
Third-party software management under BSD
Andrew Pantyukhin <infofarmer@FreeBSD.org>

EuroBSDCon 2006

Preface

When I set out to write this paper in July 2006 I was a FreeBSD ports committer, determined to find something new in
OpenBSD ports, NetBSD pkgsrc, as well as in a number of software management systems for Linux. I was hoping to find a
way for the BSD community to exchange ideas with each other and to learn a lot from our Linux colleagues. Now, three
months later, I'm still a FreeBSD ports committer, and I'm still hoping for us to work together, but I sure have gone a long
way, longer than I ever expected to. The thing is, software management is developing so rapidly, you can never expect
anything from it until you go and see for yourself what's happening.

In July I was pretty sure what I am going to write about, but a few weeks after I started the research, I was abashed by the
affluence of information and I knew it was impossible just to describe solutions and discuss their implementation. In this
paper, in addition to some factual background, in a clumsy, but purposefully informal and easy-going way, I try no more but to
convey my own impressions from my venture into the world of package management.

Introduction

Operating systems come bundled with software. As removable media grows in size, leaving developers, trying to fill it up with
code, far behind, we can fit more and more on a CD, DVD, Blu-ray Disc and what not. But while it seems to many end-users
that somewhere there's a perfect combination of tools to cater to all their needs, they fail to see some simple points, exposing
this illusion:

● However huge data storage is and however fast it grows, the number of software projects is overwhelming. With over
130 thousand projects at SourceForge alone, and many similar repositories amassing dozens of thousands more, it is
absolutely clear why we just cannot jam everything into one distribution and present it to somebody other than a
football-field-sized data center owner.

● We can greet a user with gigabytes of the most popular software in the world, and many Linux distributions do just
that. But in our naturally heterogenous IT world, there's always a great deal of unsolved problems. And once some
piece of software answers a need, users want it. They won't wait until the next version of the whole distro, they won't
wait until the packagers actually notice the new tool, the want it here and now.

● We can't pretend every user has enough resources to install a multigigabyte chunk of software just like that. There's
embedded market where you need to enjoy your life on a shoestring, there are users with legacy hardware, there are
users multibooting in 10 different systems, there are virtual private servers - and in each case any piece of software
can be required, but it's not possible to install all the software at once.

Hence packages. Traditionally, package management can be integrated into packages themselves, or into the operating
environment. The first way is decentralized by design, and popular among commercial closed-source software vendors. They
don't like to conform to cheaply advertised standards or to wait for anyone to accept their package into a repository, so they
just bundle their programs with installers, and sometimes deinstallers, and make it available as an executable. That's the way
most packages come on proprietary desktop operating systems and many proprietary packages on other systems, and
unfortunately that's the way to give your system administrator nightmares. The other way usually involves some guidelines,
which package developers, or packagers, have to take into account in order to build a conformant package. Such packages are
usually easy to install, deinstall and upgrade through a common interface.

History

Package management in UNIX

Before package management existed, as we know it now, developers preferred spending their time troubleshooting installation
issues to thinking about deinstallation. This approach became deeply rooted, and remains so to this day, in the Windows
world. Back then a user usually had to get a file archive, extract it, optionally hack it and compile it, and install it.
Surprisingly, today some administrators, especially those dealing with more obscure proprietary systems, regard this routine as
quite straight and normal. Additionally many operating systems came bundled with all the software you were supposed to ever
need.

That's the way BSD systems went, coming with rich userlands so that users might have a chance to never think about anything
third-party. That's the way early Linux distributions were - it was all OS developers' job to decide what's important, compile it,
integrate it and give you a nice versatile bundle.

But of course it couldn't stay that way for long. Eventually Unix got its System V (Solaris) PKG format and users started using
binary packages, which they didn't have to hack or compile, or even extract. A simple pkgadd command would "transfer" the
package to their system, and pkgrm would remove it. Pkginfo and half a dozen extra tools were also there to constitute one of
the first Package Management Systems (PMS).

mailto:infofarmer@FreeBSD.org

Package management in BSD

In August 1993 Jordan Hubbard committed his package install suite, and almost exactly a year later he presented us with his
new ports make macros, also known as bsd.port.mk. NetBSD imported the pkg tools in summer 1997 and later that year they
adopted the ports technology under codename pkgsrc (because the word "port" already meant a hardware architecture in
NetBSD). OpenBSD inherited pkg_install suite and ports from NetBSD; pkg tools were rewritten in Perl by Marc Espie in
2003, but this new version has remained limited to OpenBSD to this day.

Initially the FreeBSD ports system was just a facility to ease building binary ports, a collection of macros written in make,
which later became a vital part of all three major BSD OS's.

Package management in Linux

Year 1993 welcomed Slackware, Debian, RedHat and Bogus distributions to the scene - and each came with its own PMS. By
mid 1994 there were Slackware packages, a modestly-named PMS system in Bogus, RedHat RPP and Debian dpkg solutions.
RedHat later developed a new system called RPM, which are, together with Debian packages the two most popular PMS for
Linux today.

When Gentoo Linux 1.0 was released in 2002, it came with a system called Portage. Based on FreeBSD ports, it was powered
by bash and python instead of make and shell. With over 11000 of official separate packages, it is one of the most
comprehensive centralized repositories of third-party software for Linux.

Today

Today there are dozens of systems, allowing to manage software on Unix-like systems in one way or another. They can be
divided into binary-based, where you only deal with binary packages, source-based, where you install everything by compiling
from source and hybrid, where you can do a little bit of both. In fact, all systems deal with source code at some point and all
systems deal with binaries when the software is installed, so the real difference is how they manage to compile software,
install it, remove it, and perform other management tasks.

