White Paper

Ray Kinsella

Network Software Engineer
Intel Corporation

Profiling and
Debugging the
~reeBSD* Kernel

May 2009

Document Number: 321772-001

Abstract

This paper provides an overview of the Profiling and Debugging tools
available for FreeBSD* 7.0 and later. These tools enable the developer to
demystify the Kernel’s internal workings, identify performance bottlenecks
and determine appropriate parameter tuning. The paper should help
reduce the guesswork involved in tuning the performance of FreeBSD,

promoting actions informed by measurement.

Profiling and Debugging the FreeBSD* Kernel

White Paper
2

May 2009
Document Number: 321772-001

Introduction lH/tGD

Contents

g e T L6 o T o 5
The FreeBSD Kernel et e ettt as 6
Configuring the Kernel e 6

RUN-TIMeE CoNfigUIationooiiiii ettt e e e e aeeaaas 6

Compile-Time Configuration i e 7

Example: The ULE Schedulero 8

RebUIldiNg the Kernelo et et et e e aaanes 8

Managing MUItiple Kernels. ... e e eaes 9

Additional INformationo e 10

L 0 TOR = | S 11
Kernel ConfigUIratioN.o ettt aee e 11

L LT T s [7= 1 11

TUNING PMICS At ..t eeas 14

= 11101 14

Building the Module. ... 14

Configuring the ModUle ... e 14

Measuring Branch Mis-PrediCtionS........ccviiiiiiii i e 15

Measuring Level 2 Cache MiSSeS i e 15

Additional INformation et 16

1o o3 2 = o] 1 T T R 17
Kernel ConfiguUIration.o et aaae e 17

Compiling Additional MOAUIES ..o e 17

USING LOCK Profiling ... e 17

Additional INTOrMatioN ... e 19

L= T=1 D11 o 18 T o | o 20
[NC=] g [=T I @0 T 1 o U = T o 1 20

Using the Kernel DebUQGQETo e 21

Additional INformMationo e 22

1 10 TS 23
Kernel ConfigUIratioN.o ettt et aeee 23

L £ 1 T e [2 Lo o 24

Additional INFOrmMation ... et eaaas 25

=] 1 I I = T = 26
Kernel ConfiguIration.o e e eeaaaee 26

101 T I =T o g 1= I I = T = 27

Additional INFOrMAatioN ... e 27

(0] o 1o 1 1= T T o 1 28

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 3

LSy (=T (=Y 1o =T) S 28

Y o 01T 5 T 1 G 29

Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
4 Document Number: 321772-001

Introduction lH/tGD

Introduction

FreeBSD provides a rich toolset to aid a developer writing Kernel code. This paper
discusses the tools and techniques that can aid the performance profiling of Kernel
code on FreeBSD 7.0. Kernel debugging and the management of multiple Kernel
versions are also discussed.

FreeBSD 7.0 represents a significant improvement for those developing device drivers,
and includes a new version of PmcStat, a tool similar in function to the Intel® VTune™
Performance Analyzer or OProfile*. PmcStat allows developers to profile FreeBSD
Kernel and user space applications by sampling a processor’s performance counters.
The new version of PmcStat uses these counters to enable the performance profiling
of the loadable Kernel modules. For hardware vendors releasing device drivers as
loadable Kernel modules, their developers can now profile their code without the
burden of instrumentation or building their code into the Kernel.

PmcStat is therefore the key enabling tool discussed in this paper. Other tools
discussed include:

e The Lock/Mutex Profiler: This tool enables the developer to identify lock
contention, reporting the average wait times at Kernel locks.

e The Kernel debugger: This tool enables the developer to insert breakpoints into
Kernel code, inspect memory address, print stack traces, and so on.

e Kgmon: This tool instruments the Kernel with performance profiling code; this is
an alternate method of identifying bottlenecks on processors that don’t provide
performance counters.

e Kernel Tracing: This tool enables the developer to trace Kernel activity. The
developer can exclude parts of the Kernel from the trace and insert trace-points
into their own code. It is a powerful learning aid.

The key to enabling these tools is configuring and building the FreeBSD Kernel. Please
see the following section.

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 5

n ® The FreeBSD Kernel
intel

The FreeBSD Kernel

The default Kernel that FreeBSD installs is optimized for most workloads and supports
the most commonly used hardware. This is referred to as the GENERIC Kernel. To
query the Kernel a system is currently using, invoke the “uname —a” command.

bash-2.05b# uname -a
FreeBSD abc.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #2: Wed Nov 19 10:52:32 GMT 2008
root@abc.intel.com:/usr/obj/usr/src/sys/GENERIC 1386

In the above example, the GENERIC Kernel is being used.

The built version of the FreeBSD Kernel is kept in the /boot/kernel directory, along
with any loadable modules that have been built. Typically the Kernel uses two other
loadable Kernel modules: the ACPI module to provide power management support,
and the Linux module to provide binary compatibility support with Linux. The
command kldstat will list the modules currently in use.

bash-2.05b# kldstat

Id Refs Address Size Name

1 7 Oxc0400000 6f6e30 kernel

2 1 OxcPaf7000 59120 acpi.ko
3 1 0xc4813000 16000 linux.ko

The Kernel’s source code is available in /usr/src, provided it was selected to be
installed during the installation process. If the Kernel source code is missing, it can be
added later by re-running the sysinstall tool.

Configuring the Kernel

The FreeBSD Kernel is configurable dynamically at run-time and statically at compile-
time by editing the Kernel profile. The same set of parameters may not be
configurable in each case.

Run-Time Configuration

Kernel parameters can be changed at run-time using the sysctl command.

bash-2.05b# sysctl -a | head

kern.ostype: FreeBSD

kern.osrelease: 7.0-RELEASE

kern.osrevision: 199506

kern.version: FreeBSD 7.0-RELEASE #0: Sat Feb 7 16:04:51 UTC 2009
root@: /usr/obj/usr/src/sys/DEBUG

kern.maxvnodes: 17229
kern.maxproc: 1956
kern.maxfiles: 3912
kern.argmax: 262144

The “sysctl -a” command will return a list of available configuration parameters. These
parameters divide roughly into three categories:
Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
6 Document Number: 321772-001

The FreeBSD Kernel

intel.

Category

Description

Read-only parameters

Parameters that are either intended to report internal Kernel metrics
or parameters that have been configured at compile-time.

An example in this category is the dev.cpu.0.freg_levels parameter.
This parameter reports the ACPI throttling levels available.

or

Another example is the kern.sched.name parameter. This parameter
reports the Kernel scheduler currently in use; this is changeable at
compile time.

Read-write parameters

Parameters that can be changed at run-time.

