LCOV - code coverage report
Current view: top level - src/common - bloom.cpp (source / functions) Hit Total Coverage
Test: coverage.lcov Lines: 142 146 97.3 %
Date: 2022-04-21 14:51:19 Functions: 13 13 100.0 %
Legend: Modified by patch:
Lines: hit not hit | Branches: + taken - not taken # not executed

Not modified by patch:
Lines: hit not hit | Branches: + taken - not taken # not executed
Branches: 57 62 91.9 %

           Branch data     Line data    Source code
#       1                 :            : // Copyright (c) 2012-2021 The Bitcoin Core developers
#       2                 :            : // Distributed under the MIT software license, see the accompanying
#       3                 :            : // file COPYING or http://www.opensource.org/licenses/mit-license.php.
#       4                 :            : 
#       5                 :            : #include <common/bloom.h>
#       6                 :            : 
#       7                 :            : #include <hash.h>
#       8                 :            : #include <primitives/transaction.h>
#       9                 :            : #include <random.h>
#      10                 :            : #include <script/script.h>
#      11                 :            : #include <script/standard.h>
#      12                 :            : #include <span.h>
#      13                 :            : #include <streams.h>
#      14                 :            : #include <util/fastrange.h>
#      15                 :            : 
#      16                 :            : #include <algorithm>
#      17                 :            : #include <cmath>
#      18                 :            : #include <cstdlib>
#      19                 :            : #include <limits>
#      20                 :            : #include <vector>
#      21                 :            : 
#      22                 :            : static constexpr double LN2SQUARED = 0.4804530139182014246671025263266649717305529515945455;
#      23                 :            : static constexpr double LN2 = 0.6931471805599453094172321214581765680755001343602552;
#      24                 :            : 
#      25                 :            : CBloomFilter::CBloomFilter(const unsigned int nElements, const double nFPRate, const unsigned int nTweakIn, unsigned char nFlagsIn) :
#      26                 :            :     /**
#      27                 :            :      * The ideal size for a bloom filter with a given number of elements and false positive rate is:
#      28                 :            :      * - nElements * log(fp rate) / ln(2)^2
#      29                 :            :      * We ignore filter parameters which will create a bloom filter larger than the protocol limits
#      30                 :            :      */
#      31                 :            :     vData(std::min((unsigned int)(-1  / LN2SQUARED * nElements * log(nFPRate)), MAX_BLOOM_FILTER_SIZE * 8) / 8),
#      32                 :            :     /**
#      33                 :            :      * The ideal number of hash functions is filter size * ln(2) / number of elements
#      34                 :            :      * Again, we ignore filter parameters which will create a bloom filter with more hash functions than the protocol limits
#      35                 :            :      * See https://en.wikipedia.org/wiki/Bloom_filter for an explanation of these formulas
#      36                 :            :      */
#      37                 :            :     nHashFuncs(std::min((unsigned int)(vData.size() * 8 / nElements * LN2), MAX_HASH_FUNCS)),
#      38                 :            :     nTweak(nTweakIn),
#      39                 :            :     nFlags(nFlagsIn)
#      40                 :         44 : {
#      41                 :         44 : }
#      42                 :            : 
#      43                 :            : inline unsigned int CBloomFilter::Hash(unsigned int nHashNum, Span<const unsigned char> vDataToHash) const
#      44                 :       3570 : {
#      45                 :            :     // 0xFBA4C795 chosen as it guarantees a reasonable bit difference between nHashNum values.
