
FreeBSD and NetBSD on APM86290
System on Chip

EuroBSDCon 2012, Warsaw

Zbigniew Bodek
zbb@semihalf.com

 FreeBSD and NetBSD on APM86290 System on Chip

Presentation outline
 Introduction

 Market requirements

 Hardware overview
 Features summary

 Message Passing Architecture

 Porting

 Testing and debugging

 Current state and future work

 FreeBSD and NetBSD on APM86290 System on Chip

Introduction

 What is an embedded system?

 Market requirements
 Hardware

 Low energy consumption

 More packet processing power

 Extra features:

 Packet classification
 Security extensions

 Software

 Time-to-market

 Reliability

 License and availability

 Support for the chip's extra features

 FreeBSD and NetBSD on APM86290 System on Chip

The APM86290
 Incorporates two PowerPC 465 processors in the single package

 Book-E compliant

 Number of peripherals integrated in the chip, including:

 On-chip processors are assisted by a rich set of configurable
hardware accelerators focused on:

 Packet classification

 Scheduling

 Packet/data manipulation

 Security extensions

Gigabit Ethernet
PCIe
NAND

SATA
USB
I2C

Message Passing Architecture

 FreeBSD and NetBSD on APM86290 System on Chip

Message Passing Architecture

 Queue Manager (QM)
 Allows the most efficient moving of data and packets between the processors

and integrated peripherals

 Communication interface offloads software from the routing of the packets and
transaction synchronization.

 Can be used to reduce communication overhead between software and
hardware

 Queue Manager Interface (QMI)
 Located in each subsystem that can use QM

 Monitors the queue and prefetch buffers' status

 Determines what action the subsystem should take for a certain queue status

 FreeBSD and NetBSD on APM86290 System on Chip

Message Passing Architecture
 Data transfers can be organized in queues

 QM allows systems nodes to communicate with each
other through the preprogrammed queuing points

 The mechanism distinguishes three main
abstractions:

1) Queue

2) Message

3) Buffer

 FreeBSD and NetBSD on APM86290 System on Chip

Queue
 Queues are organized as circular buffers and stored off-

chip (in DRAM)

 The contents of a queue are prefetched on chip as
needed

 Queue state is maintained on-chip for each queue
 Pointer to head and tail
 Occupancy level
 Other parameters

 Queue configuration modes
 Free Pool
 Working Queue

 FreeBSD and NetBSD on APM86290 System on Chip

Message
 Messages contain information about the

corresponding buffers

 Main types:
 Standard – 32 KB
 Expanded – 64 KB

Message contents (Source: APM86290 User's Manual)

 FreeBSD and NetBSD on APM86290 System on Chip

Message

Expanded Message usage (Source: APM86290 User's Manual)

 FreeBSD and NetBSD on APM86290 System on Chip

Buffer
 A fixed size memory location that is used to

store information such as packet data
 Is kept outside of the chip – in DRAM
 Messages in the Working Queue are assigned

to the corresponding buffers in the Main
Memory

 One-to-one assignment

 FreeBSD and NetBSD on APM86290 System on Chip

Queue usage models

 Basically there are two possible usage
models:

1) One Free Pool and one Working Queue

2) One Free Pool, one Working Queue and

 an additional Completion Queue
 Used when the producer wants to know the

completion status of the command

 FreeBSD and NetBSD on APM86290 System on Chip

Queue usage model 1

Queue usage model 1 (Source: APM86290 User's Manual)

 FreeBSD and NetBSD on APM86290 System on Chip

Queue usage model 2

Queue usage model 2 (Source: APM86290 User's Manual)

 FreeBSD and NetBSD on APM86290 System on Chip

Porting

 The general phases of the porting:
1) Baseline code selection

2) Cross-build environment preparation

3) System bootstrap

4) Early kernel initialization in locore.s

5) Platform initialization

6) Low-level memory management support

7) Device drivers along with support for chip's

 special features

8) Testing and debugging

 FreeBSD and NetBSD on APM86290 System on Chip

Porting - baseline

8.1 / PPC460EX 9.0 / APM86290

5.99 / MPC85XX 5.99 / APM86290

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – locore.s

 First code executed in the kernel
 Assumptions:

 Basic SoC initialization is done by the firmware (U-boot)
 Initial mappings are present in the TLB

 Written in the assembly language
 Capability to be executed from any place

 Goals to achieve:
1) Remap the kernel in virtual space

2) Setup temporary stack

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – locore.S

● Hook up to the existing locore.S (Book-E)
● Set up the exception vector regs.
● Remap the kernel

● Create the temporary mapping and
switch to it.

● Create final kernel mapping and
switch to it.