An example in this category is the dev.cpu.0.freq parameter. This
parameter controls the ACPI throttling option currently selected.

Write-at-boot
parameters

Parameters that can only be changed at boot-time. These are
configured in the /boot/loader.conf file (see the man page for
loader.conf) or with the kenv command.

An example of parameters in this category is the
kern.hwpmc.nbuffers parameter, which controls the number of
internal buffers available to the PmcStat tool.

Compile-Time Configuration

The most substantial Ke

rnel configuration changes are made at compile-time.

Examples of these kinds of changes include: selecting a different process scheduler
(i.e., the ULE scheduler), enabling performance sampling support (PmcStat), and
enabling Kernel lock profiling support.

To build a new Kernel including a new compile-time enabled feature, a new Kernel

profile must be created.

The Kernel profile is the compile-time configuration file. The

profile is kept in the conf directory:

/usr/src/sys/<arch>/conf

Where arch is the architecture of the system, i.e., i386 for Intel architecture

processors.

root wheel
root wheel

-PW-P--r--
-PW-r--r--

total 62
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
1
1

bash-2.05b# 1s -1 /usr/src/sys/i386/conf

13 Oct 29 14:26 .cvsignore
372 Oct 29 14:26 DEFAULTS
10629 Oct 29 14:26 GENERIC
1741 Oct 29 14:26 GENERIC.hints
120 Oct 29 14:26 Makefile
34813 Oct 29 14:26 NOTES
2047 Oct 29 14:26 PAE
322 Oct 29 14:26 SMP
3389 Oct 29 14:26 XBOX

May 2009
Document Number: 321772-001

Profiling and Debugging the FreeBSD* Kernel
White Paper
7

l\"O The FreeBSD Kernel

In the conf directory, the file GENERIC contains the Kernel profile for the GENERIC
Kernel. To create a new configuration, use this file as the base configuration and then
modify it.

bash-2.05b# cd /usr/src/sys/i386/conf
bash-2.05b# cp GENERIC ULE

Example: The ULE Scheduler

An alternative process scheduler for FreeBSD is called the ULE scheduler. It has been
shown to provide better performance for some workloads and replaces 4BSD as the
default scheduler in more recent versions of FreeBSD (> FreeBSD 7.0). It is available
in older versions of FreeBSD but must be enabled in the Kernel profile at compile
time.

Determine which scheduler the operating system is currently using with the following
command:

bash-2.05b# sysctl kern.sched.name
kern.sched.name: 4BSD

To enable the ULE scheduler at compile time, edit the newly created Kernel profile (in
this case, the ULE profile created above). Comment out SCHED_4BSD to disable the
4BSD scheduler and add SCHED_ULE to enable the ULE scheduler in its place.

machine i386

cpu I486_CPU
cpu I586_CPU
cpu I686_CPU
ident GENERIC

To statically compile in device wiring instead of /boot/device.hints

#hints "GENERIC.hints" # Default places to look for devices.
makeoptions DEBUG=-g # Build kernel with gdb(1) debug symbols
#options SCHED_4BSD # 4BSD scheduler

options SCHED_ULE # ULE scheduler

options PREEMPTION # Enable kernel thread preemption
options INET # InterNETworking

options INET6 # IPv6 communications protocols

Rebuild the Kernel by following the instructions in the next section. After the new
Kernel has been installed, check with sysctl again to see which scheduler is being
used.

bash-2.05b# sysctl kern.sched.name
kern.sched.name: ule

Rebuilding the Kernel

Once a new Kernel profile has been created and edited to include new features, the
new Kernel incorporating the selected features can now be built. In the /usr/src
directory, execute the following make command:

Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
8 Document Number: 321772-001

The FreeBSD Kernel i n tel fw>

bash-2.05b# make buildkernel KERNCONF=ULE

In this case, ULE is the name of the newly created Kernel profile. By default, the
Kernel will rebuild all modules. This can be quite time consuming, and often,
unnecessary. To improve the speed of compilation, the MODULES_OVERRIDE
environmental variable can be defined such that only specified Kernel modules are
built. The modules ACPI and Linux are typically used. If your hardware requires a
specific graphics driver (or similar), add it in here.

bash-2.05b# export MODULES_OVERRIDE=linux acpi

Once compilation has completed, to install the Kernel, execute the following command

bash-2.05b# make installkernel KERNCONF=ULE

The ULE Kernel, as defined by the ULE Kernel profile, will become the systems default
Kernel, installed in the /boot/kernel directory. The GENERIC (or the previous) Kernel
configuration will be backed up to the /boot/kernel.old directory. The old Kernel can
be used to restore the system to a working state, in the event there is a problem with
the new Kernel. Reboot to start using the new Kernel.

Managing Multiple Kernels

While profiling Kernel code it can be helpful to have multiple versions of the Kernels
available. For instance, it may be helpful to have the one Kernel supporting the Kernel
debugger (KDB) and another supporting the FreeBSD Profiler (e.g., PmcStat) available
without the need to rebuild the entire Kernel when switching between tools.

Multiple versions of the Kernel can be kept in the /boot directory. These can be
switched into the /boot/Kernel directory as each tool is needed. For instance, a Kernel
with Kernel debugger (KDB) support could be built and backed-up to the
/boot/Kernel.KDB directory.

bash-2.05b# cp -r /boot/kernel /boot/kernel.KDB

Then later, while using the GENERIC Kernel, if we wished to use the debugger, it is
only a matter of overwriting the /boot/Kernel directory with the contents of the
/boot/Kernel.KDB directory and rebooting. No other configuration files need to
changed. Be careful to ensure you have backups of any Kernel you are going to
overwrite.

bash-2.05b# cp -r /boot/kernel.KDB /boot/kernel

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 9

- N The FreeBSD Kernel
intel)

At each step be careful to check which Kernel is being used with the uname —a
command.

bash-2.05b# uname -a
FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #2: Wed Nov 19 10:52:32 GMT
2008 root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/KDB 1386

Additional Information

More information on building the Kernel the “New” way can be found in the FreeBSD
Handbook (Chapter 8, Section 5).

Profiling and Debugging the FreeBSD* Kernel

White Paper
10

May 2009
Document Number: 321772-001

http://www.freebsd.org/doc/en/books/handbook/kernelconfig-building.html�
http://www.freebsd.org/doc/en/books/handbook/kernelconfig-building.html�

intel)

PmcStat

Modern processors provide a set of machine-specific registers to enable the sampling
of performance events on a processor (for example, clock-ticks and Level 1 data cache
misses). The term sampling means that profiling tools can record the instructions at
which performance events occur. Sometimes, if there are a large number of events,
only a subset is recorded so as not over burden the system. The samples are then
used to identify bottlenecks in code that impact performance. These hotspots may
involve a poor instructions per clock ratio, or memory fragmentation that results in
cache misses.

