LCOV - code coverage report
Current view: top level - src - key.cpp (source / functions) Hit Total Coverage
Test: coverage.lcov Lines: 261 287 90.9 %
Date: 2021-06-29 14:35:33 Functions: 21 21 100.0 %
Legend: Modified by patch:
Lines: hit not hit | Branches: + taken - not taken # not executed

Not modified by patch:
Lines: hit not hit | Branches: + taken - not taken # not executed
Branches: 45 70 64.3 %

           Branch data     Line data    Source code
#       1                 :            : // Copyright (c) 2009-2020 The Bitcoin Core developers
#       2                 :            : // Copyright (c) 2017 The Zcash developers
#       3                 :            : // Distributed under the MIT software license, see the accompanying
#       4                 :            : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
#       5                 :            : 
#       6                 :            : #include <key.h>
#       7                 :            : 
#       8                 :            : #include <crypto/common.h>
#       9                 :            : #include <crypto/hmac_sha512.h>
#      10                 :            : #include <random.h>
#      11                 :            : 
#      12                 :            : #include <secp256k1.h>
#      13                 :            : #include <secp256k1_recovery.h>
#      14                 :            : 
#      15                 :            : static secp256k1_context* secp256k1_context_sign = nullptr;
#      16                 :            : 
#      17                 :            : /** These functions are taken from the libsecp256k1 distribution and are very ugly. */
#      18                 :            : 
#      19                 :            : /**
#      20                 :            :  * This parses a format loosely based on a DER encoding of the ECPrivateKey type from
#      21                 :            :  * section C.4 of SEC 1 <https://www.secg.org/sec1-v2.pdf>, with the following caveats:
#      22                 :            :  *
#      23                 :            :  * * The octet-length of the SEQUENCE must be encoded as 1 or 2 octets. It is not
#      24                 :            :  *   required to be encoded as one octet if it is less than 256, as DER would require.
#      25                 :            :  * * The octet-length of the SEQUENCE must not be greater than the remaining
#      26                 :            :  *   length of the key encoding, but need not match it (i.e. the encoding may contain
#      27                 :            :  *   junk after the encoded SEQUENCE).
#      28                 :            :  * * The privateKey OCTET STRING is zero-filled on the left to 32 octets.
#      29                 :            :  * * Anything after the encoding of the privateKey OCTET STRING is ignored, whether
#      30                 :            :  *   or not it is validly encoded DER.
#      31                 :            :  *
#      32                 :            :  * out32 must point to an output buffer of length at least 32 bytes.
#      33                 :            :  */
#      34                 :      11188 : int ec_seckey_import_der(const secp256k1_context* ctx, unsigned char *out32, const unsigned char *seckey, size_t seckeylen) {
#      35                 :      11188 :     const unsigned char *end = seckey + seckeylen;
#      36                 :      11188 :     memset(out32, 0, 32);
#      37                 :            :     /* sequence header */
#      38 [ -  + ][ -  + ]:      11188 :     if (end - seckey < 1 || *seckey != 0x30u) {
#      39                 :          0 :         return 0;
#      40                 :          0 :     }
#      41                 :      11188 :     seckey++;
#      42                 :            :     /* sequence length constructor */
#      43 [ -  + ][ -  + ]:      11188 :     if (end - seckey < 1 || !