLAN tags for transmit frames may be applied either by the host system prior to transfer of the frame to the Rio via the transmit DMA process, or by the Rio via the VLAN tag information specified in the TFC or the VLANTag register. The the TFC VLANTagInsert field, and MACCtrl register AutoVLANtagging bit determines the source for VLAN frame tagging with the TFC VLANTagInsert having priority over the MACCtrl register AutoVLANtagging bit.
- Any VLAN tagged frames received by the Rio may be transferred to the host system unmodified, or stripped of all VLAN tags as determined by the MACCtrl register AutoVLANuntagging bit. For any received frame which contains a VLAN tag, regardless of the state of the MACCtrl register AutoVLA-Nuntagging bit, the VLAN tag is copied to the RFS TCl field.
- The priority of VLAN tagged frames received by the Rio may be detected and based on the programmable PriorityThresh field of the RxDMAIntCtrl register, an interrupt asserted via the RxDMAPriority field of the IntStatus or IntStatusAck register.
- Using the ReceiveVLANMatch or ReceiveVLANHash fields of the ReceiveMode register, only VLAN
 tagged frames with specified VLAN ID values are passed to the host system. All other VLAN tagged
 frames and all un-tagged frames are dropped.

11.7.2 Layer 3/4 Checksums

I

The Ethernet Carrier Sense Multiple Access with Collision Detect (CSMA/CD) protocol comprises a portion of Layer 2 within the Open Systems Interconnect (OSI) Seven Layer Model of network systems. Ethernet incorporates a CRC capability (via the FCS field) in an attempt to check for errors during transmission. Higher layer protocols which utilize Ethernet may also utilize checksums in addition to the Ethernet FCS. These higher layer protocol checksum are typically calculated by the host system, and inserted within the Ethernet frame (for transmit data) prior to frame transfer to the Rio via the transmit DMA process. Similarly, higher layer protocol checksums within received Ethernet frames are verified by the host system after the frames have been transferred from the Rio via receive DMA process.

The Rio can perform checksum calculations, and verifications for three popular higher layer protocols.

- Internet Protocol version 4 (Layer 3 within the OSI model) defined in RFC 791
- Transmission Control Protocol (Layer 4 within the OSI model) defined in RFC 793
- User Datagram Protocol (Layer 4 within the OSI model) defined in RFC 768

By configuring the Rio to perform the checksum calculations for the supported protocols, the host system work load is lightened resulting in higher performance.

- Utilization of the Rio layer 3/4 checksum calculation capability for transmit data depends on the make up of the Ethernet frame.
 - If the frame contains an IP datagram, write a logic 1 to the IPChecksumEnable bit within the TFC field of the frame's TFD.
 - If the frame contains a TCP segment within an IP datagram, write a logic 1 to the TCPChecksumEnable bit and a logic 1 to the IPChecksumEnable bit within the TFC field of the frame's TFD.
 - If the frame contains a UDP segment within an IP datagram, write a logic 1 to the UDPChecksumEnable bit bit and a logic 1 to the IPChecksumEnable bit within the TFC field of the frame's TFD.
 - If any combination of the IPChecksumEnable, TCPChecksumEnable, and/or UDPChecksumEnable bits within the TFC field of the frame's TFD are a logic 1, the FCSAppendDisable bit within the TFC field must be a logic 0.
 - Use of the layer 3/4 checksum functions affects operation of the transmit process with respect to the TxStartThresh register (see the TxStartThresh definition for details).

It is the host system's responsibility to assure that the respective checksum functions are only enabled for Ethernet frames which contain the respective layer 3/4 data. That is, if an Ethernet frame does not contain an IP datagram, the IPChecksumEnable bit within the TFC field of the frame's TFD must be a logic 0.

Utilization of the Rio layer 3/4 checksum verification capability for receive data does not require any register configuration. The checksum verification capabilities are always active. The host system decides on a frame by frame basis how to utilize the layer 3/4 checksum verification functions.

- For the last RFD of a received Ethernet frame, the RFS field IPDetected, TCPDetected, and UDPDetected bits will be a logic 1 to indicate if the received frame contains an IP datagram, TCP segment within an IP datagram, and/or UDP segment within an IP datagram.
- If the IPDetected, TCPDetected, and/or UDPDetected bits within the RFS field of the received frame are a logic 1, then the host system may examine the IPError, TCPError, and UDPError bits within the RFS field to verify the respective layer 3/4 checksums for the received frame. Separate host system algorithms to verify the checksums are not necessary, but may still be performed (the layer 3/4 checksums are part of the frame data transferred by the Rio via the receive DMA process).
- The IPCheckSumErrors, TCPCheckSumErrors, and UDPCheckSumErrors statistic registers will count the number of received frame's which contain an IP datagram, TCP segment within an IP datagram, and/or UDP segment within an IP datagram where the respective layer 3/4 checksum calculation within the Rio failed.

11.7.3 Flow Control

I

I

The Rio supports both asymmetric and symmetric IEEE 802.3 flow control via the MAC Control PAUSE function. Any IEEE 802.3 flow control compliant node receiving a PAUSE control frame must inhibit frame transmission for the amount of time specified in the PAUSE control frame. The pause time is specified in pause quanta (in Gigabit Ethernet, a pause quanta is 512 bit times and a bit time is 1ns). The maximum pause time is 65,535 pause quanta, or 33.6ms.

Asymmetric operation corresponds to the Rio acting on PAUSE frames received from a Gigabit Ethernet network. Symmetric operation corresponds to the Rio both acting on received PAUSE frames, and transmitting PAUSE frames onto a Gigabit Ethernet network. Use of asymmetric and symmetric flow control is typically determined during auto negotiation (see section 11.9.1).

When participating in symmetric flow control operation, transmit PAUSE control frames can be generated by the host system, or automatically by the Rio. The host system may use any mechanism to determine when to transfer a PAUSE control frame to the Rio. Automatic generation of PAUSE control frames by the Rio is related to the state of the receive FIFO. If the receive FIFO fills beyond a host system configurable point (the flow control on threshold, as defined by the FlowOnThresh register), the Rio will automatically transmit a PAUSE control frame in an attempt to halt the transmitting node. The flow control on threshold, above which the Rio sends a PAUSE control frame, must be chosen carefully to account for receiving frames already in transit. A general rule is to set the flow control on threshold offset (the difference between the maximum size of the FIFO, and the flow control on threshold) equal to or greater than twice the size (in bytes) of the maximum expected receive frame size.

For the Rio automatic flow control mechanism to function properly, the receive FIFO must empty beyond a second host system configurable point (the flow control off threshold, as defined by the FlowOffThresh register) within 33.6ms (the amount of time the opposite node will remain paused when receiving the Rio generated PAUSE frame). When the Rio receive FIFO empties beyond the flow control off threshold a second PAUSE frame (with pause time equal to zero) is transmitted. This zero time PAUSE frame indicates the Rio is ready to receive more data. The Rio will not transmit a maximum time PAUSE frame (even if the flow control off threshold is crossed again) until the receive FIFO flow control off threshold is crossed. If the Rio receive FIFO flow control off threshold is not crossed within 33.6ms after the maximum time PAUSE frame is transmitted, the Rio receive FIFO will likely overrun (see Figure 4). This condition indicates a problem with the host system, in that data is not being transferred from the Rio receive FIFO at a sufficient rate to keep up with the Gigabit Ethernet LAN segment.

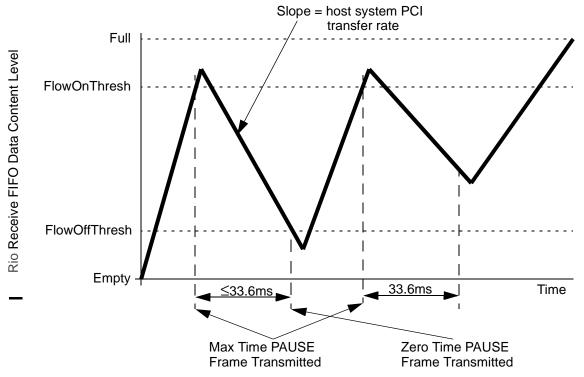


FIGURE 4: Flow On and Flow Off Threshold Considerations

The flow control thresholds must be chosen carefully to account for the time required by the host system to empty the receive FIFO. A general rule is to set the flow control thresholds using the minimum expected transfer rate of the host system PCI bus (based on bus width, speed, and availability) according to the following equation:

$$\frac{FlowOnThresh_{bytes} - FlowOffThresh_{bytes}}{33.6ms} \leq MinHostSystemPCITransferRate_{Bps}$$

Receive flow control operation of the Rio is controlled via the MACCtrl register RxFlowControlEnable bit. Transmit flow control operation of the Rio (automatic PAUSE frame generation) is controlled via the MAC-Ctrl register TxFlowControlEnable bit and the FlowOnThresh and FlowOffThresh registers.

11.8 GMII

I

The Rio can support a variety of physical signaling schemes via the IEEE 802.3 defined Gigabit Media Independent Interface (GMII). Through the GMII, the Rio supports various physical layer implementations of the Gigabit Ethernet standard. The GMII provides a general-purpose interface between an 802.3 MAC and various physical layer devices, and is comprised of two independent components. The data interface provides separate, 8-bit wide paths for receive and transmit data, as well as independent clock and control signals. The management interface is a bidirectional, serial link that provides the Rio access to registers residing within the physical layer device. The host system controls the GMII management interface through the PhyCtrl register.

Since the GMII is independent of the signaling method (1000BASE-X, 1000BASE-T), it is possible to use it to support numerous Ethernet LAN types depending upon the availability of GMII-compliant PHY devices.

It is most likely that a physical layer device connected to Rio's GMII will include implementation of the 802.3 Auto-Negotiation function. For instance, a PHY device may be able to auto-negotiate various parameters of Gigabit Ethernet operation. A host system attempting to determine link status should check the Auto-Negotiation function contained in the GMII-based PHY device through the GMII management interface of the Rio.

11.9 PCS

I

I

The Rio implements an IEEE 802.3 compliant Physical Coding Sublayer (PCS) for use with PHY devices using the TBI. The Rio PCS implements the following functions:

- 8B10B Encoder
- Transmit State Machines
- Auto-negotiation State Machine
- 10B8B Decoder
- Receive State Machine
- Synchronization State Machine
- Management Registers

11.9.1 Auto-Negotiation

The Rio PCS layer implements IEEE 802.3 1000BASE-X auto-negotiation for Gigabit Ethernet only. The auto-negotiation function is controlled via the PCS registers internal to the Rio PCS layer implementation. The host system must utilize these registers in order to properly configure the Rio for compatible operation with the Rio's link partner. The host system responsibilities are as follows:

- Enable or disable the Rio for auto-negotiation via the Auto-Negotiation Enable bit of the PCS Control register.
- Configure the PCS Advertisement register to indicate the capabilities of the Gigabit Ethernet implementation.
- If there is any Next Page data to send, and/or if the host system is willing to accept Next Page data, configure the Next Page bit of the Advertisement register.
- Re-start auto-negotiation using the Control register.
- Read the Page Received bit of the Expansion register to determine when the link partner's base page data has been received. This is only necessary if Next Page transmissions are to follow. If there are to be no Next Page transmissions, the Control register Auto-Negotiation Complete bit can be used to determine when to read the link partner's base page data.
- Read the LinkPartnerBasePage register to determine the link partner's capabilities.
- If the LinkPartnerBasePage register Next Page bit is 1 (indicating the link partner is able to accept and/ or would like to transmit Next Page information) transmit the first page of the Next Page information to the link partner via a write to the NextPage register. If there is no Next Page data to transfer, write 0x2001 to the NextPage register.
- After writing to the NextPage reigster, read the Expansion register, Page Received bit to determine when new Next Page data from the link partner has arrived.
- When new Next Page data has arrived from the link parnter, read the LinkPartnerNextPage register.
- For multiple Next Page data transfers, the host system must repeat the process of writing to the NextPage register, reading the Expansion register, and reading the LinkPartnerNextPage register until a logic 0 is read in the LinkPartnerNextPage register Next Page bit is read or a value of 0x2001 for the Next Page data is read and there are no more Next Page transfers required.

- Optionally, the NextPage register Acknowledge 2 bit may be used to indicate to the link partner that received Next Page data will be acted upon. A logic 1 in the Acknowledge 2 bit of the LinkPartnerNextPage register indicates the link partner is able to perform the task defined in the Next Page message.
- The host system must implement the Priority Resolution function (specified in IEEE 802.3 1998 Edition Clause 37.2.4.2) to resolve the mode of operation for the Rio. Priority Resolution applies to the duplex, and pause modes of operation. The rules for resolution are contained in the IEEE standard, and duplicated here for reference.

LOCAL DEVICE ADVERTISED DUPLEX MODE	LINK PARTNER ADVERTISED DUPLEX MODE	LOCAL DEVICE DUPLEX MODE RESOLUTION
Half	Half	Half
Half	Full	Half
Full	Half	Half
Full	Full	Full

Table 11: Duplex Mode Priority Resolution

Table 12: PAUSE Mode Priority Resolution

LOCAL DEVICE ADVERTISED PAUSE MODE		LINK PARTNER ADVERTISED PAUSE MODE		LOCAL DEVICE PAUSE MODE RESOLUTION
PAUSE	ASM_DIR	PAUSE	ASM_DIR	
0	0	-	-	Disable PAUSE Transmit and Receive
0	1	0	-	Disable PAUSE Transmit and Receive
0	1	1	0	Disable PAUSE Transmit and Receive
0	1	1	1	Enable PAUSE Transmit, Dis- able PAUSE Receive
1	0	0	-	Disable PAUSE Transmit and Receive
1	0	1	-	Enable PAUSE Transmit and Receive
1	1	0	0	Disable PAUSE Transmit and Receive
1	1	0	1	Enable PAUSE Receive, Dis- able PAUSE Transmit

ADVERTIS	LOCAL DEVICE ADVERTISED PAUSE MODE		ARTNER ED PAUSE DDE	LOCAL DEVICE PAUSE MODE RESOLUTION
PAUSE	ASM_DIR	PAUSE ASM_DIR		
1	1	1	-	Enable PAUSE Transmit and Receive

Table 12: PAUSE Mode Priority Resolution

- After resolving the modes of operation, the host system must configure the Rio MACCtrl register DuplexSelect bit, RxFlowControlEnable bit (to configure PAUSE MAC Control Frame receive functionality), and the Duplex Mode bit of the PCS Control register (used only for properly setting the EA0/ LEDDPLXN LED signal). PAUSE Mac Control Frame transmit functionality is controlled wholly by the host system.
- Finally, the host system must configure functionality negotiated via the Next Page data transfers.

11.10 Registers and Data Structures

The Rio utilizes both on chip registers, as well as data structures located within the host system memory, and external non-volatile memory devices.

11.10.1 Transmit DMA Data Structure

I

The host system uses the Transmit Frame Descriptor (TFD) to transfer data from host system memory to Rubicon via the transmit DMA process. TFDs must be located within host system memory on quad word (64 bit) boundaries. The TFD format is shown in Table 13.

64 BITS	ADDR OFFSET
TFDNextPtr	0x00
TFC	0x08
FragInfo0	0x10
FragInfo1	0x18
FragInfo2	0x20
FragInfo3	0x28
FragInfo4	0x30
FragInfo 5	0x38
FragInfo6	0x40
FragInfo7	0x48
FragInfo8	0x50

TABLE 13: Rubicon TFD Format

64 BITS	ADDR OFFSET
FragInfo9	0x58
FragInfo10	0x60
FragInfo11	0x68
FragInfo12	0x70
FragInfo13	0x78
FragInfo14	0x80

I

| |

TABLE 13: Rubicon TFD Format

11.10.1.1 TFDNextPtr

BIT	BIT NAME	BIT DESCRIPTION
390	TFDNextPtr	TFD Next Pointer indicates the location in system memory of the next TFD. Only the lower 40 bits of the TFDNextPtr field are valid, the upper 24 bits are reserved. A value of 0x0000000000 in this field indicates there are no more TFDs ready for transfer.
6340	Reserved	Reserved for future use. Write as zero, ignore on read.

11.10.1.2 TFC

BIT	BIT NAME	BIT DESCRIPTION			
150	Frameld	Frame Identification associates the data referenced by this TFD to a specific Ethernet frame.			
1716	WordAlign	Word Alignment bits determine the boundary to which transmit frame lengths are rounded up in the transmit FIFO, and transmitted onto the network medium.			
		BIT 17	BIT 16	ALIGNMENT	
		0	0	Align to Double Word	
		1	0	Align to Word	
		x	1	Alignment Disabled	
		to recogniz alignment n net Length/	e that any a nay affect by Type field ho	ment, it is the responsibility of the idded bytes necessary to achiev te oriented functions and fields (i. olds a frame length, this value is r via word alignment).	ve the desired e. if the Ether-
18	TCPChecksumE- nable	Transmission Control Protocol Checksum Enable indicates the host system, or the Rio will calculate and insert the TCP checksum as defined in RFC 793. A logic 1 indicates the Rio should calculate the TCP checksum. TCPChecksumEnable should only be set if the Ether- net frame referenced by this TFD contains TCP data within an IP data- gram. For TFD's which do not contain TCP data, TCPChecksumEnable MUST be 0. In addition, if TCPChecksumEna- ble is set, IPChecksumEnable MUST be a logic 1 and FCSAppendDis- able MUST be 0. The Rio must calculate and append the FCS when performing TCP checksum calculation and insertion.			
19	UDPChecksumE- nable	User Datagram Protocol Checksum Enable indicates the host system, or the Rio will calculate and insert the UDP checksum as defined in RFC 768. A logic 1 indicates the Rio should calculate the UDP check- sum. UDPChecksumEnable should only be set if the Ethernet frame referenced by this TFD contains UDP data within an IP datagram. For TFD's which do not contain UDP data, UDPChecksumEnable MUST be 0. In addition, if UDPChecksumEnable is set, IPChecksumEnable MUST be a logic 1 and FCSAppendDisable MUST be 0. The Rio must calculate and append the FCS when performing UDP checksum calcu- lation and insertion.			

I

I

I

BIT	BIT NAME	BIT DESCRIPTION
20	IPChecksumEna- ble	Internet Protocol Checksum Enable indicates the host system, or the Rio will calculate and insert the IP checksum as defined in RFC 791. A logic 1 indicates the Rio should calculate the IP checksum. IPCheck- sumEnable should only be set if the Ethernet frame referenced by this TFD contains IP data. For TFD's which do not contain IP data, IPChecksumEnable MUST be 0. In addition, if IPChecksumEnable is set, FCSAppendDisable MUST be 0. The Rio must calculate and append the FCS when performing IP checksum calculation and inser- tion.
21	FCSAppendDis- able	Frame Check Sequence Disable is set by the host system to prevent the Rio from appending the 4-byte Frame Check Sequence (FCS) to the end of the current frame. In this case, the host system must supply the frame's FCS as part of the data transferred by the transmit DMA process to the transmit FIFO. An exception exists when a transmit underrun occurs. In this case a guaranteed invalid FCS will be appended to the frame by the Rio. When FCSAppendDisable is cleared, the Rio will compute and append the FCS to the transmit frame referenced by this TFD. When using TCPChecksumEnable, UDPChecksumEnable, and/or IPChecksumEnable, the FCSAppend- Disable bit MUST be set to logic 0 and the host system MUST NOT append an FCS to the Ethernet frame.
22	TxIndicate	Transmit Indicate is set by the host system to request a TxComplete interrupt upon completion of frame transmission by the MAC. If TxIndicate is cleared, no interrupt of transmission completion will be issued by the Rio, unless a transmit error occurs.
23	TxDMAIndicate	Transmit DMA Indicate is set if the host system desires a TxDMACom- plete interrupt upon completion of the transmit DMA process for this frame.
2724	FragCount	Fragment Count indicates the number of fragments (from 1 to 15 frag- ments) used by this TFD. A value of 0 indicates this TFD contains no data to be transferred to the Rio. The Rio will write a logic 0 to the FragCount bits upon completion of the transmit DMA process for this TFD (as part of the TFDDone bit update process).
28	VLANTagInsert	VLAN Tag Insert indicates that the VLAN information specified in VID, CFI, and UserPriority fields of the TFC should be inserted into the Ethernet frame specified by this TFD. In addition to the VID, CFI, and UserPriority fields, the Length/Type field of the Ethernet frame specified by this TFD will be set to the value 0x8100 to indicate the frame is VLAN tagged. The Rio will write a logic 0 to the VLANTagInsert bit upon completion of the transmit DMA process for this TFD (as part of the TFDDone bit update process).

BIT	BIT NAME	BIT DESCRIPTION
3029	Reserved	Reserved for future use. Write as zero, ignore on read. The Rio will write a logic 0 to the Reserved bits upon completion of the transmit DMA process for this TFD (as part of the TFDDone bit update process).
31	TFDDone	Transmit Frame Descriptor Done is used as an ownership bit to indi- cate whether the host system, or the Rio "owns" (or is currently pro- cessing and/or modifying) the TFD. The Rio will not transfer the TFD from host system memory until a logic 0 is written to the TFDDone bit by the host system. The Rio will write a logic 1 to the TFDDone bit upon completion of the transmit DMA process for this TFD.
4332	VID	VLAN Identifier specifies the VID portion of the Tag Control Information (TCI) field within an Ethernet frame VLAN tag (see section 11.7.1). The VID is only valid if the VLANTagInsert bit is a logic 1.
44	CFI	Canonical Format Indicator specifies the CFI portion of the Tag Control Information (TCI) field within an Ethernet frame VLAN tag (see section 11.7.1). The CFI is only valid if the VLANTagInsert bit is a logic 1.
4745	UserPriority	User Priority specifies the UserPriority portion of the Tag Control Infor- mation (TCI) field within an Ethernet frame VLAN tag (see section 11.7.1). The UserPriority is only valid if the VLANTagInsert bit is a logic 1.
6348	Reserved	Reserved for future use. Write as zero, ignore on read.

11.10.1.3 FragInfo

Fragment Information fields (up 15 in a single TFD) indicate a block of contiguous system memory containing a portion of the frame data to be transmitted. The fragments may be located anywhere in system memory, and need not be contiguous.

BIT	BIT NAME	BIT DESCRIPTION
390	FragAddr	Fragment Address indicates the location within host system memory of the first byte of the data fragment. Fragments can be located anywhere within a 40 bit (1,099,511,627,776 or 1 Terabyte) memory space.
4740	Reserved	Reserved for future use. Write as zero, ignore on read.
6348	FragLen	Fragment Length indicates the length of the fragment in bytes. Fragments can range from zero to 64k (65,536) bytes in length.

11.10.2 Receive DMA Data Structure

I

I

I

I

The host system uses the Receive Frame Descriptor (RFD) to transfer data from the Rio to host system memory via the receive DMA process. RFDs must be located within host system memory on quad word (64 bit) boundaries. The RFD format is shown in Table 14.

64 BITS	ADDR OFFSET
RFDNextPtr	0x00
RFS	0x08
FragInfo0	0x10

TABLE 14: Rubicon RFD Format

11.10.2.1 RFDNextPtr

I

BIT	BIT NAME	BIT DESCRIPTION
390	RFDNextPtr	RFD Next Pointer indicates the location in system memory of the next RFD. A value of 0x0000000000 in this field indicates there are no more RFDs ready for data.
6340	Reserved	Reserved for future use. Write as zero, ignore on read.

11.10.2.2 RFS

Class	Receive DMA Data Structure			
Base Address	RFD starting address in system memory			
Address Offset	. 0x08			
Access Mode	Read/Write			
Width	64 bits			
Receive Frame Status field.				

