LCOV - code coverage report
Current view: top level - src/script - miniscript.h (source / functions) Hit Total Coverage
Test: coverage.lcov Lines: 910 936 97.2 %
Date: 2022-04-21 14:51:19 Functions: 52 53 98.1 %
Legend: Modified by patch:
Lines: hit not hit | Branches: + taken - not taken # not executed

Not modified by patch:
Lines: hit not hit | Branches: + taken - not taken # not executed
Branches: 641 760 84.3 %

           Branch data     Line data    Source code
#       1                 :            : // Copyright (c) 2019 The Bitcoin Core developers
#       2                 :            : // Distributed under the MIT software license, see the accompanying
#       3                 :            : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
#       4                 :            : 
#       5                 :            : #ifndef BITCOIN_SCRIPT_MINISCRIPT_H
#       6                 :            : #define BITCOIN_SCRIPT_MINISCRIPT_H
#       7                 :            : 
#       8                 :            : #include <algorithm>
#       9                 :            : #include <numeric>
#      10                 :            : #include <memory>
#      11                 :            : #include <optional>
#      12                 :            : #include <string>
#      13                 :            : #include <vector>
#      14                 :            : 
#      15                 :            : #include <stdlib.h>
#      16                 :            : #include <assert.h>
#      17                 :            : 
#      18                 :            : #include <policy/policy.h>
#      19                 :            : #include <primitives/transaction.h>
#      20                 :            : #include <script/script.h>
#      21                 :            : #include <span.h>
#      22                 :            : #include <util/spanparsing.h>
#      23                 :            : #include <util/strencodings.h>
#      24                 :            : #include <util/string.h>
#      25                 :            : #include <util/vector.h>
#      26                 :            : 
#      27                 :            : namespace miniscript {
#      28                 :            : 
#      29                 :            : /** This type encapsulates the miniscript type system properties.
#      30                 :            :  *
#      31                 :            :  * Every miniscript expression is one of 4 basic types, and additionally has
#      32                 :            :  * a number of boolean type properties.
#      33                 :            :  *
#      34                 :            :  * The basic types are:
#      35                 :            :  * - "B" Base:
#      36                 :            :  *   - Takes its inputs from the top of the stack.
#      37                 :            :  *   - When satisfied, pushes a nonzero value of up to 4 bytes onto the stack.
#      38                 :            :  *   - When dissatisfied, pushes a 0 onto the stack.
#      39                 :            :  *   - This is used for most expressions, and required for the top level one.
#      40                 :            :  *   - For example: older(n) = <n> OP_CHECKSEQUENCEVERIFY.
#      41                 :            :  * - "V" Verify:
#      42                 :            :  *   - Takes its inputs from the top of the stack.
#      43                 :            :  *   - When satisfactied, pushes nothing.
#      44                 :            :  *   - Cannot be dissatisfied.
#      45                 :            :  *   - This can be obtained by adding an OP_VERIFY to a B, modifying the last opcode
#      46                 :            :  *     of a B to its -VERIFY version (only for OP_CHECKSIG, OP_CHECKSIGVERIFY
#      47                 :            :  *     and OP_EQUAL), or by combining a V fragment under some conditions.
#      48                 :            :  *   - For example vc:pk_k(key) = <key> OP_CHECKSIGVERIFY
#      49                 :            :  * - "K" Key:
#      50                 :            :  *   - Takes its inputs from the top of the stack.
#      51                 :            :  *   - Becomes a B when followed by OP_CHECKSIG.
#      52                 :            :  *   - Always pushes a public key onto the stack, for which a signature is to be
#      53                 :            :  *     provided to satisfy the expression.
#      54                 :            :  *   - For example pk_h(key) = OP_DUP OP_HASH160 <Hash160(key)> OP_EQUALVERIFY
#      55                 :            :  * - "W" Wrapped:
#      56                 :            :  *   - Takes its input from one below the top of the stack.
#      57                 :            :  *   - When satisfied, pushes a nonzero value (like B) on top of the stack, or one below.
#      58                 :            :  *   - When dissatisfied, pushes 0 op top of the stack or one below.
#      59                 :            :  *   - Is always "OP_SWAP [B]" or "OP_TOALTSTACK [B] OP_FROMALTSTACK".
#      60                 :            :  *   - For example sc:pk_k(key) = OP_SWAP <key> OP_CHECKSIG
#      61                 :            :  *
#      62                 :            :  * There a type properties that help reasoning about correctness:
#      63                 :            :  * - "z" Zero-arg:
#      64                 :            :  *   - Is known to always consume exactly 0 stack elements.
#      65                 :            :  *   - For example after(n) = <n> OP_CHECKLOCKTIMEVERIFY
#      66                 :            :  * - "o" One-arg:
#      67                 :            :  *   - Is known to always consume exactly 1 stack element.
#      68                 :            :  *   - Conflicts with property 'z'
#      69                 :            :  *   - For example sha256(hash) = OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 <hash> OP_EQUAL
#      70                 :            :  * - "n" Nonzero:
#      71                 :            :  *   - For every way this expression can be satisfied, a satisfaction exists that never needs
#      72                 :            :  *     a zero top stack element.
#      73                 :            :  *   - Conflicts with property 'z' and with type 'W'.
#      74                 :            :  * - "d" Dissatisfiable:
#      75                 :            :  *   - There is an easy way to construct a dissatisfaction for this expression.
#      76                 :            :  *   - Conflicts with type 'V'.
#      77                 :            :  * - "u" Unit:
#      78                 :            :  *   - In case of satisfaction, an exact 1 is put on the stack (rather than just nonzero).
#      79                 :            :  *   - Conflicts with type 'V'.
#      80                 :            :  *
#      81                 :            :  * Additional type properties help reasoning about nonmalleability:
#      82                 :            :  * - "e" Expression:
#      83                 :            :  *   - This implies property 'd', but the dissatisfaction is nonmalleable.
#      84                 :            :  *   - This generally requires 'e' for all subexpressions which are invoked for that
#      85                 :            :  *     dissatifsaction, and property 'f' for the unexecuted subexpressions in that case.
#      86                 :            :  *   - Conflicts with type 'V'.
#      87                 :            :  * - "f" Forced:
#      88                 :            :  *   - Dissatisfactions (if any) for this expression always involve at least one signature.
#      89                 :            :  *   - Is always true for type 'V'.
#      90                 :            :  * - "s" Safe:
#      91                 :            :  *   - Satisfactions for this expression always involve at least one signature.
#      92                 :            :  * - "m" Nonmalleable:
#      93                 :            :  *   - For every way this expression can be satisfied (which may be none),
#      94                 :            :  *     a nonmalleable satisfaction exists.
#      95                 :            :  *   - This generally requires 'm' for all subexpressions, and 'e' for all subexpressions
#      96                 :            :  *     which are dissatisfied when satisfying the parent.
#      97                 :            :  *
#      98                 :            :  * One type property is an implementation detail:
#      99                 :            :  * - "x" Expensive verify:
#     100                 :            :  *   - Expressions with this property have a script whose last opcode is not EQUAL, CHECKSIG, or CHECKMULTISIG.
#     101                 :            :  *   - Not having this property means that it can be converted to a V at no cost (by switching to the
#     102                 :            :  *     -VERIFY version of the last opcode).
#     103                 :            :  *
#     104                 :            :  * Five more type properties for representing timelock information. Spend paths
#     105                 :            :  * in miniscripts containing conflicting timelocks and heightlocks cannot be spent together.
#     106                 :            :  * This helps users detect if miniscript does not match the semantic behaviour the
#     107                 :            :  * user expects.
#     108                 :            :  * - "g" Whether the branch contains a relative time timelock
#     109                 :            :  * - "h" Whether the branch contains a relative height timelock
#     110                 :            :  * - "i" Whether the branch contains an absolute time timelock
#     111                 :            :  * - "j" Whether the branch contains an absolute height timelock
#     112                 :            :  * - "k"
#     113                 :            :  *   - Whether all satisfactions of this expression don't contain a mix of heightlock and timelock
#     114                 :            :  *     of the same type.
#     115                 :            :  *   - If the miniscript does not have the "k" property, the miniscript template will not match
#     116                 :            :  *     the user expectation of the corresponding spending policy.
#     117                 :            :  * For each of these properties the subset rule holds: an expression with properties X, Y, and Z, is also
#     118                 :            :  * valid in places where an X, a Y, a Z, an XY, ... is expected.
#     119                 :            : */
#     120                 :            : class Type {
#     121                 :            :     //! Internal bitmap of properties (see ""_mst operator for details).
#     122                 :            :     uint32_t m_flags;
#     123                 :            : 
#     124                 :            :     //! Internal constructor used by the ""_mst operator.
#     125                 :     228150 :     explicit constexpr Type(uint32_t flags) : m_flags(flags) {}
#     126                 :            : 
#     127                 :            : public:
#     128                 :            :     //! The only way to publicly construct a Type is using this literal operator.
#     129                 :            :     friend constexpr Type operator"" _mst(const char* c, size_t l);
#     130                 :            : 
#     131                 :            :     //! Compute the type with the union of properties.
#     132                 :      81160 :     constexpr Type operator|(Type x) const { return Type(m_flags | x.m_flags); }
#     133                 :            : 
#     134                 :            :     //! Compute the type with the intersection of properties.
#     135                 :       7444 :     constexpr Type operator&(Type x) const { return Type(m_flags & x.m_flags); }
#     136                 :            : 
#     137                 :            :     //! Check whether the left hand's properties are superset of the right's (= left is a subtype of right).
#     138                 :      47184 :     constexpr bool operator<<(Type x) const { return (x.m_flags & ~m_flags) == 0; }
#     139                 :            : 
#     140                 :            :     //! Comparison operator to enable use in sets/maps (total ordering incompatible with <<).
#     141                 :          0 :     constexpr bool operator<(Type x) const { return m_flags < x.m_flags; }
#     142                 :            : 
#     143                 :            :     //! Equality operator.
#     144                 :       2556 :     constexpr bool operator==(Type x) const { return m_flags == x.m_flags; }
#     145                 :            : 
#     146                 :            :     //! The empty type if x is false, itself otherwise.
#     147         [ +  + ]:       3462 :     constexpr Type If(bool x) const { return Type(x ? m_flags : 0); }
#     148                 :            : };
#     149                 :            : 
#     150                 :            : //! Literal operator to construct Type objects.
#     151                 :      63996 : inline constexpr Type operator"" _mst(const char* c, size_t l) {
#     152                 :      63996 :     Type typ{0};
#     153                 :            : 
#     154         [ +  + ]:     136084 :     for (const char *p = c; p < c + l; p++) {
#     155                 :      72088 :         typ = typ | Type(
#     156         [ +  + ]:      72088 :             *p == 'B' ? 1 << 0 : // Base type
#     157         [ +  + ]:      72088 :             *p == 'V' ? 1 << 1 : // Verify type
#     158         [ +  + ]:      67558 :             *p == 'K' ? 1 << 2 : // Key type
#     159         [ +  + ]:      56754 :             *p == 'W' ? 1 << 3 : // Wrapped type
#     160         [ +  + ]:      50048 :             *p == 'z' ? 1 << 4 : // Zero-arg property
#     161         [ +  + ]:      47204 :             *p == 'o' ? 1 << 5 : // One-arg property
#     162         [ +  + ]:      40580 :             *p == 'n' ? 1 << 6 : // Nonzero arg property
#     163         [ +  + ]:      38446 :             *p == 'd' ? 1 << 7 : // Dissatisfiable property
#     164         [ +  + ]:      33392 :             *p == 'u' ? 1 << 8 : // Unit property
#     165         [ +  + ]:      28714 :             *p == 'e' ? 1 << 9 : // Expression property
#     166         [ +  + ]:      26434 :             *p == 'f' ? 1 << 10 : // Forced property
#     167         [ +  + ]:      20834 :             *p == 's' ? 1 << 11 : // Safe property
#     168         [ +  + ]:      16848 :             *p == 'm' ? 1 << 12 : // Nonmalleable property
#     169         [ +  + ]:      14398 :             *p == 'x' ? 1 << 13 : // Expensive verify
#     170         [ +  + ]:      11232 :             *p == 'g' ? 1 << 14 : // older: contains relative time timelock   (csv_time)
#     171         [ +  + ]:       8932 :             *p == 'h' ? 1 << 15 : // older: contains relative height timelock (csv_height)
#     172         [ +  + ]:       7384 :             *p == 'i' ? 1 << 16 : // after: contains time timelock   (cltv_time)
#     173         [ +  + ]:       5844 :             *p == 'j' ? 1 << 17 : // after: contains height timelock   (cltv_height)
#     174         [ +  - ]:       4224 :             *p == 'k' ? 1 << 18 : // does not contain a combination of height and time locks
#     175                 :       2626 :             (throw std::logic_error("Unknown character in _mst literal"), 0)
#     176                 :      72088 :         );
#     177                 :      72088 :     }
#     178                 :            : 
#     179                 :      63996 :     return typ;
#     180                 :      63996 : }
#     181                 :            : 
#     182                 :            : template<typename Key> struct Node;
#     183                 :            : template<typename Key> using NodeRef = std::shared_ptr<const Node<Key>>;
#     184                 :            : 
#     185                 :            : //! Construct a miniscript node as a shared_ptr.
#     186                 :            : template<typename Key, typename... Args>
#     187                 :       2054 : NodeRef<Key> MakeNodeRef(Args&&... args) { return std::make_shared<const Node<Key>>(std::forward<Args>(args)...); }
