
CTSRDCRASH-worthy
Trustworthy

Systems
Research and
Development

CTSRD

Cross Building Packages
Stacey D. Son

Consultant/SRI International

BSDCan Developer’s Summit
17-May-2013

Approved for public release. This research is sponsored by the Defense Advanced Research Projects Agency (DARPA) and the Air
Force Research Laboratory (AFRL), under contract FA8750-10-C-0237. The views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and should not be interpreted as representing the official views or
policies, either expressed or implied, of the Defense Advanced Research Projects Agency or the Department of Defense.

CTSRD

Classic Cross Building
Software supported cross building:

• TARGET=mips/TARGET_ARCH=mips64

• bsd.crossbuild.mk

• ./configure --host=mips64-freebsd

And when that doesn’t work:

• distcc, NFS, and lots of embedded hardware
or full system emulators

2

CTSRD

Advantages
Software Supported

• Very fast results

• Works on lots of different host hardware

• Nice (when it is supported and it works).

3

CTSRD

Disadvantages
Software Supported
• Sources usually need to support cross

building, dependencies for two
architectures, etc.

• Build may differ from native compile.

• No unit testing and regression testing
during development and post build.

• No debugging.

4

CTSRD

System Mode Emulation
• System mode requires

emulation of devices and
hardware such as the MMU
in addition to the CPU.

• Full target kernel is
emulated as well.

• Because it has a lot of
overhead may not be too
practical for cross building/
development.

5

Full System Emulation

Target Kernel

Emulated CPU, MMU,
and I/O

App
1

App
2

App
N

Host Kernel

CTSRD

User Mode Emulation

• Only CPU is emulated.
MMU, I/O, etc. are not.

• System calls are
translated to host calls
or emulated.

• Can use host tools for
cross development.
Cross debugging and
testing.

6

Host Native
Development

Tools

Host Kernel, Pseudo Drivers

User
Emulation

Emulated
CPU

Syscall
Shims

User
Emulation

Emulated
CPU

Syscall
Shims

User
Emulation

Emulated
CPU

Syscall
Shims

App
1

App
2

App
N Cross

Compiler

IDE

CTSRD

Using Emulation as a
Cross Building Tool

• Full System Emulation (“System Mode”)

• Has been used with distcc, NFS, etc. to
offset the performance issues.

• User Only Emulation (“User Mode”)

• Used by some linux embedded developers.

• Some preliminary investigation by NetBSD
developers.

7

CTSRD

Qemu User Mode

• No MMU emulation: Simply uses host mmap()‘s with offsets.

• Target kernel threads map one-to-one to host pthread threads.

• Target signals are multiplexed with the host signals.

• Handles endianness and 32-bit target to 64-bit host translation issues

8

Initialization of
CPU Translator Load ELF Binary

Exception ?
Dispatcher:
system call,
signal, etc.

Main Loop

Find Translated
Block

yes

no

Translated Code
Execution

Make New
Translation Block

TB Found?

Host SysCall
Shim

Signal Handler

thr_ -> pthread

yes
no

CTSRD

Advantages

• No changes needed ports to support cross
building. Auto config scripts that do things
like compile and run bits of test code work.

• Regression/unit tests can be run during
cross development or post build checks.

• Can be used to reduce the development
cycle time for embedded systems.

9

CTSRD

Disadvantages

• The emulator may have bugs and missing support which
may influence the build results.

• Some system calls are problematic like sysctl(), ioctl(),
signals, fork(), threads, _umtx_op(), etc.

• Support for things like new system calls need to also be
added to the emulator. May get out of sync with kernel.

• While it is much faster than full system mode emulation
there is still a lot of overhead.

• Some kernel support may need to be added to the host.

10

CTSRD

Initial State of Qemu
User Mode on FreeBSD
• Qemu version1.2.0

• Qemu bsd-user (User Mode for *BSD):

• It would emulate a simple ‘Hello World!’
app for statically compiled ARM binary.