BIT	BIT NAME	BIT DESCRIPTION	
150	RxFrameLen	Receive Frame Length indicates the length in bytes of the received Ethernet frame. If the RFD, FragInfo field's FragLen field is less than the Ethernet frame length, multiple RFDs are required to store the frame. In this case, the RxFrameLen field of the RFS in the last RFD will indicate the actual Ethernet frame length, while all other RxFra- meLen fields in the series of RFDs used to store the frame will be 0x0000.	
16	RxFIFOOverrun	Receive FIFO Over Run indicates the received frame incurred a FIFO over run error. RxFIFOOverrun is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.	
17	RxRuntFrame	Receive Runt Frame indicates the received frame was a runt (a frame which is less than 60 octets in length, measured from the DA field to the end of the Data field). RxRuntFrame is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.	
18	RxAlignmentError	Receive Alignment Error indicates the received frame incurred an alignment error (alignment errors are not encountered in Gigabit Ethernet). RxAlignmentError is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.	
19	RxFCSError	Receive Frame Check Sequence Error indicates the received frame incurred a FCS error (the frames FCS field did not match the FCS cal- culation performed over the frame DA through Data fields). RxFCSEr- ror is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.	
20	RxOversizedFrame	Receive Oversized Frame indicates the received frame was larger than the value set in the MaxFrameSize register. The entire frame is written into the RFD regardless of this error. RxOversizedFrame is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.	
21	RxLengthError	Receive Length Error indicates the received frame length differed from the length field in the Ethernet frame header. If the received frame is runt, RxLengthError is a logic 0. RxLengthError is undefined (an should be ignored) unless the RFS FrameEnd field is a logic 1.	
22	VLANDetected	VLAN Detected indicates the received Ethernet frame contains a VLAN tag. VLANDetected is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.	

	BIT	BIT NAME	BIT DESCRIPTION
	23	TCPDetected	Transmission Control Protocol Detected indicates the received Ether- net frame contains TCP data within an Internet Protocol datagram. TCPDetected is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.
I	24	TCPError	Transmission Control Protocol Error indicates the received Ethernet frame contains TCP data within an Internet Protocol datagram, and the TCP checksum calculation by Rio did not match the checksum value in the TCP header. TCPError is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.
	25	UDPDetected	User Datagram Protocol Detected indicates the received Ethernet frame contains UDP data within an Internet Protocol datagram. UDP-Detected is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.
I	26	UDPError	User Datagram Protocol Error indicates the received Ethernet frame contains UDP data within an Internet Protocol datagram, and the UDP checksum calculation by Rio did not match the checksum value in the UDP header. UDPError is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.
	27	IPDetected	Internet Protocol Detected indicates the received Ethernet frame con- tains an IP datagram. IPDetected is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.
I	28	IPError	Internet Protocol Error indicates the received Ethernet frame contains an IP datagram, and the IP checksum calculation by Rio did not match the checksum value in the IP header. IPError is undefined (and should be ignored) unless the RFS FrameEnd field is a logic 1.
I	29	FrameStart	Frame Start indicates the first RFD used to describe a received Ether- net frame. In conjunction with the FrameEnd bit, these bits indicate the beginning and end of a single Ethernet frame within the RFD list. If both the FrameStart and FrameEnd bits in the RFS field are a logic 1, the frame required only a single RFD.
I	30	FrameEnd	Frame End indicates the last RFD used to describe a received Ether- net frame. In conjunction with the FrameStart bit, these bits indicate the beginning and end of a single Ethernet frame within the RFD list. If both the FrameStart and FrameEnd bits in the RFS field are a logic 1, the frame required only a single RFD.

BIT	BIT NAME	BIT DESCRIPTION
31	RFDDone	RFD Done is written as a logic 1 by the Rio after transferring received data to host system memory. If the Rio is directed to use (typically re- use) an RFD whose RFDDone bit is a logic 1, the Rio will not transfer data to the location within host system memory indicated by the RFD (and thus will pause receive DMA operation) until the RFDDone bit is a logic 0. The RFDDone bit is analogous to an ownership bit, when a logic 1 indicates the host system owns the RFD and has not yet processed the corresponding data. When a logic 0, RFDDone indicates the RFD and may overwrite any data referenced by the RFD.
4732	тсі	Tag Control Information contains the TCI portion of the VLAN tag found in the received frame described by this RFD (if a VLAN tag was found) regardless of the state of the MACCtrl register AutoVLANuntagging bit. TCI is only valid if the VLANDetected bit is a logic 1.
6348	Reserved	Reserved for future use. Write as zero, ignore on read.

I

11.10.2.3 FragInfo

Class..... Receive DMA Data Structure

Base Address RFD starting address in system memory

Address Offset 0x10

Access Mode Read/Write

Width 64 bits

Fragment Information indicates a block of contiguous system memory reserved for a portion, or for an entire received Ethernet frame. Fragments may be located anywhere in system memory, and need not be contiguous.

BIT	BIT NAME	BIT DESCRIPTION	
390	FragAddr	Fragment Address indicates the location within host system memory of the first byte of the data fragment. Fragments can be located anywhere within a 40 bit (1,099,511,627,776 or 1 Terabyte) memory space.	
4740	Reserved	Reserved for future use. Write as zero, ignore on read.	
6348	FragLen	Fragment Length indicates the length of the fragment in bytes. Framents can range from zero to 64k (65,536) bytes in length.	

11.10.3 RMON Statistics

I

I

I

The Rio implements a portion of the Remote Network Monitoring Management Information Base (RMON MIB) defined in RFC 1757. The Ethernet Statistics Group as defined in RFC 1757 is implemented via a set of Rio registers. Many Ethernet Statistics Group objects are implemented as dedicated registers which must be accessed using memory (not I/O) operations. A memory map of these dedicated RMON registers in shown in Table 15.

CLK	BYTE 4	BYTE 3	BYTE 2	BYTE 1	ADDR OFFSET		
Tx	EtherStatsPkts1024to1518Octets						
Тх		EtherStatsPkts5	12to1023Octets		0x14C		
Тх		EtherStatsPkts2	256to511Octets		0x148		
Тх		EtherStatsPkts	28to255Octets		0x144		
Тх		EtherStatsPkts	65to127Octets		0x140		
Тх		EtherStatsP	kts64Octets		0x13C		
Tx		EtherSt	atsPkts		0x138		
Tx		EtherSta	tsOctets		0x134		
Tx		EtherStat	sJabbers		0x130		
Tx	EtherStatsFragments						
Tx	EtherStatsUndersizePkts						
Tx	EtherStatsCRCAlignErrors						
Тх	EtherStatsPkts1024to1518OctetsTransmit						
Tx	EtherStatsPkts512to1023OctetsTransmit						
Tx	EtherStatsPkts256to511OctetsTransmit						
Tx	EtherStatsPkts128to255OctetsTransmit						
Tx	EtherStatsPkts65to127OctetsTransmit				0x110		
Tx	EtherStatsPkts64OctetsTransmit				0x10C		
Tx		EtherStatsPktsTransmit					
Tx	EtherStatsOctetsTransmit						
Tx	EtherStatsCollisions						

TABLE 15: Rubicon RMON MIB Register Map

I

I

The remainder of the Ethernet Statistics Group objects are accessed via dual purpose statistic registers. A list of these dual purpose registers, and their RMON Ethernet Statistics equivalents is shown in Table 16.

RMON MIB ETHERNET STATISTICS GROUP OBJECT	EQUIVALENT RIO STATISTIC REGISTER
EtherStatsDropEvents	FramesLostRxErrors
EtherStatsOversizePkts	FrameTooLongErrors
EtherStatsBroadcastPkts	BcstFramesRcvdOk
EtherStatsMulticastPkts	McstFramesRcvdOk
EtherStatsBroadcastPktsTransmit	BcstFramesXmtdOk
EtherStatsMulticastPktsTransmit	McstFramesXmtdOk

 Table 16: RMON MIB to Rio Register Equivalent Mapping

Note, RMON statistic objects with the "Transmit" suffix are not described specifically in RFC 1757, but are extensions of similar objects defined in RFC 1757 applied to transmit data.

11.10.3.1 EtherStatsCollisions

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsColli- sions	R/W	From RFC 1757: "The best estimate of the total number of collisions on this Ethernet segment." An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsCollisions reaches a value of 0xC000. EtherStatsCollisions is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsCollisions bit within the RMONStatisticsMask register.

11.10.3.2 EtherStatsCRCAlignErrors

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsCR- CAlignErrors	R/W	From RFC 1757: "The total number of packets received that had a length (excluding framing bits, but including FCS octets) of between 64 and 1518 octets, inclusive, but had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error)." An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsCRCAlignErrors reaches a value of 0xC000. EtherStatsCRCAlignErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl regis- ter, and a logic 0 to the EtherStatsCRCAlignErrors bit within the RMONStatisticsMask register.

11.10.3.3 EtherStatsFragments

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsFrag- ments	R/W	From RFC 1757: "The total number of packets received that were less than 64 octets in length (excluding framing bits but including FCS octets) and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non-integral number of octets (Alignment Error). Note that it is entirely normal for etherStatsFragments to increment. This is because it counts both runts (which are normal occur- rences due to collisions) and noise hits." An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsFragments reaches a value of 0xC000. EtherStatsFragments is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsFragments bit within the RMONStatisticsMask register.

11.10.3.4 EtherStatsJabbers

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsJabbers	R/W	From RFC 1757: "The total number of packets received that were longer than 1518 octets (excluding framing bits, but including FCS octets), and had either a bad Frame Check Sequence (FCS) with an integral number of octets (FCS Error) or a bad FCS with a non- integral number of octets (Alignment Error). Note that this definition of jabber is different than the definition in IEEE-802.3." An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsJabbers reaches a value of 0xC000. EtherStatsJabbers is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsJabbers bit within the RMONStatisticsMask reg- ister.

11.10.3.5 EtherStatsOctets

Class	RMON Statistics
I/O Base Address	Not accessible via I/O
Memory Base Address .	MemBaseAddress register value
Address Offset	0x134
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsOctets	R/W	From RFC 1757:
			"The total number of octets of data (including those in bad packets) received on the network (excluding framing bits but including FCS octets).
			This object can be used as a reasonable estimate of ethernet utilization. If greater precision is desired, the etherStatsPkts and etherStatsOctets objects should be sampled before and after a common interval. The differences in the sampled values are Pkts and Octets, respectively, and the number of seconds in the interval is Interval. These values are used to calculate the Utilization as follows:
			Pkts * (96 + 64) + (Octets * 8)
			Utilization =
			Interval * 10,000,000
			The result of this equation is the value Utilization which is the percent utilization of the ethernet segment on a scale of 0 to 100 percent."
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsOctets reaches a value of 0xC000. EtherStatsOctets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsOctets/EtherStatsPkts bit within the RMONStatistics-Mask register.

11.10.3.6 EtherStatsOctetsTransmit

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsOctet- sTransmit	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsOctetsTransmit reaches a value of 0xC000. EtherStatsOctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsOctetsTransmit/EtherStatsPkt-sTransmit bit within the RMONStatisticsMask register.

11.10.3.7 EtherStatsPkts

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts	R/W	From RFC 1757: "The total number of packets (including bad packets, broadcast packets, and multicast packets) received." Note, the ReceiveMode register settings affect the results of EtherStatsPkts. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts reaches a value of 0xC000. EtherStatsPkts is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsOctets/EtherStatsPkts bit within the RMONStatistics- Mask register.

11.10.3.8 EtherStatsPkts64Octets

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts64O ctets	R/W	From RFC 1757: "The total number of packets (including bad packets) received that were 64 octets in length (excluding framing bits but includ- ing FCS octets)." All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts64Octets reaches a value of 0xC000. EtherStatsPkts64Octets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts64Octets bit within the RMON- StatisticsMask register.

11.10.3.9 EtherStatsPkts65to127Octets

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts65to 127Octets	R/W	From RFC 1757: "The total number of packets (including bad packets) received that were between 65 and 127 octets in length inclusive (excluding framing bits but including FCS octets)." All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts65to127Octets reaches a value of 0xC000. EtherStatsPkts65to127Octets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts65to127Octets bit within the RMONStatistics- Mask register.

11.10.3.10 EtherStatsPkts128to255Octets

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts128t o255Octets	R/W	From RFC 1757: "The total number of packets (including bad packets) received that were between 128 and 255 octets in length inclusive (excluding framing bits but including FCS octets)." All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts128to255Octets reaches a value of 0xC000. EtherStatsPkts128to255Octets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts128to255Octets bit within the RMONStatistics- Mask register.

11.10.3.11 EtherStatsPkts256to511Octets

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts256t o511Octets	R/W	From RFC 1757: "The total number of packets (including bad packets) received that were between 256 and 511 octets in length inclusive (excluding framing bits but including FCS octets)." All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts256to511Octets reaches a value of 0xC000. EtherStatsPkts256to511Octets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts256to511Octets bit within the RMONStatistics- Mask register.

11.10.3.12 EtherStatsPkts512to1023Octets

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts512t o1023Octets	R/W	From RFC 1757: "The total number of packets (including bad packets) received that were between 512 and 1023 octets in length inclusive (excluding framing bits but including FCS octets)." All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts512to1023Octets reaches a value of 0xC000. EtherStatsPkts512to1023Octets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts512to1023Octets bit within the RMONStatistics- Mask register.

11.10.3.13 EtherStatsPkts1024to1518Octets

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts102 4to1518Octets	R/W	From RFC 1757: "The total number of packets (including bad packets) received that were between 1024 and 1518 octets in length inclusive (excluding framing bits but including FCS octets)." All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts1024to1518Octets reaches a value of 0xC000. EtherStatsPkts1024to1518Octets is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts1024to1518Octets bit within the RMONStatis- ticsMask register.

11.10.3.14 EtherStatsPktsTransmit

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkt- sTransmit	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPktsTransmit reaches a value of 0xC000. EtherStatsPktsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsOctetsTransmit/EtherStatsPktsTransmit bit within the RMONStatisticsMask register.

11.10.3.15 EtherStatsPkts64OctetsTransmit

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts64O ctetsTransmit	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts64OctetsTransmit reaches a value of 0xC000. EtherStatsPkts64OctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts64OctetsTransmit bit within the RMONStatisticsMask register.

11.10.3.16 EtherStatsPkts65to127OctetsTransmit

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts65to 127OctetsTransmit	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts65to127OctetsTransmit reaches a value of 0xC000. EtherStatsPkts65to127OctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts65to127OctetsTransmit bit within the RMONStatisticsMask register.

11.10.3.17 EtherStatsPkts128to255OctetsTransmit

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts128t o255OctetsTransmi t	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts128to255OctetsTransmit reaches a value of 0xC000. EtherStatsPkts128to255OctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts128to255OctetsTransmit bit within the RMON-StatisticsMask register.

11.10.3.18 EtherStatsPkts256to511OctetsTransmit

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts256t o511OctetsTransmi t	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts256to511OctetsTransmit reaches a value of 0xC000. EtherStatsPkts256to511OctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts256to511OctetsTransmit bit within the RMONStatisticsMask register.

11.10.3.19 EtherStatsPkts512to1023OctetsTransmit

Class......RMON Statistics I/O Base AddressNot accessible via I/O Memory Base Address . MemBaseAddress register value Address Offset0x11C Default Value0x00000000 Access Rule.......Double Word

Width 32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsPkts512t o1023OctetsTrans mit	R/W	An extension of the similar named object in RFC 1757 for transmit data as apposed to traditional RMON objects which record receive data.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts512to1023OctetsTransmit reaches a value of 0xC000. EtherStatsPkts512to1023OctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsPkts512to1023OctetsTransmit bit within the RMON-StatisticsMask register.

11.10.3.20 EtherStatsPkts1024to1518OctetsTransmit

R/W BIT **BIT NAME BIT DESCRIPTION** 31..0 EtherStatsPkts102 R/W An extension of the similar named object in RFC 1757 for 4to1518OctetsTran transmit data as apposed to traditional RMON objects which smit record receive data. All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame reception) the VLAN tag automatically. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsPkts1024to1518OctetsTransmit reaches a value of 0xC000. EtherStatsPkts1024to1518OctetsTransmit is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl logic 0 the register. and а to EtherStatsPkts1024to1518OctetsTransmit bit within the RMONStatisticsMask register.

11.10.3.21 EtherStatsUndersizePkts

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	EtherStatsUnder- sizePkts	R/W	From RFC 1757: "The total number of packets received that were less than 64 octets long (excluding framing bits, but including FCS octets) and were otherwise well formed." An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when EtherStatsUndersizePkts reaches a value of 0xC000. EtherStatsUndersizePkts is enabled by writ- ing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the EtherStatsUndersizePkts bit within the RMONStatisticsMask register.

11.10.4 Ethernet MIB Statistics

I

The host interacts with the Rio mainly through slave registers, which occupy 256 bytes in the host system's I/O space, 512 bytes in memory space, or both. Generally, registers are referred to as "I/O registers", implying that the registers may in fact be mapped and accessed by the host system in memory space. These registers must be accessed with instructions that are no larger than the bit-width of the register being accessed. There are several classes of I/O registers, with Ethernet Management Information Base (MIB) Statistics comprising a portion of the total I/O register space. The Ethernet MIB Statistic registers implement several counters defined in the IEEE 802.3 standard.

CLK	BYTE 4	BYTE 4 BYTE 3		BYTE 1	ADDR OFFSET	
Tx	FramesW	EXDeferal	FramesAb	FramesAbortXSColls		
Tx	MacControlF	FramesXmtd	CarrierSe	nseErrors	F8	
Tx	BcstFrame	esXmtdOk			F4	
Tx		SingleCo	olFrames		F0	
Tx		MultiCo	IFrames		EC	
Tx		LateCo	Ilisions		E8	
Tx		FramesWD	eferredXmt		E4	
Тx		McstFram	esXmtdOk		E0	
Tx		Frames	XmtdOk		DC	
Tx	BcstOctetXmtOk					
Тx	McstOctetXmtOk					
Тx		D0				
Rx	FramesLos	stRxErrors	FramesChee	ckSeqErrors	СС	
Rx	InRangeLe	ngthErrors	FrameTool	_ongErrors	C8	
Rx	MacControlF	FramesRcvd			C4	
Rx					C0	
Rx	BcstFramesRcvdOk				BC	
Rx	McstFramesRcvdOk					
Rx	FramesRcvdOk					
Rx	BcstOctetRcvOk					
Rx	McstOctetRcvdOk					
Rx		Octet	RcvOk		A8	

TABLE 17: Rubicon Ethernet MIB Statistics Register Map

11.10.4.1 BcstFramesRcvdOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xBC
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	BcstFramesRcv- dOk	R/W	Broadcast Frames Received OK is the count of the number of frames that are successfully received with destination address equal to the broadcast address (0xFFFFFFFFFFFFFFF). Bcst-FramesRcvdOk does not include frames received with frames too long, FCS, length or alignment errors, or frames lost due to internal MAC sublayer error (i.e. overrun). BcstFramesRcvdOk will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.22.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when BcstFramesRcvdOk reaches a value of 0xC000. BcstFramesRcvdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the BcstFramesRcvdOk bit within the StatisticsMask register.

11.10.4.2 BcstFramesXmtdOk

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	BcstFramesXmt- dOk	R/W	Broadcast Frames Transmitted is the count of the number of frames that are successfully transmitted to the broadcast address (0xFFFFFFFFFFF). Frames transmitted to other multicast addresses are excluded from this statistic. Bcst-FramesXmtdOk will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.19. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when BcstFramesXmtdOk reaches a value of 0xC000. BcstFramesXmtdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the BcstFramesXmtdOk bit within the StatisticsMask register.

11.10.4.3 BcstOctetRcvOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xB0
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	BcstOctetRcvOk	R/W	Broadcast Octets Received OK is the count of the number of data and padding octets in frames, with destination address equal to the broadcast address (0xFFFFFFFFFFF), that are successfully received. BcstOctetRcvOk does not include frames received with frames too long, FCS, length or align- ment errors, or frames lost due to internal MAC sublayer error (i.e. overrun). BcstOctetRcvOk will wrap around to zero after reaching 0xFFFFFFF.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when BcstOctetRcvOk reaches a value of 0xC0000000. BcstOctetRcvOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the BcstOctetRcvOk bit within the StatisticsMask register.

11.10.4.4 BcstOctetXmtOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xD8
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	BcstOctetXmtOk	R/W	Broadcast Octets Transmitted OK is a count of data and pad- ding octets of frames successfully transmitted to a the broad- cast address (0xFFFFFFFFFF). BcstOctetXmtOk will wrap around to zero after reaching 0xFFFFFFF.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when BcstOctetXmtOk reaches a value of 0xC0000000. BcstOctetXmtOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the BcstOctetXmtOk bit within the StatisticsMask register.

11.10.4.5 CarrierSenseErrors

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xF8
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	CarrierSenseErrors	R/W	Carrier Sense Errors counts the number of times that the car- rier sense signal (CRS) was de-asserted (a logic 0) during the transmission of a frame without collision. The carrier sense signal is not monitored for the purpose of this statistic until after the preamble and start-of-frame delimiter fields of the Ethernet frame have been transmitted. CarrierSenseErrors will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.13.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when CarrierSenseErrors reaches a value of 0xC000. CarrierSenseErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the CarrierSenseErrors bit within the StatisticsMask register.

11.10.4.6 FramesAbortXSColls

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	FramesAbortX- SColls	R/W	Frames Aborted Due to Excess Collisions counts the number of frames which are not transmitted successfully due to exces- sive collisions. FramesAbortXSColls will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.11. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FramesAbortXSColls reaches a value of 0xC000. FramesAbortXSColls is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesAbortXSColls bit within the StatisticsMask regis- ter.

11.10.4.7 FramesCheckSeqErrors

Class..... Ethernet MIB Statistics I/O Base Address IoBaseAddress register value Memory Base Address . MemBaseAddress register value Address Offset 0xCC Default Value 0x0000 Access Rule...... Word Width 16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	FramesCheckSe- qErrors	R/W	Frame Check Sequence Errors is a count of received frames that are an integral number of octets in length and do not pass the FCS check. This does not include frames received with frame-too-long, or frame-too-short (runt) errors. FramesCheck- SeqErrors will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.6. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FramesCheckSeqErrors reaches a value of 0xC000. FramesCheckSeqErrors is enabled by writ- ing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesCheckSeqErrors bit within the Sta- tisticsMask register.

11.10.4.8 FramesLostRxErrors

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xCE
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	FramesLostRxEr- rors	R/W	Frames Lost Due to Receive Errors is a count of the number of frames that should have been received (the destination address matched the filter criteria) but experienced a receive FIFO overrun error (the receive FIFO does not have enough free space to store the received data). FramesLostRxErrors only includes overruns that become apparent to the host system, and does not include frames that are completely ignored due to a completely full receive FIFO at the beginning of frame reception. FramesLostRxErrors will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.15. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FramesLostRxErrors reaches a value of 0xC000. FramesLostRxErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesLostRxErrors bit within the StatisticsMask register.

11.10.4.9 FramesRcvdOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xB4
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	FramesRcvdOk	R/W	Frames Received OK is the count of the number of frames that are successfully received. FramesRcvdOk does not include frames received with frames too long, FCS, length or align- ment errors, or frames lost due to internal MAC sublayer error (i.e. overrun). FramesRcvdOk will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.5. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FramesRcvdOk reaches a value of 0xC0000000. FramesRcvdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesRcvdOk bit within the StatisticsMask register.

11.10.4.10 FramesWDeferredXmt

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	FramesWDe- ferredXmt	R/W	Frames with Deferred Transmit is a count of the number of frames that must delay their first attempt of transmission because the medium was busy. Frames involved in any collisions are not counted by FramesWDeferredXmt. FramesWDeferredXmt wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.9. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FramesWDeferredXmt reaches a value of 0xC0000000. FramesWDeferredXmt is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesWDeferredXmt bit within the StatisticsMask register.

11.10.4.11 FramesWEXDeferal

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xFE
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	FramesWEXDe- feral	R/W	Frames with Excessive Deferals counts the number of frames that deferred for an excessive period of time (exceeding the defer limit). FramesWEXDeferal is only incremented once per LLC frame. FramesWEXDeferal will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.20. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FramesWEXDeferal reaches a value of 0xC000. FramesWEXDeferal is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesWEXDeferal bit within the StatisticsMask regis- ter.

11.10.4.12 FramesXmtdOk

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	FramesXmtdOk	R/W	Frames Transmitted OK is a count of the number of frames that are successfully transmitted. FramesXmtdOk will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.2. An UpdateStats interrupt (UpdateStats bit within the IntStatus
			register) will occur when FramesXmtdOk reaches a value of 0xC0000000. FramesXmtdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FramesXmtdOk bit within the StatisticsMask register.