PmcStat provides a way of examining code’s performance while consuming little
additional system resources and incurring only a small performance penalty. PmcStat
works by sampling performance events on the processor and only requires that code
is built with symbols present to work, no instrumentation is required.

The only notable feature PmcStat lacks in FreeBSD 7.0 is back-tracing. Back-tracing
can often be a helpful feature in determining the root cause of a performance issue. It
is a feature to be included in later versions of FreeBSD; a patch-set is available to
enable the feature in earlier versions. Its absence can make it difficult to determine
the context in which a function is being called.

Kernel Configuration

PmcStat supports the profiling of loadable Kernel modules from FreeBSD 7.0 onwards.
To build a Kernel that supports PmcStat, add the following options to a Kernel profile
(see The FreeBSD Kernel).

options HWPMC_HOOKS
device hwpmc

After the Kernel has been built, installed, and the system has been rebooted, check to
ensure the correct Kernel is being used.

bash-2.05b# uname -a

FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #0: Mon Nov 10 14:02:42 UTC
2008

root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/PROFILING 1386

Using PmcStat

Before beginning, ensure that any Kernel loadable modules that you are interested in
profiling are either linked or copied into the /boot/kernel directory. Although typically
FreeBSD keeps Kernel modules in this directory, when developing a new module this
may not be the case. PmcStat requires that the modules it is profiling be located in
this directory.

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 11

PmcStat

To list the performance events supported by the system’s processor:

bash-2.05b# pmccontrol -L

TSC
tsc

P6
p6-data-mem-refs
p6-dcu-lines-in

p6-dcu-m-lines-in
p6-dcu-m-lines-out

p6-dcu-miss-outstanding

To monitor where clock-ticks are being spent:

bash-2.05b# pmcstat -S p6-cpu-clk-unhalted -0 /tmp/p6-cpu-clk-unhalted.pmc &

The processor event is specified with —S and the sample output file is specified with
—0O. At this point, execute the process to be profiled to stop monitoring when the

process has completed:

bash-2.05b# fg <CTRL-c>

At this point, the file p6-cpu-clk-unhalted.pmc contains the samples. To convert the
sample output file into a gprof compatible files:

bash-2.05b# pmcstat -R /tmp/p6-cpu-clk-unhalted.pmc -g

The sample output file is specified with —R and —g indicates the gprof format. In this
case as the p6-cpu-clk-unhalted (unhalted clockticks) processor event was monitored,
a p6-cpu-clk-unhalted directory is created when the command is executed.

The command will also output how many samples were taken during sampling. The
samples total (samples/total below) is a good indication of how busy PmcStat was
during sampling. If a given change was expected to result in a performance
improvement, the total number of samples taken would be expected to drop. The
samples whose owning process could not be indentified are shown as unclaimed.

CONVERSION STATISTICS:
#texec/elf
#samples/total
#samples/unclaimed

1

160562

3469

It’'s a good idea to output the conversion statistics to a file, as they will be useful later.
The p6-cpu-clk-unhalted is populated with gprof files containing the sample data in

gprof format.

bash-2.05b# 1s -1 p6-cpu-clk-unhalted

total 4340

-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel
-rw-r--r-- 1 root wheel

108768
3177456
66060
385180
458826
124882
43690

Nov
Nov
Nov
Nov
Nov
Nov
Nov

acpi.ko.gmon
Kernel.gmon
ld-elf.so.1.gmon
libc.so.7.gmon
libcrypto.so.5.gmon
openssl.gmon
sh.gmon

Profiling and Debugging the FreeBSD* Kernel

White Paper
12

May 2009
Document Number: 321772-001

PmcStat l n tel

Use gprof to generate a report from the gmon files:

bash-2.05b# cd p6-cpu-clk-unhalted
bash-2.05b# gprof /boot/kernel/kernel kernel.gmon > kernel.report
time is in ticks, not seconds

The listing below shows example output from gprof; it shows the kernel.report file
created above.

called/total parents
index %time self descendents called+self name index
called/total children
<spontaneous>
[1] 18.7 13122.00 0.00 _mtx_unlock_spin_flags [1]
<spontaneous>
[2] 10.9 7669.00 0.00 _mtx_lock_spin_flags [2]
<spontaneous>
[3] 9.2 6465.00 0.00 spinlock_enter [3]
<spontaneous>
[4] 9.2 6460.00 0.00 spinlock_exit [4]
<spontaneous>
[5] 4.9 3409.00 0.00 critical_exit [5]
Column Meaning
Index The position in an ascending list of a number of samples.

%Time Percentage of samples within this module. For example, of the total number of
samples taken within the Kernel module, spinlock_enter represented 9.2% of
these samples.

To calculate a function’s samples as a percentage of the total samples (all
modules), divide the number of samples for a function by the total samples from
the conversion statistic.

Self The number of samples at which the function was found to be executing.

Parent The parent is always spontaneous as PmcStat does not support back-tracing in
FreeBSD 7.0.

Children The name of the function executing when the sample was taken.

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 13

mfteD prestat

Tuning PmcStat

A common problem with PmcStat is that its buffers may be exhausted during
sampling. When this happens the following message appears during conversion to
gprof format.

WARNING: some events were discarded. Please consider tuning the "kern.hwpmc.nbuffers
tunable.

To correct this problem, edit the /boot/loader.conf file and add the write-at-boot
parameter kern.hwpmc.nbuffers and reboot.

kern.hwpmc.nbuffers=2048

After reboot, confirm the change has worked.

[root@CRB_168 ~]# sysctl kern.hwpmc.nbuffers
kern.hwpmc.nbuffers: 2048

Example

In this section, a contrived example is used to demonstrate using PmcStat to measure
branch mis-predictions and Level 2 cache misses. Most modern processors feature
both a branch prediction unit to enable out-of-order instruction execution and a Level
2 cache to accelerate memory accesses.

Appendix A lists a bad module that generates both branch mis-predictions and Level 2
cache misses. When the module loads, it starts a kernel thread that performs work for
a specified duration. This is intensive work and your system may freeze for the
duration of the test.

Building the Module

Build the module on your system by copying the Makefile and bad_module.c listed in
Appendix A to a directory and executing the make and make install commands.

[root@CRB_168 ~]# make && make install
@ -> /usr/src/sys
machine -> /usr/src/sys/i386/include

install -o root -g wheel -m 555 bad_module.ko /boot/kernel
install -o root -g wheel -m 555 bad_module.ko.symbols /boot/kernel
kldxref /boot/kernel

After compilation has completed there should now be a bad_module.ko in the current
directory. The make install command will copy this file to /boot/kernel.

