/*- * Copyright (c) 2002-2007, Jeffrey Roberson * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR ``AS IS'' AND ANY EXPRESS OR * IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES * OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. * IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT, * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT * NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF * THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: src/sys/kern/sched_ule.c,v 1.178 2007/01/06 12:33:43 jeff Exp $"); #include "opt_hwpmc_hooks.h" #include "opt_sched.h" #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #ifdef KTRACE #include #include #endif #ifdef HWPMC_HOOKS #include #endif #include #include /* * Thread scheduler specific section. */ struct td_sched { TAILQ_ENTRY(td_sched) ts_procq; /* (j/z) Run queue. */ int ts_flags; /* (j) TSF_* flags. */ struct thread *ts_thread; /* (*) Active associated thread. */ u_char ts_rqindex; /* (j) Run queue index. */ enum { TSS_THREAD, TSS_ONRUNQ } ts_state; /* (j) thread sched specific status. */ int ts_slptime; int ts_slice; struct runq *ts_runq; u_char ts_cpu; /* CPU that we have affinity for. */ /* The following variables are only used for pctcpu calculation */ int ts_ltick; /* Last tick that we were running on */ int ts_ftick; /* First tick that we were running on */ int ts_ticks; /* Tick count */ #ifdef SMP int ts_rltick; /* Real last tick, for affinity. */ #endif /* originally from kg_sched */ int skg_slptime; /* Number of ticks we vol. slept */ int skg_runtime; /* Number of ticks we were running */ }; #define ts_assign ts_procq.tqe_next /* flags kept in ts_flags */ #define TSF_ASSIGNED 0x0001 /* Thread is being migrated. */ #define TSF_BOUND 0x0002 /* Thread can not migrate. */ #define TSF_XFERABLE 0x0004 /* Thread was added as transferable. */ #define TSF_REMOVED 0x0008 /* Thread was removed while ASSIGNED */ #define TSF_DIDRUN 0x2000 /* Thread actually ran. */ static struct td_sched td_sched0; /* * Cpu percentage computation macros and defines. * * SCHED_TICK_SECS: Number of seconds to average the cpu usage across. * SCHED_TICK_TARG: Number of hz ticks to average the cpu usage across. * SCHED_TICK_MAX: Maximum number of ticks before scaling back. * SCHED_TICK_SHIFT: Shift factor to avoid rounding away results. * SCHED_TICK_HZ: Compute the number of hz ticks for a given ticks count. * SCHED_TICK_TOTAL: Gives the amount of time we've been recording ticks. */ #define SCHED_TICK_SECS 10 #define SCHED_TICK_TARG (hz * SCHED_TICK_SECS) #define SCHED_TICK_MAX (SCHED_TICK_TARG + hz) #define SCHED_TICK_SHIFT 10 #define SCHED_TICK_HZ(ts) ((ts)->ts_ticks >> SCHED_TICK_SHIFT) #define SCHED_TICK_TOTAL(ts) (max((ts)->ts_ltick - (ts)->ts_ftick, hz)) /* * These macros determine priorities for non-interactive threads. They are * assigned a priority based on their recent cpu utilization as expressed * by the ratio of ticks to the tick total. NHALF priorities at the start * and end of the MIN to MAX timeshare range are only reachable with negative * or positive nice respectively. * * PRI_RANGE: Priority range for utilization dependent priorities. * PRI_NRESV: Number of nice values. * PRI_TICKS: Compute a priority in PRI_RANGE from the ticks count and total. * PRI_NICE: Determines the part of the priority inherited from nice. */ #define SCHED_PRI_NRESV (PRIO_MAX - PRIO_MIN) #define SCHED_PRI_NHALF (SCHED_PRI_NRESV / 2) #define SCHED_PRI_MIN (PRI_MIN_TIMESHARE + SCHED_PRI_NHALF) #define SCHED_PRI_MAX (PRI_MAX_TIMESHARE - SCHED_PRI_NHALF) #define SCHED_PRI_RANGE (SCHED_PRI_MAX - SCHED_PRI_MIN + 1) #define SCHED_PRI_TICKS(ts) \ (SCHED_TICK_HZ((ts)) / \ (roundup(SCHED_TICK_TOTAL((ts)), SCHED_PRI_RANGE) / SCHED_PRI_RANGE)) #define SCHED_PRI_NICE(nice) (nice) /* * These determine the interactivity of a process. Interactivity differs from * cpu utilization in that it expresses the voluntary time slept vs time ran * while cpu utilization includes all time not running. This more accurately * models the intent of the thread. * * SLP_RUN_MAX: Maximum amount of sleep time + run time we'll accumulate * before throttling back. * SLP_RUN_FORK: Maximum slp+run time to inherit at fork time. * INTERACT_MAX: Maximum interactivity value. Smaller is better. * INTERACT_THRESH: Threshhold for placement on the current runq. */ #define SCHED_SLP_RUN_MAX ((hz * 5) << SCHED_TICK_SHIFT) #define SCHED_SLP_RUN_FORK ((hz / 2) << SCHED_TICK_SHIFT) #define SCHED_INTERACT_MAX (100) #define SCHED_INTERACT_HALF (SCHED_INTERACT_MAX / 2) #define SCHED_INTERACT_THRESH (30) /* * tickincr: Converts a stathz tick into a hz domain scaled by * the shift factor. Without the shift the error rate * due to rounding would be unacceptably high. * realstathz: stathz is sometimes 0 and run off of hz. * sched_slice: Runtime of each thread before rescheduling. */ static int sched_interact = SCHED_INTERACT_THRESH; static int realstathz; static int tickincr; static int sched_slice; /* * tdq - per processor runqs and statistics. */ struct tdq { struct runq tdq_idle; /* Queue of IDLE threads. */ struct runq tdq_timeshare; /* timeshare run queue. */ struct runq tdq_realtime; /* real-time run queue. */ int tdq_idx; /* Current insert index. */ int tdq_ridx; /* Current removal index. */ int tdq_load; /* Aggregate load. */ #ifdef SMP int tdq_transferable; LIST_ENTRY(tdq) tdq_siblings; /* Next in tdq group. */ struct tdq_group *tdq_group; /* Our processor group. */ volatile struct td_sched *tdq_assigned; /* assigned by another CPU. */ #else int tdq_sysload; /* For loadavg, !ITHD load. */ #endif }; #ifdef SMP /* * tdq groups are groups of processors which can cheaply share threads. When * one processor in the group goes idle it will check the runqs of the other * processors in its group prior to halting and waiting for an interrupt. * These groups are suitable for SMT (Symetric Multi-Threading) and