
Suleiman Souhlal 904-344-811 Math 4175 Project 1

In this report, we will see a toy implementation of the AES cipher in the Haskell
programming language. This implementation differs from the normal AES in that it
uses a smaller square grid of 3× 3, instead of 4× 4, a smaller field of GF (24) instead
of GF (28), and has fewer rounds (5 instead of 10). The sources we have used are the
textbook, the notes from class and the original AES proposal. We will thoroughly
comment the code, describing design considerations.

First, we import the modules that are needed:

import List
import Array
import Bits
import Int

Since we use a different field than the original AES, we also need a different irre-
ductible polynomial, to build it. The polynomial chosen is x4 + x + 1. Note that the
polynomial, and the elements of GF (24) are represented by lists of booleans, where
the least significant bit is the rightmost element of the list.

irreduct = [True, False, False, True, True]

Since we use lists of booleans to represent the elements of the field, we also need
functions that convert 4 bit integers into these lists, and vice versa.

numToList n = reverse $ map (testBit (n::Int8)) [0..3]

listToNum :: [Bool] -> Int
listToNum l =

foldr (\x y -> setBit y x) 0
$ fst (unzip $ (filter (\x -> snd x == True) $ reverse $
zip [0..] $ reverse l))

Addition of two elements in GF (24) can be modelled as the exclusive or of the
two bit strings representing the elements. Since this is the central operation of the
cryptosystem, we declare a function that performs the exclusive or of two bit strings.

xorBits :: [Bool] -> [Bool] -> [Bool]
xorBits x y = reverse $ map (\x -> xor (fst x) (snd x)) $ zip (reverse x)

(reverse y)
where
xor x y = (x || y) && ((not x) || (not y))

We also need a function that makes sure that a bit string is exactly 4 bits long.

make4 x
| length x < 4 = (take (4 - length x) (repeat False)) ++ x
| length x >= 4 = x

Suleiman Souhlal 904-344-811 Math 4175 Project 2

Now that the utility functions have been written, we can start implementing the
different layers of the cryptosystem.
The first layer of AES is byteSub. This is a non-linear operation on a block of data,
where each element in the block gets transformed to another byte, according to an
S-box. This S-box is generated in the following way:
We start with a byte x3x2x1x0, where each xi is a binary bit. We then compute its
inverse in GF (24), to obtain another byte, y3y2y1y0. Note that 0000 does not have
an inverse, so we must use 0000. We then do the following operation, to find the
transformed value z3z2z1z0.

1 0 1 1
1 1 0 1
1 1 1 0
0 1 1 1




y0

y1

y2

y3

 +


1
0
1
0

 =


z0

z1

z2

z3


Since doing all this at run time would be quite expensive, we have pre-calculated

the transformed value for every possible input. The results have been arranged in a
table, for fast look-up: The first two bits of a number gives the row in the table, and
the last two bits give the column.
The resulting table is:

sBox =


5 2 11 12
8 15 6 1
14 9 0 7
3 4 13 10


sBox :: Array (Int, Int) Int8
sBox = listArray ((0,0), (3,3)) [5, 2, 11, 12, 8, 15, 6, 1, 14, 9,
0, 7, 3 ,4, 13, 10]

Since we also need to be able to decrypt, we have an inverse table:

invSBox =


10 7 1 12
13 0 6 11
4 9 15 2
3 14 8 5


invSBox :: Array (Int, Int) Int8
invSBox = listArray ((0,0), (3,3)) [10, 7, 1, 12, 13, 0, 6, 11, 4, 9, 15, 2,

3, 14, 8, 5]

The byteSub function simply selects the transformed value from the input bit
string, and table to use.

Suleiman Souhlal 904-344-811 Math 4175 Project 3

byteSub sbox l =
map (byteSub’ sbox) l
where
byteSub’ sbox l = numToList (sbox ! (row l, col l))
row l = listToNum $ take 2 l
col l = listToNum $ drop 2 l

The next layer of the AES cryptosystem is shiftRow. In this layer, all that is done
is shifting the rows of the matrix cyclically by 0, 1 and 2. c0,0 c0,1 c0,2

c1,0 c1,1 c1,2

c2,0 c2,1 c2,2

 =

 b0,0 b0,1 b0,2

b1,0 b1,1 b1,2

b2,0 b2,1 b2,2


The inverse operation, invShiftRow is the same, except shifting right.