#     188                 :            : 
#     189                 :            : //! The different node types in miniscript.
#     190                 :            : enum class Fragment {
#     191                 :            :     JUST_0,    //!< OP_0
#     192                 :            :     JUST_1,    //!< OP_1
#     193                 :            :     PK_K,      //!< [key]
#     194                 :            :     PK_H,      //!< OP_DUP OP_HASH160 [keyhash] OP_EQUALVERIFY
#     195                 :            :     OLDER,     //!< [n] OP_CHECKSEQUENCEVERIFY
#     196                 :            :     AFTER,     //!< [n] OP_CHECKLOCKTIMEVERIFY
#     197                 :            :     SHA256,    //!< OP_SIZE 32 OP_EQUALVERIFY OP_SHA256 [hash] OP_EQUAL
#     198                 :            :     HASH256,   //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH256 [hash] OP_EQUAL
#     199                 :            :     RIPEMD160, //!< OP_SIZE 32 OP_EQUALVERIFY OP_RIPEMD160 [hash] OP_EQUAL
#     200                 :            :     HASH160,   //!< OP_SIZE 32 OP_EQUALVERIFY OP_HASH160 [hash] OP_EQUAL
#     201                 :            :     WRAP_A,    //!< OP_TOALTSTACK [X] OP_FROMALTSTACK
#     202                 :            :     WRAP_S,    //!< OP_SWAP [X]
#     203                 :            :     WRAP_C,    //!< [X] OP_CHECKSIG
#     204                 :            :     WRAP_D,    //!< OP_DUP OP_IF [X] OP_ENDIF
#     205                 :            :     WRAP_V,    //!< [X] OP_VERIFY (or -VERIFY version of last opcode in X)
#     206                 :            :     WRAP_J,    //!< OP_SIZE OP_0NOTEQUAL OP_IF [X] OP_ENDIF
#     207                 :            :     WRAP_N,    //!< [X] OP_0NOTEQUAL
#     208                 :            :     AND_V,     //!< [X] [Y]
#     209                 :            :     AND_B,     //!< [X] [Y] OP_BOOLAND
#     210                 :            :     OR_B,      //!< [X] [Y] OP_BOOLOR
#     211                 :            :     OR_C,      //!< [X] OP_NOTIF [Y] OP_ENDIF
#     212                 :            :     OR_D,      //!< [X] OP_IFDUP OP_NOTIF [Y] OP_ENDIF
#     213                 :            :     OR_I,      //!< OP_IF [X] OP_ELSE [Y] OP_ENDIF
#     214                 :            :     ANDOR,     //!< [X] OP_NOTIF [Z] OP_ELSE [Y] OP_ENDIF
#     215                 :            :     THRESH,    //!< [X1] ([Xn] OP_ADD)* [k] OP_EQUAL
#     216                 :            :     MULTI,     //!< [k] [key_n]* [n] OP_CHECKMULTISIG
#     217                 :            :     // AND_N(X,Y) is represented as ANDOR(X,Y,0)
#     218                 :            :     // WRAP_T(X) is represented as AND_V(X,1)
#     219                 :            :     // WRAP_L(X) is represented as OR_I(0,X)
#     220                 :            :     // WRAP_U(X) is represented as OR_I(X,0)
#     221                 :            : };
#     222                 :            : 
#     223                 :            : 
#     224                 :            : namespace internal {
#     225                 :            : 
#     226                 :            : //! Helper function for Node::CalcType.
#     227                 :            : Type ComputeType(Fragment nodetype, Type x, Type y, Type z, const std::vector<Type>& sub_types, uint32_t k, size_t data_size, size_t n_subs, size_t n_keys);
#     228                 :            : 
#     229                 :            : //! Helper function for Node::CalcScriptLen.
#     230                 :            : size_t ComputeScriptLen(Fragment nodetype, Type sub0typ, size_t subsize, uint32_t k, size_t n_subs, size_t n_keys);
#     231                 :            : 
#     232                 :            : //! A helper sanitizer/checker for the output of CalcType.
#     233                 :            : Type SanitizeType(Type x);
#     234                 :            : 
#     235                 :            : //! Class whose objects represent the maximum of a list of integers.
#     236                 :            : template<typename I>
#     237                 :            : struct MaxInt {
#     238                 :            :     const bool valid;
#     239                 :            :     const I value;
#     240                 :            : 
#     241                 :       3096 :     MaxInt() : valid(false), value(0) {}
#     242                 :       5572 :     MaxInt(I val) : valid(true), value(val) {}
#     243                 :            : 
#     244                 :       2740 :     friend MaxInt<I> operator+(const MaxInt<I>& a, const MaxInt<I>& b) {
#     245 [ +  + ][ +  + ]:       2740 :         if (!a.valid || !b.valid) return {};
#     246                 :       1932 :         return a.value + b.value;
#     247                 :       2740 :     }
#     248                 :            : 
#     249                 :       1232 :     friend MaxInt<I> operator|(const MaxInt<I>& a, const MaxInt<I>& b) {
#     250         [ +  + ]:       1232 :         if (!a.valid) return b;
#     251         [ +  + ]:        806 :         if (!b.valid) return a;
#     252                 :        432 :         return std::max(a.value, b.value);
#     253                 :        806 :     }
#     254                 :            : };
#     255                 :            : 
#     256                 :            : struct Ops {
#     257                 :            :     //! Non-push opcodes.
#     258                 :            :     uint32_t count;
#     259                 :            :     //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to satisfy.
#     260                 :            :     MaxInt<uint32_t> sat;
#     261                 :            :     //! Number of keys in possibly executed OP_CHECKMULTISIG(VERIFY)s to dissatisfy.
#     262                 :            :     MaxInt<uint32_t> dsat;
#     263                 :            : 
#     264                 :       2054 :     Ops(uint32_t in_count, MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : count(in_count), sat(in_sat), dsat(in_dsat) {};
#     265                 :            : };
#     266                 :            : 
#     267                 :            : struct StackSize {
#     268                 :            :     //! Maximum stack size to satisfy;
#     269                 :            :     MaxInt<uint32_t> sat;
#     270                 :            :     //! Maximum stack size to dissatisfy;
#     271                 :            :     MaxInt<uint32_t> dsat;
#     272                 :            : 
#     273                 :       1764 :     StackSize(MaxInt<uint32_t> in_sat, MaxInt<uint32_t> in_dsat) : sat(in_sat), dsat(in_dsat) {};
#     274                 :            : };
#     275                 :            : 
#     276                 :            : } // namespace internal
#     277                 :            : 
#     278                 :            : //! A node in a miniscript expression.
#     279                 :            : template<typename Key>
#     280                 :            : struct Node {
#     281                 :            :     //! What node type this node is.
#     282                 :            :     const Fragment nodetype;
#     283                 :            :     //! The k parameter (time for OLDER/AFTER, threshold for THRESH(_M))
#     284                 :            :     const uint32_t k = 0;
#     285                 :            :     //! The keys used by this expression (only for PK_K/PK_H/MULTI)
#     286                 :            :     const std::vector<Key> keys;
#     287                 :            :     //! The data bytes in this expression (only for HASH160/HASH256/SHA256/RIPEMD10).
#     288                 :            :     const std::vector<unsigned char> data;
#     289                 :            :     //! Subexpressions (for WRAP_*/AND_*/OR_*/ANDOR/THRESH)
#     290                 :            :     const std::vector<NodeRef<Key>> subs;
#     291                 :            : 
#     292                 :            : private:
#     293                 :            :     //! Cached ops counts.
#     294                 :            :     const internal::Ops ops;
#     295                 :            :     //! Cached stack size bounds.
#     296                 :            :     const internal::StackSize ss;
#     297                 :            :     //! Cached expression type (computed by CalcType and fed through SanitizeType).
#     298                 :            :     const Type typ;
#     299                 :            :     //! Cached script length (computed by CalcScriptLen).
#     300                 :            :     const size_t scriptlen;
#     301                 :            : 
#     302                 :            :     //! Compute the length of the script for this miniscript (including children).
#     303                 :       2054 :     size_t CalcScriptLen() const {
#     304                 :       2054 :         size_t subsize = 0;
#     305         [ +  + ]:       2054 :         for (const auto& sub : subs) {
#     306                 :       1740 :             subsize += sub->ScriptSize();
#     307                 :       1740 :         }
#     308         [ +  + ]:       2054 :         Type sub0type = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
#     309                 :       2054 :         return internal::ComputeScriptLen(nodetype, sub0type, subsize, k, subs.size(), keys.size());
#     310                 :       2054 :     }
#     311                 :            : 
#     312                 :            :     /* Apply a recursive algorithm to a Miniscript tree, without actual recursive calls.
#     313                 :            :      *
#     314                 :            :      * The algorithm is defined by two functions: downfn and upfn. Conceptually, the
#     315                 :            :      * result can be thought of as first using downfn to compute a "state" for each node,
#     316                 :            :      * from the root down to the leaves. Then upfn is used to compute a "result" for each
#     317                 :            :      * node, from the leaves back up to the root, which is then returned. In the actual
#     318                 :            :      * implementation, both functions are invoked in an interleaved fashion, performing a
#     319                 :            :      * depth-first traversal of the tree.
#     320                 :            :      *
#     321                 :            :      * In more detail, it is invoked as node.TreeEvalMaybe<Result>(root, downfn, upfn):
#     322                 :            :      * - root is the state of the root node, of type State.
#     323                 :            :      * - downfn is a callable (State&, const Node&, size_t) -> State, which given a
#     324                 :            :      *   node, its state, and an index of one of its children, computes the state of that
#     325                 :            :      *   child. It can modify the state. Children of a given node will have downfn()
#     326                 :            :      *   called in order.
#     327                 :            :      * - upfn is a callable (State&&, const Node&, Span<Result>) -> std::optional<Result>,
#     328                 :            :      *   which given a node, its state, and a Span of the results of its children,
#     329                 :            :      *   computes the result of the node. If std::nullopt is returned by upfn,
#     330                 :            :      *   TreeEvalMaybe() immediately returns std::nullopt.
#     331                 :            :      * The return value of TreeEvalMaybe is the result of the root node.
#     332                 :            :      */
#     333                 :            :     template<typename Result, typename State, typename DownFn, typename UpFn>
#     334                 :            :     std::optional<Result> TreeEvalMaybe(State root_state, DownFn downfn, UpFn upfn) const
#     335                 :        252 :     {
#     336                 :            :         /** Entries of the explicit stack tracked in this algorithm. */
#     337                 :        252 :         struct StackElem
#     338                 :        252 :         {
#     339                 :        252 :             const Node& node; //!< The node being evaluated.
#     340                 :        252 :             size_t expanded; //!< How many children of this node have been expanded.
#     341                 :        252 :             State state; //!< The state for that node.
#     342                 :            : 
#     343                 :        252 :             StackElem(const Node& node_, size_t exp_, State&& state_) :
#     344                 :       1796 :                 node(node_), expanded(exp_), state(std::move(state_)) {}
#     345                 :        252 :         };
#     346                 :            :         /* Stack of tree nodes being explored. */
#     347                 :        252 :         std::vector<StackElem> stack;
#     348                 :            :         /* Results of subtrees so far. Their order and mapping to tree nodes
#     349                 :            :          * is implicitly defined by stack. */
#     350                 :        252 :         std::vector<Result> results;
#     351                 :        252 :         stack.emplace_back(*this, 0, std::move(root_state));
#     352                 :            : 
#     353                 :            :         /* Here is a demonstration of the algorithm, for an example tree A(B,C(D,E),F).
#     354                 :            :          * State variables are omitted for simplicity.
#     355                 :            :          *
#     356                 :            :          * First: stack=[(A,0)] results=[]
#     357                 :            :          *        stack=[(A,1),(B,0)] results=[]
#     358                 :            :          *        stack=[(A,1)] results=[B]
#     359                 :            :          *        stack=[(A,2),(C,0)] results=[B]
#     360                 :            :          *        stack=[(A,2),(C,1),(D,0)] results=[B]
#     361                 :            :          *        stack=[(A,2),(C,1)] results=[B,D]
#     362                 :            :          *        stack=[(A,2),(C,2),(E,0)] results=[B,D]
#     363                 :            :          *        stack=[(A,2),(C,2)] results=[B,D,E]
#     364                 :            :          *        stack=[(A,2)] results=[B,C]
#     365                 :            :          *        stack=[(A,3),(F,0)] results=[B,C]
#     366                 :            :          *        stack=[(A,3)] results=[B,C,F]
#     367                 :            :          * Final: stack=[] results=[A]
#     368                 :            :          */
#     369         [ +  + ]:       3592 :         while (stack.size()) {
#     370                 :       3340 :             const Node& node = stack.back().node;
#     371         [ +  + ]:       3340 :             if (stack.back().expanded < node.subs.size()) {
#     372                 :            :                 /* We encounter a tree node with at least one unexpanded child.
#     373                 :            :                  * Expand it. By the time we hit this node again, the result of
#     374                 :            :                  * that child (and all earlier children) will be at the end of `results`. */
#     375                 :       1544 :                 size_t child_index = stack.back().expanded++;
#     376                 :       1544 :                 State child_state = downfn(stack.back().state, node, child_index);
#     377                 :       1544 :                 stack.emplace_back(*node.subs[child_index], 0, std::move(child_state));
#     378                 :       1544 :                 continue;
#     379                 :       1544 :             }
#     380                 :            :             // Invoke upfn with the last node.subs.size() elements of results as input.
#     381                 :       1796 :             assert(results.size() >= node.subs.size());
#     382                 :          0 :             std::optional<Result> result{upfn(std::move(stack.back().state), node,
#     383                 :       1796 :                 Span<Result>{results}.last(node.subs.size()))};
#     384                 :            :             // If evaluation returns std::nullopt, abort immediately.
#     385         [ -  + ]:       1796 :             if (!result) return {};
#     386                 :            :             // Replace the last node.subs.size() elements of results with the new result.
#     387                 :       1796 :             results.erase(results.end() - node.subs.size(), results.end());
#     388                 :       1796 :             results.push_back(std::move(*result));
#     389                 :       1796 :             stack.pop_back();
#     390                 :       1796 :         }
#     391                 :            :         // The final remaining results element is the root result, return it.
#     392                 :        252 :         assert(results.size() == 1);
#     393                 :          0 :         return std::move(results[0]);
#     394                 :        252 :     }
#     395                 :            : 
#     396                 :            :     /** Like TreeEvalMaybe, but always produces a result. upfn must return Result. */
#     397                 :            :     template<typename Result, typename State, typename DownFn, typename UpFn>
#     398                 :            :     Result TreeEval(State root_state, DownFn&& downfn, UpFn upfn) const
#     399                 :        252 :     {
#     400                 :            :         // Invoke TreeEvalMaybe with upfn wrapped to return std::optional<Result>, and then
#     401                 :            :         // unconditionally dereference the result (it cannot be std::nullopt).
#     402                 :        252 :         return std::move(*TreeEvalMaybe<Result>(std::move(root_state),
#     403                 :        252 :             std::forward<DownFn>(downfn),
#     404                 :       1796 :             [&upfn](State&& state, const Node& node, Span<Result> subs) {
#     405                 :       1796 :                 Result res{upfn(std::move(state), node, subs)};
#     406                 :       1796 :                 return std::optional<Result>(std::move(res));
#     407                 :       1796 :             }
#     408                 :        252 :         ));
#     409                 :        252 :     }
#     410                 :            : 
#     411                 :            :     //! Compute the type for this miniscript.
#     412                 :       2054 :     Type CalcType() const {
#     413                 :       2054 :         using namespace internal;
#     414                 :            : 
#     415                 :            :         // THRESH has a variable number of subexpressions
#     416                 :       2054 :         std::vector<Type> sub_types;
#     417         [ +  + ]:       2054 :         if (nodetype == Fragment::THRESH) {
#     418         [ +  + ]:         92 :             for (const auto& sub : subs) sub_types.push_back(sub->GetType());
#     419                 :         32 :         }
#     420                 :            :         // All other nodes than THRESH can be computed just from the types of the 0-3 subexpressions.