Early PMS did not provide much help in compiling the code. More often than not, you were required to compile it by hand,
move binaries to a special place - and use some tool to archive it along with some metadata into a package. That wasn't a very
pleasant job, especially if you consider the wealth of open source software and the frequency of updates. Ports makefiles, RPM
recipes, Debian control files, Portage ebuilds - are all there now to ease the task by automation and modularization of common
actions.

You can hardly imagine building thousands of packages by hand, if you take into account that you have to do that for several
versions of an OS, multiplied by several hardware architectures. Today in the FreeBSD ports system less than a megabyte of
uncompressed core make macros make it possible for the other 375 megabytes of package-specific code perform this task with
excellence, compiling over 15000 pieces of software, which amount to tens of gigabytes of non-bloatware source code, into
packages.

BSD ports and especially Portage have very advanced macro systems, while RPM and dpkg mostly utilize separate packages
to perform common actions. All these systems deal with pristine sources, i.e. they store all the information needed for the
original upstream source code to be compiled into a package. Lots and lots of portability issues have resulted in many macros,
which effectively unburdened thousands of software developers, and let us compile code written without much portability in
mind with no showstopping trouble.

Of course, compilation is only a part of the whole picture. We can't just throw binaries at users, we have to make installed
software easily available. For plain old console apps it just means placing binaries in a PATH-exposed directory. For daemons,
we have to help user stop and start them at reboot automatically. For X11 apps we may have to install some Gnome- or KDE-
specific files. And things just get more complicated when it comes to web- and SQL-based software, and other modern
software usage paradigms, like virtualization, clustering, and so on. Some of these issues are solved in many PMS, others are
not even planned to be alleviated or even not recognized as problems, but believed to be there to entertain system
administrators.

We'll now look at some popular contemporary PMS, at issues and solutions, at what users and porters expect from the
infrastructure, and we will try to understand why there is so little collaboration between very similar projects and how people
can start working together.

FreeBSD ports

Most of us know how FreeBSD ports system works in general. It's written in make and shell with every port having its own
Makefile along with some other files, like patches and checksums, but the way we see it as multiple files in multiple multilevel
directories is only a matter of organization. In fact, we could have had everything fit into a handful of makefiles and specify
what port we're going to operate on every time we invoke make. There are countless ways to organize these hundreds of

megabytes of code. With shell and make being comparatively simple languages, we've seen snippets ported from one to the
other and back.

Core ports macros are located in a special Mk directory. They can be used by ports directly, or through the main macro
package, bsd.port.mk, also located there, by setting special USE_XXX flags. A number of additional macros is located
throughout the ports tree. In theory, you can create a port without using a single macro package, but macros ease the task
immensely. You would have to program all the actions manually, from fetching, building and installing the software to
creating a standard package. While most actions can be redefined, no port ever required to redefine all of them (there are over
a hundred actions defined in just bsd.port.mk).

Thanks to macros most of the work is already done for you. In many simple cases, all a porter has to do is to write down a
name, version, and download URLs for a piece of software, along with a short description and a list of files it installs - and a
port is all ready. You can install it, remove it, make a package and submit it for inclusion into the official ports tree. But you
only begin to experience the power of the ports system when you have some trouble with an app. You can solve most
problems with a couple of tweaks, but there are hard nuts, when you spend hours trying to figure out what to patch and why
does it segfault at start. There's always room for automation, though. Many porters find themselves doing the same hacks over
and over again, - and only reluctant to automate it all because it's not that easy. Portage has a well thought-out eclass system to
encourage streamlining all kinds of hacks, we'll look at it later.

NetBSD pkgsrc

Many users think that OpenBSD and FreeBSD ports are very similar, because they are both "ports", and NetBSD pkgsrc is
something alike, but still different, because it sounds very different. In fact, like we said a bit earlier, pkgsrc would probably
have been called ports if only the word "port" had not already had an entirely different meaning in the NetBSD project. It's a
challenge to find out whether it was OpenBSD or NetBSD who has done more work on ports, but at first sight pkgsrc feels
more like FreeBSD ports than OpenBSD ports do. It is probably because OpenBSD guys had rewritten the pkg_install suite
from scratch (and renamed it to pkg_add to avoid a directory name clash during the transition). Along the way, they introduced
many improvements into the infrastructure, as we'll see in a minute.

Now NetBSD still uses the original pkg_install suite, although John Kohl has contributed to the code and many of the
refinements made it back to FreeBSD. Pkgsrc also got many interesting features, to name a few random ones:

● licensing notion - ports refer to license names, which are located in a separate common directory. A user can restrict
available ports to a subset of known licensing options

● print-PLIST target - simple, but nice automatic plist generation tool, it uses "find -newer" and some awk/mtree magic

● good documentation - pkgsrc.txt is a comprehensive guide for users, porters and developers

● buildlink3 - symlinks required libs and headers into WRKDIR at pre-build

● builtin.mk - decide if system or installed lib should be used

● pkginstall framework - some common tasks for install/deinstall scripts have been automated, like user/group creation
and dealing with config file

● pkg options framework - options have been reworked to allow for easy customization

● more flexible subst framework

● policy-prodded unique dist_subdirs for rerolled distfiles

OpenBSD ports

Like I just mentioned, OpenBSD ports infrastructure seems to have changed a lot since it was inherited from FreeBSD. The
fact is it might have experienced much less development than pkgsrc has, but the changes affected it in a more visible way.
And that's what any infrastructure should probably be aiming at - little changes in the core producing much positive effect in
the consumers.

