
T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

1

T2 Software Functional Specification

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

2

1. CHANGE HISTORY ... 4

2. INTRODUCTION .. 7

HARDWARE OVERVIEW... 8

3.1 93C PROCESSOR.. 9
3.2 PCI INTERFACE ... 9
3.3 MEMORY CONTROLLER ... 9
3.4 MEDIA ACCESS CONTROLLER.. 9
3.5 BOOTSTRAP ROM ... 9

4. FUNCTIONAL DESCRIPTION OF FEATURES .. 11

4.1 MANAGEMENT FEATURES ... 11
4.1.1 Statistics.. 11
4.1.2 Power Management .. 13
4.1.3 Enhanced Remote Wakeup.. 14
4.1.4 Personal Firewall ... 15
4.1.5 I2C Serial Port Driver... 16
4.1.6 Heartbeat .. 16
4.1.7 Off-line Diagnostics.. 16

4.2 PERFORMANCE ENHANCEMENTS ... 18
4.2.1 TCP/IP Checksum Generation and Verification... 18
4.2.2 TCP Segmentation .. 18
4.2.3 Dynamic Access 2.0 .. 19
4.2.4 IEEE 802.1p/Q Class of Service Priorities ... 21
4.2.5 IPSec... 21

5. THEORY OF OPERATION ... 27

5.1 HOST ADAPTER INTERFACE ... 27
5.1.1 Packet Type... 27
5.1.2 Data Format and Alignment Convention.. 27

5.2 HOST ADAPTER INTERFACE RING BUFFER... 28
5.3 PACKET FLOW CONVENTION ... 31

5.3.1 Host-to-adapter Packet Flow.. 31
5.3.2 De-allocating Transmit Frames.. 40
5.3.3 Adapter-to-Host (Rx) Interface ... 41
5.3.4 Receive Priority Processing.. 45
5.3.5 Receive Data Flow.. 46

5.4 HOST-TO-ADAPTER COMMAND DESCRIPTIONS .. 46
5.4.1 Command Ring ... 47
5.4.2 Response Ring... 49
Response Descriptor... 50
5.4.3 Arm to Host Interrupts .. 51

5.5 ADAPTER BOOT ... 53
5.5.1 Overview ... 53
5.5.2 ROM Boot Loader... 53
5.5.3 Boot Command Language for Boot Failure ... 54
5.5.4 NVDevice Boot.. 59

5.6 ADAPTER SLEEP .. 68
5.6.1 Putting Typhoon to sleep .. 68
5.6.2 Wakeup Events.. 68

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

3

5.6.3 Sleep Events .. 69
5.7 ADAPTER RESET .. 71
5.8 ANTI-STARVATION DE-QUEUE ALGORITHM: ... 72
5.9 ENCRYPTION ENABLE LOGIC ... 74

6. COMMAND DESCRIPTIONS ... 76

6.1 HOST-TO-ADAPTER COMMAND DESCRIPTIONS .. 76
6.2 UNSOLICITED RESPONSES .. 114

7. MANUFACTURING SUPPORT .. 115

7.1 NVDEVICE CONFIGURATION.. 115
7.1.1 Memory Layout Example .. 116
7.1.2 Magic Id.. 117
7.1.3 Section Headers .. 117
7.1.4 Static Section .. 117
7.1.5 VAR Section .. 121
7.1.6 Boot Image Section ... 124
7.1.7 Sleep Image Section.. 124

7.2 DIAGNOSTICS... 125

APPENDIX A –ENUMERATED VALUES ... 126

1. HOST TO ADAPTER COMMANDS... 126

2. TYPHOON STATUS.. 128

3. HOST STATUS... 128

APPENDIX B - PACKET FILTERING... 130

1. FILTER FEATURES ... 130

1.1 FILTERING MANAGEMENT REQUESTS TO TYPHOON... 130

APPENDIX C - OEM FUNCTION EXTENSION API... 132

1. OVERVIEW.. 132

2. GOALS .. 132

3. SDK.. 132

APPENDIX D: SLEEP EVENT IMPLEMENTATION ... 133

1. INTRODUCTION .. 133

2. NOVELL WATCHDOG REPLIES .. 133

3. DHCP LEASE RENEWAL ... 135

APPENDIX E: SOS PINS ON TYPHOON .. 136

4. INDEX ... 141

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

4

1. Introduction

This document describes the software for Typhoon 2, or T2, 3Com’s 2nd generation “smart” NIC. It’s a
100 MBPS Ethernet adapter. T2 includes all of the Typhoon logic, which borrows some logic from
previous 3Com Ethernet Adapter ASICs (Cyclone/Hurricane), such as parts of the PCI interface and the
MAC logic. Previous functions that were external to the Typhoon ASIC are integrated into T2, including
the 128k external SRAM, and the IPsec encryption engine. Locgic external to T2 includes the serial
flash ROM, magnetics, and an optional external SRAM or coprocessor.

The on-board processing engine performs intelligent packet processing and scheduling while reducing
the load on the host processor.

Typhoon supports several new or enhanced features that improve network management or lower CPU
utilization:

Management Features

• MAC Statistics
• Power Management - Support for the four PCI power states.
• Enhanced Remote Wakeup support with the added capability to generate keep-alive or

heartbeat packets.
• Personal Firewall - The ability to throttle or restrict bandwidth on some traffic transmitted or

received by the NIC.
• I2C Bus Interface - This is a supporting feature for off-line diagnostics.
• Off-line diagnostics - The ability to gather and report information about the health and state

of the host even when the host is not operational.

Performance Enhancements

• TCP/IP checksum generation and verification.
• TCP segmentation.
• Acceleration of Dynamic Access 2.0 features.
• Improved Host Interface.
• IPSec

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

5

2. Functional Description of Features

2.1 Management Features

2.1.1 Statistics

The processor on the adapter will keep statistics in memory. The Host Driver may view these statistics
by:

• Requesting Statistics transfer to host memory.
• Timed update of statistic transfers to host memory.

The sources of the statistics are a combination of MAC registers, status descriptors and software
derived statistics from Filter results.

The adapter will keep the following statistics: (dRMON Statistics are not addressed in this section. See
dRMON for details.)

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

6

Transmit Statistics

TxPackets The number of packets transmitted successfully without critical error.
TxBytes The number of bytes transmitted successfully without critical error (

does not include framing).
TxDeferred The number of times that packet transmission had to defer to network

traffic before transmitting successfully.
TxLateCollisions The number of times a transmitted packet has collided after the first 64

bytes were transmitted.
TxCollisions The number of packets transmitted successfully after a single collision.
TxMultipleCollisions The number of packets transmitted successfully after more than one

collision.
TxCarrierLost The number of packets transmitted that experienced a loss of carrier.
TxExcessiveCollisions The number of packets tossed due to more than 16 collisions.
TxFifoUnderruns The number of time the transmit FIFO has gone empty while

transmitting before the packet was completed.
TxBroadcast The number of packets transmitted with a destination address of all

one’s.
TxMulticast The number of packets transmitted with a destination address having

the multicast bit set.
TxOverflows The number of packets tossed by the transmitter due to lack of

Queue or Buffer space.
TxFiltered The number of packets tossed by the transmitter due to a Filter

directive.
TxBroadcastBytes The number of octets transmitted in packets with a destination

address of all one’s.
TxMulticastBytes The number of octets transmitted in packets with a destination

address having the multicast bit set.
*TxJabbers The number of packets transmitted that were aborted because they

were continuously transmitting.
Not Supported
TxSqeErrors Not Applicable.
TxReclaimErrors Not Applicable.

Receive Statistics

RxPacketsGood The number of packets received without error.
*RxPacketsTotal The number of packets received including error packets.

RxBytesGood The number of bytes received without error (excluding framing).
*RxBytesTotal The number of bytes received including error packets (excluding

framing).
RxFifoOverruns The number of packets lost because the receive FIFO was full.
*RxFilteredByMac The number of packets that are filter at the MAC when filters are set.
BadSSD The total number of packets received with bad start-of-stream

delimiter. This is only valid for 100BaseTx and 100BaseFx.
*RxRunts The number of packets received that were less than 64 bytes.
RxCrcErrors The number of packets received that contained a bad CRC.
RxOversize The number of packets received that were greater than MTU.
RxBroadcast The number of packets received with a destination address of all

one’s.
RxMulticast The number of packets received with a destination address having

the multicast bit set.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

7

RxOverflow The number of packets received that were lost due to no buffer space
available.

RxFiltered The number of packets tossed by the receiver due to a Filter directive.
RxAlignmentErrors The number of packets received that were not octet aligned.
RxDribbleBits The number of packets received that contained dribble bits.

Software selectable as forward or reject on error.

Statistic Sources

The following statistics are read from MAC registers:
TxPackets, TxBytes, TxDeferred, TxLateCollisions, TxCollisions, TxMultipleCollisions,
TxCarrierLost, RxPacketsGood, *RxPacketsTotal, RxBytesGood, *RxBytesTotal,
RxFifoOverruns, RxFilteredByMac, BadSSD

The following statistics are created from MAC Receive descriptors:
*RxRunts, RxCrcErrors, RxOversize, RxDribbleBits, RxAlignmentErrors

The following statistics are created from software interrupts from the MAC:
TxExcessiveCollisions, TxFifoUnderruns, *TxJabbers

The following statistics are created from software events or counts:
TxBroadcast, TxMulticast, TxOverflows, TxFiltered, RxBroadcast, RxMulticast,

 RxOverflow, RxFiltered

Other Statistics that can be derived from software, such as the outcome of packet classification,
may be added as needed.

*May or may not be supported by MAC.

2.1.2 Power Management

Power Management supports four device states, D0 through D3. These states indicate the functional
state of the adapter. Each state has a corresponding PCI bus state B0 though B3. Each bus state
indicates the amount of power and functionality of the PCI bus. D0 & B0 are a fully functioning system
which we will call the highest state. D3 & B3 are a fully powered down state, where the adapter may not
have power, we will call this the lowest state. The transition of states D0 through D3 is performed
through the driver. The transfer from B0 though B3 are PCI changes made to the PCI bus. A
requirement for changing these states is that the adapter’s device state must never be higher than the
bus state. This is to say that before the PCI will move from D0 to and other state less than D0, the driver
will be told to move the device state to a state that will be less than or equal to the impending bus state.
Likewise when moving back toward D0, the bus state will move back toward B0 before the device state.

Typhoon supports all four device states, but D1, D2 and D3 are identical from a software functionality
point of view:

D0
• The Adapter is ON, running and fully functional.

D1, D2, D3 Hot & Cold

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

8

• Power may be removed, if power is removed, it is expected that the host will assert
RESET upon powering up. -B3 only

• No PCI bus transmission - B3
• No PCI bus reception - B3
• Wakeup events are supported as long as power has not been removed
• Sleep events (Enhanced Remote Wakeup) are supported as long as power has not been

removed
• Changes in Power Management State are supported as long as power has not been

removed
• The processor will reduce its clock rate to conserve power
• Promiscuous mode packet filtering is not supported.

D3 Disabled – ARM Clock Stoped
• PCI configuration state is preserved if power has not been removed
• No PCI bus transmission -B1
• No PCI bus reception - B1
• Wakeup Events are supported
• Changes in Power Management State are supported if power has not been removed
• No Wakeup or Sleep events supported
• MAC will be held in reset

Before the bus state is changed from B0 to B1-3, the driver will be told what state we are moving to and
what to support while asleep, i.e. wake-up events. Before acknowledging this information, the driver will
pass this on to the adapter and the adapter will prepare to go to sleep. Once ready, the adapter will
notify the driver and the driver can acknowledge that we are in the appropriate driver state.

2.1.3 Enhanced Remote Wakeup

Wakeup Events

While the adapter is in any non-D0 state that does include Power to the ARM, it has the ability to tell the
host to wake up from its sleep mode based on a network event. A wake-up event is the network
indication that we should request the hardware and software external to the adapter to put the system
into the power state BO (working) by asserting the PME# signal on the PCI bus. Before being placed
in a sleep mode, the driver will tell the adapter what conditions to look for as a wake-up event.

The following wake up events will be supported:

• Change in Network Link State.
• Receipt of Network Wakeup Frame.
• Receipt of Magic Packet.
• Sleep Timer: Typhoon will wake the system at a user-defined time in the future.
• Receipt of an ARP request directed to this host.
• Receipt of an ICMP Echo Request directed to this host.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

9

Sleep Events (Deep Sleep)

It may be necessary during adapter sleep to occasionally send out network packets to the keep route
tables and windows browse masters updated. This is required so that when the system wakes up the
network will be better prepared to begin forwarding packets or to keep devices updated so that the
packet required to wake the system will be delivered.

The sleep events that will be supported in Typhoon are:

• MAC keep-alives – packets to keep Typhoon’s MAC address alive in switches and
multicast membership groups.

• ARP replies – Typhoon will answer ARP requests for its IP address.
• Ping replies – Typhoon will answer ICMP Echo Requests for its IP address
• Master Browser Host Announcements –Typhoon will announce its presence to the local

Master Browser to maintain its position in the Network Neighborhood.
• DHCP Lease Renewal – Typhoon will maintain the DHCP lease on its IP address while

asleep.
• Novell Watchdogs – Typhoon will respond to packets sent by a Novell server to maintain

the client connection.

No encryption or decryption will be supported in sleep mode

2.1.4 Personal Firewall

This feature consists of 2 functions, broadcast throttling and DHCP prevention.

Broadcast Throttling

Broadcast throttling is implemented on both the transmit and receive data streams. The host can
specify a transmit broadcast threshold as a percentage of the transmit bandwidth. The adapter monitors
each data stream and discards any broadcast or multicast packets that exceed this limit.

The broadcast limit can be specified to an accuracy of 1%, Zero will discard all broadcast and multicast,
100 will discard none.

The adapter will implement this feature by calculating the broadcast usage over set time periods. For
example, assume the adapter has an internal sample time period of 10ms, it is configured with a
broadcast limit of 20%, and is transmitting at 100Mbs.

Total Tx in sample period: 1Mbit
Broadcast Tx limit in sample period: 200kbit

In this example the first 20kbits of broadcast or multicast data in any 10ms period is transmitted. Once
this threshold is reached all broadcast or multicast packets are discarded until the next period is started.

DHCP Prevention

This feature prevents the PC from acting like a DHCP server. All receive packets are passed through a
DHCP filter and are discarded if they are deemed to be destined for the DHCP process. DHCP packets
are recognized as being UDP/IP packets to the well known DHCP port (67).

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

10

2.1.5 I2C Serial Port Driver

An I2C interface is supplied by Typhoon for the purpose of connecting support slave devices, such as
the National Semiconductor LM78 Microprocessor System Hardware Monitor used for temperature,
voltage and fan speed monitoring. Devices such as this are slave only devices that may be written and
read by Typhoon for system diagnostic purposes. Software support will need to be added as devices
are selected.

This Typhoon I2C interface is a single master interface only, where Typhoon is the master. This is
currently targeted for chip down applications.

2.1.6 Heartbeat

The Typhoon microcode provides a heartbeat signal to the host to indicate that the ARM9 is executing
code. The ARM2Host Register 3 is continuously written with an incrementing 32 bit value by the ARM9.
The rate of update of this register is on the order of 8ms per write, each write incrementing the value.
The host can test for this register incrementing to determine if the ARM9 is not hung.

2.1.7 Off-line Diagnostics

Off-line Diagnostics refers to the ability to communicate with the adapter, from the network, for the
purpose of running diagnostics. The intent of this communication is to create the ability to query the
adapter about the state of the system. Off-line Diagnostics are not used to monitor an operational
system. If the system is operational then communication between the network manager and the host
can be used for system monitoring.

When the adapter boots it will load an image from non-volatile memory containing functionality to
communicate over the network. Because the host may fail POST, the adapter must load this image at
power-up rather than having the host download it to the adapter or having the host direct the adapter to
load it from non-volatile memory. This will allow a diagnostic query/response even if the host POST
fails.

When the adapter intercepts an Off-line Diagnostic request it can report the following:

• Report the current state of host/adapter communication
• Report last host value written to Port 80h
• Report diagnostic information for the adapter
• Report data from the host system memory (blue-screen)

Report the current state of host/adapter communication

The adapter can report the current state of host/adapter communication. When the diagnostic
request is received, the adapter can send a ‘ping’ command to the host. If the host does not
respond within a defined time period, then the adapter will report that the host is not
communicating. The adapter could also determine that the host is not communicating if it is still
waiting for the boot record from the host or if the host has not interrupted the adapter within a
defined time period.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

11

Report last Host value written to Port 80h

If the adapter determines that the host is not communicating then it could report the last value
written by the host to Port 80h. When the host performs POST is uses I/O Port 80h to write a test
point code value. If the host hangs during POST because of a terminal error condition then Port
80h will indicate the point at which the host halted execution. The Port 80h value will have to be
decoded by either the adapter or the external application requesting the diagnostic report. The
current proposal is for the external application to decode it because the adapter has limited
storage. The main set of POST codes need to be identified which are common to the different
BIOS versions and then determine if the adapter will have to report the BIOS vendor/version in the
diagnostic report in order for the external application to decode the value.

Report diagnostic information for the Adapter

The adapter reports its POST result.

Report data from the Host system memory

If the adapter determines that the host is not communicating then it could read pertinent
information from host system memory. The adapter could check whether or not the system timer
is running and also report contents from the video buffer (blue-screen). The external application
would have to interpret the contents.

There are a number of outstanding issues related to Off-line Diagnostics. The network
management application (EdgeMonitor?) which will send the diagnostic request and interpret the
response needs to be defined. The protocol (SNMP, AMP over UDP?), request and response can
then be defined. Other issues can then be addressed such as whether or not the adapter should
send unsolicited diagnostic reports (SNMP traps). Unsolicited reports would require the network
management application to configure parameters on the adapter. Required parameters would
include the destination address for unsolicited reports, an enable/disable diagnostic mode
parameter, and an identifier for indicating the type of information which should be reported (i.e.,
only report host/adapter communication failure). Required parameters such as the destination
address would need to be stored in the adapter’s NV Device so that they are maintained through a
reset. Another issue which needs to be addressed is whether or not the adapter will always
intercept the diagnostic request or only look for the diagnostic request when it has detected that
the host is no longer communicating? If the adapter ignores the request because the host is
operational then who responds, the TDI?

There are no current plans for the following Off-line Diagnostic support:

• Report logged data. The adapter could be used to store data logged by an application. Pertinent
information could be stored in non-volatile memory if it is useful after a power-cycle (the adapter will
restrict the frequency and type of information stored to non-volatile memory). No application has
been identified, maybe EdgeMonitor?

• Report diagnostic information from the devices on the I2C interface. No devices are on the
adapter’s I2C interface.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

12

2.2 Performance Enhancements

2.2.1 TCP/IP Checksum Generation and Verification

IP Checksum

The processor on the adapter will support an IP checksum insertion and verification for packets using
IPv4 for the IP forms of Ethernet Type 0x0800, 802.2 and SNAP.

Reference Microsoft document “Task Offloading in NDIS 5.0 for Windows NT5.0” for more details
on IP Checksum Offloading.

TCP Checksum

The processor on the adapter will support a TCP checksum insertion and verification for packets using
TCP/IP. The processor will calculate the checksum using the hardware checksums available through
the packet DMA process. The checksums from the DMA will be corrected by software for data not
included in the actual checksum calculation.

For transmit packets, the TCP Pseudo Header Checksum should be in the TCP checksum field.

Reference Microsoft document “Task Offloading in NDIS 5.0 for Windows NT5.0” for more details
on TCP Checksum Offloading.

NOTE: The adapter will not support the insertion or verification of TCP checksums on fragmented IP
packets since it will not store the packet for fragmentation or re-assembly.

2.2.2 TCP Segmentation

TCP can pass a buffer, containing a “large datagram” bigger than the MTU of the medium and the
MSS, to be transmitted. The goal is to reduce host CPU utilization and number of interrupts, and to
improve performance and scalability.

A session MSS will be passed down to the adapter along with the datagram, telling Typhoon the
segment size of the TCP payload for the packet transmission. The size of the datagram first datagram
is specified in the IP Total Length field. From this value the MSS could be extracted through
calculations, however, the MSS is pass to the driver through the NDIS_PER_PACKET_INFO_FROM_PACKET
structure. The total Length of the packet and MSS will be sent to the adapter in a TCP option header.

The typhoon adapter will not support MSS less than 4 bytes. The driver should fail packets with an
MSS less than 4 byte without sending to the adapter.

The large datagram will be passed to Typhoon as an oversized MAC frame, with template frame
header, IP header and TCP header. TCP protocol can pass down only payload of size within the
advertised window of the other side. Typhoon will handle the large datagram as a shorthand request to
transmit a series of normal TCP datagrams, with limited protocol handling for each segment of

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

13

transmitting. For the handling of large datagram sends interleaving small sends (regular sends), the
adapter maintains an order-preserving queue for each session involving large sends.

NOTE: The receive ACK, retransmission, and window maintenance will not be handled by Typhoon.

Typhoon takes the incoming datagram and carves it up into fragments based on the MSS passed
down. All packets but the last will have a payload exactly MSS bytes in size. The last may be smaller.

The header of outgoing packets is derived from the template header on the incoming datagram as
follows:

1) Unless otherwise specified, fields are simply copied from the template to the outgoing
packet without change.

2) The MAC header is used exactly.

3) The IPV4 header is copied exactly, except for IP total length, which will be computed
correctly for each datagram transmitted, and the IP identification (ID) field, which is
advanced for each packet, with the first packet’s ID copied from the template.

4) The IP header checksum is computed for each datagram transmitted.

5) The TCP header is copied exactly, except the sequence number (SEQ), which will be
advanced correctly for each datagram transmitted, with the first SEQ copied from the
template and succeeding ones advanced by MSS bytes.

6) The FIN and PUSH bits are set to zero for all but the last packet. These bit will be set to
the value in the template on the last packet in the datagram transmitted.

7) The TCP checksum is computed for each datagram transmitted.

8) IP and TCP Options will be allowed. The adapter will not alter their value.

Reference Microsoft document “Task Offloading in NDIS 5.0 for Windows NT5.0” for more details
on TCP Segmentation Offloading.

2.2.3

2.2.4 IEEE 802.1p/Q Class of Service Priorities

Transmit priority levels will be supported by the adapter. The current plans are to support 8 priority
levels internal to Typhoon. Packets will be transmitted over the wire in priority order, not in the order
received from the host. The prioritizing of the packets is specified by the host and contained in the
Priority field in the 802.1 Q tagged frame.

In addition to the tagging service on a per-packet basis, Typhoon supports COS (Class of Service)
policy negotiation for establishing COS interoperability with remote hosts. Typhoon maintains a table of
remote host addresses with which Typhoon has a bilateral understanding of COS tagging. COS tagging
is performed only for those packets to or from those hosts which appear in the table.

Typhoon initiates the COS negotiation when an outbound packet with a tagging request is first received
that is destined to a remote host which is not listed in the COS table. The negotiation is performed via
ICMP Ping messages (Details TBD).

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

14

Typhoon forwards all traffic to the remote host without tagging prior to the completion of COS
negotiation.

2.2.5 IPSec

Typhoon will assist the host in performing various security services for traffic at the IP layer, in the IPv4
environment.

Typhoon provides support for IPSec as a BITS (Bump-in-the-stack) implementation

Typhoon's support for IPSec conforms to the following draft standards:

draft-ietf-ipsec-arch-sec-02.txt Obsoletes RFC 1825
draft-ietf-ipsec-auth-header-03.txt November 1997
draft-ietf-ipsec-esp-v2-02.txt November 1997

2.2.5.1 Off-loading IPSec processing to Typhoon

Typhoon provides support only for calculation-intensive part of IPSec, such as ICV (Integrity Check
Value) calculation and encryption/decryption. Typhoon expects the host itself to handle all other protocol
related tasks, such as key management, Security Policy and Security Association establishment, PMTU
discovery, and traffic filtering prior to enforcing various security policies.

Due to its limited buffer capacity, incoming fragmented IP datagrams will not be re-assembled on the
adapter unless they are less than 2 fragments. No IPSec processing will be done for the other general
cases. However, Typhoon makes no assumption about the fragmentation status of the outbound traffic
that is to be processed by the Ipsec logic, which may be fragmented (in tunnel mode) if the host
chooses to handle them. Correspondingly it makes no assumption about the fragmentation status of
the inbound packets which appear after the Ipsec processing.

To request for Typhoon's assistance in IPSec processing, the requester must provide place holders for
all AH headers, ESP headers, and all authentication data, properly embedded within the datagram per
IPSec specification. Typhoon also expects all explicit DES padding except in the case of a large TCP
datagram that is to be segmented by the adapter.

For outgoing traffic for which IPSec processing is requested, Typhoon expects all the Security
Associations have been resolved by the host, which include the key management, Security Association
establishment and creation, and the traffic classification to determine the proper Security Association.
Typhoon will supply the IV (Initialization Vector, randomly selected per packet. Typhoon will not attempt
to extend the CBC across the packets), calculate the Integrity Check Value (ICV), and encrypt data for
ESP or BITW request. The SA selector matching and filtering, the assignment of the SPI value, the
maintenance of anti-replay sequence number and windows, and all necessary DES padding are the
responsibility of the requester.

For incoming traffic for which IPSec processing is requested, the adapter will generate the ICV and
decrypt them per Security Association identified by the triplet <protocol-type, destination-address, SPI>.
The SA selector matching and filtering and the enforcement of anti-replay policy are the responsibility of
the requester. Note also that in Phase I the adapter performs “Crypto-only” functions for IPSec. The

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

15

parsed IPSec headers, if nested, may not match the order required by the Security Policy, that must be
re-parsed and checked by the host to enforce the relevant Security Policies.

Limited auditing will be provided by Typhoon for traffic on which the on-board IPSec processing is
performed. All auditing reports are limited to local node. There is no support for the receiver to transmit
any message to the purported transmitter in response to the detection of an auditable event.

2.2.5.2 Combination of Security Associations

Typhoon supports the host both as an IPSec host and/or an IPSec Security Gateway.

For outbound traffic, Typhoon supports the following combination of AH and ESP headers:

1. Tunneling of clear-text plain packet.
2. Basic IPSec packet: This is a combination of AH and ESP in the following two modes:

Transport Tunnel

1. [IP1] [AH] [upper] 4. [IP2] [AH] [IP1] [upper]
2. [IP1] [ESP] [upper] 5. [IP2] [ESP] [IP1] [upper]
3. [IP1] [AH] [ESP] [upper] 6. [IP2] [AH] [ESP] [upper]

3. Tunneling of Basic IPSec Packets (defined in 2. above) which have already undergone one level of
IPSec processing.

For inbound traffic, Typhoon supports any combination of AH and ESP modes, as long as the Security
Association of each triggered IPSec processing is unambiguously defined. However, only one level of
nesting is supported per single round of IPSec processing on the adapter.

Additional nesting of Security Associations, for both the inbound and outbound traffic, can be
accomplished by utilizing Typhoon as a BITW outboard crypto-processor to create the IPSec header
calculation, prior to the transmitting of the IPSec packets.

2.2.5.3 Performance consideration

Typhoon utilizes the on-board hardware (Sidewinder) to do most of the IPSec processing.
Sidewinder is capable of performing a combination of HASH and DES in one pass. For example,
for outbound traffic in transport mode with an AH and an ESP without ICV, the IPSec processing
requires only a single pass through the Sidewinder. However, for multiple level of nesting or
combination of an AH and an ESP with ICV, multiple passes through the Sidewinder are required.
The performance of the IPSec processing is strictly a function of the number of Sidewinder
passes needed to complete the processing.