#     421         [ +  + ]:       2054 :         Type x = subs.size() > 0 ? subs[0]->GetType() : ""_mst;
#     422         [ +  + ]:       2054 :         Type y = subs.size() > 1 ? subs[1]->GetType() : ""_mst;
#     423         [ +  + ]:       2054 :         Type z = subs.size() > 2 ? subs[2]->GetType() : ""_mst;
#     424                 :            : 
#     425                 :       2054 :         return SanitizeType(ComputeType(nodetype, x, y, z, sub_types, k, data.size(), subs.size(), keys.size()));
#     426                 :       2054 :     }
#     427                 :            : 
#     428                 :            : public:
#     429                 :            :     template<typename Ctx>
#     430                 :            :     CScript ToScript(const Ctx& ctx) const
#     431                 :        252 :     {
#     432                 :            :         // To construct the CScript for a Miniscript object, we use the TreeEval algorithm.
#     433                 :            :         // The State is a boolean: whether or not the node's script expansion is followed
#     434                 :            :         // by an OP_VERIFY (which may need to be combined with the last script opcode).
#     435                 :       1544 :         auto downfn = [](bool verify, const Node& node, size_t index) {
#     436                 :            :             // For WRAP_V, the subexpression is certainly followed by OP_VERIFY.
#     437         [ +  + ]:       1544 :             if (node.nodetype == Fragment::WRAP_V) return true;
#     438                 :            :             // The subexpression of WRAP_S, and the last subexpression of AND_V
#     439                 :            :             // inherit the followed-by-OP_VERIFY property from the parent.
#     440         [ +  + ]:       1372 :             if (node.nodetype == Fragment::WRAP_S ||
#     441 [ +  + ][ +  + ]:       1372 :                 (node.nodetype == Fragment::AND_V && index == 1)) return verify;
#     442                 :       1212 :             return false;
#     443                 :       1372 :         };
#     444                 :            :         // The upward function computes for a node, given its followed-by-OP_VERIFY status
#     445                 :            :         // and the CScripts of its child nodes, the CScript of the node.
#     446                 :       1796 :         auto upfn = [&ctx](bool verify, const Node& node, Span<CScript> subs) -> CScript {
#     447         [ -  + ]:       1796 :             switch (node.nodetype) {
#     448         [ +  + ]:         88 :                 case Fragment::PK_K: return BuildScript(ctx.ToPKBytes(node.keys[0]));
#     449         [ +  + ]:         52 :                 case Fragment::PK_H: return BuildScript(OP_DUP, OP_HASH160, ctx.ToPKHBytes(node.keys[0]), OP_EQUALVERIFY);
#     450         [ +  + ]:         88 :                 case Fragment::OLDER: return BuildScript(node.k, OP_CHECKSEQUENCEVERIFY);
#     451         [ +  + ]:        132 :                 case Fragment::AFTER: return BuildScript(node.k, OP_CHECKLOCKTIMEVERIFY);
#     452 [ +  + ][ +  + ]:         48 :                 case Fragment::SHA256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_SHA256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
#     453 [ +  + ][ +  + ]:         16 :                 case Fragment::RIPEMD160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_RIPEMD160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
#     454 [ +  + ][ +  + ]:         28 :                 case Fragment::HASH256: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH256, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
#     455 [ +  + ][ +  + ]:         12 :                 case Fragment::HASH160: return BuildScript(OP_SIZE, 32, OP_EQUALVERIFY, OP_HASH160, node.data, verify ? OP_EQUALVERIFY : OP_EQUAL);
#     456         [ +  + ]:         92 :                 case Fragment::WRAP_A: return BuildScript(OP_TOALTSTACK, subs[0], OP_FROMALTSTACK);
#     457         [ +  + ]:         20 :                 case Fragment::WRAP_S: return BuildScript(OP_SWAP, subs[0]);
#     458 [ +  + ][ -  + ]:        108 :                 case Fragment::WRAP_C: return BuildScript(std::move(subs[0]), verify ? OP_CHECKSIGVERIFY : OP_CHECKSIG);
#     459         [ +  + ]:          8 :                 case Fragment::WRAP_D: return BuildScript(OP_DUP, OP_IF, subs[0], OP_ENDIF);
#     460         [ +  + ]:        172 :                 case Fragment::WRAP_V: {
#     461         [ +  + ]:        172 :                     if (node.subs[0]->GetType() << "x"_mst) {
#     462                 :        128 :                         return BuildScript(std::move(subs[0]), OP_VERIFY);
#     463                 :        128 :                     } else {
#     464                 :         44 :                         return std::move(subs[0]);
#     465                 :         44 :                     }
#     466                 :        172 :                 }
#     467         [ +  + ]:         20 :                 case Fragment::WRAP_J: return BuildScript(OP_SIZE, OP_0NOTEQUAL, OP_IF, subs[0], OP_ENDIF);
#     468         [ +  + ]:         28 :                 case Fragment::WRAP_N: return BuildScript(std::move(subs[0]), OP_0NOTEQUAL);
#     469         [ +  + ]:        156 :                 case Fragment::JUST_1: return BuildScript(OP_1);
#     470         [ +  + ]:        176 :                 case Fragment::JUST_0: return BuildScript(OP_0);
#     471         [ +  + ]:        140 :                 case Fragment::AND_V: return BuildScript(std::move(subs[0]), subs[1]);
#     472         [ +  + ]:         32 :                 case Fragment::AND_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLAND);
#     473         [ +  + ]:         20 :                 case Fragment::OR_B: return BuildScript(std::move(subs[0]), subs[1], OP_BOOLOR);
#     474         [ +  + ]:         32 :                 case Fragment::OR_D: return BuildScript(std::move(subs[0]), OP_IFDUP, OP_NOTIF, subs[1], OP_ENDIF);
#     475         [ +  + ]:         16 :                 case Fragment::OR_C: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[1], OP_ENDIF);
#     476         [ +  + ]:        172 :                 case Fragment::OR_I: return BuildScript(OP_IF, subs[0], OP_ELSE, subs[1], OP_ENDIF);
#     477         [ +  + ]:         60 :                 case Fragment::ANDOR: return BuildScript(std::move(subs[0]), OP_NOTIF, subs[2], OP_ELSE, subs[1], OP_ENDIF);
#     478         [ +  + ]:         48 :                 case Fragment::MULTI: {
#     479                 :         48 :                     CScript script = BuildScript(node.k);
#     480         [ +  + ]:         92 :                     for (const auto& key : node.keys) {
#     481                 :         92 :                         script = BuildScript(std::move(script), ctx.ToPKBytes(key));
#     482                 :         92 :                     }
#     483         [ +  + ]:         48 :                     return BuildScript(std::move(script), node.keys.size(), verify ? OP_CHECKMULTISIGVERIFY : OP_CHECKMULTISIG);
#     484                 :        172 :                 }
#     485         [ +  + ]:         32 :                 case Fragment::THRESH: {
#     486                 :         32 :                     CScript script = std::move(subs[0]);
#     487         [ +  + ]:         92 :                     for (size_t i = 1; i < subs.size(); ++i) {
#     488                 :         60 :                         script = BuildScript(std::move(script), subs[i], OP_ADD);
#     489                 :         60 :                     }
#     490         [ -  + ]:         32 :                     return BuildScript(std::move(script), node.k, verify ? OP_EQUALVERIFY : OP_EQUAL);
#     491                 :        172 :                 }
#     492                 :       1796 :             }
#     493                 :          0 :             assert(false);
#     494                 :          0 :             return {};
#     495                 :       1796 :         };
#     496                 :        252 :         return TreeEval<CScript>(false, downfn, upfn);
#     497                 :        252 :     }
#     498                 :            : 
#     499                 :            :     template<typename CTx>
#     500                 :            :     bool ToString(const CTx& ctx, std::string& ret) const {
#     501                 :            :         // To construct the std::string representation for a Miniscript object, we use
#     502                 :            :         // the TreeEvalMaybe algorithm. The State is a boolean: whether the parent node is a
#     503                 :            :         // wrapper. If so, non-wrapper expressions must be prefixed with a ":".
#     504                 :            :         auto downfn = [](bool, const Node& node, size_t) {
#     505                 :            :             return (node.nodetype == Fragment::WRAP_A || node.nodetype == Fragment::WRAP_S ||
#     506                 :            :                     node.nodetype == Fragment::WRAP_D || node.nodetype == Fragment::WRAP_V ||
#     507                 :            :                     node.nodetype == Fragment::WRAP_J || node.nodetype == Fragment::WRAP_N ||
#     508                 :            :                     node.nodetype == Fragment::WRAP_C ||
#     509                 :            :                     (node.nodetype == Fragment::AND_V && node.subs[1]->nodetype == Fragment::JUST_1) ||
#     510                 :            :                     (node.nodetype == Fragment::OR_I && node.subs[0]->nodetype == Fragment::JUST_0) ||
#     511                 :            :                     (node.nodetype == Fragment::OR_I && node.subs[1]->nodetype == Fragment::JUST_0));
#     512                 :            :         };
#     513                 :            :         // The upward function computes for a node, given whether its parent is a wrapper,
#     514                 :            :         // and the string representations of its child nodes, the string representation of the node.
#     515                 :            :         auto upfn = [&ctx](bool wrapped, const Node& node, Span<std::string> subs) -> std::optional<std::string> {
#     516                 :            :             std::string ret = wrapped ? ":" : "";
#     517                 :            : 
#     518                 :            :             switch (node.nodetype) {
#     519                 :            :                 case Fragment::WRAP_A: return "a" + std::move(subs[0]);
#     520                 :            :                 case Fragment::WRAP_S: return "s" + std::move(subs[0]);
#     521                 :            :                 case Fragment::WRAP_C:
#     522                 :            :                     if (node.subs[0]->nodetype == Fragment::PK_K) {
#     523                 :            :                         // pk(K) is syntactic sugar for c:pk_k(K)
#     524                 :            :                         std::string key_str;
#     525                 :            :                         if (!ctx.ToString(node.subs[0]->keys[0], key_str)) return {};
#     526                 :            :                         return std::move(ret) + "pk(" + std::move(key_str) + ")";
#     527                 :            :                     }
#     528                 :            :                     if (node.subs[0]->nodetype == Fragment::PK_H) {
#     529                 :            :                         // pkh(K) is syntactic sugar for c:pk_h(K)
#     530                 :            :                         std::string key_str;
#     531                 :            :                         if (!ctx.ToString(node.subs[0]->keys[0], key_str)) return {};
#     532                 :            :                         return std::move(ret) + "pkh(" + std::move(key_str) + ")";
#     533                 :            :                     }
#     534                 :            :                     return "c" + std::move(subs[0]);
#     535                 :            :                 case Fragment::WRAP_D: return "d" + std::move(subs[0]);
#     536                 :            :                 case Fragment::WRAP_V: return "v" + std::move(subs[0]);
#     537                 :            :                 case Fragment::WRAP_J: return "j" + std::move(subs[0]);
#     538                 :            :                 case Fragment::WRAP_N: return "n" + std::move(subs[0]);
#     539                 :            :                 case Fragment::AND_V:
#     540                 :            :                     // t:X is syntactic sugar for and_v(X,1).
#     541                 :            :                     if (node.subs[1]->nodetype == Fragment::JUST_1) return "t" + std::move(subs[0]);
#     542                 :            :                     break;
#     543                 :            :                 case Fragment::OR_I:
#     544                 :            :                     if (node.subs[0]->nodetype == Fragment::JUST_0) return "l" + std::move(subs[1]);
#     545                 :            :                     if (node.subs[1]->nodetype == Fragment::JUST_0) return "u" + std::move(subs[0]);
#     546                 :            :                     break;
#     547                 :            :                 default: break;
#     548                 :            :             }
#     549                 :            :             switch (node.nodetype) {
#     550                 :            :                 case Fragment::PK_K: {
#     551                 :            :                     std::string key_str;
#     552                 :            :                     if (!ctx.ToString(node.keys[0], key_str)) return {};
#     553                 :            :                     return std::move(ret) + "pk_k(" + std::move(key_str) + ")";
#     554                 :            :                 }
#     555                 :            :                 case Fragment::PK_H: {
#     556                 :            :                     std::string key_str;
#     557                 :            :                     if (!ctx.ToString(node.keys[0], key_str)) return {};
#     558                 :            :                     return std::move(ret) + "pk_h(" + std::move(key_str) + ")";
#     559                 :            :                 }
#     560                 :            :                 case Fragment::AFTER: return std::move(ret) + "after(" + ::ToString(node.k) + ")";
#     561                 :            :                 case Fragment::OLDER: return std::move(ret) + "older(" + ::ToString(node.k) + ")";
#     562                 :            :                 case Fragment::HASH256: return std::move(ret) + "hash256(" + HexStr(node.data) + ")";
#     563                 :            :                 case Fragment::HASH160: return std::move(ret) + "hash160(" + HexStr(node.data) + ")";
#     564                 :            :                 case Fragment::SHA256: return std::move(ret) + "sha256(" + HexStr(node.data) + ")";
#     565                 :            :                 case Fragment::RIPEMD160: return std::move(ret) + "ripemd160(" + HexStr(node.data) + ")";
#     566                 :            :                 case Fragment::JUST_1: return std::move(ret) + "1";
#     567                 :            :                 case Fragment::JUST_0: return std::move(ret) + "0";
#     568                 :            :                 case Fragment::AND_V: return std::move(ret) + "and_v(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     569                 :            :                 case Fragment::AND_B: return std::move(ret) + "and_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     570                 :            :                 case Fragment::OR_B: return std::move(ret) + "or_b(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     571                 :            :                 case Fragment::OR_D: return std::move(ret) + "or_d(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     572                 :            :                 case Fragment::OR_C: return std::move(ret) + "or_c(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     573                 :            :                 case Fragment::OR_I: return std::move(ret) + "or_i(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     574                 :            :                 case Fragment::ANDOR:
#     575                 :            :                     // and_n(X,Y) is syntactic sugar for andor(X,Y,0).
#     576                 :            :                     if (node.subs[2]->nodetype == Fragment::JUST_0) return std::move(ret) + "and_n(" + std::move(subs[0]) + "," + std::move(subs[1]) + ")";
#     577                 :            :                     return std::move(ret) + "andor(" + std::move(subs[0]) + "," + std::move(subs[1]) + "," + std::move(subs[2]) + ")";