● fake build environment - when you install a port, it is first installed into a wrkdir called fake root, then package is
built and only then is it installed

● immaculate documentation - many comments made it from makefiles into manpages, many concepts are now
described in dedicated manpages

● options reworked into flavors, a little less flexible, but a lot cleaner mechanism

● multi-packages - building several packages from a port the smart way

● packages with different options or different subpackages in a multi-package have different filenames

● you can act on several ports in a go, grouped by package name, category or maintainer

● locking-supported parallel builds

● built-in updating support

The whole pkg_install suite has been rewritten in Perl, and became arguably a lot smarter. I won't discuss it right now, but the
ultimate target of OpenBSD ports developers is to integrate most package management tasks into the base system.

Other Worlds

Many of us remember that there's much more to operating systems than BSD, some even recognize the word Linux when they
hear it. Apart from BSD ports there are three big package-management players in the Unix-like world: RPM (RedHat, SuSE),
dpkg (Debian, Ubuntu) and a rising star named Portage (Gentoo). And there are dozens of other most diversified approaches,
which I won't discuss in detail, but will mention when I talk about some interesting features.

RPM is probably the best-known package format in the world. It is associated with a package manager of the same name.
RPM manager can run on most Unix-like systems and has been employed as a built-in feature in many Linux distributions.
Binary RPM packages are built from source ones, which usually contain pristine sources, patches and a spec file, much like a
BSD port's makefile. There is no central repository of macros, so packagers are restricted to RPM built-in functionality. Binary
packages from one system are usually unusable on another, or even on a different version of the same. Unfortunately, source
packages usually obey the same rule, which limits RPM in its success as a universal package manager. When vendors publish
packages, they usually have to provide one for each OS it is supposed to run on. There are efforts under way, most
prominently Linux Core Consortium, which is behind Linux Standard Base, to alleviate the problem of incompatible packages.

Dpkg approach, also known for it's .deb packages, is a lot like RPM, but thanks to rigorous packaging practices has much
fewer compatibility issues. Binary packages from one Debian-based system usually run on another one. Lately there have been
some issues with Ubuntu, the most popular Debian derivative, about package compatibility. We can only hope that Ian
Murdock, Debian founder and ex-leader, will do everything he can to prevent RPM chaos from coming into Debian family
(he's also working on LSB), while we discuss some other dpkg highlights. Documentation is extensive and quite impressive,
leaving no room for questions from a novice, but the thing packagers profit the most from is probably debhelper suite, and
lately Common Debian Build System (CDBS). Debhelper is a collection of tools which can be called from rules files -
makefiles controlling how package is built. CDBS is a collection of macros packages, much like dot.mk files in BSD
infrastructures. They can be included into rules files to use predefined targets and other handy make macros. CDBS builds on
debhelper, and together they can bring packagers even more convenience then ports currently do.

Last but not least is the youngest, most vigorous system named Portage, as a tribute to BSD ports. Its original developer,
Daniel Robbins, took a foray into FreeBSD and later used his impressions to design a new PMS in Bash and Python, which is
now the heart of Gentoo Linux. He did a great job at studying what other systems did, so he laid out a pretty slick design and
implemented it successfully. Somewhat like RPM, Portage uses Bash scripts, named ebuilds, to control the building process.
To provide debhelper and CDBS functionality, he designed a system of eclasses, also Bash scripts, which are a lot more fun to
use than make macro packages. All in all, Portage does not introduce any revolutionary practices in PMS world, except for
bringing it home that source-based PMS can be a success on Linux, but its straightforward design and the power of Bash at its
core attracted many developers and made it grow as fast as no one could expect.

Why Bother?

So there are BSD ports, Linux packages and a lot of other systems. Maybe we could take a look and learn something new, but
at any rate, we should probably try to save our individuality and leave other projects well enough alone; diversity is good,
right? Well, the problem is that no package management system of today can cope with users' demands. Whatever OS you use,
you'll always meet some mishaps and shortcomings. First of all, there is enormous amount of open source projects. Whenever
we tell a user "you'll find everything you need right here in our collection" we are lying. He'll be lucky to find a few most
popular percent of currently available software, and he'll be very lucky to find that most of them are up to date and usable. And
by only exposing the most popular programs, we are actually raising barriers for them to become popular in the first place.
And by saying "you don't need that and that anyway" we begin to dictate our opinion.

And the problems are not just in the numbers. It's a topic for another pile of papers, whether it's right or wrong to present users
with a zillion of useless tools, whether diversity on its own is vile or virtuous. But there is so much more to both qualitative
and quantitative metrics describing the way PMS serves its purpose. In a minute we'll start looking at some issues and
solutions, and will hopefully discover that no project alone can embrace even a list of problems it would want to solve.
Sometimes users are so loyal they mistake shortcomings of the systems they use for the way things should be, or even consider
them advantageous. For instance, those who use binary-centric systems exclusively often frown upon source-based ones,
because they are unaware of the problems which they can solve. And the other way around.

The interesting thing about packaging is that we all use the same software. At the operating system level, all we might care
about is interoperability standards; implementation can work in ten different ways under the hood. But when it comes to third-
party software - we're actually using the very same source code on all the different platforms. So while developers might pride
on their distinctiveness and isolationism, packagers just can't do that. Be it FreeBSD, Linux or Mac OS, we should look for
ways to work together, or we'll end up thinking that we're doing great when in fact we're suffocating both our users and
software vendors. And the current situation of three BSDs working on three separate ports systems is just inconceivable. We're
so close together we could fall on each other - and yet we find it much more comfortable to tweak things on our own.

We shall consider how to meet each other halfway later on, and now let's take look at what's bothering us, and what PMS
projects are having fun about.