(*seckey & 0x80u)) {
#      44                 :          0 :         return 0;
#      45                 :          0 :     }
#      46                 :      11188 :     ptrdiff_t lenb = *seckey & ~0x80u; seckey++;
#      47 [ -  + ][ -  + ]:      11188 :     if (lenb < 1 || lenb > 2) {
#      48                 :          0 :         return 0;
#      49                 :          0 :     }
#      50         [ -  + ]:      11188 :     if (end - seckey < lenb) {
#      51                 :          0 :         return 0;
#      52                 :          0 :     }
#      53                 :            :     /* sequence length */
#      54         [ -  + ]:      11188 :     ptrdiff_t len = seckey[lenb-1] | (lenb > 1 ? seckey[lenb-2] << 8 : 0u);
#      55                 :      11188 :     seckey += lenb;
#      56         [ -  + ]:      11188 :     if (end - seckey < len) {
#      57                 :          0 :         return 0;
#      58                 :          0 :     }
#      59                 :            :     /* sequence element 0: version number (=1) */
#      60 [ -  + ][ -  + ]:      11188 :     if (end - seckey < 3 || seckey[0] != 0x02u || seckey[1] != 0x01u || seckey[2] != 0x01u) {
#         [ -  + ][ -  + ]
#      61                 :          0 :         return 0;
#      62                 :          0 :     }
#      63                 :      11188 :     seckey += 3;
#      64                 :            :     /* sequence element 1: octet string, up to 32 bytes */
#      65 [ -  + ][ -  + ]:      11188 :     if (end - seckey < 2 || seckey[0] != 0x04u) {
#      66                 :          0 :         return 0;
#      67                 :          0 :     }
#      68                 :      11188 :     ptrdiff_t oslen = seckey[1];
#      69                 :      11188 :     seckey += 2;
#      70 [ -  + ][ -  + ]:      11188 :     if (oslen > 32 || end - seckey < oslen) {
#      71                 :          0 :         return 0;
#      72                 :          0 :     }
#      73                 :      11188 :     memcpy(out32 + (32 - oslen), seckey, oslen);
#      74         [ -  + ]:      11188 :     if (!secp256k1_ec_seckey_verify(ctx, out32)) {
#      75                 :          0 :         memset(out32, 0, 32);
#      76                 :          0 :         return 0;
#      77                 :          0 :     }
#      78                 :      11188 :     return 1;
#      79                 :      11188 : }
#      80                 :            : 
#      81                 :            : /**
#      82                 :            :  * This serializes to a DER encoding of the ECPrivateKey type from section C.4 of SEC 1
#      83                 :            :  * <https://www.secg.org/sec1-v2.pdf>. The optional parameters and publicKey fields are
#      84                 :            :  * included.
#      85                 :            :  *
#      86                 :            :  * seckey must point to an output buffer of length at least CKey::SIZE bytes.
#      87                 :            :  * seckeylen must initially be set to the size of the seckey buffer. Upon return it
#      88                 :            :  * will be set to the number of bytes used in the buffer.
#      89                 :            :  * key32 must point to a 32-byte raw private key.
#      90                 :            :  */
#      91                 :      27951 : int ec_seckey_export_der(const secp256k1_context *ctx, unsigned char *seckey, size_t *seckeylen, const unsigned char *key32, bool compressed) {
#      92                 :      27951 :     assert(*seckeylen >= CKey::SIZE);
#      93                 :      27951 :     secp256k1_pubkey pubkey;
#      94                 :      27951 :     size_t pubkeylen = 0;
#      95         [ -  + ]:      27951 :     if (!secp256k1_ec_pubkey_create(ctx, &pubkey, key32)) {
#      96                 :          0 :         *seckeylen = 0;
#      97                 :          0 :         return 0;
#      98                 :          0 :     }
#      99         [ +  + ]:      27951 :     if (compressed) {
#     100                 :      25939 :         static const unsigned char begin[] = {
#     101                 :      25939 :             0x30,0x81,0xD3,0x02,0x01,0x01,0x04,0x20
#     102                 :      25939 :         };
#     103                 :      25939 :         static const unsigned char middle[] = {
#     104                 :      25939 :             0xA0,0x81,0x85,0x30,0x81,0x82,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
#     105                 :      25939 :             0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
#     106                 :      25939 :             0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
#     107                 :      25939 :             0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
#     108                 :      25939 :             0x21,0x02,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
#     109                 :      25939 :             0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
#     110                 :      25939 :             0x17,0x98,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
#     111                 :      25939 :             0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
#     112                 :      25939 :             0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x24,0x03,0x22,0x00
#     113                 :      25939 :         };
#     114                 :      25939 :         unsigned char *ptr = seckey;
#     115                 :      25939 :         memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
#     116                 :      25939 :         memcpy(ptr, key32, 32); ptr += 32;
#     117                 :      25939 :         memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
#     118                 :      25939 :         pubkeylen = CPubKey::COMPRESSED_SIZE;
#     119                 :      25939 :         secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_COMPRESSED);
#     120                 :      25939 :         ptr += pubkeylen;
#     121                 :      25939 :         *seckeylen = ptr - seckey;
#     122                 :      25939 :         assert(*seckeylen == CKey::COMPRESSED_SIZE);
#     123                 :      25939 :     } else {
#     124                 :       2012 :         static const unsigned char begin[] = {
#     125                 :       2012 :             0x30,0x82,0x01,0x13,0x02,0x01,0x01,0x04,0x20
#     126                 :       2012 :         };
#     127                 :       2012 :         static const unsigned char middle[] = {
#     128                 :       2012 :             0xA0,0x81,0xA5,0x30,0x81,0xA2,0x02,0x01,0x01,0x30,0x2C,0x06,0x07,0x2A,0x86,0x48,
#     129                 :       2012 :             0xCE,0x3D,0x01,0x01,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
#     130                 :       2012 :             0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
#     131                 :       2012 :             0xFF,0xFF,0xFE,0xFF,0xFF,0xFC,0x2F,0x30,0x06,0x04,0x01,0x00,0x04,0x01,0x07,0x04,
#     132                 :       2012 :             0x41,0x04,0x79,0xBE,0x66,0x7E,0xF9,0xDC,0xBB,0xAC,0x55,0xA0,0x62,0x95,0xCE,0x87,
#     133                 :       2012 :             0x0B,0x07,0x02,0x9B,0xFC,0xDB,0x2D,0xCE,0x28,0xD9,0x59,0xF2,0x81,0x5B,0x16,0xF8,
#     134                 :       2012 :             0x17,0x98,0x48,0x3A,0xDA,0x77,0x26,0xA3,0xC4,0x65,0x5D,0xA4,0xFB,0xFC,0x0E,0x11,
#     135                 :       2012 :             0x08,0xA8,0xFD,0x17,0xB4,0x48,0xA6,0x85,0x54,0x19,0x9C,0x47,0xD0,0x8F,0xFB,0x10,
#     136                 :       2012 :             0xD4,0xB8,0x02,0x21,0x00,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,0xFF,
#     137                 :       2012 :             0xFF,0xFF,0xFF,0xFF,0xFE,0xBA,0xAE,0xDC,0xE6,0xAF,0x48,0xA0,0x3B,0xBF,0xD2,0x5E,
#     138                 :       2012 :             0x8C,0xD0,0x36,0x41,0x41,0x02,0x01,0x01,0xA1,0x44,0x03,0x42,0x00
#     139                 :       2012 :         };
#     140                 :       2012 :         unsigned char *ptr = seckey;
#     141                 :       2012 :         memcpy(ptr, begin, sizeof(begin)); ptr += sizeof(begin);
#     142                 :       2012 :         memcpy(ptr, key32, 32); ptr += 32;
#     143                 :       2012 :         memcpy(ptr, middle, sizeof(middle)); ptr += sizeof(middle);
#     144                 :       2012 :         pubkeylen = CPubKey::SIZE;
#     145                 :       2012 :         secp256k1_ec_pubkey_serialize(ctx, ptr, &pubkeylen, &pubkey, SECP256K1_EC_UNCOMPRESSED);
#     146                 :       2012 :         ptr += pubkeylen;
#     147                 :       2012 :         *seckeylen = ptr - seckey;
#     148                 :       2012 :         assert(*seckeylen == CKey::SIZE);
#     149                 :       2012 :     }
#     