/*- * Copyright (c) 2018 Emmanuel Vadot * Copyright (c) 2020, 2021 Soren Schmidt * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$Id$"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "regdev_if.h" #include "clock_if.h" MALLOC_DEFINE(M_RK80X_REG, "RK80X regulator", "RK80X power regulator"); //#define dprintf(sc, format, arg...) \ // device_printf(sc->base_dev, "%s: " format, __func__, arg) #define dprintf(sc, format, arg...) enum rk80x_type { RK805 = 1, RK808, }; static struct ofw_compat_data compat_data[] = { {"rockchip,rk805", RK805}, {"rockchip,rk808", RK808}, {NULL, 0} }; struct rk80x_regdef { intptr_t id; char *name; uint8_t enable_reg; uint8_t enable_mask; uint8_t voltage_reg; uint8_t voltage_mask; int voltage_min; int voltage_max; int voltage_step; int voltage_nstep; }; struct rk80x_reg_sc { struct regnode *regnode; device_t base_dev; struct rk80x_regdef *def; phandle_t xref; struct regnode_std_param *param; }; struct reg_list { TAILQ_ENTRY(reg_list) next; struct rk80x_reg_sc *reg; }; struct rk80x_softc { device_t dev; struct mtx mtx; struct resource * res[1]; void * intrcookie; struct intr_config_hook intr_hook; enum rk80x_type type; TAILQ_HEAD(, reg_list) regs; int nregs; }; static int rk80x_regnode_status(struct regnode *regnode, int *status); static int rk80x_regnode_set_voltage(struct regnode *regnode, int min_uvolt, int max_uvolt, int *udelay); static int rk80x_regnode_get_voltage(struct regnode *regnode, int *uvolt); static struct rk80x_regdef rk805_regdefs[] = { { .id = RK805_DCDC1, .name = "DCDC_REG1", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x11, .voltage_reg = RK80X_DCDC1_ON_VSEL, .voltage_mask = 0x3F, .voltage_min = 712500, .voltage_max = 1450000, .voltage_step = 12500, .voltage_nstep = 64, }, { .id = RK805_DCDC2, .name = "DCDC_REG2", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x22, .voltage_reg = RK80X_DCDC2_ON_VSEL, .voltage_mask = 0x3F, .voltage_min = 712500, .voltage_max = 1450000, .voltage_step = 12500, .voltage_nstep = 64, }, { .id = RK805_DCDC3, .name = "DCDC_REG3", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x44, }, { .id = RK805_DCDC4, .name = "DCDC_REG4", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x88, .voltage_reg = RK80X_DCDC4_ON_VSEL, .voltage_mask = 0x3F, .voltage_min = 800000, .voltage_max = 3500000, .voltage_step = 100000, .voltage_nstep = 28, }, { .id = RK805_LDO1, .name = "LDO_REG1", .enable_reg = RK805_LDO_EN, .enable_mask = 0x11, .voltage_reg = RK80X_LDO1_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 27, }, { .id = RK805_LDO2, .name = "LDO_REG2", .enable_reg = RK805_LDO_EN, .enable_mask = 0x22, .voltage_reg = RK80X_LDO2_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 27, }, { .id = RK805_LDO3, .name = "LDO_REG3", .enable_reg = RK805_LDO_EN, .enable_mask = 0x44, .voltage_reg = RK80X_LDO3_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 27, }, }; static struct rk80x_regdef rk808_regdefs[] = { { .id = RK808_DCDC1, .name = "DCDC_REG1", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x1, .voltage_reg = RK80X_DCDC1_ON_VSEL, .voltage_mask = 0x3F, .voltage_min = 712500, .voltage_max = 1500000, .voltage_step = 12500, .voltage_nstep = 64, }, { .id = RK808_DCDC2, .name = "DCDC_REG2", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x2, .voltage_reg = RK80X_DCDC2_ON_VSEL, .voltage_mask = 0x3F, .voltage_min = 