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Classic Cross Building 
Software supported cross building:

• TARGET=mips/TARGET_ARCH=mips64

• bsd.crossbuild.mk

• ./configure --host=mips64-freebsd

And when that doesn’t work:

• distcc, NFS, and lots of embedded hardware 
or full system emulators
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Advantages
Software Supported

• Very fast results

• Works on lots of different host hardware

• Nice (when it is supported and it works).
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Disadvantages
Software Supported
• Sources usually need to support cross 

building, dependencies for two 
architectures, etc.

• Build may differ from native compile.

• No unit testing and regression testing 
during development and post build.

• No debugging.
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System Mode Emulation
• System mode requires 

emulation of devices and 
hardware such as the MMU 
in addition to the CPU. 

• Full target kernel is 
emulated as well.

• Because it has a lot of 
overhead may not be too 
practical for cross building/
development.
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User Mode Emulation

• Only CPU is emulated. 
MMU, I/O, etc. are not.

• System calls are 
translated to host calls 
or emulated.

• Can use host tools for 
cross development. 
Cross debugging and 
testing.
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Using Emulation as a 
Cross Building Tool

• Full System Emulation (“System Mode”)

• Has been used with distcc, NFS, etc. to 
offset the performance issues.

• User Only Emulation (“User Mode”)

• Used by some linux embedded developers.

• Some preliminary investigation by NetBSD 
developers.
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Qemu User Mode

• No MMU emulation: Simply uses host mmap()‘s with offsets.

• Target kernel threads map one-to-one to host pthread threads.

• Target signals are multiplexed with the host signals.

• Handles endianness and 32-bit target to 64-bit host translation issues 
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Advantages

• No changes needed ports to support cross 
building.   Auto config scripts that do things 
like compile and run bits of test code work.

•  Regression/unit tests can be run during 
cross development or post build checks.

• Can be used to reduce the development 
cycle time for embedded systems.
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Disadvantages

• The emulator may have bugs and missing support which 
may influence the build results.

• Some system calls are problematic like sysctl(), ioctl(), 
signals, fork(), threads, _umtx_op(), etc.

• Support for things like new system calls need to also be 
added to the emulator.  May get out of sync with kernel. 

• While it is much faster than full system mode emulation 
there is still a lot of overhead.

• Some kernel support may need to be added to the host.
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Initial State of Qemu 
User Mode on FreeBSD
• Qemu version1.2.0

• Qemu bsd-user (User Mode for *BSD): 

• It would emulate a simple ‘Hello World!’ 
app for statically compiled ARM binary.

• No signals, threads, user mutex, support 
for other arch’s, etc.

• Explicit support for maybe 10 system calls.
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Current Status of Qemu 
BSD User

• Qemu 1.4.1

• Static and dynamic target binaries supported.

• System calls not supported: ktimer_*, cpuset_*, rctl_*, sctp_*, 
kld*, quota*, jail*, cap_*, jail*, _mac*, sendfile, ptrace, & utrace.

• MIPS64 and ARM has the needed machine dependent code 
and will run static/dynamic binaries.  Some PPC machine 
dependent code and will run some very simple statically linked 
apps.

• Not all ioctl()’s, sysctl()’s, and sockopts supported.

* see http://wiki.freebsd.org/QemuUserModeToDo for details.
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Cross Building FreeBSD 
Packages Using Qemu BSD User

• Cross build a ${ARCH} ‘root’ distribution for target.  Install 
in ${DESTDIR}.

• Add devfs: ‘mount -t devfs devfs ${DESTDIR}/dev’

• Build statically linked version of qemu-${ARCH}.  Install in 
${DESTDIR}/usr/local/bin.

• chroot into ${DESTDIR}.

• ‘cd /usr/ports/${favorite_port} && make package’

*see https://wiki.freebsd.org/QemuUserModeHowTo for 
the details.
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Results
Cross Building MIPS64 Packages

• Added simple script that simply tries to build all packages.  If 
it fails then it goes on to next port.

• Over 9000 packages have been successfully cross built using 
an old, dual core AMD64 athlon for the emulator host.

• Perl 5.14 regression test results running under user mode 
emulation:  "Failed 2 tests out of 1970, 99.90% okay."  (The 
same two tests fail on target as well.)

*See package repo at http://www.cl.cam.ac.uk/research/
security/ctsrd/mips64-packages/
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Hybrid Cross Building 
Environment
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Kernel Support for 
Hybrid Environment

Miscellaneous Binary Image Activator:

• ‘imgact_binmisc’ kernel module and ‘binmiscctl’ 
command-line configuration tool.

• Invokes configured interpreter if given header magic 
(and optional mask) at file offset matches.

• Makes it possible to use lots of host native binaries in 
the cross build environment to increase performance.

* See http://people.freebsd.org/~sson/imgact_binmisc/ 
for source code and patches.
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Future Work

• Fix some 32-bit targets on 64-bit hosts 
issues.

• Add PPC support.

• Qemu code upstream.

• Build system integration. 
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Q & A

Links:

• https://wiki.freebsd.org/QemuUserModeToDo

• https://wiki.freebsd.org/QemuUserModeHowTo

• http://www.cl.cam.ac.uk/research/security/ctsrd/
mips64-packages/

• http://people.freebsd.org/~sson/imgact_binmisc/
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‘binmiscctl’ Examples

• llvm bitcode JIT compiler/interpreter (‘lli’):

# binmiscctl --add llvmbc --interpreter “/usr/bin/lli  --fake-
arg0=” --magic “BC\xc0\xde” --size 4 --offset 0 --concat-
old-arg0 --set-enabled

• Qemu user mode emulator (‘/usr/bin/qemu-mips64’)

# binmiscctl --add mips64elf --interpreter “/usr/bin/qemu-
mips64” --magic “\x7f\x45\x4c\x46\x02\x02\x01\x00[...]” 
--mask “\xff\xff\xff\xff\xff\xff\xff\x00[...]” --size 20
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‘binmiscctl’ Examples

• Disable/enable/delete image activator:

# binmiscctl --disable/--enable/--delete llvmbc

• Lookup and list image activator:

# binmiscctl --lookup llvmbc

• List all image activators:

# binmiscctl --list-all
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