11.10.4.13 FrameTooLongErrors

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	FrameTooLongEr- rors	R/W	Frame Too Long Errors is a count of frames received whose length exceed the value in the MaxFrameSize register. Frame- TooLongErrors will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.25. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when FrameTooLongErrors reaches a value of 0xC000. FrameTooLongErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the FrameTooLongErrors bit within the StatisticsMask reg- ister.

11.10.4.14 InRangeLengthErrors

Class..... Ethernet MIB Statistics I/O Base Address IoBaseAddress register value Memory Base Address . MemBaseAddress register value Address Offset 0xCA Default Value 0x0000 Access Rule...... Word Width 16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	InRangeLengthEr- rors	R/W	In Range Length Errors is a count of the number of frames with the Length/Type field value between the minimum unpadded MAC client data size and the maximum allowed MAC client data size, inclusive, that does not match the number of MAC client data octets received. InRangeLengthErrors also incre- ments for frames whose Length/Type field value is less than the minimum allowed unpadded MAC client data size, and the number of MAC client data octets received is greater than the minimum unpadded MAC client data size. InRangeLengthEr- rors will wrap around to zero after reaching 0xFFFF. See IEEE 802.3 Clause 30.3.1.1.23. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when InRangeLengthErrors reaches a value of 0xC000. InRangeLengthErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the InRangeLengthErrors bit within the Statistics- Mask register.

11.10.4.15 LateCollisions

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	LateCollisions	R/W	Late Collisions is a count of the number of times that a collision has been detected later than 1 slot time into the transmitted frame. LateCollisions will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.10. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when LateCollisions reaches a value of 0xC0000000. LateCollisions is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the LateCollisions bit within the StatisticsMask register.

11.10.4.16 MacControlFramesRcvd

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	MacControl- FramesRcvd	R/W	MAC Control Frames Received is a count of the number of MAC control PAUSE frames, and only PAUSE frames, received successfully. MacControlFramesRcvd will wrap around to zero after reaching 0xFFFF.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when MacControlFramesRcvd reaches a value of 0xC000. MacControlFramesRcvd is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the MacControlFramesRcvd bit within the StatisticsMask register.

11.10.4.17 MacControlFramesXmtd

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	MacControl- FramesXmtd	R/W	MAC Control Frames Transmitted is the count of MAC control frames transmitted by the Rio. Note, MacControlFramesXmtd does not include MAC control frames transferred to the Rio by the host system via the transmit DMA process. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when MacControlFramesXmtd reaches a value of 0xC000. MacControlFramesXmtd is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the MacControlFramesXmtd bit within the StatisticsMask register.

11.10.4.18 McstFramesRcvdOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	. 0xB8
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	McstFramesRcv- dOk	R/W	Broadcast Frames Received OK is the count of the number of frames that are successfully received to a group destination address other than the broadcast address (0xFFFFFFFFFFF). McstFramesRcvdOk does not include frames received with frames too long, FCS, length or alignment errors, or frames lost due to internal MAC sublayer error (i.e. overrun). McstFramesRcvdOk will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.21. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when McstFramesRcvdOk reaches a value of 0xC0000000. McstFramesRcvdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the McstFramesRcvdOk bit within the StatisticsMask register.

11.10.4.19 McstFramesXmtdOk

Class	. Ethernet MIB Statistics
I/O Base Address	. loBaseAddress register value
Memory Base Address	. MemBaseAddress register value
Address Offset	. 0xE0
Default Value	. 0x0000000
Access Rule	. Double Word
Width	. 32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	McstFramesXmt- dOk	R/W	Multicast Frames Transmitted OK is a count of the number of frames that are successfully transmitted to a group destination address other than the broadcast address (0xFFFFFFFFFFF). McstFramesXmtdOk will wrap around to zero after reaching 0xFFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.18. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when McstFramesXmtdOk reaches a value of 0xC0000000. McstFramesXmtdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the McstFramesXmtdOk bit within the StatisticsMask register.

11.10.4.20 McstOctetRcvdOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xAC
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	McstOctetRcvdOk	R/W	Multicast Octets Received OK is the count of the number of data and padding octets in frames, to a group destination address other than the broadcast address (0xFFFFFFFFFFF), that are successfully received. McstOc-tetRcvdOk does not include frames received with frames too long, FCS, length or alignment errors, or frames lost due to internal MAC sublayer error (i.e. overrun). McstOctetRcvdOk will wrap around to zero after reaching 0xFFFFFFFF.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when McstOctetRcvdOk reaches a value of 0xC0000000. McstOctetRcvdOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the McstOctetRcvdOk bit within the StatisticsMask register.

11.10.4.21 McstOctetXmtOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address	MemBaseAddress register value
Address Offset	0xD4
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	McstOctetXmtOk	R/W	Multicast Octets Transmitted OK is a count of data and pad- ding octets of frames successfully transmitted to a group desti- nation address other than the broadcast address (0xFFFFFFFFFFFF). McstOctetXmtOk will wrap around to zero after reaching 0xFFFFFFF.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when McstOctetXmtOk reaches a value of 0xC0000000. McstOctetXmtOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the McstOctetXmtOk bit within the StatisticsMask register.

11.10.4.22 MultiColFrames

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	MultiColFrames	R/W	Multiple Collision Frames is a count of the number of frames that are involved in more than one collision and are subse- quently transmitted successfully. MultiColFrames will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.4.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when MultiColFrames reaches a value of 0xC0000000. MultiColFrames is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the MultiColFrames bit within the StatisticsMask register.

11.10.4.23 OctetRcvOk

Class	Ethernet MIB Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	. 0xA8
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	OctetRcvOk	R/W	Octets Received OK is the count of the number of data and padding octets in frames that are successfully received. OctetRcvOk does not include frames received with frames too long, FCS, length or alignment errors, or frames lost due to internal MAC sublayer error (i.e. overrun). OctetRcvOk will wrap around to zero after reaching 0xFFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.14.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when OctetRcvOk reaches a value of 0xC0000000. OctetRcvOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the OctetRcvOk bit within the StatisticsMask register.

11.10.4.24 OctetXmtOk

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	OctetXmtOk	R/W	Octets Transmitted OK is a count of data and padding octets of frames successfully transmitted. OctetXmtOk will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.8.
			All Rio byte and octet count based statistic registers include the VLAN tag (4 octets) regardless of whether or not the Rio is adding (on frame transmission) or removing (on frame recep- tion) the VLAN tag automatically.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when OctetXmtOk reaches a value of 0xC0000000. OctetXmtOk is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the OctetXmtOk bit within the StatisticsMask register.

11.10.4.25 SingleColFrames

BIT	BIT NAME	R/W	BIT DESCRIPTION
310	SingleColFrames	R/W	Single Collision Frames is a count of the number of frames that are involved in a single collision, and are subsequently trans- mitted successfully. SingleColFrames will wrap around to zero after reaching 0xFFFFFFF. See IEEE 802.3 Clause 30.3.1.1.3. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when SingleColFrames reaches a value of 0xC0000000. SingleColFrames is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the SingleColFrames bit within the StatisticsMask register.

11.10.5 I/O Registers

I

The host interacts with the Rio mainly through slave registers, which occupy 256 bytes in the host system's I/O space, 512 bytes in memory space, or both. Generally, registers are referred to as "I/O registers", implying that the registers may in fact be mapped and accessed by the host system in memory space. These registers must be accessed with instructions that are no larger than the bit-width of the register being accessed. There are several classes of I/O registers including Statistic, Control and Status, DMA, ASIC, and Interrupts.

CLK	BYTE 4	BYTE 3	BYTE 2	BYTE 1	ADDR OFFSET
Тх					FC
Tx					F8
Тх			TxJumbo	oFrames	F4
Tx					F0
Тх					EC
Тх					E8
Тх					E4
Тх					E0
Тх					DC
Тх					D8
Тх					D4
Tx					D0
Rx					СС
Rx					C8
Rx			UDPCheck	SumErrors	C4
Rx	IPCheckS	SumErrors	TCPCheck	SumErrors	C0
Rx			RxJumb	oFrames	BC
Rx					B8
Rx					B4

TABLE 18: Rubicon I/O Register Map

CLK	BYTE 4	BYTE 3 BYTE 2 BYTE 1		ADDR OFFSET	
Rx					B0
Rx					AC
Rx					A8
					A4
Тх					A0
Tx		Statisti	csMask	L	9C
		RMONSta	tisticsMask		98
					94
Rx		HashTab	ble[63:32]	I	90
Rx		HashTal	ble[31:0]		8C
Rx	VLANHa	ashTable	Receiv	eMode	88
Rx	MaxFra	imeSize			84
			VLANId		80
Тx			StationAdd	ress[47:32]	7C
Тх		StationAdd	dress[31:0]		78
Тх		PhyCtrl			74
Тх		VLA	NTag		70
Тх		MAG	CCtrl		6C
					68
					64
Тх			tatus		60
Тх		tatus	IntEr	nable	5C
Тх	IntStat	tusAck			58
Тх		Coun	54		
Tx			WakeEvent	ExpRomData	50
Tx		ExpRc	mAddr		4C
Тх	Eepro	omCtrl	Eepro	mData	48

TABLE 18: Rubicon I/O Register Map

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

CLK	BYTE 4	BYTE 3	BYTE 2	BYTE 1	ADDR OFFSET		
Тx			TxStart	Thresh	44		
					40		
Rx	FlowOr	Thresh	FlowOff	Thresh	3C		
Rx	RxEarly	/Thresh	FIFC	DCtrl	38		
					34		
Tx		Asic	cCtrl		30		
PCI			Debu	ıgCtrl	2C		
PCI		RxDMAIntCtrl					
PCI		RxDMAPollPe- riod	RxDMAUrgent- Thresh	RxDMABurst- Thresh	24		
PCI		RFDListF	Ptr[63:32]		20		
PCI		RFDList	Ptr[31:0]		1C		
PCI		TxDMAPollPe- riod	TxDMAUrgent- Thresh	TxDMABurst- Thresh	18		
PCI		TFDListF	Ptr[63:32]		14		
PCI		TFDList	Ptr[31:0]		10		
					0C		
PCI		Reserved(R)	(DMAStatus)		08		
					04		
PCI		DMA	ACtrl		00		

TABLE 18: Rubicon I/O Register Map

11.10.5.1 AsicCtrl

I

L

Class	. I/O Registers, Control and Status
I/O Base Address	. loBaseAddress register value
Memory Base Address	. MemBaseAddress register value
Address Offset	. 0x30
Default Value	. 0x00004000 (default values for bits 1, 5, 6, 7 are dependent on EEPROM set- tings, and bits 8, 9, 10 are dependent on ED signal pin states)
Access Rule	. Word, Double Word
Width	. 32 bits

The contents of bits 7 through 0 of AsicCtrl are read from EEPROM at reset.

BIT	BIT NAME	R/W	BIT DESCRIPTION				
0	Reserved (ExpRomDisable)	N/A	Reserved for future use. Write as zero, ignore on read. (This bit, when set, disables accesses to the on-adapter Expansion ROM. This bit is included to allow bypassing the Expansion ROM without having to physically remove it from the board. When this bit is set, the Rio responds to any read in its configured Expansion ROM space by returning 00000000h, and it ignores writes to the Expansion ROM. This bit resets to 0.)				
1	ExpRomSize	R/W	Expansion Read Only Memory Size. ExpRomSize specifies the size of the Expansion ROM to be used with the Rio.				
			BIT 1	EXPANSION ROM SIZE (KB)			
			0	32			
			1	64			
2	Reserved (TxLargeEnable)	N/A	Reserved for future use. Write as zero, ignore on read. (This read/write bit, when set, enables transmission of frames that are larger than the TxFIFO. Since Rio's TxFIFO size is 2KB, this bit can be left clear (the reset default).)				
3	Reserved (RxLargeEnable)	N/A	Reserved for future use. Write as zero, ignore on read. (This read/write bit, when set, enables reception of frames that are larger than the RxFIFO. Since Rio's RxFIFO size is 2KB, this bit can be left clear (the reset default).)				
4	PhySpeed10	R	1, 10Mbps faced to the	ayer Speed 10Mbps. When PhySpeed10 is a lo operation is available from the PHY device int ne Rio. When PhySpeed10 is a logic 0 the Pl rfaced to the Rio is not 10Mbps capable.	ter-		

BIT	BIT NAME	R/W			BIT DES	CRIPTION	N
5	PhySpeed100	R	logic 1, 1 interfaced	Physical Layer Speed 100Mbps. When PhySpeed100 is a logic 1, 100Mbps operation is available from the PHY device interfaced to the Rio. When PhySpeed100 is a logic 0 the PHY device interfaced to the Rio is not 100Mbps capable.			
6	PhySpeed1000	R	logic 1, 10 interfaced	000Mbps of I to the R	operation i io. When	s available PhySpeed	n PhySpeed1000 is a e from the PHY device 1000 is a logic 0 the 1000Mbps capable.
7	PhyMedia	R	(fiber or c the Rio. V ing fiber n utilizing tv The comb and PhyS	copper) av Vhen Phyl nedia. Whe visted-pair pination of Speed1000 I to the Ric	railable fro Media is a en PhyMed media. f PhyMedi) indicate t	m the PH logic 1, th dia is a log a, PhySpe the capabi	cates the media type Y device interfaced to e PHY device is utiliz- ic 0, the PHY device is eed10, PhySpeed100, lity of the PHY device TECHNOLOGIES SUPPORTED
			PHYM EDIA	PHYS PEED1 000	PHYS PEED1 00	PHYS PEED1 0	BY PHYSICAL LAYER DEVICE INTERFACED TO THE RIO
			Х	0	0	0	Undefined
			0	0	0	1	10Mbps copper
			0	0	1	0	100Mbps copper
			0	1	0	0	1000Mbps copper
			1	0	0	1	10Mbps fiber
			1	0	1	0	100Mbps fiber
			1	1	0	0	1000Mbps fiber

BIT	BIT NAME	R/W		BI	T DESCRIP	TION
108	ForcedConfig	R/W	Forced Configuration. ForcedConfig is used to enable and select a Forced Configuration mode for the Rio. Forced Con- figuration mode is targeted toward embedded applications which do not utilize an EEPROM. In Forced Configuration mode, the Rio is accessed via a PCI bus without first perform- ing PCI configuration or loading parameters from an EEPROM. The ForcedConfig bits 10 through 8 are latched (with a logic inversion) from signal pins ED bits 2 through 0 respectively upon termination of a Rio reset.			
			BIT 10 BIT 9 BIT 8 CONFIGURATION MODE			
			0	0	0	None
			0	0	1	1
			0	1	x	Reserved
			1	x	x	Reserved (alternate Deviceld and Vendorld used)
			In Forced Configuration mode 1, the Rio is configured as follows: I/O base address = 0x200 I/O target cycles = enabled Memory target cycles = disabled Bus master cycles = enabled Expansion ROM cycles = disabled.			
11	(Reserved) D3ResetDisable	R/W	Reserved for future use. Write as zero, ignore on read. (D3 Power State Reset Disable. When D3ResetDisable is a logic 1 the Rio is configured for operation in a Wake-On-LAN environment (see section 11.5). When D3ResetDisable is a logic 1 and the Rio is in the D3 power state, assertion of RSTN signal pin will not reset the Rio, assertion of the RSTN signal will not reset the Rio.)			
12	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.			
13	SpeedupMode	R/W	Speed Up Mode. SpeedupMode is used for simulation pur- poses only. When SpeedupMode is a logic 1 Rio operation is modified to decrease simulation time. SpeedupMode is latched (with a logic inversion) from signal pins ED bit 5 upon termina- tion of a Rio reset.			

I

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W		BIT DESCRIPTION	NC		
14	LEDMode	R/W	Light Emitting Diode Mode. LEDMode is used to control the LED signal pin functionality. When LEDMode is a logic 0 the LED signal pins operate in LED mode 0. When LEDMode is a logic 1 the LED signal pins operate in LED mode 1 Note, when LED signals alternate between logic 1/0, they alternate over a 41.89ms period, where the logic 0 (or LED ON) state persists for 5.24ms and the logic 1 (or LED OFF) state persists for 36.65ms				
			LED SIGNAL PIN	MODE 0	MODE 1		
			EA2/LEDP- WRN	Continuous logic 0 when power is applied. Alternat- ing logic 1/0 when frame transmission in progress.	Continuous logic 0 when power is applied.		
			EA1/ LEDLNK100 0N	Continuous logic 0 when Ethernet link is valid. Alternating logic 1/0 when frame reception in progress.	Continuous logic 0 when Ethernet link is valid. Alternating logic 1/0 when frame reception or trans- mission in progress.		
			EA0/LED- DPLXN	Continuous logic 0 when the Rio is configured for full duplex operation. Alternating logic 1/ 0 when the Rio detects a collision.	Continuous logic 0 when the Rio is con- figured for full duplex operation. Continu- ous logic 1 when the Rio is configured for half duplex operation.		
15	RstOutPolarity	R/W	RSTOUT signa RSTOUT signa progress. When	al. When RstOutPola I will assert HIGH to RstOutPolarity is a log	affects the polarity of the arity is a logic 1 the b indicate a reset is in gic 0 the RSTOUT signal n progress.		
16	GlobalReset	W	will assert LOW to indicate a reset is in progress. Global Reset. When GlobalReset is a logic 1, the Rio resets all of the logic functions and registers specified by the DMA, FIFO, Network, Host, AutoInit, and RstOut bits (related to both the transmit and receive processes as applicable). GlobalRe- set is self-clearing, and requires that the Rio RMON Statistics, Ethernet MIB Statistics, and I/O Registers be re-initialized. The PCI Configuration Registers are not affected by GlobalReset.				

	BIT	BIT NAME	R/W	BIT DESCRIPTION
I	17	RxReset	W	Receive Reset. When RxReset is a logic 1 the Rio resets all of the receive logic functions and registers specified by the DMA, FIFO, Network, Host, and AutoInit bits. RxReset is self-clear- ing, and should not be used after initialization except to recover from receive errors such as a receive FIFO over run.
I	18	TxReset	W	Transmit Reset. When TxReset is a logic 1 the Rio resets all of the transmit logic functions and registers specified by the DMA, FIFO, Network, Host, and AutoInit bits. TxReset is self clearing, and is required to be used after a transmit underrun error.

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W		BIT DESC	RIPTION	
19	DMA	W	DMA Reset. DM logic 0) the Rid based on the va bits. The DMA b	alue of the Globa	s and registers IReset, RxRese	for/from reset
			DMA FUNCTION/ REGISTER	RESET ON TXRESET	RESET ON RXRESET	RESET ON GLOBALR ESET
			Transmit DMA logic	x		X
			Receive DMA logic		x	x
			TFDListPtr register	x		x
			RFDListPtr register		x	x
			TxDMACom- plete bit in the DMACtrl register	x		x
			RxDMACom- plete bit in the DMACtrl register		x	x
			TxDMAIn- Prog bit in the DMACtrl register	x		x
			RxEarlyDis- able bit in the DMACtrl reg- ister		x	x

BIT	BIT NAME	R/W		BIT DESC	RIPTION	
20	FIFO	W	a logic 0) the R based on the va	io FIFO function	n a logic 1) or e ns and registers IReset, RxReset J.	for/from reset
			FIFO FUNCTION/ REGISTER	RESET ON TXRESET	RESET ON RXRESET	RESETON GLOBALR ESET
			Transmit FIFO logic	x		x
			Receive FIFO logic		x	x
			TxStart- Thresh regis- ter	x		x
			RxEarlyTh- resh register		x	x

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W		BIT DESC	RIPTION	
21	Network	W	(when a logic 0 from reset base	Network selects) the Rio netwo ed on the value s. The Network	of the GlobalRe	d registers for/ eset, RxReset,
			NETWORK FUNCTION/ REGISTER	RESET ON TXRESET	RESET ON RXRESET	RESETON GLOBALR ESET
			Transmit net- work inter- face logic	x		x
			Receive net- work inter- face logic		x	x
			Transmit MAC logic	x		x
			Receive MAC logic		x	x
			TxStatus reg- ister	x		х
			Receive- Mode regis- ter		x	x
			All RMON Statistics and Ethernet MIB Statistics reg- isters		x	x

BIT	BIT NAME	R/W	BIT D	ESCRIPTION
22	Host	W	logic 0) the Rio host bus int	when a logic 1) or excludes (when a rerface logic functions and registers a value of the GlobalReset bit. The
			HOST FUNCTION/ REGISTER	RESET ON GLOBALRESET
			Host bus interface logic	x
			IntStatus register	x
			IntEnable register	x
			Countdown register	x
			Transmit and receive DMA functions	x
23	AutoInit	W	or excludes (when a logic function for/from re-loading	et. AutoInit selects (when a logic 1 0) the Rio auto-initialization logi Rio parameters from an EEPRON GlobalReset bit. The AutoInit bit i
24	RstOut	W	(when a logic 0) the Rio RS	elects (when a logic 1) or exclude TOUT signal for/from assertion (a Polarity bit) based on the value o tout bit is self-clearing.
25	InterruptRequest	W		InterruptRequest is a logic 1, th Status register is set to a logic 1 aring.
26	ResetBusy	R	progress. After asserting a set, or TxReset bits, the Re	usy is a logic 1 a reset process is i reset using the GlobalReset, RxRe setBusy bit must be polled (or per gic 0 indicating the reset operatio
3127	Reserved	N/A	Reserved for future use. Wr	rite as zero, ignore on read

I

11.10.5.2 Countdown

I

Countdown is a programmable, decrementing counter which will generate an interrupt upon expiration (reaching a value of 0x0000).

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	Count	R/W	Count. Count is the current value of Countdown register. When Count reaches 0x0000, it continues to decrement, wrapping to 0xFFFF.
2316	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
24	CountdownSpeed	R/W	Count Down Speed. When operating at 1000Mbps and Count- downSpeed is a logic 0, the interval between decrements of the Countdown register is 3200 ns. When operating at 1000Mbps and CountdownSpeed is a logic 1, the interval between decrements of the Countdown register is 320 ns. When operating at 100Mbps or 10Mbps, the state of Count- downSpeed has no effect on the Countdown register interval. When operating at 100Mbps or 10Mbps, the interval between decrements of the Countdown register is 3200 ns.
25	CountdownMode	R/W	Count Down Mode. When CountdownMode is a logic 0, the Countdown register begins decrementing when a non-zero value is written to the Countdown register. When Countdown-Mode is a logic 1, the Countdown register begins decrementing after the TxDMAComplete bit in the IntStatus register is a logic 1.
26	CountdownIntEna- bled	R	Count Down Interrupt Enabled. When CountdownIntEnabled is a logic 0, expiration of the Countdown timer will not set the IntRequested bit of the IntStatus register. When CountdownIn- tEnabled is a logic 1, expiration of the Countdown register will set the IntRequested bit in the IntStatus register. A logic 0 is written to CountdownIntEnabled when the IntRe- quested bit in the IntStatus register is a logic 1, or when a value of 0x0000 is written into the Count field. A logic 1 is writ- ten to CountdownIntEnabled when a non-zero value is written into the Count field.
3127	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.3 DebugCtrl

I

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x2C
Default Value	0x000C
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	GPIO0Ctrl	R/W	General Purpose Input Output 0 Control. GPIO0Ctrl specifies the direction of the Rio EA6/GPIO0 signal. When GPIO0Ctrl is a logic 0, the Rio EA6/GPIO0 signal is an input. When GPIO0Ctrl is a logic 1, the Rio EA6/GPIO0 signal is an output.
1	GPIO1Ctrl	R/W	General Purpose Input Output 1 Control. GPIO1Ctrl specifies the direction of the Rio EA7/GPIO1 signal. When GPIO1Ctrl is a logic 0, the Rio EA7/GPIO1 signal is an input. When GPIO1Ctrl is a logic 1, the Rio EA7/GPIO1 signal is an output.
2	GPIO0	R/W	General Purpose Input Output 0. GPIO0 represents the value of the Rio EA6/GPIO0 signal regardless of the state of GPIO0Ctrl. If GPIO0Ctrl is a logic 0, writes to GPIO0 are ignored.
3	GPIO1	R/W	General Purpose Input Output 1. GPIO1 represents the value of the Rio EA7/GPIO1 signal regardless of the state of GPIO1Ctrl. If GPIO1Ctrl is a logic 0, writes to GPIO1 are ignored.
4	dbDisableDnHalt	R/W	For testing purposes only.
5	dbDisableUpHalt	R/W	For testing purposes only.
6	dbSpeedSel	R/W	Speed Select determines the method Rio uses to change operation speed. If dbSpeedSel is a logic 0, the Rio speed of operation is set automatically (and indicated by the LinkSpeed field within the PhyCtrl register). If dbSpeedSel is a logic 1, the Rio speed of operation is set via dbSpeed.