#     578                 :            :                 case Fragment::MULTI: {
#     579                 :            :                     auto str = std::move(ret) + "multi(" + ::ToString(node.k);
#     580                 :            :                     for (const auto& key : node.keys) {
#     581                 :            :                         std::string key_str;
#     582                 :            :                         if (!ctx.ToString(key, key_str)) return {};
#     583                 :            :                         str += "," + std::move(key_str);
#     584                 :            :                     }
#     585                 :            :                     return std::move(str) + ")";
#     586                 :            :                 }
#     587                 :            :                 case Fragment::THRESH: {
#     588                 :            :                     auto str = std::move(ret) + "thresh(" + ::ToString(node.k);
#     589                 :            :                     for (auto& sub : subs) {
#     590                 :            :                         str += "," + std::move(sub);
#     591                 :            :                     }
#     592                 :            :                     return std::move(str) + ")";
#     593                 :            :                 }
#     594                 :            :                 default: assert(false);
#     595                 :            :             }
#     596                 :            :             return ""; // Should never be reached.
#     597                 :            :         };
#     598                 :            : 
#     599                 :            :         auto res = TreeEvalMaybe<std::string>(false, downfn, upfn);
#     600                 :            :         if (res.has_value()) ret = std::move(*res);
#     601                 :            :         return res.has_value();
#     602                 :            :     }
#     603                 :            : 
#     604                 :       2054 :     internal::Ops CalcOps() const {
#     605         [ -  + ]:       2054 :         switch (nodetype) {
#     606         [ +  + ]:        234 :             case Fragment::JUST_1: return {0, 0, {}};
#     607         [ +  + ]:        216 :             case Fragment::JUST_0: return {0, {}, 0};
#     608         [ +  + ]:         98 :             case Fragment::PK_K: return {0, 0, 0};
#     609         [ +  + ]:         52 :             case Fragment::PK_H: return {3, 0, 0};
#     610         [ +  + ]:         88 :             case Fragment::OLDER:
#     611         [ +  + ]:        226 :             case Fragment::AFTER: return {1, 0, {}};
#     612         [ +  + ]:         48 :             case Fragment::SHA256:
#     613         [ +  + ]:         64 :             case Fragment::RIPEMD160:
#     614         [ +  + ]:         92 :             case Fragment::HASH256:
#     615         [ +  + ]:        104 :             case Fragment::HASH160: return {4, 0, {}};
#     616         [ +  + ]:        154 :             case Fragment::AND_V: return {subs[0]->ops.count + subs[1]->ops.count, subs[0]->ops.sat + subs[1]->ops.sat, {}};
#     617         [ +  + ]:         40 :             case Fragment::AND_B: {
#     618                 :         40 :                 const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
#     619                 :         40 :                 const auto sat{subs[0]->ops.sat + subs[1]->ops.sat};
#     620                 :         40 :                 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
#     621                 :         40 :                 return {count, sat, dsat};
#     622                 :         92 :             }
#     623         [ +  + ]:         32 :             case Fragment::OR_B: {
#     624                 :         32 :                 const auto count{1 + subs[0]->ops.count + subs[1]->ops.count};
#     625                 :         32 :                 const auto sat{(subs[0]->ops.sat + subs[1]->ops.dsat) | (subs[1]->ops.sat + subs[0]->ops.dsat)};
#     626                 :         32 :                 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
#     627                 :         32 :                 return {count, sat, dsat};
#     628                 :         92 :             }
#     629         [ +  + ]:         40 :             case Fragment::OR_D: {
#     630                 :         40 :                 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
#     631                 :         40 :                 const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
#     632                 :         40 :                 const auto dsat{subs[0]->ops.dsat + subs[1]->ops.dsat};
#     633                 :         40 :                 return {count, sat, dsat};
#     634                 :         92 :             }
#     635         [ +  + ]:         24 :             case Fragment::OR_C: {
#     636                 :         24 :                 const auto count{2 + subs[0]->ops.count + subs[1]->ops.count};
#     637                 :         24 :                 const auto sat{subs[0]->ops.sat | (subs[1]->ops.sat + subs[0]->ops.dsat)};
#     638                 :         24 :                 return {count, sat, {}};
#     639                 :         92 :             }
#     640         [ +  + ]:        180 :             case Fragment::OR_I: {
#     641                 :        180 :                 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count};
#     642                 :        180 :                 const auto sat{subs[0]->ops.sat | subs[1]->ops.sat};
#     643                 :        180 :                 const auto dsat{subs[0]->ops.dsat | subs[1]->ops.dsat};
#     644                 :        180 :                 return {count, sat, dsat};
#     645                 :         92 :             }
#     646         [ +  + ]:         68 :             case Fragment::ANDOR: {
#     647                 :         68 :                 const auto count{3 + subs[0]->ops.count + subs[1]->ops.count + subs[2]->ops.count};
#     648                 :         68 :                 const auto sat{(subs[1]->ops.sat + subs[0]->ops.sat) | (subs[0]->ops.dsat + subs[2]->ops.sat)};
#     649                 :         68 :                 const auto dsat{subs[0]->ops.dsat + subs[2]->ops.dsat};
#     650                 :         68 :                 return {count, sat, dsat};
#     651                 :         92 :             }
#     652         [ +  + ]:         50 :             case Fragment::MULTI: return {1, (uint32_t)keys.size(), (uint32_t)keys.size()};
#     653         [ +  + ]:         22 :             case Fragment::WRAP_S:
#     654         [ +  + ]:        134 :             case Fragment::WRAP_C:
#     655         [ +  + ]:        162 :             case Fragment::WRAP_N: return {1 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
#     656         [ +  + ]:        128 :             case Fragment::WRAP_A: return {2 + subs[0]->ops.count, subs[0]->ops.sat, subs[0]->ops.dsat};
#     657         [ +  + ]:          8 :             case Fragment::WRAP_D: return {3 + subs[0]->ops.count, subs[0]->ops.sat, 0};
#     658         [ +  + ]:         20 :             case Fragment::WRAP_J: return {4 + subs[0]->ops.count, subs[0]->ops.sat, 0};
#     659         [ +  + ]:        186 :             case Fragment::WRAP_V: return {subs[0]->ops.count + (subs[0]->GetType() << "x"_mst), subs[0]->ops.sat, {}};
#     660         [ +  + ]:         32 :             case Fragment::THRESH: {
#     661                 :         32 :                 uint32_t count = 0;
#     662                 :         32 :                 auto sats = Vector(internal::MaxInt<uint32_t>(0));
#     663         [ +  + ]:         92 :                 for (const auto& sub : subs) {
#     664                 :         92 :                     count += sub->ops.count + 1;
#     665                 :         92 :                     auto next_sats = Vector(sats[0] + sub->ops.dsat);
#     666         [ +  + ]:        184 :                     for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ops.dsat) | (sats[j - 1] + sub->ops.sat));
#     667                 :         92 :                     next_sats.push_back(sats[sats.size() - 1] + sub->ops.sat);
#     668                 :         92 :                     sats = std::move(next_sats);
#     669                 :         92 :                 }
#     670                 :         32 :                 assert(k <= sats.size());
#     671                 :          0 :                 return {count, sats[k], sats[0]};
#     672                 :        134 :             }
#     673                 :       2054 :         }
#     674                 :          0 :         assert(false);
#     675                 :          0 :         return {0, {}, {}};
#     676                 :       2054 :     }
#     677                 :            : 
#     678                 :       2054 :     internal::StackSize CalcStackSize() const {
#     679         [ -  + ]:       2054 :         switch (nodetype) {
#     680         [ +  + ]:        216 :             case Fragment::JUST_0: return {{}, 0};
#     681         [ +  + ]:        234 :             case Fragment::JUST_1:
#     682         [ +  + ]:        322 :             case Fragment::OLDER:
#     683         [ +  + ]:        460 :             case Fragment::AFTER: return {0, {}};
#     684         [ +  + ]:         98 :             case Fragment::PK_K: return {1, 1};
#     685         [ +  + ]:         52 :             case Fragment::PK_H: return {2, 2};
#     686         [ +  + ]:         48 :             case Fragment::SHA256:
#     687         [ +  + ]:         64 :             case Fragment::RIPEMD160:
#     688         [ +  + ]:         92 :             case Fragment::HASH256:
#     689         [ +  + ]:        104 :             case Fragment::HASH160: return {1, {}};
#     690         [ +  + ]:         68 :             case Fragment::ANDOR: {
#     691                 :         68 :                 const auto sat{(subs[0]->ss.sat + subs[1]->ss.sat) | (subs[0]->ss.dsat + subs[2]->ss.sat)};
#     692                 :         68 :                 const auto dsat{subs[0]->ss.dsat + subs[2]->ss.dsat};
#     693                 :         68 :                 return {sat, dsat};
#     694                 :         92 :             }
#     695         [ +  + ]:        154 :             case Fragment::AND_V: return {subs[0]->ss.sat + subs[1]->ss.sat, {}};
#     696         [ +  + ]:         40 :             case Fragment::AND_B: return {subs[0]->ss.sat + subs[1]->ss.sat, subs[0]->ss.dsat + subs[1]->ss.dsat};
#     697         [ +  + ]:         32 :             case Fragment::OR_B: {
#     698                 :         32 :                 const auto sat{(subs[0]->ss.dsat + subs[1]->ss.sat) | (subs[0]->ss.sat + subs[1]->ss.dsat)};
#     699                 :         32 :                 const auto dsat{subs[0]->ss.dsat + subs[1]->ss.dsat};
#     700                 :         32 :                 return {sat, dsat};
#     701                 :         92 :             }
#     702         [ +  + ]:         24 :             case Fragment::OR_C: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), {}};
#     703         [ +  + ]:         40 :             case Fragment::OR_D: return {subs[0]->ss.sat | (subs[0]->ss.dsat + subs[1]->ss.sat), subs[0]->ss.dsat + subs[1]->ss.dsat};
#     704         [ +  + ]:        180 :             case Fragment::OR_I: return {(subs[0]->ss.sat + 1) | (subs[1]->ss.sat + 1), (subs[0]->ss.dsat + 1) | (subs[1]->ss.dsat + 1)};
#     705         [ +  + ]:         50 :             case Fragment::MULTI: return {k + 1, k + 1};
#     706         [ +  + ]:        128 :             case Fragment::WRAP_A:
#     707         [ +  + ]:        156 :             case Fragment::WRAP_N:
#     708         [ +  + ]:        178 :             case Fragment::WRAP_S:
#     709         [ +  + ]:        290 :             case Fragment::WRAP_C: return subs[0]->ss;
#     710         [ +  + ]:          8 :             case Fragment::WRAP_D: return {1 + subs[0]->ss.sat, 1};
#     711         [ +  + ]:        186 :             case Fragment::WRAP_V: return {subs[0]->ss.sat, {}};
#     712         [ +  + ]:         20 :             case Fragment::WRAP_J: return {subs[0]->ss.sat, 1};
#     713         [ +  + ]:         32 :             case Fragment::THRESH: {
#     714                 :         32 :                 auto sats = Vector(internal::MaxInt<uint32_t>(0));
#     715         [ +  + ]:         92 :                 for (const auto& sub : subs) {
#     716                 :         92 :                     auto next_sats = Vector(sats[0] + sub->ss.dsat);
#     717         [ +  + ]:        184 :                     for (size_t j = 1; j < sats.size(); ++j) next_sats.push_back((sats[j] + sub->ss.dsat) | (sats[j - 1] + sub->ss.sat));
#     718                 :         92 :                     next_sats.push_back(sats[sats.size() - 1] + sub->ss.sat);
#     719                 :         92 :                     sats = std::move(next_sats);
#     720                 :         92 :                 }
#     721                 :         32 :                 assert(k <= sats.size());
#     722                 :          0 :                 return {sats[k], sats[0]};
#     723                 :        178 :             }
#     724                 :       2054 :         }
#     725                 :          0 :         assert(false);
#     726                 :          0 :         return {{}, {}};
#     727                 :       2054 :     }
#     728                 :            : 
#     729                 :            : public:
#     730                 :            :     //! Return the size of the script for this expression (faster than ToScript().size()).
#     731                 :       4370 :     size_t ScriptSize() const { return scriptlen; }
#     732                 :            : 
#     733                 :            :     //! Return the maximum number of ops needed to satisfy this script non-malleably.
#     734                 :        126 :     uint32_t GetOps() const { return ops.count + ops.sat.value; }
#     735                 :            : 
#     736                 :            :     //! Check the ops limit of this script against the consensus limit.
#     737                 :            :     bool CheckOpsLimit() const { return GetOps() <= MAX_OPS_PER_SCRIPT; }
#     738                 :            : 
#     739                 :            :     /** Return the maximum number of stack elements needed to satisfy this script non-malleably, including
#     740                 :            :      * the script push. */
#     741                 :        126 :     uint32_t GetStackSize() const { return ss.sat.value + 1; }
#     742                 :            : 
#     743                 :            :     //! Check the maximum stack size for this script against the policy limit.
#     744                 :            :     bool CheckStackSize() const { return GetStackSize() - 1 <= MAX_STANDARD_P2WSH_STACK_ITEMS; }
#     745                 :            : 
#     746                 :            :     //! Return the expression type.
#     747                 :       6574 :     Type GetType() const { return typ; }
#     748                 :            : 
#     749                 :            :     //! Check whether this node is valid at all.
#     750 [ +  + ][ +  - ]:       2556 :     bool IsValid() const { return !(GetType() == ""_mst) && ScriptSize() <= MAX_STANDARD_P2WSH_SCRIPT_SIZE; }
#     751                 :            : 
#     752                 :            :     //! Check whether this node is valid as a script on its own.
#     753 [ +  + ][ +  - ]:        432 :     bool IsValidTopLevel() const { return IsValid() && GetType() << "B"_mst; }
#     754                 :            : 
#     755                 :            :     //! Check whether this script can always be satisfied in a non-malleable way.