rotateLeft n l = let split = splitAt n l in
(snd split) ++ (fst split)

rotateRight n l = rotateLeft (length l - n) l

shiftRow b = shiftRow’ rotateLeft b
invShiftRow b = shiftRow’ rotateRight b

shiftRow’ f b =
let split = splitAt 3 b in

shiftRow’’ f 0 (fst split) (snd split)
where
shiftRow’’ f n l [] = f n l
shiftRow’’ f n l rest = let split’ = splitAt 3 rest in

(f n l) ++ (shiftRow’’ f (n + 1) (fst split’)
(snd split’))

The next layer of AES is mixColumns. In this layer, we multiply the block of data
in GF (24) by another matrix: 1 2 1

1 1 2
2 1 1


 c0,0 c0,1 c0,2

c1,0 c1,1 c1,2

c2,0 c2,1 c2,2

 =

 d0,0 d0,1 d0,2

d1,0 d1,1 d1,2

d2,0 d2,1 d2,2


This matrix was chosen because:

• It has to be invertible, since we need to be able to decrypt.

• If one input byte changes, 3 bytes change in in the output, since if we expand
the operation, we see that d0,0 d0,1 d0,2

d1,0 d1,1 d1,2

d2,0 d2,1 d2,2

 =

 c0,0 + 2c1,0 + c2,0 c0,1 + 2c1,1 + c2,1 c0,2 + 2c1,2 + c2,2

c0,0 + c1,0 + 2c2,0 c0,1 + c1,1 + 2c2,1 c0,2 + c1,2 + 2c2,2

2c0,0 + c1,0 + c2,0 2c0,1 + c1,1 + c2,1 2c0,2 + c1,2 + c2,2



Suleiman Souhlal 904-344-811 Math 4175 Project 4

mixColumns c =
elems $ matMult mixMat cmat
where
mixMat = listArray ((1,1),(3,3)) (map numToList [1,2,1,1,1,2,2,1,1])
cmat = listArray ((1,1), (3,3)) $ map make4 c

invMixColumns c =
elems $ matMult invMixMat cmat
where
invMixMat = listArray ((1,1), (3,3)) (map numToList [7,7,9,9,7,7,7,9,7])
cmat = listArray ((1,1), (3,3)) $ map make4 c

The code that performs multiplication in GF (24) follows.

gMult x y =
let s = dropWhile (not . ((==) True)) y in -- Remove leading 0s

case s of
[] -> [False, False, False, False]
[True] -> x
otherwise -> xorBits (make4 $ mult (length s - 1) x)

(make4 $ gMult x $ tail s)
where

To multiply a number by xn, we simply shift it to the left n times. If the result is
greater or equal to x4, we obtain the (mod x4+x+1), by XORing it with the irreductible
polynomial.

mult 0 x = x
mult n x =

let shifted = dropWhile (not . ((==) True)) $ shiftLeft 1 x in
if (length shifted > 4) && (head shifted == True)

then make4 $ mult (n-1) $ xorBits shifted irreduct
else make4 $ mult (n-1) shifted

where
shiftLeft n l = l ++ (take n $ repeat False)

This is to perform matrix multiplication.

matMult x y = array ((1,1), (3,3))
[((i, j), xorSum [gMult (x ! (i, k)) (y ! (k, j))

| k <- range (lj,uj)])
| i <- range (li,ui), j <- range (lj’, uj’)]

where
((li,lj),(ui,uj)) = bounds x
((li’,lj’),(ui’,uj’)) = bounds y
xorSum = foldr xorBits $ take 4 $ repeat False

Suleiman Souhlal 904-344-811 Math 4175 Project 5

The last layer of AES is roundKey. In this round we simply XOR the block by the
round key, which we’ll discuss later. d0,0 d0,1 d0,2

d1,0 d1,1 d1,2

d2,0 d2,1 d2,2

 ⊕  k0,0 k0,1 k0,2

k1,0 k1,1 k1,2

k2,0 k2,1 k2,2

 =

 e0,0 e0,1 e0,2

e1,0 e1,1 e1,2

e2,0 e2,1 e2,2


roundKey :: Int -> [[Bool]] -> [[Bool]] -> [[Bool]]
roundKey i k d = roundKey’ d $ keyMat i k

where
keyMat i k = concat $ transpose $ [keySchedule (3*i) k] ++

[keySchedule (3*i + 1) k] ++ [keySchedule (3*i + 2) k]
roundKey’ d k = map (\x -> xorBits (fst x) (snd x)) $ zip d k