For properly aligned packets, Sidewinder can deliver around 200 mega-bps per pass at 80 mega-
Hz clock.

Examples:
Packet of format [IP1] [ESP with ICV] [Upper] require 1 pass.
Packet of format [IP1] [AH] [ESP without ICV] [Upper] require 1 pass.
Packet of format [IP2] [ESP with ICV] [IP1] [AH] [ESP with ICV] [Upper] require 3 passes.

2.2.5.4 Conformance requirements

The following mandatory-to-implement algorithms are supported:

• HMAC with MD5 [C. Madson & R. Glenn, "The Use of HMAC-MD5-96 within ESP and AH",
Internet Draft, 7/2/97.]

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

16

• HMAC with SHA-1 [C. Madson & R. Glenn, "The Use of HMAC-SHA-1-96 within ESP and AH",

Internet Draft, 7/2/97.]

• DES in CBC mode [C. Madson & N. Doraswamy, "The ESP DES-CBC Cipher Algorithm With

Explicit IV", Internet Draft, 07/02/1997."]

2.2.5.5 IPSec datagram flow description

The passing of network packet through the TCP/IP stack, the NDIS driver, and Typhoon can be
characterized as follows:

1. On initialization, the Typhoon NDIS driver will declare its IPSec capabilities through
the NDIS_TASK_IPSEC structure as follows:

? AH+ESP combinations supported.

? IP options supported

? Query SPI supported

? For AH, MD5, SHA-1 are supported for both the Tunnel and Transport Mode,
and for both Send and Receive. Only Ipv4 is supported (Ipv6 is not
supported).

? For ESP, DES and Triple-DES are supported for both the Tunnel and
Transport Mode, and for both Send and Receive. Only Ipv4 is supported (Ipv6
is not supported).

? Only CryptoOnly is supported

2. Typhoon also has a built-in hardware digital non-deterministic random number
generator. When requested, Typhoon can provide a specified set of random numbers
to the host, which can be a basis of various key generation and random number
seeding.

3. Prior to the sending and receiving of IPSec network packets, the Stack must establish
its Security Policy Database (SPD) and Security Association Database (SAD). Part of
the SAD will be passed down to the NDIS Driver through OIDs, one for the creation of
a SA (OID_TCP_TASK_IPSEC_ADD_SA) and one for the deletion of a previously
created SA (OID_TCP_TASK_IPSEC_DELECT_SA). The OIDs will be used to
maintain the SAD inside the Driver during the on-line operation.

4. The NDIS Driver strips off the Selector part of the SAD (retains only the Destination
Address specification) and passes down to Typhoon only information related to the
HASH and DES algorithms, which include the algorithm descriptor, the keys, and the
padding convention. The adapter produces IPAD keys and OPAD keys in preparation
for the HASH operation. For the adapter, a SA is identified either through the SA id
on sending, or the triplet <destination address, SPI, ESP or AH> on receiving traffic.
Note that as far as the adapter is concerned, the SPI is only meaningful for the
inbound traffic. The creation and deletion of SA for Typhoon is typically carried out in-
band. (For Phase I, the adapter is used as a outboard crypto-engin that does not
perform IPSec selector functions. The identification of SA for the outbound traffic is
also done through the SPI.)

5. Once the SAD is established on both the host side and the Typhoon side, the IPSec
traffic is then allowed to flow. In the following example, we use a TCP datagram in
Transport mode as an example.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

17

6. On sending, the Stack prepares all the headers for IPSec based on its SPD and SAD.
Since Typhoon is declared as CryptoOnly, all buffer space for AH, ESP, and trailing
padding and HASH value is pre-allocated by the Stack. In addition to the IP header
and TCP header, the Stack is also responsible for the following task:

? In AH, it fills the Next Header field.

? The TCP datagram is encapsulated as an ESP, with the TCP header
embedded at offset 8+length-of-IV (8 bytes). The host is responsible for
allocating space for all padding bytes in all cases.

7. The NDIS Driver accepts the outbound network packet (in clear text), figures out the
mode and nesting requirement (Transport, Tunnel, or combination) based on the IP
header, AH header, and ESP format, and for each AH or ESP, searches for the SA in
its SA Database based on the following Selectors (This is performed per outbound
packet):

? Source Address

? Destination Address

? Transport Protocol

? Source Port (in TCP header)

? Destination Port (in TCP header)

? AH or ESP

? TOS (Type of Service)

? Data Sensitivity Level (IP option, IPSO/CIPSO labels)

8. After identifying the proper Security Associations, one per AH or ESP, the Driver then
performs the following tasks:

? It fills the Payload Length, SPI and Sequence Number Fields in the AH per
identified SA.

? It fills the SPI, the Sequence Number, Pad Length, all the Padding bytes, and
Next Header in ESP per identified SA.

? It formulates an Option Descriptor containing the identifier of the identified
SA’s in an array. The multi-fragment frame will then be placed in the Tx
Descriptor Ring.

9. The adapter will retrieve the IPSec network packet from the Tx Descriptor Ring, walk
down the packet to parse the various IP headers and to determine the nesting levels,
and based on the information passed in via the Option Descriptor, identify all the
SA’s. Based on the SA’s, the adapter formulates a request to Sidewinder with the
following data:

? IV (Initialization Vector, 64 bits. This is for DES only.) The adapter provides a
software random number generator for IV. It initially seeds the IV with a
hardware-generated random number produced by the Sidewinder’s
Randomizer. It then saves the last 64-bit of the DES or HASH output and
uses it as the IV for the succeeding round of DES. The adapter periodically
re-seeds the generation of IV with new random number produced by the
Sidewinder.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

18

? DES key (64 bits).

? 2-key Triple-DES (128 bits) or 3-key Triple-DES (192 bits).

? HMAC IPAD/OPAD keys, four 32-bit words for MD5, five 32-bit words for
SHA-1

? HASH offset and length.

? DES offset and length.

? Op code to indicate the algorithm.

10. For AH processing, prior to issuing the request to Sidewinder, the adapter must save
all the “mutable” fields, plug in the predictable value expected at the receiving side if
predictable, and zero out the rest for the HASH processing. It restores those fields
after the Sidewinder processing. The mutable fields are:

? Destination Address (with loose or strict source routing), mutable but
predictable

? TOS

? Flags

? Fragment Offset

? TTL

? Header Checksum

? Options (Each individual options must be check for mutability. If an option is
classified as mutable, the entire option is zeroed for ICV computation
purposes.)

11. For HASH, the Sidewinder outputs a Digest of equal length as the IPAD/OPAD keys.
The adapter truncates the Digest to a 96-bit value before placing it into the packet.

12. Depending on the depth of nesting, the adapter may feed the same IPSec packet
through Sidewinder several times. However, in most common cases, namely the ESP
with Authentication data in Transport mode, one round through the Sidewinder will
accomplish both the DES and HASH.

13. After the IPSec processing, the network packet is put on the wire like all other normal
non-IPSec packet. Note that the adapter assumes that the final frame length is within
the MTU of the local Ethernet. In other words, the Stack and the Driver is responsible
for ensuring the final IPSec packet is within the MTU constraints.

14. For inbound traffic, IPSec processing is the reverse of the above logic, with the
following exceptions:

? The adapter does not have the ability to handle the general case of
fragmented IP packet. If the Fragment Offset is non-zero, or the More
Fragments bit is set, the packet is considered fragmented. If the number of
fragments is not more than 2, then the adapter will attempt to put them
together before applying the IPSec processing. All other cases are “punted”
to the host. In other words, the host is expected to handle the re-assembly.
The host must have a software implementation of IPSec so that the
fragmented IP packets can be handled in the host.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

19

? For non-fragmented network packet, the adapter uses the triplet <Destination
Address, SPI, AH or ESP> within the packet to look up its local copy of SAD.
Once the SA is found, the adapter will perform the HASH or DES accordingly.
This look-up is performed per packet.

? The result of HASH and DES is returned directly via the response frame.

? The host is expected to verify the Sequence Number per SA. The NDIS driver
is also expected to apply the Selector per SA to further filter out unwanted
packets. Note that since the adapter is CryptoOnly and does not handle the
IPSec Sequence Number, it can not regulate the traffic to prevent the Denial
of Service attack.

3. Theory of Operation

3.1 Host Adapter Interface

Information is passed between the host and the adapter using shared data structures in the host's
memory.

3.1.1 Packet Type

There are two types of information passed between the host and the adapter:

Network Packets Contains either Transmit or Receive data framed for network transmission.
Data in a network packet is formatted in the standard network byte order.

Control Packets Contains meta-information, which is for initializing or setting of operation
environment and for maintaining context and state that controls the packet
handling. It is either a command, or a response to a previously issued
command.

3.1.2 Data Format and Alignment Convention

The adapter card stores data in little endian format as does the Intel based. Therefore there is no need
to convert the data structure in the control information package between the two. Control data must be
aligned on a 32-bit word boundary on both platforms in order to avoid endianess conversion. However,
since network byte order is specified as big endian, the adapter must convert any data item in the
packet data into the correct byte order if it needs to manipulate it as integers.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

20

For IP packet data, the IP header must also be aligned on a 32-bit word boundary in adapter memory
so that all IP header structures can be accessed conveniently (after endianess conversion). However,
since the MAC header is of size either 14 bytes or 22 bytes, it must be aligned on an odd 16-bit
boundary so that the IP header can be correctly aligned. Other than the processing of VLAN tag or large
TCP packets, the adapter is not expected to break up the packet or move around parts of it.

The control data is identified by a command code, followed by the Sequence number and one or more
parameters. The command code indicates the kind of services requested by the command. The
Sequence number is initialized by the issuer of the command and is carried by the response in
responding to the original command. However, it is treated as opaque data to the receiver and must not
be altered.

Control data is passed either in-band or out-of-band. In-band control data is synchronized to the packet
data stream and must be handled in the order received relevant to the packet data. Its execution
sequence within the packet data stream affects the function of the In-band control data. Due to the in-
band nature of the control data, the processing duration should be reasonably short in order not to delay
normal flow of packet data traffic.

3.2 Host Adapter Interface Ring Buffer

A number of ring buffers are set up in the host memory, which are dedicated for either host-to-adapter
or adapter-to-host communication.

In the case of a ring buffer used for host-to-adapter data transfer, 2 index variables, a write and a read
index are used to manage the ring. The host writes data into the ring and updates the write index to
inform the adapter of the new data. The adapter reads data from the ring and updates the read index to
inform the host that the space is available for re-use.

There are 6 ring buffers defined, 2 for transmit, 2 for receive and 2 for control, they are:

Tx Rings (Hi & Lo priority) contain packet descriptors for packets to be transmitted or control
commands to be executed in-band through the adapter.

Rx Rings (Hi & Lo priority) contain rings of descriptors that the adapters writes to give the host
access to received packets, to return response data or status for
previously issued host command, or to issue a request to the host from
the adapter.

Rx Buffer Ring contains pointers to maximum size empty buffers that the adapter can
use to store received packets.

Command Ring contains command descriptors for host-to-adapter control information.

Response Ring contains response descriptors for adapter-to-host control information.

All 7 rings and the index variables are shown in the following diagram. Note that only 3 of the indexes
use registers, the other 11 are part of host resident data structures.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

21

Tx Lo Read

Resp Read

Rx Buff Write

Cmd Write

Tx Hi
Ring

Tx Lo
 Ring

Rx Buffer
Ring

Command
Ring

Response
Ring

Rx Hi
Ring

PCI BUS

Host Memory

Rx Hi Read

Cmd Read

Resp Write

Rx Buff Read

Rx Lo Write

Tx Hi ReadHost WRITE ONLY
Adapter READ ONLY

Host READ ONLY
Adapter WRITE ONLY

Typhoon
Registers

Typhoon

Rx Lo
Ring

Tx Hi Write Tx Lo Write

Rx Lo Read

Rx Hi Write

All rings have the following restrictions:
• Rings have base addresses of 64 bits, but no ring can traverse a 32 bit address boundary, i.e.

the top 32 bits of the address of any element in a ring is constant.
• The rings must always have at least one empty location. This is due to the fact that when the

read and write indexes are equal the ring is empty. The write index must never be incremented
such that it equals the read index when the ring is full.

The index variables into the 7 rings are grouped into 2 data structures in host memory, one containing
the data that is read-only to the adapter, the other that is write-only to the adapter. All but 3 of the
indexes are stored in these structures. The other 3 indexes, Tx Hi Write Index, Tx Lo Write Index and
Command Write Index are stored in a dedicated Host-to-Arm register.

The reason for 2 different forms of storing the indexes is to ensure immediate action on some and more
delayed on others. Also host register writes are relatively efficient and can be used to interrupt the
adapter, but Arm-to-Host register operations are inefficient and are avoided. The indexes in registers
cause interrupts to the ARM when written by the host. The Host-to-Arm indexes stored in host memory
are periodically polled (using DMA) by the adapter to determine if they have been updated by the host.
The Arm-to-Host indexes are periodically updated by the adapter using DMA writes.

The following register assignments are used (note that since the indexes are 16 bits, each register
contains 2 index values).

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

22

Host to Adapter Registers:

Register Runtime

Register 0:* unused
Register 1:* PCI Tx Hi Write Index,
Register 2:* PCI Cmd Write Index
Register 3:* PCI Tx Lo Write Index
Register 4: unused
Register 5: unused
Register 6: unused
Register 7: unused

* These registers cause an ARM interrupt when written by the host.

Adapter to Host Registers

Register Runtime

Register 0: PCI Status Register
Register 1: unused
Register 2: unused
Register 3: unused

The 2 data structures in host memory that contain the ring indexes that are not stored in memory are
described below. The HostToArm structure is READ ONLY to the Typhoon, the ArmToHost structure
is WRITE ONLY to the Typhoon.

ArmToHost data structure

32bit: RxHiRead
32bit: RxLoRead
32bit: RxBuffWrite
32bit: RespRead

HostToArm data structure

32bit: TxLoRead
32bit: TxHiRead
32bit: RxLoWrite
32bit: RxBuffRead
32bit: CmdRead
32bit: RespWrite
32bit: RxHiWrite

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

23

3.3 Packet Flow Convention

Due to its limited storage space, all packet buffers reside in the host memory. The function and
structure of those interface ring buffers reflect this asymmetry.

The passing of network packets generally does not expect a response or status return. The transmit
buffer will be returned to the host after the adapter has transmitted the packet, to allow the host to free
the buffer memory.

On the other hand, the passing of control packets usually follows the request/response pattern. The
issuer of the request must properly prepare all the buffers to house both the input parameters and the
response (output) data.

The passing of packet through the ring buffers can be characterized as follows:

• Transmit network packets are passed from the host to the adapter through one of the
Tx Rings.

• Host-to-adapter control packets can be passed to the adapter either in-band or out-of-
band. The general case is to pass control information using the out-of-band data
path, which uses the Command Ring. Control information that is synchronized to the
data stream may be passed in-band through the Tx Rings. In either case the
response is returned using the Response Ring.

• Received network packets are passed from the adapter to the host through the
Receive Ring. The adapter must acquire a buffer from the host through the Rx Buffer
Ring before it can send the packet to the host.

• Adapter-to-host control packets are relatively rare and typically do not expect
response data to be returned. The adapter uses the Response Ring to pass the
control packets to the host.

• The response data to an adapter-to-host control packet, if any, will be returned
through the Response Ring.

3.3.1 Host-to-adapter Packet Flow

Packets are transmitted to the adapter by the host writing descriptors into shared ring buffers in host
memory. Access to the ring buffer is controlled by two index variables, which are stored in host
memory. The Tx Write Indexes and the Tx Read Indexes are used as follows.

The indexes are initialized to point to the start of an empty ring (initialized to zero). The Tx Write Indexes
point to the next location in the ring into which the host will write data, they are never written by the
adapter. The Tx Read Indexes point to the next descriptor to be read by the adapter, they are updated
by the adapter after the descriptor has been copied to internal adapter memory and are never by written
by the host except during initialization. The 2 indexes being equal indicate the ring is empty. The write
index is never incremented to equal the read pointer for a full ring. This implies that the ring can not be
completely filled and at least one entry must remain free to prevent the 2 indexes becoming equal.

To transmit a frame the host writes a frame descriptor and multiple fragment descriptors into the ring. It
then updates the write index and writes the value to the PCI Tx Write Index register. This interrupts the
ARM which copies the complete Packet Descriptor Block to the adapter.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

24

 Tx Write Index

Tx Ring

 Tx Read Index

Host Writes
Adapter Reads

Adaper Writes
Host Reads

Transmit frames are described by a sequence of descriptors formed into a Frame Descriptor Block. A
Frame Descriptor Block describes a single frame and consists of one Frame Descriptor followed by one
or more Option Frame Descriptors followed by one or more Fragment Descriptors.

A Frame Descriptor Block may wrap in the Tx Ring. The ring will be sized such that individual
descriptors will never wrap, i.e. each data structure will always be in contiguous memory. This is
achieved by defining all descriptors to be the same size (16 bytes) and ensuring that the ring is a
multiple of the descriptor size.

Fragment Descriptor

Frame Descriptor

Option Frame Desc

Command Descriptor

Option Frame Desc

Fragment Descriptor

Fragment Descriptor

Command Ext Desc

Command Ext Desc

Tx Descriptor Ring

Frame Descriptor Block
(Tx Packet)

Frame Descriptor Block
(Command)

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

25

Responses To Transmitted Packets

In the general case for transmitting packets, the following sequence is followed:

1. The host transmits a packet to the adapter.

2. The adapter transmits the packet over the network and informs the host that the buffer
can be freed.

3. The host frees the buffer.

There is no positive or negative acknowledge of the result of a packet transmit. If the adapter fails to
transmit a packet it may still return the buffer to be freed without informing the host that an error
occurred.

In the case of large transmitted packets that require TCP segmenting by the adapter an
acknowledgement for each large packet is required. The more common case of successful
transmission requires a positive acknowledgement. This is done implicitly by the freeing of the transmit
buffer, i.e. in the case where TCP segmentation occurs, the freeing of the buffer in the normal manner
implies a successful transmission of the whole packet. If an error occurs then an error response is
returned on the Response Ring.

The same mechanism is used when transmitting encrypted packets. If the adapter successfully
encrypts and transmits a packet it implicitly returns a positive acknowledge by freeing the buffer. If an
error occurs it returns an error response on the Response Ring.

Packet Transmit Descriptors

The main purpose of the Tx Ring is to pass data packets to the adapter for transmission. The general
case is transmitting non-encrypted, non-segmented packets and the format of the descriptors is tuned
for this purpose. In this case a packet is described by a single Data Frame Descriptor followed by one
or more Fragment Descriptors.

Tx Frame Descriptor

A Tx Frame Descriptor is the first descriptor in a Frame Descriptor Block and contains information
pertinent to the complete frame.

32 bits

Process Flags

Virtual Address Hi

Num Desc

Virtual Address Lo

Zero Flags

Tx Frame Descriptor

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

26

The descriptor has the following fields:

Flags [0:7] [0:2] – DescriptorType. (Set to 001 – Tx Frame Descriptor)
000 – Fragment Descriptor
001 – Tx Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Response Descriptor

[3:7] – Reserved. Set to zero.

NumDesc [8:15] The number of descriptors following this one in this Frame
Descriptor Block. This includes Option Descriptors and Fragment
Descriptors. It may be zero, one, or many.

Zero [16:32] May be used for the Number of bytes in the complete packet. If
zero then this field contains no valid data.

Virtual Address Low [0:31] The least significant 32 bits of the virtual address in host memory
of the packet. This value is passed back from the adapter to the
host when the host can free the packet memory. The adapter does
not use this field.

Virtual Address High [0:31] The most significant 32 bits of the virtual address in host memory
of the packet. This value is passed back from the adapter to the
host when the host can free the packet memory. The adapter does
not use this field.

Process Flags [0:31] [0] – Do Not Add CRC. If 0 then the adapter adds a frame CRC
else the CRC is already included in the packet.

[1] – IP Checksum. If 1 then the adapter computes and inserts the
IP checksum.

[2] – TCP Checksum. If 1 then the adapter computes and inserts
the TCP checksum.

[3] – TCP Segment. If 1 then the adapter must perform TCP
segmentation on the frame.

[4] – Insert VLAN. If 1 then the adapter must insert the previously
stored VLAN tag into the frame.

[5] – IPSec.. If 1 then the adapter must perform some type of
IPSec functionality on the frame. The encryption parameters are
specified in an Extension Frame Descriptor.

[6] – Priority Valid. Set if Priority field is valid

[7] – UDP Checksum. If 1 then the adapter computes and inserts
the UDP checksum.

[8] – Pad Frame. If 1 then the pads the frame with zeros to the
length specified in the Pad Pkt field. This option is only valid is the
adapter is appending a MAC CRC.

[9:11] – Reserved. Set to zero

[12: 27] VLAN and Priority Value. Priority located at bits [20: 22].

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

27

[28:31] – Reserved. Used internally by Typhoon Software.
Set to zero.

Fragment Descriptor

A number of Fragment Descriptors describe the multiple fragments that form the packet data. Each one
points to a buffer in host memory and contains any other pertinent information on this single fragment.

32 bits

Reserved2

Fragment Address Hi

 Reserved1

Fragment Address Lo

Fragment Length Flags

Fragment Descriptor

The descriptor has the following fields:

Flags [0:7] [0:2] – DescriptorType. (Set to 000 – Fragment Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Response Descriptor

[3:15] – Reserved. Set to zero.

Reserved1 [0:7] Set to zero.

Fragment Length [0:15] The number of bytes contained in the fragment.

Fragment Address Low [0:31] The least significant 32 bits of the physical address in host
memory of the fragment buffer.

Fragment Address High [0:31] The most significant 32 bits of the physical address in host
memory of the fragment buffer.

Reserved [0:31] Set to zero.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

28

Option Frame Descriptor

An Option Frame Descriptor contains information pertinent to a frame in addition to the information in
the preceding Tx Frame Descriptor. It is used in special cases, such as when the transmitted frame
requires IPSec processing or TCP segmentation.

One or more Option Frame Descriptors may be included in a Frame Descriptor Block. They always
follow the Frame Descriptor and precede the Fragment Descriptors. It consists of the following fields:

32 bits

Num DescOption Dependant 1 Flags

Option Descriptor

Option Dependant 2

Option Dependant 3

Option Dependant 4

Flags [0:7] [0:2] – DescriptorType. (Set to 011 – Option Frame Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Response Descriptor

[3] – Unused. Set to zero.
[4:7] – Type. Defines the type of extension descriptor

0 – IPSec Type Option Descriptor
1 – TCP Segment Type Option Descriptor

NumDesc[0:7] The number of descriptors describing this option (including this
one. It cannot be zero. If multiple options are included in the same
Frame Descriptor Block then this value only specifies the number
for this particular option.

Option Dependant 1 [0:15]

Option Dependant 2 [0:31]

Option Dependant 3 [0:31]

Option Dependant 4 [0:31]

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

29

IPSec Option Frame Descriptor

The only defined type of Option Frame Descriptor at present is used when transmitting packets that are
encrypted by the adapter. These are defined as follows:

AH1/ESP1

Reserved2

AH2/ESP2

ESP1

ESP2

32 bits

Num DescReserved1 Flags

IPSec Option Descriptor

Flags [0:7] [0:2] – DescriptorType. (Set to 011 – Option Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Response Descriptor

[3] – Unused. Set to zero.

[4:7] – OptionType. Set to 0 (IPSec Type Option Descriptor).
0 – IPSec Type Option Descriptor
1 – TCP Segment Type Option Descriptor

NumDesc[0:7] The number of Option Descriptors (including this one) for this
option. Equals 1 in this case.

IPsecFlags [0:15] [0] – UseIV.
0 - The adapter will calculate a random IV and insert it into

the IV field in the packet.
1 - The DES algorithm will use the IV value contained in the

packet.

[1:15] – Unused. Set to zero.

AH1/ESP1 [0:15] Security Association Index for AH hdr 1 or ESP1 hdr (if no AH1).
If zero no hdr specified.

ESP1 [0:15] Security Association Index for ESP1 hdr.
If zero no hdr specified.

AH2/ESP2 [0:15] Security Association Index for AH hdr 2 or ESP2 hdr (if no AH2).
If zero no hdr specified.

ESP2 [0:15] Security Association Index for ESP2 hdr.
If zero no hdr specified.

Reserved2 [0:32] Reserved. Set to zero.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

30

TCP Segment Option Descriptor

This type of Extended Frame Descriptor is used when transmitting TCP packets that require
segmenting by the adapter. These are defined as follows:

LargeSendStatus

MSS

BytesTransmitted

ResponseAddress

32 bits

Num Desc Flags

TCP Segmentation
Option Descriptor

Misc

Flags [0:7] [0:1] – DescriptorType. (Set to 011 – Option Frame Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Response Descriptor

[3] – Unused. Set to zero.

[4:7] – OptionType. Set to 1 (Segment Type Option Descriptor).
0 – IPSecType Option Descriptor
1 – TCP Segment Type Option Descriptor

NumDesc[0:7] The number of Descriptors (including this one) for this option.
Equals 1 in this case.

MSS [0:11] MSS. Maximum Segment Size.

Misc[0:3] [0] – First Packet Descriptor

[1] – Last Packet Descriptor

See below for details.

[2:3] – Unused… set to zero.

ResponseAddress[0:31] ResponseAddress. Set to the PCI low physical address of the
following two words.

BytesTransmitted [0:31] *BytesTransmitted. Set to Total Length of Large Send.

LargeSendStatus [0:31] *LargeSendStatus. Set to Send Complete without error.

*Note: The Driver should set BytesTransmitted and LargeSendStatus fields to the value of the total
bytes of the original large send and passing status. The ResponseAddress field should be set to the
PCI Lo Physical Address of the BytesTransmitted and LargeSendStatus fields. These fields are

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

31

initialized so that the adapter is passed the total Length of the packet and the driver has preset a pass
response so that Typhoon does not need to respond differently from a normal packet when no error is
present. In the event of an error, using the ResponseAddress, Typhoon will modify these fields before
the Ring Read Index has been advanced.

Misc:

For packets Smaller than 16 fragments: Set the First and Last bit to Zero. This indicates a complete
Packets descriptor.

For packets larger than 16 fragments. Create the first packet descriptor with 16 fragments and set the
First bit. Create a second packet descriptor adjacent in the ring to the first, set the Last Fragment bit.
A maximum of 32 fragments for TCP Segmentation is supported.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

32

3.3.2 De-allocating Transmit Frames
The adapter processes transmit frames in either ring in order. When the adapter has copied the packet
data into its internal memory it increments the Tx Read Index over the descriptors describing the
packet. This informs the host that the adapter has finished with the descriptor space and the buffers
associated with the packet can be freed.

Typical Transmit Data Flow

Transmit Packets passed down to the adapter are pre-formatted and contain place holders for all fields
in the packet even if the host does not fill them in, with the following two exceptions:

1 The 4-byte VLAN tag if needed.
2 Large data frame for TCP Segmentation features: In this case, the adapter creates all the data

segments, attached the template IP headers copied from the original large data frame, and
allocate space for trailing bytes which include the IPSec explicit padding for DES and the hash
data. The trailing bytes may contain layers of data if the packet data has nested IPSec
encapsulation.

This section details the data flow for a transmit packet, it does not discuss more complex situations
such as IP fragmentation and encryption.