Configuring the Module

The module contains four hard-coded configuration parameters to change the
module’s behavior. As these parameters are hard-coded, each time one is changed, a
rebuild and reinstall of the module is required (see Building the Module).

Profiling and Debugging the FreeBSD* Kernel

White Paper
14

May 2009
Document Number: 321772-001

PmcStat

May 2009

intel)

e BUFFER_SIZE: This parameter sets the number of buffers used during the test.
Increasing the number of buffers will increase the likelihood of Level 2 cache
misses.

e CACHE_LINE_SIZE: This parameter needs to be set to the cache line size of your
processor.

e DURATION: This parameter sets the test duration (in seconds). Increasing the test
duration will increase the likelihood of both branch mis-predictions and Level 2
cache misses.

e MISPRED_BRANCHES: This parameter turns on off branch mis-predictions.

Measuring Branch Mis-Predictions

The p6-br-miss-pred-retired performance counter is used to identify branch mis-
predictions on Intel Architecture processors. You may need to cross-reference the
output of pmccontrol —L with your processor’s technical reference to determine the
best counter to measure branch mis-predictions on your processor.

Use PmcStat as explained in the section Using PmcStat, except substitute p6-br-miss-
pred-retired for p6-cpu-clk-unhalted as the performance counter to measure and load
the bad module as the process to measure. For example:

bash-2.05b# pmcstat -S p6-br-miss-pred-retired -0 /tmp/p6-br-miss-pred-retired &
bash-2.05b# kldload /boot/kernel/bad_module.ko

bash-2.05b# fg
<CTRL-c>
bash-2.05b# pmcstat -R /tmp/p6-br-miss-pred-retired -g

This should result in conversion statistics similar to the following:

CONVERSION STATISTICS:
#exec/elf 1
#samples/total 440

If you analyze the p6-br-miss-pred-retired directory and generate a gprof report for
each module you will find that bad module is responsible for most of the mis-
predictions. If you turn branch mis-predictions off by setting the hard-coded
MISPRED_BRANCHES parameter to O, and rebuild the module (see Building the
Module), then retest, the number of Branch Mis-predictions should decrease.

CONVERSION STATISTICS:
ttexec/elf 2
#samples/total 11

Measuring Level 2 Cache Misses

The p6-12-lines-in performance counter is used to identify Level 2 cache misses on
Intel Architecture processors. You may need to cross-reference the output of
pmccontrol —L with your processor’s technical reference to determine the best counter
to measure Level 2 cache misses on your processor.

Profiling and Debugging the FreeBSD* Kernel
White Paper

Document Number: 321772-001 15

i@ prestat

Use PmcStat as explained in the section Using PmcStat, except substitute p6-I2-lines-
in for p6-cpu-clk-unhalted as the performance counter to measure and load the bad
module as the process to measure. For example:

bash-2.05b# pmcstat -S p6-L2-Lines-in -0 /tmp/ p6-L2-Llines-in &
bash-2.05b# kldload /boot/kernel/bad_module.ko

bash-2.05b# fg
<CTRL-c>
bash-2.05b# pmcstat -R /tmp/p6-L2-Llines-in -g

This should result in conversion statistics similar to the following:

CONVERSION STATISTICS:
#texec/elf 2
#samples/total 57

Level 2 cache misses can be increased by setting the hard-coded BUFFER_SIZE
parameter to 100 and rebuilding the module (see Building the Module). This increases
the number of buffers the module touches during testing. When retested, the number
of Level 2 cache misses should increase.

CONVERSION STATISTICS:
#texec/elf 2
#samples/total 145

Additional Information

See the PmcStat (8) and hwpmc (4) man pages. The PmcTools wiki page is also a
useful resource. For information on performance events and their purpose, see The
Software Optimization Cookbook. For information on developing FreeBSD kernel
modules, see Writing a kernel module for FreeBSD.

Profiling and Debugging the FreeBSD* Kernel

White Paper
16

May 2009
Document Number: 321772-001

http://www.freebsd.org/cgi/man.cgi?query=pmcstat&apropos=0&sektion=0&manpath=FreeBSD+7.0-RELEASE&format=html�
http://www.freebsd.org/cgi/man.cgi?query=hwpmc&apropos=0&sektion=0&manpath=FreeBSD+7.0-RELEASE&format=html�
http://wiki.freebsd.org/PmcTools/�
http://www.intel.com/intelpress/sum_swcb2.htm�
http://www.intel.com/intelpress/sum_swcb2.htm�
http://www.freesoftwaremagazine.com/articles/writing_a_kernel_module_for_freebsd�

Lock Profiling lH/tGD

Lock Profiling

The lock profiling tool is useful for debugging multi-threaded code contending for
shared resources. It enables a developer to quantify the cost of waiting to acquire a
lock, determine if a lock is being held too long, and determine if the lock is too rough-
grained and needs refactoring into finer-grained locks.

The disadvantage to enabling lock profiling is that it instruments locking code, which
causes a general degradation in system performance.

Kernel Configuration

To build a Kernel that supports the Kernel debugger, add the lock profiling option to
the Kernel profile (see The FreeBSD Kernel).

options LOCK_PROFILING

After the Kernel has been built, installed and the system has been rebooted, check to
ensure the correct Kernel is being used.

[root@CRB_168 ~]# uname -a
FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #0: Mon Nov 10 14:02:42 UTC
2008 root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/LOCK_PROFILING 1386

Compiling Additional Modules

Any additional modules used by the system must be compiled with LOCK_PROFILING
defined; i.e., any module that was not built by default with the Kernel may be under
development. The easiest way to achieve this is to define a CFLAGS environmental
variable before building the module.

bash-2.05b# export CFLAGS=-DLOCK_PROFILING

Using Lock Profiling

To start profiling, lock profiling needs to be enabled in the Kernel.