150                 :      27951 :     return 1;
#     151                 :      27951 : }
#     152                 :            : 
#     153                 :      35890 : bool CKey::Check(const unsigned char *vch) {
#     154                 :      35890 :     return secp256k1_ec_seckey_verify(secp256k1_context_sign, vch);
#     155                 :      35890 : }
#     156                 :            : 
#     157                 :       3219 : void CKey::MakeNewKey(bool fCompressedIn) {
#     158                 :       3219 :     do {
#     159                 :       3219 :         GetStrongRandBytes(keydata.data(), keydata.size());
#     160         [ -  + ]:       3219 :     } while (!Check(keydata.data()));
#     161                 :       3219 :     fValid = true;
#     162                 :       3219 :     fCompressed = fCompressedIn;
#     163                 :       3219 : }
#     164                 :            : 
#     165                 :            : bool CKey::Negate()
#     166                 :          4 : {
#     167                 :          4 :     assert(fValid);
#     168                 :          4 :     return secp256k1_ec_seckey_negate(secp256k1_context_sign, keydata.data());
#     169                 :          4 : }
#     170                 :            : 
#     171                 :      27951 : CPrivKey CKey::GetPrivKey() const {
#     172                 :      27951 :     assert(fValid);
#     173                 :      27951 :     CPrivKey seckey;
#     174                 :      27951 :     int ret;
#     175                 :      27951 :     size_t seckeylen;
#     176                 :      27951 :     seckey.resize(SIZE);
#     177                 :      27951 :     seckeylen = SIZE;
#     178                 :      27951 :     ret = ec_seckey_export_der(secp256k1_context_sign, seckey.data(), &seckeylen, begin(), fCompressed);
#     179                 :      27951 :     assert(ret);
#     180                 :      27951 :     seckey.resize(seckeylen);
#     181                 :      27951 :     return seckey;
#     182                 :      27951 : }
#     183                 :            : 
#     184                 :    1443023 : CPubKey CKey::GetPubKey() const {
#     185                 :    1443023 :     assert(fValid);
#     186                 :    1443023 :     secp256k1_pubkey pubkey;
#     187                 :    1443023 :     size_t clen = CPubKey::SIZE;
#     188                 :    1443023 :     CPubKey result;
#     189                 :    1443023 :     int ret = secp256k1_ec_pubkey_create(secp256k1_context_sign, &pubkey, begin());
#     190                 :    1443023 :     assert(ret);
#     191         [ +  + ]:    1443023 :     secp256k1_ec_pubkey_serialize(secp256k1_context_sign, (unsigned char*)result.begin(), &clen, &pubkey, fCompressed ? SECP256K1_EC_COMPRESSED : SECP256K1_EC_UNCOMPRESSED);
#     192                 :    1443023 :     assert(result.size() == clen);
#     193                 :    1443023 :     assert(result.IsValid());
#     194                 :    1443023 :     return result;
#     195                 :    1443023 : }
#     196                 :            : 
#     197                 :            : // Check that the sig has a low R value and will be less than 71 bytes
#     198                 :            : bool SigHasLowR(const secp256k1_ecdsa_signature* sig)
#     199                 :     157112 : {
#     200                 :     157112 :     unsigned char compact_sig[64];
#     201                 :     157112 :     secp256k1_ecdsa_signature_serialize_compact(secp256k1_context_sign, compact_sig, sig);
#     202                 :            : 
#     203                 :            :     // In DER serialization, all values are interpreted as big-endian, signed integers. The highest bit in the integer indicates
#     204                 :            :     // its signed-ness; 0 is positive, 1 is negative. When the value is interpreted as a negative integer, it must be converted
#     205                 :            :     // to a positive value by prepending a 0x00 byte so that the highest bit is 0. We can avoid this prepending by ensuring that
#     206                 :            :     // our highest bit is always 0, and thus we must check that the first byte is less than 0x80.