1 The host writes descriptors to the PCI Host Index register which interrupts the adapter.

2 The adapter reads a block of the Tx Ring into internal memory.

3 The adapter parses a packet and sets up one or more DMAs to transfer the packet principal into
internal memory.

4 The packet is classified based on the currently configured feature set. The types of information
that can be determined are listed below. Note that only the minimum amount of processing for
the current features is performed.
Types of results from packet classification:

Set MAC level flags to indicate unicast, multicast, broadcast, ethernet, 802.3, LLC, SNAP
Flags set to indicate IP, UDP,TCP
Index of IP header
Index of UDP/TCP header
Application Flags - DHCP

6 Application processing is performed on the packet such as broadcast limiting or DHCP inhibiting.

7 If space is available on the Tx MAC Queue, then the Xmit Dequeue Algorithm inspects the
transmit priority queues and the remainder of the packet (if any) is copied from the host memory
to adapter memory. A message is sent to the host to free the packet in host memory.

9 If the Packet requires encryption or hashing then the frame is first passed to the encryption
engine.

8 If the Frame requires IP checksum calculation, then it is calculated at this time and the packet is
updated.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

33

7 The packet is added to the Xmit MAC Queue.

10 When the packet reaches the end of the queue, the MAC transmits the packet and updates its
statistics counters. If any of the counters exceed programmed thresholds then an interrupt is
generated to the host.

Tx Hi Queue

To MAC

Xmit MAC Queue

Host Memory Adapter Memory

Tx Hi Ring

Tx Lo Ring

IPsec Queue

Tx Lo Queue

Sidewinder

Broadcast Throttling

The host can set a broadcast threshold for transmit packets on the adapter. The broadcast threshold
will be specified as a percentage of the ethernet line rate. The adapter will monitor the transmit packets
and if the rate of broadcasts exceeds the threshold the packets will be discarded.

DHCP Inhibiting

The host can instruct the adapter to discard DHCP server packets. This feature prevents the host from
acting as a DHCP server. The adapter will discard any received packets with a UDP port number set to
DHCP server.

3.3.3 Adapter-to-Host (Rx) Interface

Receive packets are passed from the adapter to the host in full size packet buffers. Two shared rings in
host memory are used to pass these buffers to and from the adapter. Each entry in the ring consists of
a virtual and physical pointer to a packet buffer. The buffer may contain a maximum size ethernet
packet as well as control information. Its size is discussed later in this section.. The virtual address is
not used by the adapter, but is stored in the ring entry for use by the host.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

34

The Receive Ring is used to pass full buffers from the adapter to the host. Two indexes stored in host
memory control access to the buffer. The Receive Write Index and the Receive Read Index are used
as follows.

The 2 indexes are initialized to point to the start of an empty ring. The Receive Write Index points to the
next location in the ring into which the adapter will write data, it is updated by the adapter. The Receive
Read Index points to the next buffer address to be read by the host, it is updated by the host. The 2
indexes being equal indicate the ring is empty. The write index is never incremented to equal the read
index for a full ring. This implies that the ring can not be completely filled and at least one entry must
remain free to prevent the 2 indexes becoming equal.

In typical operation, the adapter will load entries into the ring as packets are received from the network
and processed. The adapter will periodically generate a host interrupt to notify the host that packets are
available in the ring. An intelligent algorithm will be used to minimize host interrupts, and it is expected
that the adapter will not interrupt for each packet uploaded to the ring.

Receive Ring

Rcv Frame Descriptor

Rcv Frame Descriptor

Rcv Frame Descriptor

Rcv Frame Descriptor

 Receive Write Index

 Receive Read Index

The Receive Buffer Ring is used to pass free buffers from the host to the adapter. Its operation is
identical to the Receive Ring, except that the host writes entries onto the ring as they become available,
and the adapter reads them as necessary. The adapter will read and keep several free buffers locally,
and will replenish them from this ring as needed.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

35

Rcv Buffer Write Index

Rcv Buffer Read Index

Receive Buffer Ring

Virtual Address High

Virtual Address Low

Receive Buffer Descriptor

Receive Buffer Desc

Receive Buffer Desc

Receive Buffer Desc

Receive Buffer Desc

Physical Address Low

Physical Address High

The adapter keeps a local pool of empty Receive Buffers and will poll the host for new buffers when its
local pool falls below a threshold. It is the host’s responsibility to monitor the Receive Buffer Ring and
ensure that there is sufficient buffers for the adapters use..

Receive Descriptor

A Receive Frame Descriptor contains information pertinent to the received frame. It consists of the
following fields:

Receive Status

Frame Length

Virtual Address Hi

Virtual Address Lo

32 bits

Num Desc Flags

Receive Descriptor

Filter ResultsIPsec Hash Results

VLAN

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

36

Flags [0:7] [0:2] – DescriptorType. (Set to 100 – Receive Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Command Descriptor
110 – Response Descriptor

[3:4] – Rcv Type. Type of Receive Descriptor (set to 0).
0 – Receive Packet
1 – Command Response

[5] – Unused. Set to zero.
[6] – Error. Set to 1 if the receive frame has any type of error.
[7] – Unused. Set to zero.

NumDesc [0:7] Always set to zero, there are never any option descriptors in this ring.
Any out-of-band information is passed in the Receive Packet
Structure internal to the Receive Packet Buffer.

Frame Len [0:15] Contains the length of the received frame in bytes.

Virtual Address Lo [0:31] The least significant 32 bits of the virtual address in host memory of
the Receive Packet Buffer.

Virtual Address Hi [0:31] The most significant 32 bits of the virtual address in host memory of
the Receive Packet Buffer.

Receive Status [0:31] Error Code. If the Error flag is set in Flags then this field indicates the
type of receive error.

0 – Adapter Internal Error
1 – FIFO underrun
2 – Bad SSD
3 – Runt
4 – CRC
5 – Oversize
6 – Alignment
7 – Dribble bit

Receive Status. If the Error flag is not set in the Flags then this field
contains receive status information for this packet.

[0:1] – Protocol.
0 – unknown
1 – IP
2 – IPX
3 – reserved

[2] – VLAN. Set if VLAN tag removed (VLAN field in header is valid).
[3] – IP fragment, IPSec processing not performed
[4] – IPsec, set if received packet was decoded as an IPsec packet.
[5] – IP Checksum Failed
[6] – TCP Checksum Failed

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

37

[7] – UDP Checksum Failed
[8] – IP Checksum Succeeded
[9] – TCP Checksum Succeeded
[10] – UDP Checksum Succeeded
[11:31] – Unused. Set to zero.

Filter Results [0:15] Results of filtering on the received packet
[0:14] – Filter Mask. One bit for each of the filters (bit 0 for filter 1, bit

14 for filter 15). Set when a received packet matches a filter.
[15] – Filtered. Set if the packet has been filtered

IPsec Hash Results [0:15] Indicates which hash values were compared successfully and
unsuccessfully on the received IPsec packet

[0] – AH1 hash OK, set if AH1 hash checked successfully.
[1] – ESP1 hash OK, set if ESP1 hash checked successfully.
[2] – AH2 hash OK, set if AH2 hash checked successfully.
[3] – ESP2 hash OK, set if ESP2 hash checked successfully.
[4] – AH1 hash Failed, set if AH1 hash checked unsuccessfully.
[5] – ESP1 hash Failed, set if ESP1 hash checked unsuccessfully.
[6] – AH2 hash Failed, set if AH2 hash checked unsuccessfully.
[7] – ESP2 hash Failed, set if ESP2 hash checked unsuccessfully.
[8] – Unknown SA, no SA matched on received packet.
[9] – ESP Format Error, ESP length not a multiple of 8 bytes.
[15:10] – Unused. Set to zero.

VLAN [0:31] VLAN field removed from the received packet. Only valid if the VLAN
bit in the Receive Status field is set.

3.3.4 Receive Priority Processing

There are 2 Rx Rings that the Typhoon can use to send received packets to the host, a high and a low
priority ring. In normal operation all packets are sent to the host on the low priority ring.
If VLAN receive offloading is enabled and a packet is received with a VLAN tag, then the priority field in
the VLAN tag is used to determine which ring is used. This is the only case at present where the high
priority Rx Ring is used. The priority level that determines which ring the packet will use will be set to a
default value by the Typhoon firmware and a host command will be implemented to allow the host to
modify the value.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

38

3.3.5 Receive Data Flow

1. A packet arrives on the wire and the MAC loads it into its local FIFO. The MAC DMA engine
loads the packet into a ring buffer in adapter memory. The receive status and checksum are
stored in the Receive Packet Ring at the head of the packet.

2. The principal of the packet is moved from the ring buffer into local ARM93C memory on the
adapter.

3. The packet is classified based on the currently configured feature set. The types of information that
can be determined are listed below. Note that only the minimum amount of processing for the
current features is performed.

 Types of results from packet classification:

 Set MAC level flags to indicate unicast, multicast, broadcast, ethernet, 802.3, LLC, SNAP
 Flags set to indicate IP, UDP, TCP
 Index of IP header
 Index of UDP/TCP header
 Index of start of application datagram
 Application Flags - dRMON capture filter

4. If the frame requires decryption, the frame is passed to the external decryption engine.

5. For TCP/IP packets, the ARM93C processes the TCP and IP checksums, discarding the
packet if the checksums are bad.

6. The ARM93C sets up a PCI DMA descriptor to move the packet from the internal receive ring
to host memory. The host buffer address was previously downloaded from the Receive Buffer
Ring in host memory.

7. When the DMA is complete, the ARM93C writes the buffer address entry to the Receive Ring
in host memory. Note that this step may be deferred if it is necessary to process packets out
of order. That is, the adapter can store packets in host memory, but the host is only aware of
them in the order the adapter writes the buffer addresses into the Receive Ring.

8. Periodically, the adapter will interrupt the host if packets have been uploaded, which will
cause the host to examine the Receive Ring and process the packets on it.

9. When packet buffers are passed back to the host driver by the stack, the host will put a
pointer entry to each buffer on the Receive Buffer Ring, making them available to the adapter
again.

3.4 Host-to-adapter Command Descriptions

The host can send commands to the adapter either in-band or out-of-band. The general case is for the
host to send all commands out-of-band. Only those commands that are synchronized to the data
stream and must be executed relative to the data are sent in-band.

In-band commands are sent as part of the data stream in the Tx Ring. They are executed by the
adapter in the order they are received relative to the data packets. If a command is situated in the ring
before a transmit packet then it is guaranteed to be executed before that packet is processed by the
adapter.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

39

Out-of-band commands are sent to the adapter through the Command Ring. Their execution is
asynchronous to the transmit and receive data paths. Responses to all commands are placed in the
Response Ring.

Two rings are defined, the Command Ring and the Response Ring, which are used to send commands
to the adapter and responses to the host.

All communication through the Command and Response Rings use register mode; polled mode is not
supported.

3.4.1 Command Ring

The Command Ring contains Command Descriptors, which contains command information from the
host to the adapter. The majority of the commands are contained in a single Command Descriptor,
which is described below. Commands that contain more information than will fit into a Command
Descriptor are described by one Command Descriptor and a number of following Extension Command
Descriptors. There is no set format for Extension Command Descriptors, each command that requires
them defines the internal data structures.

Command Write Index

Command Read Index

Command Ring

 Command Desc

 Command Desc

 Ext Command Desc

 Command Desc

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

40

The Command Descriptor has the following fields:

Seq NumParameter 1

Parameter 3

Command

32 bits

Num Desc Flags

Command Descriptor

Parameter 2

Flags[0:7] [0:2] – DescriptorType. (Set to 101 – Command Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Command Descriptor
110 – Response Descriptor

[3:5] – Reserved. Set to zero.

[6] – Respond. If set, the adapter must respond to the command
with a positive acknowledge packet. If clear, the adapter only
responds if the command requires a response or an error occurs
parsing the command.

[7] – Reserved. Set to zero.

NumDesc [0:7] The number of Extension Command Descriptors following this
descriptor. The value may be 0.

Command [0:15] Command ID

Seq Num [0:15] Sequence number of this command.

Parameter1 [0:15] Command’s first parameter (16 bits)

Parameter2 [0:31] Command’s second parameter (32 bits)

Parameter3 [0:31] Command’s third parameter (32 bits)

Note that the Flags field is the same as for the other types of transmit descriptors. This enables the
commands to be easily inserted in to the data stream in the Tx Descriptor Ring.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

41

Extension Command Descriptor

An Extension Command Descriptor contains information specific to the command specified in the
Command Descriptor. It is a fixed length (16 bytes) the same size as a Command Descriptor. A variable
number of Extension Command Descriptors (including 0) can follow a Command Descriptor with the
last one always padded to its full length by zeros.

3.4.2 Response Ring

The Response Ring is used to pass command responses from the adapter to the host. It is also used to
pass any other control information from the adapter to the host. Most commands do not require a
response, only those that do use this ring. Both in-band and out-of-band commands return their
responses on this ring.

Response Write Index

Response Read Index

Response Ring

Response Desc

Response Desc

Ext Response Desc

Response Desc

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

42

Response Descriptor

Seq NumParameter 1

Parameter 3

Command

32 bits

Num Desc Flags

Response Descriptor

Parameter 2

The Response Descriptor has the following fields:

Flags[0:7] [0:2] – DescriptorType. (Set to 110 – Response Descriptor)
000 – Fragment Descriptor
001 – Data Frame Descriptor
010 – Command Frame Descriptor
011 – Option Descriptor
100 – Receive Descriptor
101 – Command Descriptor
110 – Response Descriptor

[3:5] – Reserved, set to zero.

[6] – Error. Set to 1 if the response is reporting any type of error.

[7] – Reserved, set to zero.

NumDesc [0:7] The number of Extension Command Descriptors following this
descriptor. The value may be 0.

Command [0:15] The type of command to which we are responding.

Seq Num [0:15] Sequence number of the command that generated this response.

Parameter1 [0:15] Response’s first parameter (16 bits)

Parameter2 [0:31] Response’s second parameter (32 bits)

Parameter3 [0:31] Response’s third parameter (32 bits)

Note that the Flags field is the same as for the Receive Descriptor. This enables the response to be
easily inserted in to the packet data stream in the Receive Ring. Although the design of the descriptors
allows this, no responses are passed in the Receive Ring at present.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

43

Extension Response Descriptor

An Extension Response Descriptor contains information specific to the command specified in the
Response Descriptor. It is a fixed length (16 bytes) the same size as a Response Descriptor. A variable
number of Extension Response Descriptors (including 0) can follow a Response Descriptor with the last
one always padded to its full length by zeros.

3.4.3 Arm to Host Interrupts

The following section is taken from the Typhoon ASIC Specification and describes the ARM to Host
interrupt register.

HostIntStatus Register
Synopsis Provides specific interrupt information to the host.
Size 32 bits
Offset 0xE8

Side Effects None.
The HostIntStatus register holds the individual interrupt bits from their various sources, so the host
can determine the cause of an interrupt. These bits are set by hardware events, are readable by
the host, and are cleared by writing a “1” to the bits.

Reserved [31:10] Reserved.

HostSelfInt [9] R/W1C Host self-interrupt, set as a side-effect of a host write
to the HostSelfInterrupt register. This allows the driver
on the host to generate an adapter interrupt to itself.

PciDmaDone[3] [8] R/W1C Indicates that PCI DMA channel 3 completed a DMA
transfer in which the HST_INT descriptor flag was set.

PciDmaDone[2] [7] R/W1C Indicates that PCI DMA channel 2 completed a DMA
transfer in which the HST_INT descriptor flag was set.

PciDmaDone[1] [6] R/W1C Indicates that PCI DMA channel 1 completed a DMA
transfer in which the HST_INT descriptor flag was set.

PciDmaDone[0] [5] R/W1C Indicates that PCI DMA channel 0 completed a DMA
transfer in which the HST_INT descriptor flag was set.

ArmComm[3:0] [4:1] R/W1C General purpose 93C-to-Host communication
interrupts. Set as a side-effect of writes to the
Arm2HostComm registers.

HostInt [0] R Set if any interrupt bit is set. This is the logical OR of
the interrupt-causing bits after their masks. This bit
isn’t explicitly cleared by the host; if all active interrupt
sources are cleared, this bit will deassert.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

44

In normal course of operation the adapter does not interrupt the host. Interrupts only occur if the adapter
determines that is needs to immediately inform the host of a status change. For example, when
receiving packets, the adapter copies the received data to free receive buffers and updates the Rx
Ring. It assumes that the host will notice that it has receive data and empty the Rx Ring. If the adapter
determines that the host is not emptying the ring it will interrupt the host.

The adapter issues a host interrupt by writing Arm-to-Host Register 3 (ArmComm[3] in HostIntStatus
register).

During the boot process the adapter frequently writes its status to Arm-to-Host Register 0. This will
cause host interrupts if ArmComm[3] is enabled in the HostIntStatus register.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

45

3.5 Adapter Boot

The following sections contain information on the operation of the Typhoon embedded code boot
sequence following the removal of RESET.

3.5.1 Overview

Upon release of RESET, the processor on the Typhoon adapter will perform the following boot
sequence:

ROM Boot - Execute code from ROM and load an image from the Non-Volatile Device(NVDevice) into
instruction memory (IRAM).

NVDevice Boot - Execute the code in IRAM that was loaded from NVDevice. Perform self test, PCI
Configuration and copy the Run-Time Image (RTI) from NVDevice to IRAM/SRAM. The functionality of
the NVDevice Boot code will be limited by NVDevice size. The detailed explanation of NVDevice
configuration is in section 8.1.

Runtime Boot - Execute code loaded from Run-Time Image section of NVDevice. RTI will do normal
communication process with the additional capabilities for upload of NetBoot code from NVDevice to
host, NVDevice programming, download of new RTI to adapter memory and off-line diagnostic
capability. At this point we are running our operational code.

Soft Reset – Allows Host or Run-Time code to soft-reset some or all of the adapter.

The adapter updates its PCI Status Register at significant points in the boot sequence. This allows the
host to monitor the progress of the boot and to determine if any failures occur and at what point. At later
stages of the boot process the host uses the status as part of a handshake procedure to determine
when the adapter needs attention from the host.

3.5.2 ROM Boot Loader

The ROM on the Typhoon chip is programmed during chip tape out. To reduce the likelihood of a
software bug forcing a new tape out, care will be taken to reduce the amount of code and complexity of
code in the ROM that cannot be patched or fixed externally using the NVDevice. Therefore, the primary
function of the ROM Boot will be to copy a block of instructions from the NVDevice into Instruction
Memory and execute it.

The ROM Boot Loader is initiated by a reset and completes when execution is passed to the memory
resident code from the NVDevice.

After release from reset, the processor will execute the instruction at address zero, which is mapped
into the on-chip ROM. The ROM will contain code necessary to read instructions from NVDevice into
instruction memory and begin executing.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

46

It is assumed that the PCI does not need software intervention at this point in time and that the
NVDevice contains a valid image. If the NVDevice is blank or contains an error, it must be
programmed. See the Manufacturing Support- NVDevice Configuration section for details on layout of
the NVDevice.

By default, the PciConfigDone register is set to disable PCI access preventing access by the host.
During the ROM Boot process, the current status will be written to the PCI Arm2HostComm0 register.
During a successful boot process, this status will be unavailable to the host from reading. In the event
of a Boot Failure, the PciConfigDone bit will be cleared and the error status displayed in this register will
be available to the host. For debug purposes, the boot status will be written to a shadow location
Attic_ShadowAddress, which on the Typhoon was in external memory and could be viewed via a
logic analyzer. On T2, most of the values are written to the Arm2HostComm1 register.

// Debug
#define Attic_ShadowAddress 0x40200000

// Macros
#define setShadowStatus(x) *(volatile U32*)(Attic_ShadowAddress) = x;

#define setMyStatus(x) *(volatile U32*)(ARM_Arm2HostComm1) = x;\
 (volatile U32)(Attic_ShadowAddress) = x;

#define setErrorStatus(x) *(volatile U32*)(ARM_Arm2HostComm0) = x;

The ROM Boot performs the following actions:

Validate the NV Device headers.
Read the image from the NV Device and load it into memory.
Validate the CRC of the image as it is read from the NV Device.
Validate the CRC of the image that was written into memory.
Execute the image.

If failure occurs at any time, enable PCI, wait for commands from host.

The following is a list of ROM Boot Status codes, from romboot\trboot.h

#define DEFAULT_STATUS 0
#define HELLO_WORLD 1
#define TRBOOT_SECTION_HDR_INVALID 2
#define TRBOOT_TRBOOT_HDR_INVALID 3
#define TRBOOT_LENGTH_INVALID 4
#define TRBOOT_IMAGE_INVALID 5
#define TRBOOT_AHHHHHHH 6
#define TRBOOT_DONE 7
#define TRBOOT_MAGIC_ERROR 8
#define TRBOOT_MEMORY_INVALID 9
#define TRBOOT_BOOT_COMMAND_ERROR 10

3.5.3 Boot Command Language for Boot Failure

In the event of Boot Failure, the NV Device has not been programmed or has an invalid image
checksum, the Typhoon Boot Loader will implement a Boot Command Language for memory
access.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

47

The Boot Command Language consist of 3 PCI registers from the Host used for Command,
Address, Data and 2 PCI registers from Typhoon for Command Response, Data Response.

The sequence for commands to Typhoon should be as follows:

a) Write the Address
b) Write the Data
c) Write a Command

The order of Address and Data may be reverse but the must proceed the command. Writing the
Command Register will cause an interrupt to the Typhoon 93C processor. This will initiate
execution of the command. Therefore, the address and data must be valid before the command
is written. For commands that do not need data or address, the register need not be initialize to a
known value.

Following execution of the command, the 93C will clear the host interrupt and write a response
data word, if needed, proceeded by an increment or change in the value of the Command
Response register to indicate the response.

After receiving the Command Response, Typhoon will be ready for the next command.

Certain commands take a longer period of time then others, such as DataFlash buffer transfers.
The command requested will not complete until the operation is done, including waiting for the
DataFlash to be ready.

3.5.3.1 Host Access though registers in PCI space:

Register Description
Host2ArmComm3 Command from Host (interrupts 93C for execution of command)
Host2ArmComm4 Address from Host
Host2ArmComm5 Data from Host
Arm2HostComm0 Status of Typhoon
Arm2HostComm1 Sub Status of finer details of status
Arm2HostComm2 Data Response from 93C
Arm2HostComm3 Command Response from 93C (increments for each command)

Host2ArmComm3 - This register is used to send Commands to the 93C. Writing this register will
generate an interrupt to the 93C. This register should not be written again until the adapter has
completed the command and writes the response to the Host.

Host2ArmComm4 - This register is used to send the Address used by some Commands to the
93C. This register does not generate an interrupt and should be valid before the Command
register is written.

Host2ArmComm5 - This register is used to send the Data used by most Commands to the 93C.
This register does not generate an interrupt and should be valid before the Command register is
written.

Arm2HostComm0 – This is the status register for the adapter during the boot process. This
register cannot be read until PciConfigDone has been set.

Arm2HostComm1 – This is the sub status register for the adapter during the boot process. This
register cannot be read until PciConfigDone has been set. The sub status is a finer detailed
description of the boot process.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

48

Arm2HostComm2 - This register is used to return Data or Status words or bytes back to the Host
from the completion of a Command from the Host. This value will be valid before the Command
Completion interrupt and register to the Host is set. This register is only set as needed by the
Command requested.

Arm2HostComm3 - This register is used to send the Command Completion of Response
indication to the Host. The value of this register will be an incrementing count of the number of
commands executed by the 93C, i.e. the value increments once for each command. The host
may poll for a change in value or enable interrupts on this register.

3.5.3.2 Commands

WriteMemoryWord

Syntax: Address → Data → Command Response: Done
Semantic: Write the Data Word (32 Bit) to the memory location specified by Address. The
address may be any memory or register address accessible by the 93C.

WriteDataFlashByte

Syntax: Address → Data → Command Response: Done
Semantic: Write the Data Byte (8 Bit) to the DataFlash buffer memory location specified by
Address. The address should be in the format of a DataFlash memory address:

32 bits - XXXXXXXXRRRRRPPPPPPPPPPBBBBBBBBB
X == Don’t care.
R == Reserved must be zero.
P == Page address (from 0 to 512 pages)
B == Buffer address (from 0 to 264 bytes)

WriteDataFlashWord

Syntax: Address → Data → Command Response: Done
Semantic: Write the Data Word (32 Bit) to the DataFlash buffer memory location specified
by Address. The address should be in the format of a DataFlash memory address:

32 bits - XXXXXXXXRRRRRPPPPPPPPPPBBBBBBBBB
X == Don’t care.
R == Reserved must be zero.
P == Page address (from 0 to 512 pages)
B == Buffer address (from 0 to 264 bytes)

StoreDataFlashPage

Syntax: Address → Command Response: Done
Semantic: Transfer the contents of the DataFlash buffer into the DataFlash page specified
by Address. The address should be in the format of a DataFlash memory address:

32 bits - XXXXXXXXRRRRRPPPPPPPPPPBBBBBBBBB
X == Don’t care.
R == Reserved must be zero.
P == Page address (from 0 to 512 pages)

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

49

B == Buffer address (from 0 to 264 bytes)

LoadDataFlashPage

Syntax: Address → Command Response: Done
Semantic: Transfer the contents of the DataFlash page specified by Address into the
DataFlash buffer. The address should be in the format of a DataFlash memory address:

32 bits - XXXXXXXXRRRRRPPPPPPPPPPBBBBBBBBB
X == Don’t care.
R == Reserved must be zero.
P == Page address (from 0 to 512 pages)
B == Buffer address (from 0 to 264 bytes)

Execute

Syntax: Address → Command Response: Done
Semantic: Begin executing code at the location specified by Address. The address may be
any memory or register address accessible by the 93C. If you execute to an address that does
not contain executable code, you get what you deserve.

ReadMemoryWord

Syntax: Address → Command Response: Data → Done
Semantic: Read a Word (32 Bit) from the memory location specified by Address and return
the Data word with the response. The address may be any memory or register address accessible
by the 93C.

ReadDataFlashByte

Syntax: Address → Command Response: Done
Semantic: Read a Byte (8 Bit) from the DataFlash buffer at the location specified by
Address and return the Data byte with the response. The address should be in the format of a
DataFlash memory address:

32 bits - XXXXXXXXRRRRRPPPPPPPPPPBBBBBBBBB
X == Don’t care.
R == Reserved must be zero.
P == Page address (from 0 to 512 pages)
B == Buffer address (from 0 to 264 bytes)

ReadDataFlashStatus

Syntax: Command Response: Data → Done
Semantic: Read the Status of the DataFlash and return the Status byte with the response.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

50

Return status format: least significant 8 bits – RCDDDXXX

R == Ready / ~ Busy status Ready == 1, Busy == 0
C == Compare status Differ == 1, Match == 0
D == Device Size 010 == 2.1 Mbytes, 001 == 1 Mbytes
X == Undetermined

DataFlashCompBuffer

Syntax: Address → Command Response: Data → Done
Semantic: Compare the contents of the DataFlash page specified by Address with the
contents of the DataFlash buffer and return the Status byte with the response. The address
should be in the format of a DataFlash memory address:

32 bits - XXXXXXXXRRRRRPPPPPPPPPPBBBBBBBBB
X == Don’t care.
R == Reserved must be zero.
P == Page address (from 0 to 512 pages)
B == Buffer address (from 0 to 264 bytes)

3.5.3.3 Command Table

Command Num. (Dec) Description
WriteMemoryWord 1 Write Data Word at Memory Address
WriteDataFlashByte 2 Write Byte to DataFlash Buffer
WriteDataFlashWord 3 Write Word to DataFlash Buffer
StoreDataFlashPage 4 Store DataFlash Buffer to DataFlash Page
LoadDataFlashPage 5 Load DataFlash Page to DataFlash Buffer
Execute 6 Execute instructions at address
ReadMemoryWord 7 Read Data Word at Memory Address
ReadDataFlashByte 8 Read Data Byte from DataFlash Buffer
ReadDataFlashStatus 9 Read DataFlash Status
DataFlashCompBuffer 10 Compare DataFlash Page to DataFlash Buffer

3.5.3.4 Examples for Boot Command Language:

Write a word of data 0x12345678 into memory address 0x40200004:

Write Host2ArmComm4 (Address) = 0x40200004
Write Host2ArmComm5 (Data) = 0x12345678
Write Host2ArmComm3 (Command) = 0x00000001

Wait for Arm2HostComm3 interrupt or poll for change.