What's up?

Scalability - Package Building

One of the main problems in any PMS is package building. Most porters acknowledge this, and the FreeBSD portmgr team
could probably write an epic about it. Basically, FreeBSD package building cluster is a bunch of donated boxes. When
building the whole tree takes desperate amounts of time, we ask for more hardware resources - and sometimes we even get
them. As a result we've got one of the most up-to-date PMS trees out there and one of the most outdated package collections.
Most Linux distributions don't seem to have these problems, but in reality they are just cheating. Fedora builds only the core,
official packages, plus a generous amount of extras, - and lets users go find all the software they need anywhere else. Portage
only builds at release times. Debian allows porters to build and upload packages themselves. BSD ports might have something
to learn from each of them.

Firstly, traditionally we always try to build the whole tree, but we really don't have to. When it comes to a point when we just
can't handle more package building, we either don't accept new ports or don't build them. Whichever is lesser evil is a hard
question, but while we can handle a lot more code in our VCS there's no reason not to allow it to be added.

Secondly, also by tradition, we keep package building centralized. Centralization is always a two-edged sword. It keeps us
from wasting coding efforts on redundant solutions, i.e. encourages collaboration, but it also demands non-trivial hardware
resources when it comes to hungry tasks. At this point we can't just let porters build packages themselves and upload them,
because it's a commonplace to customize build environments, but it's possible to automate standards-compliant builds, and in a
way less painful than tinderbox to set up. Once porters can build standard packages, it can be automated. Everyone takes the
ports he maintains and builds them on whatever archs he can, pkg_adds them, tries to run, uploads. Once the building part is
automated, we can distribute tasks among both porters and non-porters. And distribution of hardware-hungry tasks seems to
always solve the problem. Of course, there are security ramifications to be thought about, but in general, we have to trust
people. Package signatures will be a must, though.

System Resources: Using, Keeping Track

In a way, every PMS solves a problem of managing system resources, like disk space, file namespaces, user names, etc. It's
just that few people put it this way. When we think about a program which requires a specific user name, we imagine a script
to create it at install, remove it at deinstall, spit out some warnings if the user already exists in our system and so on. Why
don't we call it a resource and acknowledge that the app needs it. We might have one and we might not; some resources, like
user names, can be shared between a number of different programs; some, like a TCP port at a specific IP address, usually
can't. Whatever we should call a resource depends on our imagination.

To reiterate, among the things that can be actually spent or saved or wasted, programs usually require:
● disk space - this is ignored much too often, but it's far too important. A PMS of the future should probably provide a

means of package-specific runtime disk space quotas, which are requested at pre-install time and prevent programs
from filling up /var with logs and other similar issues. A user should also be able to view requirements of the
packages he has installed, is installing or is planning to install, so that he can decide on his hard disk layout, or what
to share via NFS, or numerous other points of administrative design.

● directory/file namespaces - facing a problem of having multiple instances of the same packages (of one or several
different versions) installed at the same time, we should think about naming problems.

● user/group names/ids - many programs require a dedicated username (and for security reasons we might want to
encourage it where it is optional), some share it with other programs (e.g. many webapps share user/group with
webserver programs), but there's always a problem when it comes to adding/removing user accounts. There are ways
to run a program under whatever user we like, so we should avoid hardcoding user id's or specific username.

● TCP/UDP ports - we are accustomed to seeing ports as some hardcoded property of a program. In fact, almost any
network-enable program provides a way to specify what port it should use. And we should leverage it in order to
automate installation of several similar apps on one box.

● CPU, RAM, disk throughput, number of processes, number of open files, etc. - of course it would be cool if we could
distribute performance based on priorities, soft/hard limits or otherwise between all the packages we have installed.
Unfortunately, few operating systems have enough built-in functionality to implement that. Of course, we could
employ some clever wrapper scripts or other hacks, but an efficient solution would still require OS support.

There's more to Resources

Now that we've seen how packages consume resources, why don't we allow packages to provide resources? Databases, virtual
hosts, pixel-based on-screen real-estate, client connections to some persistent antivirus engine - you name it. Is it possible to
automate it in a safe way? - Why not? And who could possibly do it in a better way than the maintainers themselves, who
usually know more about their particular piece of software than most other users do. Of course, there are security issues to
consider, but in fact many administrators choose less secure configurations in favor of more complicated ones - just because
they haven't got enough time or zest. Apache runs chrooted on OpenBSD by default, it's not a port, but that's an
accomplishment all the same. I doubt half of FreeBSD users chroot Apache by hand, in spite of all the security benefits. And
what does it take porters to automate this setup? Probably less than it would take a new Apache user to do it the first time.

Of course, flexibility issues arise when porters try to make mandatory decisions for users. Well, it usually only takes one "if"
clause to make some action optional. Moreover, porters should try to allow for many common choices. Let users prefer
Postgres to MySQL, or database on another host to local one, and let applications take that preferences into account.

Customization

Resource management is tightly coupled with a more general problem of software customization, from setting preferences to
applying useful functionality-enhancing patches. I must have installed phpMyAdmin for a hundred times and almost each time
I had to edit the configuration file to make the very same change - enable cookie-based authentication and set a blowfish
secret. It would probably take less than an hour to implement some "with_" variable and automate the whole process. Many
other webapps offer generous web-based installation wizards, but they always ask almost the very same questions. What
would it take to let user say "I've got this database on this host with these admin credentials, please manage db/user creation
for me"?

Sometimes programs require particular settings tweaked in other programs. A well-known example is php.ini settings. Should
we make user deal with it herself or should we outline requirements and automate all the necessary tweaks if some super-
manual-override mode has not been enabled in make.conf?