not NUMA. * In a numa environment we'd want an idle bitmap per group and a two tiered * load balancer. */ struct tdq_group { int tdg_cpus; /* Count of CPUs in this tdq group. */ cpumask_t tdg_cpumask; /* Mask of cpus in this group. */ cpumask_t tdg_idlemask; /* Idle cpus in this group. */ cpumask_t tdg_mask; /* Bit mask for first cpu. */ int tdg_load; /* Total load of this group. */ int tdg_transferable; /* Transferable load of this group. */ LIST_HEAD(, tdq) tdg_members; /* Linked list of all members. */ }; #define SCHED_AFFINITY_DEFAULT (hz / 100) #define SCHED_AFFINITY(ts) ((ts)->ts_rltick > ticks - affinity) /* * Run-time tunables. */ static int rebalance = 1; static int pickpri; static int affinity; static int tryself = 1; /* * One thread queue per processor. */ static cpumask_t tdq_idle; static int tdg_maxid; static struct tdq tdq_cpu[MAXCPU]; static struct tdq_group tdq_groups[MAXCPU]; static int bal_tick; static int gbal_tick; static int balance_groups; #define TDQ_SELF() (&tdq_cpu[PCPU_GET(cpuid)]) #define TDQ_CPU(x) (&tdq_cpu[(x)]) #define TDQ_ID(x) ((x) - tdq_cpu) #define TDQ_GROUP(x) (&tdq_groups[(x)]) #else /* !SMP */ static struct tdq tdq_cpu; #define TDQ_SELF() (&tdq_cpu) #define TDQ_CPU(x) (&tdq_cpu) #endif static struct td_sched *sched_choose(void); /* XXX Should be thread * */ static void sched_priority(struct thread *); static void sched_thread_priority(struct thread *, u_char); static int sched_interact_score(struct thread *); static void sched_interact_update(struct thread *); static void sched_interact_fork(struct thread *); static void sched_pctcpu_update(struct td_sched *); static inline void sched_pin_td(struct thread *td); static inline void sched_unpin_td(struct thread *td); /* Operations on per processor queues */ static struct td_sched * tdq_choose(struct tdq *); static void tdq_setup(struct tdq *); static void tdq_load_add(struct tdq *, struct td_sched *); static void tdq_load_rem(struct tdq *, struct td_sched *); static __inline void tdq_runq_add(struct tdq *, struct td_sched *, int); static __inline void tdq_runq_rem(struct tdq *, struct td_sched *); void tdq_print(int cpu); static void runq_print(struct runq *rq); #ifdef SMP static int tdq_pickidle(struct tdq *, struct td_sched *); static int tdq_pickpri(struct tdq *, struct td_sched *, int); static struct td_sched *runq_steal(struct runq *); static void sched_balance(void); static void sched_balance_groups(void); static void sched_balance_group(struct tdq_group *); static void sched_balance_pair(struct tdq *, struct tdq *); static void sched_smp_tick(struct thread *); static void tdq_move(struct tdq *, int); static int tdq_idled(struct tdq *); static void tdq_transfer(struct td_sched *, int); static void tdq_assign(struct tdq *); static struct td_sched *tdq_steal(struct tdq *, int); #define THREAD_CAN_MIGRATE(td) \ ((td)->td_pinned == 0 && (td)->td_pri_class != PRI_ITHD) #endif static void sched_setup(void *dummy); SYSINIT(sched_setup, SI_SUB_RUN_QUEUE, SI_ORDER_FIRST, sched_setup, NULL) static void sched_initticks(void *dummy); SYSINIT(sched_initticks, SI_SUB_CLOCKS, SI_ORDER_THIRD, sched_initticks, NULL) static inline void sched_pin_td(struct thread *td) { td->td_pinned++; } static inline void sched_unpin_td(struct thread *td) { td->td_pinned--; } static void runq_print(struct runq *rq) { struct rqhead *rqh; struct td_sched *ts; int pri; int j; int i; for (i = 0; i < RQB_LEN; i++) { printf("\t\trunq bits %d 0x%zx\n", i, rq->rq_status.rqb_bits[i]); for (j = 0; j < RQB_BPW; j++) if (rq->rq_status.rqb_bits[i] & (1ul << j)) { pri = j + (i << RQB_L2BPW); rqh = &rq->rq_queues[pri]; TAILQ_FOREACH(ts, rqh, ts_procq) { printf("\t\t\ttd %p(%s) priority %d rqindex %d pri %d\n", ts->ts_thread, ts->ts_thread->td_proc->p_comm, ts->ts_thread->td_priority, ts->ts_rqindex, pri); } } } } void tdq_print(int cpu) { struct tdq *tdq; tdq = TDQ_CPU(cpu); printf("tdq:\n"); printf("\tload: %d\n", tdq->tdq_load); printf("\ttimeshare idx: %d\n", tdq->tdq_idx); printf("\ttimeshare ridx: %d\n", tdq->tdq_ridx); printf("\trealtime runq:\n"); runq_print(&tdq->tdq_realtime); printf("\ttimeshare runq:\n"); runq_print(&tdq->tdq_timeshare); printf("\tidle runq:\n"); runq_print(&tdq->tdq_idle); #ifdef SMP printf("\tload transferable: %d\n", tdq->tdq_transferable); #endif } static __inline void tdq_runq_add(struct tdq *tdq, struct td_sched *ts, int flags) { #ifdef SMP if (THREAD_CAN_MIGRATE(ts->ts_thread)) { tdq->tdq_transferable++; tdq->tdq_group->tdg_transferable++; ts->ts_flags |= TSF_XFERABLE; } #endif if (ts->ts_runq == &tdq->tdq_timeshare) { int pri; pri = ts->ts_thread->td_priority; KASSERT(pri <= PRI_MAX_TIMESHARE && pri >= PRI_MIN_TIMESHARE, ("Invalid priority %d on timeshare runq", pri)); /* * This queue contains only priorities between MIN and MAX * realtime. Use the whole queue to represent these values. */ #define TS_RQ_PPQ (((PRI_MAX_TIMESHARE - PRI_MIN_TIMESHARE) + 1) / RQ_NQS) if ((flags & SRQ_BORROWING) == 0) { pri = (pri - PRI_MIN_TIMESHARE) / TS_RQ_PPQ; pri = (pri + tdq->tdq_idx) % RQ_NQS; /* * This effectively shortens the queue by one so we * can have a one slot difference between idx and * ridx while we wait for threads to drain. */ if (tdq->tdq_ridx != tdq->tdq_idx && pri == tdq->tdq_ridx) pri = (pri - 1) % RQ_NQS; } else pri = tdq->tdq_ridx; runq_add_pri(ts->ts_runq, ts, pri, flags); } else runq_add(ts->ts_runq, ts, flags); } static __inline void tdq_runq_rem(struct tdq *tdq, struct td_sched *ts) { #ifdef SMP if (ts->ts_flags & TSF_XFERABLE) { tdq->tdq_transferable--; tdq->tdq_group->tdg_transferable--; ts->ts_flags &= ~TSF_XFERABLE; } #endif if (ts->ts_runq == &tdq->tdq_timeshare) { if (tdq->tdq_idx != tdq->tdq_ridx) runq_remove_idx(ts->ts_runq, ts, &tdq->tdq_ridx); else runq_remove_idx(ts->ts_runq, ts, NULL); /* * For timeshare threads we update the priority here so * the priority reflects the time we've been sleeping. */ ts->ts_ltick = ticks; sched_pctcpu_update(ts); sched_priority(ts->ts_thread); } else runq_remove(ts->ts_runq, ts); } static void tdq_load_add(struct tdq *tdq, struct td_sched *ts) { int class; mtx_assert(&sched_lock, MA_OWNED); class = PRI_BASE(ts->ts_thread->td_pri_class); tdq->tdq_load++; CTR1(KTR_SCHED, "load: %d", tdq->tdq_load); if (class != PRI_ITHD && (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0) #ifdef SMP tdq->tdq_group->tdg_load++; #else tdq->tdq_sysload++; #endif } static void tdq_load_rem(struct tdq *tdq, struct td_sched *ts) { int class; mtx_assert(&sched_lock, MA_OWNED); class = PRI_BASE(ts->ts_thread->td_pri_class); if (class != PRI_ITHD && (ts->ts_thread->td_proc->p_flag & P_NOLOAD) == 0) #ifdef SMP tdq->tdq_group->tdg_load--; #else tdq->tdq_sysload--; #endif tdq->tdq_load--; CTR1(KTR_SCHED, "load: %d", tdq->tdq_load); ts->ts_runq = NULL; } #ifdef SMP static void sched_smp_tick(struct thread *td) { struct tdq *tdq; tdq = TDQ_SELF(); if (rebalance) { if (ticks >= bal_tick) sched_balance(); if (ticks >= gbal_tick && balance_groups) sched_balance_groups(); } /* * We could have been assigned a non real-time thread without an * IPI. */ if (tdq->tdq_assigned) tdq_assign(tdq); /* Potentially sets NEEDRESCHED */ td->td_sched->ts_rltick = ticks; } /* * sched_balance is a simple CPU load balancing algorithm. It operates by * finding the least loaded and most loaded cpu and equalizing their load * by migrating some processes. * * Dealing only with two CPUs at a time has two advantages. Firstly, most * installations will only have 2 cpus. Secondly, load balancing too much at * once can have an unpleasant effect on the system. The scheduler rarely has * enough information to make perfect decisions. So this algorithm chooses * algorithm simplicity and more gradual effects on load in larger systems. * * It could be improved by considering the priorities and slices assigned to * each task prior to balancing them. There are many pathological cases with * any approach and so the semi random algorithm below may work as well as any. * */ static void sched_balance(void) { struct tdq_group *high; struct tdq_group *low; struct tdq_group *tdg; int cnt; int i; bal_tick = ticks + (random() % (hz * 2)); if (smp_started == 0) return; low = high = NULL; i = random() % (tdg_maxid + 1); for (cnt = 0; cnt <= tdg_maxid; cnt++) { tdg = TDQ_GROUP(i); /* * Find the CPU with the highest load that has some * threads to transfer. */ if ((high == NULL || tdg->tdg_load > high->tdg_load) && tdg->tdg_transferable) high = tdg; if (low == NULL || tdg->tdg_load < low->tdg_load) low = tdg; if (++i > tdg_maxid) i = 0; } if (low != NULL && high != NULL && high != low) sched_balance_pair(LIST_FIRST(&high->tdg_members), LIST_FIRST(&low->tdg_members)); } static void sched_balance_groups(void) { int i; gbal_tick = ticks + (random() % (hz * 2)); mtx_assert(&sched_lock, MA_OWNED); if (smp_started) for (i = 0; i <= tdg_maxid; i++) sched_balance_group(TDQ_GROUP(i)); } static void sched_balance_group(struct tdq_group *tdg) { struct tdq *tdq; struct tdq *high; struct tdq *low; int load; if (tdg->tdg_transferable == 0) return; low = NULL; high = NULL; LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) { load = tdq->tdq_load; if (high == NULL || load > high->tdq_load) high = tdq; if (low == NULL || load < low->tdq_load) low = tdq; } if (high != NULL && low != NULL && high != low) sched_balance_pair(high, low); } static void sched_balance_pair(struct tdq *high, struct tdq *low) { int transferable; int high_load; int low_load; int move; int diff; int i; /* * If we're transfering within a group we have to use this specific * tdq's transferable count, otherwise we can steal from other members * of the group. */ if (high->tdq_group == low->tdq_group) { transferable = high->tdq_transferable; high_load = high->tdq_load; low_load = low->tdq_load; } else { transferable = high->tdq_group->tdg_transferable; high_load = high->tdq_group->tdg_load; low_load = low->tdq_group->tdg_load; } if (transferable == 0) return; /* * Determine what the imbalance is and then adjust that to how many * threads we actually have to give up (transferable). */ diff = high_load - low_load; move = diff / 2; if (diff & 0x1) move++; move = min(move, transferable); for (i = 0; i < move; i++) tdq_move(high, TDQ_ID(low)); return; } static void tdq_move(struct tdq *from, int cpu) { struct tdq *tdq; struct tdq *to; struct td_sched *ts; tdq = from; to = TDQ_CPU(cpu); ts = tdq_steal(tdq, 1); if (ts == NULL) { struct tdq_group *tdg; tdg = tdq->tdq_group; LIST_FOREACH(tdq, &tdg->tdg_members, tdq_siblings) { if (tdq == from || tdq->tdq_transferable == 0) continue; ts = tdq_steal(tdq, 1); break; } if (ts == NULL) panic("tdq_move: No threads available with a " "transferable count of %d\n", tdg->tdg_transferable); } if (tdq == to) return; ts->ts_state = TSS_THREAD; tdq_runq_rem(tdq, ts); tdq_load_rem(tdq, ts); tdq_transfer(ts, cpu); } static int tdq_idled(struct tdq *tdq) { struct tdq_group *tdg; struct tdq *steal; struct td_sched *ts; tdg = tdq->tdq_group; /* * If we're in a cpu group, try and steal threads from another cpu in * the group before idling. */ if (tdg->tdg_cpus > 1 && tdg->tdg_transferable) { LIST_FOREACH(steal, &tdg->tdg_members, tdq_siblings) { if (steal == tdq || steal->tdq_transferable == 0) continue; ts = tdq_steal(steal, 0); if (ts == NULL) continue; ts->ts_state = TSS_THREAD; tdq_runq_rem(steal, ts); tdq_load_rem(steal, ts); ts->ts_cpu = PCPU_GET(cpuid); sched_pin_td(ts->ts_thread); sched_add(ts->ts_thread, SRQ_YIELDING); sched_unpin_td(ts->ts_thread); return (0); } } /* * We only set the idled bit when all of the cpus in the group are * idle. Otherwise we could get into a situation where a thread bounces * back and forth between two idle cores on seperate physical CPUs. */ tdg->tdg_idlemask |= PCPU_GET(cpumask); if (tdg->tdg_idlemask != tdg->tdg_cpumask) return (1); atomic_set_int(&tdq_idle, tdg->tdg_mask); return (1); } static void tdq_assign(struct tdq *tdq) { struct td_sched *nts; struct td_sched *ts; do { *(volatile struct td_sched **)&ts = tdq->tdq_assigned; } while(!atomic_cmpset_ptr((volatile uintptr_t *)&tdq->tdq_assigned, (uintptr_t)ts, (uintptr_t)NULL)); for (; ts != NULL; ts = nts) { nts = ts->ts_assign; tdq->tdq_group->tdg_load--; tdq->tdq_load--; ts->ts_flags &= ~TSF_ASSIGNED; if (ts->ts_flags & TSF_REMOVED) { ts->ts_flags &= ~TSF_REMOVED; continue; } sched_pin_td(ts->ts_thread); sched_add(ts->ts_thread, SRQ_YIELDING); sched_unpin_td(ts->ts_thread); } } static void tdq_transfer(struct td_sched *ts, int cpu) { struct tdq *tdq; struct thread *td; struct pcpu *pcpu; int class; int prio; tdq = TDQ_CPU(cpu); class = PRI_BASE(ts->ts_thread->td_pri_class); if ((class != PRI_IDLE && class != PRI_ITHD) && (tdq_idle & tdq->tdq_group->tdg_mask)) atomic_clear_int(&tdq_idle, tdq->tdq_group->tdg_mask); tdq->tdq_group->tdg_load++; tdq->tdq_load++; ts->ts_cpu = cpu; ts->ts_flags |= TSF_ASSIGNED; prio = ts->ts_thread->td_priority; /* * Place a thread on another cpu's queue and force a resched. */ do { *(volatile struct td_sched **)&ts->ts_assign = tdq->tdq_assigned; } while(!atomic_cmpset_ptr((volatile uintptr_t *)&tdq->tdq_assigned, (uintptr_t)ts->ts_assign, (uintptr_t)ts)); /* Only ipi for realtime/ithd priorities */ if (ts->ts_thread->td_priority > PRI_MIN_KERN) return; /* * Without sched_lock we could lose a race where we set NEEDRESCHED * on a thread that is switched out before the IPI is delivered. This * would lead us to miss the resched. This will be a problem once * sched_lock is pushed down. */ pcpu = pcpu_find(cpu); td = pcpu->pc_curthread; if (ts->ts_thread->td_priority < td->td_priority) { td->td_flags |= TDF_NEEDRESCHED; ipi_selected(1 << cpu, IPI_AST); } } static struct td_sched * runq_steal(struct runq *rq) { struct rqhead *rqh; struct rqbits *rqb; struct td_sched *ts; int word; int bit; mtx_assert(&sched_lock, MA_OWNED); rqb = &rq->rq_status; for (word = 0; word < RQB_LEN; word++) { if (rqb->rqb_bits[word] == 0) continue; for (bit = 0; bit < RQB_BPW; bit++) { if ((rqb->rqb_bits[word] & (1ul << bit)) == 0) continue; rqh = &rq->rq_queues[bit + (word << RQB_L2BPW)]; TAILQ_FOREACH(ts, rqh, ts_procq) { if (THREAD_CAN_MIGRATE(ts->ts_thread)) return (ts); } } } return (NULL); } static struct td_sched * tdq_steal(struct tdq *tdq, int stealidle) { struct td_sched *ts; /* * Steal from next first to try to get a non-interactive task that * may not have run for a while. * XXX Need to effect steal order for timeshare threads. */ if ((ts = runq_steal(&tdq->tdq_realtime)) != NULL) return (ts); if ((ts = runq_steal(&tdq->tdq_timeshare)) != NULL) return (ts); if (stealidle) return (runq_steal(&tdq->tdq_idle)); return (NULL); } int tdq_pickidle(struct tdq *tdq, struct td_sched *ts) { struct tdq_group *tdg; int cpu; if (smp_started == 0) return (PCPU_GET(cpuid)); /* * If the current CPU has idled, just run it here. */ if ((tdq->tdq_group->tdg_idlemask & PCPU_GET(cpumask)) != 0) return (PCPU_GET(cpuid)); /* * Try the last cpu we ran on. */ tdg = TDQ_CPU(ts->ts_cpu)->tdq_group; cpu = ffs(tdg->tdg_idlemask); if (cpu) return (cpu - 1); /* * Search for an idle group. */ cpu = ffs(tdq_idle); if (cpu) return (cpu - 1); /* * If there are no idle groups, check for an idle partner. */ tdg = tdq->tdq_group; cpu = ffs(tdg->tdg_idlemask); if (cpu) return (cpu - 1); /* * No idle CPUs? */ return (PCPU_GET(cpuid)); } int tdq_pickpri(struct tdq *tdq, struct td_sched *ts, int flags) { struct pcpu *pcpu; int lowpri; int lowcpu; int pri; int cpu; if (smp_started == 0) return (PCPU_GET(cpuid)); pri = ts->ts_thread->td_priority; /* * If we have affinity, try to place it on the cpu we last ran on. */ if (SCHED_AFFINITY(ts)) { pcpu = pcpu_find(ts->ts_cpu); if (pcpu->pc_curthread->td_priority > pri) return (ts->ts_cpu); } /* * Try ourself first; If we're running something lower priority this * may have some locality with the waking thread and execute faster * here. */ if (tryself) { if (pri < curthread->td_priority) return (PCPU_GET(cpuid)); /* * If we're being awoken by an interrupt thread or the waker * is going right to sleep run here as well. */ if ((TDQ_SELF()->tdq_load == 1) && (flags & SRQ_YIELDING || curthread->td_pri_class == PRI_ITHD)) return (PCPU_GET(cpuid)); } /* * Look for an idle group. */ cpu = ffs(tdq_idle); if (cpu) return (cpu - 1); /* * Now search for the cpu running the lowest priority thread. */ for (lowpri = 0, lowcpu = 0, cpu = 0; cpu <= mp_maxid; cpu++) { if (CPU_ABSENT(cpu)) continue; pcpu = pcpu_find(cpu); pri = pcpu->pc_curthread->td_priority; if (pri < lowpri) continue; lowpri = pri; lowcpu = cpu; } return (lowcpu); } #endif /* SMP */ /* * Pick the highest priority task we have and return it. */ static struct td_sched * tdq_choose(struct tdq *tdq) { struct td_sched *ts; mtx_assert(&sched_lock, MA_OWNED); ts = runq_choose(&tdq->tdq_realtime); if (ts != NULL) { KASSERT(ts->ts_thread->td_priority <= PRI_MAX_REALTIME, ("tdq_choose: Invalid priority on realtime queue %d", ts->ts_thread->td_priority)); return (ts); } ts = runq_choose_from(&tdq->tdq_timeshare, tdq->tdq_ridx); if (ts != NULL) { KASSERT(ts->ts_thread->td_priority <= PRI_MAX_TIMESHARE && ts->ts_thread->td_priority >= PRI_MIN_TIMESHARE, ("tdq_choose: Invalid priority on timeshare queue %d", ts->ts_thread->td_priority)); return (ts); } ts = runq_choose(&tdq->tdq_idle); if (ts != NULL) { KASSERT(ts->ts_thread->td_priority >= PRI_MIN_IDLE, ("tdq_choose: Invalid priority on idle queue %d", ts->ts_thread->td_priority)); return (ts); } return (NULL); } static void tdq_setup(struct tdq *tdq) { runq_init(&tdq->tdq_realtime); runq_init(&tdq->tdq_timeshare); runq_init(&tdq->tdq_idle); tdq->tdq_load = 0; } static void sched_setup(void *dummy) { #ifdef SMP int i; #endif /* * To avoid divide-by-zero, we set realstathz