Read a word of data from memory address 0x40200010:

Write Host2ArmComm4 (Address) = 0x40200010

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

51

Write Host2ArmComm3 (Command) = 0x00000007

Wait for Arm2HostComm3 interrupt or poll for change.
Read Arm2HostComm2 = data from address 0x40200010

Write a word of data 0x9ABCDEF0 into DataFlash page 0x1 buffer location 0x20

{ Write Host2ArmComm4 (Address) = 0x00000020
Write Host2ArmComm5 (Data) = 0x9ABCDEF0
Write Host2ArmComm3 (Command) = 0x00000003

Wait for Arm2HostComm3 interrupt or poll for change.

} Repeat steps above until all the desired data for this page has been written.

Store the page:
Write Host2ArmComm4 (Address) = 0x00000200
Write Host2ArmComm3 (Command) = 0x00000004

Wait for Arm2HostComm3 interrupt or poll for change.

Read a byte of data from DataFlash page 0x5 buffer location 0x7

Store the page:
Write Host2ArmComm4 (Address) = 0x00000A00
Write Host2ArmComm3 (Command) = 0x00000005

Wait for Arm2HostComm3 interrupt or poll for change.

{ Write Host2ArmComm4 (Address) = 0x00000007
Write Host2ArmComm3 (Command) = 0x00000008

Wait for Arm2HostComm3 interrupt or poll for change.
Read Arm2HostComm2 = data byte from address 0x00000007

} Repeat steps above until all the desired data for this page has been read.

3.5.4 NVDevice Boot

The NVDevice Boot is from the start of code loaded from the NVDevice through the execution of Sleep
Image from the Sleep Image section of NVDevice.

The Boot Image (NVDevice Boot code) will run Power-On Self Test (POST) and when POST
completes, it will indicate a done status in a general-purpose register. The POST results will be saved to
a reserved location in SRAM and also in a general -purpose I/O register. The PCI configuration will be
transferred to the PCI registers from the VAR Section of NVDevice, if the VAR checksum verified. If the
VAR checksum cannot be verified the PCI registers will have default values.

If the POST succeeds, then the Sleep Image will be copied from the NVDevice to IRAM and SRAM as
specified by the load address in section header located at the beginning of the sleep section. Once the
Sleep Image is loaded, the execution is transferred to beginning of this code.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

52

If the POST fails, PCIConfigDone will be set; and the adapter will allow NVDevice programming.

NVDevice Boot performs the following actions:

PCI Status Register = STATUS_NVDEVICE_POST;

Perform Power On Self Tests; /* See Boot Level Self Test for details */
if (tests fail)
{

PCI Status Register = STATUS_POST_FAIL;
PCI Status Register 2 = details of failure;
PCIConfigDone = 1;

Wait for Host; /* wait for host to take necessary action
 or program NVDevice and reset adapter */

}
else /* all tests pass */
{

PCI Status Register = STATUS_NVDEVICE_HW_CONFIG;
Configure the hardware (PCI, MAC, DMAs etc);
PCI Status Register = STATUS_NVDEVICE_LOADING_SLEEP_IMAGE;
Copy Sleep Image from NVDevice to IRAM/SRAM;
PCI Status Register = STATUS_LOADING_SLEEP_IMAGE_COMPLETE;
Jump to Sleep Image;

}

3.5.4.1 Boot Level Self Test

The Boot Image will indicate HELLO_WORLD status (0x1) to the Arm2HostComm1 register and
then call POST functions. If a POST failure occurs then the Arm2HostComm0 register will indicate
STATUS_POST_FAIL. Testing will not continue once a failure has been identified. Depending on
the test failure, the other Arm2HostComm registers may be used to indicate further test failure
information. If a test has failed, the PCIConfigDone register will be set and the code will enter the
Boot Monitor. The Boot Command Language for Boot Failure is then supported.

POST will test internal register bits which have read/write capability and no adverse side-effects.
Tables are setup to indicate which bits in which registers are testable. Incremental values are
written and then verified. Locations are cleared after an access test has completed. If a register
access fails the Arm2HostComm1 register will indicate POST_FAIL_REG_ACCESS. If the
register is a crypto specific register then the Arm2HostComm1 register will indicate
POST_FAIL_SW_REG_ACCESS. The Arm2HostComm2 register will indicate the address which
was tested when the failure occurred.

The following registers and bits are tested:
Arm2HostComm0 [31:0]
Arm2HostComm1 [31:0]
Arm2HostComm2 [31:0]
Arm2HostComm3 [31:0]

StationAddress0[15:0]
StationAddress1[15:0]
StationAddress2[15:0]
StationMask0[15:0]
StationMask1[15:0]

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

53

StationMask2[15:0]
VlanMask[15:0]
VlanType[15:0]
DmaConfigReg1[1:0]
MacControl[9:6, 4:0]

SWInDMADescriptorRingBase[16:0]
SWInDMADescriptorRingEnd[16:0]
SWOutDMADescriptorRingBase[16:0]
SWOutDMADescriptorRingBase[16:0]
SWInterruptMask[7:0]
SWContextReadPtr[4:0]
SWContextWritePtr[4:0]
SWRandomizerResult[31:0]
SWExpoMultK[31:0]
SWNumExpoBits[9:0]
SWMultiplyPointer[23:0]

Internal instruction RAM is tested from the beginning of IRAM to the starting location of the Boot Image
in the IRAM. Data RAM is tested from the beginning of DARAM to the starting location of the Boot
Image stack. The external Attic RAM is then tested. Incremental values are written to the blocks of
memory starting with 0xAAAAAAA. The block is verified and then written with incremental values
starting with 0x55555555 and verified. The tested block is then initialized to zero. If the IRAM test fails,
the Arm2HostComm1 register will indicate POST_FAIL_IRAM. If the DARAM test fails the
Arm2HostComm1 register will indicate POST_FAIL_DARAM. If the Attic RAM test fails the
Arm2HostComm1 register will indicate POST_FAIL_ATTIC. The Arm2HostComm2 register will
indicate the specific address where the access test failed.

POST will then verify the checksum of the static section in the FLASH. If the static section does not
verify then the Arm2HostComm1 register will indicate POST_FAIL_FLASH and the Arm2HostComm2
register will indicate STATIC_SECTION_ID. If the static section checksum is verified, then the PCI
Device ID stored in this section is transferred to the PCI Device ID register. The variable section flash
checksum is then verified. If the variable section does not verify then the Arm2HostComm1 register will
indicate POST_FAIL_FLASH and the Arm2HostComm2 register will indicate VAR_SECTION_ID. If the
variable section checksum is verified, then the OverrideNodeAddress stored there will be transferred to
the station address registers in the MAC.

The external RAM which is located in the crypto chip is then verified. The RAM test failure is not
reported if the PCI Device ID in the FLASH indicates that no crypto is installed. If the failure occurs and
the PCI Device ID indicates that a crypto should have been populated, then the Arm2HostComm1
register is set to POST_FAIL_SW_MULT_RAM or POST_FAIL_SW_EXPO_RAM, depending upon
the location of the RAM failure. The Arm2HostComm2 register will indicate the address where the
failure occurred.

A functional test is then run on the crypto to verify device operation and to verify that the correct crypto
type has been installed for the PCI Device ID programmed in the static section of the FLASH. A triple
DES functional test is run first. If the test fails and the PCI Device ID (0x9903) indicates that a crypto
with 3DES support should be populated, then the Arm2HostComm1 register will indicate
POST_FAIL_SW_FUNC. If the 3DES test passes and the PCI Device ID does not indicate that a 3DES
capable crypto should be installed, then the Arm2HostComm1 register will indicate
POST_FAIL_DEVICE_CONFIG.

If POST succeeds the PCIConfigDone register is set if the RomInfo parameter in the verified variable
section indicates that RomBoot is disabled. If RomBoot is enabled, then the PCIConfigDone is set by
the Sleep Image which has the ROM boot support.

The following is the enumerated value used to indicate a POST failure in Arm2HostComm0:

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

54

STATUS_POST_FAIL 0x800E

The following enumerated values are used to indicate POST failures in Arm2HostComm1:
POST_SUCCESS 0x1000
POST_FAIL_FLASH 0x1001
POST_FAIL_ATTIC 0x1002
POST_FAIL_IRAM 0x1003
POST_FAIL_DARAM 0x1004
POST_FAIL_REG_ACCESS 0x1005
POST_FAIL_SW_REG_ACCESS 0x1006
POST_FAIL_SW_EXPO_RAM 0x1007
POST_FAIL_SW_MULT_RAM 0x1008
Reserved1 0x1009
Reserved2 0x100A
POST_FAIL_SW_FUNC 0x100B
POST_FAIL_DEVICE_CFG 0x100C

The Sleep Image is then transferred from the flash to the specified RAM locations. As the image
is transferred a checksum is generated and verified. If the checksum is not verified the
Arm2HostComm0 register will indicated STATUS_EEBOOT_FAIL (0x8005) and the
Arm2HostComm1 register will indicate the source of the failure. The following are the enumerated
values for the possible failures:

Reserved 0-1
EEBOOT_HDR_INVALID 2
EEBOOT_SLEEP_HDR_INVALID 3
EEBOOT_LENGTH_ZERO 4
EEBOOT_IMAGE_INVALID 5
Reserved 6-8
EEBOOT_MEMORY_INVALID 9
Reserved 10
EEBOOT_NO_SLEEP_IMAGE 11

3.5.4.2 Sleep Image Boot
The Sleep Image executes at a slower clock (5Mhz), and is responsible for setting up the hardware and
software environments and PCIConfigDone register and then wait for one of the following requests from
the host.

• Waiting for the Boot Record from the host. The Boot Record contains pointers to all shared
memory data structures and needs to be read before any packet transfers can take place.

• Host accesses the Expansion ROM address. Sleep Image will turn the clock up to full speed, and
upload the NetBoot code from the NVDevice to host memory.

• Host writes to Power Management Control Register to state D3, in which case the Sleep Image will
begin sleep events. The only sleep event currently supported is Magic Packet.

• Download of Runtime Image using Host to Adapter command Interface.

Register usage in both parts of the sleep code is as follows:

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

55

Host to ARM Registers:

Register Sleep time Init Sleep

Register 0: PCI Host Command Register unused
Register 1: PCI Host Address Register Lo PCI Tx Write Index
Register 2: PCI Host Address Register Hi PCI Cmd Write Index
Register 3: unused unused
Register 4: unused unused
Register 5: unused unused
Register 6: unused unused
Register 7: unused unused

PCI Tx Write Index - write index into the Tx Descriptor Ring
PCI Cmd Write Index - write index into the Command Descriptor Ring

Arm to Host Registers

Register Sleep time Init Sleep

Register 0: PCI Status Register PCI Status Register
Register 1: PCI Status Register 2 unused
Register 2: unused unused
Register 3: unused unused

Once the Boot Record is successfully downloaded, the sleep image will post the status as
STATUS_RUNNING to the Host.

The Sleep time boot sequence is as follows:

PCI Status Register = STATUS_INIT;
Initialize h/w and s/w data structures;

PCI Status Register = STATUS_WAITING_FOR_HOST_REQUEST;

Sleep-time Init:

while (Host Command Register !=
 (CMD_BOOT_RECORD |
 Host initiated memory reads from Expansion ROM address);
 /* wait for host to load the request */

If (Host Initiates to read Expansion Rom Address)
{
Turn on the clock to full speed;
PCI Status Register = STATUS_UPLOAD_NETBOOT_CODE;
Upload of NetBoot code from NVDevice;
Goto waiting for Host to load the request;
}

If (Host Command Register == CMD_BOOT_RECORD)
{

 PCI Status Register = STATUS_READING_BOOT_RECORD;
Initiate DMA to load Boot Record into internal memory (via snoop buffer);

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

56

while (DMA not complete)
; /* wait for Boot Record load */

Configure internal variables;
PCI Status Register = STATUS_RUNNING;
}

Normal Sleep-time operation:
Adapter starts normal operation for Transmit and Receive;
Adapter will allow NVDevice programming;
Adapter will perform sleep events.
Adapter will download of Runtime Image;

If (Host Command Register == CMD_NVDEVICE_PROGRAM)
{
PCI Status Register = STATUS_PROGRAMMING_NVDEVICE;
Copy Data from Host to NVDevice using HostToAdapter Commands;
Issue Reset for loading new data from NVDevice;

 }

3.5.4.3 Runtime Boot

The Runtime image is downloaded from the host using the Host to Adapter command interface. Once
the RTI is successfully downloaded, the execution control is transferred to this code.

Note that the Diag image is a more or less a superset of the Runtime image, and is loaded the same
way.

 Figure: Runtime and Diag file format

The download file for the runtime image will consist of a file header followed by a variable number
of section headers, followed by the sections themselves. Each section header contains a
checksum for that section, the address in Typhoon where the section should be loaded, and the
offset from the head of the file where the binary element of the section begins.

File Header

Section Headers

Section 1

Section N

…

Magic ID

Version

Number of Sections

Section Length

Checksum

Load Address

Offset from file start

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

57

Zero-length sections are permitted. The load address of the first section in the file is the start
address of the runtime image, so section order must be preserved when reading in the runtime
file and passing it to Typhoon.

File Header
typedef struct {

U8 magicID[8]; /* ‘TYHPOON\0’ */
U32 version; /* TBD */
U32 numSections; /* number of section headers following this. */

} RUNTIME_FILE_HDR_S;

Section Header
typedef struct {

U32 numBytes; /* number of bytes in this section */
U16 checksum; /* IP checksum of data in section*/
U16 unused; /* for alignment */
U32 armStartAddr; /* addr in arm memory to load this section */
U32 fileOffset; /* offset from start of file to 1st byte of section*/

} RUNTIME_FILE_SECTION_S;

To pass the runtime image to Typhoon the steps are as follows: the driver must first ensure that the
message WAITING_FOR_HOST_REQ is present in the Arm2Host0 register.

1) Monitor Arm2Host0 for status WAITING_FOR_HOST_REQUEST
2) Write HOST_CMD_RUNTIME_IMAGE to Host2Arm0
3) Wait for the interrupt from Arm2Host0 indicating a WAITING_FOR_SEGMENT status
4) Fill in the Host2Arm registers with the necessary information for this segment

• Host2Arm1 = length, in bytes
• Host2Arm2 = checksum of segment
• Host2Arm3 = address in Internal Memory to write this data
• Host2Arm4 = upper 32 bits of PCI address of buffer containing segment
• Host2Arm5 = lower 32 bits of PCI address of buffer containing segment

5) Write HOST_CMD_SEGMENT_AVAILABLE to Host2Arm0
6) Repeat steps 3 through 5 until the entire image is downloaded – STATUS_SEGMENT_FAIL

indicates that the download process must be aborted and the adapter reset.
7) Write HOST_CMD_DOWNLOAD_COMPLETE into Host2
8) Start ARM running at New address.
9) Monitor Arm2Host0 for status WAITING_FOR_BOOT
10) Proceed with normal runtime boot by downloading a boot record.

The values above are defined as:
STATUS_WAITING_FOR_BOOT 0x0007
STATUS_WAITING_FOR_HOST_REQUEST 0x000D
STATUS_WAITING_FOR_SEGMENT 0x0010
STATUS_SEGMENT_FAIL 0x8010
HOST_CMD_RUNTIME_IMAGE 0x00FD
HOST_CMD_SEGMENT_AVAILABLE 0x00FC
HOST_CMD_DOWNLOAD_COMPLETE 0x00FB

3.5.4.4 Boot Record

The Boot Record data structure is copied from the host to the adapter prior to any packets being
transmitted or received. It contains pointer to all of the static data structures in host memory. The

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

58

download of the Boot Record implies that the rings are empty and the read and write pointers for each
ring are assumed to be pointing to the start of the rings.

Note that all pointers are 64 bits long. In 32 bit PCI address mode the high order 32 bits are always
zero. It is also assumed that the high order 32 bits for the start and end pointers of each ring are the
same (i.e. each ring does not cross a 32 bit addressing boundary).

Boot Record structure

32bit value: HostRingPtr; /* points to Host Ring Pointer data structure */
32bit value: VarsHi;
32bit value: TxLoPriStart; /* Tx low priority descriptor ring */
32bit value: TxLoPriStartHi;
32bit value: TxLoPriSize;
32bit value: TxHiPriStart; /* Tx high priority descriptor ring */
32bit value: TxHiPriStartHi;
32bit value: TxHiPriSize;
32bit value: RxLoPriStart; /* Rx low priority ring */
32bit value: RxLoPriStartHi;
32bit value: RxLoPriSize;
32bit value: RxBufferStart; /* Rx buffer ring */
32bit value: RxBufferStartHi;
32bit value: RxBufferSize;
32bit value: CtrlStart; /* Command ring */
32bit value: CtrlStartHi;
32bit value: CtrlSize;
32bit value: RespStart; /* Command Response ring */
32bit value: RespStartHi;
32bit value: RespSize;
32bit value: ZeroWordUL; /* Word at this location is zero, for dma Burp */
32bit value: ZeroWordHiUL;
32bit value: RxHiPriStart; /* Rx high priority ring */
32bit value: RxHiPriStartHi;
32bit value: RxHiPriSize;

3.5.4.5 Host Ring Pointer Structure

The Host Ring Pointer data structure is resident in host memory and is shared between the host and
the adapter. It contains the read and write pointers into the 7 shared rings. The location of this data
structure is defined by the host during initialization and a pointer to it is passed to the adapter in the Boot
Record. The Host Ring Pointer data structure is shown below. Note that the TxDescWriteIndex and the
CmdWriteIndex are passed from the host to the adapter in registers and are therefore not stored in the
Host Ring Pointer structure.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

59

Host Ring Pointer structure

32bit value: RxHiReadIndxUL; /* Host -> Typhoon */
32bit value: RxLoReadIndxUL; /* Host -> Typhoon */
32bit value: RxBuffWriteIndxUL; /* Host -> Typhoon */
32bit value: RespReadIndxUL; /* Host -> Typhoon */
32bit value: TxLoDescReadIndxUL; /* Typhoon -> Host */
32bit value: TxHiDescReadIndxUL; /* Typhoon -> Host */
32bit value: RxLoWriteIndxUL; /* Typhoon -> Host */
32bit value: RxBuffReadIndxUL; /* Typhoon -> Host */
32bit value: CmndReadIndxUL; /* Typhoon -> Host */
32bit value: RespWriteIndxUL; /* Typhoon -> Host */
32bit value: RxHiWriteIndxUL; /* Typhoon -> Host */

3.5.4.6 Boot with BIOS Extension ROM (NetBoot)

Once the ARM initializes the PCI the host will either boot locally and execute the adapter's driver, or in
the case of a network boot, it will read the extended BIOS (NetBoot code) from the adapters NVDevice.
If the ARM determines that the host is reading the Extended BIOS, it must read the NetBoot code from
NVDevice and return it to the host. Once the host has copied the NetBoot to its local memory, it
executes it. The ARM runtime image will be running at the time of NetBoot Code execution from the
Host.

The Host will request a NetBoot if it has a valid NetBoot Image in NVDevice and is configured for
network boot. Reset proceeds as normal through the ROM boot stage and starts executing the
NVDevice boot image. This code checks for the network boot option set and that there is a valid image
in NVDevice. If this is so, it sets a bit in the PCI configuration register to advertise the feature to the host
and sets the configuration registers to allow the host to map the adapter’s ROM into its address space.

The NetBoot code must contains basic network transmit and receive functions. These are needed to
allow the network boot procedure to load operating system and driver from the network.

As part of the system boot the host checks for a network boot ROM presence on the adapters and if so
attempts to read it into its own memory. The Typhoon advertises a virtual ROM address space to the
host. When the host reads these locations the Typhoon hardware interrupts the ARM and presents the
address of the host read to the ARM in a register. The ARM then reads the 32 bit value from NetBoot
section of NVDevice and writes it into a data register which is returned to the host as the result of its
read. In this manner the adapter fakes a ROM. The host should see no difference in functionality except
for a severe decrease in performance.

The reading of the ROM should take no longer than 2 seconds.

The space allocated for the network boot code should be at least 64k bytes and preferably 128k bytes.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

60

3.6 Adapter Sleep

3.6.1 Putting Typhoon to sleep

“Putting the adapter to sleep” means executing the transition between state D0 (fully-on) and any other
state except D3-Disabled. To put the adapter into sleep-mode, meaning executing sleep/wake-up
events instead of the normal flow of data, the following steps must be followed.

1. The driver issues TxDisable and RxDisable commands to halt the data flow through the adapter.
2. The driver issues a Halt command and waits for typhoon to post a STATUS_HALTED. See

Adapter Reset for details.
3. The driver issues GlobalReset to cause the sleep image to be reloaded from the NV device. This

has the side effect of releasing all buffers held by Typhoon.
4. The driver polls the card looking for the STATUS_WAITING_FOR_HOST_REQUEST command.
5. The driver passes the boot record to the Typhoon. (see section 5.5.4.1 for details)
6. Once the typhoon has posted STATUS_RUNNING, the driver may issue any other commands

desired:
• StationAddressWrite if a MAC address other than the factory default is required.
• RxFilterWrite to configure the receive hash filter if necessary.
• AddWakeupFrame commands if desired, one per wake-up frame to be added.
• Add SleepFrame commands if desired, one per sleep frame.
• EnableSleepEvents with accompanying parameters for each event enabled.
• EnableWakeupEvents with the desired events enabled.

7. The host writes the PCI PowerMgmtCtrl register to place the adapter in a lower power state. If the
driver executes this action it must be done through the WritePCIConfigReg command.
Alternatively, the driver may issue the GoToSleep command, telling Typhoon to begin sleep and
wake events without waiting for the PCI power state to change.

There are two ways to wake the adapter. If it was put into a low power state via the PowerMgmtCtrl
register, it may be woken the same way. If it was put to sleep manually, via the GoToSleep command,
it must be woken by writing HOST_CMD_WAKEUP into Host2Arm register 0. Regardless of which
wakeup method used, the driver must reload the runtime image into the Typhoon when changing from
sleep mode to runtime mode, as the runtime image is not stored in the NV device.

3.6.2 Wakeup Events

3.6.2.1 Network Link State

The following Link States will be supported:

• Any change to the current network link state.
• The transition from link down to link up.
• The transition from link up to link down.

When any of these states are detected, the Typhoon can generate a wakeup signal to the host system.

3.6.2.2 Network Wakeup Frame

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

61

Wakeup frames for Typhoon are loosely modeled on the wakeup frame format used in Windows NT5.0
to minimize the amount of processing required in the driver. The driver will pass to the firmware a mask
of the bytes in the incoming frame to be examined and list of the values to compare those bytes to.
The mask may be no greater than 190 bytes; the buffer may be no greater than 1518 bytes.

Example:

Mask: 00 00 00 C0 00 00 00…
Buffer: 08 06

This buffer/mask combination would match on any ARP packet in standard Ethernet format –
that is, any ethernet packet with an 0x806 in the type field.

No Sidewinder decryption will be performed while in sleep mode. If an incoming wakeup packet will be
encrypted, it is the driver’s responsibility to pass down a wakeup frame that matches on the encrypted
packet, not the unencrypted packet.

3.6.2.3 AMD Magic Packet™

A Magic Packet is defined as a packet that contains the data pattern six 0xFF followed by sixteen
repetitions of our MAC address. This pattern may appear anywhere within a valid packet.

For example, if our MAC address is 00A086010203 then a Magic Packet would contain the data:

FF FF FF FF FF FF 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0
86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01
02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03 00 A0 86 01 02 03
00 A0 86 01 02 03

3.6.3 Sleep Events

3.6.3.1 MAC keepalives

MAC keepalives require the IP address associated with the Typhoon. Typhoon will broadcast a MAC
Address Refresh Frame periodically to keep the local hub cache current. This frame is based on the
Ethernet Configuration Testing Protocol described in Chapter 8 of “The Ethernet Version 2.0”
November 1982.

The frame is a reply frame with the source and destination addresses set to the host’s address.

FIELD SIZE VALUE
Destination Address 6 bytes Host’s address
Source Address 6 bytes Host’s address
Type Field 2 bytes 0x9000
Skip Count 2 bytes 0
Function 2 bytes 1 - Reply
Receipt Number 2 bytes Any 16 bit value
Data 40 bytes Loopback data (anything)

This makes a minimum size packet.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

62

3.6.3.2 ARP replies

ARP replies also require the IP address associated with the Typhoon. Typhoon will check incoming
packets for an ARP request matching our IP address. When it finds one, it will form and transmit an
ARP reply. See RFC 826, Ethernet Address Resolution Protocol for details on detecting and
responding to ARP requests.

3.6.3.3 Ping replies

Ping replies require the IP address associated with the Typhoon. Typhoon will filter incoming packets
for an ICMP Echo Request matching this IP address. When it finds one, it will form and transmit an
ICMP Echo Reply packet. See RFC 792, Internet Control Message Protocol, for details on detecting
and responding to ICMP Echo Requests.

3.6.3.4 DHCP Lease Renewal

DHCP lease renewal requires the IP address associated with the Typhoon and the Client Identifier that
the DHCP client on the host used to secure the original lease. Typhoon will maintain the IP address
lease by sending DHCPREQUEST messages to the local server. See Sleep Events Implementation
Appendix for details.

3.6.3.5 Master Browser Host Announcements

Host Announcements require the Windows Host Name, Workgroup/Domain Name and IP address
associated with the Typhoon. The Typhoon will, at 12 minute intervals, broadcast a Host
Announcement packet to the Master Browser. See Sleep Events Implementation Appendix for details
on forming a host announcement

3.6.3.6 Sleep Timer (alarm clock)

The Sleep Timer requires the exact time from now, in milliseconds that the driver wishes the system to
be awakened.Typhoon will store this information and wake the system at the requested time. Note that
the 32 bit number used to pass the number of milliseconds imposes a 49 day limit on the timer.

3.6.3.7 Novell NCP Watchdogs

Novell Watchdogs do not require any information from the driver. The Typhoon will filter for a watchdog
packet directed to its MAC address. When it finds one it will formulate a response based on the
incoming packet. See Sleep Events Implementation Appendix for details on detecting and responding
to a watchdog packet.

3.6.3.8 Sleep Frames

Typhoon provides the ability for the operating system to send packets out even when asleep.
These packets must be loaded into the Typhoon via the AddSleepFrame command when the
system is being put to sleep. The packets must be physically contiguous, fully formed, valid
Ethernet packets. Typhoon will not do TCP segmentation, IP checksum, IPSEC or any other
processing on these Sleep Frames.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

63

3.7 Adapter Reset

When resetting Typhoon using the PCI SoftReset register, you must use the following procedure
to prevent problems with the DMA causing failure to reboot.