BIT	BIT NAME	R/W	BIT DESCRIPTION			
87	dbSpeed	R/W Software Speed allows for manual setting of the Rio speed (10, 100, or 1000Mbps operation) based on the state of dbSpeedSel.				
			BIT8	BIT7	LINK SPEED/STATUS	
			0	0	Link down (default).	
			0	1	Link up at 10Mbps.	
			1	0	Link up at 100Mbps.	
			1	1	Link up at 1000Mbps.	
9	dbFrCurDoneAck	R/W	For testing purposes only.			
10	dbFrcSpd1000	R/W	Force Speed to 1000Mbps when a logic 1 will cause the regis- ter access logic to behave as if the AsicClk speed is 62.5MHz.			
1511	Reserved	N/A	Reserved for	or future use	e. Write as zero, ignore on r	ead.

11.10.5.4 DMACtrl

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x00
Default Value	0x0000000
Access Rule	Word or Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	Reserved (RxDMAHalted)	R	Reserved for future use. Write as zero, ignore on read. (This read-only bit is set whenever RxDMA is halted by setting the RxDMAHalt bit or an implicit halt due to fetching a RFD with RxDMAComplete in ReceiveFrameStatus already set. Cleared by setting the RxDMAResume bit.)
1	Reserved (RxDMAHalt)	N/A	Reserved for future use. Write as zero, ignore on read. (Whenever this bit is set, the RxDMA is halted. This bit is self- clearing and writing a 0 into this bit is ignored.)
2	Reserved (RxDMAResume)	N/A	Reserved for future use. Write as zero, ignore on read. (Whenever this bit is set, the RxDMA is resumed. This bit is self-clearing and writing a 0 into this bit is ignored.)
3	RxDMAComplete	R	Receive DMA Complete. RxDMAComplete is identical to the RxDMAComplete bit in the IntStatus register. RxDMAComplete is a logic 0 when the receive DMA process for a received Ethernet frame begins. RxDMAComplete is a logic 0 also when the RxDMAComplete interrupt is acknowledged.
4	RxDMAPollNow	W	Receive DMA Poll Now. When RxDMAPollNow is a logic 1 a "poll now" command is issued to the receive DMA process. The "poll now" receive DMA command resets the receive DMA poll timer which forces the current RFD RFDNextPtr and RFS fields to be read. RxDMAPollNow is a self clearing.
75	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
8	Reserved (TxDMAHalted)	N/A	Reserved for future use. Write as zero, ignore on read. (This read-only bit is set whenever TxDMA is halted by setting the TxDMAHalt bit. The host system should wait for this bit to be set before modifying TFD lists. Cleared by setting the TxD- MAResume bit.)
9	Reserved (TxDMAHalt)	N/A	Reserved for future use. Write as zero, ignore on read. (Whenever this bit is set, the TxDMA is halted. This bit is self- clearing and writing a 0 into this bit is ignored.)

BIT	BIT NAME	R/W	BIT DESCRIPTION
10	Reserved (TxDMAResume)	N/A	Reserved for future use. Write as zero, ignore on read. (Whenever this bit is set, the TxDMA is resumed. This bit is self-clearing and writing a 0 into this bit is ignored.)
11	TxDMAComplete	R	Transmit DMA Complete. TxDMAComplete is identical to the TxDMAComplete bit in the IntStatus register. TxDMAComplete is a logic 0 when the TxDMAComplete interrupt is acknowledged.
12	TxDMAPollNow	W	Transmit DMA Poll Now. When TxDMAPollNow is a logic 1 a "poll now" command is issued to the transmit DMA process. The "poll now" transmit DMA command resets the transmit DMA poll timer which forces the current TFD TFDNextPtr and TFC fields to be read. TxDMAPollNow is a self clearing.
13	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
14	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
	(TxDMACmplReq)		(This read-only bit is set to the value from the TxDMAIndicate field in the TFC of the current TFD.)
15	TxDMAInProg	R	Transmit DMA In Progress. When TxDMAInProg is a logic 1 a transmit DMA operation is in progress. TxDMAInProg is prima- rily used for underrun recovery processes which must wait for TxDMAInProg to be a logic 0 before issuing a transmit reset via the TxReset bit of the AsicCtrl register.
16	RxEarlyDisable	R/W	Receive Early Disable. RxEarlyDisable is used in conjunction with the RxEarlyThresh register to determine the start of receive DMA processes on received Ethernet frames. If a receive DMA bus-master arbitration does not begin based on the conditions of the RxEarlyThresh register, then the start of the receive DMA process depends on the state of RxEarlyDis- able. When RxEarlyDisable is a logic 0, the receive DMA pro- cess will begin bus-master arbitration when 60 bytes of the received Ethernet frame are present in the receive FIFO. When RxEarlyDisable is a logic 1, the receive DMA process will begin bus-master arbitration when the entire frame is present in the receive FIFO.
17	Reserved (RxDMAOverrun- Frame)	N/A	Reserved for future use. Write as zero, ignore on read. (This read/write bit, when clear (the default), causes the RxDMA engine to discard receive overrun frames without transferring them to system memory. When this bit is set, the RxDMA engine keeps and transfers overrun frames.)
18	MWIDisable	R/W	Memory Write Invalidate Disable. When MWIDisable is a logic 1, the bus master logic will not use the PCI Memory Write Invalidate (MWI) command.

	BIT	BIT NAME	R/W	BIT DESCRIPTION
I	19	TxWriteBackDis- able	R/W	Transmit Write Back Disable. When TxWriteBackDisable is a logic 1 the Rio will not update the TFDDone bit and will not poll the TFDDone bit within the TFC field following a transmit DMA operation. When TxWriteBackDisable is a logic 0 the Rubicon will update the TFDDone bit for and will poll the TFDDone bit within the TFC field following each transmit DMA operation.
I	2220	TxBurstLimit	R/W	Transmit Burst Limit. TxBurstLimit indicates the number of TFD FragInfo fields the Rio will transfer at a time. The valid range of values is 0x1, 2, 3, 4, and 5. All non-valid values will be interpreted as the value 0x1.
				TxBurstLimit is a system dependent parameter which should be set such to a value corresponding to the number of frag- ments present in the majority of Ethernet frames. In many sys- tems, most Ethernet frames consist of 3 or less fragments, which implies a TxBurstLimit of 3.
	2923	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
I	30	TargetAbort	R	Target Abort. TargetAbort is a logic 1 when the Rio experi- ences a target abort sequence when operating as a bus mas- ter. TargetAbort indicates a fatal error and must be cleared before further transmit or receive DMA operation can proceed. TargetAbort is cleared via the AsicCtrl register GlobalReset/ Host bits.
I	31	MasterAbort	R	Master Abort. MasterAbort is a logic 1 when the Rio experi- ences a master abort sequence when operating as a bus mas- ter. MasterAbort indicates a fatal error, and must be cleared before further transmit or receive DMA operation can proceed. MasterAbort is cleared via the AsicCtrl register GlobalReset/ Host bits.

11.10.5.5 EepromCtrl

I

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x4A
Default Value	0x0000
Access Rule	Word
Width	16 bits

EepromCtrl provides the host with a method for issuing commands to the Rio's serial EEPROM controller. Individual 16-bit word locations within the EEPROM may be written, read or erased. Also, the EEPROM's WriteEnable, WriteDisable, EraseAll and WriteAll commands can be issued. Two-bit opcodes and 8-bit addresses are written to this register to cause the Rio to carry out the desired EEPROM command. If data is to written to the EEPROM, the 16-bit data word must be written to EepromData by the host prior to issuing the associated write command. Similarly, if data is to be read from the EEPROM, the read data will be available via EepromData register. The EEPROM is a particularly slow device. It is important that the host wait until the EepromBusy bit is a logic 0 before issuing a command to EepromCtrl.

BIT	BIT NAME	R/W		Bľ	T DESCRIPTION
70	EepromAddress	R/W	sixteen-bit eRegister a Bits 7 and based on th	words to be nd EraseReg 6 are furt ne value of E	bromAddress identifies one of the 256 the target for the ReadRegister, Writ- gister EEPROM commands. her define EEPROM sub-commands EepromOpcode. Bits 7 and 6 of Eepro- b-command only if EepromOpcode is
			BIT 7	BIT 6	SUB-COMMAND
			0	0	WriteDisable
			0	1	WriteAll
			1	0	EraseAll
			1	1	WriteEnable
98	EepromOpcode	R/W			ode. EepromOpcode specifies one of Isandasinglegroupoffoursub-commands.
			BIT 9	BIT 8	OPCODE COMMAND
			0	0	Write Enable/Disable & Write/ Erase All sub-commands
			0	1	WriteRegister
			1	0	ReadRegister
			1	1	EraseRegister

BIT	BIT NAME	R/W	BIT DESCRIPTION
1410	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
15	EepromBusy	R	EEPROM Busy. EepromBusy is a logic 1 during the execution of EEPROM commands. Further commands should not be issued to EepromCtrl nor should data be read from Eeprom- Data while EepromBusy is a logic 1.

11.10.5.6 EepromData

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x48
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	EepromData	R/W	EepromData is a 16-bit data register for use with the adapter's serial EEPROM. Data from the EEPROM can be read by the host from EepromData register after the EepromBusy bit in the EepromCtrl register is a logic 0. Data to be written to the EEPROM is written to EepromData prior to issuing the write command to EepromCtrl.

11.10.5.7 ExpRomAddr

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x4C
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	ExpRomAddr	R/W	Expansion ROM Address. ExpRomAddr holds the address to be used for direct I/O accesses of the Expansion ROM through the ExpRomData port. To access a byte in the Expansion ROM, write the address of the byte to be accessed into ExpRomAddr. Then issue either a read or a write to ExpRom- Data. For reads, the ROM value will be returned by the read instruction. For writes, the new value will be programmed into the ROM upon completion of the write instruction.
3116	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.8 ExpRomData

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x50
Default Value	0x00
Access Rule	Byte
Width	8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	ExpRomData	R/W	Expansion ROM Data. ExpRomData is the data port for per- forming direct I/O byte-wide accesses of the Expansion ROM. A read of ExpRomData returns the ROM byte value from the location specified by ExpRomAddr. A write to ExpRomData causes the write data to be programmed into the ROM location specified by ExpRomAddr.

11.10.5.9 FIFOCtrl

I

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x38
Default Value	0x0000
Access Rule	Word
Width	16 bits

The bits in this register provide various control and indications of TxFIFO and RxFIFO diagnostic.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	RAMTestMode	R/W	Random Access Memory Test Mode. When RAMTestMode is a logic 1 indicates the FIFO RAM is in the test mode. Random Access Memory Test Mode is also entered if bit 3 of the ED bus is a logic 0 during reset.
81	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
9	Reserved (RxOverrunFrame)	N/A	Reserved for future use. Write as zero, ignore on read. (This read/write bit determines how the Rio handles receive overrun frames. The default is zero, which causes the Rio to discard all overrun frames. Setting this bit causes the Rio to keep and make visible all overrun frames that have been made visible to the host, so that they may be inspected for diagnostic purposes.)
10	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
11	Reserved (RxFIFOFull)	N/A	Reserved for future use. Write as zero, ignore on read. (This read-only bit is set when the RxFIFO is full. This bit does not in itself indicate an overrun condition. However, if more data is received while this bit is set, an overrun will occur. This bit is informational in nature only. This bit is cleared as soon as the RxFIFO is no longer full.)
1312	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
14	Transmitting	R	Transmitting. When Transmitting is a logic 1 indicates the MAC logic is transmitting or waiting to transmit (deferring).
15	Receiving	R	Receiving. When Receiving is a logic 1 indicates the Rio is receiving a frame into the receive FIFO.

11.10.5.10 FlowOffThresh

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x3C
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
100	FlowOffThresh	R/W	Flow Off Threshold. FlowOffThresh sets a watermark within the receive FIFO. If the amount of occupied space (measured in 16 byte increments) within the receive FIFO falls below the value set in the FlowOffThresh register, a PAUSE MAC Control frame with pause_time set to 0x0000 is transmitted. Only one PAUSE frame is transmitted when the FlowOffThresh water- mark is crossed (see section 11.7.3).
1511	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.11 FlowOnThresh

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x3E
Default Value	0x07FF
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
100	FlowOnThresh	R/W	Flow On Threshold. FlowOnThresh sets a watermark within the receive FIFO. If the amount of occupied space (measured in 16 byte increments) within the receive FIFO exceeds the value set in the FlowOnThresh register, a PAUSE MAC Control frame with pause_time set to 0xFFFF (or 65,535 * 512ns = 33.553ms) is transmitted. Only one PAUSE frame is transmit- ted when the FlowOnThresh watermark is crossed (see sec- tion 11.7.3).
1511	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.12 HashTable

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address	. MemBaseAddress register value
Address Offset	. 0x8C
Default Value	. 0x000000000000000
Access Rule	Double Word
Width	. 64 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
630	HashTable	R/W	Hash Table holds a 64-bit value used for selectively receiving multicast frames. Setting the ReceiveMulticastHash bit in the ReceiveMode register enables the filtering mechanism. The hash table is cleared upon reset, and must be properly set by the host.
			The Rio applies a cyclic-redundancy-check (the same CRC used to calculate the frame data FCS) to the destination address of all incoming multicast frames (Ethernet frames with multicast bit set in their destination address field). The least significant 6 bits of the CRC result are used as an addressing index into the hash table. If the HashTable bit addressed by the index is a logic 1, the frame is accepted by the Rio and transferred to higher layers. If the HashTable bit addressed by the index is a logic 0, the frame is discarded.

11.10.5.13 IntEnable

Class..... I/O Registers, Interrupt I/O Base Address IoBaseAddress register value Memory Base Address . MemBaseAddress register value Address Offset 0x5C Default Value 0x0000 Access Rule...... Word Width 16 bits

IntEnable enables individual interrupts as specified in the IntStatus register. Setting a bit in IntEnable will allow the corresponding interrupt source to generate an interrupt on the PCI bus. IntEnable is cleared by a read of IntStatusAck register.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
1	EnHostError	R/W	Enables the HostError bit in the IntStatus register to generate an interrupt.
2	EnTxComplete	R/W	Enables the TxComplete bit in the IntStatus register to gener- ate an interrupt.
3	EnMACControl- Frame	R/W	Enables the MACControlFrame bit in the IntStatus register to generate an interrupt.
4	EnRxComplete	R/W	Enables the RxComplete bit in the IntStatus register to gener- ate an interrupt.
5	EnRxEarly	R/W	Enables the RxEarly bit in the IntStatus register to generate an interrupt.
6	EnInRequested	R/W	Enables the IntRequested bit in the IntStatus register to gener- ate an interrupt.
7	EnUpdateStats	R/W	Enables the UpdateStats bit in the IntStatus register to generate an interrupt.
8	EnLinkEvent	R/W	Enables the LinkEvent bit in the IntStatus register to generate an interrupt.
9	EnTxDMACom- plete	R/W	Enables the TxDMAComplete bit in the IntStatus register to generate an interrupt.
10	EnRxDMACom- plete	R/W	Enables the RxDMAComplete bit in the IntStatus register to generate an interrupt.
11	EnRFDListEnd	R/W	Enables the RFDListEnd bit in the IntStatus register to gener- ate an interrupt.
12	EnRxDMAPriority	R/W	Enables the RxDMAPriority bit in the IntStatus register to generate an interrupt.

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W	BIT DESCRIPTION
1513	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.14 IntStatus

I

I

Class	I/O Registers, Interrupt
I/O Base Address	IoBaseAddress register value
Memory Base Address	MemBaseAddress register value
Address Offset	0x5E
Default Value	0x0000
Access Rule	Word
Width	16 bits

IntStatus indicates the source of interrupts and indications on the Rio.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	InterruptStatus	R/W	Interrupt Status. InterruptStatus is a logic 1 when the Rio is driving the bus interrupt signal. It is a logical OR of all the inter- rupt-causing bits after they have been filtered through the IntEnable register.
1	HostError	R/W	Host Error. HostError is a logic 1 when a catastrophic error related to the bus interface occurs. The conditions which set HostError are PCI target abort and PCI master abort. HostError is cleared by setting the GlobalReset and Host bits in the AsicCtrl register.
			If HostError is a logic 1, and the EnHostError bit in the IntEna- ble register is also a logic 1, an interrupt will be generated.
2	TxComplete	R/W	Transmit Complete. TxComplete is a logic 1 when a frame (whose TFC field TxIndicate bit is a logic 1) has been successfully transmitted or for any frame that experiences an error during transmit. The TxComplete interrupt is acknowledged by reading the TxStatus register.
			If TxComplete is a logic 1, and the EnTxComplete bit in the IntEnable register is also a logic 1, an interrupt will be generated.
3	MACControlFrame	R/W	MAC Control Frame. MACControlFrame is a logic 1 when a MAC Control frame has been received by the Rio. MACControlFrame is acknowledged by writing a logic 1 to MACControlFrame.
			If MACControlFrame is a logic 1, and the EnMACControl- Frame bit in the IntEnable register is also a logic 1, an interrupt will be generated.

BIT	BIT NAME	R/W	BIT DESCRIPTION
4	RxComplete	R/W	Receive Complete. RxComplete is a logic 1 when one or more entire frames have been received into the receive FIFO. RxComplete is automatically acknowledged by the RxDMA Logic as it transfers frames. If RxComplete is a logic 1, and the EnRxComplete bit in the IntEnable register is also a logic 1, an interrupt will be gener- ated. The host system should disable the RxComplete inter- rupt and mask RxComplete when reading IntStatus.
5	RxEarly	R/W	Receive Early. RxEarly is a logic 1 when the number of bytes of a frame which is being received is greater than the value of the RxEarlyThresh register. When the frame has been com- pletely received by the Rio, RxEarly will be a logic 0 and RxComplete will be a logic 1. RxEarly is acknowledged by writ- ing a logic 1 to RxEarly. If RxEarly is a logic 1, and the EnRxEarly bit in the IntEnable register is also a logic 1, an interrupt will be generated.
6	IntRequested	R/W	Interrupt Requested. IntRequested is a logic 1 when the host system requested an interrupt by setting the InterruptRequest bit in the AsicCtrl register or when the Countdown register expires. IntRequested is acknowledged by writing a logic 1 to IntRequested. If IntRequested is a logic 1, and the EnInRequested bit in the IntEnable register is also a logic 1, an interrupt will be gener- ated.
7	UpdateStats	R/W	Update Statistics. UpdateStats is a logic 1 when one or more of the statistics counters (RMON Statistics, Ethernet MIB Statis- tics, or I/O Registers Statistics) is nearing an overflow condi- tion (typically 75% of the statistic register's maximum value). The host system should respond to an UpdateStats interrupt by reading all of the statistic registers, thereby acknowledging and clearing UpdateStats bit. If UpdateStats is a logic 1, and the EnUpdateStats bit in the IntEnable register is also a logic 1, an interrupt will be gener- ated.
8	LinkEvent	R/W	Link Event. LinkEvent is a logic 1 when there is a transition of PHYLNK10N signal (i.e. a change in the link status of the PHY device). LinkEvent is acknowledged by writing a logic 1 to LinkEvent. If LinkEvent is a logic 1, and the EnLinkEvent bit in the IntEna- ble register is also a logic 1, an interrupt will be generated.

BIT	BIT NAME	R/W	BIT DESCRIPTION
9	TxDMAComplete	R/W	Transmit DMA Complete. TxDMAComplete is a logic 1 when a frame transfer via transmit DMA has completed, and the TFD in associated with the transmit DMA operation had the it's TFC TxDMAIndicate bit set to a logic 1. TxDMAComplete is acknowledged by writing a logic 1 to TxDMAComplete. To determine which frame(s) have been transferred to the Rio via transmit DMA, the host may examine the TFDDone bits in the TFC fields of each TFD in the TFDList (see section 11.3.1 for more details). If TxDMAComplete is a logic 1, and the EnTxDMAComplete bit in the IntEnable register is also a logic 1, an interrupt will be generated.
10	RxDMAComplete	R/W	Receive DMA Complete. RxDMAComplete is a logic 1 when a frame transfer via receive DMA has completed. RxDMAComplete is acknowledged by writing a logic 1 to RxDMAComplete. Based on the configuration of the RxDMAIntCtrl register, RxD-MAComplete interrupts may occur for each RFD which is transferred to the Rio, or only after multiple RFDs have been transferred (see section 11.3.4 for more details). If RxDMAComplete is a logic 1, and the EnRxDMAComplete bit in the IntEnable register is also a logic 1, an interrupt will be generated.
11	RFDListEnd	R/W	RFD List End. RFDListEnd is a logic 1 when the RxDMA Logic has reached the end of the RFD list (as indicated by a logic 1 in the RFDDone bit in the RFS field, and a 0x00000000000000000 value in the RFDNextPtr field of the RFD). RFDListEnd is acknowledged by writing a 1 to RFDLis- tEnd. If RFDListEnd is a logic 1, and the EnRFDListEnd bit in the IntEnable register is also a logic 1, an interrupt will be gener- ated.
12	RxDMAPriority	R/W	Receive DMA Priority. RxDMAPriority is a logic 1 when an Ethernet frame has been received with a priority tag of equal or higher priority than the value set in the PriorityThresh field of the RxDMAIntCtrl register. RxDMAPriority is acknowledged by writing a 1 to RxDMAPriority. If RxDMAPriority is a logic 1, and the EnRxDMAPriority bit in the IntEnable register is also a logic 1, an interrupt will be generated.
1513	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

I

11.10.5.15 IntStatusAck

Class	I/O Registers, Interrupt
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x5A
Default Value	0x0000
Access Rule	Word
Width	16 bits

IntStatusAck is another version of the IntStatus register, having the same bit definition as IntStatus, but providing additional functionality to reduce the number of I/O operations required to perform common tasks related to interrupt handling. In addition to returning the IntStatus value for the specified interrupt, when read IntStatusAck also acknowledges the TxDMAComplete, RxDMAComplete, RFDListEnd, RxEarly, IntRequested, MACControlFrame, RxDMAPriority, and LinkEvent bits within the IntStatus register (if they are set), and clears the IntEnable register preventing subsequent events from generating an interrupt.

BIT	BIT NAME	R/W	BIT DESCRIPTION	
0	InterruptStatus	R/W	See description in IntStatus register description.	
1	HostError	R/W	See description in IntStatus register description.	
2	TxComplete	R/W	See description in IntStatus register description.	
3	MACControlFrame	R/W	See description in IntStatus register description.	
4	RxComplete	R/W	See description in IntStatus register description.	
5	RxEarly	R/W	See description in IntStatus register description.	
6	IntRequested	R/W	See description in IntStatus register description.	
7	UpdateStats	R/W	See description in IntStatus register description.	
8	LinkEvent	R/W	See description in IntStatus register description.	
9	TxDMAComplete	R/W	See description in IntStatus register description.	
10	RxDMAComplete	R/W	See description in IntStatus register description.	
11	RFDListEnd	R/W	See description in IntStatus register description.	
12	RxDMAPriority	R/W	See description in IntStatus register description.	
1513	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.	

11.10.5.16 IPCheckSumErrors

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	IPChecksumErrors	R/W	IP Check Sum Errors is a count of received frames which con- tain IP datagrams, which fail the IP checksum as defined in RFC 791. IPCheckSumErrors will wrap around to zero after reaching 0xFFFF. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when IPCheckSumErrors reaches a value of 0xC000. IPCheckSumErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the IPCheckSumErrors bit within the StatisticsMask register.