bash-2.05b# sysctl debug.mutex.prof.enable=1
debug.mutex.prof.enable: 0 -> 1

At this point, execute the process to be profiled. To stop monitoring when the process
has completed:

bash-2.05b# sysctl debug.mutex.prof.enable=0
debug.mutex.prof.enable: 1 -> 0

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 17

Lock Profiling

The statistics collected by lock profiling can be examined using the following
command:

bash-2.05b# sysctl debug.mutex.prof.stats | more
debug.mutex.prof.stats:

max total count avg cnt_hold cnt_lock name
1 1742 1547 1 (<] (]
/usr/src/sys/kern/kern_sx.c:250 (lockbuilder mtxpool)
2 335 294 1 (7] 0
/usr/src/sys/kern/kern_descrip.c:1983 (filedesc structure)
1 330 294 1 (<] (]
/usr/src/sys/kern/kern_descrip.c:2004 (sleep mtxpool)
155 486 294 1 (%] 0
/usr/src/sys/kern/kern_descrip.c:2005 (filedesc structure)
1 989 853 1 (<] (]
/usr/src/sys/kern/kern_conf.c:61 (cdev)
1 111 91 1 0 0
/usr/src/sys/kern/kern_sx.c:111 (lockbuilder mtxpool)
1 74 54 1 (<] (4]
/usr/src/sys/kern/tty.c:2091 (process lock)
1 102 91 1 0 0
/usr/src/sys/kern/kern_sx.c:220 (lockbuilder mtxpool)
104 422 132 3 0 (]
/usr/src/sys/kern/sys_generic.c:1147 (sellck)
125 1887 75 25 1 78
/usr/src/sys/kern/kern_conf.c:329 (Giant)
151 517 326 1 0 0

/usr/src/sys/kern/kern_descrip.c:2133 (sleep mtxpool)

Column Description
Max The maximum amount of the time a lock was held in microseconds.
Total The total time a lock was held in microseconds
Count The number of times a lock was acquired.
Avg The average hold time in microseconds.
Cnt_hold The function held the lock and another thread/function tried to acquire the
lock.
Cnt_lock The number of times this function attempted to acquire the lock, when it was
held by another thread/function.
Name The file name and line of the function that acquired the lock, and the name of
the lock that was acquired.

To reset the statistics, before repeating the profiling process, execute the following
command:

bash-2.05b# sysctl debug.mutex.prof.reset=1
debug.mutex.prof.reset: 1 -> @

Profiling and Debugging the FreeBSD* Kernel

White Paper
18

May 2009
Document Number: 321772-001

Additional information

See the LOCK_PROFILING (9) man page for more information. The paper Reducing
Lock Contention in a Multi-core system also provides information regarding this tool.

Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper
Document Number: 321772-001 19

http://www.freebsd.org/cgi/man.cgi?query=LOCK_PROFILING+&apropos=0&sektion=0&manpath=FreeBSD+7.0-RELEASE&format=html�
http://2008.asiabsdcon.org/papers/P8B-paper.pdf�
http://2008.asiabsdcon.org/papers/P8B-paper.pdf�

n ® Kernel Debugging
intel

Kernel Debugging

Often when examining code that is performing poorly, only the name or instruction
pointer of a bottleneck function is known. What is lacking is information on the
context in which a function is being called. Using a PmcStat generated profile, for
instance, can often make it difficult to determine the parent of a hotspot function.
PmcStat will report the parent of every function call as being spontaneous (there is
currently a patch available on the PmcStat wiki to correct this).

called/total parents
index %time self descendents called+self name index
called/total children
<spontaneous>
[1] 13.8 12737.00 0.00 _mtx_unlock_spin_flags [1]
<spontaneous>
[2] 12.8 11831.00 0.00 atomic_add_int [2]
<spontaneous>
[3] 9.1 8411.00 0.00 _mtx_lock_spin_flags [3]

In the above example, atomic_add_int is an obvious bottleneck function, Instead of
attempting to guess the function’s caller by examining code, it is quicker and more
informative to use the Kernel debugger. The debugger allows the developer to insert a
breakpoint in Kernel code or modules, and offers a subset of the features typical of
most user-space debuggers (such as memory inspection and back-tracing). Using the
debugger, the context in which a function is being called can be quickly determined.

Kernel Configuration

To build a Kernel that supports the Kernel debugger, add the debugger options to the
Kernel profile (see The FreeBSD Kernel).

options KDB
options DDB

After the Kernel has been built, installed and the system has been rebooted, check to
ensure the correct Kernel is being used.

bash-2.05b# uname -a
FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #0: Mon Nov 10 14:02:42 UTC
2008 root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/DDB-KDB 1386

Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
20 Document Number: 321772-001

Kernel Debugging intelm

May 2009

Using the Kernel Debugger

When invoked, the Kernel debugger prompt opens on the system console. To invoke
the Kernel debugger prompt, press the CTRL-ALT-ESCAPE key sequence or enter the
following command:

bash-2.05b# sysctl debug.kdb.enter=1
KDB: enter: sysctl debug.kdb.enter
[thread pid 801 tid 100056]

Stopped at kdb_enter+0x32: leave
db>

Place a breakpoint on a function:

db> break printf

Or place a break at a specific point within a function; use the command objdump —S
to determine the correct offset.

db> break printf+20

Set the system back into an executing state:

db> cont

When the system hits the breakpoint, the debugger will open again on the system
console:

[thread pid 814 tid 100057]
Breakpoint at printf: pushl %ebp
db>

The back-trace command can then be issued to retrieve the call stack:

db> bt

Tracing pid 814 tid 100057 td ©xc3cc5c60
printf(c4015644,dfled4as4,c074fa57,c3d72380,0,...) at printf
sample_loader(c3d72380,0,0,0,0,...) at sample_loader+@x12
module_register_init(c4015644,c@ae7aba,dfled4clc,df1e4c18,0,...) at
module_register_init+0x107

linker_load_module(@,dfle4c4c,cl146d5a0,0,2,...) at linker_load_module+@xa5f
kern_kldload(c3cc5c60,c3b55000,df1e4c70,0,c3e6d2ac,...) at kern_kldload+0xec
kldload(c3cc5c60,dfledcfc,4,dfledd38,dfled4d2c,...) at kldload+ox74
syscall(dfle4d38) at syscall+@x335

Xintox80_syscall() at Xint@x80_syscall+0x20

--- syscall (304, FreeBSD ELF32, kldload), eip = 0x280c222b, esp = @xbfbfecec, ebp =
oxbfbfed18 ---

The show break command will list the currently set breakpoints, and the del command
will remove a breakpoint.

db> show break

Profiling and Debugging the FreeBSD* Kernel
White Paper

Document Number: 321772-001 21

= ® Kernel Debugging
intel)

Map Count Address
*c1471000 1 printf
db> del printf

Other useful commands include x and x/s, which retrieve the contents of a specified
memory address, and show reg, which inspects the current contents of the registers.

Additional information

The kgdb (1) man page and the FreeBSD Developers Handbook (Chapter 10 Section
5) contain more information.

Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
22 Document Number: 321772-001

http://www.freebsd.org/cgi/man.cgi?query=kgdb&apropos=0&sektion=0&manpath=FreeBSD+7.0-RELEASE&format=html�
http://www.freebsd.org/doc/en/books/developers-handbook/kerneldebug-online-ddb.html�
http://www.freebsd.org/doc/en/books/developers-handbook/kerneldebug-online-ddb.html�

Kgmon

Kgmon

May 2009

Kgmon is an alternative profiling tool to PmcStat. Kgmon profiles Kernel code by
instrumentation, inserting calls to a profiling function at the entry and exit of every
function. The profiling function records the number of times a function was called and
the duration spent in a function. The result is a considerable increase in the load
placed on the system; as a consequence the results are much less accurate.

Unlike PmcStat, Kgmon does not sample a range of processor performance events;
therefore, it provides no insight into issues such as cache misses or branch mis-
predicitons. It is also not clear if Kgmon supports loadable Kernel modules. Kgmon,
however, does have advantages over PmcStat; it works on processors that do not
support performance events and provides a back-trace, thereby offering more insight
into the context in which a function is being called.

Kernel Configuration

To build a Kernel that supports the Kgmon, the procedure is slightly different. The
procedure is documented as the “Traditional Way” in the FreeBSD Developers
Handbook (Chapter 9, Section 1).

Change the directory to /usr/src/sys/<arch>/conf and execute the following
commands:

bash-2.05b# cd /usr/src/sys/i386/conf
bash-2.05b# cp GENERIC KGMON
bash-2.05b# config -p KGMON

The config command should produce the following output:

bash-2.05b# config -p KGMON
kernel build directory is ../compile/KGMON
Don't forget to do "~ “make cleandepend &&% make depend''

As the output suggests, go to the /usr/src/sys/<arch>/compile directory and make
the dependencies:

bash-2.05b# cd /usr/src/sys/i386/compile/KGMON
bash-2.05b# make cleandepend && make depend

Then issue the make and make install commands to complete the build. Finally backup
the Kgmon kernel into its own directory.

bash-2.05b# cd /usr/src/sys/i386/compile/KGMON
bash-2.05b# make && make install
bash-2.05b# cp -r /boot/kernel /boot/kernel.KGMON

Reboot to complete the installation, check to ensure the correct Kernel is being used.

Profiling and Debugging the FreeBSD* Kernel
White Paper

Document Number: 321772-001 23

http://www.freebsd.org/doc/en/books/developers-handbook/kernelbuild.html�
http://www.freebsd.org/doc/en/books/developers-handbook/kernelbuild.html�

Profiling and Debugging the FreeBSD* Kernel

White Paper
24

intel.

Kgmon

[root@CRB_168 ~]# uname -a
FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #0: Mon Nov 10 14:02:42 UTC
2008 root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/KGMON 1386

Using Kgmon

Once the system has rebooted, system monitoring can be started with the command:

bash-2.05b# kgmon

-b

kgmon: kernel profiling is running.

Monitoring will populate Kgmon'’s internal buffers with sampling information. To reset
these buffers and restart monitoring at a certain point, execute the command:

| bash-2.05b# kgmon

-r

Stop monitoring with the following command:

| bash-2.05b# kgmon

-h

Dump the contents of the Kgmon buffers into a gprof compatible output file with the

following command:

| bash-2.05b# kgmon

—p

This command will produce the file gmon.out. Examine the contents of this file with

the gprof command:

called/total
called+self
called/total

parents

index
children

25097153+30831762 <cycle 4 as a whole> [1]

23338700
25013269
2202460
2117114
2202460
1054912

bash-2.05b# gprof /boot/kernel/kernel gmon.out | more
index %time self descendents
[1] 66.9 31.11 0.03

31.11 0.00

0.00 0.02

0.00 0.01

0.00 0.01

0.00 0.00

0.00 0.00

spinlock_exit <cycle 4> [2]
critical_exit <cycle 4> [155]
sched_switch <cycle 4> [212]
sched_add <cycle 4> [213]
mi_switch <cycle 4> [1073]
thread_lock_set <cycle 4> [1083]

As shown above, gprof displays a sample including a back-trace.

Column Meaning
Index The position in an ascending list of time spent in function.
Time Percentage of time (clock time) spent in this call tree.
Self Number of seconds (clock time) spent in a function.

May 2009
Document Number: 321772-001

®
“amon intel
Called The number of times the function was called.
Parents The calling function that initiated this call tree.
Children The child functions called.
Later in the output, the number of calls and duration spent in each function is shown.
% cumulative self self total
time seconds seconds calls ms/call ms/call name
41.1 31.11 31.11 23338700 0.00 0.00 spinlock_exit <cycle 4> [2]
17.2 44.15 13.04 0 100.00% __mcount [4]%
0.4 44.47 0.32 23338700 0.00 0.00 spinlock_enter [65]
0.4 44.78 0.31 231404 0.00 0.00 vsscanf [55]
0.3 45.03 0.25 13591740 0.00 0.00 strcmp [69]
0.3 45.26 0.23 0 100.00% atomic_load_acq_int [70]
0.2 45.42 0.15 9790 0.02 0.02 generic_bzero [77]
0.2 45,57 0.15 6534 0.02 0.02 memcpy [79]
0.2 45.72 0.15 1038903 0.00 0.00 _ gdivrem [80]
0.1 45.83 0.11 4459 0.02 0.08 1link_elf lookup_symbol [57]
0.1 45.93 0.10 0 38.18% _mtx_lock_spin_flags [67]
0.1 46.02 0.09 0 100.00% atomic_add_int [87]
0.1 46.09 0.07 0 2.02% ithread_loop [10]
Column Meaning
Time Percentage of time (clock time) spent in this function.
Cumulative Number of seconds (clock time) spent in a function, including time spent in
Seconds child functions.
Self Seconds Number of seconds (clock time) spent in a function.
Calls The number of times the function was called.
Name The name of the function.
Additional information
The Kgmon (8) man page contains more information on using Kgmon.
! mcount is a function call inserted during instrumentation.
Profiling and Debugging the FreeBSD* Kernel
May 2009 White Paper

Document Number: 321772-001 25

http://www.freebsd.org/cgi/man.cgi?query=kgmon&apropos=0&sektion=0&manpath=FreeBSD+7.0-RELEASE&format=html�

intel.

Kernel Trace

Kernel Trace

The Kernel trace tool (KTR) is a way of gaining insight into the operation of the
Kernel. This can be useful, for example, in identifying the impact to Kernel thread
priorities or a resource locking mechanism of changing Kernel tuning parameters. It is
also a great learning tool for examining the operation of the Kernel in different
configurations.

The FreeBSD Kernel is littered with statements similar to the following:

CTR3(KTR_INTR, "%s: pid %d (%s) gathering entropy", _ func__,
p->p_pid, p->p_comm);

These statements, usually ignored during Kernel compilation, are included when KTR
is enabled. The statements write a trace message, a sequence number and timestamp
to a circular buffer. The ktrdump tool is then used to dump the contents of the circular
buffer to a flat file.