If you have not downloaded a boot record, simply write the PCI SoftReset register to reset the adapter.
If you have downloaded a boot record, you must issue a CMD_halt command through the command
ring and wait for typhoon to post a status of STATUS_HALTED. This halt command will cause the
typhoon software to stop all activity and wait for the DMA’s to become idle. Once the DMA’s are idle it
will post a STATUS_HALTED and it is safe to issue a PCI SoftReset. If the DMA’s fail to become idle,
Typhoon will remain posting a STATUS_HALTING and fail to post STATUS_HALTED, the driver may
timeout and issue a PCI SoftReset.

Scope:
This document addresses the Anti-Starvation algorithm and De-Queue method contained

within txmac.c for Typhoon. The queues referred to are the three queues (High, Low and IpSec)
that head into the single Mac DMA ring.

Original De-Queue Algorithm:

The original Typhoon 1.0 De-Queue algorithm for the Txmac priority queues does not
implement any type of anti-starvation algorithm. The implementation works as follows:

TxmacQueueStatusUL is a variable that contains a bit for each of the priority queues. This
variable is updated by the macros TXMAC_QueueEntry(x) and TXMAC_QueueEmpty(x).

When an entry is added to the priority queue a bit for that queue is set. When the queue goes
empty the bit is cleared.

For the De-Queue process, if there is space on the Mac DMA ring (less than 16 entries available)
a priority is selected for the next packet to be De-Queued. This priority is selected by a simple
table lookup as follows:

 priorityUL = TxmacDeQueueTable[TxmacQueueStatusUL];

 The table contains 8 elements favoring High, IpSec and then Low priority:

 /********************** High Priority ... H I L ****************************/
 TxmacDeQueueTable[TXMAC_EMPTY_QUEUES] = TXMAC_HIGH_PRI;
 TxmacDeQueueTable[TXMAC_IPSEC_QUEUEING] = TXMAC_IPSEC_PRI;
 TxmacDeQueueTable[TXMAC_HIGH_QUEUEING] = TXMAC_HIGH_PRI;
 TxmacDeQueueTable[TXMAC_IPSEC_HIGH_QUEUEING] = TXMAC_HIGH_PRI;
 TxmacDeQueueTable[TXMAC_LOW_QUEUEING] = TXMAC_LOW_PRI;
 TxmacDeQueueTable[TXMAC_IPSEC_LOW_QUEUEING] = TXMAC_IPSEC_PRI;
 TxmacDeQueueTable[TXMAC_HIGH_LOW_QUEUEING] = TXMAC_HIGH_PRI;
 TxmacDeQueueTable[TXMAC_IPSEC_HIGH_LOW_QUEUEING] = TXMAC_HIGH_PRI;

The limitation of this method is that when the higher priority queues are being filled at a rate that is
higher than the de-queue operation, the lower priority queues will be starved indefinitely.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

64

3.8 Anti-Starvation De-Queue Algorithm:

The new Anti-Starvation De-Queue Algorithm implemented for Typhoon 1.1 works around
the same priority table lookup used in Typhoon 1.0. This table has been increased to 8 de-queue
options. The list below shows a line for each table with the order of queue favoritism:

 TxmacDeQueueTable[Table 0][…] = Low, High, IpSec;
 TxmacDeQueueTable[Table 1][…] = High, IpSec, Low;
 TxmacDeQueueTable[Table 2][…] = High, IpSec, Low;
 TxmacDeQueueTable[Table 3][…] = IpSec, High, Low;
 TxmacDeQueueTable[Table 4][…] = High, IpSec, Low;
 TxmacDeQueueTable[Table 5][…] = High, IpSec, Low;
 TxmacDeQueueTable[Table 6][…] = IpSec, High, Low;
 TxmacDeQueueTable[Table 7][…] = High, IpSec, Low;

A new variable has been added, TxmacAntiStarvationIndexUL, to index into this table array. For
each De-Queue operation, the table index is incremented to favor the next chosen priority scheme
in a round robin fashion. The De-Queue algorithm now look like:

 /* select a priority to dequeue */
 priorityUL =
TxmacDeQueueTable[TxmacAntiStarvationIndexUL++][TxmacQueueStatusUL];
 /* limit test the table index */
 if (TxmacAntiStarvationIndexUL < TXMAC_ANTI_STARVATION_SIZE)
 {

 TxmacAntiStarvationIndexUL = 0;
 }

The new anti-starvation algorithm provides the following approximate ratios assuming all priorities
are full:

High Priority to IpSec Priority = 2:1

IpSec must still be favored closely to High priority since the IpSec queue could contain High
priority IpSec packets, yet since this ring could also contain Lo priority packets a 1:1 ratio is not
desired.

High Priority to Low Priority = 7:1

Comments by Anand Rajagopalan:

This is a simple algorithm that provides very little overhead for the queue decision process. Only
an index wrap condition was added. Each table contain 8 bytes of data.

If desired, more tables could be added to increase the resolution of priority selections for fairness.
Or a selective starvation index based on packets or bytes sent.

I think it is a neat little algorithm and will work fine. I found a couple of things that needed
clarification: the Hi Priority to Ipsec Priority ratio - I think it is 3:1 as described by the tables. I'm
including the case for Table 0, with no Low priority frames, and only High and Ipsec frames. So, if
you actually want it to be 2:1 you will need to put Ipsec ahead of High in one of the tables -
maybe table 0.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

65

Its easy to change the ratios of any of combinations by changing the table entries. As long as we
accept the algorithm I think we should have Chris merge the code and we can play with the
relative priorities as we wish.

About the final comment in Chris' paper - He mentions a selective starvation index based on
packets/bytes sent. I believe the index in it's present form is based on packets. i.e., the ratios
indicate the number of High packets to Low packets. Or am I mistaken?

You are correct, the table index is incremented based on packets being processed.

Also, to make it byte based, we'll need to keep track of bytes sent out on each stream and do
some comparisons to set the value of TxmacAntiStarvationIndeUL - right ?

Yes, to make it byte based requires a lot more overhead. We would need to keep track of the
bytes transmitted on each queue and then switch the table index based on the relative byte
transmitted over a set time period. If we decide we need this much accuracy then I think we
should look at other algorithms that fit better to the task. This is getting more into queuing fairness
algorithms than anti-starvation. Chris's algorithm solves the simple anti-starvation problem with
very low overhead.

Mick

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

66

3.9 Encryption Enable Logic
For legal reasons, it was determined that shipping the boards as unencrypted NICs, then allowing
the customer to enable them at there site was the best solution. The users would enter any
required name/location/business information that was legal required into a WEB based interface,
and then after validating that customer the Enable keys would be downloaded to his machine.
Note that this also presents us with the opportunity to charge the customer for this feature.

The exact anti-logic, and procedures required to implement what is in the above paragraph is
beyond this document and is described elsewhere. The only thing that we are concerned with
here is the actual enable Key, and how it is used.

The original proposal for the Enablement feature had unique magic values held within ASIC
registers that had to be matched by the keys in order for the particular ASIC to be enabled. As of
June 2000, with the reduction of restrictions by the US Government on exporting encrypted
products, this “unique” feature has been relaxed. The same key can be used for all cards, but the
user still must be verified in order to receive it.

The actual mechanism is based upon the fact that the T2 chips support hardware to enable or
disable the IPSec hardware offload features of the Mongoose built into there ASICs.

The Enable Key returned via the WEB process is simply an encoded file that, when downloaded
to the firmware, provides information on how to write to the hardware mentioned above. Within the
hardware is a register that the firmware can read to determine what IPSec features have been
enabled, and this can be returned on up to the OS Device drivers when requested.

As this Key is simply a file, it can be, if desired, installed by the OEM on hard drive of the machine
as it is shipped from their manufacturing site. This has no effect on how it is actually used.

From the customer’s point of view, the entire process looks like this:

1. Customer Logs into Website and provides User/Location information as is required by
law.

2. Servers decide if customer can receive Enable Key.
3. Key is passed down to customer hard disk within an install application.
4. User runs the installer, which places enable key file in correct location
5. Device driver is restarted.
6. When the driver initializes, it discovers the Enable Key file on the hard disk, and

downloads it to the Firmware.
7. The Firmware verifies the Key for version/size/checksum, and patches portions of it’s

software with the data contained within key.
8. The firmware then reinitializes the part of itself that handles the hardware IPSec enable

features, thus enabling the features of the ASIC.
9. When the firmware returns, the OS Device Driver can inquire the capabilities of the

hardware, at which time it will see enabled IPSec features.
10. The OS Driver can then report these features to the OS as needed.

Note that once the enable key file resides on the machine’s hard disk, that the sequence starts at
step #6 above. As long as the file remains on the machine, the IPSec features of the T2 card will
be avaliable.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

67

See the function GetIPSecEnable and SnipitDownload for more details. You can also refer to
the section on Encryption Enabling Hardware in the T2 ASIC specification. Additional
documentation on the Web Enablement and Installation process is also available.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

68

4. Command Descriptions

4.1 Host-to-adapter Command Descriptions

This section lists the commands that the host sends to the adapter and the response (if any) generated
by the adapter. All the parameters to the commands are described and whether the commands can be
issued in-band, out-of-band, or both.

Commands typically perform read or write operations on the adapter. In general read operations result
in the adapter generating a response. Write operations, if successful, do not generate a response. Any
command that fails generates an error response. The format of this is shown below.

AcknowledgeResponse (out-of-band and in-band)

This response is returned if the command requests a positive acknowledge. It is not returned if the
command is defined to reply with a response. If any errors occur in parsing the command then the Error
Response is returned instead of this one.

Response:
Flags U8 0x86 (Response Descriptor | No Error | Valid)
NumDesc U8 0 – no following Extension Descriptors
Command U16 Command
Seq Num U16 Command’s sequence number.
Parameter1: U16 Error Code

0 – no error

Error Response (out-of-band only and in-band)

This response is returned if any errors are detected in processing a command.

Response:
Flags U8 0xC6 (Response Descriptor | Error | Valid)
NumDesc U8 0 – no following Extension Eescriptors
Command U16 Command
Seq Num U16 Command’s sequence number.
Parameter1: U16 Error Code

0 – no error
1 – unknown command
2 – command cannot be executed at this time
3 – command format invalid
4 – internal error processing command

Parameter2: U32 Command specific error information.
Parameter3: U32 Command specific error information.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

69

GlobalReset (out-of-band only)

This command is not currently supported. See SoftwareReset command.

Command: U16 GlobalReset
Parameters: none

Response: none

TxEnable (out-of-band only)

Enable the MAC transmitter. The default state is disabled.

Command: U16 TxEnable
Parameters: none

Response: none

TxDisable (out-of-band only)

Disable the MAC transmitter. All frames on the MAC transmit queue will be transmitted before the
transmitter is disabled. The default state is disabled.

Command: U16 TxDisable
Parameters: none

Response: none

RxEnable (out-of-band only)

Enable the MAC receiver. The default state is disabled.

Command: U16 RxEnable
Parameters: none

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

70

RxDisable (out-of-band only)

Disable the MAC receiver after the current frame is received. There may be many frames buffered in
the adapter, these are discarded and no further receive frames will be copied to the host. The default
state is disabled.

Command: U16 RxDisable
Parameters: none

Response: none

RxFilterWrite (out-of-band only)

Defines the value of the receive filter. The 5 active bits in this command may be used in any
combination and are shown below in the first parameter of the command. The default value is binary
00111.

Command: U16 RxFilterWrite
Parameter1: U16 RxFilter

xxxx1 - individual (must match station address).
xxx1x - all multicast (including broadcast).
xx1xx – broadcast.
x1xxx - all (promiscuous).
1xxxx - multicast hash filter.

Response: none

The effect of each bit is additive. That is a 0x00011 pattern would enable individually addressed packets
that match the adapter's station address as well as all multicast packets. Setting bit 3 (promiscuous)
would override bits 2 through 0.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

71

RxFilterRead (out-of-band only)

Read the state of the receive filter. The receive filter is described in the RxFilterWrite command.

Command: U16 RxFilterRead
Parameters: none

Response:
Parameter1: U16 RxFilter

ReadStatistics (out-of-band only)

Read the adapters statistics into the response ring.

Command: U16 ReadStatistics
Parameters: U16 StatsType

0 – MAC statistics
1 – Ofload statistics
2 – Error statistics
3 – Internal statistics
4 – Transmit statistics*
5 – MAC Transmit statistics*
6 – Tx Alloc statistics*
7 – Alloc statistics*
8 – Receive statistics*
9 – Command statistics*
10 – IPsec statistics*
11 – Checksum statistics*
12 – TCP Segmentation statistics*

The StatsType parameter selects which statistics are returned. The only statistics externally visible are
the MAC statistics, the others are kept as part of the internal monitoring of the system. The selections
marked with an asterix are only enabled in debug versions of the microcode.

The response contains the statistics structure, which is defined as shown below.

Response:
Parameter1: U16 unused, set to zero
Parameter2: U32 TxPackets
Parameter3: U32 TxBytesLo

Ext Cmd Desc 1: U32 TxBytesHi
U32 TxDeferred
U32 TxLateCollisions
U32 TxCollisions

Ext Cmd Desc 2: U32 TxCarrierLost
U32 TxMultipleCollisions
U32 TxExcessiveCollisions
U32 TxFifoUnderruns

Ext Cmd Desc 3: U32 TxMulticastTxOverflows
U32 TxFiltered
U32 RxPacketsGood
U32 RxBytesGoodLo

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

72

Ext Cmd Desc 4: U32 RxBytesGoodHi
U32 RxFifoOverruns
U32 BadSSD
U32 RxCrcErrors

Ext Cmd Desc 5: U32 RxOversize
U32 RxBroadcast
U32 RxMulticast
U32 RxOverflow

Ext Cmd Desc 6: U32 RxFiltered
U32 LinkStatus

[0] – link (0 = no link, 1 = link)
[1] – speed (0 = 10Mbps, 1 = 100 Mbps)
[2] – duplex mode (0 = half, 1 = full)
[3:31] – reserved, set to zero

U32 unused, set to zero
U32 unused, set to zero

ClearStatistics (out-of-band only)

Clear the adapters statistics counters.

Command: U16 ClearStatistics
Parameters: U16 StatsType

0 – MAC statistics
1 – Ofload statistics
2 – Error statistics
3 – Internal statistics
4 – Transmit statistics*
5 – MAC Transmit statistics*
6 – Tx Alloc statistics*
7 – Alloc statistics*
8 – Receive statistics*
9 – Command statistics*
10 – IPsec statistics*
11 – Checksum statistics*
12 – TCP Segmentation statistics*

The StatsType parameter selects which statistics counters are to be cleared. The only statistics
externally visible are the MAC statistics, the others are kept as part of the internal monitoring of the
system. The selections marked with an asterix are only enabled in debug versions of the microcode.

Response: none

CycleStatistics (out-of-band only)

This command initiates a periodic transfer of statistics from the adapter to the host. The rate of update
(in microseconds) is supplied by the parameter. The statistics data structure is identical to the one
returned by the ReadStatistics command.

Command: U16 CycleStatistics
Parameter1: U16 unused, set to zero.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

73

Parameter2: U32 CyclePeriod, number of milliseconds between statistics
updates. Zero disables cycle.

Response: none immediate

The adapter will periodically transmit a CycleStatistics to the host. It is the responsibility of the host to
ensure that the ring is purged frequently. The CycleStatiststics is described in the Unsolicited
Responses section.

The following actions stop the statistics update: hardware reset, software reset, issuing the
CycleStatistics command with the CyclePeriod set to zero.

ReadErrors (out-of-band only)

This command is not currently supported. This is a debug command to return a copy of the internal
data structure that contains the error counts. The contents of the error structure will be defined later.

Command: U16 ReadErrors
Parameters: none

Response:
ErrorStruct

ReadMemory (out-of-band only)

This command is not currently supported. Read data from the adapter to the host. The host
specifies an adapter address (bottom 2 bits must be zero) as the source of the read and the number of
words to transfer. Any number of words can be read from the external memory. Data can also be read
from the ARM's internal instruction memory, data memory or from memory mapped registers. In these
cases the ARM copies the data to a buffer in external before transferring it to the host. This buffer is 32
bytes long, so reads from these areas can not exceed 128 bytes.

Command: U16 ReadMemory
Parameter1: U16 NumWords
Parameter2: U32 AdapterAddr

Response:
Parameter1: U16 NumWords
Parameter2: U32 AdapterAddr
Parameter3: U32 Value

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

74

WriteMemory (out-of-band only)

This command is not currently supported. Write an 8 bit, 16 bit or 32 bit value to the adapter's
memory space. A single read is performed and the host must ensure correct alignment for 16bit and 32
bit values. Only 32 bit writes are permitted to instruction memory, data memory and registers.

Command: U16 WriteMemory
Parameter1: U16 WordSize

0 - 8 bits
1 - 16 bits
2 - 32 bits

Parameter2: U32 AdpaterAddr
Parameter3: U32 Value

Response: none

VarSectionRead (out-of-band only)

Read the VAR section in from non-volatile memory. The checksum algorithm used is a simple XOR
of the bytes inverting the sum when complete. The ErrorResponse will be returned if the section is
not valid in the NVDevice.

Command: U16 VarSectionRead
Parameters: none

Response:
Parameter1: U16 checksum
Parameter2: U32 VarLen, number of bytes (each parameter is 2 bytes)
Parameter3: U32 Parameters1,0

Bits[7:0] – LSB parameter0
Bits[15:8] – MSB parameter0
Bits[23:16] – LSB parameter1
Bits[31:24] – MSB parameter1

Ext Resp Desc1: U32 Parameters3,2
U32 Parmeters5,4
U32 Parameters7,6
U32 Parameters9,8

Etc. … .. … … … … … … … …

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

75

VarSectionWrite (out-of-band only)

Write the VAR section in non-volatile memory. The specified bytes are written into the reserved
VarSection page in non-volatile memory. A checksum parameter is included to ensure data integrity.
The checksum algorithm used is a simple XOR of the bytes inverting the sum when complete.
AcknowledgeResponse will be sent to the host after programming has completed or the ErrorResponse
will be sent if the checksum is not valid.

Command: U16 VarSectionWrite
Parameter1: U16 checksum
Parameter2: U32 VarLen, number of bytes (each parameter is 2 bytes)
Parameter3: U32 Parameters1,0

Bits[7:0] – LSB parameter0
Bits[15:8] – MSB parameter0
Bits[23:16] – LSB parameter1
Bits[31:24] – MSB parameter1

Ext Resp Desc1: U32 Parameters3,2
U32 Parmeters5,4
U32 Parameters7,6
U32 Parameters9,8

Etc. … .. … … … … … … … …

Response: AcknowledgeResponse

StaticSectionRead (out-of-band only)

Read the STATIC section in from non-volatile memory. The checksum algorithm used is a simple
XOR of the bytes inverting the sum when complete. The ErrorResponse will be returned if the
section is not valid in the NVDevice.

Command: U16 StaticSectionRead
Parameters: none

Response:
Parameter1: U16 checksum
Parameter2: U32 VarLen, number of bytes (each parameter is 2 bytes)
Parameter3: U32 Parameters1,0

Bits[7:0] – LSB parameter0
Bits[15:8] – MSB parameter0
Bits[23:16] – LSB parameter1
Bits[31:24] – MSB parameter1

Ext Resp Desc1: U32 Parameters3,2
U32 Parmeters5,4
U32 Parameters7,6
U32 Parameters9,8

Etc. … .. … … … … … … … …

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

76

StaticSectionWrite (out-of-band only)

Write the STATIC section in non-volatile memory. The specified bytes are written into the reserved
StaticSection page in non-volatile memory. A checksum parameter is included to ensure data integrity.
The checksum algorithm used is a simple XOR of the bytes inverting the sum when complete.
AcknowledgeResponse will be sent to the host after programming has completed or the ErrorResponse
will be sent if the checksum is not valid.

Command: U16 StaticSectionWrite
Parameter1: U16 checksum
Parameter2: U32 VarLen, number of bytes (each parameter is 2 bytes)
Parameter3: U32 Parameters1,0

Bits[7:0] – LSB parameter0
Bits[15:8] – MSB parameter0
Bits[23:16] – LSB parameter1
Bits[31:24] – MSB parameter1

Ext Resp Desc1: U32 Parameters3,2
U32 Parmeters5,4
U32 Parameters7,6
U32 Parameters9,8

Etc. … .. … … … … … … … …

Response: AcknowledgeResponse

ImageSectionProgram (out-of-band only)

This command is not currently supported.

Command: U16 ImageSectionProgram
Parameter1: U16 SectionID
Parameter2: U32 NumBytes
Parameter3: U32 PageOffset

Ext Resp Desc1: U32 checksum
U32 PCI Addr Hi – most significant 32 bits of PCI address where the

page data begins
U32 PCI Addr Lo – most significant 32 bits of PCI address where the

page data begins
U32 unused, set to
U32 unused, set to zero

Response: AcknowledgeResponse

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

77

ReadNVRamPage (out-of-band only)

Read a page of data from the adapter's serial NVRam. The NVRam is divided into 512 pages of 264
bytes (66 word). This command reads one of these pages from the NVRam device.

Command: U16 ReadNVRamPage
Parameter1: U16 PageNum (0-511)
Parameter2: U32 unused, set to zero
Parameter3: U32 unused, set to zero

Response:
Parameter1: U16 unused, set to zero
Parameter2: U32 Word 0 – Bytes03-00
Parameter3: U32 Word 1 – Bytes07-04

Ext Resp Desc1: U32 Word 2
U32 Word 3
U32 Word 4
U32 Word 5

Ext Resp Desc2: U32 Word 6
U32 Word 7
U32 Word 8
U32 Word 9

.

Ext Resp Desc16:U32 Word 62
U32 Word 63
U32 Word 64
U32 Word 65

WriteNVRamPage (out-of-band only)

Write a page of data to the adapter's serial NVRam. The NVRam is divided into 512 pages of 264 bytes
(66 word). This command writes one of these pages to the NVRam device.

Command: U16 WriteNVRamPage
Parameter1: U16 PageNum (0-511)
Parameter2: U32 Word 0 – Bytes03-00
Parameter3: U32 Word 1 – Bytes07-04

Ext Resp Desc1: U32 Word 2
U32 Word 3
U32 Word 4
U32 Word 5

Ext Resp Desc2: U32 Word 6
U32 Word 7
U32 Word 8
U32 Word 9

.

Ext Resp Desc16:U32 Word 62
U32 Word 63
U32 Word 64
U32 Word 65

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

78

Response: AcknowledgeResponse

XcvrSel (out-of-band only)

This command allows control of the tranceiver type.

Command: U16 XcvrSel
Parameter1: U16 Xcvrtype

0 – 10Mbps, half duplex
1 – 10 Mbps, full duplex
2 – 100 Mbps, half duplex
3 – 100 Mbps, full duplex
4 – auto-negotiation

Response: none

TestMux (out-of-band only)

This command allows control of the TestMux register in the MAC. Setting the TXEN bit will

Command: U16 TestMux
Parameter1: U16 TestMuxVal

[0:5] SIGSELECT (Signal Select, see table below)
[6] TXEN (MII TxEn pin)
[7] TRIEN (Tristate enable)
[8:15] TXDATA (MII TxData)

Following table taken for ASIC spec –

SIGSELECT SIGNAL
0 25 Mhz Mac Clock
1 MII Rx Dv pin
2 MII Rx Er pin
3 MII Col pin
4 MII Crs pin
5 MII 10/100 pin
6 MII Tx Clk pin
7 MII Rx Clk pin
8 MII Link Detect pin
9 PLL clock out
10 Power On Reset

Other 0

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

79

PhyLoopbackEnable (out-of-band only)

This command enables loopback in the PHY.

Command: U16 PhyLoopbackEnable

Response: none

PhyLoopbackDisable (out-of-band only)

This command disables loopback in the PHY.

Command: U16 PhyLoopbackDisable

Response: none

MacControlRead (out-of-band only)

Read the MAC Control Register.

Command: U16 MacControlRead
Parameters: none

Response:
Parameter1: U16 MACConfig

[0] deferExtendedEnable
[4:1] deferTimerSelect
[5] enable full duplex
[6] allow large packets
[7] extend after collision
[8] flow control enabled
[9] VLT enable

MacControlWrite (out-of-band only)

Write the MAC Control Register. The register bit definition is defined in the description of command
MacControlRead.

Command: U16 MacControlWrite
Parameter1: U16 MACConfig

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

80

MaxPktSizeRead (out-of-band only)

Read the maximum packet size.

Command: U16 MaxPktSizeRead
Parameters: none

Response:
Parameter1: U16 MaxPktSize

MaxPktSizeWrite (out-of-band only)

Write the maximum packet size

Command: U16 MaxPktSizeWrite
Parameter1: U16 MaxPktSize

Response: none

MediaStatusRead (out-of-band only)

Read the Media Status Register.

Command: U16 MediaStatusRead
Parameters: none

Response:
Parameter1: U16 MediaStatus

[1:0] reserved
[2] CRC strip disable
[3] reserved
[4] collision detection
[5] carrier sense
[9:6] reserved
[10] polarity reversed
[11] no link detect (0 = link, 1 = no link)
[12:15] reserved

MediaStatusWrite (out-of-band only)

Write the Media Status Register.

Command: U16 MediaStatusWrite
Parameter1: U16 MediaStatus

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

81

NetworkDiagsRead (out-of-band only)

Read the Network Diagnostics Register.

Command: U16 NetworkDiagsRead
Parameters: none

Response:
Parameter1: U16 NetworkDiags

[6:0] reserved
[7] statistics enabled
[9:8] reserved
[10] Rx enabled
[11] Tx enabled
[12] mac loopback
[13:15] reserved

NetworkDiagsWrite (out-of-band only)

Write the Network Diagnostics Register.

Command: U16 NetworkDiagsWrite
Parameter1: U16 NetworkDiags

Response: none

PhysicalMgmtRead (out-of-band only)

Command for reading the value in a PHY register.

Command: U16 PhysicalMgmtRead
Parameter1: U16 unused, set to zero
Parameter2: U32 PHY register

Response:
Parameter1: U16 PHY register data

PhysicalMgmtWrite (out-of-band only)

Command for reading and writing to the PHY.

Command: U16 PhysicalMgmtWrite
Parameter1: U16 PHY register data
Parameter2: U32 PHY register

Response: none

VarParamRead (out-of-band only)

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

82

Command for reading a parameter from the NVDevice VarSection.

Command: U16 VarParamRead
Parameter1: U16 offset in bytes – each parameter is 2 bytes

Response:
Parameter1: U16 data

VarParamWrite (out-of-band only)

Command for writing a parameter to the NVDevice VarSection.

Command: U16 VarParamWrite
Parameter1: U16 offset in bytes – each parameter is 2 bytes
Parameter2: U32 data

Response: none

FireWallControl (out-of-band only)

This command is no longer supported. DHCP prevention is now controlled by the Offload
command.

Enables or disables (default) the personal firewall features. The default for this feature is disabled.

Command: U16 FireWallControl
Parameter1: U16 control

[0] – DHCP control
0 – disable receive IP option descriptor
1 – enable receive IP option descriptor

Response: none

MulticastHashMaskWrite (out-of-band only)

Write the 64 bit multicast hash mask.