#     207                 :     157112 :     return compact_sig[0] < 0x80;
#     208                 :     157112 : }
#     209                 :            : 
#     210                 :      79782 : bool CKey::Sign(const uint256 &hash, std::vector<unsigned char>& vchSig, bool grind, uint32_t test_case) const {
#     211         [ -  + ]:      79782 :     if (!fValid)
#     212                 :          0 :         return false;
#     213                 :      79782 :     vchSig.resize(CPubKey::SIGNATURE_SIZE);
#     214                 :      79782 :     size_t nSigLen = CPubKey::SIGNATURE_SIZE;
#     215                 :      79782 :     unsigned char extra_entropy[32] = {0};
#     216                 :      79782 :     WriteLE32(extra_entropy, test_case);
#     217                 :      79782 :     secp256k1_ecdsa_signature sig;
#     218                 :      79782 :     uint32_t counter = 0;
#     219 [ +  + ][ +  + ]:      79782 :     int ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, (!grind && test_case) ? extra_entropy : nullptr);
#     220                 :            : 
#     221                 :            :     // Grind for low R
#     222 [ +  - ][ +  + ]:     157112 :     while (ret && !SigHasLowR(&sig) && grind) {
#                 [ +  + ]
#     223                 :      77330 :         WriteLE32(extra_entropy, ++counter);
#     224                 :      77330 :         ret = secp256k1_ecdsa_sign(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, extra_entropy);
#     225                 :      77330 :     }
#     226                 :      79782 :     assert(ret);
#     227                 :      79782 :     secp256k1_ecdsa_signature_serialize_der(secp256k1_context_sign, vchSig.data(), &nSigLen, &sig);
#     228                 :      79782 :     vchSig.resize(nSigLen);
#     229                 :      79782 :     return true;
#     230                 :      79782 : }
#     231                 :            : 
#     232                 :      35516 : bool CKey::VerifyPubKey(const CPubKey& pubkey) const {
#     233         [ +  + ]:      35516 :     if (pubkey.IsCompressed() != fCompressed) {
#     234                 :         16 :         return false;
#     235                 :         16 :     }
#     236                 :      35500 :     unsigned char rnd[8];
#     237                 :      35500 :     std::string str = "Bitcoin key verification\n";
#     238                 :      35500 :     GetRandBytes(rnd, sizeof(rnd));
#     239                 :      35500 :     uint256 hash;
#     240                 :      35500 :     CHash256().Write(MakeUCharSpan(str)).Write(rnd).Finalize(hash);
#     241                 :      35500 :     std::vector<unsigned char> vchSig;
#     242                 :      35500 :     Sign(hash, vchSig);
#     243                 :      35500 :     return pubkey.Verify(hash, vchSig);
#     244                 :      35500 : }
#     245                 :            : 
#     246                 :        152 : bool CKey::SignCompact(const uint256 &hash, std::vector<unsigned char>& vchSig) const {
#     247         [ +  + ]:        152 :     if (!fValid)
#     248                 :          1 :         return false;
#     249                 :        151 :     vchSig.resize(CPubKey::COMPACT_SIGNATURE_SIZE);
#     250                 :        151 :     int rec = -1;
#     251                 :        151 :     secp256k1_ecdsa_recoverable_signature sig;
#     252                 :        151 :     int ret = secp256k1_ecdsa_sign_recoverable(secp256k1_context_sign, &sig, hash.begin(), begin(), secp256k1_nonce_function_rfc6979, nullptr);
#     253                 :        151 :     assert(ret);
#     254                 :        151 :     ret = secp256k1_ecdsa_recoverable_signature_serialize_compact(secp256k1_context_sign, &vchSig[1], &rec, &sig);
#     255                 :        151 :     assert(ret);
#     256                 :        151 :     assert(rec != -1);
#     257         [ +  + ]:        151 :     vchSig[0] = 27 + rec + (fCompressed ? 