#     756                 :        126 :     bool IsNonMalleable() const { return GetType() << "m"_mst; }
#     757                 :            : 
#     758                 :            :     //! Check whether this script always needs a signature.
#     759                 :        126 :     bool NeedsSignature() const { return GetType() << "s"_mst; }
#     760                 :            : 
#     761                 :            :     //! Do all sanity checks.
#     762                 :            :     bool IsSane() const { return IsValid() && GetType() << "mk"_mst && CheckOpsLimit() && CheckStackSize(); }
#     763                 :            : 
#     764                 :            :     //! Check whether this node is safe as a script on its own.
#     765                 :            :     bool IsSaneTopLevel() const { return IsValidTopLevel() && IsSane() && NeedsSignature(); }
#     766                 :            : 
#     767                 :            :     //! Equality testing.
#     768                 :            :     bool operator==(const Node<Key>& arg) const
#     769                 :            :     {
#     770                 :            :         if (nodetype != arg.nodetype) return false;
#     771                 :            :         if (k != arg.k) return false;
#     772                 :            :         if (data != arg.data) return false;
#     773                 :            :         if (keys != arg.keys) return false;
#     774                 :            :         if (subs.size() != arg.subs.size()) return false;
#     775                 :            :         for (size_t i = 0; i < subs.size(); ++i) {
#     776                 :            :             if (!(*subs[i] == *arg.subs[i])) return false;
#     777                 :            :         }
#     778                 :            :         assert(scriptlen == arg.scriptlen);
#     779                 :            :         assert(typ == arg.typ);
#     780                 :            :         return true;
#     781                 :            :     }
#     782                 :            : 
#     783                 :            :     // Constructors with various argument combinations.
#     784                 :            :     Node(Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<unsigned char> arg, uint32_t val = 0) : nodetype(nt), k(val), data(std::move(arg)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
#     785                 :        104 :     Node(Fragment nt, std::vector<unsigned char> arg, uint32_t val = 0) : nodetype(nt), k(val), data(std::move(arg)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
#     786                 :            :     Node(Fragment nt, std::vector<NodeRef<Key>> sub, std::vector<Key> key, uint32_t val = 0) : nodetype(nt), k(val), keys(std::move(key)), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
#     787                 :        200 :     Node(Fragment nt, std::vector<Key> key, uint32_t val = 0) : nodetype(nt), k(val), keys(std::move(key)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
#     788                 :       1074 :     Node(Fragment nt, std::vector<NodeRef<Key>> sub, uint32_t val = 0) : nodetype(nt), k(val), subs(std::move(sub)), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
#     789                 :        676 :     Node(Fragment nt, uint32_t val = 0) : nodetype(nt), k(val), ops(CalcOps()), ss(CalcStackSize()), typ(CalcType()), scriptlen(CalcScriptLen()) {}
#     790                 :            : };
#     791                 :            : 
#     792                 :            : namespace internal {
#     793                 :            : 
#     794                 :            : enum class ParseContext {
#     795                 :            :     /** An expression which may be begin with wrappers followed by a colon. */
#     796                 :            :     WRAPPED_EXPR,
#     797                 :            :     /** A miniscript expression which does not begin with wrappers. */
#     798                 :            :     EXPR,
#     799                 :            : 
#     800                 :            :     /** SWAP wraps the top constructed node with s: */
#     801                 :            :     SWAP,
#     802                 :            :     /** ALT wraps the top constructed node with a: */
#     803                 :            :     ALT,
#     804                 :            :     /** CHECK wraps the top constructed node with c: */
#     805                 :            :     CHECK,
#     806                 :            :     /** DUP_IF wraps the top constructed node with d: */
#     807                 :            :     DUP_IF,
#     808                 :            :     /** VERIFY wraps the top constructed node with v: */
#     809                 :            :     VERIFY,
#     810                 :            :     /** NON_ZERO wraps the top constructed node with j: */
#     811                 :            :     NON_ZERO,
#     812                 :            :     /** ZERO_NOTEQUAL wraps the top constructed node with n: */
#     813                 :            :     ZERO_NOTEQUAL,
#     814                 :            :     /** WRAP_U will construct an or_i(X,0) node from the top constructed node. */
#     815                 :            :     WRAP_U,
#     816                 :            :     /** WRAP_T will construct an and_v(X,1) node from the top constructed node. */
#     817                 :            :     WRAP_T,
#     818                 :            : 
#     819                 :            :     /** AND_N will construct an andor(X,Y,0) node from the last two constructed nodes. */
#     820                 :            :     AND_N,
#     821                 :            :     /** AND_V will construct an and_v node from the last two constructed nodes. */
#     822                 :            :     AND_V,
#     823                 :            :     /** AND_B will construct an and_b node from the last two constructed nodes. */
#     824                 :            :     AND_B,
#     825                 :            :     /** ANDOR will construct an andor node from the last three constructed nodes. */
#     826                 :            :     ANDOR,
#     827                 :            :     /** OR_B will construct an or_b node from the last two constructed nodes. */
#     828                 :            :     OR_B,
#     829                 :            :     /** OR_C will construct an or_c node from the last two constructed nodes. */
#     830                 :            :     OR_C,
#     831                 :            :     /** OR_D will construct an or_d node from the last two constructed nodes. */
#     832                 :            :     OR_D,
#     833                 :            :     /** OR_I will construct an or_i node from the last two constructed nodes. */
#     834                 :            :     OR_I,
#     835                 :            : 
#     836                 :            :     /** THRESH will read a wrapped expression, and then look for a COMMA. If
#     837                 :            :      * no comma follows, it will construct a thresh node from the appropriate
#     838                 :            :      * number of constructed children. Otherwise, it will recurse with another
#     839                 :            :      * THRESH. */
#     840                 :            :     THRESH,
#     841                 :            : 
#     842                 :            :     /** COMMA expects the next element to be ',' and fails if not. */
#     843                 :            :     COMMA,
#     844                 :            :     /** CLOSE_BRACKET expects the next element to be ')' and fails if not. */
#     845                 :            :     CLOSE_BRACKET,
#     846                 :            : };
#     847                 :            : 
#     848                 :            : int FindNextChar(Span<const char> in, const char m);
#     849                 :            : 
#     850                 :            : /** Parse a key string ending with a ')' or ','. */
#     851                 :            : template<typename Key, typename Ctx>
#     852                 :            : std::optional<std::pair<Key, int>> ParseKeyEnd(Span<const char> in, const Ctx& ctx)
#     853                 :         80 : {
#     854                 :         80 :     Key key;
#     855                 :         80 :     int key_size = FindNextChar(in, ')');
#     856         [ -  + ]:         80 :     if (key_size < 1) return {};
#     857         [ -  + ]:         80 :     if (!ctx.FromString(in.begin(), in.begin() + key_size, key)) return {};
#     858                 :         80 :     return {{std::move(key), key_size}};
#     859                 :         80 : }
#     860                 :            : 
#     861                 :            : /** Parse a hex string ending at the end of the fragment's text representation. */
#     862                 :            : template<typename Ctx>
#     863                 :            : std::optional<std::pair<std::vector<unsigned char>, int>> ParseHexStrEnd(Span<const char> in, const size_t expected_size,
#     864                 :            :                                                                          const Ctx& ctx)
#     865                 :         52 : {
#     866                 :         52 :     int hash_size = FindNextChar(in, ')');
#     867         [ -  + ]:         52 :     if (hash_size < 1) return {};
#     868                 :         52 :     std::string val = std::string(in.begin(), in.begin() + hash_size);
#     869         [ -  + ]:         52 :     if (!IsHex(val)) return {};
#     870                 :         52 :     auto hash = ParseHex(val);
#     871         [ -  + ]:         52 :     if (hash.size() != expected_size) return {};
#     872                 :         52 :     return {{std::move(hash), hash_size}};
#     873                 :         52 : }
#     874                 :            : 
#     875                 :            : /** BuildBack pops the last two elements off `constructed` and wraps them in the specified Fragment */
#     876                 :            : template<typename Key>
#     877                 :            : void BuildBack(Fragment nt, std::vector<NodeRef<Key>>& constructed, const bool reverse = false)
#     878                 :        406 : {
#     879                 :        406 :     NodeRef<Key> child = std::move(constructed.back());
#     880                 :        406 :     constructed.pop_back();
#     881         [ +  + ]:        406 :     if (reverse) {
#     882                 :        206 :         constructed.back() = MakeNodeRef<Key>(nt, Vector(std::move(child), std::move(constructed.back())));
#     883                 :        206 :     } else {
#     884                 :        200 :         constructed.back() = MakeNodeRef<Key>(nt, Vector(std::move(constructed.back()), std::move(child)));
#     885                 :        200 :     }
#     886                 :        406 : }
#     887                 :            : 
#     888                 :            : //! Parse a miniscript from its textual descriptor form.
#     889                 :            : template<typename Key, typename Ctx>
#     890                 :            : inline NodeRef<Key> Parse(Span<const char> in, const Ctx& ctx)
#     891                 :        192 : {
#     892                 :        192 :     using namespace spanparsing;
#     893                 :            : 
#     894                 :            :     // The two integers are used to hold state for thresh()
#     895                 :        192 :     std::vector<std::tuple<ParseContext, int64_t, int64_t>> to_parse;
#     896                 :        192 :     std::vector<NodeRef<Key>> constructed;
#     897                 :            : 
#     898                 :        192 :     to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#     899                 :            : 
#     900         [ +  + ]:       2568 :     while (!to_parse.empty()) {
#     901                 :            :         // Get the current context we are decoding within
#     902                 :       2388 :         auto [cur_context, n, k] = to_parse.back();
#     903                 :       2388 :         to_parse.pop_back();
#     904                 :            : 
#     905         [ -  + ]:       2388 :         switch (cur_context) {
#     906         [ +  + ]:        668 :         case ParseContext::WRAPPED_EXPR: {
#     907                 :        668 :             int colon_index = -1;
#     908         [ +  - ]:       1448 :             for (int i = 1; i < (int)in.size(); ++i) {
#     909         [ +  + ]:       1448 :                 if (in[i] == ':') {
#     910                 :        292 :                     colon_index = i;
#     911                 :        292 :                     break;
#     912                 :        292 :                 }
#     913 [ +  + ][ -  + ]:       1156 :                 if (in[i] < 'a' || in[i] > 'z') break;
#     914                 :       1156 :             }
#     915                 :            :             // If there is no colon, this loop won't execute
#     916         [ +  + ]:       1054 :             for (int j = 0; j < colon_index; ++j) {
#     917         [ +  + ]:        386 :                 if (in[j] == 'a') {
#     918                 :         82 :                     to_parse.emplace_back(ParseContext::ALT, -1, -1);
#     919         [ +  + ]:        304 :                 } else if (in[j] == 's') {
#     920                 :         12 :                     to_parse.emplace_back(ParseContext::SWAP, -1, -1);
#     921         [ +  + ]:        292 :                 } else if (in[j] == 'c') {
#     922                 :         52 :                     to_parse.emplace_back(ParseContext::CHECK, -1, -1);
#     923         [ +  + ]:        240 :                 } else if (in[j] == 'd') {
#     924                 :          4 :                     to_parse.emplace_back(ParseContext::DUP_IF, -1, -1);
#     925         [ +  + ]:        236 :                 } else if (in[j] == 'j') {
#     926                 :         10 :                     to_parse.emplace_back(ParseContext::NON_ZERO, -1, -1);
#     927         [ +  + ]:        226 :                 } else if (in[j] == 'n') {
#     928                 :         14 :                     to_parse.emplace_back(ParseContext::ZERO_NOTEQUAL, -1, -1);
#     929         [ +  + ]:        212 :                 } else if (in[j] == 'v') {
#     930                 :        100 :                     to_parse.emplace_back(ParseContext::VERIFY, -1, -1);
#     931         [ +  + ]:        112 :                 } else if (in[j] == 'u') {
#     932                 :         24 :                     to_parse.emplace_back(ParseContext::WRAP_U, -1, -1);
#     933         [ +  + ]:         88 :                 } else if (in[j] == 't') {
#     934                 :         44 :                     to_parse.emplace_back(ParseContext::WRAP_T, -1, -1);
#     935         [ +  - ]:         44 :                 } else if (in[j] == 'l') {
#     936                 :            :                     // The l: wrapper is equivalent to or_i(0,X)
#     937                 :         44 :                     constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0));
#     938                 :         44 :                     to_parse.emplace_back(ParseContext::OR_I, -1, -1);
#     939                 :         44 :                 } else {
#     940                 :          0 :                     return {};
#     941                 :          0 :                 }
#     942                 :        386 :             }
#     943                 :        668 :             to_parse.emplace_back(ParseContext::EXPR, -1, -1);
#     944                 :        668 :             in = in.subspan(colon_index + 1);
#     945                 :        668 :             break;
#     946                 :        668 :         }
#     947         [ +  + ]:        668 :         case ParseContext::EXPR: {
#     948         [ +  + ]:        668 :             if (Const("0", in)) {
#     949                 :         56 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0));
#     950         [ +  + ]:        612 :             } else if (Const("1", in)) {
#     951                 :        112 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_1));
#     952         [ +  + ]:        500 :             } else if (Const("pk(", in)) {
#     953                 :          4 :                 auto res = ParseKeyEnd<Key, Ctx>(in, ctx);
#     954         [ -  + ]:          4 :                 if (!res) return {};
#     955                 :          4 :                 auto& [key, key_size] = *res;
#     956                 :          4 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::WRAP_C, Vector(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key))))));
#     957                 :          4 :                 in = in.subspan(key_size + 1);
#     958         [ +  + ]:        496 :             } else if (Const("pkh(", in)) {
#     959                 :          2 :                 auto res = ParseKeyEnd<Key>(in, ctx);
#     960         [ -  + ]:          2 :                 if (!res) return {};
#     961                 :          2 :                 auto& [key, key_size] = *res;
#     962                 :          2 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::WRAP_C, Vector(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key))))));
#     963                 :          2 :                 in = in.subspan(key_size + 1);
#     964         [ +  + ]:        494 :             } else if (Const("pk_k(", in)) {
#     965                 :         50 :                 auto res = ParseKeyEnd<Key>(in, ctx);
#     966         [ -  + ]:         50 :                 if (!res) return {};
#     967                 :         50 :                 auto& [key, key_size] = *res;
#     968                 :         50 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key))));
#     969                 :         50 :                 in = in.subspan(key_size + 1);
#     970         [ +  + ]:        444 :             } else if (Const("pk_h(", in)) {
#     971                 :         24 :                 auto res = ParseKeyEnd<Key>(in, ctx);
#     972         [ -  + ]:         24 :                 if (!res) return {};
#     973                 :         24 :                 auto& [key, key_size] = *res;
#     974                 :         24 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key))));
#     975                 :         24 :                 in = in.subspan(key_size + 1);
#     976         [ +  + ]:        420 :             } else if (Const("sha256(", in)) {
#     977                 :         24 :                 auto res = ParseHexStrEnd(in, 32, ctx);
#     978         [ -  + ]:         24 :                 