712500, .voltage_max = 1500000, .voltage_step = 12500, .voltage_nstep = 64, }, { /* BUCK3 voltage is calculated based on external resistor */ .id = RK808_DCDC3, .name = "DCDC_REG3", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x4, }, { .id = RK808_DCDC4, .name = "DCDC_REG4", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x8, .voltage_reg = RK80X_DCDC4_ON_VSEL, .voltage_mask = 0xF, .voltage_min = 1800000, .voltage_max = 3300000, .voltage_step = 100000, .voltage_nstep = 16, }, { .id = RK808_LDO1, .name = "LDO_REG1", .enable_reg = RK808_LDO_EN, .enable_mask = 0x1, .voltage_reg = RK80X_LDO1_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 1800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 17, }, { .id = RK808_LDO2, .name = "LDO_REG2", .enable_reg = RK808_LDO_EN, .enable_mask = 0x2, .voltage_reg = RK80X_LDO2_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 1800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 17, }, { .id = RK808_LDO3, .name = "LDO_REG3", .enable_reg = RK808_LDO_EN, .enable_mask = 0x4, .voltage_reg = RK80X_LDO3_ON_VSEL, .voltage_mask = 0xF, .voltage_min = 800000, .voltage_max = 2500000, .voltage_step = 100000, .voltage_nstep = 18, }, { .id = RK808_LDO4, .name = "LDO_REG4", .enable_reg = RK808_LDO_EN, .enable_mask = 0x8, .voltage_reg = RK808_LDO4_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 1800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 17, }, { .id = RK808_LDO5, .name = "LDO_REG5", .enable_reg = RK808_LDO_EN, .enable_mask = 0x10, .voltage_reg = RK808_LDO5_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 1800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 17, }, { .id = RK808_LDO6, .name = "LDO_REG6", .enable_reg = RK808_LDO_EN, .enable_mask = 0x20, .voltage_reg = RK808_LDO6_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 800000, .voltage_max = 2500000, .voltage_step = 100000, .voltage_nstep = 18, }, { .id = RK808_LDO7, .name = "LDO_REG7", .enable_reg = RK808_LDO_EN, .enable_mask = 0x40, .voltage_reg = RK808_LDO7_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 800000, .voltage_max = 2500000, .voltage_step = 100000, .voltage_nstep = 18, }, { .id = RK808_LDO8, .name = "LDO_REG8", .enable_reg = RK808_LDO_EN, .enable_mask = 0x80, .voltage_reg = RK808_LDO8_ON_VSEL, .voltage_mask = 0x1F, .voltage_min = 1800000, .voltage_max = 3400000, .voltage_step = 100000, .voltage_nstep = 17, }, { .id = RK808_SWITCH1, .name = "SWITCH_REG1", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x20, .voltage_min = 3000000, .voltage_max = 3000000, }, { .id = RK808_SWITCH2, .name = "SWITCH_REG2", .enable_reg = RK80X_DCDC_EN, .enable_mask = 0x40, .voltage_min = 3000000, .voltage_max = 3000000, }, }; static int rk80x_read(device_t dev, uint8_t reg, uint8_t *data, uint8_t size) { return iicdev_readfrom(dev, reg, data, size, IIC_INTRWAIT); } static int rk80x_write(device_t dev, uint8_t reg, uint8_t data) { return iicdev_writeto(dev, reg, &data, 1, IIC_INTRWAIT); } static int rk80x_regnode_init(struct regnode *regnode) { struct regnode_std_param *param = regnode_get_stdparam(regnode); int retval, uvolt, udelay, status; if (!param->min_uvolt) return 0; /* Check that the regulator is preset to the correct voltage */ if ((retval = rk80x_regnode_get_voltage(regnode, &uvolt))) return retval; if (uvolt >= param->min_uvolt && uvolt <= param->max_uvolt) return 0; /* if the