4 : 0);
#     258                 :        151 :     return true;
#     259                 :        151 : }
#     260                 :            : 
#     261                 :      11188 : bool CKey::Load(const CPrivKey &seckey, const CPubKey &vchPubKey, bool fSkipCheck=false) {
#     262         [ -  + ]:      11188 :     if (!ec_seckey_import_der(secp256k1_context_sign, (unsigned char*)begin(), seckey.data(), seckey.size()))
#     263                 :          0 :         return false;
#     264                 :      11188 :     fCompressed = vchPubKey.IsCompressed();
#     265                 :      11188 :     fValid = true;
#     266                 :            : 
#     267         [ +  - ]:      11188 :     if (fSkipCheck)
#     268                 :      11188 :         return true;
#     269                 :            : 
#     270                 :          0 :     return VerifyPubKey(vchPubKey);
#     271                 :          0 : }
#     272                 :            : 
#     273                 :     109892 : bool CKey::Derive(CKey& keyChild, ChainCode &ccChild, unsigned int nChild, const ChainCode& cc) const {
#     274                 :     109892 :     assert(IsValid());
#     275                 :     109892 :     assert(IsCompressed());
#     276                 :     109892 :     std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
#     277         [ +  + ]:     109892 :     if ((nChild >> 31) == 0) {
#     278                 :      12871 :         CPubKey pubkey = GetPubKey();
#     279                 :      12871 :         assert(pubkey.size() == CPubKey::COMPRESSED_SIZE);
#     280                 :      12871 :         BIP32Hash(cc, nChild, *pubkey.begin(), pubkey.begin()+1, vout.data());
#     281                 :      97021 :     } else {
#     282                 :      97021 :         assert(size() == 32);
#     283                 :      97021 :         BIP32Hash(cc, nChild, 0, begin(), vout.data());
#     284                 :      97021 :     }
#     285                 :     109892 :     memcpy(ccChild.begin(), vout.data()+32, 32);
#     286                 :     109892 :     memcpy((unsigned char*)keyChild.begin(), begin(), 32);
#     287                 :     109892 :     bool ret = secp256k1_ec_seckey_tweak_add(secp256k1_context_sign, (unsigned char*)keyChild.begin(), vout.data());
#     288                 :     109892 :     keyChild.fCompressed = true;
#     289                 :     109892 :     keyChild.fValid = ret;
#     290                 :     109892 :     return ret;
#     291                 :     109892 : }
#     292                 :            : 
#     293                 :     109892 : bool CExtKey::Derive(CExtKey &out, unsigned int _nChild) const {
#     294                 :     109892 :     out.nDepth = nDepth + 1;
#     295                 :     109892 :     CKeyID id = key.GetPubKey().GetID();
#     296                 :     109892 :     memcpy(out.vchFingerprint, &id, 4);
#     297                 :     109892 :     out.nChild = _nChild;
#     298                 :     109892 :     return key.Derive(out.key, out.chaincode, _nChild, chaincode);
#     299                 :     109892 : }
#     300                 :            : 
#     301                 :      24405 : void CExtKey::SetSeed(const unsigned char *seed, unsigned int nSeedLen) {
#     302                 :      24405 :     static const unsigned char hashkey[] = {'B','i','t','c','o','i','n',' ','s','e','e','d'};
#     303                 :      24405 :     std::vector<unsigned char, secure_allocator<unsigned char>> vout(64);
#     304                 :      24405 :     CHMAC_SHA512(hashkey, sizeof(hashkey)).Write(seed, nSeedLen).Finalize(vout.data());
#     305                 :      24405 :     key.Set(vout.data(), vout.data() + 32, true);
#     306                 :      24405 :     memcpy(chaincode.begin(), vout.data() + 32, 32);
#     307                 :      24405 :     nDepth = 0;
#     308                 :      24405 :     nChild = 0;
#     309                 :      24405 :     memset(vchFingerprint, 0, sizeof(vchFingerprint));
#     310                 :      24405 : }
#     311                 :            : 
#     312                 :      16806 : CExtPubKey CExtKey::Neuter() const {
#     