if (!res) return {};
#     979                 :         24 :                 auto& [hash, hash_size] = *res;
#     980                 :         24 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::SHA256, std::move(hash)));
#     981                 :         24 :                 in = in.subspan(hash_size + 1);
#     982         [ +  + ]:        396 :             } else if (Const("ripemd160(", in)) {
#     983                 :          8 :                 auto res = ParseHexStrEnd(in, 20, ctx);
#     984         [ -  + ]:          8 :                 if (!res) return {};
#     985                 :          8 :                 auto& [hash, hash_size] = *res;
#     986                 :          8 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::RIPEMD160, std::move(hash)));
#     987                 :          8 :                 in = in.subspan(hash_size + 1);
#     988         [ +  + ]:        388 :             } else if (Const("hash256(", in)) {
#     989                 :         14 :                 auto res = ParseHexStrEnd(in, 32, ctx);
#     990         [ -  + ]:         14 :                 if (!res) return {};
#     991                 :         14 :                 auto& [hash, hash_size] = *res;
#     992                 :         14 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::HASH256, std::move(hash)));
#     993                 :         14 :                 in = in.subspan(hash_size + 1);
#     994         [ +  + ]:        374 :             } else if (Const("hash160(", in)) {
#     995                 :          6 :                 auto res = ParseHexStrEnd(in, 20, ctx);
#     996         [ -  + ]:          6 :                 if (!res) return {};
#     997                 :          6 :                 auto& [hash, hash_size] = *res;
#     998                 :          6 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::HASH160, std::move(hash)));
#     999                 :          6 :                 in = in.subspan(hash_size + 1);
#    1000         [ +  + ]:        368 :             } else if (Const("after(", in)) {
#    1001                 :         76 :                 int arg_size = FindNextChar(in, ')');
#    1002         [ -  + ]:         76 :                 if (arg_size < 1) return {};
#    1003                 :         76 :                 int64_t num;
#    1004         [ -  + ]:         76 :                 if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
#    1005 [ +  + ][ +  + ]:         76 :                 if (num < 1 || num >= 0x80000000L) return {};
#    1006                 :         72 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::AFTER, num));
#    1007                 :         72 :                 in = in.subspan(arg_size + 1);
#    1008         [ +  + ]:        292 :             } else if (Const("older(", in)) {
#    1009                 :         48 :                 int arg_size = FindNextChar(in, ')');
#    1010         [ -  + ]:         48 :                 if (arg_size < 1) return {};
#    1011                 :         48 :                 int64_t num;
#    1012         [ -  + ]:         48 :                 if (!ParseInt64(std::string(in.begin(), in.begin() + arg_size), &num)) return {};
#    1013 [ +  + ][ +  + ]:         48 :                 if (num < 1 || num >= 0x80000000L) return {};
#    1014                 :         44 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::OLDER, num));
#    1015                 :         44 :                 in = in.subspan(arg_size + 1);
#    1016         [ +  + ]:        244 :             } else if (Const("multi(", in)) {
#    1017                 :            :                 // Get threshold
#    1018                 :         26 :                 int next_comma = FindNextChar(in, ',');
#    1019         [ -  + ]:         26 :                 if (next_comma < 1) return {};
#    1020         [ -  + ]:         26 :                 if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
#    1021                 :         26 :                 in = in.subspan(next_comma + 1);
#    1022                 :            :                 // Get keys
#    1023                 :         26 :                 std::vector<Key> keys;
#    1024         [ +  + ]:         78 :                 while (next_comma != -1) {
#    1025                 :         52 :                     Key key;
#    1026                 :         52 :                     next_comma = FindNextChar(in, ',');
#    1027         [ +  + ]:         52 :                     int key_length = (next_comma == -1) ? FindNextChar(in, ')') : next_comma;
#    1028         [ -  + ]:         52 :                     if (key_length < 1) return {};
#    1029         [ -  + ]:         52 :                     if (!ctx.FromString(in.begin(), in.begin() + key_length, key)) return {};
#    1030                 :         52 :                     keys.push_back(std::move(key));
#    1031                 :         52 :                     in = in.subspan(key_length + 1);
#    1032                 :         52 :                 }
#    1033 [ -  + ][ -  + ]:         26 :                 if (keys.size() < 1 || keys.size() > 20) return {};
#    1034 [ -  + ][ -  + ]:         26 :                 if (k < 1 || k > (int64_t)keys.size()) return {};
#    1035                 :         26 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::MULTI, std::move(keys), k));
#    1036         [ +  + ]:        218 :             } else if (Const("thresh(", in)) {
#    1037                 :         20 :                 int next_comma = FindNextChar(in, ',');
#    1038         [ -  + ]:         20 :                 if (next_comma < 1) return {};
#    1039         [ -  + ]:         20 :                 if (!ParseInt64(std::string(in.begin(), in.begin() + next_comma), &k)) return {};
#    1040         [ +  + ]:         20 :                 if (k < 1) return {};
#    1041                 :         18 :                 in = in.subspan(next_comma + 1);
#    1042                 :            :                 // n = 1 here because we read the first WRAPPED_EXPR before reaching THRESH
#    1043                 :         18 :                 to_parse.emplace_back(ParseContext::THRESH, 1, k);
#    1044                 :         18 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1045         [ +  + ]:        198 :             } else if (Const("andor(", in)) {
#    1046                 :         30 :                 to_parse.emplace_back(ParseContext::ANDOR, -1, -1);
#    1047                 :         30 :                 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
#    1048                 :         30 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1049                 :         30 :                 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
#    1050                 :         30 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1051                 :         30 :                 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
#    1052                 :         30 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1053                 :        168 :             } else {
#    1054         [ +  + ]:        168 :                 if (Const("and_n(", in)) {
#    1055                 :          8 :                     to_parse.emplace_back(ParseContext::AND_N, -1, -1);
#    1056         [ +  + ]:        160 :                 } else if (Const("and_b(", in)) {
#    1057                 :         24 :                     to_parse.emplace_back(ParseContext::AND_B, -1, -1);
#    1058         [ +  + ]:        136 :                 } else if (Const("and_v(", in)) {
#    1059                 :         40 :                     to_parse.emplace_back(ParseContext::AND_V, -1, -1);
#    1060         [ +  + ]:         96 :                 } else if (Const("or_b(", in)) {
#    1061                 :         22 :                     to_parse.emplace_back(ParseContext::OR_B, -1, -1);
#    1062         [ +  + ]:         74 :                 } else if (Const("or_c(", in)) {
#    1063                 :         16 :                     to_parse.emplace_back(ParseContext::OR_C, -1, -1);
#    1064         [ +  + ]:         58 :                 } else if (Const("or_d(", in)) {
#    1065                 :         24 :                     to_parse.emplace_back(ParseContext::OR_D, -1, -1);
#    1066         [ +  - ]:         34 :                 } else if (Const("or_i(", in)) {
#    1067                 :         34 :                     to_parse.emplace_back(ParseContext::OR_I, -1, -1);
#    1068                 :         34 :                 } else {
#    1069                 :          0 :                     return {};
#    1070                 :          0 :                 }
#    1071                 :        168 :                 to_parse.emplace_back(ParseContext::CLOSE_BRACKET, -1, -1);
#    1072                 :        168 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1073                 :        168 :                 to_parse.emplace_back(ParseContext::COMMA, -1, -1);
#    1074                 :        168 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1075                 :        168 :             }
#    1076                 :        658 :             break;
#    1077                 :        668 :         }
#    1078         [ +  + ]:        658 :         case ParseContext::ALT: {
#    1079                 :         82 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_A, Vector(std::move(constructed.back())));
#    1080                 :         82 :             break;
#    1081                 :        668 :         }
#    1082         [ +  + ]:         12 :         case ParseContext::SWAP: {
#    1083                 :         12 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_S, Vector(std::move(constructed.back())));
#    1084                 :         12 :             break;
#    1085                 :        668 :         }
#    1086         [ +  + ]:         52 :         case ParseContext::CHECK: {
#    1087                 :         52 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_C, Vector(std::move(constructed.back())));
#    1088                 :         52 :             break;
#    1089                 :        668 :         }
#    1090         [ +  + ]:          4 :         case ParseContext::DUP_IF: {
#    1091                 :          4 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_D, Vector(std::move(constructed.back())));
#    1092                 :          4 :             break;
#    1093                 :        668 :         }
#    1094         [ +  + ]:         10 :         case ParseContext::NON_ZERO: {
#    1095                 :         10 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_J, Vector(std::move(constructed.back())));
#    1096                 :         10 :             break;
#    1097                 :        668 :         }
#    1098         [ +  + ]:         14 :         case ParseContext::ZERO_NOTEQUAL: {
#    1099                 :         14 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_N, Vector(std::move(constructed.back())));
#    1100                 :         14 :             break;
#    1101                 :        668 :         }
#    1102         [ +  + ]:        100 :         case ParseContext::VERIFY: {
#    1103                 :        100 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_V, Vector(std::move(constructed.back())));
#    1104                 :        100 :             break;
#    1105                 :        668 :         }
#    1106         [ +  + ]:         20 :         case ParseContext::WRAP_U: {
#    1107                 :         20 :             constructed.back() = MakeNodeRef<Key>(Fragment::OR_I, Vector(std::move(constructed.back()), MakeNodeRef<Key>(Fragment::JUST_0)));
#    1108                 :         20 :             break;
#    1109                 :        668 :         }
#    1110         [ +  + ]:         44 :         case ParseContext::WRAP_T: {
#    1111                 :         44 :             constructed.back() = MakeNodeRef<Key>(Fragment::AND_V, Vector(std::move(constructed.back()), MakeNodeRef<Key>(Fragment::JUST_1)));
#    1112                 :         44 :             break;
#    1113                 :        668 :         }
#    1114         [ +  + ]:         24 :         case ParseContext::AND_B: {
#    1115                 :         24 :             BuildBack(Fragment::AND_B, constructed);
#    1116                 :         24 :             break;
#    1117                 :        668 :         }
#    1118         [ +  + ]:          8 :         case ParseContext::AND_N: {
#    1119                 :          8 :             auto mid = std::move(constructed.back());
#    1120                 :          8 :             constructed.pop_back();
#    1121                 :          8 :             constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), MakeNodeRef<Key>(Fragment::JUST_0)));
#    1122                 :          8 :             break;
#    1123                 :        668 :         }
#    1124         [ +  + ]:         40 :         case ParseContext::AND_V: {
#    1125                 :         40 :             BuildBack(Fragment::AND_V, constructed);
#    1126                 :         40 :             break;
#    1127                 :        668 :         }
#    1128         [ +  + ]:         22 :         case ParseContext::OR_B: {
#    1129                 :         22 :             BuildBack(Fragment::OR_B, constructed);
#    1130                 :         22 :             break;
#    1131                 :        668 :         }
#    1132         [ +  + ]:         16 :         case ParseContext::OR_C: {
#    1133                 :         16 :             BuildBack(Fragment::OR_C, constructed);
#    1134                 :         16 :             break;
#    1135                 :        668 :         }
#    1136         [ +  + ]:         24 :         case ParseContext::OR_D: {
#    1137                 :         24 :             BuildBack(Fragment::OR_D, constructed);
#    1138                 :         24 :             break;
#    1139                 :        668 :         }
#    1140         [ +  + ]:         74 :         case ParseContext::OR_I: {
#    1141                 :         74 :             BuildBack(Fragment::OR_I, constructed);
#    1142                 :         74 :             break;
#    1143                 :        668 :         }
#    1144         [ +  + ]:         30 :         case ParseContext::ANDOR: {
#    1145                 :         30 :             auto right = std::move(constructed.back());
#    1146                 :         30 :             constructed.pop_back();
#    1147                 :         30 :             auto mid = std::move(constructed.back());
#    1148                 :         30 :             constructed.pop_back();
#    1149                 :         30 :             constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(constructed.back()), std::move(mid), std::move(right)));
#    1150                 :         30 :             break;
#    1151                 :        668 :         }
#    1152         [ +  + ]:         50 :         case ParseContext::THRESH: {
#    1153         [ -  + ]:         50 :             if (in.size() < 1) return {};
#    1154         [ +  + ]:         50 :             if (in[0] == ',') {
#    1155                 :         32 :                 in = in.subspan(1);
#    1156                 :         32 :                 to_parse.emplace_back(ParseContext::THRESH, n+1, k);
#    1157                 :         32 :                 to_parse.emplace_back(ParseContext::WRAPPED_EXPR, -1, -1);
#    1158         [ +  - ]:         32 :             } else if (in[0] == ')') {
#    1159         [ +  + ]:         18 :                 if (k > n) return {};
#    1160                 :         16 :                 in = in.subspan(1);
#    1161                 :            :                 // Children are constructed in reverse order, so iterate from end to beginning
#    1162                 :         16 :                 std::vector<NodeRef<Key>> subs;
#    1163         [ +  + ]:         62 :                 for (int i = 0; i < n; ++i) {
#    1164                 :         46 :                     subs.push_back(std::move(constructed.back()));
#    1165                 :         46 :                     constructed.pop_back();
#    1166                 :         46 :                 }
#    1167                 :         16 :                 std::reverse(subs.begin(), subs.end());
#    1168                 :         16 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::THRESH, std::move(subs), k));
#    1169                 :         16 :             } else {
#    1170                 :          0 :                 return {};
#    1171                 :          0 :             }
#    1172                 :         48 :             break;
#    1173                 :         50 :         }
#    1174         [ +  + ]:        228 :         case ParseContext::COMMA: {
#    1175 [ -  + ][ -  + ]:        228 :             if (in.size() < 1 || in[0] != ',') return {};
#    1176                 :        228 :             in = in.subspan(1);
#    1177                 :        228 :             break;
#    1178                 :        228 :         }
#    1179         [ +  + ]:        198 :         case ParseContext::CLOSE_BRACKET: {
#    1180 [ -  + ][ -  + ]:        198 :             if (in.size() < 1 || in[0] != ')') return {};
#    1181                 :        198 :             in = in.subspan(1);
#    1182                 :        198 :             break;
#    1183                 :        198 :         }
#    1184                 :       2388 :         }
#    1185                 :       2388 :     }
#    1186                 :            : 
#    1187                 :            :     // Sanity checks on the produced miniscript
#    1188                 :        180 :     assert(constructed.size() == 1);
#    1189         [ -  + ]:        180 :     if (in.size() > 0) return {};
#    1190                 :        180 :     const NodeRef<Key> tl_node = std::move(constructed.front());
#    1191         [ +  + ]:        180 :     if (!tl_node->IsValidTopLevel()) return {};
#    1192                 :        128 :     return tl_node;
#    1193                 :        180 : }
#    1194                 :            : 
#    1195                 :            : /** Decode a script into opcode/push pairs.
#    1196                 :            :  *
#    1197                 :            :  * Construct a vector with one element per opcode in the script, in reverse order.
#    1198                 :            :  * Each element is a pair consisting of the opcode, as well as the data pushed by
#    1199                 :            :  * the opcode (including OP_n), if any. OP_CHECKSIGVERIFY, OP_CHECKMULTISIGVERIFY,
#    1200                 :            :  * and OP_EQUALVERIFY are decomposed into OP_CHECKSIG, OP_CHECKMULTISIG, OP_EQUAL