The original key consists of 4 ∗ 3 ∗ 3 = 36 bits. The key is arranged in a 3 × 3
matrix. This matrix is then expanded by adding 15 additional columns. We label each
column W (i). Then, if i is not a multiple of 3,

W (i) = W (i− 3)⊕W (i− 1)

If i is a multiple of 3,
W (i) = W (i− 3)⊕ T (W (i− 1))

where T (x) is the transformation of x obtained as follows:
Let the elements of x be a, b, c. We then rotate them, to obtain b, c, a. Then, we replace
each of these bytes with the corresponding element in the S-box from byteSub, to get
3 bytes e, f, g. Then, T (x) is the column vector

(e⊕ 0010(i−3)/3, f, g)

The round key for the ith round is then the columns

W (3i), W (3i + 1), W (3i + 2)

keySchedule :: Int -> [[Bool]] -> [[Bool]]
keySchedule i l =

if i < 3
then take 3 $ drop (3*i) l
else
if mod i 3 == 0

then map (\x -> xorBits (fst x) (snd x)) $
zip (keySchedule (i-3) l) (trans i (keySchedule (i-1) l))

else map (\x -> xorBits (fst x) (snd x)) $
zip (keySchedule (i-3) l) (keySchedule (i-1) l)

where
trans i l’ = [xorBits (head (sbox l’)) (roundConst i)] ++ (tail (sbox l’))

Suleiman Souhlal 904-344-811 Math 4175 Project 6

sbox l’’ = byteSub sBox $ rotateLeft 1 l’’
roundConst 0 = [False, False, False, True]
roundConst i = foldr (\x y -> x y) [True] $ take (1 + div (i - 3) 3) $
repeat (gMult [False, False, True, False])

Now that we have seen what each layer of AES consists of, we can see how they
are arranged to form a round.
Each round is made of byteSub, shiftRow, mixColumn, roundKey, applied in this
order.

The last round does not have mixColumn.

aesRound i k a = roundKey i k $ mixColumns $ shiftRow $ byteSub sBox a
lastRound i k a = roundKey i k $ shiftRow $ byteSub sBox a

Therefore, to encrypt a block of data, we apply roundKey, with the 0th round
key. Then we do 4 rounds, and finally, we do the last round. The resulting block is
encrypted with the supplied key.

encrypt k a = map listToNum $ lastRound 5 k’ $ aesRound 4 k’ $ aesRound 3 k’ $
aesRound 2 k’ $ aesRound 1 k’ $ roundKey 0 k’ a’

where
k’ = map numToList k
a’ = map numToList a

To decrypt one round, we simply apply invMixColumns, roundKey with the ith
key, invShiftRow, invByteSub The last round of the decryption does not involve
invMixColumns

invAesRound i k a = invMixColumns $ roundKey i k $ invShiftRow $
byteSub invSBox a

lastInvRound i k a = roundKey i k $ invShiftRow $ byteSub invSBox a

Therefore, to decrypt a block of encrypted data, we apply roundKey with the 5th
round key, then do 4 rounds, and finally, we do the last round. The resulting block
has been decrypted.

decrypt k a = map listToNum $ lastInvRound 0 k’ $ invAesRound 1 k’
$ invAesRound 2 k’ $ invAesRound 3 k’ $ invAesRound 4 k’
$ roundKey 5 k’ a’

where
k’ = map numToList k
a’ = map numToList a

An example encryption would be to encrypt

P =

 1 2 3
4 5 6
7 8 9



Suleiman Souhlal 904-344-811 Math 4175 Project 7

with the key

K =

 9 8 7
6 5 4
3 2 1


The result should be

E =

 14 5 13
8 14 14
6 9 10


When decrypting, the result should be the starting value.
The following snippet is the program, encrypting A with the key K, and then

decrypting the result, obtaining A again.

encrypt [9,8,7,6,5,4,3,2,1] [1,2,3,4,5,6,7,8,9]

>>> [14,5,13,8,14,14,6,9,10]

decrypt [9,8,7,6,5,4,3,2,1] [14,5,13,8,14,14,6,9,10]

>>> [1,2,3,4,5,6,7,8,9]

We have seen the implementation in the Haskell programming language and design
decision of this AES variant, that has a different field, square grid, and number of
round than the original AES.