User interface

Most PMS have a unified interface to perform all the tasks related to software management. Here the simplicity of
management contradicts flexibility and complexity of operation. I've always liked the way VCS clients deal with the problem.
One main program, comprehensive easy-to-use help system, orthogonal switches, dozens of completely different functions
performed by intuitive concise incantations. OpenBSD has taken pkg_install suite there (by rewriting it in Perl from scratch),
Portage has emerge, Debian - apt. For a long time now FreeBSD has relied on portupgrade. Doug Barton has been working on
a new tool called portmaster, written in shell, so that it can be integrated into the base system. But we have still to see a tool to
let us customize ports. The way users are asked to set options now is strange to say the least. There is a tool named portconf,
but it's more of a hack than a solution.

Choosing what (not) to install

Most users crave an easy way to say, what he wants to be installed, what he considers OK to be installed and what he doesn't
want to be installed at all. At any given time, the PMS should know which of the installed packages are actually required by
the user and which are installed as requirements for other packages. Sometimes it's important to be able to mark packages not
to be installed under any circumstances. For example, a user might not want X.Org libraries on a server with constrained
resources - or just to keep system clean for that matter - and he would prefer some graphic app failing to install instead of
having a bunch of heavy-weight packages installed.

Where do the old versions go?

FreeBSD ports pride upon being one of the most current repositories of open-source software in the industry, without having
too much of stability hassle. This makes it possible for all kinds of users to stay on the edge. But a lot of users require much
more than just that. There are countless situations when an earlier version of a program is required. Most PMS, including BSD
ports, try to solve this problem by providing several major versions as separate branches of a package. But what if a user
requires an earlier version on a branch? Currently the only two solutions are to hunt for old packages or to downgrade the
infrastructure itself. Both are good ways to mess up your system.

Portage has a lazy, but a better way to deal with it. They keep several versions of ebuilds (counterparts of our Makefiles) in
directories of many ports. It's not very VCS-friendly, and they have to maintain each of the ebuilds, but it works.

Multiple problems arise when we talk about multiversioned ports and packages. To introduce full support into packages, we
would have to redesign the whole concept of package dependencies. For the time being we might be better off leaving
packages well enough alone, depending on a single version of each required package. The versions might be explicitly
specified, designated as default in the dependency itself, or just the latest ones.

Metadata storage, as well as distfile storage are of particular interest. With metadata (makefiles, distfiles, patches and so on)
we might go the Portage way and keep different versions in separate files. A more efficient solution might be to keep them on
different branches in our VCS. As for distfiles - we may choose to drop support of unavailable versions, or, much better,
mirror older distfiles. Of course, just to mirror them would put a substantial strain on disk space resources of our mirrors.
Therefore, we should consider a possibility of keeping distfiles on vendor branches, also in out VCS. By all means, this
repository may be separate from the one where we keep the OS and ports sources, but in fact it won't create much pollution in
a change-set based VCS. Every update is just one changeset. As for digests, we'll have to keep per-file ones in addition to per-
distfile ones. A successful solution will probably require extensive checkout capabilities, so that users could get a .tar.bz2
archive via http or ftp, containing all the sources of a particular version. It's not impossible, though again places additional load
on the mirrors. On the other hand, per-file digests will make it possible to choose new compression algorithms in a trouble-free
way. Some hosts might choose to offer LZMA-compressed checkouts, which will help users cut down on their traffic.

Repository-based PMS is not news. RPath, Inc. presented a system named Conary back in 2004. Conary implements a new
vision of package management, proudly called software provisioning. It is based on the concepts of DVCS, peering far into the
future. There's even a Linux distro called Foresight based on Conary (not to mention rPath's own Linux of the same name).
Unfortunately, Conary is not very active right now, but it has already generated a wealth of documentation for us to learn
from.

Fetching sources

Speaking of distfiles, there are more ways today to get them than just fetch(1). People make software available in form of
RCS files, anonymous VCS access, p2p shares and metalinks. We make porters deal with that by providing traditional
archives via http and ftp links. Some distfiles can not be downloaded automatically because of licensing restrictions. In such
cases we usually weed out the lazy users by telling them to go to such and such URL, register and download a file with such
and such name. Instead we could present him with a text browser window and even a preregistered bugmenot-like account.
Not that we should encourage the use of non-free software, but we don't make life much easier for users when we strongly
discourage that.

Incremental distfiles

Some users still have very slow and/or expensive bandwidth. Many of them look at the rate our OpenOffice port is updated at
and wish they could always have the current version, but they just can't afford downloading 300 Mb several times a month.
What if users could update their distfiles incrementally? A bzip2-compressed diff between OOo 2.0.4 RC1 and RC3 is about 1
Mb, which could result in 300 times less traffic consumed for the upgrade. And we already have a solution which takes care of
the ports collection itself - portsnap. It's not an easy task to marry portsnap's concepts to distfile updates, and again, we have
the problem of keeping the distfiles in a versioned environment. We even have a highly efficient bsdiff binary diff solution
from Colin Percival, and some room for its improvement in a doctoral thesis by the same author, just in case we decide to
version-control closed-source or non-textual data.

Functionality providers

Many PMS (like Debian and Portage) implement so-called virtual packages, where several programs with similar functionality
(e.g. mail clients, or web servers) are united into one, "provide" the virtual package. Several "providers" can be installed at the
same time, one of them presented to the user via a uniform wrapper script, or a symlink (e.g. type "mail" and one of providers
- whichever priority is highest - will be launched). Not only is this a user-friendly way to present some functionality, but also a
convenient paradigm when it comes to other programs depending on some kind of facility, e.g. a webserver or a MTA.