a dummy value * in case which sched_clock() called before sched_initticks(). */ realstathz = hz; sched_slice = (realstathz/7); /* 140ms */ tickincr = 1 << SCHED_TICK_SHIFT; #ifdef SMP balance_groups = 0; /* * Initialize the tdqs. */ for (i = 0; i < MAXCPU; i++) { struct tdq *tdq; tdq = &tdq_cpu[i]; tdq->tdq_assigned = NULL; tdq_setup(&tdq_cpu[i]); } if (smp_topology == NULL) { struct tdq_group *tdg; struct tdq *tdq; int cpus; for (cpus = 0, i = 0; i < MAXCPU; i++) { if (CPU_ABSENT(i)) continue; tdq = &tdq_cpu[i]; tdg = &tdq_groups[cpus]; /* * Setup a tdq group with one member. */ tdq->tdq_transferable = 0; tdq->tdq_group = tdg; tdg->tdg_cpus = 1; tdg->tdg_idlemask = 0; tdg->tdg_cpumask = tdg->tdg_mask = 1 << i; tdg->tdg_load = 0; tdg->tdg_transferable = 0; LIST_INIT(&tdg->tdg_members); LIST_INSERT_HEAD(&tdg->tdg_members, tdq, tdq_siblings); cpus++; } tdg_maxid = cpus - 1; } else { struct tdq_group *tdg; struct cpu_group *cg; int j; for (i = 0; i < smp_topology->ct_count; i++) { cg = &smp_topology->ct_group[i]; tdg = &tdq_groups[i]; /* * Initialize the group. */ tdg->tdg_idlemask = 0; tdg->tdg_load = 0; tdg->tdg_transferable = 0; tdg->tdg_cpus = cg->cg_count; tdg->tdg_cpumask = cg->cg_mask; LIST_INIT(&tdg->tdg_members); /* * Find all of the group members and add them. */ for (j = 0; j < MAXCPU; j++) { if ((cg->cg_mask & (1 << j)) != 0) { if (tdg->tdg_mask == 0) tdg->tdg_mask = 1 << j; tdq_cpu[j].tdq_transferable = 0; tdq_cpu[j].tdq_group = tdg; LIST_INSERT_HEAD(&tdg->tdg_members, &tdq_cpu[j], tdq_siblings); } } if (tdg->tdg_cpus > 1) balance_groups = 1; } tdg_maxid = smp_topology->ct_count - 1; } /* * Stagger the group and global load balancer so they do not * interfere with each other. */ bal_tick = ticks + hz; if (balance_groups) gbal_tick = ticks + (hz / 2); #else tdq_setup(TDQ_SELF()); #endif mtx_lock_spin(&sched_lock); tdq_load_add(TDQ_SELF(), &td_sched0); mtx_unlock_spin(&sched_lock); } /* ARGSUSED */ static void sched_initticks(void *dummy) { mtx_lock_spin(&sched_lock); realstathz = stathz ? stathz : hz; sched_slice = (realstathz/7); /* ~140ms */ /* * tickincr is shifted out by 10 to avoid rounding errors due to * hz not being evenly divisible by stathz on all platforms. */ tickincr = (hz << SCHED_TICK_SHIFT) / realstathz; /* * This does not work for values of stathz that are more than * 1 << SCHED_TICK_SHIFT * hz. In practice this does not happen. */ if (tickincr == 0) tickincr = 1; #ifdef SMP affinity = SCHED_AFFINITY_DEFAULT; #endif mtx_unlock_spin(&sched_lock); } /* * Scale the scheduling priority according to the "interactivity" of this * process. */ static void sched_priority(struct thread *td) { int score; int pri; if (td->td_pri_class != PRI_TIMESHARE) return; /* * If the score is interactive we place the thread in the realtime * queue with a priority that is less than kernel and interrupt * priorities. These threads are not subject to nice restrictions. * * Scores greater than this are placed on the normal realtime queue * where the priority is partially decided by the most recent cpu * utilization and the rest is decided by nice value. */ score = sched_interact_score(td); if (score < sched_interact) { pri = PRI_MIN_REALTIME; pri += ((PRI_MAX_REALTIME - PRI_MIN_REALTIME) / sched_interact) * score; KASSERT(pri >= PRI_MIN_REALTIME && pri <= PRI_MAX_REALTIME, ("sched_priority: invalid interactive priority %d", pri)); } else { pri = SCHED_PRI_MIN; if (td->td_sched->ts_ticks) pri += SCHED_PRI_TICKS(td->td_sched); pri += SCHED_PRI_NICE(td->td_proc->p_nice); if (!(pri >= PRI_MIN_TIMESHARE && pri <= PRI_MAX_TIMESHARE)) { static int once = 1; if (once) { printf("sched_priority: invalid priority %d", pri); printf("nice %d, ticks %d ftick %d ltick %d tick pri %d\n", td->td_proc->p_nice, td->td_sched->ts_ticks, td->td_sched->ts_ftick, td->td_sched->ts_ltick, SCHED_PRI_TICKS(td->td_sched)); once = 0; } pri = min(max(pri, PRI_MIN_TIMESHARE), PRI_MAX_TIMESHARE); } } sched_user_prio(td, pri); return; } /* * This routine enforces a maximum limit on the amount of scheduling history * kept. It is called after either the slptime or runtime is adjusted. */ static void sched_interact_update(struct thread *td) { struct td_sched *ts; int sum; ts = td->td_sched; sum = ts->skg_runtime + ts->skg_slptime; if (sum < SCHED_SLP_RUN_MAX) return; /* * This only happens from two places: * 1) We have added an unusual amount of run time from fork_exit. * 2) We have added an unusual amount of sleep time from sched_sleep(). */ if (sum > SCHED_SLP_RUN_MAX * 2) { if (ts->skg_runtime > ts->skg_slptime) { ts->skg_runtime = SCHED_SLP_RUN_MAX; ts->skg_slptime = 1; } else { ts->skg_slptime = SCHED_SLP_RUN_MAX; ts->skg_runtime = 1; } return; } /* * If we have exceeded by more than 1/5th then the algorithm below * will not bring us back into range. Dividing by two here forces * us into the range of [4/5 * SCHED_INTERACT_MAX, SCHED_INTERACT_MAX] */ if (sum > (SCHED_SLP_RUN_MAX / 5) * 6) { ts->skg_runtime /= 2; ts->skg_slptime /= 2; return; } ts->skg_runtime = (ts->skg_runtime / 5) * 4; ts->skg_slptime = (ts->skg_slptime / 5) * 4; } static void sched_interact_fork(struct thread *td) { int ratio; int sum; sum = td->td_sched->skg_runtime + td->td_sched->skg_slptime; if (sum > SCHED_SLP_RUN_FORK) { ratio = sum / SCHED_SLP_RUN_FORK; td->td_sched->skg_runtime /= ratio; td->td_sched->skg_slptime /= ratio; } } static int sched_interact_score(struct thread *td) { int div; if (td->td_sched->skg_runtime > td->td_sched->skg_slptime) { div = max(1, td->td_sched->skg_runtime / SCHED_INTERACT_HALF); return (SCHED_INTERACT_HALF + (SCHED_INTERACT_HALF - (td->td_sched->skg_slptime / div))); } if (td->td_sched->skg_slptime > td->td_sched->skg_runtime) { div = max(1, td->td_sched->skg_slptime / SCHED_INTERACT_HALF); return (td->td_sched->skg_runtime / div); } /* * This can happen if slptime and runtime are 0. */ return (0); } /* * Called from proc0_init() to