Towards a HVM-like Hardware Domain for Xen

Roger Pau Monné
Citrix Systems R&D,
royger@FreeBSD.org

Abstract

Xen is a hypervisor using a microkernel design that
allows running multiple concurrent operating sys-
tems on the same hardware. One of the key fea-
tures of Xen is that it is OS agnostic, meaning
that any OS (with proper support) can be used as a
host. Xen has a long history going back to the 90s
when it was designed and the early 2000s when
it was released. As a consequence of this, many
of the assumptions and virtualization techniques
backed into it are now superseded by new hardware
features, that make virtualization more transparent
from an OS point of view.

This paper provides an analysis of the current inter-
face provided by Xen to host OSes (hardware do-
main), it’s limitations and the current work in order
to improve it.

1 Introduction

Hypervisors can be divided into two categories:
type 1 - those that run directly on bare metal and
are in direct control of the hardware, and type 2
- hypervisors that are part of an operating sys-
tem. Common type 1 hypervisors are VMware ES-
X/ESXi and Microsoft Hyper-V, while BHyVe and
VirtualBox are clear examples of type 2 hypervi-
SOrS.

Xen is a type 1 hypervisor with a twist — its de-
sign resembles a microkernel in many ways. Xen
itself only takes control of the CPUs, the local and
10 APICs, the MMU, the IOMMU and a timer (ei-
ther HPET or PIT). The rest is taken care of by the

hardware domain (sometimes also called DomO),
a specialized guest granted elevated privileges by
the Hypervisor. This allows Dom0 to manage all
other hardware in the system, as well as all other
guests running on the Hypervisor. It is also impor-
tant to realize that Xen contains almost no hard-
ware drivers, preventing code duplication with the
drivers already present in OSes. Figure |l|contains
a high-level diagram of the architecture of a typical
Xen deployment.

syslog
xterm
xorg

Control
Domain

Guest 1 Guest 2

Linux, FreeBSD
or NetBSD

Xen
CPU

Hardware MMU

Figure 1: Xen architecture diagram

2 Current hardware domain inter-
faces

Due to the nature of the Xen architecture, where
Xen takes ownership of some devices while leav-
ing others for the hardware domain to manage, a
slightly different interface from the one present in
bare metal is needed. This interface presents dif-

ferences in the way the hardware description is pro-
vided to the hardware domain, and also affects how
it interacts with physical devices.

The following is a list of the most notable inter-
faces that differ from bare metal:

e Page tables and memory management.
e CPU detection/enumeration and bringup.

e Setup and delivery of interrupts from physical
devices.

e Bare metal ACPI tables.

Although it would seem that this list of not very
big, these differences can cause a lot of impact
on OSes, since their implementation is done at the
core level of an OS, and not in pluggable drivers or
optional components.

Page tables and memory management: traditional
Xen PV guests lacked access to the MMU because
it’s owned by Xen, and hardware didn’t provide a
virtualized MMU back when PV was designed. In
order to cope with this, PV guests used hypercalls
in order to manage page-tables. This requires ex-
tensive modifications to core OS interfaces, since
the x86 architecture only has a single MMU inter-
face, and Xen was introducing another one.

CPU detection/enumeration and bringup: on mod-
ern ACPI systems, boot time CPU detection and
enumeration is done by using the local APIC (or
local x2APIC) structures found in the Multiple
APIC Descriptor Table (MADT)[1]. Bringup of
secondary processors (APs) is done using the lo-
cal APIC. Since the description found in ACPI ta-
bles provided to the hardware domain is not accu-
rate (we will elaborate on this later), the boot time
enumeration of available CPUs needs to be done
using hypercalls, so that Xen can properly tell the
hardware domain about the number of CPUs. And
due to the lack of a local APIC, secondary CPU
bringup also needs to be done using an out-of-band
method, that also relies on hypercalls.

Setup and delivery of interrupts from physical de-
vices: on x86 systems interrupts are delivered from

the local APIC to the CPU. There are several kinds
of interrupts on bare metal systems:

e Legacy (PCI) interrupts: are implemented us-
ing side-band signals, and are delivered to the
10 APIC, which then forwards those to the lo-
cal APIC(s).

e MSI/MSI-X interrupts: implemented using
in-band signals, these interrupts are delivered
directly to a specific local APIC.

