
Suleiman Souhlal 904-344-811 Math 4176 Project 1

In this report, we will discuss the deterministic polynomial-time prime-testing al-
gorithm discovered by Agrawal, Kayal and Saxena, and present an implementation of
this algorithm in the Haskell programming language.

It is often useful to be able to determine whether an integer is prime, especially
for cryptographic applications. For example, RSA, a common public-key cryptosystem
needs two large random prime numbers. In order to generate them, we can get keep
getting random numbers until we get one that is prime. Since only a fraction of
these random numbers will be prime, it is important that we are able to test for their
primality in an efficient way. There are two types of such algorithms: Probabilistic
and non-probabilistic.

The probabilistic algorithms, as their name suggest, work in a probabilistic fash-
ion, which means that the output has a certain probability of being wrong. The
non-probabilistic, or deterministic, algorithms, on the other hand are guaranteed to
be right. Until recently, all the known deterministic prime-testing algorithms ran in
exponential time, meaning that as the input increases linearly, the run-time of the
algorithm increases exponentially. This means that it becomes infeasible to determine
whether an large integer is prime using these algorithms. The probabilistic algorithms,
on the other hand, are a lot faster, and are able to run in polynomial time. However,
we can never be sure if the result is correct, although we can get arbitrarily confident,
by repeating the algorithm as many times as needed. This might not be enough for
some applications.

In 2002, Agrawal, Kayal and Saxena, students at the Indian Institute of Tech-
nology Kanpur, discovered a deterministic algorithm for primality-testing that runs
in Õ(log12 n), which is polynomial. The basic principle of this algorithm is that
(X + a)n ≡ Xn + a (mod n) where a ∈ Z, n ∈ N and (a, n) = 1 if and only if
n is prime. So, testing if n can be done relatively quickly if we are able to reduce
the number of coefficients terms. This is done by checking if (X + a)n ≡ Xn + a
(mod Xr − 1, n) is true for some well chosen r. The complete proof of correctness of
this algorithm is given in [1].

The algorithm is the following:

isPrime(n) :=
if isPerfectPower(n)

then return False
fi
r ← min(rorderModnr > 4(logn)(logn))
if 1 < (a, n) < n for some a ≤ r

then return False

Suleiman Souhlal 904-344-811 Math 4176 Project 2

fi
if n ≤ r

then return True
fi

for a = 1 to b2
√

φ(r) log nc do

if (X + a)n 6≡ Xn + a (mod Xr − 1, n)
then return False

fi
od
return True

Our implementation is able to determine that 101 is a prime number, as we can
see:

-->>> isPrime 103

True

Similarly, it is able to determine that 323 is not a prime number:

-->>> isPrime 323

False

We can also use it to print out a list of all the primes between 100 and 500, by
testing every integers in that range, outputting only the ones that are prime:

-->>> fst $ unzip $ filter (snd) [(a, isPrime a) | a <- [100..500]]

[101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,

197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,

311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,

431,433,439,443,449,457,461,463,467,479,487,491,499]

This operation takes almost 7 minutes, on an AMD Athlon 2200+ computer, which
shows that despite the fact that it runs in polynomial time, it has large “hidden con-
stants” that do not show up in the asymptotic upper bound of its run time. Therefore,
it is a lot faster to use other algorithms, unless we are dealing with extremely large
integers. However, we should note that our implementation is not very optimized, and
could by a lot faster, by using more efficient algorithms and data structures for the
polynomial arithmetic. For instance, we found by profiling the code that polynomial
multiplication is what takes the majority of the runtime. As we will see from the
source code, the algorithm we use for multiplication is O(m ∗ n) (where m and n are

Suleiman Souhlal 904-344-811 Math 4176 Project 3

the number of terms in each of the two polynomials we are multiplying). It is however
possible to do multiplication in (almost) O(n), by using Discrete Fourier Transforms.