11.10.5.17 MACCtrl

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x6C
Default Value	0x0000000
Access Rule	Word, Double Word
Width	32 bits

BIT	BIT NAME	R/W			BIT DESCRIPTION				
10	IFSSelect	R/W	ber of t the beg sion wit network IFSSele work an turing" decrease	Inter-Frame Spacing. IFSSelect indicates the minimum num- ber of bit times between the end of one Ethernet frame, and the beginning of another when the Rio is deferring after a colli- sion with the Rio the last device to successfully acquire the network (in half duplex mode). By selecting a large value for IFSSelect, the Rio will become less "aggressive" on the net- work and may defer more often (preventing the Rio from "cap- turing" the network). The performance of the Rio may decrease as the IFSSelect value is increased from the stan- dard value.					
			BIT1	BIT1 BIT0 INTER-FRAME SPACING IN BIT TIMES					
			0 0 96 (802.3 standard value, and default)						
			0 1 1024 1 0 1792 1 1 4352						
42	Reserved	N/A	Reserve	ed for fu	ture use. Write as zero, ignore on read.				
5	DuplexSelect	R/W	Duplex Select. DuplexSelect configures the Rio to function in half or full duplex mode. If DuplexSelect is a logic 0, the Rio operates in half duplex mode. If DuplexSelect is a logic 1, the Rio operates in full duplex mode. In full duplex mode the trans- mitter deference to receive traffic functionality is disabled, allowing simultaneous receive and transmit traffic. Full duplex operation has the side-effect of disabling the CarrierSenseEr- rors statistic register. Following a change to DuplexSelect, the Rio transmit and receive functions must be reset by setting the AsicCtrl register TxReset and RxReset bits both to a logic 1.						

BIT	BIT NAME	R/W	BIT DESCRIPTION
6	Reserved (RcvLargeFrames)		Reserved for future use. Write as zero, ignore on read. (This bit determines the frame size at which the Oversized- Frame error is generated for receive frames. When RcvLarge- Frames is cleared, minimum OversizedFrame size is 1514 bytes. When RcvLargeFrames is set, minimum Oversized- Frame size is 4491 bytes. (This value was the maximum FDDI frame size of 4500 bytes, subtracting bytes for fields that have no Ethernet equivalent.) The frame size at which an OversizedFrame error will be flagged includes the destination and source addresses, the type/length field, and the FCS field.)
7	TxFlowControlEna- ble	R/W	Transmit Flow Control Enable. When TxFlowControlEnable is a logic 1 the receive FIFO threshold values defined in FlowOnThresh and FlowOffThresh registers are used to deter- mine automatic transmission of PAUSE frames by the Rio. It is the responsibility of the host system to assure that if TxFlow- ControlEnable is a logic 1, the MACCtrl register DuplexSelect bit must also be a logic 1.
8	RxFlowControlEna- ble	R/W	Receive Flow Control Enable. When RxFlowControlEnable is a logic 0 the Rio will treat all incoming frames (even PAUSE frames) as data, and will not take any action if a PAUSE frame is received. When RxFlowControlEnable is a logic 1, receive flow control is enabled and the Rio will act upon incoming flow control PAUSE frames. It is the responsibility of the host sys- tem to assure that if RxFlowControlEnable is a logic 1, the MACCtrl register DuplexSelect bit must also be a logic 1.
9	RcvFCS	R/W	Receive Frame Check Sequence. When RcvFCS is a logic 1 the receive frame's FCS field is passed to the host as part of the data in the receive FIFO. The state of RcvFCS does not affect the Rio's checking of the frame's FCS field and posting of the FCS error status. The value of RcvFCS should only be changed during initialization of the Rio.
10	FIFOLoopback	R/W	FIFO Loopback. When FIFOLoopback is a logic 1 the Rio will apply data from the output of the transmit FIFO directly to the input of the receive FIFO. When using FIFOLoopback, it is the host system's responsibility to ensure that the proper inter- frame spacing by not loading more than one transmit frame at a time into the transmit FIFO. Following a change to the FIFOLoopback bit, the Rio transmit and receive functions must be reset by setting the AsicCtrl register TxReset and RxReset bits both to a logic 1.

I

L

| |

	BIT	BIT NAME	R/W	BIT DESCRIPTION
1 1	11	MACLoopback	R/W	Media Access Control Loopback. When MACLoopback is a logic 1 the Rio will apply transmit data at the output of the Media Access Control (MAC) logic transmit interface to the MAC receive interface. Following a change to the MACLoopback bit, the Rio transmit and receive functions must be reset by setting the AsicCtrl register TxReset and RxReset bits both to a logic 1.
I I	12	AutoVLANtagging	R/W	Automatic VLAN Tagging. When AutoVLANtagging is a logic 1 the Rio will apply a VLAN tag as specified by the VLANTag register to every Ethernet frame prior to transmission. A logic 0 indicates the Rio should not insert a VLAN tag.
	13	AutoVLANuntag- ging	R/W	Automatic VLAN Tag Removal. When AutoVLANuntagging is a logic 1 the Rio will remove the VLAN tag (if any) in all received Ethernet frames. A logic 0 indicates the Rio should not remove VLAN tags from received frames.
I	1514	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
I	16	CollisionDetect	R	Collision Detect. CollisionDetect provides a real-time indication of the state of the COL signal within the Rio.
I	17	CarrierSense	R	Carrier Sense. CarrierSense provides a real-time indication of the state of the CRS signal within the Rio.
	18	Reserved (TxInProg)	N/A	Reserved for future use. Write as zero, ignore on read. (A real-time indication that a frame is being transmitted. This bit is used by drivers during underrun recovery to delay issuing a TxReset.)
	19	Reserved (TxError)	N/A	Reserved for future use. Write as zero, ignore on read. (If a TxUnderrun occurs, this bit is set, indicating that the trans- mitter needs to be reset with the TxReset.)
	20	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
I	21	StatisticsEnable	W	Statistics Enable. When StatisticsEnable is a logic 1 the Rio will increment the various statistics counters and registers as applicable. StatisticsEnable is self-clearing.
I	22	StatisticsDisable	W	Statistics Disable. When StatisticsDisable is a logic 1 the Rio will not increment any statistics registers. The values in the statistics registers will remain unchanged. StatisticsDisable is self-clearing.
	23	StatisticsEnabled	R	Statistics Enabled. When StatisticsEnabled is a logic 1 the sta- tistic registers will increment as applicable.
	24	TxEnable	W	Transmit Enable. When TxEnable is a logic 1 the transmitter logic is enabled. TxEnable is self-clearing.

BIT	BIT NAME	R/W	BIT DESCRIPTION	
25	TxDisable	W	Transmit Disable. When TxDisable is a logic 1 the transmitter logic is disabled. TxDisable is self-clearing.	
26	TxEnabled	R	Transmit Enabled. When TxEnabled is a logic 1 the transmitter is enabled.	
27	RxEnable	W	Receive Enable. When RxEnable is a logic 1 the receive logic is enabled. RxEnable is self-clearing.	
28	RxDisable	W	Receive Disable. When RxDisable is a logic 1 the receive logi is disabled. RxDisable is self-clearing.	
29	RxEnabled	R	Receive Enabled. When RxEnabled is a logic 1 the receive logic is enabled.	
30	Paused	R	Paused. When Paused is a logic 1 a PAUSE MAC Control frame has been received and caused the transmit MAC logic to halt for the duration of the pause_time value specified in the PAUSE frame. Paused is cleared when MAC transmission resumes.	
31	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.	

11.10.5.18 MaxFrameSize

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x86
Default Value	0x05EA
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
130	MaxFrameSize	R/W	Maximum Frame Size indicates the maximum expected size (in bytes) of received Ethernet frames measured from the start of the Destination Address field, to the end of the Data field. If the number of bytes in a receive frame is equal to or greater than the value in the MaxFrameSize register (or the value in the MaxFrameSize register plus 4 bytes for received frames with VLAN tags), the RxOversizedFrame bit in the RFS field of the current RFD is a logic 1.
1514	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.19 PhyCtrl

I

I

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x76
Default Value	0x00
Access Rule	Byte
Width	8 bits
	hite for the CMIL Management Into

PhyCtrl contains control bits for the GMII Management Interface. The GMII Management Interface is used to access registers in a GMII PHY device or the Rio 1000BASE-X PCS management registers. The Management Interface is a two-wire serial interface connecting Rio to any GMII compliant PHY devices residing in the system. The host system operates the Management Interface by writing and reading bit patterns to PhyCtrl which correspond to the physical wave forms required on the interface signals. For more information on the Management Interface signal protocols, refer to the Media Independent Interface standard of IEEE 802.3u Specification. For reference, the timing parameters of the MDC and MDIO signals from the IEEE specification, Clause 22.2.11, and 22.3.4 are given in Table 19.

PARAMETER	VALUE	UNITS
MDC minimum low time	160	ns
MDC minimum high time	160	ns
MDC minimum period	400	ns
MDIO to MDC minimum setup time (when MDIO is driven by the Rio)	10	ns
MDIO to MDC minimum hold time (when MDIO is driven by the Rio)	10	ns
MDIO to MDC maximum delay time (when MDIO is driven by an internal PCS or external PHY)	300	ns

TABLE 19: MgmtClk/MgmtData Timing Requirements

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	MgmtClk	R/W	GMII Management Clock. MgmtClk directly drives the man- agement clock, either the internal MDC signal to the PCS layer, or the MDC/EWRAP signal to external PHY device(s).
1	MgmtData	R/W	GMII Management Data Bit. When the MgmtDir bit is a logic 1, the value written to MgmtData is driven onto the MDIO signal. When MgmtDir is a logic 0, data driven by the PHY device can be read from MgmtData.
2	MgmtDir	R/W	GMII Management Data Direction. Setting MgmtDir causes Rio to drive MDIO with the data bit written into MgmtData.
3	PhyDuplexPolarity	R/W	PHY Duplex Polarity. When PhyDuplexPolarity is a logic 0 the PHYDPLXN input pin is active low.

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W	BIT DESCRIPTION		BIT DESCRIPTION
4	PhyDuplexStatus	R	indicatio	tatus. PhyDuplexStatus provides a real-time duplex status of the PHY. If PhyDuplexStatus PHY is operating in full duplex mode.	
5	PhyLnkPolarity	R/W	PHY Link Polarity. When PhyLnkPolarity is a logic 0 PHYLNK10N, PHYLNK100N, and PHYLNK100N input p are active low.		
76	LinkSpeed	R	PHY Link Speed/Status. LinkSpeed provides a real- cation of the link status of the PHY.		
			BIT7	BIT6	LINK SPEED/STATUS
			0	0	Link down (default).
			0	1	Link up at 10Mbps.
			1	0	Link up at 100Mbps.
			1	1	Link up at 1000Mbps.

11.10.5.20 ReceiveMode

I

I

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x88
Default Value	0x00
Access Rule	Word
Width	16 bits

Each bit in ReceiveMode, when set, enables reception of a different type of frame.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	ReceiveUnicast	R/W	Receive Unicast Frames when a logic 1 enables the Rio to receive unicast frames that match the 48-bit value in the StationAddress register of the Rio.
1	ReceiveMulticast	R/W	Receive Multicast Frames when a logic 1 enables the Rio to receive all multicast frames, including broadcast.
2	ReceiveBroadcast	R/W	Receive Broadcast Frames when a logic 1 enables the Rio to receive all broadcast frames.
3	ReceiveAllFrames	R/W	Receive All Frames when a logic 1 enables the Rio to receive all frames promiscuously.
4	ReceiveMulticast- Hash	R/W	Receive Multicast Frames Using Hash Table, when a logic 1 enables the Rio to receive frames that pass the hash filtering mechanism defined in the HashTable register.
5	ReceivelPMulticast	R/W	Receive IP Multicast Frames when a logic 1 enables the Rio to receive all multicast IP datagrams, which are mapped into Ethernet multicast frames with destination address of 01:00:5e:xx:xx: as defined in RFC 1112 and RFC 1700. The first 3 bytes require exact match, and the last 3 bytes are ignored.
76	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
8	ReceiveVLAN- Match	R/W	Receive Frames With Matching VLAN Tags when a logic 1 indicates the Rio will filter (or drop) receive frames which do not match one of the VLAN tags specified in the VLANId register. Before verifying VLAN tags, all receive frames must pass the filtering specified by the ReceiveUnicast, ReceiveMulticast, ReceiveBroadcast, ReceiveAllFrames, ReceiveMulticast-Hash, and ReceiveIPMulticast bit configurations. Frames without a VLAN tag are dropped.

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

	BIT	BIT NAME	R/W	BIT DESCRIPTION
	9	ReceiveVLANHash	R/W	Receive Frames Using VLAN Tag Hash Table, enables the Rio to filter (or drop) receive frames which do not pass the hash fil- tering mechanism defined in the VLANHashTable register. Before verifying VLAN tags, all receive frames must pass the filtering specified by the ReceiveUnicast, ReceiveMulticast, ReceiveBroadcast, ReceiveAllFrames, ReceiveMulticast- Hash, and ReceiveIPMulticast bit configurations. Frames with- out a VLAN tag are dropped.
-	1510	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.21 RFDListPtr

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x1C
Default Value	0x00000000000000
Access Rule	Double Word
Width	64 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
390	RFDListPtr	R/W	RFD List Pointer. RFDListPtr holds the physical address within host system memory of the current RFD in the RFD list. A value of 0x00000000000000 for RFDListPtr indicates that no more RFDs are available to accept received Ethernet frame data. RFDListPtr can only specify host system memory addresses which are on 8-byte boundaries (i.e. bits 2 through 0 must be 0), therefore RFDs must be aligned on 8-byte physi- cal address boundaries. RFDListPtr must be written directly by the host system initially to indicate the head of a newly created RFD list and is subsequently updated by the Rio as it pro- cesses RFDs in the RFD list. As the Rio finishes processing a RFD, it loads RFDListPtr with the value from the current RFD's RFDNextPtr field. If the Rio reads a value of 0x000000000000000000 from the current RFD's RFDNextPtr field, the receive DMA process enters the polling state, waiting for a non-zero value to be written to current RFD's RFDNex- tPtr.
6340	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.22 RMONStatisticsMask

Class	I/O Registers, Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address.	MemBaseAddress register value
Address Offset	0x98
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	EtherStatsCR- CAlignErrors	R/W	EtherStatsCRCAlignErrors Mask when a logic 1 indicates the EtherStatsCRCAlignErrors RMON statistic register will not increment.
1	EtherStatsUnder- sizePkts	R/W	EtherStatsUndersizePkts Mask when a logic 1 indicates the EtherStatsUndersizePkts RMON statistic register will not increment.
2	EtherStatsFrag- ments	R/W	EtherStatsFragments Mask when a logic 1 indicates the Ether- StatsFragments RMON statistic register will not increment.
3	EtherStatsJabbers	R/W	EtherStatsJabbers Mask when a logic 1 indicates the Ether- StatsJabbers RMON statistic register will not increment.
4	EtherStatsOctets/ EtherStatsPkts	R/W	EtherStatsOctets/EtherStatsPkts Mask when a logic 1 indi- cates the EtherStatsOctets and EtherStatsPkts RMON statistic registers will not increment.
5	EtherStatsPkts640 ctets	R/W	EtherStatsPkts64Octets Mask when a logic 1 indicates the EtherStatsPkts64Octets RMON statistic register will not increment.
6	EtherStatsPkts65to 127Octets	R/W	EtherStatsPkts65to127Octets Mask when a logic 1 indicates the EtherStatsPkts65to127Octets RMON statistic register will not increment.
7	EtherStatsPkts128t o255Octets	R/W	EtherStatsPkts128to255Octets Mask when a logic 1 indicates the EtherStatsPkts128to255Octets RMON statistic register will not increment.
8	EtherStatsPkts256t o511Octets	R/W	EtherStatsPkts256to511Octets Mask when a logic 1 indicates the EtherStatsPkts256to511Octets RMON statistic register will not increment.
9	EtherStatsPkts512t o1023Octets	R/W	EtherStatsPkts512to1023OctetsTransmit Mask when a logic 1 indicates the EtherStatsPkts512to1023Octets RMON statistic register will not increment.

BIT	BIT NAME	R/W	BIT DESCRIPTION
10	EtherStatsPkts102 4to1518Octets	R/W	EtherStatsPkts1024to1518Octets Mask when a logic 1 indi- cates the EtherStatsPkts1024to1518Octets RMON statistic register will not increment.
11	EtherStatsColli- sions	R/W	EtherStatsCollisions Mask when a logic 1 indicates the Ether- StatsCollisions RMON statistic register will not increment.
12	EtherStatsOctet- sTransmit/Ether- StatsPktsTransmit	R/W	EtherStatsOctetsTransmit/EtherStatsPktsTransmit Mask when a logic 1 indicates the EtherStatsOctetsTransmit and Ether- StatsPktsTransmit RMON statistic registers will not increment.
13	EtherStatsPkts64O ctetsTransmit	R/W	EtherStatsPkts64OctetsTransmit Mask when a logic 1 indi- cates the EtherStatsPkts64OctetsTransmit RMON statistic reg- ister will not increment.
14	EtherStatsPkts65to 127OctetsTransmit	R/W	EtherStatsPkts65to127OctetsTransmit Mask when a logic 1 indicates the EtherStatsPkts65to127OctetsTransmit RMON statistic register will not increment.
15	EtherStatsPkts128t o255OctetsTransmi t	R/W	EtherStatsPkts128to255OctetsTransmit Mask when a logic 1 indicates the EtherStatsPkts128to255OctetsTransmit RMON statistic register will not increment.
16	EtherStatsPkts256t o511OctetsTransmi t	R/W	EtherStatsPkts256to511OctetsTransmit Mask when a logic 1 indicates the EtherStatsPkts256to511OctetsTransmit RMON statistic register will not increment.
17	EtherStatsPkts512t o1023OctetsTrans mit	R/W	EtherStatsPkts512to1023OctetsTransmit Mask when a logic 1 indicates the EtherStatsPkts512to1023OctetsTransmit RMON statistic register will not increment.
18	EtherStatsPkts102 4to1518OctetsTran smit	R/W	EtherStatsPkts1024to1518OctetsTransmit Mask when a logic 1 indicates the EtherStatsPkts1024to1518OctetsTransmit RMON statistic register will not increment.
3119	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.23 RxDMABurstThresh

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x24
Default Value	0x08
Access Rule	Byte
Width	8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	RxDMABurst- Thresh	R/W	Receive DMA Burst Threshold. RxDMABurstThresh sets the threshold by which the Rubicon determines when to assert receive DMA bus master requests. The threshold is specified based on the amount of occupied space in the receive FIFO in increments of 32 bytes. When the number of bytes in the receive FIFO occupied by receive data rises above the value specified by RxDMABurstThresh, the Rubicon may make a receive DMA request on the PCI bus. If the number of bytes in the receive FIFO occupied by receive data exceeds the value in the FragLen sub field of the FragInfo field of the current RFD, the Rio will make receive DMA bus request regardless of the value in RxDMABurstThresh. The maximum value of RxDMABurstThresh is 0xFF, or 8192 bytes (256 * 32 = 8192). The minimum value of RxDMABurstThresh is 0x08, or 256 bytes, and any smaller value is interpreted as 0x08.

11.10.5.24 RxDMAIntCtrl

I

Class	I/O Registers, DMA
I/O Base Address	IoBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	. 0x28
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

The RxDMAIntCtrl register is used for configuring the receive DMA interrupt coalescing feature of the Rio (see section 11.3.4). Receive DMA interrupts may be coalesced (that is grouped such that a single interrupt is issued to indicate multiple Ethernet frames have been received) and the frequency of receive DMA interrupts can be set based on either the number of Ethernet frames received (via the RxFrameCount field), or after a fixed amount of time following receipt of an Ethernet frame (via the RxDMAWaitTime field). It is not possible to completely disable the assertion of receive DMA interrupts if a receive DMA operation has taken place. If a receive DMA operation has completed, a RxDMAComplete interrupt will be asserted for based on either condition described by the RxDMAIntCtrl register, whichever occurs first.

BIT	BIT NAME	R/W	BIT DI	ESCRIPTION
70	RxFrameCount	R/W	number of frames which wil transfer before the RxDMA ter is set to a logic 1 (a RxD The minimum value of RxFr	ameCount is 0x01 (which indicates of will occur for every receive DMA
98	Reserved	N/A	Reserved for future use. Wr	ite as zero, ignore on read.
1210	PriorityThresh	R/W	compared to the Priority fie which contain Tag Control In header. If a received Ethern priority value equal to or gr	Thresh holds the value which is Id within received Ethernet frames information (TCI) fields in the frame net frame contains a TCI field with a reater than the value in PriorityTh- in the IntStatus register is set to a perrupt).
			PRIORITYTHRESH FIELD BIT	ETHERNET FRAME TCI PRIORITY FIELD BIT
			12	8
			11	7
			10	6
1513	Reserved	N/A	Reserved for future use. Wr	ite as zero, ignore on read.

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W	BIT DESCRIPTION
3116	RxDMAWaitTime	R/W	Receive DMA Wait Time. RxDMAWaitTime indicates the maxi- mum amount of time (in 64ns increments) between completion of a receive DMA transfer operation and setting of the RxDMA- Complete bit in the IntStatus register to a logic 1 (a RxDMA- Complete interrupt). A value of 0x0000 indicates a RxDMAComplete interrupt will occur immediately following each receive DMA transfer.

11.10.5.25 RxDMAPollPeriod

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	RxDMAPollPeriod	R/W	Receive DMA Poll Periond. RxDMAPollPeriod determines the rate at which the current RFD in the receive DMA process is read for changes in the RFDNextPtr and RFS fields. RxD-MAPollPeriod is specified in 320 ns increments. The maximum value is 256 (or 81.92 us). The minimum valid value is 0x01 (or 320 ns), and any smaller value is interpreted as 0x01. Since RxDMAPollPeriod cannot be set to 0x00, polling is always in effect during receive DMA operation.

11.10.5.26 Reserved(RxDMAStatus)

Receive DMA Status shows the status of various operations in the receive DMA process. Reserved(RxD-MAStatus) should be read only while the receive DMA process is in the polling state (see section 11.2.2). The format of this register is identical to that of the RFS field of a RFD. The contents of Reserved(RxDM-AStatus) are written into the RFS field of the current RFD upon completion of the receive DMA process. For bit definitions, see 11.10.2.2 bits 0 through 31.

11.10.5.27 RxDMAUrgentThresh

I

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x25
Default Value	0x04
Access Rule	Byte
Width	8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	RxDMAUrgent- Thresh	R/W	Receive DMA Urgent Threshold. RxDMAUrgentThresh sets the threshold by which the Rio determines when to assert receive urgent DMA bus master requests. The threshold is specified based on the amount of unoccupied space in the receive FIFO in increments of 32 bytes. When the number of bytes in the receive FIFO not occupied by receive data falls below the value specified by RxDMAUrgentThresh, the Rio may make an urgent receive DMA request on the PCI bus. The maximum value of RxDMAUrgentThresh is 0xFF, or 8192 bytes (256 * 32 = 8192). The minimum value of RxDMAUrgent- Thresh is 0x04, or 128 bytes, and any smaller value is inter- preted as 0x04.

11.10.5.28 RxEarlyThresh

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x3A
Default Value	0x07FF
Access Rule	Word
Width	16 bits.

BIT	BIT NAME	R/W	BIT DESCRIPTION
100	RxEarlyThresh	R/W	Receive Early Threshold. RxEarlyThresh defines the number of quad-words (64 bits) of an Ethernet frame (beginning with the Destination Address field) which must be received before a RxEarly interrupt is issued, and before the start of the receive DMA process. If the RxEarlyDisable bit in DMACtrl register is a logic 1, the receive DMA process for a frame will not begin until the number of quad-words indicated by RxEarlyThresh have been received The minimum value of RxEarlyThresh is 0x01, any value
			smaller than this will be interpreted as 0x01.
1511	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.29 RxJumboFrames

Class	I/O Registers, Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xBC
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	RxJumboFrames	R/W	Jumbo Frames Received is a count of the number of frames received successfully whose frame length (measured from the Destination Address field to the end of the Frame Check Sequence field) is greater than 1518 bytes (1522 bytes for VLAN tagged frames). RxJumboFrames will wrap around to zero after reaching 0xFFFF.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when RxJumboFrames reaches a value of 0xC000. RxJumboFrames is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the RxJumboFrames bit within the StatisticsMask register.