#      46                 :       3570 :     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash) % (vData.size() * 8);
#      47                 :       3570 : }
#      48                 :            : 
#      49                 :            : void CBloomFilter::insert(Span<const unsigned char> vKey)
#      50                 :         84 : {
#      51         [ +  + ]:         84 :     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
#      52                 :          2 :         return;
#      53         [ +  + ]:       1459 :     for (unsigned int i = 0; i < nHashFuncs; i++)
#      54                 :       1377 :     {
#      55                 :       1377 :         unsigned int nIndex = Hash(i, vKey);
#      56                 :            :         // Sets bit nIndex of vData
#      57                 :       1377 :         vData[nIndex >> 3] |= (1 << (7 & nIndex));
#      58                 :       1377 :     }
#      59                 :         82 : }
#      60                 :            : 
#      61                 :            : void CBloomFilter::insert(const COutPoint& outpoint)
#      62                 :         21 : {
#      63                 :         21 :     CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
#      64                 :         21 :     stream << outpoint;
#      65                 :         21 :     insert(MakeUCharSpan(stream));
#      66                 :         21 : }
#      67                 :            : 
#      68                 :            : bool CBloomFilter::contains(Span<const unsigned char> vKey) const
#      69                 :        887 : {
#      70         [ -  + ]:        887 :     if (vData.empty()) // Avoid divide-by-zero (CVE-2013-5700)
#      71                 :          0 :         return true;
#      72         [ +  + ]:       2272 :     for (unsigned int i = 0; i < nHashFuncs; i++)
#      73                 :       2193 :     {
#      74                 :       2193 :         unsigned int nIndex = Hash(i, vKey);
#      75                 :            :         // Checks bit nIndex of vData
#      76         [ +  + ]:       2193 :         if (!(vData[nIndex >> 3] & (1 << (7 & nIndex))))
#      77                 :        808 :             return false;
#      78                 :       2193 :     }
#      79                 :         79 :     return true;
#      80                 :        887 : }
#      81                 :            : 
#      82                 :            : bool CBloomFilter::contains(const COutPoint& outpoint) const
#      83                 :        180 : {
#      84                 :        180 :     CDataStream stream(SER_NETWORK, PROTOCOL_VERSION);
#      85                 :        180 :     stream << outpoint;
#      86                 :        180 :     return contains(MakeUCharSpan(stream));
#      87                 :        180 : }
#      88                 :            : 
#      89                 :            : bool CBloomFilter::IsWithinSizeConstraints() const
#      90                 :          9 : {
#      91 [ +  + ][ +  + ]:          9 :     return vData.size() <= MAX_BLOOM_FILTER_SIZE && nHashFuncs <= MAX_HASH_FUNCS;
#      92                 :          9 : }
#      93                 :            : 
#      94                 :            : bool CBloomFilter::IsRelevantAndUpdate(const CTransaction& tx)
#      95                 :        161 : {
#      96                 :        161 :     bool fFound = false;
#      97                 :            :     // Match if the filter contains the hash of tx
#      98                 :            :     //  for finding tx when they appear in a block
#      99         [ -  + ]:        161 :     if (vData.empty()) // zero-size = "match-all" filter
#     100                 :          0 :         return true;
#     101                 :        161 :     const uint256& hash = tx.GetHash();
#     102         [ +  + ]:        161 :     if (contains(hash))
#     103                 :         26 :         fFound = true;
#     104                 :            : 
#     105         [ +  + ]:        425 :     for (unsigned int i = 0; i < tx.vout.size(); i++)
#     106                 :        264 :     {
#     107                 :        264 :         const CTxOut& txout = tx.vout[i];
#     108                 :            :         // Match if the filter contains any arbitrary script data element in any scriptPubKey in tx
#     109                 :            :         // If this matches, also add the specific output that was matched.
#     110                 :            :         // This means clients don't have to update the filter themselves when a new relevant tx
#     111                 :            :         // is discovered in order to find spending transactions, which avoids round-tripping and race conditions.