Multiple instances of the same program

Portage has a feature called slots, where multiple versions (branches) of the same package with different slot numbers defined
can coexist on one system. FreeBSD also has this feature in form of version-suffixed port and package names. A little bit
earlier we were talking about how cool it would be to have access to all versions of an app at once. Indeed, this is especially
true in high-availability environments where you can't afford downtime and should test every new version before deploying it.
While a separate sandbox is always advisable, why not just allow to install the new version on existing system without
deleting the old one? This way a roll-back will only take a few seconds. Moreover, no matter what app we're talking about in
most cases you'll be able to provide users with access to both versions at the same time.

Tobias Oetiker, the man behind the ubiquitous RRDtool and MRTG, has once been challenged with package management
across 400 Unix workstations. Of course, he developed his own system named SEPP and his users were happy ever since. The
fact is that whenever an upgrade took place, they always could launch the old version of a program. And before each upgrade
they were given a chance to try out the new version. In fact they could keep all the versions they wanted for as long as they
liked. Nowadays this has many security implications, but we'll talk about security later and now let's just say there's Debian
which almost always applies security patches to older versions, so it's not impossible in practice. SEPP installs programs into
versioned directories. Inter-package dependencies are supported, but Tobias recommends keeping everything a program
requires in one package. It's impractical in most cases, but in some cases this approach can be beneficial. There are wrapper
stub scripts and symlinks making software available to users, keeping statistics and providing for some additional run-time
configuration.

There are other systems that keep packages installed in separate subdirectories. Keeping them versioned solves many issues,
such as file namespaces we were talking about. There is system integration to think about - manpages, rc.d scripts can all be
made versioned, but require non-trivial design decisions to be made. Last but not least, if we allow several versions of a
package to be installed simultaneously, why not allow same versions to be installed in the same fashion. It would not require
much more - just a special instance identity to augment versioning and avoid name clashes. If we couple this functionality with
resource management, running three daemons of the same version but with different patches applied will become a hassle-free
operation.

As for running several instances of the very same binary - it can be also be achieved by launching it with different options.
This has a benefit of run-time configuration as opposed to build-time in multiple instancing with different binaries.

Unfortunately, some apps have hard coded values. They will have to be either patched to be run-time configurable or
configured at compile-time only.

Movable packages

Whether installed into private subdirectories or not, it would be great to allow user to relocate a package installation from one
place to another without disrupting it. The problem is reconfiguring it at runtime so that it is not surprised by new paths.

More runtime customization

Post-installation resource management is very important in dynamic environments. You have a webserver listening on port 80,
you install a new version and it listens on port 81. Once you verify that the new version works OK, you have to be able to
exchange resources between the servers. Apart from port numbers, there might be different document root paths, database
users and so on. Of course, we can make the user to just reinstall the daemon, but while a runtime reconfiguration should only
take a few seconds, a reinstallation might require much more time.

Non-privileged package management

Non-root installation is advertised as one of the Holy Grails in the new breed of user-friendly clickety-clack systems, such as
Klik and Zero Install. Any PMS could benefit from this functionality. Hacky solutions can be based on running PMS in a
chrooted environment, but a real solution should introduce a notion of user installs into the core of PMS. Ideally users should
be able to choose what to depend on: only system-wide packages, only user-installed ones or both. And runtime relocation and
customization facilities should be able to make a user-specific package system-wide and the other way around.

Smart techniques could be employed to watch if more than one users install the same package and save disk space in some
way. An even smarter, but a lot more security-encumbering solution would be to install all packages in system wide locations,
but mark them available per-user and deal with per-user customizations. This would save space by default. VDS and shell
providers will appreciate this kind of functionality.

Click!

One simple feature most users come to appreciate very much is the ability to do powerful clicks. I.e. you see a nice icon on a
website, you click on it - and the next thing you know is a full-blown application installed and launched on your computer.
The security implications will probably make some people pant, but smart design should yield some decent insulation. The
matter is too many new packaging systems attract users with this kind of features. Even Microsoft gave in to the tide and
announced its ClickOnce solution where there's no setup.exe, but only a mouse, a click and a working application.

Appliances

RPath, the company behind the aforementioned Conary system, advertises a concept of software appliances. Their marketing
materials are quite vague, but the idea is simple. Instead of distributing your application alone, trying to make sure that it will
work in many environments, you can marry it to an operating system, and distribute it as one package, guaranteed to work on
most hardware configurations. RPath provides solutions for bare hardware based on their own Linux distro, virtual appliances
to be used on virtual hardware and hardware appliances which is software appliance bundled with a computer. If we're talking
about FreeBSD, we can extend this concept to jail appliances. You plug them in - and they just work. And you can plug a lot
of them in a single system. Sounds exciting and in fact not staggeringly difficult to implement.

Distcc/ccache

Portage and pkgsrc have built-in support for both distcc and ccache, two solutions to speed up the builds. Problem number one
is getting ports to respect the designated compiler. Two is looking for issues that inevitably happen due to parallel compilation.
Many users also report problems with ccache, apparently results of configuration issues. Built-in support means hassle-free
automation, so all configuration problems should be sorted out with all kinds of environments in mind. Problem three is distcc
on heterogenous systems, i.e. setting up an old box running FreeBSD 4.x/i386 do all the building on a fast 6.x/amd64 system,
or even on machines running another OS. This brings us to cross-compilation.