11.10.5.30 StationAddress

I

Class	. I/O Registers, Control and Status
I/O Base Address	. loBaseAddress register value
Memory Base Address	. MemBaseAddress register value
Address Offset	. 0x78
Default Value	. 0x00000000000
Access Rule	. Word, Double Word
Width	. 48 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
470	StationAddress	R/W	StationAddress is used to define the value which the Rio will compare against the Destination Address field within received Ethernet frames. Ethernet addresses are generally specified as a collection of six 8-bit hexadecimal values separated by colons as in the following example: 01:23:45:67:89:AB This example address would be written to StationAddress as the following 48 bit hexadecimal value: 0xAB8967452301

- The address comparison logic within the Rio will compare the bits within the Destination Address field (in order, with the first received bit as bit 0, and the last received bit as bit 47) of a received Ethernet frame with the corresponding bit within StationAddress. A match is detected if each bit in the Destination Address field of the received Ethernet frame matches the corresponding bit in StationAddress.
 - The value in StationAddress is not inserted into the Source Address field of Ethernet frames transmitted by the Rio. The Source Address field for each Ethernet frame must be specified by the host system as part of the frame contents.

11.10.5.31 StatisticsMask

Class	I/O Registers, Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x9C
Default Value	0x0000000
Access Rule	Double Word
Width	32 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	OctetRcvOk/ FramesRcvdOk	R/W	OctetRcvOk/FramesRcvdOk Mask when a logic 1 indicates the OctetRcvOk and FramesRcvdOk statistic registers will not increment.
1	McstOctetRcvdOk/ McstFramesRcv- dOk	R/W	McstOctetRcvdOk/McstFramesRcvdOk Mask when a logic 1 indicates the McstOctetRcvdOk and McstFramesRcvdOk statistic registers will not increment.
2	BcstOctetRcvOk/ BcstFramesRcv- dOk	R/W	BcstOctetRcvOk/BcstFramesRcvdOk Mask when a logic 1 indicates the BcstOctetRcvOk and BcstFramesRcvdOk statistic registers will not increment.
3	RxJumboFrames	R/W	RxJumboFrames Mask when a logic 1 indicates the RxJumbo- Frames statistic register will not increment.
4	TCPCheckSumEr- rors	R/W	TCPCheckSumErrors Mask when a logic 1 indicates the TCPCheckSumErrors statistic register will not increment.
5	IPCheckSumErrors	R/W	IPCheckSumErrors Mask when a logic 1 indicates the IPCheckSumErrors statistic register will not increment.
6	UDPCheckSumEr- rors	R/W	UDPCheckSumErrors Mask when a logic 1 indicates the UDPCheckSumErrors statistic register will not increment.
7	MacControl- FramesRcvd	R/W	MacControlFramesRcvd Mask when a logic 1 indicates the MacControlFramesRcvd statistic register will not increment.
8	FrameTooLongEr- rors	R/W	FrameTooLongErrors Mask when a logic 1 indicates the FrameTooLongErrors statistic register will not increment.
9	InRangeLengthEr- rors	R/W	InRangeLengthErrors Mask when a logic 1 indicates the InRangeLengthErrors statistic register will not increment.
10	FramesCheckSe- qErrors	R/W	FramesCheckSeqErrors Mask when a logic 1 indicates the FramesCheckSeqErrors statistic register will not increment.
11	FramesLostRxEr- rors	R/W	FramesLostRxErrors Mask when a logic 1 indicates the FramesLostRxErrors statistic register will not increment.

BIT	BIT NAME	R/W	BIT DESCRIPTION
12	OctetXmtOk/ FramesXmtdOk	R/W	OctetXmtOk/FramesXmtdOk Mask when a logic 1 indicates the OctetXmtOk and FramesXmtdOk statistic registers will not increment.
13	McstOctetXmtOk/ McstFramesXmt- dOk	R/W	McstOctetXmtOk/McstFramesXmtdOk Mask when a logic 1 indicates the McstOctetXmtOk and McstFramesXmtdOk statistic registers will not increment.
14	BcstOctetXmtOk/ BcstFramesXmt- dOk	R/W	BcstOctetXmtOk/BcstFramesXmtdOk Mask when a logic 1 indicates the BcstOctetXmtOk and BcstFramesXmtdOk statistic registers will not increment.
15	FramesWDe- ferredXmt	R/W	FramesWDeferredXmt Mask when a logic 1 indicates the FramesWDeferredXmt statistic register will not increment.
16	LateCollisions	R/W	LateCollisions Mask when a logic 1 indicates the LateCollisions statistic register will not increment.
17	MultiColFrames	R/W	MultiColFrames Mask when a logic 1 indicates the MultiCol- Frames statistic register will not increment.
18	SingleColFrames	R/W	SingleColFrames Mask when a logic 1 indicates the SingleCol- Frames statistic register will not increment.
19	TxJumboFrames	R/W	TxJumboFrames Mask when a logic 1 indicates the TxJumbo- Frames statistic register will not increment.
20	CarrierSenseErrors	R/W	CarrierSenseErrors Mask when a logic 1 indicates the CarrierSenseErrors statistic register will not increment.
21	MacControl- FramesXmtd	R/W	MacControlFramesXmtd Mask when a logic 1 indicates the MacControlFramesXmtd statistic register will not increment.
22	FramesAbortX- SColls	R/W	FramesAbortXSColls Mask when a logic 1 indicates the FramesAbortXSColls statistic register will not increment.
23	FramesWEXDe- feral	R/W	FramesWEXDeferal Mask when a logic 1 indicates the FramesWEXDeferal statistic register will not increment.
3124	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.32 TCPCheckSumErrors

I

Class...... I/O Registers, Statistics I/O Base Address IoBaseAddress register value Memory Base Address . MemBaseAddress register value Address Offset 0xC0 Default Value 0x0000 Access Rule Word Width 16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	TCPChecksumEr- rors	R/W	TCP Check Sum Errors is a count of received frames which contain TCP segments within IP datagrams, which fail the TCP checksum as defined in RFC 793. TCPCheckSumErrors will wrap around to zero after reaching 0xFFFF.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when TCPCheckSumErrors reaches a value of 0xC000. TCPCheckSumErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the TCPCheckSumErrors bit within the Statistics-Mask register.

11.10.5.33 TFDListPtr

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x10
Default Value	0x00000000000000
Access Rule	Double Word
Width	64 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
390	TFDListPtr	R/W	TFD List Pointer. TFDListPtr holds the physical address within host system memory of the current TFD in the TFD list. A value of 0x00000000000000 for TFDListPtr indicates that no more TFDs are containing Ethernet frame data to transmit are available. TFDListPtr can only specify host system memory addresses which are on 8-byte boundaries (i.e. bits 2 through 0 must be 0), therefore TFDs must be aligned on 8-byte physi- cal address boundaries. TFDListPtr must be written directly by the host system initially to indicate the head of a newly created TFD list and is subsequently updated by the Rio as it pro- cesses TFDs in the TFD list. As the Rio finishes processing a TFD, it loads TFDListPtr with the value from the current TFD's TFDNextPtr field. If the Rio reads a value of 0x0000000000000000 from the current TFD's TFDNextPtr field, the transmit DMA process enters the polling state, wait- ing for a non-zero value to be written to current TFD's TFDN- extPtr field.
6340	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.34 TxDMABurstThresh

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x18
Default Value	0x08
Access Rule	Byte
Width	8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	TxDMABurst- Thresh	R/W	Transmit DMA Burst Threshold. TxDMABurstThresh sets the threshold by which the Rio determines when to assert transmit DMA bus master requests. The threshold is specified based on the amount of unoccupied space in the transmit FIFO in increments of 32 bytes. When the number of bytes in the transmit FIFO unoccupied by transmit data rises above the value specified by TxDMABurstThresh, the Rubicon may make a transmit DMA request on the PCI bus. If the number of bytes in the transmit FIFO occupied by transmit data exceeds the value in the FragLen sub field of the FragInfo field of the current TFD, Rubicon will make transmit DMA bus request regardless of the value in TxDMABurstThresh. The maximum value of TxDMABurstThresh is 0xFF, or 8192 bytes (256 * 32 = 8192). The minimum value of TxDMABurstThresh is 0x08, or 256 bytes, and any smaller value is interpreted as 0x08.

11.10.5.35 TxDMAPollPeriod

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	TxDMAPollPeriod	R/W	Transmit DMA Poll Periond. TxDMAPollPeriod determines the rate at which the current TFD in the transmit DMA process is read for changes in the TFDNextPtr and TFC fields. TxD-MAPollPeriod is specified in 320 ns increments. The maximum value is 256 (or 81.92 us). The minimum valid value is 0x01 (or 320 ns), and any smaller value is interpreted as 0x01. Since TxDMAPollPeriod cannot be set to 0x00, polling is always in effect during transmit DMA operation.

11.10.5.36 TxDMAUrgentThresh

I

Class	I/O Registers, DMA
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x19
Default Value	0x04
Access Rule	Byte
Width	8 bits.

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	TxDMAUrgent- Thresh	R/W	Transmit DMA Urgent Threshold. TxDMAUrgentThresh sets the threshold by which the Rio determines when to assert transmit urgent DMA bus master requests. The threshold is specified based on the amount of occupied space in the trans- mit FIFO in increments of 32 bytes. When the number of bytes in the transmit FIFO occupied by transmit data falls below the value specified by TxDMAUrgentThresh, the Rio may make an urgent transmit DMA request on the PCI bus. An urgent trans- mit DMA request will have priority over the receive DMA pro- cess, unless the receive DMA process is also making an urgent request. The maximum value of TxDMAUrgentThresh is 0xFF, or 8192 bytes (256 * 32 = 8192). The minimum value of TxDMAUrgent- Thresh is 0x04, or 128 bytes, and any smaller value is inter- preted as 0x04.

11.10.5.37 TxJumboFrames

Class	I/O Registers, Statistics
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0xF4
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	TxJumboFrames	R/W	Jumbo Frames Transmitted is a count of the number of frames transmitted successfully whose frame length (measured from the Destination Address field to the end of the Frame Check Sequence field) is greater than 1518 bytes (1522 bytes for VLAN tagged frames). TxJumboFrames will wrap around to zero after reaching 0xFFFF.
			An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when TxJumboFrames reaches a value of 0xC000. TxJumboFrames is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the TxJumboFrames bit within the StatisticsMask register.

11.10.5.38 TxStartThresh

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address .	MemBaseAddress register value
Address Offset	0x44
Default Value	0x0FFF
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
110	TxStartThresh	R/W	Transmit Start Threshold. TxStartThresh is used to control when frames are transmitted. Transmission of a frame begins when the number of double words (32 bit values) for the frame which have been transferred into the transmit FIFO is greater than the value specified by TxStartThresh. If the TxStartThresh is set too low, the transmit FIFO may experience underruns due to transfer rate differences between the transmit DMA pro- cess, and the Ethernet network. Use of TxStartThresh is not recommended for Gigabit Ethernet networks, except during transfer of jumbo frames. If the IPChecksumEnable, TCPChecksumEnable, or UDPChecksumEnable bits of the frame's TFC are a logic 1, the TxStartThresh value is ignored (since calculation of checksums requires the entire frame be transferred via transmit DMA prior to the start of frame trans- mission).
1512	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.5.39 TxStatus

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address	MemBaseAddress register value
Address Offset	0x60
Default Value	0x0000000
Access Rule	Byte
Width	32 bits

TxStatus returns the status of frame transmission or transmission attempts. TxStatus is cleared when read.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	TxError	R	Transmit Error. TxError indicates an error occurred during transmission of the frame indicated by the TxFrameId field of TxStatus. TxError is a logic 1 when either LateCollision, Max-Collisions, or TxUnderrun is a logic 1.
1	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
2	LateCollision	R	Late Collision. When LateCollision is a logic 1 the frame expe- rienced a collision after the slot time (4,096 bit times). The TxEnable bit in the MACCtrl register must be set to a logic 1 to recover from this condition. The frame is kept in the transmit FIFO, so when the MAC is re-enabled the frame will be trans- mitted again. To prevent re-transmission of this frame, the FIFO must be cleared via the FIFO bit in the AsicCtrl register prior to re-enabling the MAC for transmission.
3	MaxCollisions	R	Maximum Collisions. When MaxCollisions is a logic 1 the frame was not successfully transmitted due to encountering 16 collisions. The TxEnable bit in the MACCtrl register must be set to a logic 1 to recover from this condition. The frame is discarded from the transmit FIFO, so the host system should resubmit the frame for transmission.
4	TxUnderrun	R	Transmit Underrun. When TxUnderrun is a logic 1 the frame experienced an underrun during the transmit process because the host was unable to supply the frame data fast enough to keep up with the network data rate. An underrun will halt the transmitter and the transmit FIFO. The TxReset bit within the AsicCtrl register and TxEnable bit within the MACCtrl register must be set to a logic 1 prior to re-starting any frame.
5	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
6	TxIndicateReqd	R	Transmit Indicate Requested. When TxIndicateReqd is a logic 1 the TxIndicate bit in the TFC field was a logic 1 when the transmitted frame's TFD was transferred via the transmit DMA process.

BIT	BIT NAME	R/W	BIT DESCRIPTION
7	TxComplete	R	Transmit Complete. When TxComplete is a logic 1 the bits in the TxStatus register are valid and can be read by the host system. All fields within the TxStatus register are updated after transmission (either successfully or with errors) of an Ethernet frame.
158	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
3116	TxFrameld	R	Transmit Frame Identifier. TxFrameId holds the value of the Ethernet frame for which the TxStatus register fields apply.

11.10.5.40 UDPCheckSumErrors

I

Class...... I/O Registers, Statistics I/O Base Address IoBaseAddress register value Memory Base Address . MemBaseAddress register value Address Offset 0xC4 Default Value 0x0000 Access Rule...... Word Width 16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	UDPCheckSumEr- rors	R/W	UDP Check Sum Errors is a count of received frames which contain UDP segments within IP datagrams, which fail the UDP checksum as defined in RFC 768. UDPCheckSumErrors will wrap around to zero after reaching 0xFFF. An UpdateStats interrupt (UpdateStats bit within the IntStatus register) will occur when UDPCheckSumErrors reaches a value of 0xC000. UDPCheckSumErrors is enabled by writing a logic 1 to the StatisticsEnable bit in the MACCtrl register, and a logic 0 to the UDPCheckSumErrors bit within the Statistics- Mask register.

11.10.5.41 VLANHashTable

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address	. MemBaseAddress register value
Address Offset	. 0x8A
Default Value	. 0x0000
Access Rule	Word
Width	. 16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	VLANHashTable	R/W	VLAN Hash Table holds a 16-bit value used for selectively receiving VLAN tagged frames. Setting the ReceiveVLANHash bit in the ReceiveMode register enables the filtering mechanism. The hash table is cleared upon reset, and must be properly set by the host.
			The Rio applies a 4-bit one's complement checksum algorithm to the 12-bit VID field of a VLAN tagged receive frame. The 4- bit checksum result is used as an addressing index into the VLAN hash table. If the VLANHashTable bit addressed by the index is a logic 1, the frame is accepted by the Rio and trans- ferred to higher layers. If the VLANHashTable bit addressed by the index is a logic 0, the frame is discarded.
			The checksum algorithm used by the Rio is described below:
			$VID = a_{11}a_{10}a_9a_8a_7a_6a_5a_4a_3a_2a_1a_0$
			$c_0 b_3 b_2 b_1 b_0 = a_{11} a_{10} a_9 a_8 + a_7 a_6 a_5 a_4$
			$s_3 s_2 s_1 s_0 = a_3 a_2 a_1 a_0 + b_3 b_2 b_1 b_0 + c_0$
			$Checksum = s_3's_2's_1's_0'$

11.10.5.42 VLANId

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address	MemBaseAddress register value
Address Offset	. 0x80
Default Value	0x00000000000
Access Rule	Word
Width	48 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
110	VLANId0	R/W	VLAN Identification 0 specifies one, 12 bit VLAN Identifier (cor- responding to the VID field of the VLAN tag portion of a receive frame) used for receive frame filtering as defined by the ReceiveMode register ReceiveVLANMatch bit. Bit 11 of VLANId0 corresponds to the most significat bit of the VID.
2312	VLANId1	R/W	VLAN Identification 1 specifies one, 12 bit VLAN Identifier (cor- responding to the VID field of the VLAN tag portion of a receive frame) used for receive frame filtering as defined by the ReceiveMode register ReceiveVLANMatch bit. Bit 23 of VLANId1 corresponds to the most significat bit of the VID.
3524	VLANId2	R/W	VLAN Identification 2 specifies one, 12 bit VLAN Identifier (cor- responding to the VID field of the VLAN tag portion of a receive frame) used for receive frame filtering as defined by the ReceiveMode register ReceiveVLANMatch bit. Bit 35 of VLANId2 corresponds to the most significat bit of the VID.
4736	VLANId3	R/W	VLAN Identification 3 specifies one, 12 bit VLAN Identifier (cor- responding to the VID field of the VLAN tag portion of a receive frame) used for receive frame filtering as defined by the ReceiveMode register ReceiveVLANMatch bit. Bit 47 of VLANId3 corresponds to the most significat bit of the VID.

11.10.5.43 VLANTag

I

I

Class	I/O Registers, Control and Status
I/O Base Address	. loBaseAddress register value
Memory Base Address	. MemBaseAddress register value
Address Offset	. 0x70
Default Value	. 0x81000000
Access Rule	Double Word
Width	. 32 bits

The VLANTag register contains the information used by the Rio when inserting a VLAN tag within a frame based on the state of the AutoVLANtagging bit of the MACCtrl register. The format of a VLAN tag as defined in IEEE 802.3Q is shown in Figure 5.

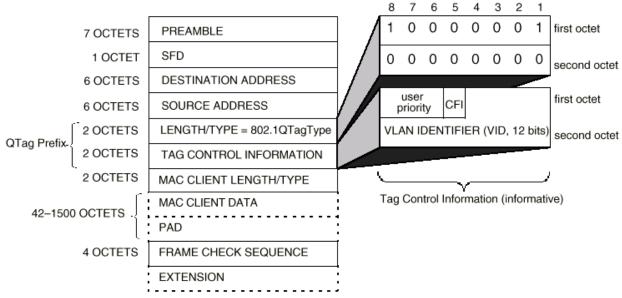


FIGURE 5: VLAN Tag Format from IEEE 802.3 Standard

BIT	BIT NAME	R/W	BIT DESCRIPTION
110	VID	R/W	VLAN Identifier. VID indicates the VLAN to which the Ethernet frame belongs. The VID is encoded as an unsigned binary number. A value of 0x000 indicates the Tag Header contains only "user_priority" information; no VLAN identifier is present in the frame. The values 0x001 and 0xFFF are reserved, all other values may be used as valid VLAN identifiers.

BIT	BIT NAME	R/W	BIT DESCRIPTION
12	CFI	R/W	Canonical Format Indicator. When CFI is a logic 0, all MAC address information that may be present in the MAC data carried by the frame is in Canonical format. When CFI is a logic 1, the E-RIF field is present in the Tag Header, and that the NCFI bit in the RIF field determines whether MAC address information that may be present in the MAC data carried by the frame is in Canonical or Non-canonical format. See IEEE 802.3Q for more information.
1513	UserPriority	R/W	User Priority. UserPriority indicates the priority of the Ethernet frame. Values of 0 through 7 are valid. See IEEE 802.3Q for more information.
2316	TPID2	R/W	Tag Protocol Identifier Octet 2. TPID2 is the second octet transmitted (or received) of the QTag Prefix field within an Ethernet frame. TPID2 value must always be 0x00.
3124	TPID1	R/W	Tag Protocol Identifier Octet 1. TPID1 is the first octet transmit- ted (or received) of the QTag Prefix field within an Ethernet frame. TPID1 value must always be 0x81.

11.10.5.44 WakeEvent

I

I

Class	I/O Registers, Control and Status
I/O Base Address	loBaseAddress register value
Memory Base Address	MemBaseAddress register value
Address Offset	. 0x51
Default Value	0x08
Access Rule	Byte
Width	8 bits

WakeEvent contains enable bits to control which types of events can generate a wake event to the host system. WakeEvent also contains status bits indicating the specific wake events which have occurred.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	WakePktEnable	R/W	Wake Packet Enable. When WakePktEnable is a logic 1 the Rio generates wake events via a PCI interrupt due to reception of a Wake Packet (see section 11.4 for more details). The PmeEn bit in the PowerMgmtCtrl register must be a logic 1 in order for WakePktEnable to be recognized. WakePktEnable has no effect in power mode D0.
1	MagicPktEnable	R/W	Magic Packet Enable. When MagicPktEnable is a logic 1 the Rio generates wake events via a PCI interrupt due to reception of a Magic Packet (see section 11.4 for more details). The PmeEn bit in the PowerMgmtCtrl register must be a logic 1 in order for MagicPktEnable to be recognized. MagicPktEnable has no effect in power mode D0.
2	LinkEventEnable	R/W	Link Event Enable. When LinkEventEnable is a logic 1 the Rio generates wake events via a PCI interrupt due to a change in the PHYLNK10N signal (i.e. a change in the link status). The PmeEn bit in the PowerMgmtCtrl register must be a logic 1 in order for LinkEventEnable to be recognized. LinkEventEnable has no effect in power mode D0.
3	WakePolarity	R/W	Wake Polarity. When WakePolarity is a logic 1, the WAKE signal is asserted in the HIGH state. When WakePolarity is a logic 0, the WAKE signal is asserted in the LOW state.
4	WakePktEvent	R	Wake Packet Event. When WakePktEvent is a logic 1, a Wake Packet which meets the reception criteria set by the host sys- tem (see section 11.4 for more details) has been received. WakePktEnable must be a logic 1 in order for WakePktEvent to indicate Wake Packet reception. WakePktEvent is cleared when the WakeEvent register is read.

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W	BIT DESCRIPTION
5	MagicPktEvent	R	Magic Packet Event. When MagicPktEvent is a logic 1, a Magic Packet which meets the reception criteria set by the host system (see section 11.4 for more details) has been received. MagicPktEnable must be a logic 1 in order for MagicPktEvent to indicate Wake Packet reception. MagicPktEvent is cleared when the WakeEvent register is read.
6	LinkEvent	R	Link Event. When LinkEvent is a logic 1, a change in the PHYLNK10N signal (i.e. a change in the link status) has occurred. LinkEventEnable must be a logic 1 in order for LinkEvent to indicate Wake Packet reception. LinkEvent is cleared when the WakeEvent register is read.
7	WakeOnLanEnable	R/W	Wake On LAN Enable. When WakeOnLanEnable is a logic 1 the Rio is placed in the WakeOnLan Mode (see section 11.5 for more details) regardless of the PowerMgmtCtrl register settings.

11.10.6 PCI Configuration Registers

I

I

PCI based systems use a slot-specific block of configuration registers to perform configuration of devices on the PCI bus. The configuration registers are accessed with PCI Configuration Cycles. The PCI bus supports two types of Configuration Cycles. Type 0 cycles are used to configure devices on the local PCI bus. Type 1 cycles are used to pass a configuration request to a PCI bus at a different hierarchical level.

PCI Configuration Cycles are directed at one out of eight possible PCI logical functions within a single physical PCI device. A Rio based PCI bus master device responds only to Type 0 Configuration Cycles, directed at function 0. Type 1 cycles, and Type 0 cycles directed at functions other than 0, are ignored by the Rio.

Each PCI bus device is required to decode 256 bytes of configuration registers. Of these, the first 64 bytes are pre-defined by the PCI Specification. The remaining registers may be used as needed for PCI device-specific configuration registers. In PCI Configuration Cycles, the host system provides a slot-specific decode signal (IDSEL) which informs the PCI device that a configuration cycle is in progress. The PCI device responds by asserting DEVSELN, and decoding the specific configuration register from the address bus and the byte enable signals. See the PCI Expansion ROM specification for information on generating configuration cycles from driver software.

Table 20 shows the PCI configuration registers implemented by Rio. All locations marked "Reserved",

and all of the locations within the 256-byte configuration space (0xFF through 0x00) that are not shown in the table, are not implemented and return zero when read..