What type of interrupt delivery is going to be used
depends on the capabilities of both the OS and the
device itself. Some devices only support legacy in-
terrupts using the IO APIC, while others support
MSI and MSI-X, there are also OSes that lack MSI
or MSI-X support, so only legacy interrupts can
be used in that case. On bare metal the configu-
ration of interrupts from devices is done through
the PCI configuration space, so that the OS can
choose which interrupt delivery to use and config-
ure it. Since on Xen the hardware domain lacks
access to a local APIC or 10 APIC, interrupt con-
figuration is done using out-of-band methods, that
involve using certain hypercalls. It is also impor-
tant to notice that the configuration of the device is
split between Xen and the hardware domain. Xen
will configure the interrupt delivery of the device
on behalf of the hardware domain, while the hard-
ware domain itself will configure other parameters
of the device.

Due to the mentioned lack of native interrupt con-
trollers in the hardware domain, delivery of inter-
rupts from physical devices also need to be done
using out-of-band methods, this involves using a
Xen-specific interface called event channels, that
replaces the functionality of an interrupt controller.
Figure |2 contains a high-level diagram of the inter-
rupt delivery flow from physical devices on Xen
systems.

This requires a non-trivial amount of Xen code in
each OS in order to perform this out-of-band con-
figuration, that’s completely different from the na-
tive approach, which also increases the burden of
maintainership.

Figure 2: Xen interrupt delivery diagram

Bare metal ACPI tables: there are two very differ-
ent kind of ACPI tables that can be found as part
of a system description. The first ones are called
static tables, and are a simple binary structure in
memory, that can be directly mapped to a C struc-
ture with different fields. The content of this tables
is completely static, and are generally used in order
to contain information that doesn’t change during
system runtime and that’s needed early on boot.

Parsing those tables doesn’t require much ACPI
knowledge, and can be done by Xen without prob-
lems. Creating this kind of tables also doesn’t
require much effort, since it’s just a C structure
mapped at a certain position.

However, there is also another kind of ACPI tables,
usually called dynamic tables, that are described
using ACPI Machine Language (AML). In order
to access the contents of this tables an AML parser
is required. There are two tables that contain AML
code, the DSDT and the SSDT, and are used in or-
der to describe the physical devices available on the
system. This includes devices on the PCI bus, pro-
cessors, and other platform devices, like the HPET.

All the ACPI tables are provided as-is to the hard-
ware domain, without any change, which means
that the OS needs to be aware that some of the in-
formation in those ACPI tables doesn’t match the
environment where it is currently running. For ex-
ample, it’s quite likely that the number of CPUs

found in ACPI doesn’t match the real number of
CPUs available to the hardware domain. This
requires the OS to use Xen specific out-of-band
methods in order to get it’s systems description,
which is both cumbersome and hard to maintain.

3 Current Xen limitations

There are several limitations in the current hard-
ware domain interface presented from Xen to the
hardware domain OS, that force OS developers to
use out-of-band methods in order to fetch the hard-
ware description.

First of all, and as said above, Xen has limited ca-
pacity to process all the ACPI information, the lack
of an AML parses means that Xen cannot get the
full hardware description by itself, and requires the
hardware domain OS cooperation in order to per-
form some tasks, like system shutdown, CPU C
state discovery or physical CPU hotplug. All this
information resides in dynamic ACPI tables, thus
preventing Xen from fetching it by itself.

Apart from this, Xen is also incapable of modify-
ing dynamic ACPI tables, since that would require
an AML decompiler, an ACPI Source Language
(ASL) parser/modifier and an AML compiler in
order to pack the modified code. The most com-
mon tool used by UNIX like OSes in order to per-
form this tasks is the ACPICA tools suite[2]], that
contains and AML parser, decompiler and com-
piler. The approximate number of lines of code
in ACPICA is more than 200000, while Xen it-
self only contains around 150000 lines of code, so
there’s always been a big push back into integrat-
ing any kind of AML parser/decompiler/compiler
into Xen itself due to it’s huge size.

Another problem that arises from the usage of
ACPI, is that according to the ACPI spec there can
only be one OS executing ACPI methods, shared
usage of ACPI methods by two different OSes is
not supported, so even if Xen had the capability to
parse dynamic ACPI tables it wouldn’t be allowed
to execute any ACPI method, since the hardware
domain OS should be the entity that interacts with

ACPI, because it’s the one that contains the drivers
for most of the devices present on the system.