Kernel Tracing can be configured at build and run-time to exclude categories of
messages from being traced. The above statement is a trace message from the Kernel
interrupt category of messages. This message is only inserted into the Kernel Trace
circular buffer if Kernel interrupt trace messages were enabled at both compile time
and run-time.

Kernel tracing has a significant negative impact on system performance. In addition,
the more categories of messages enabled, the greater the impact on performance.

Kernel Configuration

To build a Kernel that supports the Kernel tracer, add the following options to a Kernel
profile (see The FreeBSD Kernel):

options KTR
options KTR_ENTRIES=262144
options KTR_COMPILE=(KTR_LOCK|KTR_INTR|KTR_PROC|KTR_SCHED)
options KTR_MASK=(KTR_LOCK | KTR_INTR|KTR_PROC | KTR_SCHED)
Option Meaning
KTR_ENTRIES Specifies the size of the circular buffer. Larger buffer sizes will result in

more data being captured and dumped, and more Kernel memory being
consumed by the buffer.

KTR_COMPILE Specifies which message categories will be enabled at compile time. See
sys/ktr.h for more message categories and areas of the Kernel they
monitor.

Profiling and Debugging the FreeBSD* Kernel

White Paper
26

May 2009
Document Number: 321772-001

Kernel Trace

May 2009

intel.

KTR_MASK Specifies which message categories will be enabled by default at run-time.
This can be changed at run-time using sysctl.

After the Kernel has been built, installed, and the system has been rebooted, check to
ensure the correct Kernel is being used.

bash-2.05b# uname -a
FreeBSD CRB_168.ir.intel.com 7.0-RELEASE FreeBSD 7.0-RELEASE #0: Mon Nov 10 14:02:42 UTC
2008 root@CRB_168.ir.intel.com:/usr/obj/usr/src/sys/KTR 1386

Using Kernel Trace

The current contents of the circular buffer can be cleared using the following
command:

bash-2.05b# sysctl debug.ktr.clear=1
debug.ktr.clear: 0 -> 0

The current contents of the circular buffer can be dumped to a flat file using the
ktrdump command. The sample below show some typical contents of a dump file. In
this case, we see mutexes being locked and unlocked:

bash-2.05b# ktrdump -t -o dump.out

bash-2.05b# head dump.out

index timestamp trace

145114 16131885497864 UNLOCK (sleep mutex) pmap r = 0 at
/usr/src/sys/i1386/1386/pmap.c:981

145113 16131885497694 LOCK (sleep mutex) pmap r = @ at /usr/src/sys/i386/1386/pmap.c:976
145112 16131885497237 UNLOCK (sleep mutex) system map r = @ at
/usr/src/sys/vm/vm_glue.c:153

145111 16131885496930 LOCK (sleep mutex) system map r = @ at
/usr/src/sys/vm/vm_glue.c:151

145110 16131885496615 LOCK (sleep mutex) Giant r = @ at
/usr/src/sys/kern/kern_conf.c:360

145109 16131885496332 UNLOCK (sleep mutex) cdev r = @ at
/usr/src/sys/kern/kern_conf.c:101

145108 16131885496147 LOCK (sleep mutex) cdev r = @ at /usr/src/sys/kern/kern_conf.c:69

In addition to an index and a timestamp, each trace message in the file is also
annotated with the source file and line number of the line of code that generated the
message.

The trace mask can be changed at run-time to exclude messages from the trace.

[root@CRB_168 /EP80579/test]# sysctl debug.ktr.mask=20001208
debug.ktr.mask: 20001208 -> 20001208
debug.ktr.clear: 0 -> 0

Additional information

The ktr (4) and ktrdump (8) man page contains more information.

Profiling and Debugging the FreeBSD* Kernel
White Paper

Document Number: 321772-001 27

http://www.freebsd.org/cgi/man.cgi?query=ktr&apropos=0&sektion=0&manpath=FreeBSD+7.0-RELEASE&format=html�
http://www.freebsd.org/cgi/man.cgi?query=ktrdump&sektion=8&apropos=0&manpath=FreeBSD+7.0-RELEASE�

Conclusion

The tools discussed in this paper are excellent aids to any developer profiling Kernel
code. This paper is by no means a comprehensive guide, but covers the tools found to
be useful in improving the performance of FreeBSD Kernel code. As discussed,
PmcStat was found to be the most useful of all the tools. The other tools discussed
perform tasks complimentary to PmcStat.

These tools help the developer answer the following questions:
e Which threads are locking and unlocking semaphore frequently? See Kernel Trace.

e What is the context in which a given function is being called? See Kernel
Debugging and Kgmon.

e Which locks are the most contended and what impact is this having on the
performance of my code? See Lock Profiling.

e Which are the bottleneck functions in the Kernel under a given workload? See
PmcStat.

FreeBSD provides the Kernel developer with a rich set of tool to support development.
These tools provide deep insight in the performance profile of the FreeBSD Kernel and
are an effective way to identify and resolve performance issues in Kernel code.

Reference List

The FreeBSD Handbook. 2009. The FreeBSD Documentation Project.

The FreeBSD Developers Handbook. 2009. The FreeBSD Documentation Project.

Gerber, Richard, Aart J.C. Bik, Kevin B. Smith and Xinmin Tian. 2006. The Software
Optimization Cookbook. Intel Press.

Stewart, Randal. 2008. Reducing Lock Contention in a Multi-Core System. AsiaBSDCon
2008 proceedings, The FreeBSD Foundation.

Koshy, Joseph; The PmcTools wiki.

Profiling and Debugging the FreeBSD* Kernel

White Paper
28

May 2009
Document Number: 321772-001

http://www.freebsd.org/doc/en/books/handbook/�
http://www.freebsd.org/doc/en/books/developers-handbook/�
http://wiki.freebsd.org/PmcTools�

Appendix A

Appendix A

Makefile

KMOD = bad_module

SRCS = bad_module.c

.include <bsd.kmod.mk>

Declare Name of kernel module

Enumerate Source files for kernel module

Include kernel module makefile

Note: It is important to make sure you include the <bsd.kmod.mk> makefile after
declaring the KMOD and SRCS variables.

bad_module.c

#include <sys/param.h>
#include <sys/module.h>
#include <sys/kernel.h>
#include <sys/systm.h>
#include <sys/malloc.h>
#include <sys/kthread.h>

#define BUFFER_SIZE

#define CACHE_LINE_SIZE

#define DURATION 10

#define MISPRED_BRANCHES
typedef unsigned char byte;
void bad_thread(void * p);

void bad_thread(void * p)
{

time_t start = 0;
int i, e, h;

printf("Test started\n");