bootstrap the scheduler. */ void schedinit(void) { /* * Set up the scheduler specific parts of proc0. */ proc0.p_sched = NULL; /* XXX */ thread0.td_sched = &td_sched0; td_sched0.ts_ltick = ticks; td_sched0.ts_ftick = ticks; td_sched0.ts_thread = &thread0; td_sched0.ts_state = TSS_THREAD; } /* * This is only somewhat accurate since given many processes of the same * priority they will switch when their slices run out, which will be * at most sched_slice stathz ticks. */ int sched_rr_interval(void) { /* Convert sched_slice to hz */ return (hz/(realstathz/sched_slice)); } static void sched_pctcpu_update(struct td_sched *ts) { if (ts->ts_ticks == 0) return; if (ticks - (hz / 10) < ts->ts_ltick && SCHED_TICK_TOTAL(ts) < SCHED_TICK_MAX) return; /* * Adjust counters and watermark for pctcpu calc. */ if (ts->ts_ltick > ticks - SCHED_TICK_TARG) ts->ts_ticks = (ts->ts_ticks / (ticks - ts->ts_ftick)) * SCHED_TICK_TARG; else ts->ts_ticks = 0; ts->ts_ltick = ticks; ts->ts_ftick = ts->ts_ltick - SCHED_TICK_TARG; } static void sched_thread_priority(struct thread *td, u_char prio) { struct td_sched *ts; CTR6(KTR_SCHED, "sched_prio: %p(%s) prio %d newprio %d by %p(%s)", td, td->td_proc->p_comm, td->td_priority, prio, curthread, curthread->td_proc->p_comm); ts = td->td_sched; mtx_assert(&sched_lock, MA_OWNED); if (td->td_priority == prio) return; if (TD_ON_RUNQ(td) && prio < td->td_priority) { /* * If the priority has been elevated due to priority * propagation, we may have to move ourselves to a new * queue. This could be optimized to not re-add in some * cases. */ sched_rem(td); td->td_priority = prio; sched_add(td, SRQ_BORROWING); } else td->td_priority = prio; } /* * Update a thread's priority when it is lent another thread's * priority. */ void sched_lend_prio(struct thread *td, u_char prio) { td->td_flags |= TDF_BORROWING; sched_thread_priority(td, prio); } /* * Restore a thread's priority when priority propagation is * over. The prio argument is the minimum priority the thread * needs to have to satisfy other possible priority lending * requests. If the thread's regular priority is less * important than prio, the thread will keep a priority boost * of prio. */ void sched_unlend_prio(struct thread *td, u_char prio) { u_char base_pri; if (td->td_base_pri >= PRI_MIN_TIMESHARE && td->td_base_pri <= PRI_MAX_TIMESHARE) base_pri = td->td_user_pri; else base_pri = td->td_base_pri; if (prio >= base_pri) { td->td_flags &= ~TDF_BORROWING; sched_thread_priority(td, base_pri); } else sched_lend_prio(td, prio); } void sched_prio(struct thread *td, u_char prio) { u_char oldprio; /* First, update the base priority. */ td->td_base_pri = prio; /* * If the thread is borrowing another thread's priority, don't * ever lower the priority. */ if (td->td_flags & TDF_BORROWING && td->td_priority < prio) return; /* Change the real priority. */ oldprio = td->td_priority; sched_thread_priority(td, prio); /* * If the thread is on a turnstile, then let the turnstile update * its state. */ if (TD_ON_LOCK(td) && oldprio != prio) turnstile_adjust(td, oldprio); } void sched_user_prio(struct thread *td, u_char prio) { u_char oldprio; td->td_base_user_pri = prio; if (td->td_flags & TDF_UBORROWING && td->td_user_pri <= prio) return; oldprio = td->td_user_pri; td->td_user_pri = prio; if (TD_ON_UPILOCK(td) && oldprio != prio) umtx_pi_adjust(td, oldprio); } void sched_lend_user_prio(struct thread *td, u_char prio) { u_char oldprio; td->td_flags |= TDF_UBORROWING; oldprio = td->td_user_pri; td->td_user_pri = prio; if (TD_ON_UPILOCK(td) && oldprio != prio) umtx_pi_adjust(td, oldprio); } void sched_unlend_user_prio(struct thread *td, u_char prio) { u_char base_pri; base_pri = td->td_base_user_pri; if (prio >= base_pri) { td->td_flags &= ~TDF_UBORROWING; sched_user_prio(td, base_pri); } else sched_lend_user_prio(td, prio); } void sched_switch(struct thread *td, struct thread *newtd, int flags) { struct tdq *tdq; struct td_sched *ts; mtx_assert(&sched_lock, MA_OWNED); tdq = TDQ_SELF(); ts = td->td_sched; td->td_lastcpu = td->td_oncpu; td->td_oncpu = NOCPU; td->td_flags &= ~TDF_NEEDRESCHED; td->td_owepreempt = 0; /* * If the thread has been assigned it may be in the process of switching * to the new cpu. This is the case in sched_bind(). */ if (td == PCPU_GET(idlethread)) { TD_SET_CAN_RUN(td); } else if ((ts->ts_flags & TSF_ASSIGNED) == 0) { /* We are ending our run so make our slot available again */ tdq_load_rem(tdq, ts); if (TD_IS_RUNNING(td)) { /* * Don't allow the thread to migrate * from a preemption. */ sched_pin_td(td); setrunqueue(td, (flags & SW_PREEMPT) ? SRQ_OURSELF|SRQ_YIELDING|SRQ_PREEMPTED : SRQ_OURSELF|SRQ_YIELDING); sched_unpin_td(td); } } if (newtd != NULL) { /* * If we bring in a thread account for it as if it had been * added to the run queue and then chosen. */ newtd->td_sched->ts_flags |= TSF_DIDRUN; TD_SET_RUNNING(newtd); tdq_load_add(TDQ_SELF(), newtd->td_sched); } else newtd = choosethread(); if (td != newtd) { #ifdef HWPMC_HOOKS if (PMC_PROC_IS_USING_PMCS(td->td_proc)) PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_OUT); #endif cpu_switch(td, newtd); #ifdef HWPMC_HOOKS if (PMC_PROC_IS_USING_PMCS(td->td_proc)) PMC_SWITCH_CONTEXT(td, PMC_FN_CSW_IN); #endif } sched_lock.mtx_lock = (uintptr_t)td; td->td_oncpu = PCPU_GET(cpuid); } void sched_nice(struct proc *p, int nice) { struct thread *td; PROC_LOCK_ASSERT(p, MA_OWNED); mtx_assert(&sched_lock, MA_OWNED); p->p_nice = nice; FOREACH_THREAD_IN_PROC(p, td) { sched_priority(td); sched_prio(td, td->td_base_user_pri); } } void sched_sleep(struct thread *td) { mtx_assert(&sched_lock, MA_OWNED); td->td_sched->ts_slptime = ticks; } void sched_wakeup(struct thread *td) { int slptime; mtx_assert(&sched_lock, MA_OWNED); /* * If we slept for more than a tick update our interactivity and * priority. */ slptime = td->td_sched->ts_slptime; td->td_sched->ts_slptime = 0; if (slptime && slptime != ticks) { int hzticks; hzticks = (ticks - slptime) << SCHED_TICK_SHIFT; td->td_sched->skg_slptime += hzticks; sched_interact_update(td); sched_pctcpu_update(td->td_sched); sched_priority(td); } setrunqueue(td, SRQ_BORING); } /* * Penalize the parent for creating a new child and initialize the child's * priority. */ void sched_fork(struct thread *td, struct thread *child) { mtx_assert(&sched_lock, MA_OWNED); sched_fork_thread(td, child); /* * Penalize the parent and child for forking. */ sched_interact_fork(child); sched_priority(child); td->td_sched->skg_runtime += tickincr; sched_interact_update(td); sched_priority(td); } void sched_fork_thread(struct thread *td, struct thread *child) { struct td_sched *ts; struct td_sched *ts2; /* * Initialize child. */ sched_newthread(child); ts = td->td_sched; ts2 = child->td_sched; ts2->ts_cpu = ts->ts_cpu; ts2->ts_runq = NULL; /* * Grab our parents cpu estimation information and priority. */ ts2->ts_ticks = ts->ts_ticks; ts2->ts_ltick = ts->ts_ltick; ts2->ts_ftick = ts->ts_ftick; child->td_user_pri = td->td_user_pri; child->td_base_user_pri = td->td_base_user_pri; /* * And update interactivity score. */ ts2->skg_slptime = ts->skg_slptime; ts2->skg_runtime = ts->skg_runtime; ts2->ts_slice = 1; /* Attempt to quickly learn interactivity. */ } void sched_class(struct thread *td, int class) { mtx_assert(&sched_lock, MA_OWNED); if (td->td_pri_class == class) return; #ifdef SMP /* * On SMP if we're on the RUNQ we must adjust the transferable * count because could be changing to or from an interrupt * class. */ if (td->td_sched->ts_state == TSS_ONRUNQ) { struct tdq *tdq; tdq = TDQ_CPU(td->td_sched->ts_cpu); if (THREAD_CAN_MIGRATE(td)) { tdq->tdq_transferable--; tdq->tdq_group->tdg_transferable--; } td->td_pri_class = class; if (THREAD_CAN_MIGRATE(td)) { tdq->tdq_transferable++; tdq->tdq_group->tdg_transferable++; } } #endif td->td_pri_class = class; } /* * Return some of the child's priority and interactivity to the parent. */ void sched_exit(struct proc *p, struct thread *child) { struct thread *td; CTR3(KTR_SCHED, "sched_exit: %p(%s) prio %d", child, child->td_proc->p_comm, child->td_priority); td = FIRST_THREAD_IN_PROC(p); sched_exit_thread(td, child); } void sched_exit_thread(struct thread *td, struct thread *child) { CTR3(KTR_SCHED, "sched_exit_thread: %p(%s) prio %d", child, child->td_proc->p_comm, child->td_priority); tdq_load_rem(TDQ_CPU(child->td_sched->ts_cpu), child->td_sched); #ifdef KSE /* * KSE forks and exits so often that this penalty causes short-lived * threads to always be non-interactive. This causes mozilla to * crawl under load. */ if ((td->td_pflags & TDP_SA) && td->td_proc == child->td_proc) return; #endif /* * Give the child's runtime to the parent without returning the * sleep time as a penalty to the parent. This causes shells that * launch expensive things to mark their children as expensive. */ td->td_sched->skg_runtime += child->td_sched->skg_runtime; sched_interact_update(td); sched_priority(td); } void sched_userret(struct thread *td) { /* * XXX we cheat slightly on the locking here to avoid locking in * the usual case. Setting td_priority here is essentially an * incomplete workaround for not setting it properly elsewhere. * Now that some interrupt handlers are threads, not setting it * properly elsewhere can clobber it in the window between setting * it here and returning to user mode, so don't waste time setting * it perfectly here. */ KASSERT((td->td_flags & TDF_BORROWING) == 0, ("thread with borrowed priority returning to userland")); if (td->td_priority != td->td_user_pri) { mtx_lock_spin(&sched_lock); td->td_priority = td->td_user_pri; td->td_base_pri = td->td_user_pri; mtx_unlock_spin(&sched_lock); } } void sched_clock(struct thread *td) { struct tdq *tdq; struct td_sched *ts; mtx_assert(&sched_lock, MA_OWNED); #ifdef SMP sched_smp_tick(td); #endif tdq = TDQ_SELF(); /* * Advance the insert index once for each tick to ensure that all * threads get a chance to run. */ if (tdq->tdq_idx == tdq->tdq_ridx) { tdq->tdq_idx = (tdq->tdq_idx + 1) % RQ_NQS; if (TAILQ_EMPTY(&tdq->tdq_timeshare.rq_queues[tdq->tdq_ridx])) tdq->tdq_ridx = tdq->tdq_idx; } /* Adjust ticks for pctcpu */ ts = td->td_sched; ts->ts_ticks += tickincr; ts->ts_ltick = ticks; /* * Update if we've exceeded our desired tick threshhold by over one * second. */ if (ts->ts_ftick + SCHED_TICK_MAX < ts->ts_ltick) sched_pctcpu_update(ts); /* * We only do slicing code for TIMESHARE threads. */ if (td->td_pri_class != PRI_TIMESHARE) return; /* * We used a tick; charge it to the thread so that we can compute our * interactivity. */ td->td_sched->skg_runtime += tickincr; sched_interact_update(td); /* * We used up one time slice. */ if (--ts->ts_slice > 0) return; /* * We're out of time, recompute priorities and requeue. */ sched_priority(td); tdq_load_rem(tdq, ts); ts->ts_slice = sched_slice; tdq_load_add(tdq, ts); td->td_flags |= TDF_NEEDRESCHED; } int sched_runnable(void) { struct tdq *tdq; int load; load = 1; tdq = TDQ_SELF(); #ifdef SMP if (tdq->tdq_assigned) { mtx_lock_spin(&sched_lock); tdq_assign(tdq); mtx_unlock_spin(&sched_lock); } #endif if ((curthread->td_flags & TDF_IDLETD) != 0) { if (tdq->tdq_load > 0) goto out; } else if (tdq->tdq_load - 1 > 0) goto out; load = 0; out: return (load); } struct td_sched * sched_choose(void) { struct tdq *tdq; struct td_sched *ts; mtx_assert(&sched_lock, MA_OWNED); tdq = TDQ_SELF(); #ifdef SMP restart: if (tdq->tdq_assigned) tdq_assign(tdq); #endif ts = tdq_choose(tdq); if (ts) { #ifdef SMP if (ts->ts_thread->td_priority > PRI_MIN_IDLE) if (tdq_idled(tdq) == 0) goto restart; #endif tdq_runq_rem(tdq, ts); ts->ts_state = TSS_THREAD; return (ts); } #ifdef SMP if (tdq_idled(tdq) == 0) goto restart; #endif return (NULL); } void sched_add(struct thread *td, int flags) { struct tdq *tdq; struct td_sched *ts; int preemptive; int class; CTR5(KTR_SCHED, "sched_add: %p(%s) prio %d by %p(%s)", td, td->td_proc->p_comm, td->td_priority, curthread, curthread->td_proc->p_comm); mtx_assert(&sched_lock, MA_OWNED); tdq = TDQ_SELF(); ts = td->td_sched; class = PRI_BASE(td->td_pri_class); preemptive = !