Command: U16 MulticastHashMaskWrite
Parameter1: U16 MulticastEnable

0 – disable hash on mac
1 – enable hash on mac
2 – set multicast hash

Parameter2: U32 Mask0, (lsb)
Parameter3: U32 Mask1, (msb)

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

83

StationAddressWrite (out-of-band only)

Write the adapter's MAC address. If parameters 1 and 2 are zero, the working MAC address will be set
back to the factory address. If not, the address contained in parameters 1 and 2 will be checked for
validity then stored in the NV device as the new working MAC address. This address is preserved
across a reboot or power loss until explicitly written back to the factory address.

Command: U16 StationAddressWrite
Parameter1: U16 MACAddrHi, high 16 bits of address
Parameter2: U32 MACAddrLo, low 32 bits of address

Response: none

StationAddressRead (out-of-band only)

Read the adapter's MAC address.

Command: U16 StationAddressRead
Parameters: none

Response:
Parameter1: U16 MACAddrHi, high 16 bits of address
Parameter2: U32 MACAddrLo, low 32 bits of address

StationMaskWrite (out-of-band only)

Write the adapter's Station Mask value.

Command: U16 StationMaskWrite
Parameter1: U16 maskHi, high 16 bits of mask
Parameter2: U32 maskLo, low 32 bits of mask

Response: none

StationMaskRead (out-of-band only)

Read the adapter's Station Mask value.

Command: U16 StationMaskRead
Parameters: none

Response:
Parameter1: U16 maskHi, high 16 bits of mask
Parameter2: U32 maskLo, low 32 bits of mask

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

84

VlanEtherTypeRead (out-of-band only)

Read the adapter's 802.1q VLAN EtherType.

Command: U16 VlanEtherTypeRead
Parameters: none

Response
Parameter1: U16 EtherType, 2 byte VLAN tag

VlanEtherTypeWrite (out-of-band only)

Write the adapter's 802.1q VLAN EtherType.

Command: U16 VlanEtherTypeWrite
Parameter1: U16 EtherType, 2 byte VLAN tag

Response: none

VlanMaskRead (out-of-band only)

Read the VLAN Mask.

Command: U16 VlanMaskRead
Parameters: none

Response:
Parameter1: U16 vlanMask

VlanMaskWrite (out-of-band only)

Write the VLAN Mask.

Command: U16 VlanMaskWrite
Parameter1: U16 unused, set to zero
Parameter2: U32 Mask0, (lsb)
Parameter3: U32 Mask1

Ext Resp Desc1: U32 Mask2
U32 Mask3
U32 Mask4
U32 Mask5

Ext Resp Desc2: U32 Mask6
U32 Mask7, (msb)
U32 unused, set to zero
U32 unused, set to zero

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

85

BroadcastThrottleWrite (out-of-band only)

Write the broadcast throttle limit. The BroadcastLimit parameter specified the amount of broadcasts /
multicasts allowed as percentage of bandwidth. Any broadcast / multicast packets exceeding this limit
will be discarded. The default value is 100 (no throttling).

Command: U16 BroadcastThrottleWrite
Parameter1: U16 BroadcastLimit, percentage

Response: none

BroadcastThrottleRead (out-of-band only)

Read the current BroadcastLimit.

Command: U16 BroadcastThrottleRead

Response:
Parameter1: U16 BroadcastLimit, percentage

DHCPPreventWrite (out-of-band only)

This command is not supported. See command FireWallControl.

Command: U16 DHCPreventRead

Response: none

DHCPPreventRead (out-of-band only)

This command is not supported. See command FireWallControl.

Command: U16 DHCPreventRead

Response: nonte

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

86

ReceiveBufferControl (out-of-band only)

Informs the adapter of the format of the receive buffer. The host can specify any padding to be used
when DMAing received packets to host .This feature should correspond to the cache line size in host
memory to allow for more efficient DMA transfers over the PCI bus.

Command: U16 ReceiveBufferControl
Parameter1: U16 Unused
Parameter2: U16 Padding, The adapter will always pad the received packet to this

number of bytes (default 0 – no padding)

Response: none

SoftwareReset (out-of-band only)

Issue a software reset to the adapter. The ARM jumps to its reset vector and all context and previously
downloaded code is lost. The ARM will disable the transmitter and receiver and reset all its ring indexes
to zero.

Command: U16 SoftwareReset
Parameters: none

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

87

CreateSA (in-band or out-of-band)

Issues a SA (Security Association) creation request. Note this is an entry for Security Association, part
of the SAD (SA Database), not part of the SPD (Security Policy Database). It is tied to either a single
AH or a single ESP.

SATYPE_IPSEC_AH and SATYPE_IPSEC_ESP define the SA for Ipsec. For other SA types, such as
those needed for local file encryption or signature that uses the adapter as a BITW coprocessor, the
SAType is SATYPE_LOCAL.

An SA is identified by the triplet <SAType, SPI, DestAddress>, that is used to search for the matching
SA on Rx Network Packet processing.

The adapter does not maintain the life time of a SA. The host must issue a DeleteSA command when
the lifetime duration of a SA expires.

Note that there is no Selector specification in the SA structure. The adapter does not provide Selector
matching and filtering functions.

(NOTE: The ability to specify an index is a Typhoon1.1 feature. In Typhoon 1.0 code, the adapter
always specifies the index).

The supported algorithms for Ipsec are:
DES in CBC mode with explicit IV
Triple-DES in CBC mode with explicit IV
Triple DES in CBC mode
HMAC with MD5
HMAC with SHA-1

The supported algorithms for BITW are:
DES in CBC mode with explicit IV
Triple-DES in CBC mode with explicit IV
MD5
SHA-1
HMAC with MD5
HMAC with SHA-1

Command: U16 CreateSA
Parameter1: U16 Ipsec Proto Type

0 – NULL - no hash or encryption
1 – AH
2 – ESP

Parameter2: U8 HashFlags
[0:8] – Hash Flags

[0] –hash enable
[1] – SHA-1
[2] – MD5

[3:7] – unused, set to zero

U8 Direction
[0] – Direction, 0 – Receive, 1 – Transmit
[1:7] – unused, set to zero

U8 EncryptionFlags
[0] – encryption enable
[1] – singleDES, 0-triple DES, 1-single DES

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

88

[2] – 3Key, 0-3DES, 2 key, 1-3DES, 3 key
[3] – CBC, 0-ECB, 1-CBC

[4:7] – unused, set to zero

U8 SpecifyIndex, 0 – Typhoon returns index, 1 – force to Index field
(NOTE: This is a Typhoon1.1 feature, the value is always 0 in

Typhoon 1.0 code)

Parameter3: U32 SPI, Security Parameters Index

Ext Cmd Desc1: U32 DestSpec, Destination IP Address
U32 DestMask, Dest IP Address subnet mask
U32 HASH Key 0
U32 HASH Key 1

Ext Cmd Desc2: U32 HASH Key 2
U32 HASH Key 3
U32 HASH Key 4
U32 Encrypt Key 0 Lo

Ext Cmd Desc3: U32 Encrypt Key 0 Hi
U32 Encrypt Key 1 Lo
U32 Encrypt Key 1 Hi
U32 Encrypt Key 2 Lo

Ext Cmd Desc4: U32 Encrypt Key 2 Hi
U32 Index, if SpecifyIndex = 1 then this entry is added to the index

specified here.
(NOTE: This is a Typhoon1.1 feature, the value is always 0 in

Typhoon 1.0 code)

U32 Unused, set to zero
U32 Unused, set to zero

Not all of the key parameters are valid in all cases. The following table indicates which options use the
different key combinations. Unused keys must be set to zero.

SHA-1 uses HASH keys 0-4
MD5 uses HASH keys 0-3
DES uses Encrypt key 0
3DES, 2 key uses Encrypt key 0-1, duplicate key 0 to key 2
3DES, 3 key uses Encrypt key 0-2

Response:
Parameter1: U16 SAId, SA Identifier (0 – error defining SA)

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

89

DeleteSA (out-of-band only)

Issues a SA (Security Association) deletion request. Note this is an entry for Security Association, part
of the SAD (SA Database), not part of the SPD (Security Policy Database). It is tied to either an AH or
an ESP.

Command: U16 DeleteSA
Parameter1: U16 SAId, SA Identifier

Response: none

ReadIpsecInfo (NOTE: This is a Typhoon1.1 command)

Read the sizes of the Transmit and Receive SA tables from the adapter.

Command: U16 ReadIpsecInfo

Response:
Parameter1: U16 IpsecEnables, 0 – not enabled, 1 – enabled
Parameter2: U16 TxSaTableSize, max number of entries in Tx SA table
Parameter3: U16 RxSaTableSize, max number of entries in Rx SA table
Parameter4: U16 TxSaEntries, number of valid entries in Tx SA table
Parameter5: U16 RxSaEntries, number of valid entries in Rx SA table

T2: Note that the IpsecEnables field shown above in Parameter1 is there for backward compatibility,
and may not provide the necessary information. Effectively, this bit will only indicate if the 56 bit IPSec
features are enabled, and does not provide any on the 168 bit section. See the GetIPSecEnable
command for information on how to check the enable status of the T2 chip.

TestComplete (out-of-band-only)

Response: U16 TestComplete

This is a diagnostic test response – see the Touchdown specification

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

90

DiagArm2HostComm (out-of-band-only)

Response: U16 DiagArm2HostComm

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagPciDmaDoneInt (out-of-band-only)

Response: U16 DiagPciDmaDoneInt

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagPciDmaPingPong (out-of-band-only)

Response: U16 DiagPciDmaPingPong

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagHost2ArmComm (out-of-band-only)

Response: U16 DiagArm2HostComm

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagPciDmaInt (out-of-band-only)

Response: U16 DiagPciDmaInt

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagRxDmaDoneInt (out-of-band-only)

Response: U16 DiagRxDmaDoneInt

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagTxDmaDoneInt (out-of-band-only)

Response: U16 DiagTxDmaDoneInt

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagSwDmaDoneInt (out-of-band-only)

Response: U16 DiagSwDmaDoneInt

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagSwInt

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

91

Response: U16 DiagSwInt

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagMacTxComplete

Response: U16 DiagMacTxComplete

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification.

DiagOneShot

Response: U16 DiagOneShot

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification for
detail.

DiagFreeTimer

Response: U16 DiagFreeTimer

This is a diagnostic test supported by diagnostic image only– see the Touchdown specification for
detail.

VersionsRead (out-of-band only)

Read the version of the image currently running.

Typhoon 1.0 implements the following VersionsRead command. This command is still valid for images
other than the runtime image.

Command: U16 VersionsRead
Parameters: none

Response:
Parameter1: U16 TyphoonASICVersion,SidewinderVersion

[15:8] Typhoon ASIC Revision ID
[7:0] Sidewinder chip revision

Parameter2: U32 SWVersion – current image running
[31:16] – 1 (boot image – reserved)
 2 – sleep image

 3 – runtime image
 4 – diagnostic image

[15:0] - month/day

Typhoon 1.1 implements the following command:

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

92

Command: U16 VersionsRead
Parameters: none

Response:
Parameter1: U16 RuntimeType - 0 – Typhoon 1.1, 1 – ECB aware
Parameter2: U32 RuntimeImageVersion – current image running in format a.b.c.d

[31:24] – a
[23:16] – b
[15:8] – c
[7:0] – d

Parameter3: U32 MemorySize – the size of Attic and Barn memory in 128k byte
increments.
[31:16] – Barn memory size

0 – no Barn memory
1 – 128k
2 – 256k
4 – 512k
8 – 1024k

[15:0] – Attic memory size
1 – 128k
2 – 256k
4 – 512k

Ext Cmd Desc1: version string (see below)

Ext Cmd Desc2: version string (see below)

The version string contains an ASCII representation of the image build time, date and the
unique build number, it is a NULL terminated string of 25 characters, it has the form:

“hh:mm:ss mm/dd/yy nnnnnnnn”
where nnnnnnnn is a unique 8 digit hexadecimal build number.

TransmitWaveform (out-of-band only)

Support for manufacturing,

Command: U16 TransmitWaveform
Parameter1: U16 Waveform

0 – disable waveform
1 – 100Mbps MLT3 long puls
2 – 100 Mbps unscrambled idle
3 – 10 Mbps pattern generation
4 – DC level out

Response: none

DefineRmonFilter (out-of-band only)

Define an RMON filter. The Typhoon can store up to 15 filters, numbered 0 – 14. Each filter requires 3
fields each up to 256 byte long (Data, DataMask and DataNotMask) and a Filter Offset which specifies
the offset (in number of byte from the start of the packet) to where the filtering should start. The Filter
Offset must be word (32 bit) aligned from the start of the packet.

This command specifies the physical address and the size of a Filter Data Block, which contains the
description of 1 to 15 filters. The internal format of the Filter Data Block is described below:

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

93

Command: U16 DefineRmonFilter
Parameter1: U16 Filter Block Size, # bytes in the filter block.
Parameter2: U32 Filter Block Addr Low – least significant 32 bits of PCI address

of filter block.
Parameter1: U32 Filter Block Addr Hi – most significant 32 bits of PCI address of

filter block.

Response:
Parameter1: U16 ReturnCode

0 – add failed
1 – frame successfully added

Filter Data Block:

32bit value: NumID;
16bit value: DataLen;
16bit value: DataMaskLen;
16bit value: DataNotMaskLen;
16bit value: Offset;
16bit value: DataProtocolID;
16bit value: ProtocolID;
8 bit values: Data[DataLen]
8 bit values: DataMask[256]
8 bit values: DataNotMask[256]

The response indicates that the adapter has transferred all data in the buffer and it can now be freed.

RmonFilterCapabilities (out-of-band only)

Command to determine how many receive filters are supported by the adapter and which have been
enabled.

Command: U16 RmonFilterCapabilities

Response:
Parameter1: U16 NumFilters – number of full size filters supported by Typhoon
Parameter2: U16 EnableMask – bit mask, one bit for each filter indicating if that

filter is enabled or disabled.

RmonFilterEnable (out-of-band only)

Command enables of disables one or more of the previously defined receive filters. Each filter is
represented by a single bit, filter 1 – bit 0, filter 15, bit 14.

Command: U16 RmonFilterEnable
Parameter1: U16 EnableMask – bit mask, one bit for each filter, 1 enables a filter,

0 disables it

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

94

MacBackoffWrite (out-of-band only)

The host can control the MAC collision backoff time by writing a value to this register.

Command: U16 MacBackoffWrite
Parameter1: U16 BackoffValue – value to write to MAC backoff alogrithm

AddWakeupFrame (out-of-band only)

Adds a wakeup frame to the adapter’s list. This frame is defined in the Adapter Sleep section. Both he
mask and the pattern buffer portions of the frame must be in a physically contiguous data buffer for the
adapter to download, though they need to be contiguous to each other.

This command is only supported in the Sleep Image.

Command: U16 AddWakeupFrame
Parameter1: U16 Mask len - length of buffer containing mask to be downloaded.
Parameter2: U32 PCI Addr Hi – most significant 32 bits of PCI address of buffer

containing mask.
Parameter3: U32 PCI Addr Low – least significant 32 bits of PCI address of buffer

containing mask.
.

Ext Cmd Desc1: U32 Pattern len – length of buffer containing pattern to be matched
U32 PCI Addr Hi – most significant 32 bits of PCI address of buffer

containing mask.
U32 PCI Addr Low – least significant 32 bits of PCI address of buffer

containing mask
U32 unused, set to zero

Response:
Parameter1: U16 ReturnCode

0 – add failed
1 – frame successfully added

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

95

AddSleepFrame (out-of-band only)

Adds a sleep frame to the adapter’s list of packets to be sent periodically. This frame is defined in the
Adapter Sleep section. The frame must be in a physically contiguous data buffer for the adapter to
download.

This command is only supported in the Sleep Image.

Command: U16 AddSleepFrame
Parameter1: U16 Data len - length of buffer to be downloaded.
Parameter2: U32 PCI Addr Hi – most significant 32 bits of PCI address of buffer

containing frame.
Parameter3: U32 PCI Addr Low – least significant 32 bits of PCI address of buffer

containing frame.
.
Ext Cmd Desc1: U32 Xmit interval – number of milliseconds between transmitting

instances of this frame.
U32 unused, set to zero
U32 unused, set to zero
U32 unused, set to zero

Response:
Parameter1: U16 ReturnCode

0 – add failed
1 – frame successfully added – There is only a limited
number of slots available. Requests that exceed this
hardcoded limit are not added

T2: This command may be removed or limited to free up memory constraints. For each packet, it
takes (1514 + 1514/8 + a few) bytes of attic memory to preserve the frame.

EnableWakeupEvents (out-of-band only)

Command for selecting which events should cause a wakeup. This command will override any values
stored in the EEPROM for magic packet or link event enables.

Command: U16 EnableWakeupEvents
Parameters: U16 Events

[0] magic packet enable
[1] link event enable
[2] ICMP echo request enable
[3] ARP request enable

Response: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

96

EnableSleepEvents (out-of-band only)

Tells the adapter what sleep events to support. Contains the parameters necessary to do so.

This command is only supported in the Sleep Image.

Command: U16 EnableSleepEvents
Parameter1: U16 SleepEventMask

[0] - MAC keep-alives
[1] – ARP replies
[2] – Master Browser Host Announcements
[3] – Wake-on-timer (DHCP alarm clock)

 [4] – DHCP lease renew
[5] – Respond-to-Ping
[6] – Novell Watchdog replies

Parameter2: U32 unused, set to zero
Parameter3: U32 unused, set to zero

Ext Cmd Desc1: U32 IP address
U32 Subnet mask
U32 Default gateway
U32 Wake-on-error. If non-zero, Typhoon will wake system upon an

error

Ext Cmd Desc2: U23 IPX address
U32 MB Data len. Length of Master Browser info data field
U32 MB PCI Addr Hi – most significant 32 bits of PCI address of

buffer containing Master Browser info data field
U32 MB PCI Addr Low – most significant 32 bits of PCI address of

buffer containing Master Browser info data field.
Format of data field:
Bytes 0-23: computer name (padded with 0)
Bytes 24-47: workgroup name (padded with 0)
Bytes 48+: computer description

Ext Cmd Desc3: U32 Wakeup time - # of milliseconds from now to wakeup.
U32 DHCP Data len. Length of DHCP client indentifier
U32 DCHP PCI Addr Hi – most significant 32 bits of PCI address of

buffer containing DHCP client indentifier
U32 DHCP PCI Addr Low – most significant 32 bits of PCI address of

buffer containing DHCP client indentifier
Response: none.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

97

GoToSleep (out-of-band only)

Tells the adapter to begin sleep functions. Upon receipt of this command, the adapter will write
“STATUS_SLEEPING” to Arm2Host register 0. The adapter must be manually woken by issuing a
HOST_CMD_WAKEUP through Host2Arm register 0.

This command is only supported in the Sleep Image.

Command: U16 GoToSleep

Response: none

GetIpAddress (out-of-band only)

Read the currently stored IP address in the adapter. Note that this is merely the last IP address used
as a source on outgoing packets. If using IPSec with tunneling, or multiple IP stacks on the same
adapter, this address is likely to be useless.

Command: U16 GetIpAddress
Parameters: none

Response:
Parameter1: U16 unused, set to zero
Parameter2: U32 Address

TcpSegmentResponse

Unsolited response, see unsolicited response section for detail.

Response: U16 TcpSegmentResponse

ReadPCIConfigReg (out-of-band only)

Reads the value of the PCI configuration register at the given offset and returns that value to the host.

Command: U16 ReadPCIConfigReg
Parameter1: U16 register offset – offset of register to be read (see PCI spec.)

Response:
Parameter1: U32 offset – the register read
Parameter2: U32 value – the value read from the above register.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

98

WritePCIConfigReg (out-of-band only)

Writes the value given into the PCI config register at the given offset

Command: U16 WritePCIConfigReg
Parameter1: U16 register offset – offset of register to be written (see PCI spec.)
Parameter2: U32 value – value to write into register

Response: none

OffloadWrite (out-of-band only)

Enable or disable features in the adapter firmware.

Command: U16 OffloadWrite
Parameter1: U16 unused, set to zero
Parameter2: U32 Offload Tx Flags. Set to a 1 to enable the features:

[0] – Reserved set to zero, Classify Bit
[1] – TCP Checksum enable.
[2] – UDP Checksum enable.
[3] – IP Checksum enable.
[4] – IPSEC enable.
[5] – Broadcast Throttling enable.
[6] – DHCP Prevention enable.
[7] – VLAN enable.
[8] – Filtering enable.
[9] – TCP Segmentation enable.
[10-31] – Unused

Parameter2: U32 Offload Rx Flags. Set to a 1 to enable the features:
Same as Offload Tx Flags

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

99

OffloadRead (out-of-band only)

Read the capabilities of the adapter and which of these features are enabled.

Command: U16 OffloadRead
Parameters: none

Response:
Parameter1: U16 unused, set to zero
Parameter2: U32 Tx Capability Flags. If set to a 1 then the adapter is capable of

the specified features:
[0] – Reserved set to zero, Classify Bit
[1] – TCP Checksum enable.
[2] – UDP Checksum enable.
[3] – IP Checksum enable.
[4] – IPSEC enable.
[5] – Broadcast Throttling enable.
[6] – DHCP Prevention enable.
[7] – VLAN enable.
[8] – Filtering enable.
[9] – TCP Segmentation enable.
[10-31] – Unused

Parameter3: U32 Rx Capability Flags. If set to a 1 then the adapter is capable of
the specified features:
Same bit definitions as Tx Capability Flags

Ext Cmd Desc1:
U32 Tx Enabled Offload Flags. If set to a 1 then the feature is

enabled in the adapter
Same bit definitions as Tx Capability Flags

U32 Rx Enabled Offload Flags. If set to a 1 then the feature is
enabled in the adapter

Same bit definitions as Tx Capability Flags
U32 unused
U32 unused

SOSRead (out-of-band only)

Read the state of the SOS pins. This command is implemented by the manufacturing diagnostic image.

Command: U16 SOSRead
Parameters: none

Response:
Parameter1: U16 State of the SOS pins.

[0] – SOS0
[1] – SOS1
[2] – SOS2
[15:3] – unused, set to zero

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

100

SetPMEStatus (out-of-band only)

Command the adapter to set the state of the pmeStatus bit in the PowerMgmtCtrl register. This
command is implemented by the manufacturing diagnostic image.

Command: U16 SetPMEStatus
Parameter1: pmestate – 0 or 1

Response: none

MfgWOL (out-of-band only)

Command the adapter to set the pmeStatus bit when a change in link state occurs. This command is
implemented by the manufacturing diagnostic image.

Command: U16 MfgWOL
Parameters: none

Response: none

GetIPSecEnable (out-of-band only)

Returns the current IPSec Enable State of the card, the Serial number of the ASIC, and if this is a T1
vs. T2 ASIC.

Command: U16 GetIPSecEnable

Response:
Parameter1: U16 ReturnCode

[0] 56 Bit IPSec Enabled
[1] 168 Bit IPSec Enabled

Parameter2: U32 Unique Serial Number (not used)

Parameter1: U32 0) This is a T1 card, with fixed IPsec features
1) This is a T2 card with variable IPSec features

Hardware features interfacing to:

The T2 ASIC may contain a unique serial number that is used in an external database
lookup to provide two unique magic keys. It also contains two sets of Magic/Key values, one to
Enable the 56 bit IPSec features, and another the 168 bit features. The Magic number is
programmed at ASIC manufacture time, and cannot then be either read or written to. When
the Key value is then written so that it matches the Magic number, the IPSec logic feature will
then be enabled.

The IPSec features in the T2 Hardware will become available approximately 3.28 mSec after
the correct key has been written. The Hardware places an 18 bit counter at TBus speeds (80
MHz in normal operating mode) between output of the compare logic and the IPSec enable
signal. The counter is zeroed when the Enable register is written causing a delay before we
know if the key that was supplied is correct or not. This works out to 114 years try every
possible combination.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

101

The TBus speed is NOT reduced to 10 MHz in sleep mode. In other words, the delay remains
constant regardless of the mode the process is in, unless it’s in D3Disable that is, when all of
the clocks are stopped.

There is no method available to determine the state of the 18 Bit Delay counter. In other words,
the IPSec Enable Flag shown above will be zero if read before the timer expires, even if a
proper key was written. This is the flag whose current value is returned in the GetIPSecEnable
function. Thus it is up the calling software to manage the delay if needed.

The Enable register is cleared whenever the TBus receives a Soft Reset. The firmware is
responsible for rewriting the key registers if this occurs.

Because of the way that the Hardware is designed, the 56Bit IPSec features must be correctly
enabled in order for the 168 Bit portion to work.

Be aware that the ASIC Hardware itself has a special meaning a Magic Number of 0. Even if
the Keys are written with the same 0 value, there is extra logic to keep the IPSec features from
being enabled.

if (magic != 0)
enable = (magic == key);

else
enable = FALSE;

Actual software interface to the hardware

NOTE: As of June 2000, it was decided that due to the reduction of the restrictions in the US
laws for shipping encrypted products, that the unique serial and magic number enable
features of the T2 ASIC was overkill. However it was too late in the process to remove
the logic from the ASICS that control this. Thus it was decided that all ACICS be
programmed with the default values as shown below:

Serial Number 0xFFFF-FFFF
56Bit Enable Key 0xFF-FFFF-FFFF == default value of 56Bit magic key
168Bit Enable Key 0xFF-FFFF-FFFF == default value of 168bit Magic key

Because of this simplification, the method that was designed to allow the OS device drivers to
write to the Keys was deemed unneeded and removed from the Typhoon command set.
Instead, a more general method based on Snipit’s was devised.

A Snipit is a code fragment that can either overlay existing code within the firmware, or hook
itself into the firmware’s data control and interrupt path much like a Device Driver. They are
intended to allow OEM and product specific features to be added to the base firmware, without

Magic

Key
=

Data
Write

Write 18 Bit
Clear
80 MHz

=Values
Enable

Terminal Count

IPSec
Enabled Flag0 ! =

IPSec
Hardware

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

102

having to relink the firmware each time. See the T2 Snipit Architecture document for more
details.

There are 3 flavors of the T2 IPSec Enable Snipit, one to disable IPSec, one to Enable 56 bit,
and one to enable both 56 and 168 bit IPSec. Regardless of the capabilities that T2 IPSec
Enable Snipit enables, its name will always be el99cryp.snp. The description of how the
Snipit’s are created and end up on the User’s machine is in the section on T2 Encryption
Enable and other White papers.

The T2 IPSec Enable Snipit file may or may not exist on the hard drive, and it’s actually
capabilities are transparent to anyone but the Firmware. Thus it is very important that the OS
device driver inquire the capabilities of the IPSec features after the download has occurred.

Sequence of steps required to Enable IPSec Offload features on all Typhoon cards.

• The T2 ASIC, as delivered from the ASIC manufacture, will be an enabled device.
• The EEBoot code will use this feature to run POST internal Loopback tests on the IPsec

hardware, and exit POST with an error code if the Loopback fails. This is the same
behavior as T1 cards with sidewinders.

• On T2 devices, the EEBOOT code will disable the IPSec features of the ASIC by writing
something other than 0xFF-FFFF-FFFF into both the 56 bit and 168 bit enable keys.

• When the OS device driver initializes, it is responsible for using the GetIPSecEnable
command to see if the card can be enabled, (I.E it’s a T2 card), and then downloading a
Snipit file by the name of el99cryp.snp -- if it exists --, from the User’s hard disk via the
SnipitDownload command.