#    1201                 :            :  * respectively, plus OP_VERIFY.
#    1202                 :            :  */
#    1203                 :            : bool DecomposeScript(const CScript& script, std::vector<std::pair<opcodetype, std::vector<unsigned char>>>& out);
#    1204                 :            : 
#    1205                 :            : /** Determine whether the passed pair (created by DecomposeScript) is pushing a number. */
#    1206                 :            : bool ParseScriptNumber(const std::pair<opcodetype, std::vector<unsigned char>>& in, int64_t& k);
#    1207                 :            : 
#    1208                 :            : enum class DecodeContext {
#    1209                 :            :     /** A single expression of type B, K, or V. Specifically, this can't be an
#    1210                 :            :      * and_v or an expression of type W (a: and s: wrappers). */
#    1211                 :            :     SINGLE_BKV_EXPR,
#    1212                 :            :     /** Potentially multiple SINGLE_BKV_EXPRs as children of (potentially multiple)
#    1213                 :            :      * and_v expressions. Syntactic sugar for MAYBE_AND_V + SINGLE_BKV_EXPR. */
#    1214                 :            :     BKV_EXPR,
#    1215                 :            :     /** An expression of type W (a: or s: wrappers). */
#    1216                 :            :     W_EXPR,
#    1217                 :            : 
#    1218                 :            :     /** SWAP expects the next element to be OP_SWAP (inside a W-type expression that
#    1219                 :            :      * didn't end with FROMALTSTACK), and wraps the top of the constructed stack
#    1220                 :            :      * with s: */
#    1221                 :            :     SWAP,
#    1222                 :            :     /** ALT expects the next element to be TOALTSTACK (we must have already read a
#    1223                 :            :      * FROMALTSTACK earlier), and wraps the top of the constructed stack with a: */
#    1224                 :            :     ALT,
#    1225                 :            :     /** CHECK wraps the top constructed node with c: */
#    1226                 :            :     CHECK,
#    1227                 :            :     /** DUP_IF wraps the top constructed node with d: */
#    1228                 :            :     DUP_IF,
#    1229                 :            :     /** VERIFY wraps the top constructed node with v: */
#    1230                 :            :     VERIFY,
#    1231                 :            :     /** NON_ZERO wraps the top constructed node with j: */
#    1232                 :            :     NON_ZERO,
#    1233                 :            :     /** ZERO_NOTEQUAL wraps the top constructed node with n: */
#    1234                 :            :     ZERO_NOTEQUAL,
#    1235                 :            : 
#    1236                 :            :     /** MAYBE_AND_V will check if the next part of the script could be a valid
#    1237                 :            :      * miniscript sub-expression, and if so it will push AND_V and SINGLE_BKV_EXPR
#    1238                 :            :      * to decode it and construct the and_v node. This is recursive, to deal with
#    1239                 :            :      * multiple and_v nodes inside each other. */
#    1240                 :            :     MAYBE_AND_V,
#    1241                 :            :     /** AND_V will construct an and_v node from the last two constructed nodes. */
#    1242                 :            :     AND_V,
#    1243                 :            :     /** AND_B will construct an and_b node from the last two constructed nodes. */
#    1244                 :            :     AND_B,
#    1245                 :            :     /** ANDOR will construct an andor node from the last three constructed nodes. */
#    1246                 :            :     ANDOR,
#    1247                 :            :     /** OR_B will construct an or_b node from the last two constructed nodes. */
#    1248                 :            :     OR_B,
#    1249                 :            :     /** OR_C will construct an or_c node from the last two constructed nodes. */
#    1250                 :            :     OR_C,
#    1251                 :            :     /** OR_D will construct an or_d node from the last two constructed nodes. */
#    1252                 :            :     OR_D,
#    1253                 :            : 
#    1254                 :            :     /** In a thresh expression, all sub-expressions other than the first are W-type,
#    1255                 :            :      * and end in OP_ADD. THRESH_W will check for this OP_ADD and either push a W_EXPR
#    1256                 :            :      * or a SINGLE_BKV_EXPR and jump to THRESH_E accordingly. */
#    1257                 :            :     THRESH_W,
#    1258                 :            :     /** THRESH_E constructs a thresh node from the appropriate number of constructed
#    1259                 :            :      * children. */
#    1260                 :            :     THRESH_E,
#    1261                 :            : 
#    1262                 :            :     /** ENDIF signals that we are inside some sort of OP_IF structure, which could be
#    1263                 :            :      * or_d, or_c, or_i, andor, d:, or j: wrapper, depending on what follows. We read
#    1264                 :            :      * a BKV_EXPR and then deal with the next opcode case-by-case. */
#    1265                 :            :     ENDIF,
#    1266                 :            :     /** If, inside an ENDIF context, we find an OP_NOTIF before finding an OP_ELSE,
#    1267                 :            :      * we could either be in an or_d or an or_c node. We then check for IFDUP to
#    1268                 :            :      * distinguish these cases. */
#    1269                 :            :     ENDIF_NOTIF,
#    1270                 :            :     /** If, inside an ENDIF context, we find an OP_ELSE, then we could be in either an
#    1271                 :            :      * or_i or an andor node. Read the next BKV_EXPR and find either an OP_IF or an
#    1272                 :            :      * OP_NOTIF. */
#    1273                 :            :     ENDIF_ELSE,
#    1274                 :            : };
#    1275                 :            : 
#    1276                 :            : //! Parse a miniscript from a bitcoin script
#    1277                 :            : template<typename Key, typename Ctx, typename I>
#    1278                 :            : inline NodeRef<Key> DecodeScript(I& in, I last, const Ctx& ctx)
#    1279                 :        126 : {
#    1280                 :            :     // The two integers are used to hold state for thresh()
#    1281                 :        126 :     std::vector<std::tuple<DecodeContext, int64_t, int64_t>> to_parse;
#    1282                 :        126 :     std::vector<NodeRef<Key>> constructed;
#    1283                 :            : 
#    1284                 :            :     // This is the top level, so we assume the type is B
#    1285                 :            :     // (in particular, disallowing top level W expressions)
#    1286                 :        126 :     to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
#    1287                 :            : 
#    1288         [ +  + ]:       2728 :     while (!to_parse.empty()) {
#    1289                 :            :         // Exit early if the Miniscript is not going to be valid.
#    1290 [ +  + ][ -  + ]:       2602 :         if (!constructed.empty() && !constructed.back()->IsValid()) return {};
#    1291                 :            : 
#    1292                 :            :         // Get the current context we are decoding within
#    1293                 :       2602 :         auto [cur_context, n, k] = to_parse.back();
#    1294                 :       2602 :         to_parse.pop_back();
#    1295                 :            : 
#    1296         [ -  + ]:       2602 :         switch(cur_context) {
#    1297         [ +  + ]:        772 :         case DecodeContext::SINGLE_BKV_EXPR: {
#    1298         [ -  + ]:        772 :             if (in >= last) return {};
#    1299                 :            : 
#    1300                 :            :             // Constants
#    1301         [ +  + ]:        772 :             if (in[0].first == OP_1) {
#    1302                 :         78 :                 ++in;
#    1303                 :         78 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_1));
#    1304                 :         78 :                 break;
#    1305                 :         78 :             }
#    1306         [ +  + ]:        694 :             if (in[0].first == OP_0) {
#    1307                 :         88 :                 ++in;
#    1308                 :         88 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::JUST_0));
#    1309                 :         88 :                 break;
#    1310                 :         88 :             }
#    1311                 :            :             // Public keys
#    1312         [ +  + ]:        606 :             if (in[0].second.size() == 33) {
#    1313                 :         44 :                 Key key;
#    1314         [ -  + ]:         44 :                 if (!ctx.FromPKBytes(in[0].second.begin(), in[0].second.end(), key)) return {};
#    1315                 :         44 :                 ++in;
#    1316                 :         44 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::PK_K, Vector(std::move(key))));
#    1317                 :         44 :                 break;
#    1318                 :         44 :             }
#    1319 [ +  + ][ +  + ]:        562 :             if (last - in >= 5 && in[0].first == OP_VERIFY && in[1].first == OP_EQUAL && in[3].first == OP_HASH160 && in[4].first == OP_DUP && in[2].second.size() == 20) {
#         [ +  + ][ +  + ]
#         [ +  + ][ +  - ]
#    1320                 :         26 :                 Key key;
#    1321         [ -  + ]:         26 :                 if (!ctx.FromPKHBytes(in[2].second.begin(), in[2].second.end(), key)) return {};
#    1322                 :         26 :                 in += 5;
#    1323                 :         26 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::PK_H, Vector(std::move(key))));
#    1324                 :         26 :                 break;
#    1325                 :         26 :             }
#    1326                 :            :             // Time locks
#    1327 [ +  - ][ +  + ]:        536 :             if (last - in >= 2 && in[0].first == OP_CHECKSEQUENCEVERIFY && ParseScriptNumber(in[1], k)) {
#                 [ +  - ]
#    1328                 :         44 :                 in += 2;
#    1329 [ -  + ][ -  + ]:         44 :                 if (k < 1 || k > 0x7FFFFFFFL) return {};
#    1330                 :         44 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::OLDER, k));
#    1331                 :         44 :                 break;
#    1332                 :         44 :             }
#    1333 [ +  - ][ +  + ]:        492 :             if (last - in >= 2 && in[0].first == OP_CHECKLOCKTIMEVERIFY && ParseScriptNumber(in[1], k)) {
#                 [ +  - ]
#    1334                 :         66 :                 in += 2;
#    1335 [ -  + ][ -  + ]:         66 :                 if (k < 1 || k > 0x7FFFFFFFL) return {};
#    1336                 :         66 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::AFTER, k));
#    1337                 :         66 :                 break;
#    1338                 :         66 :             }
#    1339                 :            :             // Hashes
#    1340 [ +  + ][ +  + ]:        426 :             if (last - in >= 7 && in[0].first == OP_EQUAL && in[3].first == OP_VERIFY && in[4].first == OP_EQUAL && ParseScriptNumber(in[5], k) && k == 32 && in[6].first == OP_SIZE) {
#         [ +  + ][ +  - ]
#         [ +  - ][ +  - ]
#                 [ +  - ]
#    1341 [ +  + ][ +  - ]:         52 :                 if (in[2].first == OP_SHA256 && in[1].second.size() == 32) {
#    1342                 :         24 :                     constructed.push_back(MakeNodeRef<Key>(Fragment::SHA256, in[1].second));
#    1343                 :         24 :                     in += 7;
#    1344                 :         24 :                     break;
#    1345 [ +  + ][ +  - ]:         28 :                 } else if (in[2].first == OP_RIPEMD160 && in[1].second.size() == 20) {
#    1346                 :          8 :                     constructed.push_back(MakeNodeRef<Key>(Fragment::RIPEMD160, in[1].second));
#    1347                 :          8 :                     in += 7;
#    1348                 :          8 :                     break;
#    1349 [ +  + ][ +  - ]:         20 :                 } else if (in[2].first == OP_HASH256 && in[1].second.size() == 32) {
#    1350                 :         14 :                     constructed.push_back(MakeNodeRef<Key>(Fragment::HASH256, in[1].second));
#    1351                 :         14 :                     in += 7;
#    1352                 :         14 :                     break;
#    1353 [ +  - ][ +  - ]:         14 :                 } else if (in[2].first == OP_HASH160 && in[1].second.size() == 20) {
#    1354                 :          6 :                     constructed.push_back(MakeNodeRef<Key>(Fragment::HASH160, in[1].second));
#    1355                 :          6 :                     in += 7;
#    1356                 :          6 :                     break;
#    1357                 :          6 :                 }
#    1358                 :         52 :             }
#    1359                 :            :             // Multi
#    1360 [ +  + ][ +  + ]:        374 :             if (last - in >= 3 && in[0].first == OP_CHECKMULTISIG) {
#    1361                 :         24 :                 std::vector<Key> keys;
#    1362         [ -  + ]:         24 :                 if (!ParseScriptNumber(in[1], n)) return {};
#    1363         [ -  + ]:         24 :                 if (last - in < 3 + n) return {};
#    1364 [ -  + ][ -  + ]:         24 :                 if (n < 1 || n > 20) return {};
#    1365         [ +  + ]:         70 :                 for (int i = 0; i < n; ++i) {
#    1366                 :         46 :                     Key key;
#    1367         [ -  + ]:         46 :                     if (in[2 + i].second.size() != 33) return {};
#    1368         [ -  + ]:         46 :                     if (!ctx.FromPKBytes(in[2 + i].second.begin(), in[2 + i].second.end(), key)) return {};
#    1369                 :         46 :                     keys.push_back(std::move(key));
#    1370                 :         46 :                 }
#    1371         [ -  + ]:         24 :                 if (!ParseScriptNumber(in[2 + n], k)) return {};
#    1372 [ -  + ][ -  + ]:         24 :                 if (k < 1 || k > n) return {};
#    1373                 :         24 :                 in += 3 + n;
#    1374                 :         24 :                 std::reverse(keys.begin(), keys.end());
#    1375                 :         24 :                 constructed.push_back(MakeNodeRef<Key>(Fragment::MULTI, std::move(keys), k));
#    1376                 :         24 :                 break;
#    1377                 :         24 :             }
#    1378                 :            :             /** In the following wrappers, we only need to push SINGLE_BKV_EXPR rather
#    1379                 :            :              * than BKV_EXPR, because and_v commutes with these wrappers. For example,
#    1380                 :            :              * c:and_v(X,Y) produces the same script as and_v(X,c:Y). */
#    1381                 :            :             // c: wrapper
#    1382         [ +  + ]:        350 :             if (in[0].first == OP_CHECKSIG) {
#    1383                 :         54 :                 ++in;
#    1384                 :         54 :                 to_parse.emplace_back(DecodeContext::CHECK, -1, -1);
#    1385                 :         54 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1386                 :         54 :                 break;
#    1387                 :         54 :             }
#    1388                 :            :             // v: wrapper
#    1389         [ +  + ]:        296 :             if (in[0].first == OP_VERIFY) {
#    1390                 :         86 :                 ++in;
#    1391                 :         86 :                 to_parse.emplace_back(DecodeContext::VERIFY, -1, -1);
#    1392                 :         86 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1393                 :         86 :                 break;
#    1394                 :         86 :             }
#    1395                 :            :             // n: wrapper
#    1396         [ +  + ]:        210 :             if (in[0].first == OP_0NOTEQUAL) {
#    1397                 :         14 :                 ++in;
#    1398                 :         14 :                 to_parse.emplace_back(DecodeContext::ZERO_NOTEQUAL, -1, -1);
#    1399                 :         14 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1400                 :         14 :                 break;
#    1401                 :         14 :             }
#    1402                 :            :             // Thresh
#    1403 [ +  - ][ +  + ]:        196 :             if (last - in >= 3 && in[0].first == OP_EQUAL && ParseScriptNumber(in[1], k)) {
#                 [ +  - ]
#    1404         [ -  + ]:         16 :                 if (k < 1) return {};
#    1405                 :         16 :                 in += 2;
#    1406                 :         16 :                 to_parse.emplace_back(DecodeContext::THRESH_W, 0, k);
#    1407                 :         16 :                 break;
#    1408                 :         16 :             }
#    1409                 :            :             // OP_ENDIF can be WRAP_J, WRAP_D, ANDOR, OR_C, OR_D, or OR_I
#    1410         [ +  + ]:        180 :             if (in[0].first == OP_ENDIF) {
#    1411                 :        154 :                 ++in;
#    1412                 :        154 :                 to_parse.emplace_back(DecodeContext::ENDIF, -1, -1);
#    1413                 :        154 :                 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
#    1414                 :        154 :                 break;
#    1415                 :        154 :             }
#    1416                 :            :             /** In and_b and or_b nodes, we only look for SINGLE_BKV_EXPR, because
#    1417                 :            :              * or_b(and_v(X,Y),Z) has script [X] [Y] [Z] OP_BOOLOR, the same as
#    1418                 :            :              * and_v(X,or_b(Y,Z)). In this example, the former of these is invalid as
#    1419                 :            :              * miniscript, while the latter is valid. So we leave the and_v "outside"
#    1420                 :            :              * while decoding. */
#    1421                 :            :             // and_b
#    1422         [ +  + ]:         26 :             if (in[0].first == OP_BOOLAND) {
#    1423                 :         16 :                 ++in;
#    1424                 :         16 :                 to_parse.emplace_back(DecodeContext::AND_B, -1, -1);
#    1425                 :         16 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1426                 :         16 :                 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
#    1427                 :         16 :                 break;
#    1428                 :         16 :             }
#    1429                 :            :             // or_b
#    1430         [ +  - ]:         10 :             if (in[0].first == OP_BOOLOR) {
#    1431                 :         10 :                 ++in;
#    1432                 :         10 :                 to_parse.emplace_back(DecodeContext::OR_B, -1, -1);
#    1433                 :         10 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1434                 :         10 :                 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
#    1435                 :         10 :                 break;
#    1436                 :         10 :             }
#    1437                 :            :             // Unrecognised expression
#    1438                 :          0 :             return {};
#    1439                 :         10 :         }
#    1440         [ +  + ]:        522 :         case DecodeContext::BKV_EXPR: {
#    1441                 :        522 :             to_parse.emplace_back(DecodeContext::MAYBE_AND_V, -1, -1);
#    1442                 :        522 :             to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1443                 :        522 :             break;
#    1444                 :         10 :         }
#    1445         [ +  + ]:         56 :         case DecodeContext::W_EXPR: {
#    1446                 :            :             // a: wrapper
#    1447         [ -  + ]:         56 :             if (in >= last) return {};
#    1448         [ +  + ]:         56 :             if (in[0].first == OP_FROMALTSTACK) {
#    1449                 :         46 :                 ++in;
#    1450                 :         46 :                 to_parse.emplace_back(DecodeContext::ALT, -1, -1);
#    1451                 :         46 :             } else {
#    1452                 :         10 :                 to_parse.emplace_back(DecodeContext::SWAP, -1, -1);
#    1453                 :         10 :             }
#    1454                 :         56 :             to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
#    1455                 :         56 :             break;
#    1456                 :         56 :         }
#    1457         [ +  + ]:        522 :         case DecodeContext::MAYBE_AND_V: {
#    1458                 :            :             // If we reach a potential AND_V top-level, check if the next part of the script could be another AND_V child
#    1459                 :            :             // These op-codes cannot end any well-formed miniscript so cannot be used in an and_v node.
