
FreeBSD/Xen How-to guide

Roger Pau Monné
Citrix Systems R&D,

royger@FreeBSD.org

March 3, 2015

Abstract

This article provides detailed instructions about how to setup a FreeBSD/Xen PVH Dom0 (host). It also describes
how to create and manage guests, including detailed instructions about how to install and configure some of them.

1 Required materials

In order to setup a FreeBSD/Xen Dom0 an Intel box that supports EPT and IOMMU is required (AMD systems are
not yet supported). Almost all recent Intel Core chips have this features and they have been present on the Xeon series
for longer. It is recommended that the box used has serial output in order to debug possible problems with Xen and
FreeBSD. Without a serial cable it is almost impossible to diagnose early boot problems.

The hardware used for the demo will be an Intel NUC5i3MYHE:

• Intel Core i3-5010U.

• 8GB of RAM.

• 500GB Hard drive.

• Intel 10/100/1000Mbps Ethernet card.

• Serial output.

The following materials are also needed in order to perform the installation:

• mfsBSD image: used to boot the system and install FreeBSD.

• FreeBSD installation sets.

This materials are available at:

1

http://people.freebsd.org/∼royger/install sets/

Before installing FreeBSD the mfsBSD image has to be copied to an USB drive using dd:

1 # dd if=/path/to/mfsbsd.img of=/path/of/usb/dev bs=1m

An Internet connection will also be needed in order to perform the tutorial.

2 Installing FreeBSD

The bare metal install of FreeBSD will be done using mfsBSD and the zfsinstall script. In the opinion of the author
this is one of the fastest and simplest ways to setup a FreeBSD systems with ZFS-on-Root.

The first step is to boot the box using the USB drive that has been flashed with the mfsBSD image. The mfsBSD
image provided has been configured to use both the video adapter and the serial console, so installation can be done
from either input methods. The first step is to install FreeBSD on the hard drive using zfsinstall:

1 # gpart destroy -F ada0
2 # zfsinstall -d ada0 -u http://people.freebsd.org/˜royger/install_sets/ -s 4g

Once the process finishes we would like to perform some modifications to the installed system before rebooting. The
first step is enabling serial output, so we need to add the following to /boot/loader.conf:

1 boot_multicons="YES"
2 boot_serial="YES"
3 comconsole_speed="115200"
4 console="comconsole,vidconsole"
5 boot_verbose="YES"

And modify /etc/ttys in order to enable the login prompt on the serial console:

1 ttyu0 "/usr/libexec/getty std.115200" dialup on secure

Now we are going to configure the network interface in order to have network connectivity and automatically start
sshd on boot. We need to add the following to /etc/rc.conf:

1 ifconfig_em0="DHCP"
2 sshd_enable="YES"
3 sendmail_enable="NONE"

Since this is a test system, and we haven’t created any users we are also going to enable ssh root logins by adding the
following line to /etc/ssh/sshd config:

1 PermitRootLogin yes

Now we can reboot into the newly installed system in order to install Xen.

2

3 Installing Xen

Before installing Xen we need to install all the dependencies required to build it. This can be easily done using the
pkg(7) tool:

1 # pkg install git bash python bcc glib pkgconf yajl gmake pixman \
2 perl5 markdown bison gettext gawk gcc47

We are going to use the development version of Xen, so we need to fetch the sources using git:

1 # git clone git://xenbits.xen.org/xen.git

Now we need to compile and install it:

1 # cd xen
2 # ./configure HOSTCC=gcc47 CC=gcc47
3 # gmake -j8 xen HOSTCC=gcc47 CC=gcc47
4 # cp xen/xen /boot/
5 # gmake -j8 install-tools HOSTCC=gcc47 CC=gcc47
6 # mkdir -p /var/run/xen/

Once the install process has finished we can move on to configuring the system. The first step is going to be to tell the
loader to boot the Xen kernel and FreeBSD, this is done by adding the following to /boot/loader.conf:

1 xen_cmdline="dom0_mem=2048M dom0pvh=1 console=com1,vga iommu=debug guest_loglvl=all loglvl=all"
2 xen_kernel="/boot/xen"
3

4 vfs.zfs.arc_max="1G"
5 if_tap_load="YES"

In this example we are giving 2GB to Dom0, and we set a couple of debug options in order to get more verbose
output from Xen. The next step is setting up a bridge in order to provide network to the guests. We would like to use
the mac address of the physical network interface as the mac address of the bridge, so we also add the following to
/boot/loader.conf:

1 net.link.bridge.inherit_mac=1

Then we need to modify /etc/rc.conf to configure the bridge interface:

1 cloned_interfaces="bridge0"
2 ifconfig_bridge0="addm em0 SYNCDHCP"
3 ifconfig_em0="up"

It is also recommended to remove the limit on the number of wired pages, since the Xen toolstack makes use of them,
this is done by modifying /etc/sysctl.conf:

1 vm.max_wired=-1

And finally we need to enable the xencommons init script in /etc/rc.conf and enable the Xen console in
/etc/ttys:

1 xencommons_enable="YES"

1 xc0 "/usr/libexec/getty Pc" xterm on secure

3

4 The Xen toolstack

The default toolstack that comes with Xen is called xl. This is a cli utility that can be used to manage guests running
on the system. One of the first commands that we can try is:

1 # xl list
2 Name ID Mem VCPUs State Time(s)
3 Domain-0 0 2048 4 r----- 14.5

This outputs a list of the guest that are currently running. As we can see we only have one guest that’s the FreeBSD
Dom0. The list of all supported xl commands can be fetched using xl help.

5 Creating guests

This section contains examples about how to setup some common guest types.