• Once the download is complete, and the 3.28ms delay period has occurred, the driver can
then inquire either the GetIPSecEnable command, or the OffloadRead command to
determine the actual IPSec features supported by the card, and configure itself accordingly

T2 vs T1 implementation differences:

In terms of the device driver, the biggest thing that it needs to recognize is if the firmware has
this GetIPSecEnable command or not. T1 cards, with T1 firmware (pre July 2000), do not
support this command. T2 cards will be the first to ship (Aug 2000) with it.

However, since the Firmware is designed to be backward compatible, Device drivers may
discover T2 firmware on T1 cards, and will need to know how to handle it. T1 cards are “fixed
enabled”, while the OS Device driver must enable the T2 versions.

The OS Device driver can recognize T2 vs T1 cards via either the PCI id of the card, or by
looking a the value returned in Parameter3 of the response to this command.

The T2 IPSec Enable Snipit is then downloaded to the T2 card. As it turns out, this Snipit can
also be downloaded to the T1 cards without any negative side effects. It just won’t effect the
actual enablement of the T1 card in any manor what so ever.

In all cases, Parameter1 of the response to this GetIPSecEnable command will contain the
actual currently useable IPSec features of the card.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

103

SnipitDownload (out-of-band only)

A Snipit is a code fragment that can either overlay existing code within the firmware, or hook itself into
the firmware’s data control and interrupt path much like a Device Driver. They are intended to allow
OEM and product specific features to be added to the base firmware, without having to relink the
firmware each time. See the T2 Snipit Architecture document for more details.

The actual Snipit files are heavily version, check-summed and typed by the firmware. There is no need
for the OS device driver to do any verification on the file. Its only requirement is to take the correct
action based upon the multitude of return codes that the firmware can return.

Command: U16 SnipitDownload

Parameter1: U16 unused, set to zero
Parameter2: U32 Host address of buffer containing entire Snipit.
Parameter2: U32 Length in bytes of the Snipit.

Response:

Parameter1: U16 SNIP_ERR ReturnCode
Will be one of the following values. See snipit.h.

 SNIP_ERR_OK = 0, // no error
 SNIP_ERR_NOT_IMPLEMENTED, // feature will be implemented later
 SNIP_ERR_MAGIC, // bad magic number in header
 SNIP_ERR_ALIGNMENT, // compiler alignment errors
 SNIP_ERR_LENGTH, // len of snippet does not match input
 SNIP_ERR_VERSION, // snippet version mismatch
 SNIP_ERR_FIRMWARE_VERSION, // snipit != firmware version.
 SNIP_ERR_INVALID_ID, // unknown snippet id
 SNIP_ERR_HEADER_CHECKSUM, // checksum invalid
 SNIP_ERR_IMAGE_CHECKSUM, // data checksum invalid
 SNIP_ERR_BAD_DYN_MEM_PTR, // unexpected release location
 SNIP_ERR_NO_PCBS_AVAILABLE, // out of PCBs to store snippet
 SNIP_ERR_NO_DYN_MEM, // out of dynamic memory

Parameter2: U32 Handle to Snipit PCB if relocateable Snipit.

The Snipit PCB is a internal firmware data structure that indicates how the resources for this Snipit have
been allocated. It is used by other functions to inquire/modify/remove the Snipit. This value will be NULL
if a “static” non-relocateable Snipit was downloaded.

The following code downloads a Snipit in DOS. Device drivers need to accomplish the same set of
steps.

/***/
/* int snippet_download_command
**
** Description: Working portion of snippet download. Takes buffer
** and it's length and DMA's it down to the typhoon
*/
SNIP_ERR
snippet_download_command(U32 fileBuf, U32 fileLen)
{
 HOST_CMD_DESC *respPS, cmdS = { 0 };
 U32 readUL;
 SNIP_ERR nRet = 0;

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

104

 cmdS.cmdU.cmdFlagsS.frNumDescUC = 0; /* no ext desc */
 cmdS.cmdU.cmdFlagsS.frFlagsUC = FRAME_TYPE_CMD_HDR | HOST_DESC_VALID;
 cmdS.cmdU.cmdFlagsS.frOptionUW = CMD_snipit_download;
 cmdS.cmdParam1UW = 0x0000;
 cmdS.cmdParam2UL = (U32)fileBuf;
 cmdS.cmdParam3UL = fileLen;

 readUL = HostVarsPS->hvReadS.regRespReadUL;
 if (send_cmd_outOfBand_b(&cmdS, (U32*)0)) {

 // wait for response

 readUL = HostVarsPS->hvReadS.regRespReadUL;
 while (readUL == HostVarsPS->hvWriteS.mr.regRespWriteUL) {
 if (kbhit()) {
 printf("aborted - download failed to return\n");
 nRet = -1;
 break;
 }

 readUL = HostVarsPS->hvReadS.regRespReadUL;
 }
 if (!nRet && readUL != HostVarsPS->hvWriteS.mr.regRespWriteUL) {
 respPS = (HOST_CMD_DESC*)((U8*)RespRingPS + readUL);
 nRet = respPS->cmdParam1UW; // firmware error response here
 }
 }
 return(nRet);
}
/***/
/* int download_snippet_file
**
** Description: Asks for the name of a file, reads it into a buffer
** and then sends that buffer to the typhoon via
** a CMD
*/
int
download_snipit_image(char *szFName)
{
 U8 *fileBuf;
 SNIP_ERR nRet;
 U32 phy_fileBuf;
 U32 fileLen;
 U8 *pBuf;
 FILE *fp;

 fp = fopen(szFName, "rb");
 if (fp == NULL) {
 printf("ERROR: cannot open %s: %s\n", szFName, sys_errlist[errno]);
 return(0);
 }
 fseek(fp, 0L, SEEK_END);
 fileLen = ftell(fp); // length of the file
 fseek(fp, 0, SEEK_SET);

 fileBuf = malloc((U8)(fileLen + 4));
 pBuf = (U8 *)((((U32)fileBuf / 4) + 1) * 4); // align at 4 byte boundary
 fread(pBuf, 1, (int)fileLen, fp);
 fclose(fp);

 phy_fileBuf = pptr(pBuf); // Convert the DOS addr to Physical

 nRet = snippet_download_command(phy_fileBuf, fileLen);
 if (nRet < SNIP_ERR_LAST)
 printf("%s\n", szSnipErr[nRet]);
 else
 printf("Undefined SNIP_ERR %d\n", nRet);

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

105

 free(fileBuf);
 return(1);
}

TyphoonCmdLevel (out-of-band only)

Command: U16 TyphoonCmdLevel (0x69)
Parameters: none

Response:
Parameter1: U16 [0:7] Minor Level

[8:15] Major Level

We should insure as much as possible that old revisions of the driver and firmware can still
operate with Typhoon 2 drivers and firmware. This will help to avoid problems both within
3Com as well as with the user base.

This is especially true as we extend existing commands. For example, I’m extending the
XcvrSel command and will use Parameter2[0] for Flow Control (1=enable, 0=disable). If the
Typhoon 2 firmware gets this command from a 1.1 driver, then it will disable Flow Control by
mistake since the NDIS driver doesn’t use Parameter2.

The major/minor level values would reflect the product release levels (e.g., 2.0 for Typhoon
2). These values are not intended to show the build or revision number of the host driver.

The semantics of this command are the following:

• The host driver will prepare a TyphoonCmdLevel during initialization. It will set
Parameter1 to its major and minor product levels.

• It will issue the command to the runtime image. The firmware will set the response
Parameter1 value to its major and minor product levels.

4.2 Unsolicited Responses

HelloResponse

The adapter will send a HelloResponse to the host if it has not received any communication from the
host for a set period of time. The host must issue a command (any command) or other transaction in
response to this to indicate it is still alive. If the adapter get no response to a number of these, then it will
assume the host has died and take appropriate action.

Response: U16 HelloResponse
Parameters: none

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

106

TcpSegmentResponse

Response: U16 TcpSegmentResponse
Parameter1: U16 Error Code

0 – no error
1 – invalid header
2 – insufficient buffer space
3 – adapter internal error
4 – network error
5 – URG bit set in TCP header
6 – SYN bit set in TCP header
7 – RST bit set in TCP header

Parameter2: U32 Virtual Address Low, address of data buffer
Parameter3: U32 Virtual Address High

Ext Resp Desc1: U32 NumBytes, number of bytes successfully transmitted.
U32 unused, set to zero
U32 unused, set to zero
U32 unused, set to zero

MediaStatusRead (out-of-band only)

Response: U16 MediaStatusRead
The remainder of the response is identical to the MediaStatusRead response.

CycleStatistics

Response: U16 CycleStatistics

The remainder of the response is identical to the ReadStatistics response.

TestComplete

Response: U16 TestComplete

This is a diagnostic test response – see the Touchdown specification

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

107

5. Manufacturing Support

5.1 NVDevice configuration

The NV Device on the Typhoon adapter uses a serial SPI interface to connect to Typhoon. The
NV Device is a 128K byte Atmel DataFlash and is read/write-able from the Typhoon Processor,
PCI interface and Typhoon Command Interface. See Atmel AT45DB021 Data Sheet for details
beyond the scope of this document.

T2 Server cards can be stuffed with up to 1Meg of flash if required. Note that the physical
dimension of the flash is different when it’s greater than 128k Bytes. The T2 Server board (June
2000) was laid out to support both the 128k Byte chip and the larger 256k, 512k and 1Meg Byte
chips. There may be software that needs to be modified in order to support this however.

The NV Device contains Typhoon Boot code, Sleep Image, Net Boot code, and Typhoon non-
volatile parameters for configuration and static parameters such as MAC Address and serial
numbers.

The checksum algorithm used for the images in the NV Device is a simple XOR of the bytes
inverting the sum when complete. Each images and header sections contain a separate
checksum.

The complete NV Device Flash is divided into different sections and each section is fixed the start
of one of the 264 long byte pages.

The document Typhoon Firmware Deliverables.doc contains a very detailed description of the
Flash image and how it is created.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

108

5.1.1 Memory Layout Example

NV Device

Magic Id

Section

Headers

Static Header

Static Section

VAR Data

Section Header

Section Id
Section Pointer

Static Header

T y p h o o n \0 8 Bytes

1 Bytes

3 Bytes

4 Bytes

Net Boot
Header

Net Boot
Image

Boot Header

Load Address
Pad, Checksums

Load Address

Section Length
4 Bytes
4 Bytes

4 Bytes

Section Length
Boot Image

Section Length
Load Address

CRC
4 Bytes
4 Bytes

Sleep Image
Header

4 Bytes

VAR Header

Boot Header

VAR Header

Section Length
Load Address

CRC

4 Bytes
4 Bytes
4 Bytes

CRC
4 Bytes

Sleep Image
Header2

4 Bytes

Sleep Image
Header1

Sleep Image1

Sleep Image2
Pad +Next Section

Pointer
4 Bytes

Net Boot Header

Section Length
Load Address

CRC

4 Bytes
4 Bytes
4 Bytes

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

109

5.1.2 Magic Id

The first entry in the NV Device will be a validation Id to allow us to easily tell that the NV Device has
been programmed. This does not guarantee that the images are valid. The Magic Id will be 8 bytes
and contain the word “Typhoon”.

5.1.3 Section Headers

This section following the Magic ID will contain a list of sections within the NV Device. Each section will
contain:

1. Section ID, identifying the section (1 byte).
2. Section Pointer, to allow flexibility on where images are located (3 bytes).

If there is additional Header information that is required, it will be stored at the beginning of that section.
The Section Header section will not be changeable since it is read by routines in ROM.

The first header in this section must ALWAYS be the Boot Image Header. This is a requirement of how
the RomBoot loader code built into the Typhoon ASIC was designed.

The number of Sections is currently limited to 16, but can be increased what fits into one Flash page if
needed.

Section ID’s: - defined in serial.h

 00 NULL_SECTION_ID Null section. May be used as a terminator
 01 EEBOOT_SECTION_ID Typhoon Boot Image Section. MUST BE 1st HEADER
 02 STATIC_SECTION_ID Static Data Section. MAC Address, serial numbers etc
 03 VAR_SECTION_ID Variable Data Section Used for Non-volatile config params
 04 SLEEP_SECTION_ID Sleep Image for card bring up. Repeated for scattered load
 05 NETBOOT_SECTION_ID NetBoot. BIOS Extension ROM space for LanWorks
 06 VAR_DEFAULT_SECTION_ID Variable Data Section Used for Non-volatile configuration
 07 VERSION_SECTION_ID Version Contains ASCII date/version information

08 ASFINFO_SECTION_ID ASF/GPIO Tables
09 DEBUG_SECTION_ID Debug Section. Data kept across reboots for debugging

 0a LAST_SECTION_ID MUST BE LAST ID

There is much more information on how the flash image is created and laid out in the document
Typhoon firmware deliverables.doc

5.1.4 Static Section

This section will contain information regarding static data that can never be changed.
1. Section Length, the total length in bytes of the section (4 Bytes).
2. Load Address, not used.
3. Section Checksum, a simple checksum to validate the section (? Bytes).
4. Section Body, the contents of the section (? Bytes).

The following table summarizes the contents of static data.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

110

Byte
Offset
(hex)

Value Field Description

00 0000 3Com Node Address (word 0)
02 0000 3Com Node Address (word 1)
04 0000 3Com Node Address (word 2)
06 9903 DeviceID
08 0000 Manufacturing Data – Date (word 0)
0A 0000 Manufacturing Data – Date (word 1)
0C 0000 Manufacturing Data – Division
0E 0000 Manufacturing Data – Product Code
10 10B7 SubsystemVendorID
12 9903 SubsystemID
14 0000 PciParm0
16 0000 PciParm1
18 87F8 PciParm2
1A DFFE Capabilities Word
1C 0003 Media Options
1E 0101 Hardware Revision

3Com Node Address:
This is the 3Com node address for the adapter. This is not the address to be programmed as Station
Address into the MAC. Refer OEM address below.

DeviceID:
This is the 2 byte product identifier assigned within 3Com, which gets loaded into the ASIC and made
available in the DeviceID register of the PCI configuration space.

Manufacturing Data – Date

This is the date of manufacture, encoded according to the following,

Date (word 0)
year [15:0]

Date (word 1)
day [4:0] The day (1 through 31)
month [8:5] The number of the month (1 through 12)

[15:9] Reserved

Manufacturing Data - Division
This is the manufacturing division code, as shown on the product bar code label.

Manufacturing Data - Product Code
This is the manufacturing product code which is two alphanumeric ASCII characters from the bar code
label.

Subsystem VendorID
This is the 2 byte subsystem VendorID. Since in this case the subsystem is 3Com adapter, we use
3Com’s PCI VendorID, 10b7h.

SubsystemID
This is the 2 byte subsystem ID. For 3Com adapters, we use the same code as DeviceID.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

111

PCIParm0
This is loaded into the ASIC and controls various hardware functions related to PCI bus operation.

MinGnt [7:0]: Determines the value returned in bits [4:1] of the MinGnt register.

maxGnt [15:8]: Determines the value returned in bits [5:0] of the MaxLat register.

PCIParm1
d3Hot [0]: This bit determines the value for the bit 14 in PowerMgmtCap. This bit

indicates the adapter’s ability to generate power management events from
the d3Hot state.

d3ColdPme [1]:Provides the value returned in bit 15 of the PowerMgmtCap register. This
bit, when set, indicates that the adapter is capable of signaling wakeup from
the d3Cold state.

d1Support [2]:Provides the value returned in d1Support and also bit 12 in the
PowerMgmtCap register.

d2Support [3]:Provides the value returned in d1Support and also bit 13 in the
PowerMgmtCap register.

Aux_current [8:6] Reports Typhoon’s 3.3Vaux current requirements.

PCIParm2
These 2 bytes contains data defining the PCI capabilities of the NIC. The following table summarizes
the PCI capabilities of Typhoon Adapter.

Bit PciParm2 Bit Value
0 SupportsBustMaster 1
1 supports64bitPci 0
2 supports64bitMasterAddressing 0
3 supports64bitTargetAddressing 0
4 supports66MhzPci 0
5 SupportsMRM 1
6 SupportsMRL 1
7 SupportsMWI 1
8 SupportsPowerMgmt 1
9 SupportsWakeupPkts 1
10 SupportsMagicPkts 1
11 SupportsLinkEvents 1
12 SupportsHelloPkt 1
13 Unused 0
14 Unused 0
15 Unused 0

supportsBusMaster [0]: Indicates the adapter supports bus master data transfers.

supports64bitPci [1]: Indicates that the NIC supports 64 bit PCI transactions.

supports64bitMasterAddressing [2]: Indicates that the NIC supports 64 bit addressing and DAC as a
Master.

supports64bitTargetAddressing [3]: Indicates that the NIC supports 64 bit addressing and DAC as a
Target.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

112

supports66MhzPci [4]: Indicates that the NIC supports 66Mhz PCI Interface.

supportsMRM [5]: Indicates that the PCI interface supports the Memory Read
Multiple PCI command.

supportsMRL [6]: Indicates that the PCI interface supports the Memory Read Line
PCI command.

supportsMWI [7]: Indicates that the PCI interface supports the Memory Write and
Invalidate PCI command.

supportsPowerMgmt [8]: Indicates that the adapter supports the OnNove/ACPI power
management scheme.

supportsWakeUpPkts [9]: Indicates that the NIC supports WakeUp packets as part of
Wake On LAN functionality.

supportsMagicPkts [10]: Indicates that the NIC supports the Power Management
WakeUp Events based on reception of Magic Packets.

supportsLinkEvent [11]: Indicates that the NIC supports the Power Management
WakeUp Events based on changes in the link state.

supportsHelloPkt [12]: Indicates that the NIC supports transmission of Hello Packets in
standby/sleep mode.

Unused [13-15]: Reserved for future use.

Capabilities Word
This field contains data defining the basic capabilities of the adapters.

Bit Capabilities Bit Value

0 supportsPlugNPlay 1
1 supportsJumboFrames 1
2 supportsTxFlowControl 0
3 supportsRxFlowControl 1
4 supportsVLanTagging 1
5 SupportsIpChecksumInsertion 1
6 SupportsTcpChecksu Insertion 1
7 SupportsUdpChecksumInsertion 0
8 SupportsIpChecksumVerification 1
9 SupportsTcpChecksumVerfication 1
10 SupportsUdpChecksumVerfication 0
11 supportsTxPriority 1
12 supportsRxPriority 1
13 SupportsHalfDuplex 1
14 supportsFull Duplex 1
15 supportsNetBoot 0

SupportsPlugNPlay [0]: Indicates that Microsoft Oses recognize our adapter and will
automatically load the appropriate driver.

SupportsJumboFrames [1]: Indicates that the NIC supports packet size over 1514 bytes.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

113

SupportsTxFlowControl [2]: Indicates that the NIC supports transmitting Flow Control packets
as per 802.3x.

SupportsRxFlowControl [3]: Indicates that the NIC supports reception of Flow Control packets
as per 802.3x.

SupportsVLanTagging [4]: Indicates that the NIC supports VLAN tagging as per 802.3ac
and 802.1q.

SupportsIpChecksumInsertion [5]: Indicates that the NIC supports IP Checksum insertion.

SupportsTcpChecksumInsertion [6]: Indicates that the NIC supports TCP Checksum insertion.

SupportsUdpChecksumInsertion [7]: Indicates that the NIC supports UDP Checksum insertion.

SupportsIpChecksumVerification [8]: Indicates that the NIC supports IP Checksum verification.

SupportsIpChecksumVerification [9]: Indicates that the NIC supports TCP Checksum verification.

SupportsIpChecksumVerification [10]: Indicates that the NIC supports UDP Checksum verification.

SupportsTxPriority [11]: Indicates that the NIC supports Tx priority queues.

SupportsRxPriority [12]: Indicates that the NIC supports Rx priority queues.

supportsHalfDuplex [13]: Indicates the NIC supports half-duplex media operation.

supportsFullDuplex [14]: Indicates the NIC supports full-duplex media operation.

SupportsNetBoot [15]: Indicates the NIC supports NetBoot operation.

MediaOptions
Indicates physical media connections available in the adapter. A value of zero indicates that connection
is not available and a value of one indicates that the connection is available.

XcvrAvailable [0]: 100Base-Tx
[1]: 10 Base-T
[15:2]: Reserved

HardwareRevision
Indicates the ASIC and board level revisions.

AsicLevel [7:0] Indicates the ASIC revision level
[3:0] Major ASIC revision
[7:4] Minor ASIC revision

BoardLevel [15:8] Indicates board revision level
[15:12] Major board revision
[11:8] Minor board revision

5.1.5 VAR Section

This section will contain non-volatile variables and user set-able information that must be saved across
reset.

1. Section Length, the total length in bytes of the section (4 Bytes).

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

114

2. Load Address, not used.
3. Section Checksum, a simple checksum to validate the section (? Bytes).
4. Section Body, the contents of the section (? Bytes).

The following table summarizes the contents of the VAR data

Byte
Offset
(hex)

Value Field Description

00 0000 RomInfo
02 0000 OEM Node Address (word 0)
04 0000 OEM Node Address (word 1)
06 0000 OEM Node Address (word 2)
08 0100 XcvrSelect
0A 0001 Software Information1
0C 0000 Software Information2
0E 0000 Software Information3
10 0000 Lanworks Data0
12 0000 Lanworks Data1
14 0000 Override Node Address (word 0)
16 0000 Override Node Address (word 1)
18 0000 Override Node Address (word 2)
1A 0000 XcvrOption
1C 0005 SleepEvents
1E 0000 SleepTimerInterval0
20 0000 SleepTimerInterval1
22 0000 SOSOption
24 0000 SOSIPAddress0 (word 0)
26 0000 SOSIPAddress1 (word 1)
28 0000 SOSSubnetMask0 (word 0)
2A 0000 SOSSubnetMask1 (word 1)
2C 0000 SOSGateway0 (word 0)
2E 0000 SOSGateway1 (word 1)
30 C600 SMBus address

Data Field Details

ROMInfo
This conveys to a driver or configuration program whether a NetBoot Code is included in the NVDevice
and whether the system must be loaded remotely from a Server.

NetBootEnable [0]: Enables the Expansion ROM for NetBoot.
0 – enabled
1 – disabled

OEM Node Address
This is the node address to be programmed into the MAC address register. For 3Com adapters, this
field contains the same value as in 3COM Node Address. OEM customers may choose to program this
field with a different value.

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

115

XcvrSelect

xcvrSelect [15:0]:This read/write field indicates the selected transceiver type:

[7:0] XcrvType

00000000 – 100Base-TX

00000001 – 10Base-T

00000010 – 11111111 – Reserved

[8] AutoSelect

0 – select transceiver by XcvrType

1 – auto-negotiation

[15:9] Reserved

Software Information1
This field contains environmental information for use by the driver.

OptimizeFor [1:0]:Specifies the environment for which to optimize.
00: Unused
01: Normal
02: Maximum network Performance
03: Minimum CPU Utilization

Software Information 2
Additional information for drivers for future use.

Software Information 3
Additional information for drivers for future use.

Lanworks Data0, Lanworks Data1
These words are reserved for use by Lanworks, to hold data related to the Expansion ROM access.

Override Node Address
This is the node address given by the user using a configuration file like ‘net.cfg or installation utility to
be programmed into the MAC address register. This value needs to be stored between loading of sleep
and runtime images.

XcvrOption
Transceiver options available.

DuplexMode [0]: Selects duplex mode
0 – half duplex
1 – full duplex

SleepEvents
Enable/disable sleep events. Events set to ‘0’ are disabled, events set to ‘1’ are enabled.
SleepEvents [0]: MagicPacket

[1]: LinkEvent
[2]: Wake-On-Error
[3:15]: Reserved

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

116

SleepTimerInterval
Interval for Wake-on-Timer (DHCP alarm clock)

SOSOption
Enable/disable SOS traps. ‘0’ is disabled, ‘1’ is enabled.

[0]: Sos0
[1]: Sos1
[2]: Sos2
[3:15]: Reserved

SOSIPAddress
Destination IP Address for outgoing SOS traps.

SOSSubnetMask
SubnetMask for outgoing SOS traps.

SOSGatewayAddress
Gateway Address for outgoing SOS traps.

SMBusAddress
Address used for SMBus transfers.
SMBusAddress [0:7]: Reserved

[15:8]: SMBus Address

5.1.6 Boot Image Section

This section will contain a binary Typhoon boot image. The entry point for execution is always at the
start of the section.

1. Section Length - the total length in bytes of the section (4 Bytes).
2. Section Load Address - the location to load this section into memory (4 Bytes).
3. Section Checksum - a simple checksum to validate the image (1 Byte).
4. Header Checksum - a simple checksum to validate the headers (1 Byte).
4. Word alignment pad, a simple checksum to validate the image (2 Bytes).
5. Section Body - the contents of the section (Targeted to be less than 8KBytes).

5.1.7 Sleep Image Section

Sleep image is the code loaded from NVDevice on initial Power-on. Section header of the sleep image
consists of the following. There can be more than one sleep image section for scattered loading of the
image into SRAM and IRAM as defined in the load address of each sleep section headers.

1. Section Length, the total length in bytes of the section (4 Bytes).
2. Section Load Address, the location to load this section into memory (4 Bytes).
3. Section Checksum, a simple checksum to validate the image (4 Bytes).
4. Section Pointer, pointer to the next section if available, or else null (1 Pad Byte + 3 Bytes)
5. Section Body, the contents of the section (Targeted to be less than 8KBytes).

T2 Software Functional Description Version 5.03

©2000 3Com Corporation Proprietary & Confidential03/12/0112/03/0103/12/0112/03/0103/12/0112/03/01

117

5.2 Diagnostics

Various diagnostic capabilities will be available for the Adapter. If the NV-Device on the Adapter is not
programmed the status will be indicated in a general purpose register at power up. The Host will then
have NV-Device read/write capability in order to program and verify the NV-Device. The Host will have
direct access to the NV-Device through the SPI registers. The boot loader will support a command set
allowing the Host to load the NV-Device (by indicating address/data) and access memory.

If the NV-Device is programmed then the Adapter will load the Boot Image from the NV-Device to IRAM
and then transfer execution to IRAM. POST will perform tests on the internal MAC, PCI registers,
external SRAM, Sidewinder, NV-Device, PHY, etc. and save the result to a [TBD] location in SRAM and
indicate the result to a general purpose I/O register. After successful completion of POST the Adapter
will copy the run-time image from the NVDevice and execute the run-time image. At this time the Host
could run the following tests:

[TBD] The tests are currently being identified, however, an indication of tests currently run on previous
products is given below:

• Register access test
• BIST [TBD] - (may report the result from POST or run a subset of the POST tests) External SRAM

test, Sidewinder verification, etc.
• Program the NV-Device – this will require a [TBD] test mode, allows read/write of each location
• Verify the NV-Device checksum(s) – calculate checksum and compare against the stored value.

There will be [TBD] a checksum for each image in the NV-Device
• Register access test – need to identify all registers which allow each bit to be set/cleared and read

back
• FIFO Loopback test – need to define a mode which allows transmit data to be moved into the

receive buffer instead of being transmitted
• [TBD] Loopback tests will need to be incorporated which allow the data to be encrypted/decrypted

by the Sidewinder
• Internal Loopback test – data is looped in the MAC
• MII Read/Write test
• ENC/DEC Loopback test
• 10Mbs Echo Test – (over 100 meter cable? - find an echo server, create an echo server request

packet, transmit the packet, wait for the packet to return from the echo server, save the echo
server’s address and then send 100 echo packets and compare each received echo packet with
the packet sent)

• 100Mbs Echo Test
• Interrupt test [TBD]
• Remote wake-up test [TBD]
• IIC Test [TBD]

©1997 3Com Corporation 12/03/0112/03/0112/03/01

A p p e n d i x A – E n u m e r a t e d V a l u e s

1. Host to Adapter Commands

The following data structures are taken from the Typhoon header files cmd.h on June 7, 2000 that
define the command enumeration. The names do not exactly match the commands described earlier,
but they are close enough to figure them out.