#     112                 :        264 :         CScript::const_iterator pc = txout.scriptPubKey.begin();
#     113                 :        264 :         std::vector<unsigned char> data;
#     114         [ +  + ]:       1255 :         while (pc < txout.scriptPubKey.end())
#     115                 :       1016 :         {
#     116                 :       1016 :             opcodetype opcode;
#     117         [ -  + ]:       1016 :             if (!txout.scriptPubKey.GetOp(pc, opcode, data))
#     118                 :          0 :                 break;
#     119 [ +  + ][ +  + ]:       1016 :             if (data.size() != 0 && contains(data))
#     120                 :         25 :             {
#     121                 :         25 :                 fFound = true;
#     122         [ +  + ]:         25 :                 if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_ALL)
#     123                 :         13 :                     insert(COutPoint(hash, i));
#     124         [ +  + ]:         12 :                 else if ((nFlags & BLOOM_UPDATE_MASK) == BLOOM_UPDATE_P2PUBKEY_ONLY)
#     125                 :          4 :                 {
#     126                 :          4 :                     std::vector<std::vector<unsigned char> > vSolutions;
#     127                 :          4 :                     TxoutType type = Solver(txout.scriptPubKey, vSolutions);
#     128 [ +  + ][ -  + ]:          4 :                     if (type == TxoutType::PUBKEY || type == TxoutType::MULTISIG) {
#     129                 :          2 :                         insert(COutPoint(hash, i));
#     130                 :          2 :                     }
#     131                 :          4 :                 }
#     132                 :         25 :                 break;
#     133                 :         25 :             }
#     134                 :       1016 :         }
#     135                 :        264 :     }
#     136                 :            : 
#     137         [ +  + ]:        161 :     if (fFound)
#     138                 :         51 :         return true;
#     139                 :            : 
#     140         [ +  + ]:        110 :     for (const CTxIn& txin : tx.vin)
#     141                 :        172 :     {
#     142                 :            :         // Match if the filter contains an outpoint tx spends
#     143         [ +  + ]:        172 :         if (contains(txin.prevout))
#     144                 :          8 :             return true;
#     145                 :            : 
#     146                 :            :         // Match if the filter contains any arbitrary script data element in any scriptSig in tx
#     147                 :        164 :         CScript::const_iterator pc = txin.scriptSig.begin();
#     148                 :        164 :         std::vector<unsigned char> data;
#     149         [ +  + ]:        424 :         while (pc < txin.scriptSig.end())
#     150                 :        264 :         {
#     151                 :        264 :             opcodetype opcode;
#     152         [ -  + ]:        264 :             if (!txin.scriptSig.GetOp(pc, opcode, data))
#     153                 :          0 :                 break;
#     154 [ +  + ][ +  + ]:        264 :             if (data.size() != 0 && contains(data))
#     155                 :          4 :                 return true;
#     156                 :        264 :         }
#     157                 :        164 :     }
#     158                 :            : 
#     159                 :         98 :     return false;
#     160                 :        110 : }
#     161                 :            : 
#     162                 :            : CRollingBloomFilter::CRollingBloomFilter(const unsigned int nElements, const double fpRate)
#     163                 :       6225 : {
#     164                 :       6225 :     double logFpRate = log(fpRate);
#     165                 :            :     /* The optimal number of hash functions is log(fpRate) / log(0.5), but
#     166                 :            :      * restrict it to the range 1-50. */
#     167                 :       6225 :     nHashFuncs = std::max(1, std::min((int)round(logFpRate / log(0.5)), 50));
#     168                 :            :     /* In this rolling bloom filter, we'll store between 2 and 3 generations of nElements / 2 entries. */
#     169                 :       6225 :     nEntriesPerGeneration = (nElements + 1) / 2;
#     170                 :       6225 :     uint32_t nMaxElements = nEntriesPerGeneration * 3;
#     171                 :            :     /* The maximum fpRate = pow(1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits), nHashFuncs)
#     172                 :            :      * =>          pow(fpRate, 1.0 / nHashFuncs) = 1.0 - exp(-nHashFuncs * nMaxElements / nFilterBits)
#     173                 :            :      * =>          1.0 - pow(fpRate, 1.0 / nHashFuncs) = exp(-nHashFuncs * nMaxElements / nFilterBits)
#     174                 :            :      * =>          log(1.0 - pow(fpRate, 1.0 / nHashFuncs)) = -nHashFuncs * nMaxElements / nFilterBits
#     175                 :            :      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - pow(fpRate, 1.0 / nHashFuncs))
#     176                 :            :      * =>          nFilterBits = -nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs))
#     177                 :            :      */
#     178                 :       6225 :     uint32_t nFilterBits = (uint32_t)ceil(-1.0 * nHashFuncs * nMaxElements / log(1.0 - exp(logFpRate / nHashFuncs)));