Cross-compilation

It has been accepted as a fact that whether distcc is involved or not, cross-building packages is not an easy task. Nevertheless,
Krister Walfridsson, presented a new concept at EuroBSDCon 2004 and implemented it in NetBSD pkgsrc in 2005. His idea is
to substitute the calls to some programs during the build process with calls to emulated programs. Granted, this depends on
NetBSD emulation framework, but a similar solution might be feasible on FreeBSD.

Security

Vulnerability and exposure tracking is one of the most underdeveloped processes today. There are literally dozens of
commercial, community and governmental security trackers, aggregators and copycats, but they are trying so hard to keep at a

distance from each other that there's no reliable source of security-related information. Fortunately there is the CVE dictionary
backed by the Mitre Corporation and the U.S. Department of Homeland Security. Most of the time it provides us with useful
references so that we can say "a-ha, we are talking about the same issue". But neither does it provide comprehensive
information about each particular issue, nor does it cover them all.

There is still no centralized community-based security database and PMS need it bad. Until such a facility appears, we'll
continue maintaining our project-specific databases, which is not a completely lost, but mostly a wasted effort. When the
database comes, each project can choose how to use it. You can either put references to fixed issues directly into packages or
you can maintain a database with very simple entries: a reference to the issue in the central DB and affected packages. No
descriptions, no reference hunting - these are centralized. But until version numbers and package names will become
standardized, which I doubt will ever happen, PMS will have to maintain thin compatibility layers.

Porter perspective

A PMS does not only serve users, it's also there for the sake of those who actually make software available to users, i.e.
porters, packagers, uploaders and whatever we might call them. Ideally, everything that can be automated, should be
automated. If a program requires a library, it must be easy to designate it, without research into the current state of PMS. If a
program needs a dedicated username, UDP port and or a SQL DB, a porter should be spared the effort to reinvent all the
automation tricks and knacks. We have already mentioned a need for resource management, that's something both users and
porters will profit from. Now, how about -

Dependencies reloaded

First of all, we can go ahead and say dependencies are also a special kind of resource, always reusable and never depletable.
The problem is how we define them. First, whatever type of dependency we're talking about, most often than not we can
accurately guess what port to depend on by looking at what we really need. Be it a library, an executable or a package, it's not
an impossible task to automatically find the port we need. RPM has applied this approach from start by depending on files
instead of packages. This proved to be a big headache, and by all means should be avoided, but the concept is sane. Even if we
can't come up with a bright idea about how to implement it, let's face, it would be nice if we only had to say that we need this
binary and have the infrastructure look up all the necessary stuff for us.

And like they say, the Beastie is in the detail. Poor porters have typed the word ${PORTSDIR} in the dependency specs for
over 21000 times. OpenBSD for one inserts it automatically if the port origin is not absolute. And the way we depend on Perl
ports is a joke. Perl ports have long been our blemish and a scapegoat, much undeservedly, too. I'm sure there are lots and lots
of scripts scatter all over mailing-lists, written to ease the pain of doing something as simple as porting a fully automated
CPAN module in such a routine way. From time to time we even hide a module inside of the port of another one - just to
watch how a porter will port it, get a pointy hat and remove it.

When a shared lib updates its major version, it's a special treat. If you're lucky, you'll only have to bump portrevisions for a
few ports. A few hundred if you're not. And it only takes a single include file with a list of all the current major/minor versions
and some very simple magic to spare the whole effort.

Automating hacks

Many if not most of the ports contain some kind of hacks. With only a few dozens of ports I maintain, sometimes I find myself
solving the same problem all over again just because I forgot that I've already done it, or have no time to look through all my
ports, and I never take time to document little hacks. And porters never do document them either. What kind of reusable code
can we talk about if there's no way to know about it, or if it's unreasonably difficult to find what you need. Discussions on IRC
help, but that's just a handful out of all ports committers participating, and we obviously need something more outreaching.
Writing up every trick in the Porter's Handbook is very difficult, not only because some have no wish to learn DocBook, but
also because it's a Handbook, not a Cookbook. In my opinion, a wiki would suit us, but then again we should consider
encouraging modularization of hacks. If everyone put every hack, however inconvenient it may seem, in Mk/hacks, with
proper comments, then it would be much easier to find what you need and reuse it.

Speaking of collaboration problems inside our project, we've approached a general topic of cooperation in package
management, when it comes to multiple projects across multiple environments.

Collaboration

Education

PMS developers should take an active interest in other projects. That starts with learning about them. There are not numerous
enough to bury you under piles of white papers, manuals and guides. Of roughly a hundred projects only a couple of dozen
have decent documentation. The thing is not only that we shouldn't reinvent the wheel, but that some decisions we are going to
make might have already proven to be ruinous in other systems. Also, whatever project we consider, its developers should
recognize that the bulk of users are happy with other tools. Ports might be a natural monopoly in FreeBSD, but however
inconceivable it may seem to some of us, our users are just a subset of the Unix-like user base. Each PMS is only known to a

fraction of users, which also means that most development and advances are happening outside. While some isolation seems to
rectify our own in-house practices, which are so dear to us, it can only hurt by filtering all the most important outsider
information. Recognizing the need for more sources of input is often a non-technical problem of developers' attitudes.

Spirit

This is a complicated topic. It's known for a fact that every good engineer has an itch to implement everything to his own
liking, not out of vanity, but perhaps because you can easily accept imperfections only when you're the one that's responsible
for them. Anyway, most PMS founders at one point in time felt that they would be better off writing something new from
scratch or forking off a seemingly stagnant project, than talking to the developers of existing systems and trying to do
something together. While this has unerringly resulted in most wonderful diversity, we're still at the point of having no
solution to cater to even basic user demands.