All this limitations has lead Xen to provide many
out-of-band methods in order to do hardware dis-
covery and configuration, which involves adding a
fair amount of code to each OS that wants to sup-
port running as a hardware domain. This also in-
creases the chances of bugs in OSes, and the bur-
den of maintainership.

4 Designing a new hardware do-
main interface

Due to all the issues and limitations mentioned
above, it was decided that since a new guest type
was being added, we could take advantage of that
opportunity to introduce a new interface for the
hardware domain in order to do hardware discov-
ery and configuration. The aim of this new inter-
face is to be as close as possible to the native one,
and only resort to hypercalls or other out-of-band
methods when there is no other option. Using such
interface should also allow the hardware domain to
take benefit of the current hardware virtualization
extensions, that are commonly available even on
commodity x86 hardware nowadays.

This should also help reducing the amount of Xen
specific code in OSes, thus reducing the burden of
maintainership and allowing developers to instead
focus on other projects, or on Xen features itself.

4.1 Memory management

With the introduction of hardware virtualization
extensions in the x86 architecture, now x86 pro-
cessors are able to make use of second stage trans-
lations for virtual machine memory maps. This al-
lows Xen to provide guests with a virtual memory
map, and also allows them to use the hardware vir-
tualized MMU. Thanks to this, all the Xen specific
MMU code can be removed, and the guest can use
the native MMU code in order to deal with mem-
ory management. Avoiding the use of hypercalls

also gives the guest better performance when per-
forming page-table operations. Figure [3|contains a
diagram of the functionality provided by the sec-
ond stage translation mechanism present in current
x86 CPUs.

Guest memory

o/ Y 7

I/ /] \

Physical memory

Figure 3: Second stage memory management

4.2 Interrupt management

In order to use the same interface as bare metal,
the hardware domain will be provided with a set of
emulated local APICs, and as many emulated 10
APICs as present in the bare metal system, which
might vary. Figure [] shows a high-level diagram
of the proposed solution. This is important for two
reasons, for once it will prevent the hardware do-
main from having to implement and support a spe-
cific interface when running on Xen, thus allowing
OSes to take advantage of their already available
code to deal with interrupts. Secondly it will en-
able Xen and the hardware domain to take advan-
tage of advanced hardware virtualization technolo-
gies, like local APIC hardware virtualization and
Posted Interrupts[3]]. Using such technology al-
lows interrupts generated from physical devices to
be directly injected to guests (the hardware domain
in this case) without Xen intervention, which re-
duces interrupt latency and increases interrupt de-
livery rate.

The configuration of interrupts is also going to be
done using native methods, which involves using
the PCI configuration space. Xen is going to setup
traps in order to detect access to the PCI configura-
tion space (which resides in IO space), and any ex-
tended configuration space areas (which resides in
memory areas), in order to detect attempts from the
hardware domain to setup interrupts and properly

Figure 4: Proposed interrupt injection

react on them, like it’s currently done for HVM do-
mains. Xen will have to setup an emulation layer
for any MSI or MSI-X areas reported by the PCI
config space for each device that is made available
to the hardware domain. The MSI configuration
is performed by accessing certain registers on the
PCI configuration space itself, while MSI-X con-
figuration is performed by accessing a memory re-
gion, which is reported as a Base Address Register
in the PCI header of each device. Configuration of
legacy PCI interrupts is going to be detected by the
emulated IO APIC itself, which is emulated inside
of Xen.

4.3 Fixup of ACPI tables

A more problematic topic is the fixup of ACPI ta-
bles presented to the hardware domain. As ex-
plained above, Xen used to simply pass the na-
tive ACPI tables to the hardware domain, and then
the hardware domain using some Xen-specific ex-
ceptions would decide which devices to use, and
which part of the information present in ACPI ta-
bles is actually describing the system it is currently
running on. The end goal is to provide a set of
ACPI tables to the hardware domain that correctly
describe the hardware that’s available to it’s hard-
ware container and not the full hardware present on
the system.

In order to do this, Xen will have to craft a new ver-
sion of the MADT, so that it correctly accounts for
the number of CPUs available to the hardware do-
main, and the correct address of the emulated local
APIC. This doesn’t involve a lot of work, since the
MADT is a static table that can easily be created
by Xen. The problem arises from the fact that each
local APIC struct in the MADT also has a proces-
sor object in the DSDT table, which sadly it’s a
dynamic table and Xen cannot modify at all.