(flags & SRQ_YIELDING); #ifdef SMP if (ts->ts_flags & TSF_ASSIGNED) { if (ts->ts_flags & TSF_REMOVED) ts->ts_flags &= ~TSF_REMOVED; return; } #endif KASSERT(ts->ts_state != TSS_ONRUNQ, ("sched_add: thread %p (%s) already in run queue", td, td->td_proc->p_comm)); KASSERT(td->td_proc->p_sflag & PS_INMEM, ("sched_add: process swapped out")); KASSERT(ts->ts_runq == NULL, ("sched_add: thread %p is still assigned to a run queue", td)); if (class == PRI_TIMESHARE) sched_priority(td); /* * If the thread is not artificially pinned and it's in * the realtime queue we directly dispatch it on this cpu * for minimum latency. Interrupt handlers may also have * to complete on the cpu that dispatched them. */ if (class == PRI_ITHD && td->td_pinned == 0) ts->ts_cpu = PCPU_GET(cpuid); #ifdef SMP /* * Pick the destination cpu and if it isn't ours transfer to the * target cpu. */ if (THREAD_CAN_MIGRATE(td)) { if (pickpri) ts->ts_cpu = tdq_pickpri(tdq, ts, flags); else ts->ts_cpu = tdq_pickidle(tdq, ts); } if (ts->ts_cpu != PCPU_GET(cpuid)) { tdq_transfer(ts, ts->ts_cpu); return; } /* * If we had been idle, clear our bit in the group and potentially * the global bitmap. If not, see if we should transfer this thread. */ if ((class != PRI_IDLE && class != PRI_ITHD) && (tdq->tdq_group->tdg_idlemask & PCPU_GET(cpumask)) != 0) { /* * Check to see if our group is unidling, and if so, remove it * from the global idle mask. */ if (tdq->tdq_group->tdg_idlemask == tdq->tdq_group->tdg_cpumask) atomic_clear_int(&tdq_idle, tdq->tdq_group->tdg_mask); /* * Now remove ourselves from the group specific idle mask. */ tdq->tdq_group->tdg_idlemask &= ~PCPU_GET(cpumask); } #endif /* * Set the slice and pick the run queue. */ if (ts->ts_slice == 0) ts->ts_slice = sched_slice; if (td->td_priority <= PRI_MAX_REALTIME) ts->ts_runq = &tdq->tdq_realtime; else if (td->td_priority <= PRI_MAX_TIMESHARE) ts->ts_runq = &tdq->tdq_timeshare; else ts->ts_runq = &tdq->tdq_idle; if (preemptive && maybe_preempt(td)) return; if (td->td_priority < curthread->td_priority) curthread->td_flags |= TDF_NEEDRESCHED; ts->ts_state = TSS_ONRUNQ; tdq_runq_add(tdq, ts, flags); tdq_load_add(tdq, ts); } void sched_rem(struct thread *td) { struct tdq *tdq; struct td_sched *ts; CTR5(KTR_SCHED, "sched_rem: %p(%s) prio %d by %p(%s)", td, td->td_proc->p_comm, td->td_priority, curthread, curthread->td_proc->p_comm); mtx_assert(&sched_lock, MA_OWNED); ts = td->td_sched; if (ts->ts_flags & TSF_ASSIGNED) { ts->ts_flags |= TSF_REMOVED; return; } KASSERT((ts->ts_state == TSS_ONRUNQ), ("sched_rem: thread not on run queue")); ts->ts_state = TSS_THREAD; tdq = TDQ_CPU(ts->ts_cpu); tdq_runq_rem(tdq, ts); tdq_load_rem(tdq, ts); } fixpt_t sched_pctcpu(struct thread *td) { fixpt_t pctcpu; struct td_sched *ts; pctcpu = 0; ts = td->td_sched; if (ts == NULL) return (0); mtx_lock_spin(&sched_lock); if (ts->ts_ticks) { int rtick; sched_pctcpu_update(ts); /* How many rtick per second ? */ rtick = min(SCHED_TICK_HZ(ts) / SCHED_TICK_SECS, hz); pctcpu = (FSCALE * ((FSCALE * rtick)/hz)) >> FSHIFT; } td->td_proc->p_swtime = ts->ts_ltick - ts->ts_ftick; mtx_unlock_spin(&sched_lock); return (pctcpu); } void sched_bind(struct thread *td, int cpu) { struct td_sched *ts; mtx_assert(&sched_lock, MA_OWNED); ts = td->td_sched; KASSERT((ts->ts_flags & TSF_BOUND) == 0, ("sched_bind: thread %p already bound.", td)); ts->ts_flags |= TSF_BOUND; #ifdef SMP if (PCPU_GET(cpuid) == cpu) return; /* sched_rem without the runq_remove */ ts->ts_state = TSS_THREAD; tdq_load_rem(TDQ_CPU(ts->ts_cpu), ts); tdq_transfer(ts, cpu); /* When we return from mi_switch we'll be on the correct cpu. */ mi_switch(SW_VOL, NULL); sched_pin(); #endif } void sched_unbind(struct thread *td) { struct td_sched *ts; mtx_assert(&sched_lock, MA_OWNED); ts = td->td_sched; KASSERT(ts->ts_flags & TSF_BOUND, ("sched_unbind: thread %p not bound.", td)); mtx_assert(&sched_lock, MA_OWNED); ts->ts_flags &= ~TSF_BOUND; #ifdef SMP sched_unpin(); #endif } int sched_is_bound(struct thread *td) { mtx_assert(&sched_lock, MA_OWNED); return (td->td_sched->ts_flags & TSF_BOUND); } void sched_relinquish(struct thread *td) { mtx_lock_spin(&sched_lock); if (td->td_pri_class == PRI_TIMESHARE) sched_prio(td, PRI_MAX_TIMESHARE); mi_switch(SW_VOL, NULL); mtx_unlock_spin(&sched_lock); } int sched_load(void) { #ifdef SMP int total; int i; total = 0; for (i = 0; i <= tdg_maxid; i++) total += TDQ_GROUP(i)->tdg_load; return (total); #else return (TDQ_SELF()->tdq_sysload); #endif } int sched_sizeof_proc(void) { return (sizeof(struct proc)); } int sched_sizeof_thread(void) { return (sizeof(struct thread) + sizeof(struct td_sched)); } void sched_tick(void) { } static SYSCTL_NODE(_kern, OID_AUTO, sched, CTLFLAG_RW, 0, "Scheduler"); SYSCTL_STRING(_kern_sched, OID_AUTO, name, CTLFLAG_RD, "ule", 0, "Scheduler name"); SYSCTL_INT(_kern_sched, OID_AUTO, slice, CTLFLAG_RW, &sched_slice, 0, ""); SYSCTL_INT(_kern_sched, OID_AUTO, interact, CTLFLAG_RW, &sched_interact, 0, ""); SYSCTL_INT(_kern_sched, OID_AUTO, tickincr, CTLFLAG_RD, &tickincr, 0, ""); SYSCTL_INT(_kern_sched, OID_AUTO, realstathz, CTLFLAG_RD, &realstathz, 0, ""); #ifdef SMP SYSCTL_INT(_kern_sched, OID_AUTO, affinity, CTLFLAG_RW, &affinity, 0, ""); SYSCTL_INT(_kern_sched, OID_AUTO, balance, CTLFLAG_RW, &rebalance, 0, ""); SYSCTL_INT(_kern_sched, OID_AUTO, pickpri, CTLFLAG_RW, &pickpri, 0, ""); SYSCTL_INT(_kern_sched, OID_AUTO, tryself, CTLFLAG_RW, &tryself, 0, ""); #endif /* ps compat */ static fixpt_t ccpu = 0.95122942450071400909 * FSCALE; /* exp(-1/20) */ SYSCTL_INT(_kern, OID_AUTO, ccpu, CTLFLAG_RD, &ccpu, 0, ""); #define KERN_SWITCH_INCLUDE 1 #include "kern/kern_switch.c"