So in order to move forward developers should probably accept, at least temporarily, that (1) it's not the time to start a brand-
new project that is doomed to follow in others' steps and only stand out thanks to a shiny website or a few catchy taglines; (2)
it's not the time to burn a bridge and fork, this will lead to either a suffocating dead-end where there are neither interested users
nor developers,or to another bridge left burning by yet another generation of successors; and (3) it's not the time to keep
isolated and work on your own. Learning from each other's mistakes and successes while looking through a wall of glass, but
without interactivity little progress will be made.

But even as we reach for each out, we'll find much controversies in our opinions, the same disputes that lead to forks, splits
and other quarrelsome counterproductive events. We have to be prepared for that and we have to find a way to deal with it. It
means FreeBSD will be working with DragonFlyBSD, NetBSD with OpenBSD, BSD with Linux, Solaris, and other Unix-like
systems, and so on. And instead of standing on what we can't agree on we'll have to find solutions to problems some of us still
have.

We all use the same software, the very same source code. We don't need to write something new, just to discuss how we can
all use what has been written already. That's why I think we'll succeed through all our differences - because we are all doing
the same thing, we just need each other's help to do it properly. If our cooperation gives life to some common portable
implementation - great, but tools are not nearly as important as design points.

In any case, we can't claim we are able to change how people are, so we'll just have to find people in other projects that are
willing to communicate.

Communication

A decade ago a newsgroup, a mailing-list, or some kind of other centralized communication method would probably do it.
Today, it's hard to put such conventional limitations on the processes inside wide-scale highly-distributed communities. We
have seen task forces, working groups, standardization committees proposing brilliant guidelines which were ignored
altogether, because people are just too busy. Package management does not tolerate stagnation. With hundreds of updates out
each day, we're like some news clerks, running around without looking sideways. But paying attention to what's happening
over the hedge does not only help us find solutions in our everyday routine, it also makes us want to respond, to take part in
foreign discussions. If we accept that we're part of the same process, subscribe to each other's mailing-lists, make comments in
blogs, contribute to bug-tracking systems - and, most importantly, make acquaintances, get to know our colleagues by names -
then it will truly be communication.

Afterword

I tried to insinuate in the Preface that we couldn't possibly cover even the most important issues in a limited amount of time.
There are countless more technical and non-technical problems, we would hopefully enjoy to discuss, and I hope we will,
eventually.

On the dark side of my message it is written that in spite of relentless activity, FreeBSD ports have not moved much forward
during the last few years. On the bright side it says that we have always had fun doing whatever seemed right for us and our
friends and users, and we have never been shy to expose our shortcomings, to acknowledge mistakes, to look into the future.

Let us look at the world and understand what has changed and what is changing. Let's accept the changes and react to them.
Let's talk and listen to people we don't know, but who do the same work we do. Let's value each other's ideas, respect
constructive action. And most importantly, let's have a great lot of fun doing it all together!

References

http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/handbook/ports.html
- FreeBSD Handbook: Installing Applications: Packages and Ports
http://www.FreeBSD.org/doc/en_US.ISO8859-1/books/porters-handbook/index.html
- FreeBSD Porter's Handbook
http://www.NetBSD.org/Documentation/pkgsrc/

- The pkgsrc guide
http://www.OpenBSD.org/porting.html
- Building an OpenBSD port
http://www.OpenBSD.org/ports.html
- OpenBSD Ports and Packages
http://www.DragonFlyBSD.org/docs/goals.cgi#packages
- DragonFly BSD Design Goals: Dealing with Package Installation
http://www.Gentoo.org/doc/en/handbook/handbook-x86.xml
- Gentoo Linux x86 Handbook: Working with Gentoo
http://www.Gentoo.org/proj/en/devrel/handbook/handbook.xml
- Gentoo Developer Handbook: Guides, Policies
http://devmanual.Gentoo.org/
- Gentoo Development Guide
http://www.Gentoo.org/proj/en/portage/index.xml
- Gentoo Linux Portage Development
http://www.Debian.org/doc/FAQ/index.en.html
- The Debian GNU/Linux FAQ: Basics of the Debian package management system and other chapters
http://www.Debian.org/doc/debian-policy/
- Debian Policy Manual
http://www.Debian.org/doc/manuals/developers-reference/index.en.html
- Debian Developer's Reference: Managing Packages, Best Packaging Practices and other chapters
http://www.Debian.org/doc/manuals/maint-guide/index.en.html
- Debian New Maintainers' Guide
http://www.Debian.org/doc/manuals/apt-howto/
- APT HOWTO
http://slacksite.com/slackware/packages.html
- Slackware Package Management
http://kitenet.net/~joey/pkg-comp/
- Comparing Linux/UNIX Binary Package Formats
http://www.rPath.com/technology/techoverview/
- Repository-Based System Management Using Conary
http://www.freestandards.org/en/LSB
- Linux Standard Base
http://www.pathname.com/fhs/
- Filesystem Hierarchy Standard
http://www.rpm.org/max-rpm-snapshot/
- Maximum RPM (development snapshot)
http://fedora.redhat.com/docs/drafts/rpm-guide-en/
- RPM Guide by Eric Foster-Johnson
http://fedoraproject.org/wiki/Packaging/Guidelines
- Packaging Guidelines by Tom 'spot' Callaway
http://www.sepp.ee.ethz.ch/
- SEPP - Software Installation and Sharing System by Tobias Oetiker

Last, but not least - dozens of Wikipedia articles on package management and related topics; over a hundred of manpages from
BSD, Linux, Solaris and other operating system, as well as those coming with third-party tools; countless discussions in
mailing-lists archives; popular interviews, memoirs, essays concerning package management.