The proposed solution to workaround the fact that
Xen cannot modify dynamic ACPI tables relies on
using the ACPI Status Override Table (STAO)[4].
This table was introduced by the Xen on ARM
team, and allows to hide devices described in the
dynamic tables without having to modify them. By
using it Xen can hide the physical processor ob-
jects found in the DSDT from the hardware do-
main, preventing it from accessing them in any
way.

Then and extra SSDT table is going to be appended
to the hardware domain, that contains processor
objects for virtual CPUs, so that all the local APIC
structs in the MADT have corresponding processor
objects in the ACPI namespapce. This is required
for doing CPU hotplug of virtual CPUs, that is im-
plemented using a GPE device block and the return
value of the _STA and _"MAT methods of processor
objects[3]].

5 Conclusions

The end goal of this work is to provide an inter-
face as similar as possible to bare metal for all Xen
guests. This is done in order to both reduce the
Xen specific code in Xen guests, so that less main-
tainership is required, and in order to expand the
number of OSes with Xen support. By present-
ing such interface, and removing the need to per-
form any out-of-band Xen specific configuration
the Xen Project expects to expand the base of Xen-
enlightened OSes, that are capable of acting as both
guests and hosts (hardware domains).

References

[1]

(2]

(3]

(4]

[5]

Unified EFI, Inc. Advanced Configuration
and Power Interface Specification, http:
//www.uefi.org/sites/default/
files/resources/ACPI_6_1.pdf

Intel Corp. ACPI Component Architecture,
https://acpica.org

Feng Wu. XenSummit 2014: Intel Vir-
tualization Technology for Directed 1/O
(VI-d) Posted Interrupts https://www.
xenproject.org/presentations-—
and-videos/video/xpdsl4-intel-
r-virtualization-technology-—
for-directed-i-o-vt-d-posted-—
interrupts—-feng-wu.html

Al Stone, Graeme Gregory, Parth Dixit
ACPI Specification for Status Override
Table https://lists.xen.org/
archives/html/xen-devel/2016—
08/pdfYfOWKJI83jH.pdf

Roger Pau Monné CPU hotplug support
for PVH https://lists.xen.org/
archives/html/xen-devel/2017-
01/msg01039.html

http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
http://www.uefi.org/sites/default/files/resources/ACPI_6_1.pdf
https://acpica.org
https://www.xenproject.org/presentations-and-videos/video/xpds14-intel-r-virtualization-technology-for-directed-i-o-vt-d-posted-interrupts-feng-wu.html
https://www.xenproject.org/presentations-and-videos/video/xpds14-intel-r-virtualization-technology-for-directed-i-o-vt-d-posted-interrupts-feng-wu.html
https://www.xenproject.org/presentations-and-videos/video/xpds14-intel-r-virtualization-technology-for-directed-i-o-vt-d-posted-interrupts-feng-wu.html
https://www.xenproject.org/presentations-and-videos/video/xpds14-intel-r-virtualization-technology-for-directed-i-o-vt-d-posted-interrupts-feng-wu.html
https://www.xenproject.org/presentations-and-videos/video/xpds14-intel-r-virtualization-technology-for-directed-i-o-vt-d-posted-interrupts-feng-wu.html
https://www.xenproject.org/presentations-and-videos/video/xpds14-intel-r-virtualization-technology-for-directed-i-o-vt-d-posted-interrupts-feng-wu.html
https://lists.xen.org/archives/html/xen-devel/2016-08/pdfYfOWKJ83jH.pdf
https://lists.xen.org/archives/html/xen-devel/2016-08/pdfYfOWKJ83jH.pdf
https://lists.xen.org/archives/html/xen-devel/2016-08/pdfYfOWKJ83jH.pdf
https://lists.xen.org/archives/html/xen-devel/2017-01/msg01039.html
https://lists.xen.org/archives/html/xen-devel/2017-01/msg01039.html
https://lists.xen.org/archives/html/xen-devel/2017-01/msg01039.html

	Introduction
	Current hardware domain interfaces
	Current Xen limitations
	Designing a new hardware domain interface
	Memory management
	Interrupt management
	Fixup of ACPI tables

	Conclusions