313                 :      16806 :     CExtPubKey ret;
#     314                 :      16806 :     ret.nDepth = nDepth;
#     315                 :      16806 :     memcpy(ret.vchFingerprint, vchFingerprint, 4);
#     316                 :      16806 :     ret.nChild = nChild;
#     317                 :      16806 :     ret.pubkey = key.GetPubKey();
#     318                 :      16806 :     ret.chaincode = chaincode;
#     319                 :      16806 :     return ret;
#     320                 :      16806 : }
#     321                 :            : 
#     322                 :        529 : void CExtKey::Encode(unsigned char code[BIP32_EXTKEY_SIZE]) const {
#     323                 :        529 :     code[0] = nDepth;
#     324                 :        529 :     memcpy(code+1, vchFingerprint, 4);
#     325                 :        529 :     code[5] = (nChild >> 24) & 0xFF; code[6] = (nChild >> 16) & 0xFF;
#     326                 :        529 :     code[7] = (nChild >>  8) & 0xFF; code[8] = (nChild >>  0) & 0xFF;
#     327                 :        529 :     memcpy(code+9, chaincode.begin(), 32);
#     328                 :        529 :     code[41] = 0;
#     329                 :        529 :     assert(key.size() == 32);
#     330                 :        529 :     memcpy(code+42, key.begin(), 32);
#     331                 :        529 : }
#     332                 :            : 
#     333                 :        303 : void CExtKey::Decode(const unsigned char code[BIP32_EXTKEY_SIZE]) {
#     334                 :        303 :     nDepth = code[0];
#     335                 :        303 :     memcpy(vchFingerprint, code+1, 4);
#     336                 :        303 :     nChild = (code[5] << 24) | (code[6] << 16) | (code[7] << 8) | code[8];
#     337                 :        303 :     memcpy(chaincode.begin(), code+9, 32);
#     338                 :        303 :     key.Set(code+42, code+BIP32_EXTKEY_SIZE, true);
#     339                 :        303 : }
#     340                 :            : 
#     341                 :        666 : bool ECC_InitSanityCheck() {
#     342                 :        666 :     CKey key;
#     343                 :        666 :     key.MakeNewKey(true);
#     344                 :        666 :     CPubKey pubkey = key.GetPubKey();
#     345                 :        666 :     return key.VerifyPubKey(pubkey);
#     346                 :        666 : }
#     347                 :            : 
#     348                 :       1565 : void ECC_Start() {
#     349                 :       1565 :     assert(secp256k1_context_sign == nullptr);
#     350                 :            : 
#     351                 :       1565 :     secp256k1_context *ctx = secp256k1_context_create(SECP256K1_CONTEXT_SIGN);
#     352                 :       1565 :     assert(ctx != nullptr);
#     353                 :            : 
#     354                 :       1565 :     {
#     355                 :            :         // Pass in a random blinding seed to the secp256k1 context.
#     356                 :       1565 :         std::vector<unsigned char, secure_allocator<unsigned char>> vseed(32);
#     357                 :       1565 :         GetRandBytes(vseed.data(), 32);
#     358                 :       1565 :         bool ret = secp256k1_context_randomize(ctx, vseed.data());
#     359                 :       1565 :         assert(ret);
#     360                 :       1565 :     }
#     361                 :            : 
#     362                 :       1565 :     secp256k1_context_sign = ctx;
#     363                 :       1565 : }
#     364                 :            : 
#     365                 :       1531 : void ECC_Stop() {
#     366                 :       1531 :     secp256k1_context *ctx = secp256k1_context_sign;
#     367                 :       1531 :     secp256k1_context_sign = nullptr;
#     368                 :            : 
#     369         [ +  - ]:       1531 :     if (ctx) {
#     370                 :       1531 :         secp256k1_context_destroy(ctx);
#     371                 :       1531 :     }
#     372                 :       1531 : }

Generated by: LCOV version 1.14