5.1 Debian PV guest

In order to setup a pure Linux PV guest we are going to use Debian. Debian already provides a kernel and initramfs
that can be used to setup a PV guest, and a config file that can be used with Xen. First we need to fetch all those parts:

1 # fetch http://ftp.nl.debian.org/debian/dists/wheezy/main/installer-amd64/ \
2 current/images/netboot/xen/initrd.gz
3 # fetch http://ftp.nl.debian.org/debian/dists/wheezy/main/installer-amd64/ \
4 current/images/netboot/xen/vmlinuz
5 # fetch http://ftp.nl.debian.org/debian/dists/wheezy/main/installer-amd64/ \
6 current/images/netboot/xen/debian.cfg

We are also going to create a ZVOL in order to provide a hard drive to the guest:

1 # zfs create -V 20g tank/debian

And finally we need to edit the config file debian.cfg in order to set the correct paths:

1 #==
2 # AT INSTALLATION TIME
3 #==
4

5 kernel = "vmlinuz"
6 ramdisk = "initrd.gz"
7

8 #==
9 # TO BOOT INSTALLED SYSTEM

10 #
11 # Comment all of the above installation options and uncomment the
12 # below instead
13 #==
14

15 #bootloader="pygrub"

4

16

17 #==
18 # STANDARD OPTIONS
19 #==
20 #
21 # The following options are common to both installation time and normal booting.
22 #
23 # Only a subset of the available options are included below.
24 # See /usr/share/doc/xen-utils-common/examples for full examples.
25

26 #--
27

28 # Initial memory allocation (in megabytes) for the new domain.
29 memory = 1024
30

31 # A name for your domain. All domains must have different names.
32 name = "debian"
33

34 # Number of Virtual CPUS to use, default is 1
35 vcpus = 2
36

37 #--
38 # Define network interfaces.
39

40 vif = [’bridge=bridge0’]
41

42 #--
43 # Define disks
44

45 disk = [’phy:/dev/zvol/tank/debian,xvda,w’]

This guest has been configured to use 2 vCPUs and 1GB of RAM. The virtual network card will be added to the
bridge0 automatically by the Xen toolstack. Now we can create the guest and proceed with the installation:

1 # xl create -c debian.cfg

Once the install process has finished we will need to tweak the guest config file so it boots from the hard drive. This
will require changing the top of the config file so it looks like:

1 #==
2 # TO BOOT INSTALLED SYSTEM
3 #
4 # Comment all of the above installation options and uncomment the
5 # below instead
6 #==
7

8 bootloader="pygrub"
9 [...]

Now we can boot into the installed system:

1 # xl create -c debian.cfg

5

5.2 FreeBSD PVHVM guest

We can setup a FreeBSD guest using two different methods, we can either use the pre-build VM images, or we can
perform a normal install using the ISOs. In this example we are going to use the ISOs so the install process resembles
a bare metal FreeBSD install. The first step consists in downloading the install disk and creating a ZVOL to use as
disk:

1 # fetch ftp://ftp.freebsd.org/pub/FreeBSD/releases/ISO-IMAGES/10.1/ \
2 FreeBSD-10.1-RELEASE-amd64-bootonly.iso
3 # zfs create -V 20g tank/freebsd

Then we need to create the guest configuration file:

1 # This configures an HVM rather than PV guest
2 builder = "hvm"
3

4 # Guest name
5 name = "freebsd"
6

7 # Initial memory allocation (MB)
8 memory = 1024
9

10 # Number of VCPUS
11 vcpus = 2
12

13 # Network devices
14 vif = [’bridge=bridge0’]
15

16 # Disk Devices
17 disk = [
18 ’/dev/zvol/tank/freebsd,raw,hda,rw’,
19 ’/root/freebsd/FreeBSD-10.1-RELEASE-amd64-bootonly.iso,raw,hdc:cdrom,r’
20]
21

22 vnc = 1
23 vnclisten = "0.0.0.0"
24 serial = "pty"

Now we can create the guest:

1 # xl create freebsd.cfg

And attach to the vnc console in order to perform the install:

1 # vncviewer <host>

Once the install has finished we can remove the ISO image from the guest configuration file and boot into it. We are
going to configure the guest to use the serial console so we can get the boot output and a login prompt. In order to do
so we need to modify /boot/loader.conf and /etc/ttys:

1 boot_multicons="YES"
2 boot_serial="YES"
3 comconsole_speed="115200"
4 console="comconsole,vidconsole"

6

1 ttyu0 "/usr/libexec/getty std.115200" dialup on secure

Now we can reboot the guest and see how it boots from the serial console using the xl toolstack:

1 # xl shutdown -w freebsd
2 # xl create -c freebsd.cfg

5.3 Windows HVM guest

Installing a Windows guest is quite similar to FreeBSD. In this case the install image is not provided, for this example
we are going to use a Windows XP SP3 image. The first step is creating the disk for the guest:

1 # zfs create -V 20g tank/windows

And the config file:

1 # This configures an HVM rather than PV guest
2 builder = "hvm"
3

4 # Guest name
5 name = "windows"
6

7 # Initial memory allocation (MB)
8 memory = 1024
9

10 # Number of VCPUS
11 vcpus = 2
12

13 # Network devices
14 vif = [’bridge=bridge0’]
15

16 # Disk Devices
17 disk = [
18 ’/dev/zvol/tank/windows,raw,hda,rw’,
19 ’/root/windows/winxpsp3.iso,raw,hdc:cdrom,r’
20]
21

22 vnc = 1
23 vnclisten = "0.0.0.0"
24 serial = "pty"
25 usbdevice = "tablet"

Now we can create the guest:

1 # xl create windows.cfg

And as we did to perform the FreeBSD install we need to attach to the vnc console:

1 # vncviewer <host>

The image that we are using in this case is automated, so we don’t need to perform any manual steps during installation.

7