Commands

 CMD_reset = 0,
 CMD_tx_enable = 1,
 CMD_tx_disable = 2,
 CMD_rx_enable = 3,
 CMD_rx_disable = 4,
 CMD_rx_filter_write = 5,
 CMD_rx_filter_read = 6,
 CMD_stats_read = 7,
 CMD_stats_cycle = 8,
 CMD_stats_clear = 9,
 CMD_memory_read = 10,
 CMD_memory_write = 11,
 CMD_var_section_read = 12,
 CMD_var_section_write = 13,
 CMD_static_section_read = 14,
 CMD_static_section_write = 15,
 CMD_image_section_prgm = 16,
 CMD_nvram_page_read = 17,
 CMD_nvram_page_write = 18,
 CMD_xcvrsel = 19,
 CMD_testmux = 20,
 CMD_phyloopback_enable = 21,
 CMD_phyloopback_disable = 22,
 CMD_mac_cntrl_read = 23,
 CMD_mac_cntrl_write = 24,
 CMD_max_pkt_size_read = 25,
 CMD_max_pkt_size_write = 26,
 CMD_media_status_read = 27,
 CMD_media_status_write = 28,
 CMD_network_diags_read = 29,
 CMD_network_diags_write = 30,
 CMD_physical_mngt_read = 31,
 CMD_physical_mngt_write = 32,
 CMD_var_param_read = 33,
 CMD_var_param_write = 34,
 CMD_goto_sleep_l = 35,
 CMD_firewall_control = 36,
 CMD_mcast_hash_mask_read = 37,
 CMD_station_addr_write = 38,
 CMD_station_addr_read = 39,
 CMD_station_mask_write = 40,
 CMD_station_mask_read = 41,
 CMD_vlan_ether_type_read = 42,

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

119

 CMD_vlan_ether_type_write= 43,
 CMD_vlan_mask_read = 44,
 CMD_vlan_mask_write = 45,
 CMD_bcast_throttle_write = 46,
 CMD_bcast_throttle_read = 47,
 CMD_dhcp_prevent_write = 48,
 CMD_dhcp_prevent_read = 49,
 CMD_recv_buffer_control = 50,
 CMD_software_reset = 51,
 CMD_create_sa = 52,
 CMD_delete_sa = 53,
 CMD_diag_test_complete = 54,
 CMD_diag_arm2hostcomm = 55,
 CMD_diag_pcidmadoneint = 56,
 CMD_diag_pingpong = 57,
 CMD_diag_host2armcomm = 58,
 CMD_diag_pcidmaint = 59,
 CMD_diag_rxdmadoneint = 60,
 CMD_diag_txdmadoneint = 61,
 CMD_diag_swdmadoneint = 62,
 CMD_diag_swint = 63,
 CMD_diag_mactxcomplete = 64,
 CMD_diag_oneshot = 65,
 CMD_diag_freetimer = 66,
 CMD_version_read = 67,
 CMD_transmit_waveform = 68,
 CMD_filter_define = 69,
 CMD_add_wakeup_pkt = 70,
 CMD_add_sleep_pkt = 71,
 CMD_enable_sleep_events = 72,
 CMD_enable_wakeup_events = 73,
 CMD_get_ip_address = 74,
 CMD_tcpSegmentResponse = 75,
 CMD_read_pci_reg_l = 76,
 CMD_write_pci_reg_l = 77,
 CMD_read_offload_capability_l = 78,
 CMD_write_offload_l = 79,
 CMD_LM75_read_temp = 80,
 CMD_smb_host_receive = 81,
 CMD_smb_send = 82,
 CMD_smb_stop = 83,
 CMD_sos_read = 84,
 CMD_get_linkStatus_l = 85,
 CMD_mfg_wol = 86,
 CMD_hello_response = 87,
 CMD_enable_rx_filter = 88,
 CMD_rx_filter_capability = 89,
 CMD_pwr_dbg_log_read = 90,
 CMD_pwr_dbg_log_reset = 91,
 CMD_pwr_dbg_log_index = 92,
 CMD_halt = 93,
 CMD_read_ipsec_info_l = 94,
 CMD_reserved2 = 95,
 CMD_reserved3 = 96,
 CMD_reserved4 = 97,
 CMD_reserved5 = 98,
 CMD_reserved6 = 99,
 CMD_adapter_data_write = 100, // novel ECB only
 CMD_multicast_addr_write = 101, // novel ECB only
 CMD_asf_command = 102,

 CMD_get_ipsec_enable = 103,
 CMD_snipit_download = 104,

 CMD_Last_Value // always must be the last value
 // determines the size of the table

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

120

Unsolicited Responses

CycleStatistics = 8
MediaStatusRead = 27
TestComplete = 54
TcpSegmentResponse = 75

2. Typhoon Status

These values are written to the ARM2Host register 0 by the Typhoon to indicate the status of the
software.

#define STATUS_ROM_CODE 0x00000001
#define STATUS_ROM_EEPROM_LOAD 0x00000002
#define STATUS_ROM_FAIL 0x00008003
#define STATUS_EEPROM_CODE 0x00000004
#define STATUS_EEPROM_FAIL 0x00008005
#define STATUS_FIRST_INIT 0x00000006
#define STATUS_WAITING_FOR_BOOT 0x00000007
#define STATUS_SECOND_INIT 0x00000008
#define STATUS_RUNNING 0x00000009
#define STATUS_WAITING_FOR_HOST_REQ 0x0000000D
#define STATUS_FAIL 0x0000800A
#define STATUS_PCI_TARGET_ABORT 0x0000800B
#define STATUS_PCI_MASTER_ABORT 0x0000800C
#define STATUS_POST_FAIL 0x0000800E
#define STATUS_DIAGNOSTIC_MODE 0x0000000F
#define STATUS_WAITING_FOR_SEGMENT 0x00000010
#define STATUS_SEGMENT_FAIL 0x00008010
#define STATUS_SLEEPING 0x00000011
#define STATUS_RESETTING 0x00000012
#define STATUS_LANWORKS_CMD_COMPLETE 0x00000013
#define STATUS_LANWORKS_CMD_FAIL 0x00008013
#define STATUS_HALTED 0x00000014
#define STATUS_HALTING 0x00000015

3. Host Status

These values are written to the Host2ARM register 0 by the driver to pass boot commands prior to the
transfer of the boot record to the adapter.

#define HOST_CMD_BOOTING 0x00000000
#define HOST_CMD_NULL 0x00000000
#define HOST_CMD_BOOT_RECORD 0x000000FF
#define HOST_CMD_NVDEVICE_PROGRAM 0x000000FE
#define HOST_CMD_RUNTIME_IMAGE 0x000000FD
#define HOST_CMD_SEGMENT_AVAILABLE 0x000000FC
#define HOST_CMD_DOWNLOAD_COMPLETE 0x000000FB

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

121

#define HOST_CMD_WAKEUP 0x000000FA

©1997 3Com Corporation 12/03/0112/03/0112/03/01

A p p e n d i x B - P a c k e t F i l t e r i n g

NOTE: For the first release, due to the memory size limitation on the adapter, the Packet Filter
engine of Typhoon will reside with the NDIS driver on the host. It is the same engine that performs
the Ipsec Selector matching against the Security Association Database. Filtering policy can be
enforced by creating a special kind of Security Association with extension data to handle the
filtering requirements.

1. Filter features

Typhoon provides a sophisticated set of security features, based on which a powerful high-level
personal firewall may be efficiently supported. The focus of Typhoon’s security features is to offload
CPU-intensive filtering functions that are best implemented on the intelligent adapter card.

Typhoon supports the following services:

1) Dynamic specification of IP packet filters.

2) Capturing and reporting of specified packets.

3) Support for Standby (temporary suspension of all packet filters) and Blocking (temporary
shutoff of all network traffic) mode.

4) Address translation (through OEM Extension)

5) Encryption/Decryption (through IPSec)

Due to its on-board processing power and strategic position on the protocol stack, Typhoon offers
excellent filtering performance and is particular effective in protection against Denial of Service attack.
However, high-level security protocols, such as Authentication, Key Management, HTTP URL filters,
etc., must be implemented on the host.

1.1 Filtering Management Requests to Typhoon

Higher layer security protocol issues Typhoon requests to ask for supported security features.
Handling of packet filtering management requests has lower processing priority than the normal data
packet.

The following types of request are supported:

REQUEST_BLOCK_ALL
This request asks for a temporary blocking of all IP traffic.

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

123

REQUEST_UNBLOCK
This request cancels the previously issued REQUEST_BLOCK_ALL.

REQUEST_FILTER_STANDBY
This request temporarily asks for a temporary suspension of all packet filters and allows
all traffic to pass through the adapter.

REQUEST_FILTER_UNSTANDBY
This request cancels the previously issued REQUEST_FILTER_UNSTANDBY.

REQUEST_SET_FILTER_DEFAULT
This request sets default actions regarding the handling of packets not covered by any
packet filters. This request specifies the direction of packet flow (transmit/receive),
actions (pass-through/drop), and reporting options (report to the host or not).

REQUEST_FILTER_RESET_ALL
This request resets all filters previously defined. This is to prepare for defining a new
round of filter scheme.

REQUEST_DEFINE_FILTER
This request specifies a packet profile and defines the action to be taken when a
qualified packet is identified. A packet filter is defined by specifying:

1) IP Protocol

2) IP Source Address (defined as a single IP Address, a range of IP
Addresses, any IP Address, or defined to match a Net Mask).

3) IP Destination Address (defined as a single IP Address, a range of IP
Addresses, any IP Address, or defined to match a Net Mask).

4) TCP Source Port

5) TCP Destination Port

6) Direction of filtered traffic (Transmit/Receive)

7) Action to take (Discard, Pass)

8) Reporting option (to report or not)

Note that filter defined here does not bear an ID. In order to redefine a filter, high level
protocol needs to issue REQUEST_FILTER_RESET first and start out fresh.

Reporting of packets identified and requested by a filter are passed on to the host with the following
response:

RESPONSE_FILTER_REPORT
The actual packet is part of the response.

See sections on IPSec and OEM Extension for additional security support.

©1997 3Com Corporation 12/03/0112/03/0112/03/01

A p p e n d i x C - O E M f u n c t i o n e x t e n s i o n

A P I

1. Overview

The first release of the adapter will include embedded software to perform all of the basic features
described in this document. One of the benefits of the intelligent Typhoon architecture is the ability to
extend its functions by adding new software. To allow simple extensibility an API is defined

2. Goals

The goal of the API is to provide an interface to allow new embedded Typhoon software to be
integrated into the existing core software. The API is not intended for the inexperienced, it is assumed
that anyone programming to the API has a firm understanding of the Typhoon architecture and a
knowledge of the core Typhoon software.

The API:

• Allows new software to be inserted into the transmit and receive data paths. This can filter,
modify, prioritize, and discard packets at multiple points in a packets transition through the
adapter.

• Allows new host interfaces and commands to be implemented.

• Allows access to the hardware to modify or implement new features, e.g. I2C, encryption,
compression.

• Allows background tasks to be added to perform non data path functions.

3. SDK

The API is accessed through a 3Com supplied Typhoon SDK. The SDK contains documentation on the
Typhoon hardware and software architecture, API description, tool requirements and a binary software
image of the core software.

The core binary is statically linked with user code that interfaces to it via the API. The resulting
image is downloaded to the adapter in place of the standard 3Com supplied image.

©1997 3Com Corporation 12/03/0112/03/0112/03/01

A p p e n d i x D : S l e e p E v e n t I m p l e m e n t a t i o n

1. Introduction
This appendix covers the details of how the sleep events are implemented within the firmware. The
simple events whose descriptions can be found in any introductory networking book will not be covered
here. Only more the complex or obscure events, or those that take advantage of certain loopholes in
the original specifications will be explained here.

2. Novell Watchdog Replies
Novell uses NCP Watchdog Frames to keep a connection active. The server polls each client
station. The poll interval is determined by the server, and is not included as part of poll frame.
There is a poll frame from each server the station is connected to. The poll frames are addressed
directly to each individual station by MAC address.

The fields in bold can be used to filter the frame.

Server Poll Station

Destination Address 6 bytes Field A
Source Address 6 bytes Field B
Length Field 2 bytes 00h 20h

IPX Checksum 2 bytes FFh FFh
IPX Length 2 bytes 00h 20h
IPX Transport Control 1 byte Hop Count
IPX Packet Type 1 byte 04h (IPX)
IPX Destination Address
 Destination Network 4 bytes Field C
 Node Address 6 bytes Field D
 Socket Number 2 bytes 40h 05h
IPX Source Address
 Source Network 4 bytes Field E
 Node Address 6 bytes Field F
 Socket Number 2 bytes 40h 01h
NCP Connection Number 1 byte Field G
NCP Signature 1 byte 3Fh

The reply to the poll looks like (with the fields from the request marked)

Destination Address 6 bytes Field B from Request

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

126

Source Address 6 bytes Field A from Request
Length Field 2 bytes 00h 20h

IPX Checksum 2 bytes FFh FFh
IPX Length 2 bytes 00h 20h
IPX Transport Control 1 byte 00h
IPX Packet Type 1 byte 04h
IPX Destination Address
 Destination Network 4 bytes Field E from Request
 Node Address 6 bytes Field F from Request
 Socket Number 2 bytes 40h 01h
IPX Source Address
 Destination Address 4 bytes Field C from Request
 Node Address 6 bytes Field D from Request
 Socket Number 2 bytes 40h 05h
NCP Connection Number 1 byte Field G from Request
NCP Connection Active 1 byte 59h

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

127

3. DHCP Lease Renewal

When the Typhoon is put to into a low power state, it will start the DHCP state machine in the
sleep image.

The possible DHCP states are:

• RENEW_LEASE - issuing a DHCPREQUEST message
• WAITING_FOR_OFFER - waiting for a server to respond with DHCPACK or DHCPNACK
• TIMEOUT - didn't get a server response in a reasonable time
• ACCEPT_OFFER - received a DHCPACK, resetting lease time, saving parameters
• LEASE_ERROR - any error in the renewal process lands us here. Abort lease renewal and

abort any DHCP dependent features such as Wake-on-Ping.
• BOUND - not currently in the lease process. Also an indicator that the IP address stored

internally is valid and may be used by other sections of the firmware.

Typhoon DHCP States

The Typhoon only checks for incoming DHCP messages while in the WAITING_FOR_OFFER state.
There are no unsolicited DHCP messages, so it need only look a packet is expected.

The request packet sent out in the RENEW_LEASE state consists of a standard DHCPREQUEST
packet with the “Client ID(61)” and “Request Parameter(55)” options. The IP address and Client ID
used in the request are passed down by the driver with the EnableSleepEvents command. The Client
ID is operating system dependent.

Typhoon expects to get back a DHCPACK packet with the “Lease Time(51)”, “SubnetMask(1)” and
“BroadcastAddr(28)” options. Other options may be included in the DHCPACK message, but Typhoon
will ignore them.

RenewLease

Waiting

Timeout Accept Lease

Error

Bound

Fail to send req.

Rcv NACK

Send req.

Rcv ACK

Configure for IP
events

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

128

See RFCs 2131 and 2132 for details on the DHCP lease renewal process and for the formats of a
DHCPREQUEST and a DHCPACK packet with options. Typhoon implements most of the “Re-using a
previously allocated network address” algorithm in section 3.2 of RFC 2131.

A p p e n d i x E : S O S P i n s o n T y p h o o n

Typhoon has three general purpose input pins, SOS0, SOS1, SOS2. Each of these pins has a
pull-up on the board, if left unconnected the default state is high. The firmware implementation is
for engineering tests purposes, and would require modification if Typhoon had an OEM customer.

The SOS pins are currently polled in sleep mode only and polling is only done if the SOSOption
parameter in the variable section indicates that polling is enabled. In order to individually test
these pins they have been given the following assignments.

SOS0 – BIOS didn’t complete
SOS1 – OS didn’t boot
SOS3 – Case Intrusion

Traps are generated in sleep mode, provided that the polling has been enabled and the pin has
been asserted low for a specified amount of time. If the SOS0 or SOS1 pins are asserted low for
at least five minutes, a trap for the corresponding pin will be generated. A trap for the SOS3 pin
will be generated if the pin has been asserted low for at least two seconds. None of the traps will
be generated if the runtime image is downloaded before the timer expires.

The traps are generated with the following format detailed below. For test purposes the trap is
currently sent as a broadcast frame. The variable section contains parameters for SOS
destination IPAddress, SubnetMask, and Gateway (these parameters can be configured by
Touchdown) which can be used if an implementation is done for an OEM.

For information on the trap format refer to the document Frame Formats For Platform Event
Traps, V 0.94, by Carl First.

SOS0 (BIOS didn’t complete)

*Ethernet Header

Destination Address 6 bytes Broadcast
Source Address 6 bytes Typhoon MAC address
Type Field 2 bytes 0x0800

*IP Header

Headerlen/Version 1 byte 0x45
TOS 1 byte 0x00
Total length 2 bytes 0x8B
Identification 2 bytes 0x0000
Flags/Fragment offset 2 bytes 0x0000
Time to Live 1 byte 0x80

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

129

Protocol 1 byte 0x11
IP Checksum 2 bytes 0xXXXX
Source IP 4 bytes 0xXXXXXXXX
Destination IP 4 bytes 0xXXXXXXXX

*UDP Header

Source Port 2 bytes 0x00A2
Destination Port 2 bytes 0x00A2
Length 2 bytes 0x0077
UDP Checksum 2 bytes 0xXXXX

*SNMP Trap PDU

Message type 2 bytes 0x306D
Version number 3 bytes 0x020100
Community String 8 bytes 0x0406”public”
PDU Trap Type 2 bytes 0xA460
Enterprise 11 bytes 0x06092b06010401986f0101
Agent address 6 bytes 0x4004XXXXXXXX
Generic trap 3 bytes 0x020106
Specific trap 5 bytes 0x0203236F00
Time stamp 6 bytes 0x430400000000
Sequence of 4 bytes 0x303F303D
OID 12 bytes 0x060a2b06010401986f010101
GUID 16 bytes 0x00000000000000000000000000000000
Sequence # 2 bytes 0x0000
Local Timestamp 4 bytes 0x00000000
UTC Offset 2 bytes 0xffff
Trap Source type 1 byte 0x50 (NIC)
Event Source type 1 byte 0x50 (NIC)
Event Severity 1 byte 0x10
Sensor type 1 byte 0xff
Sensor number 1 byte 0xff
Entity ID 1 byte 0x23(BIOS)
Entity Instance 1 byte 0x00
Event Data 1 1 byte 0xC0
Event Data 2 1 byte 0x02
Event Data 3 1 byte 0xff
Event Data 4 1 byte 0x00
Event Data 5 1 byte 0x00
Event Data 6 1 byte 0x00
Event Data 7 1 byte 0x00
Event Data 8 1 byte 0x00
Language Code 1 byte 0xff
Manufacture ID 4 bytes 0x00000000
System ID 2 bytes 0x0000
OEM Custom 1 byte 0xC1

SOS1 (OS didn’t boot)

*Ethernet Header

Destination Address 6 bytes Broadcast
Source Address 6 bytes Typhoon MAC address

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

130

Type Field 2 bytes 0x0800

*IP Header

Headerlen/Version 1 byte 0x45
TOS 1 byte 0x00
Total length 2 bytes 0x8B
Identification 2 bytes 0x0000
Flags/Fragment offset 2 bytes 0x0000
Time to Live 1 byte 0x80
Protocol 1 byte 0x11
IP Checksum 2 bytes 0xXXXX
Source IP 4 bytes 0xXXXXXXXX
Destination IP 4 bytes 0xXXXXXXXX

*UDP Header

Source Port 2 bytes 0x00A2
Destination Port 2 bytes 0x00A2
Length 2 bytes 0x0077
UDP Checksum 2 bytes 0xXXXX

*SNMP Trap PDU

Message type 2 bytes 0x306D
Version number 3 bytes 0x020100
Community String 8 bytes 0x0406”public”
PDU Trap Type 2 bytes 0xA460
Enterprise 11 bytes 0x06092b06010401986f0101
Agent address 6 bytes 0x4004XXXXXXXX
Generic trap 3 bytes 0x020106
Specific trap 5 bytes 0x0203236F00
Time stamp 6 bytes 0x430400000000
Sequence of 4 bytes 0x303F303D
OID 12 bytes 0x060a2b06010401986f010101
GUID 16 bytes 0x00000000000000000000000000000000
Sequence # 2 bytes 0x0000
Local Timestamp 4 bytes 0x00000000
UTC Offset 2 bytes 0xffff
Trap Source type 1 byte 0x50 (NIC)
Event Source type 1 byte 0x50 (NIC)
Event Severity 1 byte 0x10
Sensor type 1 byte 0xff
Sensor number 1 byte 0xff
Entity ID 1 byte 0x24(OS)
Entity Instance 1 byte 0x00
Event Data 1 1 byte 0xC0
Event Data 2 1 byte 0x03
Event Data 3 1 byte 0xff
Event Data 4 1 byte 0x00
Event Data 5 1 byte 0x00
Event Data 6 1 byte 0x00
Event Data 7 1 byte 0x00
Event Data 8 1 byte 0x00
Language Code 1 byte 0xff
Manufacture ID 4 bytes 0x00000000

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

131

System ID 2 bytes 0x0000
OEM Custom 1 byte 0xC1

SOS2 (Case Intrusion)

*Ethernet Header

Destination Address 6 bytes Broadcast
Source Address 6 bytes Typhoon MAC address
Type Field 2 bytes 0x0800

*IP Header

Headerlen/Version 1 byte 0x45
TOS 1 byte 0x00
Total length 2 bytes 0x8B
Identification 2 bytes 0x0000
Flags/Fragment offset 2 bytes 0x0000
Time to Live 1 byte 0x80
Protocol 1 byte 0x11
IP Checksum 2 bytes 0xXXXX
Source IP 4 bytes 0xXXXXXXXX
Destination IP 4 bytes 0xXXXXXXXX

*UDP Header

Source Port 2 bytes 0x00A2
Destination Port 2 bytes 0x00A2
Length 2 bytes 0x0077
UDP Checksum 2 bytes 0xXXXX

*SNMP Trap PDU

Message type 2 bytes 0x306D
Version number 3 bytes 0x020100
Community String 8 bytes 0x0406”public”
PDU Trap Type 2 bytes 0xA460
Enterprise 11 bytes 0x06092b06010401986f0101
Agent address 6 bytes 0x4004XXXXXXXX
Generic trap 3 bytes 0x020106
Specific trap 5 bytes 0x0203056F00
Time stamp 6 bytes 0x430400000000
Sequence of 4 bytes 0x303F303D
OID 12 bytes 0x060a2b06010401986f010101
GUID 16 bytes 0x00000000000000000000000000000000
Sequence # 2 bytes 0x0000
Local Timestamp 4 bytes 0x00000000
UTC Offset 2 bytes 0xffff
Trap Source type 1 byte 0x50 (NIC)
Event Source type 1 byte 0x50 (NIC)
Event Severity 1 byte 0x10
Sensor type 1 byte 0xff
Sensor number 1 byte 0xff
Entity ID 1 byte 0x18(CASE)
Entity Instance 1 byte 0x00

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

132

Event Data 1 1 byte 0x00
Event Data 2 1 byte 0xff
Event Data 3 1 byte 0xff
Event Data 4 1 byte 0x00
Event Data 5 1 byte 0x00
Event Data 6 1 byte 0x00
Event Data 7 1 byte 0x00
Event Data 8 1 byte 0x00
Language Code 1 byte 0xff
Manufacture ID 4 bytes 0x00000000
System ID 2 bytes 0x0000
OEM Custom 1 byte 0xC1

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

133

4. Index
AcknowledgeResponse 77, 84, 85, 87
AddSleepFrame 6, 71, 104
AddWakeupFrame 69, 103
BroadcastThrottleRead 94
BroadcastThrottleWrite 94
ClearStatistics 81
CreateSA 4, 96
CycleStatistics 81, 82, 115, 130
DataFlashCompBuffer 59
DefineRmonFilter 4, 101, 102
DeleteSA 96, 98
DHCPPreventRead 94
DHCPPreventWrite 94
DiagArm2HostComm 99
DiagFreeTimer 100
DiagHost2ArmComm 99
DiagMacTxComplete 100
DiagOneShot 100
DiagPciDmaDoneInt 99
DiagPciDmaInt 99
DiagPciDmaPingPong 99
DiagRxDmaDoneInt 99
DiagSwDmaDoneInt 99
DiagSwInt 99, 100
DiagTxDmaDoneInt 99
EnableSleepEvents 4, 5, 69, 105, 137
EnableWakeupEvents 5, 69, 104
Error Response 77
Execute 58
FireWallControl 91, 94
GetIpAddress 5, 106
GetIPSecEnable 75, 98, 109, 110, 111
GlobalReset 69, 78
GoToSleep 69, 106
HelloResponse 115
ImageSectionProgram 85
LoadDataFlashPage 58, 59
MacBackoffWrite 103
MacControlRead 88
MacControlWrite 88
MaxPktSizeRead 89
MaxPktSizeWrite 89
MediaStatusRead 89, 115, 130
MediaStatusWrite 89
MfgWOL 109
MulticastHashMaskWrite 91
NetworkDiagsRead 5, 90
NetworkDiagsWrite 90
OffloadRead 5, 108, 111
OffloadWrite 5, 107

PhyLoopbackDisable 88
PhyLoopbackEnable 88
PhysicalMgmtRead 90
PhysicalMgmtWrite 90
ReadDataFlashByte 58, 59
ReadDataFlashStatus 58, 59
ReadErrors 82
ReadIpsecInfo 4, 98
ReadMemory 82
ReadMemoryWord 58, 59
ReadNVRamPage 86
ReadPCIConfigReg 106
ReadStatistics 80, 81, 115
ReceiveBufferControl 95
RmonFilterCapabilities 4, 102
RmonFilterEnable 4, 102
RxDisable 6, 69, 79
RxEnable 78
RxFilterRead 80
RxFilterWrite 69, 79, 80
SetPMEStatus 109
SnipitDownload 4, 75, 111, 112
SoftwareReset 78, 95
SOSRead 108
StaticSectionRead 84
StaticSectionWrite 85
StationAddressRead 92
StationAddressWrite 6, 69, 92
StationMaskRead 92
StationMaskWrite 92
TcpSegmentResponse 106, 115, 130
TestComplete 98, 116, 130
TestMux 87
TransmitWaveform 6, 101
TxDisable 69, 78
TxEnable 78
TyphoonCmdLevel 4, 114
VarParamRead 90, 91
VarParamWrite 91
VarSectionRead 83
VarSectionWrite 84
VersionsRead 6, 100, 101
VlanEtherTypeRead 93
VlanEtherTypeWrite 93
VlanMaskRead 93
VlanMaskWrite 93
WriteDataFlashByte 57, 59
WriteDataFlashWord 57, 59
WriteMemory 83
WriteMemoryWord 57, 59

Typhoon Software Functional Description DRAFT 3.19

©1998 3Com Corporation 3/5/98

134

WriteNVRamPage 86
WritePCIConfigReg 69, 107

XcvrSel 87, 114