#    1460 [ +  + ][ +  + ]:        522 :             if (in < last && in[0].first != OP_IF && in[0].first != OP_ELSE && in[0].first != OP_NOTIF && in[0].first != OP_TOALTSTACK && in[0].first != OP_SWAP) {
#         [ +  + ][ +  + ]
#         [ +  + ][ +  + ]
#    1461                 :         70 :                 to_parse.emplace_back(DecodeContext::AND_V, -1, -1);
#    1462                 :            :                 // BKV_EXPR can contain more AND_V nodes
#    1463                 :         70 :                 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
#    1464                 :         70 :             }
#    1465                 :        522 :             break;
#    1466                 :         56 :         }
#    1467         [ +  + ]:         10 :         case DecodeContext::SWAP: {
#    1468 [ -  + ][ -  + ]:         10 :             if (in >= last || in[0].first != OP_SWAP || constructed.empty()) return {};
#                 [ -  + ]
#    1469                 :         10 :             ++in;
#    1470                 :         10 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_S, Vector(std::move(constructed.back())));
#    1471                 :         10 :             break;
#    1472                 :         10 :         }
#    1473         [ +  + ]:         46 :         case DecodeContext::ALT: {
#    1474 [ -  + ][ -  + ]:         46 :             if (in >= last || in[0].first != OP_TOALTSTACK || constructed.empty()) return {};
#                 [ -  + ]
#    1475                 :         46 :             ++in;
#    1476                 :         46 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_A, Vector(std::move(constructed.back())));
#    1477                 :         46 :             break;
#    1478                 :         46 :         }
#    1479         [ +  + ]:         54 :         case DecodeContext::CHECK: {
#    1480         [ -  + ]:         54 :             if (constructed.empty()) return {};
#    1481                 :         54 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_C, Vector(std::move(constructed.back())));
#    1482                 :         54 :             break;
#    1483                 :         54 :         }
#    1484         [ +  + ]:          4 :         case DecodeContext::DUP_IF: {
#    1485         [ -  + ]:          4 :             if (constructed.empty()) return {};
#    1486                 :          4 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_D, Vector(std::move(constructed.back())));
#    1487                 :          4 :             break;
#    1488                 :          4 :         }
#    1489         [ +  + ]:         86 :         case DecodeContext::VERIFY: {
#    1490         [ -  + ]:         86 :             if (constructed.empty()) return {};
#    1491                 :         86 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_V, Vector(std::move(constructed.back())));
#    1492                 :         86 :             break;
#    1493                 :         86 :         }
#    1494         [ +  + ]:         10 :         case DecodeContext::NON_ZERO: {
#    1495         [ -  + ]:         10 :             if (constructed.empty()) return {};
#    1496                 :         10 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_J, Vector(std::move(constructed.back())));
#    1497                 :         10 :             break;
#    1498                 :         10 :         }
#    1499         [ +  + ]:         14 :         case DecodeContext::ZERO_NOTEQUAL: {
#    1500         [ -  + ]:         14 :             if (constructed.empty()) return {};
#    1501                 :         14 :             constructed.back() = MakeNodeRef<Key>(Fragment::WRAP_N, Vector(std::move(constructed.back())));
#    1502                 :         14 :             break;
#    1503                 :         14 :         }
#    1504         [ +  + ]:         70 :         case DecodeContext::AND_V: {
#    1505         [ -  + ]:         70 :             if (constructed.size() < 2) return {};
#    1506                 :         70 :             BuildBack(Fragment::AND_V, constructed, /*reverse=*/true);
#    1507                 :         70 :             break;
#    1508                 :         70 :         }
#    1509         [ +  + ]:         16 :         case DecodeContext::AND_B: {
#    1510         [ -  + ]:         16 :             if (constructed.size() < 2) return {};
#    1511                 :         16 :             BuildBack(Fragment::AND_B, constructed, /*reverse=*/true);
#    1512                 :         16 :             break;
#    1513                 :         16 :         }
#    1514         [ +  + ]:         10 :         case DecodeContext::OR_B: {
#    1515         [ -  + ]:         10 :             if (constructed.size() < 2) return {};
#    1516                 :         10 :             BuildBack(Fragment::OR_B, constructed, /*reverse=*/true);
#    1517                 :         10 :             break;
#    1518                 :         10 :         }
#    1519         [ +  + ]:          8 :         case DecodeContext::OR_C: {
#    1520         [ -  + ]:          8 :             if (constructed.size() < 2) return {};
#    1521                 :          8 :             BuildBack(Fragment::OR_C, constructed, /*reverse=*/true);
#    1522                 :          8 :             break;
#    1523                 :          8 :         }
#    1524         [ +  + ]:         16 :         case DecodeContext::OR_D: {
#    1525         [ -  + ]:         16 :             if (constructed.size() < 2) return {};
#    1526                 :         16 :             BuildBack(Fragment::OR_D, constructed, /*reverse=*/true);
#    1527                 :         16 :             break;
#    1528                 :         16 :         }
#    1529         [ +  + ]:         30 :         case DecodeContext::ANDOR: {
#    1530         [ -  + ]:         30 :             if (constructed.size() < 3) return {};
#    1531                 :         30 :             NodeRef<Key> left = std::move(constructed.back());
#    1532                 :         30 :             constructed.pop_back();
#    1533                 :         30 :             NodeRef<Key> right = std::move(constructed.back());
#    1534                 :         30 :             constructed.pop_back();
#    1535                 :         30 :             NodeRef<Key> mid = std::move(constructed.back());
#    1536                 :         30 :             constructed.back() = MakeNodeRef<Key>(Fragment::ANDOR, Vector(std::move(left), std::move(mid), std::move(right)));
#    1537                 :         30 :             break;
#    1538                 :         30 :         }
#    1539         [ +  + ]:         46 :         case DecodeContext::THRESH_W: {
#    1540         [ -  + ]:         46 :             if (in >= last) return {};
#    1541         [ +  + ]:         46 :             if (in[0].first == OP_ADD) {
#    1542                 :         30 :                 ++in;
#    1543                 :         30 :                 to_parse.emplace_back(DecodeContext::THRESH_W, n+1, k);
#    1544                 :         30 :                 to_parse.emplace_back(DecodeContext::W_EXPR, -1, -1);
#    1545                 :         30 :             } else {
#    1546                 :         16 :                 to_parse.emplace_back(DecodeContext::THRESH_E, n+1, k);
#    1547                 :            :                 // All children of thresh have type modifier d, so cannot be and_v
#    1548                 :         16 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1549                 :         16 :             }
#    1550                 :         46 :             break;
#    1551                 :         46 :         }
#    1552         [ +  + ]:         16 :         case DecodeContext::THRESH_E: {
#    1553 [ -  + ][ -  + ]:         16 :             if (k < 1 || k > n || constructed.size() < static_cast<size_t>(n)) return {};
#                 [ -  + ]
#    1554                 :         16 :             std::vector<NodeRef<Key>> subs;
#    1555         [ +  + ]:         62 :             for (int i = 0; i < n; ++i) {
#    1556                 :         46 :                 NodeRef<Key> sub = std::move(constructed.back());
#    1557                 :         46 :                 constructed.pop_back();
#    1558                 :         46 :                 subs.push_back(std::move(sub));
#    1559                 :         46 :             }
#    1560                 :         16 :             constructed.push_back(MakeNodeRef<Key>(Fragment::THRESH, std::move(subs), k));
#    1561                 :         16 :             break;
#    1562                 :         16 :         }
#    1563         [ +  + ]:        154 :         case DecodeContext::ENDIF: {
#    1564         [ -  + ]:        154 :             if (in >= last) return {};
#    1565                 :            : 
#    1566                 :            :             // could be andor or or_i
#    1567         [ +  + ]:        154 :             if (in[0].first == OP_ELSE) {
#    1568                 :        116 :                 ++in;
#    1569                 :        116 :                 to_parse.emplace_back(DecodeContext::ENDIF_ELSE, -1, -1);
#    1570                 :        116 :                 to_parse.emplace_back(DecodeContext::BKV_EXPR, -1, -1);
#    1571                 :        116 :             }
#    1572                 :            :             // could be j: or d: wrapper
#    1573         [ +  + ]:         38 :             else if (in[0].first == OP_IF) {
#    1574 [ +  - ][ +  + ]:         14 :                 if (last - in >= 2 && in[1].first == OP_DUP) {
#    1575                 :          4 :                     in += 2;
#    1576                 :          4 :                     to_parse.emplace_back(DecodeContext::DUP_IF, -1, -1);
#    1577 [ +  - ][ +  - ]:         10 :                 } else if (last - in >= 3 && in[1].first == OP_0NOTEQUAL && in[2].first == OP_SIZE) {
#                 [ +  - ]
#    1578                 :         10 :                     in += 3;
#    1579                 :         10 :                     to_parse.emplace_back(DecodeContext::NON_ZERO, -1, -1);
#    1580                 :         10 :                 }
#    1581                 :          0 :                 else {
#    1582                 :          0 :                     return {};
#    1583                 :          0 :                 }
#    1584                 :            :             // could be or_c or or_d
#    1585         [ +  - ]:         24 :             } else if (in[0].first == OP_NOTIF) {
#    1586                 :         24 :                 ++in;
#    1587                 :         24 :                 to_parse.emplace_back(DecodeContext::ENDIF_NOTIF, -1, -1);
#    1588                 :         24 :             }
#    1589                 :          0 :             else {
#    1590                 :          0 :                 return {};
#    1591                 :          0 :             }
#    1592                 :        154 :             break;
#    1593                 :        154 :         }
#    1594         [ +  + ]:        154 :         case DecodeContext::ENDIF_NOTIF: {
#    1595         [ -  + ]:         24 :             if (in >= last) return {};
#    1596         [ +  + ]:         24 :             if (in[0].first == OP_IFDUP) {
#    1597                 :         16 :                 ++in;
#    1598                 :         16 :                 to_parse.emplace_back(DecodeContext::OR_D, -1, -1);
#    1599                 :         16 :             } else {
#    1600                 :          8 :                 to_parse.emplace_back(DecodeContext::OR_C, -1, -1);
#    1601                 :          8 :             }
#    1602                 :            :             // or_c and or_d both require X to have type modifier d so, can't contain and_v
#    1603                 :         24 :             to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1604                 :         24 :             break;
#    1605                 :         24 :         }
#    1606         [ +  + ]:        116 :         case DecodeContext::ENDIF_ELSE: {
#    1607         [ -  + ]:        116 :             if (in >= last) return {};
#    1608         [ +  + ]:        116 :             if (in[0].first == OP_IF) {
#    1609                 :         86 :                 ++in;
#    1610                 :         86 :                 BuildBack(Fragment::OR_I, constructed, /*reverse=*/true);
#    1611         [ +  - ]:         86 :             } else if (in[0].first == OP_NOTIF) {
#    1612                 :         30 :                 ++in;
#    1613                 :         30 :                 to_parse.emplace_back(DecodeContext::ANDOR, -1, -1);
#    1614                 :            :                 // andor requires X to have type modifier d, so it can't be and_v
#    1615                 :         30 :                 to_parse.emplace_back(DecodeContext::SINGLE_BKV_EXPR, -1, -1);
#    1616                 :         30 :             } else {
#    1617                 :          0 :                 return {};
#    1618                 :          0 :             }
#    1619                 :        116 :             break;
#    1620                 :        116 :         }
#    1621                 :       2602 :         }
#    1622                 :       2602 :     }
#    1623         [ -  + ]:        126 :     if (constructed.size() != 1) return {};
#    1624                 :        126 :     const NodeRef<Key> tl_node = std::move(constructed.front());
#    1625                 :            :     // Note that due to how ComputeType works (only assign the type to the node if the
#    1626                 :            :     // subs' types are valid) this would fail if any node of tree is badly typed.
#    1627         [ -  + ]:        126 :     if (!tl_node->IsValidTopLevel()) return {};
#    1628                 :        126 :     return tl_node;
#    1629                 :        126 : }
#    1630                 :            : 
#    1631                 :            : } // namespace internal
#    1632                 :            : 
#    1633                 :            : template<typename Ctx>
#    1634                 :        192 : inline NodeRef<typename Ctx::Key> FromString(const std::string& str, const Ctx& ctx) {
#    1635                 :        192 :     return internal::Parse<typename Ctx::Key>(str, ctx);
#    1636                 :        192 : }
#    1637                 :            : 
#    1638                 :            : template<typename Ctx>
#    1639                 :        130 : inline NodeRef<typename Ctx::Key> FromScript(const CScript& script, const Ctx& ctx) {
#    1640                 :        130 :     using namespace internal;
#    1641                 :        130 :     std::vector<std::pair<opcodetype, std::vector<unsigned char>>> decomposed;
#    1642         [ +  + ]:        130 :     if (!DecomposeScript(script, decomposed)) return {};
#    1643                 :        126 :     auto it = decomposed.begin();
#    1644                 :        126 :     auto ret = DecodeScript<typename Ctx::Key>(it, decomposed.end(), ctx);
#    1645         [ -  + ]:        126 :     if (!ret) return {};
#    1646         [ -  + ]:        126 :     if (it != decomposed.end()) return {};
#    1647                 :        126 :     return ret;
#    1648                 :        126 : }
#    1649                 :            : 
#    1650                 :            : } // namespace miniscript
#    1651                 :            : 
#    1652                 :            : #endif // BITCOIN_SCRIPT_MINISCRIPT_H

Generated by: LCOV version 0-eol-96201-ge66f56f4af6a