• No signals, threads, user mutex, support
for other arch’s, etc.

• Explicit support for maybe 10 system calls.

11

CTSRD

Current Status of Qemu
BSD User

• Qemu 1.4.1

• Static and dynamic target binaries supported.

• System calls not supported: ktimer_*, cpuset_*, rctl_*, sctp_*,
kld*, quota*, jail*, cap_*, jail*, _mac*, sendfile, ptrace, & utrace.

• MIPS64 and ARM has the needed machine dependent code
and will run static/dynamic binaries. Some PPC machine
dependent code and will run some very simple statically linked
apps.

• Not all ioctl()’s, sysctl()’s, and sockopts supported.

* see http://wiki.freebsd.org/QemuUserModeToDo for details.

12

CTSRD

Cross Building FreeBSD
Packages Using Qemu BSD User

• Cross build a ${ARCH} ‘root’ distribution for target. Install
in ${DESTDIR}.

• Add devfs: ‘mount -t devfs devfs ${DESTDIR}/dev’

• Build statically linked version of qemu-${ARCH}. Install in
${DESTDIR}/usr/local/bin.

• chroot into ${DESTDIR}.

• ‘cd /usr/ports/${favorite_port} && make package’

*see https://wiki.freebsd.org/QemuUserModeHowTo for
the details.

13

CTSRD

Results
Cross Building MIPS64 Packages

• Added simple script that simply tries to build all packages. If
it fails then it goes on to next port.

• Over 9000 packages have been successfully cross built using
an old, dual core AMD64 athlon for the emulator host.

• Perl 5.14 regression test results running under user mode
emulation: "Failed 2 tests out of 1970, 99.90% okay." (The
same two tests fail on target as well.)

*See package repo at http://www.cl.cam.ac.uk/research/
security/ctsrd/mips64-packages/

14

CTSRD

Hybrid Cross Building
Environment

15

0

375

750

1125

1500

Host Native Hybrid Emulation

vim-lite build

63 sec.
244 sec.

1257 sec.

5.15x Improvement over pure emulation

Using native cross compiler in user mode emulation build environment:

CTSRD

Kernel Support for
Hybrid Environment

Miscellaneous Binary Image Activator:

• ‘imgact_binmisc’ kernel module and ‘binmiscctl’
command-line configuration tool.

• Invokes configured interpreter if given header magic
(and optional mask) at file offset matches.

• Makes it possible to use lots of host native binaries in
the cross build environment to increase performance.

* See http://people.freebsd.org/~sson/imgact_binmisc/
for source code and patches.

16

CTSRD

Future Work

• Fix some 32-bit targets on 64-bit hosts
issues.

• Add PPC support.

• Qemu code upstream.

• Build system integration.

17

CTSRD

Q & A

Links:

• https://wiki.freebsd.org/QemuUserModeToDo

• https://wiki.freebsd.org/QemuUserModeHowTo

• http://www.cl.cam.ac.uk/research/security/ctsrd/
mips64-packages/

• http://people.freebsd.org/~sson/imgact_binmisc/

18

CTSRD

‘binmiscctl’ Examples

• llvm bitcode JIT compiler/interpreter (‘lli’):

binmiscctl --add llvmbc --interpreter “/usr/bin/lli --fake-
arg0=” --magic “BC\xc0\xde” --size 4 --offset 0 --concat-
old-arg0 --set-enabled

• Qemu user mode emulator (‘/usr/bin/qemu-mips64’)

binmiscctl --add mips64elf --interpreter “/usr/bin/qemu-
mips64” --magic “\x7f\x45\x4c\x46\x02\x02\x01\x00[...]”
--mask “\xff\xff\xff\xff\xff\xff\xff\x00[...]” --size 20

19

CTSRD

‘binmiscctl’ Examples

• Disable/enable/delete image activator:

binmiscctl --disable/--enable/--delete llvmbc

• Lookup and list image activator:

binmiscctl --lookup llvmbc

• List all image activators:

binmiscctl --list-all

20