CLK	BYTE 4	BYTE 3	BYTE 2	BYTE 1	ADDR OFFSET
PCI	Data	Reserved	PowerN	lgmtCtrl	54
PCI	PowerM	gmtCap	NextItemPtr	CapId	50
PCI		Rese	erved		4C
PCI	Reserved				
PCI	Reserved				44
PCI	Reserved				40
PCI	MaxLat	MinGnt	InterruptPin	InterruptLine	3C
PCI		Reserved			
PCI	Reserved CapPtr				34
PCI	ExpRomBaseAddress				30
PCI	Subsy	stemId	SubsystemVendorld		2C
PCI	Reserved				28
PCI	Reserved				
PCI	Reserved				
PCI	Reserved				

TABLE 20: Rubicon PCI Register Layout

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

CLK	BYTE 4	BYTE 3	BYTE 2	BYTE 1	ADDR OFFSET
PCI	Reserved				
PCI	MemBaseAddress				
PCI	IoBaseAddress				10
PCI	Reserved	HeaderType	LatencyTimer	CacheLineSize	0C
PCI		ClassCode		RevisionId	08
PCI	Config	Status	ConfigCommand		04
PCI	Devi	celd	Vendorld		00

TABLE 20: Rubicon PCI Register Layout

11.10.6.1 CacheLineSize

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x0C Default Value0x00 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	CacheLineSize	R/W	Cache Line Size. The system BIOS writes the system's cache line size into CacheLineSize. The host system uses Cache- LineSize to optimize PCI bus master operation (choosing the best memory command, etc.). The value in CacheLineSize represents the number of double words in a cache. Cache- LineSize values must be a power of two, from 0x04 to 0x40 (giving a range of 16 to 256 bytes). CacheLineSize values which are not a power of two, between 4 and 64 are inter- preted as 0x00.

11.10.6.2 Capld

I

Class......PCI Configuration Registers, Power Management I/O Base AddressPCI device configuration header start Address Offset0x50 Default Value0x01 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	CapId	R	Capabilities ID. CapId indicates the type of the capability data structure for the Rio. CapId is set to the value 0x01 to indicate a PCI Power Management structure.

11.10.6.3 CapPtr

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x34 Default Value0x50 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	CapPtr	R	Capabilities Pointer. CapPtr indicates the beginning of a chain of registers which describe enhanced functions. CapPtr register returns 0x50, which is the address of the first in a series of power management registers.

11.10.6.4 ClassCode

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x09 Default Value0x020000 Access Rule......Byte Width24 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
230	ClassCode	R	Class Code. ClassCode identifies the general function of the PCI device. A value of 0x020000 indicates an Ethernet network controller.

11.10.6.5 ConfigCommand

I

I

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x04 Default Value0x0000 Access Rule......Word Width16 bits

ConfigCommand provides control over the Rio's ability to generate and respond to PCI cycles. When ConfigCommand is a logic 0, the Rio is logically disconnected from the PCI bus, except for configuration cycles.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	loSpace	R/W	I/O Space. When IoSpace is a logic the Rio can respond to I/O space accesses (if the Rio is in the D0 power state).
1	MemorySpace	R/W	Memory Space. When MemorySpace, and the AddressDe- codeEnable bit in the ExpRomBaseAddress register are both a logic 1, and if the Rio is in the D0 power state, the Rio is able to decode accesses to an Expansion ROM (if present).
2	BusMaster	R/W	Bus Master. When BusMaster is a logic 1 the Rio is able to ini- tiate bus master cycles (if the adapter is in the D0 power state).
3	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
4	MWIEnable	R/W	Memory Write and Invalidate Enable. When MWIEnable is a logic 1 the Rio is permitted to use the MWI command.
5	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
6	ParityErrorRe- sponse	R/W	Parity Error Response. When ParityErrorResponse is a logic 1 the Rio responds to parity errors as defined within the PCI specification. When ParityErrorResponse is a logic 0, the Rio ignores parity errors.
7	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
8	SERREnable	R/W	System Error Enable. When SERREnable is a logic 1, the SERRN signal is allowed to transition as appropriate. When SERREnable is a logic 0, the SERRN signal is a continuous logic 0.
159	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.

11.10.6.6 ConfigStatus

I

I

I

I

I

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x06 Default Value0x0230 Access Rule......Word Width16 bits

ConfigStatus is used to record status information for PCI bus events. Read/write bits within ConfigStatus can only be set to a logic 0, not to a logic 1. Bits are set to a logic 0 by writing a logic 1 to the appropriate bit.

BIT	BIT NAME	R/W	BIT DESCRIPTION
30	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
4	Capabilities	R	Capabilities. Capabilities is a logic 1 to indicate a set of extended capabilities registers exists for the Rio. The CapPtr register indicates the first address location of the extended capabilities register set.
5	66MHzCapable	R	66MHz Capable. When 66MHzCapable is a logic 1 operation of the Rio PCI bus interface at 66MHz is supported.
6	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
7	FastBackToBack	R	Fast Back to Back. When FastBackToBack is a logic 1 the Rio when operating as a Target, supports fast back-to-back trans- actions as defined by the criteria in the section 3.4.2 of the PCI specification.
8	DataParityRe- ported	R	Data Parity Reported. When DataParityReported is a logic 1, the Rio when operating as a Master, has detected the PERRN signal asserted, and the ParityErrorResponse bit in the Config-Command register as a logic 1.
109	DevselTiming	R	Device Select Timing. DevselTiming is used to encode the slowest time with which the Rio asserts the DEVSELN signal. A value of 0x1 for DevselTiming indicates support for "medium" speed DEVSELN assertion.
11	SignaledTargetA- bort	R	Signaled Target Abort. The Rio sets SignaledTargetAbort to a logic 1 when the Rio terminates a bus transaction with target-abort.
12	ReceivedTargetA- bort	R	Received Target Abort. The Rio sets ReceivedTargetAbort to a logic 1 when, operating as a bus master, a Rio bus transaction is terminated with target-abort.
13	ReceivedMaster- Abort	R	Received Master Abort. The Rio sets ReceivedMasterAbort to a logic 1 when, operating as a bus master, a Rio bus transac- tion is terminated with master-abort.

BIT	BIT NAME	R/W	BIT DESCRIPTION
14	SignaledSystemEr- ror	R	Signaled System Error. When SignaledSystemError is a logic 1, the Rio asserts the SERRN signal.
15	DetectedParityEr- ror	R	Detected Parity Error. When DetectedParityError is a logic 1 the Rio has detected a parity error, regardless of whether parity error handling is enabled.

I

11.10.6.7 Data

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x57 Default Value0x0000 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W		BIT DESCRIPTION		
70	Data	R	worst case condition from Data, it must Data_Scale field of	consumption and dissipation of the Rio at ons. To properly interpret the value read be scaled by the factor indicated in the the PowerMgmtCtrl register. The value of e value of the Data_Select field of the Pow-		
			DATA_SELECT	DATA		
			0x0	40 * Data_Scale Watts D0 Power Consumption		
			0x1	40 * Data_Scale Watts D1 Power Consumption		
			0x2	40 * Data_Scale Watts D2 Power Consumption		
					0x3	40 * Data_Scale Watts D3 Power Consumption
			0x4	40 * Data_Scale Watts D4 Power Dissipated		
			0x5	40 * Data_Scale Watts D5 Power Dissipated		
			0x6	40 * Data_Scale Watts D6 Power Dissipated		
			0x7	40 * Data_Scale Watts D7 Power Dissipated		
			0x8 through 0xF	0x00 Reserved.		
				D7 Power Dissipated 0x00		

11.10.6.8 DeviceId

I

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	Deviceld	R/W	Device ID. DeviceId contains the 16-bit device identifier for the Rio.

11.10.6.9 ExpRomBaseAddress

I

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	AddressDecodeEn- able	R/W	Address Decode Enable. When AddressDecodeEnable is a logic 0 accesses to an Expansion ROM are disabled. When AddressDecodeEnable is a logic 1 and the MemorySpace bit in the ConfigCommand register is also a logic 1, accesses to an Expansion ROM are enabled.
141	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
3115	RomBaseAddress	R/W	ROM Base Address. RomBaseAddress contains the expan- sion ROM base address, or the upper 16 bits (or 15 bits, depending on the state of the ExpRomSize bit in the AsicCtrl register) of the Expansion ROM address range.
			If the ExpRomSize bit in the AsicCtrl register is a logic 0, all 16 bits of RomBaseAddress are valid. If the ExpRomSize bit in the AsicCtrl register is a logic 1, bits 31 through 16 of Rom-BaseAddress are valid, with bit 15 ignored (set to a logic 0) during write operations.

Last Modified December 8, 2000 4:38 pm Page 187 of 227

11.10.6.10 HeaderType

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x0E Default Value0x00 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	HeaderType	R	Header Type. HeaderType is set to 0x00 identifying the Rio as a single-function PCI device and specifying the configuration register layout.

11.10.6.11 InterruptLine

I

Class..... PCI Configuration Registers I/O Base Address PCI device configuration header start Address Offset 0x3C Default Value 0x00 Access Rule...... Byte Width 8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	InterruptLine	R/W	Interrupt Line. InterruptLine specifies the interrupt level used by the Rio. By setting InterruptLine the host system may con- figure the appropriate interrupt vector for its Interrupt Service Routine.
			For 80x86 processor based host systems, InterruptLine corre- sponds to the IRQ number (0x00 through 0x0F), with the value 0xFF corresponding to disabled interrupts.

11.10.6.12 InterruptPin

I

Class..... PCI Configuration Registers I/O Base Address PCI device configuration header start Address Offset 0x3D Default Value 0x01 Access Rule...... Byte Width 8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	InterruptPin	R	Interrupt Pin. InterruptPin indicates which PCI interrupt signal the Rio will utilize. The Rio always utilizes the INTAN interrupt signal, corresponding to an InterruptPin value of 0x01.

11.10.6.13 IoBaseAddress

I

I

I

I

Class	PCI Configuration Registers
I/O Base Address	PCI device configuration header start
Address Offset	. 0x10
Default Value	. 0x0000000
Access Rule	. Double Word
Width	. 32 bits

The host uses IoBaseAddress to define the I/O base address for the Rio. PCI system requires that I/O base addresses be set as if the host system used 32-bit I/O addressing. The upper 24 bits of IoBaseAddress are accessible, indicating that the Rio requires 256 bytes in the host system I/O address space.

BIT	BIT NAME	R/W	BIT DESCRIPTION
0	loBaseAddrInd	R/W	I/O Base Address Indicator. When IoBaseAddrInd is a logic 1, IoBaseAddress contains the valid I/O base address for the Rio.
71	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
318	loBaseAddress	R/W	I/O Base Address. IoBaseAddress contains the 24 bit I/O base address value. With 24 bits, the Rio uses 256 bytes of I/O address space.

11.10.6.14 LatencyTimer

I

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x0D Default Value0x00 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
20	Reserved	N/A	Reserved for future use. Write as zero, ignore on read.
73	LatencyTimer	R/W	Latency Timer. LatencyTimer indicates, in increments of 8 bus clocks, the length of time which the Rio may hold the PCI bus in the presence of other bus requestors. Whenever the Rio asserts the FRAMEN signal, the latency timer is started. When the latency timer count expires, the Rio must relinquish the bus as soon as its GNTN signal has been de-asserted.

11.10.6.15 MaxLat

I

I

Class......PCI Configuration Registers, Configuration I/O Base AddressPCI device configuration header start Address Offset......0x3F Default Value0x05 Access Rule......Byte Width8 bits

В	ыт	BIT NAME	R/W	BIT DESCRIPTION
70)	MaxLat	R	Maximum Latency. MaxLat specifies, in 250 ns increments, how often the Rio requires bus access while operating as a bus master. The value for MaxLat is loaded from the Config- Parm field within an EEPROM during auto initialization of the Rio.

11.10.6.16 MemBaseAddress

Class..... PCI Configuration Registers

I/O Base Address PCI device configuration header start

Address Offset 0x34

Default Value 0x00000000

Access Rule..... Double Word

Width 32 bits

I

I

I

I

MemBaseAddress can be disabled via loading of the ConfigParm field from an EEPROM during auto-initialization of the Rio.

BIT	BIT NAME	R/W	BIT DESCRIPTION			
0	MemBaseAddrInd	R/W	Memory Base Address Indicator. When MemBaseAddrInd is a logic 1, MemBaseAddress contains the valid memory base address.			
21	MemMapType		Memory Map Type. MemMapType defines how the host stem maps the Rio's registers within the host system mem space. Bit 2 of MemMapType is always a logic 0, while bit loaded from the Lower1Meg bit of the ConfigParm field with an EEPROM during auto initialization of the Rio.			
			BIT 1	BIT 0	ETHERNET FRAME TCI PRIORITY FIELD BIT	
			0	0	Anywhere within a 32 bit address space	
			0	1	Lower 1 megabyte of 32 bit address space	
			1	x	Undefined	
83	Reserved	N/A	Reserved for	or future use	. Write as zero, ignore on read.	
319	MemBaseAddress	R/W	Memory Base Address. MemBaseAddress contains the 23 bit memory base address value. With 23 bits, the Rio uses 512 bytes of I/O space.			

11.10.6.17 MinGnt

I

I

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x3E Default Value0x0A Access RuleByte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	MinGnt	R	Minimum Grant Time. MinGnt specifies, in 250 ns increments, how long a burst period the Rio requires when operating as a bus master. The value for MinGnt is loaded from the Config- Parm field within an EEPROM during auto initialization of the Rio.

Page 194 of 227 Last Modified December 8, 2000 4:38 pm

11.10.6.18 NextItemPtr

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset......0x51 Default Value0x00 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	NextItemPtr	R	Next Item Pointer. NextItemPtr indicates the next capability data structure in the capabilities list. NextItemPtr is set to the value 0x00 to indicate there are no further data structures.

11.10.6.19 PowerMgmtCap

I

I

1

I

L

Class	. PCI Configuration Registers
I/O Base Address	. PCI device configuration header start
Address Offset	. 0x52
Default Value	. 0x7602
Access Rule	. Word
Width	. 16 bits

BIT NAME	R/W			Bľ	T DESC	RIPTIO	N
Version	R	Version. Version is set to 0x2, indicating PCI Bus Power Man- agement Specification Revision 1.1.					
Reserved	N/A	Reserve	ed for fu	ture use	. Write a	s zero, i	gnore on read.
D1Support	R	D1 Power State Support. When D1Support is a logic 1, the Rio supports the D1 power state (see section 11.4). D1Support is loaded from the ConfigParm field of an EEPROM during auto initialization of the Rio.					
D2Support	R	D2 Power State Support. When D2Support is a logic 1, the Rio supports the D2 power state (see section 11.4). D2Support is loaded from the ConfigParm field of an EEPROM during auto initialization of the Rio.					
511 PmeSupport R		power s manage corresp tion ind	states from ement e onds to icates th	om whic vent by a power	h the Ri assertin state. A	io is able ng the V logic 1	e to generate a power /AKE signal. Each bi in a particular bit posi-
		х	х	х	х	1	D0
		х	х	х	1	х	D1
		х	х	1	х	х	D2
		х	1	х	х	х	D3Hot
		1	х	х	х	х	D3Cold
	Reserved D1Support D2Support	ReservedN/AD1SupportRD2SupportR	ReservedN/AReservedD1SupportRD1 Pow support loaded initializationD2SupportRD2 Pow support loaded initializationPmeSupportRPower I power s manage corresp tion ind power sBIT 1515x x x xx	ReservedN/AReserved for fullD1SupportRD1 Power State supports the D2 loaded from the initialization of tD2SupportRD2 Power State supports the D2 loaded from the initialization of tPmeSupportRPower Manager 	ReservedN/AReserved for future useD1SupportRD1 Power State Suppor supports the D1 power loaded from the Configi initialization of the Rio.D2SupportRD2 Power State Suppor supports the D2 power loaded from the Configi initialization of the Rio.PmeSupportRPower Management Ev power states from whic management event by corresponds to a power tion indicates that even power state.BITBITBIT 14XXX X XXXX XXXX XXXX XXXX XXXX XXX1 XX1 XX	ReservedN/AReserved for future use. Write aD1SupportRD1 Power State Support. When supports the D1 power state (s loaded from the ConfigParm file initialization of the Rio.D2SupportRD2 Power State Support. When supports the D2 power state (s) loaded from the ConfigParm file initialization of the Rio.D2SupportRD2 Power State Support. When supports the D2 power state (s) loaded from the ConfigParm file initialization of the Rio.PmeSupportRPower Management Event Supp power states from which the Rio management event by assertin corresponds to a power state. A tion indicates that evens can be power state.BITBITBITBIT 13II1312XXXXXX1X1XX1X	agement Specification Revision 1.1.ReservedN/AReserved for future use. Write as zero, iD1SupportRD1 Power State Support. When D1Supp supports the D1 power state (see section loaded from the ConfigParm field of an initialization of the Rio.D2SupportRD2 Power State Support. When D2Supp supports the D2 power state (see section loaded from the ConfigParm field of an initialization of the Rio.D2SupportRD2 Power State Support. When D2Supp supports the D2 power state (see section loaded from the ConfigParm field of an initialization of the Rio.PmeSupportRPower Management Event Support. Pm power states from which the Rio is able management event by asserting the W corresponds to a power state. A logic 1 tion indicates that events can be generate power state.BITBITBITBITBIT1514131211xxxxxxx1xxx1xxx

11.10.6.20 PowerMgmtCtrl

I

I

Class	PCI Configuration Registers
I/O Base Address	PCI device configuration header start
Address Offset	0x54
Default Value	0x0000
Access Rule	Word
Width	16 bits

BIT	BIT NAME	R/W		BIT DESCRIPTION		
10	PowerState	R/W	Power State. PowerState indicates the current p the Rio. If PowerState is set to a value other than will not respond to PCI I/O or memory cycles, no be able to generate PCI bus master cycles.			n 0x0, the Rio
			BIT 1	BIT 0	POWER STATE	
			0	0	D0	
			0	1	D1	
			1	0	D2	
			1	1	D3	
72	Reserved	N/A	Reserved for	or future use	. Write as zero, ignore or	n read.
8	PmeEn	R/W	the Rio is a The criteria WakeEvent	llowed to re a for genera register. Pr	ent Enable. When PmeE port wake events on the ating wake events is de meEn is loaded from the ring auto initialization of t	WAKE signal. efined by the e ConfigParm
129	Data_Select	R/W			select which data is to select which data is to select and Data_Scale field.	o be reported
1413	Data_Scale	R	Data Scale Only indicates the scaling factor to be used wh interpreting the value of the Data register. The interpreation the scale values is defined as follows:			
			DATA_	SCALE	SCALE FACTOR	
			0x0		Unknown	
			0x1		0.1	
			0x2		0.01	
			0x3		0.001	

Sundance Technology Inc. Proprietary - DO NOT DISTRIBUTE

BIT	BIT NAME	R/W	BIT DESCRIPTION
15	PmeStatus	R/W	Power Management Event Status. When PmeStatus is a logic 1 a wake event has occurred. PmeStatus may be a logic 1 regardless of the value of PmeEn. Writing a logic 1 to PmeSta- tus will set PmeStatus to a logic 0. Writing a logic 0 to PmeSta- tus has no effect.

11.10.6.21 RevisionId

I

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x08 Default Value0x05 Access Rule......Byte Width8 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
70	RevisionId	R	Revision ID. RevisionId contains a revision code for the Rio.

Last Modified December 8, 2000 4:38 pm Page 199 of 227

11.10.6.22 SubsystemId

I

Class..... PCI Configuration Registers I/O Base Address PCI device configuration header start Address Offset 0x2E Default Value 0x0000 Access Rule..... Byte Width 16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	SubsystemId	R	Subsystem ID. SubsystemId contains the value loaded from the ConfigParm field within an EEPROM during auto initializa- tion of the Rio.

11.10.6.23 SubsystemVendorld

I

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x2C Default Value0x0000 Access Rule......Word Width16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	SubsystemVen- dorld	R	Subsystem Vendor ID. SubsystemVendorld contains the value loaded from the ConfigParm field within an EEPROM during auto initialization of the Rio.

11.10.6.24 Vendorld

Class......PCI Configuration Registers I/O Base AddressPCI device configuration header start Address Offset0x00 Default Value0x13F0 Access Rule......Word Width16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
150	Vendorld	R	Vendor ID. Vendorld contains the unique 16-bit manufacturer's ID as allocated by the PCI Special Interest Group. Sundance Technology's manufacturer ID is 0x13F0.

11.10.7 EEPROM Fields

I

I

Table 21 summarizes the layout of the data stored in an EEPROM connected to the Rio. Most defined EEPROM fields are read from the EEPROM and loaded into unique register bit positions within the Rio during auto initialization (see 11.10.5.1).

In Table 21, all locations marked "Unused" and all locations not shown are not utilized by the Rio..

16 BIT WORDADDR OFFSETStationAddress12StationAddress11StationAddress10UnusedFUnusedEUnusedDUnusedCUnusedBUnused9Unused9Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1ConfigParm0	· · · · · · · · · · · · · · · · · · ·	
StationAddress11StationAddress10UnusedFUnusedEUnusedDUnusedCUnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	16 BIT WORD	
StationAddress10UnusedFUnusedEUnusedDUnusedCUnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	StationAddress	12
UnusedFUnusedEUnusedDUnusedCUnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	StationAddress	11
UnusedEUnusedDUnusedCUnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	StationAddress	10
UnusedDUnusedCUnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	F
UnusedCUnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	E
UnusedBUnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	D
UnusedAUnused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	С
Unused9Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	В
Unused8Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	А
Unused7Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	9
Unused6Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	8
Unused5Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	7
Unused4SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	6
SubsystemId3SubsystemVendorId2AsicCtrl1	Unused	5
SubsystemVendorId 2 AsicCtrl 1	Unused	4
AsicCtrl 1	SubsystemId	3
	SubsystemVendorId	2
ConfigParm 0	AsicCtrl	1
	ConfigParm	0

 TABLE 21: Rio EEPROM Field Layout

11.10.7.1 AsicCtrl

Class	EEPROM Fields
I/O Base Address	0x00, accessed via the EepromCtrl register
Address Offset	. 0x01
Access Rule	Word
Width	16 bits
ASIC Control supplies t	he value for several hits of the AsicCtrl registe

ASIC Control supplies the value for several bits of the AsicCtrl register and the WakeEvent register.

BIT	BIT NAME	BIT DESCRIPTION
0	Reserved	Reserved for future use. Write as zero, ignore on read.
1	ExpRomSize	Expansion ROM Size. ExpRomSize corresponds to the ExpRomSize bit in the AsicCtrl register.
2	Reserved	Reserved for future use. Write as zero, ignore on read.
3	Reserved	Reserved for future use. Write as zero, ignore on read.
4	PhySpeed10	Physical Layer Device Speed 10. PhySpeed10 corresponds to the PhySpeed10 bit in the AsicCtrl register.
5	PhySpeed100	Physical Layer Device Speed 100. PhySpeed100 corresponds to the PhySpeed100 bit in the AsicCtrl register.
6	PhySpeed1000	Physical Layer Device Speed 1000. PhySpeed1000 corresponds to the PhySpeed1000 bit AsicCtrl register.
7	PhyMedia	Physical Layer Device Media. PhyMedia corresponds to the PhyMedia bit in the AsicCtrl register.
148	Reserved	Reserved for future use. Write as zero, ignore on read.
15	WakeOnLanPolar- ity	Wake On LAN Polarity. WakeOnLanPolarity corresponds to the Wake- OnLanEnable bit in the WakeEvent register.

11.10.7.2 ConfigParm

I

Class	EEPROM Fields
I/O Base Address	0x00, accessed via the EepromCtrl register
Address Offset	0x00
Access Rule	Word
Width	16 bits

BIT	BIT NAME	BIT DESCRIPTION
0	FastBackToBack	Fast Back to Back. FastBackToBack corresponds to the FastBackTo- Back bit of the ConfigStatus register.
1	Lower1Meg	Lower 1 Megabyte. Lower1Meg corresponds to bit 1 of the MemMap- Type field in the MemBaseAddress register.
2	DisableMemBase	Disable Memory Base Address Register. DisableMemBase does not correspond directly to any register accessible by the host system. If DisableMemBase is a logic 1 during auto initialization of the Rio, the MemBaseAddress register will be disabled. When disabled, the value returned when the MemBaseAddress register is read is undefined.
3	D3ColdPme	D3 Cold Power Management Event. D3ColdPme corresponds to bit 15 of the PmeSupport field within the PowerMgmtCap register.
4	D1Support	D1 Power State Support. D1Support corresponds to the D1Support bit of the PowerMgmtCap register, and bit 12 of the PmeSupport field within the PowerMgmtCap register.
5	D2Support	D2 Power State Support. D2Support corresponds to the D2Support bit of the PowerMgmtCap register, and bit 13 of the PmeSupport field within the PowerMgmtCap register.
6	PmeEn	Power Management Event Enable. PmeEn corresponds to the PmeEn bit in the PowerMgmtCtrl register.
107	MinGnt	Minimum Grant. MinGnt corresponds to bits 4 through 1 of the MinGnt register.
1511	MaxLat	Maximum Latency. MaxLat corresponds to bits 5 through 1 of the Max- Lat register.