regulator is enabled dont touch it */ retval = rk80x_regnode_status(regnode, &status); if (retval || status == REGULATOR_STATUS_ENABLED) return retval; /* * Set regulator at the correct voltage if it is not enabled. * Do not enable it, this is will be done either by a * consumer or by regnode_set_constraint if boot_on is true */ retval = rk80x_regnode_set_voltage(regnode, param->min_uvolt, param->max_uvolt, &udelay); if (udelay) DELAY(udelay); return retval; } static int rk80x_regnode_enable(struct regnode *regnode, bool enable, int *udelay) { struct rk80x_reg_sc *sc = regnode_get_softc(regnode); uint8_t val; dprintf(sc, "%sabling regulator %s\n", enable ? "En" : "Dis", sc->def->name); rk80x_read(sc->base_dev, sc->def->enable_reg, &val, 1); if (enable) val |= sc->def->enable_mask; else val &= ~sc->def->enable_mask; rk80x_write(sc->base_dev, sc->def->enable_reg, val); *udelay = 0; return 0; } static void rk80x_regnode_reg_to_voltage(struct rk80x_reg_sc *sc, uint8_t val, int *uv) { if (val < sc->def->voltage_nstep) *uv = sc->def->voltage_min + val * sc->def->voltage_step; else *uv = sc->def->voltage_min + (sc->def->voltage_nstep * sc->def->voltage_step); } static int rk80x_regnode_voltage_to_reg(struct rk80x_reg_sc *sc, int min_uvolt, int max_uvolt, uint8_t *val) { uint8_t nval; int nstep, uvolt; nval = 0; uvolt = sc->def->voltage_min; for (nstep = 0; nstep < sc->def->voltage_nstep && uvolt < min_uvolt; nstep++) { ++nval; uvolt += sc->def->voltage_step; } if (uvolt > max_uvolt) return EINVAL; *val = nval; return 0; } static int rk80x_regnode_status(struct regnode *regnode, int *status) { struct rk80x_reg_sc *sc = regnode_get_softc(regnode); uint8_t val; *status = 0; rk80x_read(sc->base_dev, sc->def->enable_reg, &val, 1); if (val & sc->def->enable_mask) *status = REGULATOR_STATUS_ENABLED; return 0; } static int rk80x_regnode_set_voltage(struct regnode *regnode, int min_uvolt, int max_uvolt, int *udelay) { struct rk80x_reg_sc *sc = regnode_get_softc(regnode); uint8_t val; int uvolt; if (!sc->def->voltage_step && (sc->def->voltage_min != sc->def->voltage_max)) return ENXIO; dprintf(sc, "Setting %s to %d<->%d uvolts\n", sc->def->name, min_uvolt, max_uvolt); rk80x_read(sc->base_dev, sc->def->voltage_reg, &val, 1); if (rk80x_regnode_voltage_to_reg(sc, min_uvolt, max_uvolt, &val) != 0) return ERANGE; rk80x_write(sc->base_dev, sc->def->voltage_reg, val); rk80x_read(sc->base_dev, sc->def->voltage_reg, &val, 1); *udelay = 0; rk80x_regnode_reg_to_voltage(sc, val, &uvolt); dprintf(sc, "Regulator %s set to %d uvolt\n", sc->def->name, uvolt); return 0; } static int rk80x_regnode_get_voltage(struct regnode *regnode, int *uvolt) { struct rk80x_reg_sc *sc = regnode_get_softc(regnode); uint8_t val; if (sc->def->voltage_min == sc->def->voltage_max) { *uvolt = sc->def->voltage_min; return 0; } if (!sc->def->voltage_step) return ENXIO; rk80x_read(sc->base_dev, sc->def->voltage_reg, &val, 1); rk80x_regnode_reg_to_voltage(sc, val & sc->def->voltage_mask, uvolt); dprintf(sc, "Regulator %s is at %d uvolt\n", sc->def->name, *uvolt); return (0); } static regnode_method_t rk80x_regnode_methods[] = { /* Regulator interface */ REGNODEMETHOD(regnode_init, rk80x_regnode_init), REGNODEMETHOD(regnode_enable, rk80x_regnode_enable), REGNODEMETHOD(regnode_status, rk80x_regnode_status), REGNODEMETHOD(regnode_set_voltage, rk80x_regnode_set_voltage), REGNODEMETHOD(regnode_get_voltage, rk80x_regnode_get_voltage), REGNODEMETHOD(regnode_check_voltage, regnode_method_check_voltage), REGNODEMETHOD_END }; DEFINE_CLASS_1(rk80x_regnode, rk80x_regnode_class, rk80x_regnode_methods, sizeof(struct rk80x_reg_sc), regnode_class); static struct rk80x_reg_sc * rk80x_reg_attach(device_t dev, phandle_t node, struct rk80x_regdef *def) { struct rk80x_reg_sc *reg_sc; struct regnode_init_def initdef; struct regnode *regnode; memset(&initdef, 0, sizeof(initdef)); if (regulator_parse_ofw_stdparam(dev, node, &initdef) != 0) { device_printf(dev, "cannot create regulator\n"); return (NULL); } if (initdef.std_param.min_uvolt == 0) initdef.std_param.min_uvolt = def->voltage_min; if (initdef.std_param.max_uvolt == 0) initdef.std_param.max_uvolt = def->voltage_max; initdef.id = def->id; initdef.ofw_node = node; regnode = regnode_create(dev, &rk80x_regnode_class, &initdef); if (regnode == NULL) { device_printf(dev, "cannot create regulator\n"); return (NULL); } reg_sc = regnode_get_softc(regnode); reg_sc->regnode = regnode; reg_sc->base_dev = dev; reg_sc->def = def; reg_sc->xref = OF_xref_from_node(node); reg_sc->param = regnode_get_stdparam(regnode); regnode_register(regnode); return (reg_sc); } static void rk80x_shutdown(void *devp, int howto) { device_t dev = (device_t)devp; if (howto & RB_POWEROFF) { if (bootverbose) device_printf(dev, "Shutdown RK808 PMIC\n"); rk80x_write(dev, RK808_DEVCTRL_REG, 0x01); return; } if (howto & RB_POWERCYCLE) { if (bootverbose) device_printf(dev, "Powercycle RK808 PMIC\n"); rk80x_write(dev, RK808_DEVCTRL_REG, 0x09); return; } if (bootverbose) device_printf(dev, "Shutdown called howto=0x%x unhandled\n", howto); } static int rk80x_rtc_gettime(device_t dev, struct timespec *ts) { struct bcd_clocktime ct; uint8_t reg, val; /* get a copy of the clock registers */ rk80x_read(dev, RK80X_RTC_CTRL_REG, ®, 1); rk80x_write(dev, RK80X_RTC_CTRL_REG, reg | (1<<7) | (1<<6)); /* wait one 32khz cycle for clock copy registers to latch */ DELAY(1000000 / 32000); /* enable reading copy registers */ rk80x_write(dev, RK80X_RTC_CTRL_REG, reg | (1<<7)); /* read registers */ rk80x_read(dev, RK80X_SECONDS_REG, &ct.sec, 1); rk80x_read(dev, RK80X_MINUTES_REG, &ct.min, 1); rk80x_read(dev, RK80X_HOURS_REG, &ct.hour, 1); rk80x_read(dev, RK80X_DAYS_REG, &ct.day, 1); rk80x_read(dev, RK80X_MONTHS_REG, &ct.mon, 1); rk80x_read(dev, RK80X_WEEKS_REG, &ct.dow, 1); rk80x_read(dev, RK80X_YEARS_REG, &val, 1); /* disable reading clock registers */ rk80x_write(dev, RK80X_RTC_CTRL_REG, reg); ct.year = 0x2000 + val;; /* valid for 2000-2099 only */ if (ct.dow == 7) /* our sunday is 0 not 7 */ ct.dow = 0; ct.nsec = 0; /* RTC resolution is 1 sec */ if (ct.mon == 11 && ct.day == 31) { ct.day = 1; ct.mon = 12; /* stop RTC clock */ rk80x_read(dev, RK80X_RTC_CTRL_REG, ®, 1); rk80x_write(dev, RK80X_RTC_CTRL_REG, reg | (1<<0)); rk80x_write(dev, RK80X_DAYS_REG, ct.day); rk80x_write(dev, RK80X_MONTHS_REG, ct.mon); /* start RTC clock */ rk80x_write(dev, RK80X_RTC_CTRL_REG, reg & ~(1<<0)); } if (bootverbose) device_printf(dev, "%04x-%02x-%02x %02x:%02x:%02x\n", ct.year, ct.mon, ct.day, ct.hour, ct.min, ct.sec); return (clock_bcd_to_ts(&ct, ts, FALSE)); } static int rk80x_rtc_settime(device_t dev, struct timespec *ts) { struct bcd_clocktime ct; uint8_t reg; clock_ts_to_bcd(ts, &ct, true); /* valid for 2000-2099 only */ if ((ct.year & 0xff00) != 0x2000) { device_printf(dev, "year out of range\n"); return EINVAL; } ct.year &= 0x00ff; /* stop RTC clock */ rk80x_read(dev, RK80X_RTC_CTRL_REG, ®, 1); rk80x_write(dev, RK80X_RTC_CTRL_REG, reg | (1<<0)); /* update registers */ rk80x_write(dev, RK80X_SECONDS_REG, ct.sec); rk80x_write(dev, RK80X_MINUTES_REG, ct.min); rk80x_write(dev, RK80X_HOURS_REG, ct.hour); rk80x_write(dev, RK80X_DAYS_REG, ct.day); rk80x_write(dev, RK80X_MONTHS_REG, ct.mon); rk80x_write(dev, RK80X_WEEKS_REG, (ct.dow == 0) ? 7 : ct.dow); rk80x_write(dev, RK80X_YEARS_REG, ct.year); /* start RTC clock */ rk80x_write(dev, RK80X_RTC_CTRL_REG, reg & ~(1<<0)); return 0; } static int rk80x_probe(device_t dev) { if (!ofw_bus_status_okay(dev)) return (ENXIO); switch (ofw_bus_search_compatible(dev, compat_data)->ocd_data) { case RK805: device_set_desc(dev, "RockChip RK805 PMIC"); break; case RK808: device_set_desc(dev, "RockChip RK808 PMIC"); break; default: return (ENXIO); } return (BUS_PROBE_DEFAULT); } static int rk80x_attach(device_t dev) { struct rk80x_softc *sc = device_get_softc(dev); struct rk80x_reg_sc *reg; struct rk80x_regdef *regdefs; struct reg_list *regp; phandle_t rnode, child; int i; sc->type = ofw_bus_search_compatible(dev, compat_data)->ocd_data; switch (sc->type) { case RK805: regdefs = rk805_regdefs; sc->nregs = nitems(rk805_regdefs); break; case RK808: regdefs = rk808_regdefs; sc->nregs = nitems(rk808_regdefs); break; default: device_printf(dev, "Unknown type %d\n", sc->type); return (ENXIO); } TAILQ_INIT(&sc->regs); rnode = ofw_bus_find_child(ofw_bus_get_node(dev), "regulators"); if (rnode > 0) { for (i = 0; i < sc->nregs; i++) { if (!(child=ofw_bus_find_child(rnode, regdefs[i].name))) continue; if (OF_hasprop(child, "regulator-name") != 1) continue; if (!(reg = rk80x_reg_attach(dev, child, ®defs[i]))) device_printf(dev, "cannot attach regulator %s\n", regdefs[i].name); regp = malloc(sizeof(*regp), M_DEVBUF, M_WAITOK|M_ZERO); regp->reg = reg; TAILQ_INSERT_TAIL(&sc->regs, regp, next); if (bootverbose) device_printf(dev, "Regulator %s attached\n", regdefs[i].name); } } /* Register this as a 1Hz clock */ clock_register(dev, 1000000); /* Register shutdown method */ EVENTHANDLER_REGISTER(shutdown_final, rk80x_shutdown, dev, SHUTDOWN_PRI_LAST - 100); return 0; } static int rk80x_detach(device_t dev) { /* We cannot detach regulators */ return EBUSY; } static int rk80x_map(device_t dev, phandle_t xref, int ncells, pcell_t *cells, intptr_t *id) { struct rk80x_softc *sc = device_get_softc(dev);; struct reg_list *regp; TAILQ_FOREACH(regp, &sc->regs, next) { if (regp->reg->xref == xref) { *id = regp->reg->def->id; return 0; } } return ERANGE; } static device_method_t rk80x_methods[] = { DEVMETHOD(device_probe, rk80x_probe), DEVMETHOD(device_attach, rk80x_attach), DEVMETHOD(device_detach, rk80x_detach), /* regdev interface */ DEVMETHOD(regdev_map, rk80x_map), /* Clock interface */ DEVMETHOD(clock_gettime, rk80x_rtc_gettime), DEVMETHOD(clock_settime, rk80x_rtc_settime), DEVMETHOD_END }; static driver_t rk80x_driver = { "rk80x_pmu", rk80x_methods, sizeof(struct rk80x_softc), }; static devclass_t rk80x_devclass; EARLY_DRIVER_MODULE(rk80x, iicbus, rk80x_driver, rk80x_devclass, 0, 0, BUS_PASS_INTERRUPT + BUS_PASS_ORDER_LAST); MODULE_DEPEND(rk80x, iicbus, IICBUS_MINVER, IICBUS_PREFVER, IICBUS_MAXVER); MODULE_VERSION(rk80x, 1);