PAGE_SIZE, 0);

}

start = time_uptime;

//specify duration to test in seconds

//turn on/off mispredicted branches (1/0)

void*pBuffers[BUFFER_SIZE];

for(i = @; i < BUFFER_SIZE; i++)

//adjust BUFFER_SIZE to increase the number of cache misses

//adjust for the cache line size for your processor

pBuffers[i] = contigmalloc (PAGE_SIZE, M_DEVBUF, M_NOWAIT, o, -1UL,

memset (pBuffers[i], 255, PAGE_SIZE);

May 2009
Document Number: 321772-001

Profiling and Debugging the FreeBSD* Kernel
White Paper
29

lntel Appendix A

while((time_uptime - start) < DURATION)
for(i = @; 1 < BUFFER_SIZE; i++)

{
int *i_array = (int *) pBuffers[i];
//won't be vectorised by compiler for FreeBSD kernel
for(e = @; e < CACHE_LINE_SIZE / sizeof(int); e++)
{
byte *b_array = (byte *) i_array;
for(h = @; h < sizeof(int) / sizeof(byte); h++)
{
if(MISPRED_BRANCHES &&
((i *e) %2) !=1)
b_array[e] ~= 170;
¥
¥
}
for(i = @; i < BUFFER_SIZE; i++)
{

contigfree(pBuffers[i], PAGE_SIZE, M_DEVBUF);
}

printf("Test complete\n");

kthread_exit(0);
¥

/* The function called at load/unload. */
static int event_handler(struct module *module, int event, void *arg) {
int e = @; /* Error, @ for normal return status */
switch (event) {
case MOD_LOAD:
printf("Test module load\n");
kthread_create(bad_thread, NULL, NULL,
0, 0, "bad_thread");
break;
case MOD_UNLOAD:
printf("Test module unload\n");
break;
default:
e = EOPNOTSUPP; /* Error, Operation Not Supported */
break;

}

return(e);

}

/* The second argument of DECLARE_MODULE. */
static moduledata_t bad_module_conf = {

"bad_module", /* module name */
event_handler, /* event handler */
NULL /* extra data */

}s

DECLARE_MODULE (bad_module, bad_module_conf, SI_SUB_DRIVERS, SI_ORDER_MIDDLE);

Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
30 Document Number: 321772-001

Appendix A

May 2009

Author

Ray Kinsella is a Network Software Engineer with the Digital Embedded
Group at Intel Corporation.

Terminology

ACPl Advanced Configuration and Power Interface
BSD Berkeley Software Distribution

KDB Kernel Debugger

KTR Kernel Trace Tool

ULE A FreeBSD Task Scheduler

Back-tracing is also known as stack tracing or call tracing; tracing the call
function(s) of the currently executing function.

Instrumentation involves adding code to an algorithm to output performance
statistics.

About FreeBSD

FreeBSD is an advanced operating system for x86- (including Intel®
Pentium® and Athlon*) and AMD64-compatible (including Opteron*, Athlon
64*, and EM64T*), ARM, 1A-64, PowerPC*, PC-98* and UltraSPARC*
architectures. It is derived from BSD, the version of UNIX* developed at the
University of California, Berkeley. More information on the FreeBSD Operating
System is available at FreeBSD.org.

Profiling and Debugging the FreeBSD* Kernel
White Paper

Document Number: 321772-001 31

http://www.freebsd.org/�

Appendix A

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL PRODUCTS. NO
LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY
RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN INTEL'S TERMS AND
CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER AND
INTEL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL
PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT.

UNLESS OTHERWISE AGREED IN WRITING BY INTEL, THE INTEL PRODUCTS ARE NOT DESIGNED
NOR INTENDED FOR ANY APPLICATION IN WHICH THE FAILURE OF THE INTEL PRODUCT COULD
CREATE A SITUATION WHERE PERSONAL INJURY OR DEATH MAY OCCUR.

Intel may make changes to specifications and product descriptions at any time, without notice.
Designers must not rely on the absence or characteristics of any features or instructions marked
"reserved" or "undefined." Intel reserves these for future definition and shall have no responsibility
whatsoever for conflicts or incompatibilities arising from future changes to them. The information here
is subject to change without notice. Do not finalize a design with this information.

The products described in this document may contain design defects or errors known as errata which
may cause the product to deviate from published specifications. Current characterized errata are
available on request.

Any software source code reprinted in this document is furnished under a software license and may
only be used or copied in accordance with the terms of that license.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before
placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel
literature, may be obtained by calling 1-800-548-4725, or by visiting Intel's Web Site
(http://www.intel.com/).

BunnyPeople, Celeron, Celeron Inside, Centrino, Centrino Inside, Core Inside, FlashFile, i960,
InstantlP, Intel, Intel logo, Intel386, Intel486, IntelDX2, IntelDX4, IntelSX2, Intel Atom, Intel Atom
Inside, Intel Core, Intel Inside, Intel Inside logo, Intel NetBurst, Intel NetMerge, Intel NetStructure,
Intel SingleDriver, Intel SpeedStep, Intel StrataFlash, Intel Viiv, Intel vPro, Intel XScale, InTru, InTru
logo, Itanium, Itanium Inside, MCS, MMX, Oplus, PDCharm, Pentium, Pentium Inside, skoool, Sound
Mark, The Journey Inside, Viiv Inside, vPro Inside, VTune, Xeon, and Xeon Inside are trademarks of
Intel Corporation in the U.S. and other countries.

*Other names and brands may be claimed as the property of others

Copyright © 2009, Intel Corporation. All rights reserved.

Profiling and Debugging the FreeBSD* Kernel
White Paper May 2009
32 Document Number: 321772-001

http://www.intel.com/�

	Abstract
	Contents
	Introduction
	The FreeBSD Kernel
	Configuring the Kernel
	Run-Time Configuration
	Compile-Time Configuration

	Rebuilding the Kernel
	Managing Multiple Kernels
	Additional Information

	PmcStat
	Kernel Configuration
	Using PmcStat
	Tuning PmcStat

	Example
	Building the Module
	Configuring the Module
	Measuring Branch Mis-Predictions
	Measuring Level 2 Cache Misses

	Additional Information

	Lock Profiling
	Kernel Configuration
	Compiling Additional Modules

	Using Lock Profiling
	Additional information

	Kernel Debugging
	Kernel Configuration
	Using the Kernel Debugger
	Additional information

	Kgmon
	Kernel Configuration
	Using Kgmon
	Additional information

	Kernel Trace
	Kernel Configuration
	Using Kernel Trace
	Additional information

	Conclusion
	Reference List
	Appendix A