We will now thoroughly comment the code.
First, we import the modules that we need.

import List

The First step of the algorithm is to determine whether n is a perfect power. To
do that, we just need to verify that n1/k is an integer for some k ∈ Z, 2 < k <
log2 n. Please note that to find out if n1/k is an integer, we compare two double
precision floating point numbers. This is because of the lack of arbitrary precision
real number support in the Haskell programming language. Implementing such a data
structure would have been well outside the scope of this project. Because of this, our
implementation will now work on numbers greater than some value, which should not
really be a problem, because of the time required to test even 3 digit numbers.

isPerfectPower :: Integer -> Bool
isPerfectPower n = not $ null $

filter filt $ [n’**(1/k) | k <- [2..logBase 2 n’]]
where n’ = fromInteger(n)::Double

filt x = (fromInteger(truncate x)::Double) == x

The next step in the algorithm is to find the smallest r such that orderr(n) >
4 log2 n

orderMod :: Integer -> Integer -> Integer
orderMod m n = if null l then 0 else snd $ head l

where l = filter (\x -> (fst x) == 1) $ zip [mod (n^k) m | k <- [1..m]]
[1..]

getR :: Integer -> Integer
getR n = snd $ head $ filter (\x -> (fst x) > (truncate $ 4 * (log n’)^2))

[(orderMod k n, k) | k <- [1..]]
where n’ = fromInteger(n)::Double

Then, we need to verify that 1 < (a, n) < n for all a ∈ Z, a ≤ r.

checkGcds :: Integer -> Bool
checkGcds n = not $ null $ filter (\x -> (x /= 1) && (x < n))

[gcd n k | k <- [1..getR n]]

The last part of the algorithm deals with polynomial arithmetic, so we have to
implement several operations on polynomials.

We represent polynomial as lists of tuples. Each tuple represents a term of the
polymomial. The first element of a tuple represents the order of the term. The second
one represents its coefficient. So, for example, X4 + 2X + 3 is represented as [(4,1),
(1,2), (0,3)].

Suleiman Souhlal 904-344-811 Math 4176 Project 4

data Poly = Poly [(Integer, Integer)] deriving Show

mkPoly :: [(Integer, Integer)] -> Poly
mkPoly l = Poly (mkPoly’ l)

where
mkPoly’ [] = []
mkPoly’ (x:xs)

| (snd x) == 0 = mkPoly’ xs
| otherwise = x : mkPoly’ xs

Polynomial addition and subtraction are done by simply adding or subtracting the
coefficient of the corresponding terms.

addPoly :: Poly -> Poly -> Poly
addPoly (Poly a) (Poly b) = mkPoly (addPoly’ a b)

where
addPoly’ [] b = b
addPoly’ a [] = a
addPoly’ xl@((xExp, xCo):xs) yl@((yExp, yCo):ys) =

case compare xExp yExp of
EQ -> (xExp, xCo + yCo) : addPoly’ xs ys
LT -> (yExp, yCo) : addPoly’ xl ys
GT -> (xExp, xCo) : addPoly’ xs yl

subPoly :: Poly -> Poly -> Poly
subPoly (Poly a) (Poly b) = mkPoly (subPoly’ a b)

where
subPoly’ [] b = [(e, -c) | (e, c) <- b]
subPoly’ a [] = a
subPoly’ xl@((xExp, xCo):xs) yl@((yExp, yCo):ys) =

case compare xExp yExp of
EQ -> (xExp, xCo - yCo) : subPoly’ xs ys
LT -> (yExp, -yCo) : subPoly’ xl ys
GT -> (xExp, xCo) : subPoly’ xs yl

Multiplication is done using the “naive algorithm” used when doing multiplication by
hand. We multiply the first polynomial by each term of the second one, and add the
intermediary results together. As we have mentioned before, this is O(m ∗ n), and
could be improved, by using Discrete Fourier Transforms. Since this is the function
that uses the most run time in the whole program, it should be the first one we would
have to improve, would we want to increase the performance of the whole program.