#     179                 :       6225 :     data.clear();
#     180                 :            :     /* For each data element we need to store 2 bits. If both bits are 0, the
#     181                 :            :      * bit is treated as unset. If the bits are (01), (10), or (11), the bit is
#     182                 :            :      * treated as set in generation 1, 2, or 3 respectively.
#     183                 :            :      * These bits are stored in separate integers: position P corresponds to bit
#     184                 :            :      * (P & 63) of the integers data[(P >> 6) * 2] and data[(P >> 6) * 2 + 1]. */
#     185                 :       6225 :     data.resize(((nFilterBits + 63) / 64) << 1);
#     186                 :       6225 :     reset();
#     187                 :       6225 : }
#     188                 :            : 
#     189                 :            : /* Similar to CBloomFilter::Hash */
#     190                 :            : static inline uint32_t RollingBloomHash(unsigned int nHashNum, uint32_t nTweak, Span<const unsigned char> vDataToHash)
#     191                 :    6001087 : {
#     192                 :    6001087 :     return MurmurHash3(nHashNum * 0xFBA4C795 + nTweak, vDataToHash);
#     193                 :    6001087 : }
#     194                 :            : 
#     195                 :            : void CRollingBloomFilter::insert(Span<const unsigned char> vKey)
#     196                 :     268276 : {
#     197         [ +  + ]:     268276 :     if (nEntriesThisGeneration == nEntriesPerGeneration) {
#     198                 :         74 :         nEntriesThisGeneration = 0;
#     199                 :         74 :         nGeneration++;
#     200         [ +  + ]:         74 :         if (nGeneration == 4) {
#     201                 :         22 :             nGeneration = 1;
#     202                 :         22 :         }
#     203                 :         74 :         uint64_t nGenerationMask1 = 0 - (uint64_t)(nGeneration & 1);
#     204                 :         74 :         uint64_t nGenerationMask2 = 0 - (uint64_t)(nGeneration >> 1);
#     205                 :            :         /* Wipe old entries that used this generation number. */
#     206         [ +  + ]:      15792 :         for (uint32_t p = 0; p < data.size(); p += 2) {
#     207                 :      15718 :             uint64_t p1 = data[p], p2 = data[p + 1];
#     208                 :      15718 :             uint64_t mask = (p1 ^ nGenerationMask1) | (p2 ^ nGenerationMask2);
#     209                 :      15718 :             data[p] = p1 & mask;
#     210                 :      15718 :             data[p + 1] = p2 & mask;
#     211                 :      15718 :         }
#     212                 :         74 :     }
#     213                 :     268276 :     nEntriesThisGeneration++;
#     214                 :            : 
#     215         [ +  + ]:    5498634 :     for (int n = 0; n < nHashFuncs; n++) {
#     216                 :    5230358 :         uint32_t h = RollingBloomHash(n, nTweak, vKey);
#     217                 :    5230358 :         int bit = h & 0x3F;
#     218                 :            :         /* FastMod works with the upper bits of h, so it is safe to ignore that the lower bits of h are already used for bit. */
#     219                 :    5230358 :         uint32_t pos = FastRange32(h, data.size());
#     220                 :            :         /* The lowest bit of pos is ignored, and set to zero for the first bit, and to one for the second. */
#     221                 :    5230358 :         data[pos & ~1U] = (data[pos & ~1U] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration & 1)) << bit;
#     222                 :    5230358 :         data[pos | 1] = (data[pos | 1] & ~(uint64_t{1} << bit)) | (uint64_t(nGeneration >> 1)) << bit;
#     223                 :    5230358 :     }
#     224                 :     268276 : }
#     225                 :            : 
#     226                 :            : bool CRollingBloomFilter::contains(Span<const unsigned char> vKey) const
#     227                 :     238729 : {
#     228         [ +  + ]:     800585 :     for (int n = 0; n < nHashFuncs; n++) {
#     229                 :     770730 :         uint32_t h = RollingBloomHash(n, nTweak, vKey);
#     230                 :     770730 :         int bit = h & 0x3F;
#     231                 :     770730 :         uint32_t pos = FastRange32(h, data.size());
#     232                 :            :         /* If the relevant bit is not set in either data[pos & ~1] or data[pos | 1], the filter does not contain vKey */
#     233         [ +  + ]:     770730 :         if (!(((data[pos & ~1U] | data[pos | 1]) >> bit) & 1)) {
#     234                 :     208874 :             return false;
#     235                 :     208874 :         }
#     236                 :     770730 :     }
#     237                 :      29855 :     return true;
#     238                 :     238729 : }
#     239                 :            : 
#     240                 :            : void CRollingBloomFilter::reset()
#     241                 :      10389 : {
#     242                 :      10389 :     nTweak = GetRand(std::numeric_limits<unsigned int>::max());
#     243                 :      10389 :     nEntriesThisGeneration = 0;
#     244                 :      10389 :     nGeneration = 1;
#     245                 :      10389 :     std::fill(data.begin(), data.end(), 0);
#     246                 :      10389 : }

Generated by: LCOV version 0-eol-96201-ge66f56f4af6a