11.10.7.3 StationAddress

Class	EEPROM Fields
I/O Base Address	0x00, accessed via the EepromCtrl register
Address Offset	0x10
Access Rule	Byte
Width	48 bits

BIT	BIT NAME	BIT DESCRIPTION	
470	StationAddress	Station Address. StationAddress corresponds to the StationAddress register.	

11.10.7.4 SubsystemId

Class......EEPROM Fields I/O Base Address0x00, accessed via the EepromCtrl register Address Offset0x06 Access Rule.......Word Width16 bits

BIT	BIT NAME	BIT DESCRIPTION
150	SubsystemId	Subsystem ID. SubsystemId corresponds to the SubsystemId register.

11.10.7.5 SubsystemVendorId

Class...... EEPROM Fields I/O Base Address 0x00, accessed via the EepromCtrl register Address Offset 0x02 Access Rule....... Word Width 16 bits

BIT	BIT NAME	BIT DESCRIPTION
150	SubsystemVen- dorld	Subsystem Vendor ID. SubsystemVendorId corresponds to the Sub- systemVendorId register.

11.10.8 PCS Management Registers

I

I

I

The Rio implementation of the IEEE 1000BASE-X Physical Coding Sublayer (or PCS) includes several management registers, defined in the IEEE 802.3 standard clause 37.2.5.1. These registers can only be accessed if the Rio is in TBI mode (see the GMII signal definition). The PCS management registers are similar to registers which would be present in external PHY devices incorporating a 1000BASE-X PCS implementation. The PCS management registers are accessed similarly to external PHY device registers using the Rio PhyCtrl register MgmtClk, MgmtData, and MgmtDir bits (see IEEE 802.3 1998 Edition for details on accessing management registers). When accessing the PCS management registers within the Rio, the PHY Address for all register accesses is 0x01.

Table 22 shows a layout of the registers implemented in the Rio 1000BASE-X PCS implementation.

16 BIT WORD	ADDR OFFSET
ExtendedStatus	F
Unused	E
Unused	D
Unused	С
Unused	В
Unused	A
Unused	9
LinkPartnerNextPage	8
NextPage	7
Expansion	6
LinkPartnerBasePage	5
Advertisement	4
Unused	3
Unused	2
Status	1
Control	0

TABLE 22: Rio 1000BASE-X PCS Management Registers

11.10.8.1 Advertisement

Class	PCS Management
PHY Address	0x01
Register	0x04
Default Value	0x01E0
Width	16 bits

BIT	BIT NAME	R/W		BI	T DESCRIPTION	
15	Next Page	R/W	1 = indicates additional Next Pages follow 0 = indicates last page			
14	Reserved	R	Reserved f	or future use	. Write as zero, ignore on read.	
1312	Remote Fault	R/W				
			BIT 13	BIT 12	REMOTE FAULT	
			0	0	No error, link OK (default)	
			1	0	Offline	
			0	1	Link failure	
			1	1	Auto-negotiation failure	
119	Reserved	R	Reserved for future use. Write as zero, ignore on read.			
87	Pause	R/W				
			BIT 8	BIT 7	PAUSE	
			0	0	No PAUSE	
			1	0	Asymmetric PAUSE toward link partner	
			0	1	Symmetric PAUSE	
			1	1	Both Symmetric PAUSE and Asymmetric PAUSE toward local device	
6	Half Duplex	R/W	1 = indicates support for half duplex0 = indicates no support for half duplex			
5	Full Duplex	R/W	1 = indicates support for full duplex0 = indicates no support for full duplex			
40	Reserved	R	Reserved for future use. Write as zero, ignore on read.			

11.10.8.2 Control

I

Class.....PCS Management PHY Address.....0x01 Register0x00 Default Value0x1140 Width16 bits

The Rio PCS Management Control register differs from the Control Register definition in the IEEE 802.3 standard as follows:

- Bit 13 is read only since the Rio only implements 1000 Mbp/s operation.
- Bit 11 is read only since the Rio does not implement separate power down of the PCS functionality.
- Bit 10 is read only since the Rio does not implement GMII electrical isolation.
- Bit 6 is read only since the Rio only implements 1000 Mbp/s operation.

BIT	BIT NAME	R/W	BIT DESCRIPTION
15	Reset	R/W	1 = PHY Reset (reset the PCS implementation within Rio) 0 = normal operation
14	Loopback	R/W	 1 = enable loopback mode (asserts the MDC/EWRAP signal HIGH to indicate to the PHY device that transmit data should be wrapped to the receive interface). 0 = disable loopback mode
13	SpeedSelection (LSB)	R	0 = combined with bit 6 (bit 6 = 1) indicates 1000 Mb/s opera- tion only.
12	Auto-Negotiation Enable	R/W	1 = Enable Auto-Negotiation Process 0 = Disable Auto-Negotiatio Process
11	Power Down	R	0 = normal operation
10	Isolate	R	0 = normal operation
9	Restart Auto-Nego- tiation	R/W	1 = Restart Auto-Negotiation Process 0 = normal operation
8	Duplex Mode	R/W	1 = Full Duplex 0 = Half Duplex
7	Collision Test	R/W	1 = enable COL signal test 0 = disable COL signal test
6	Speed Selection (MSB)	R	1 = combined with bit 13 (bit 13 = 0) indicates 1000 Mb/s oper- ation only.
50	Reserved	R	Reserved for future use. Write as zero, ignore on read.

11.10.8.3 Expansion

Class	PCS Management
PHY Address	0x01
Register	0x06
Default Value	0x0004
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
153	Reserved	R	Reserved for future use. Write as zero, ignore on read
2	Next Page Able	R	1 = indicates next page able 0 = indicates not next page able
1	Page Received	R	1 = indicates a new page has been received0 = indicates a new page has not yet been received
0	Reserved	R	Reserved for future use. Write as zero, ignore on read.

11.10.8.4 ExtendedStatus

Class	PCS Management
PHY Address	0x01
Register	0x0F
Default Value	0xC000
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
15	1000BASE-X Full Duplex	R	1 = PHY able to perform full duplex 1000BASE-X 0 = PHY not able to perform full duplex 1000BASE-X
14	1000BASE-X Half Duplex	R	1 = PHY able to perform half duplex 1000BASE-X 0 = PHY not able to perform half duplex 1000BASE-X
13	1000BASE-T Full Duplex	R	1 = PHY able to perform full duplex 1000BASE-T 0 = PHY not able to perform full duplex 1000BASE-T
12	1000BASE-T Half Duplex	R	1 = PHY able to perform half duplex 1000BASE-T 0 = PHY not able to perform half duplex 1000BASE-T
110	Reserved	R	Reserved for future use. Write as zero, ignore on read.

11.10.8.5	LinkPartnerBasePage
-----------	---------------------

Class	PCS Management
PHY Address	0x01
Register	0x05
Default Value	0x0000
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION			
15	Next Page	R	1 = indicates additional Next Pages follow 0 = indicates last page			
14	Acknowledge	R		1 = indicates received link partner's code word0 = indicates link partner's code word not yet received		
1312	Remote Fault	R		1		
			BIT 13	BIT 12	REMOTE FAULT	
			0	0	No error, link OK (default)	
			1	0	Offline	
			0	1	Link failure	
			1	1	Auto-negotiation failure	
119	Reserved	R	Reserved for future use. Write as zero, ignore on read.			
87	Pause	R				
			BIT 8	BIT 7	PAUSE	
			0	0	No PAUSE	
			1	0	Asymmetric PAUSE toward link partner	
			0	1	Symmetric PAUSE	
			1	1	Both Symmetric PAUSE and Asymmetric PAUSE toward local device	
6	Half Duplex	R	1 = indicates link partner supports half duplex0 = indicates link partner does not support half duplex			
5	Full Duplex	R	1 = indicates link partner supports full duplex0 = indicates link partner does not support full duplex			
40	Reserved	R	Reserved for future use. Write as zero, ignore on read.			

11.10.8.6 LinkPartnerNextPage

Class	PCS Management
PHY Address	0x01
Register	0x08
Default Value	0x0000
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
15	Next Page	R	1 = indicates additional Next Pages follow 0 = indicates last page
14	Acknowledge	R	1 = indicates received link partner's code word0 = indicates link partner's code word not yet received
13	Message Page	R	1 = indicates a Message Page 0 = indicates an Unformatted Page
12	Acknowledge 2	R	1 = indicates able to comply with message0 = indicates not able to comply with message
11	Toggle	R	 1 = indicates previous value of toggle bit in code word = 0 0 = indicates previous value of toggle bit in code word = 1
100	Message/Unfor- matted Code Field	R	11 bit message code or unformatted code.

11.10.8.7 NextPage

Class	PCS Management
PHY Address	0x01
Register	0x07
Default Value	0x2001
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
15	Next Page	R/W	1 = indicates additional Next Pages follow0 = indicates last page
14	Reserved	R	Reserved for future use. Write as zero, ignore on read.
13	Message Page	R/W	1 = indicates a Message Page0 = indicates an Unformatted Page
12	Acknowledge 2	R/W	1 = indicates able to comply with message0 = indicates not able to comply with message
11	Toggle	R	 1 = indicates previous value of toggle bit in code word = 0 0 = indicates previous value of toggle bit in code word = 1
100	Message/Unfor- matted Code Field	R/W	11 bit message code or unformatted code.

11.10.8.8 Status

Class	PCS Management
PHY Address	0x01
Register	0x01
Default Value	0x0109
Width	16 bits

BIT	BIT NAME	R/W	BIT DESCRIPTION
15	100BASE-T4	R	0 = Not able to perform 100BASE-T4
14	100BASE-X Full Duplex	R	0 = Not able to perform 100BASE-X Full Duplex
13	100BASE-X Half Duplex	R	0 = Not able to perform 100BASE-X Half Duplex
12	10 Mb/s Full Duplex	R	0 = Not able to perform 10 Mb/s Full Duplex
11	10 Mb/s Half Duplex	R	0 = Not able to perform 10 Mb/s Half Duplex
10	100BASE-T2 Full Duplex	R	0 = Not able to perform 100BASE-T2 Full Duplex
9	100BASE-T2 Half Duplex	R	0 = Not able to perform 100BASE-T2 Half Duplex
8	Extended Status	R	1 = Extended status information in Register 15
7	Reserved	R	Reserved for future use. Write as zero, ignore on read.
6	MF Preamble Sup- pression	R	0 = will not accept management frames with preamble sup- pressed
5	Auto-Negotiation Complete	R	1 = Auto-Negotiation process completed0 = Auto-Negotiation process not completed
4	Remote Fault	R	1 = remote fault condition detected0 = no remote fault condition detected
3	Auto-Negotiation Ability	R	1 = able to perform Auto-Negotiation0 = not able to perform Auto-Negotiation
2	Link Status	R	1 = link is up 0 = link is down
1	Jabber Detect	R	0 = no jabber condition detected
0	Extended Capabil- ity	R	1 = extended register capabilities

12.0 Signal Requirements

12.1 Absolute Maximum Ratings

Storage Temperature -65°C to +150°C

Ambient Temperature -65°C to +70°C

Supply Voltage -0.3V to +?V

Environmental stresses above those listed in Absolute Maximum Ratings may cause permanent damage resulting in device failure. Functionality at or above the limits listed below is not guaranteed. Exposure to the environmental stress at the levels listed below for extended periods may adversely affect device reliability.

12.2 Operating Ranges

Commercial Devices

Temperature (T_A) 0°C to +70°C

Supply Voltages (V_{CC} to GND) +3.3V \pm 5%

Input voltages +5V ±5%

Operating ranges define the limits of guaranteed device functionality.

12.3 DC characteristics

DC characteristics are defined over commercial operating ranges unless specified otherwise.

PARAMETER SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT
	PIN TYPE IT (TTL, PCI IN	IPUT BUFFER 5V SIGNALLING	i)		
V _{IH}	Input high voltage			2	V
V _{IL}	Input low voltage			0.8	V
I _{IH}	Input HIGH leakage current	V _{IN} = 2.7V		10	μA
IIL	Input LOW leakage current	V _{IN} = 0.5V		-10	μA
PII	N TYPE ITU (TTL, PCI INPUT B	UFFER 5V SIGNALLING WITH	PULL U	P)	
V _{IH}	Input high voltage			2	V
V _{IL}	Input low voltage			0.8	V
I _{IH}	Input HIGH leakage current	V _{IN} = 2.7V		10	μA
IIL	Input LOW leakage current	V _{IN} = 0.5V		-10	μA
PIN TYPE ITD (TTL, PCI INPUT BUFFER 5V SIGNALLING WITH PULL DOWN)					
V _{IH}	Input high voltage			2	V
V _{IL}	Input low voltage			0.8	V

TABLE 23: DC Characteristics

PARAMETER SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT	
I _{IH}	Input HIGH leakage current	V _{IN} = 2.7V		10	μA	
I _{IL}	Input LOW leakage current	V _{IN} = 0.5V		-10	μA	
	PIN TYPE OT4/OC4 (T	TL, CMOS OUTPUT BUFFER)	•	•	•	
V _{OH}	Output high voltage	I _{OH} = -4mA	2.4		V	
V _{OL}	Output low voltage	I _{OL} = 4mA		0.4	V	
I _{OZ}	Output leakage current			±10	μA	
	PIN TYPE OP3 (PCI OUT	PUT BUFFER 5V SIGNALLING)			
V _{OH}	Output high voltage	I _{OH} = -2mA	2.4		V	
V _{OL}	Output low voltage	I _{OL} = 3mA		0.55	V	
I _{OZ}	Output leakage current			±10	μA	
PIN TYPE OP6 (PCI OUTPUT BUFFER 5V SIGNALLING WITH PULL UP)						
V _{OH}	Output high voltage	I _{OH} = -2mA	2.4		V	
V _{OL}	Output low voltage	I _{OL} = 6mA		0.55	V	
I _{OZ}	Output leakage current			±10	μA	

TABLE 23: DC Characteristics

PARAMETER SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT
PIN TYPE OD6 (OPEN DRAIN OUTPUT BUFFER)					
V _{OL}	Output low voltage	I _{OL} = 6mA		0.4	V
I _{OZ}	Output leakage current			±10	μA

TABLE 23: DC Characteristics

PIN TYPE	PINS				
	PCI INTERFACE				
IT	RSTN, PCICLK, GNTN, IDSEL, ACK64N, VDET				
IT/OP3	AD, CBEN, PAR, PAR64				
ITU/OP6	FRAMEN, IRDYN, TRDYN, DEVSELN, STOPN, PERRN				
OD6	INTAN, WAKE, SERRN				
OP3	REQN, REQ64N				
	EXPANSION ROM INTERFACE				
ITU/OT4	ED				
OT4	EWEN, EOEN, EA				
	EEPROM INTERFACE				
IT	EA5/EEDO				
OT4	EA3/EEDI, EA4/EESK, EECS				
GMII INTERFACE					
IT	CRS/SIGDET, COL, RXER/RXD9, RXDV/RXD8, RXD, RXCLK0/RXCLK, RXCLK1				
OT4	GTXCLK, TXD, TXEN/TXD8, TXER/TXD9, MDC/EWRAP				
IT/OT4	MDIO				

TABLE 24: Pin Type Assignment

PIN TYPE	PINS				
	MISC				
IT	PHYLNK10N, PHYDPLXN, TEST, GMII				
ITU/OT4	EA6/GPIO0, EA7/GPIO1				
OT4	RSTOUT				
OD8	EA0/LEDDPLXN, EA, EA2/LEDPWRN				
OC4	CLK125				

TABLE 24: Pin Type Assignment

12.4 AC Characteristics

PARAMETER SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT
	PCII	NTERFACE			
T _{rc}	RSTN cycle		300	-	-
T _{cc}	PCICLK cycle		30	-	-
T _{ch}	PCICLK high		11	-	-
T _{cl}	PCICLK low		11	-	-
T _{rv}	PCICLK rise to bused signal valid		2	11	-
T _{rvp}	PCICLK rise to REQN, GNTN valid		2	12	-
T _{rzo}	PCICLK rise to signal on		2	-	-
T _{roz}	PCICLK rise to signal off		-	28	-
T _{su}	bused signal setup wrt PCI- CLK rise		7	-	-
T _{sup1}	GNTN setup wrt PCICLK rise		10	-	-
T _{sup2}	REQN setup wrt PCICLK rise		12	-	-
T _{hd}	signal hold wrt PCICLK rise		0	-	-
T _{rstoff}	RSTN low to output signal float		-	40	-

TABLE 25: Switching	Characteristics
---------------------	-----------------

PARAMETER SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT
	EXPANSION RC	DM INTERFACE - READ			
T _{adv}	ED valid from EA stable		0	150	-
T _{odv}	ED valid from EOEN low		0	70	-
T _{dvz}	ED tri-stated from EOEN high		0	40	-
	EXPANSION RC	DM INTERFACE - LOAD			
T _{as} /T _{os}	EA, EOEN setup wrt EWEN fall		0		-
T _{ah}	EA hold wrt EWEN fall		50	-	-
T _{ds}	ED setup wrt EWEN rise		35	-	-
T _{dh} /T _{oh}	ED, EOEN hold wrt EWEN fall		0		-
T _{wh}	EWEN write cycle high		100	-	-
T _{wl}	EWEN write cycle low		90	-	-
	EEPRO	M INTERFACE			
T _{skc}	EESK cycle		1	-	us
T _{skh}	EESK high		250	-	ns
T _{skl}	EESK low		250	-	ns
T _{cs}	EECS low		250	-	-
T _{pd}	EEDI valid wrt EESK rise		100	-	-
T _{csk}	EECS setup wrt EESK rise		50	-	-
T _{csh}	EECS hold wrt EESK fall		0	-	-
T _{dos}	EEDO setup wrt EESK rise		70	500	-
T _{doh}	EEDO hold wrt EESK rise		-	500	-
	GMII INTER	FACE - TRANSMIT	•		
T _{cc}	TXCLK cycle		-	-	40T

TABLE 25: Switching C	Characteristics
-----------------------	------------------------

I

L

I

PARAMETER SYMBOL	PARAMETER DESCRIPTION	TEST CONDITIONS	MIN	MAX	UNIT		
T _{ch}	TXCLK high		14T	26T	-		
T _{cl}	TXCLK low	T = 1 when 100Mb/s; 10 when 10Mb/s	14T	26T	-		
T _{rv}	TXCLK rise to TXD, TXEN valid			20			
T _{rh}	TXD, TXEN hold after TXCLK rise		5	-	-		
GMII INTERFACE - RECEIVE							
T _{cc}	RXCLK cycle		-	-	40T		
T _{ch}	RXCLK high		14T	26T	-		
T _{cl}	RXCLK low	T = 1 when 100Mb/s; 10 when 10Mb/s	14T	26T	-		
T _{su}	RXD,RXER,RXDV setup wrt RXCLK rise		10	-	-		
T _{hd}	RXD,RXER,RXDV hold wrt RXCLK rise		5	-	-		
	GMII INTERF	ACE - MANAGEMENT					
T _{cc}	MDC cycle		400	-	-		
T _{ch}	MDC high		160	-	-		
T _{cl}	MDC low		160	-	-		
T _{su}	MDIO setup wrt MDC rise		10	-	-		
T _{hd}	MDIO hold wrt MDC rise		10	-	-		
T _{rv}	MDC rise to MDIO valid		-	20	-		
MISC INTERFACE							
T _{cc}	CLK25 cycle		-	-	40		
T _{ch}	CLK25 high		16	24	-		
T _{cl}	CLK25 low		16	24	-		

TABLE 25: Switching Characteristics

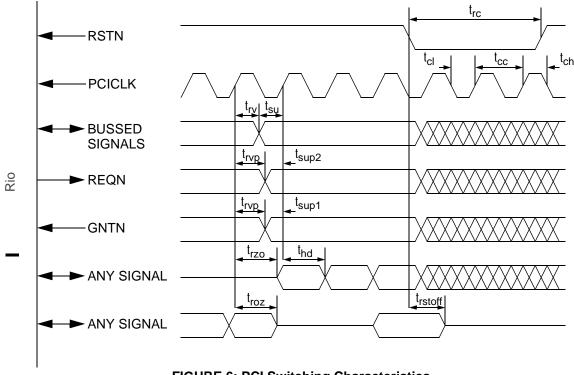


FIGURE 6: PCI Switching Characteristics

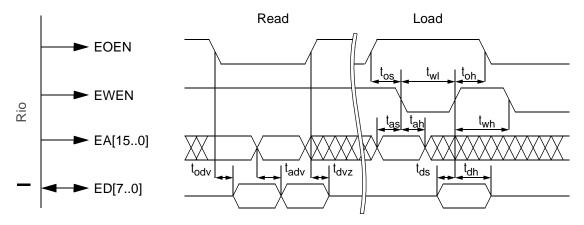


FIGURE 7: Expansion ROM Switching Characteristics

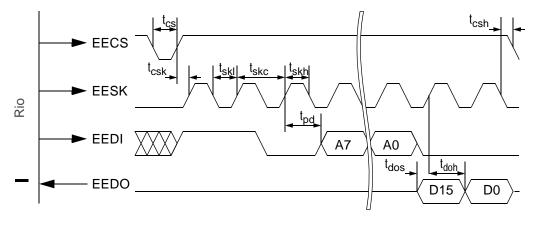


FIGURE 8: EEPROM Switching Characteristics

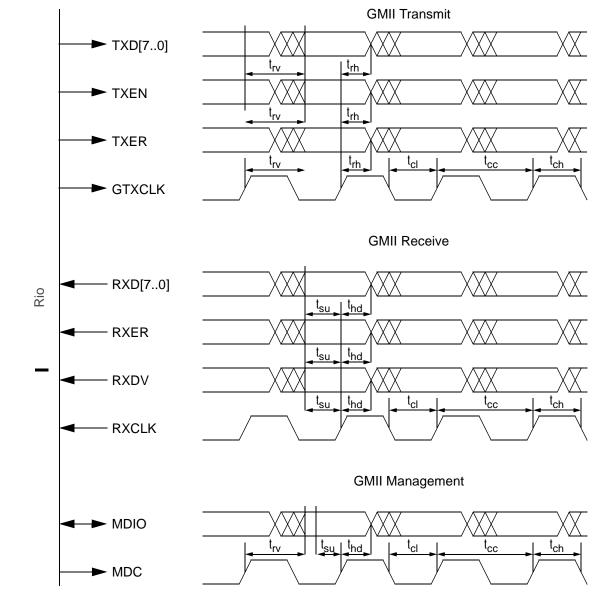
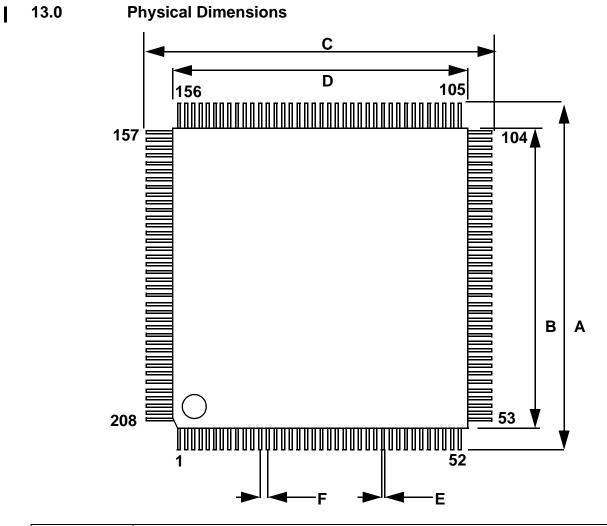



FIGURE 9: MII Switching Characteristics

SYMBOL	DIMENSION IN MILLIMETERS			
	MINIMUM	NOMINAL	MAXIMUM	
А	30.35	30.60	30.85	
В	27.90	28.00	28.10	
С	30.35	30.60	30.85	
D	27.9	28.00	28.10	
E	0.18		0.28	
F		0.50		
Thickness	3.92		4.07	

I

TABLE 26: Rio Mechanical Dimensions