mulPoly :: Poly -> Poly -> Poly
mulPoly (Poly a) (Poly b)

| null a = Poly []
| null b = Poly []
| otherwise = foldr1 addPoly [mulPoly’ e c b | (e, c) <- a]
where mulPoly’ ex cx ls = mkPoly [(ex + e, cx * c) | (e, c) <- ls]

Suleiman Souhlal 904-344-811 Math 4176 Project 5

Just like for multiplication, we use the same algorithm we would use when dividing
polynomials by hand. We should note that this never returns, if the polynomial we
are dividing by has degree zero. This is not a problem, because we avoid doing it.

divPoly :: Poly -> Poly -> (Poly, Poly)
divPoly a b = divPoly’ a b $ mkPoly []

where
grExp (Poly ((a,_):_)) = a
grCo (Poly ((_,a):_)) = a
divPoly’ r@(Poly r’) b q

| (not $ null r’) && (grExp r - grExp b >= 0) = divPoly’ newR b newQ
| otherwise = (q, r)

where
t = mkPoly [(grExp r - grExp b, div (grCo r) (grCo b))]
newR = subPoly r (mulPoly t b)
newQ = addPoly q t

To do polynomial modulo, we just take the remainder from the division.

modPoly :: Poly -> Poly -> Poly
modPoly a m = snd $ divPoly a m

In the case that we need to take a polynomial modulo a constant, all we need to
do is take the modulo of each of the coefficients of the polynomial.

modIPoly :: Poly -> Integer -> Poly
modIPoly (Poly a) n = mkPoly $ map (\x -> (fst x, mod (snd x) n)) a

powerModIPoly :: Poly -> Integer -> Poly -> Integer -> Poly
--powerModIPoly a p mp m = foldr1 (\x y -> modIPoly (modPoly (mulPoly x y) mp) m) $ genericTake p $ repeat a
powerModIPoly a p m mn

| p == 0 = Poly []
| p == 1 = a
| mod p 2 == 0 = let xn2m = powerModIPoly a (div p 2) m mn in modIPoly (modPoly (mulPoly xn2m xn2m) m) mn
| otherwise = let xn2m = powerModIPoly a (div p 2) m mn
in modIPoly (modPoly (mulPoly a $ mulPoly xn2m xn2m) m) mn

isZeroPoly :: Poly -> Bool
isZeroPoly (Poly a) = null a

eulerPhi :: Integer -> Integer
eulerPhi n = sum $ snd $ unzip $ zip (filter (== 1) [gcd k n | k <- [1..n]]) $ repeat 1

isPrime :: Integer -> Bool
isPrime n = if isPerfectPower n then False

else let r = getR n in
if checkGcds n then False
else case n <= r of
True -> True

Suleiman Souhlal 904-344-811 Math 4176 Project 6

False -> let n’ = fromInteger(n)::Double
phiR = fromInteger(eulerPhi(r))::Double
maxA = truncate(2 * sqrt(phiR) * log (n’))
xr1 = mkPoly [(r,1), (0,-1)]
xna a = mkPoly [(n,1),(0,a)]
xan a = powerModIPoly (mkPoly [(1,1), (0,a)]) n xr1 n
p1 a = xan a
p2 a = modIPoly (modPoly (xna a) xr1) n
in null $ filter (not . isZeroPoly) [modIPoly (subPoly (p1 a) (p2 a)) n | a <- [1..maxA]]

main = putStr $ (show $ fst $ unzip $ filter (snd) [(a, isPrime a) | a <- [100..500]]) ++ "\n"
--main = putStr $ show $ isPrime 211

Suleiman Souhlal 904-344-811 Math 4176 Project 7

Bibliography
[1] Manindra Agrawal, Neeraj Kayal, Nitin Saxena, PRIMES is in P.