● Invalidate the rest (cut off from u-boot
translations)

● Set up stack and go to platform init.

● New start code for each platform
 (in sys/arch/evbppc/)
● Remap the kernel

● Create the temporary mapping and
switch to it.

● Create final kernel mapping and switch
to it.

● Invalidate the rest (cut off from u-boot
translations)

● Go to the generic locore.S

 FreeBSD and NetBSD on APM86290 System on Chip

Poring - platform initialization

 C code
 Main goals to achieve:

1) Create static mapping for the SoC registers

2) CPUs initialization (timers, per-cpu

 structures, caches, etc.)

3) Message buffer and console initialization

4) Virtual memory subsystem bootstrap

 FreeBSD and NetBSD on APM86290 System on Chip

Porting - platform initialization

● Hook up to the existing machdep.c
 (Book-E)

● Extract the common part for Book-E and
 platform dependent machdep.c

● Map SoC registers
● Apply minor changes to UART & set up
 the console

● Set up FDT framework

● New machdep for each platform
 (in sys/arch/evbppc/)
● Map the SoC registers
● Adjust UART driver
● Fill the stub functions for the Book-E
 exception management

● Set up the exception vector regs.
● Configure system timers

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – Low-level MM support

 Most sensible area of the operating
system

 pmap
 Manages physical address maps
 Maintains the page tables
 Handles memory management hardware
 TLB

 tlbwe, tlbre, tlbsx[.]
 tlb_write(), tlb_read(),
tlb_inval_entry() and tid_flush()

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – device drivers

 Flattened Device Tree (FDT)
 Introduced in FreeBSD 9.0

 Describes the embedded system's resources in a unified way (DTS file)
 Same kernel for multiple platforms of the same family
 fdtbus and simplebus

Simplified look of the device tree for APM86290

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – device drivers

 autoconf(9) in NetBSD
 Direct and indirect configuration
 Is driven by the table generated from

machine description by the config(8)
 Bus drivers from scratch

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – device drivers

● FDT (with minor hacks)
● Ready to use fdtbus
● Ready to use simplebus
● Drivers for the other buses

● Device description in the kernel configuration
 file

● Bus drivers from scratch

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – supported devices

 Support for the following interfaces have
been developed:

 Interrupt controller
 Gigabit Ethernet along with Queue Manager
 PCI-Express
 USB host controllers – EHCI and OHCI
 UART
 I2C
 GPIO
 RTC

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – interrupt controller

 MPIC
 Compliant with the OpenPIC Register Interface

Specification 1.2

● Ready-to-use OpenPIC driver
● Machine dependent interrupt management
 layer (intr_machdep.c)

● Incoming interrupts scheduled in the
 similar way to the processes running
 in the system

● No ready-to-use driver only different flavors
 of the OpenPIC driver designed for
 specific usage

● SPL(9)

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – Ethernet controller driver

 Cooperates with QM to maximize the
performance

 Assigned queues:
 Rx queue
 Tx queue
 Completion Queue
 Free Pool

Working Queues

 FreeBSD and NetBSD on APM86290 System on Chip

Porting – Ethernet controller driver
 Two data paths (ingress and egress)

 Ingress - Classifier
 ame_if_start() - to start the packet sending

 ame_handle_tx_completion() - callback handler
informing about the command completion
(executed by the QM)

 ame_handle_rx_msg() - called to handle send the
incoming packet to the network stack

 Extended debugging (DDB utilization)

 FreeBSD and NetBSD on APM86290 System on Chip

Testing and Debugging

 JTAG debuggers
 Integrated debug circuits

 Kernel debugging features
 Testing frameworks

 FreeBSD and NetBSD on APM86290 System on Chip

Testing and Debugging
 In-kernel debugger (DDB)

 Can be enabled by adding options to kernel
configuration file:
options KDB

options DDB

 Needs basic console initialization
 Kernel Tracing Facility (KTR)

 Can be enabled by adding option to kernel
configuration:
options KTR

 Logs actions while the kernel is running

 FreeBSD and NetBSD on APM86290 System on Chip

Testing and Debugging

 Automated Testing Framework (ATF)
 Located in /usr/tests
 Running the tests is as simple as typing:
atf­run | atf­report

 FreeBSD and NetBSD on APM86290 System on Chip

Testing and Debugging

● DDB
● KTR

● DDB
● ATF

 FreeBSD and NetBSD on APM86290 System on Chip

Current state and future work

 What would be nice to be done:

1) SMP

2) SATA support

3) L2 cache

4) Extended QM utilization

5) Cryptographic engines support

6) Power management support

 FreeBSD and NetBSD on APM86290 System on Chip

Acknowledgements

 Mentors of the project
 Rafał Jaworowski (Semihalf, The FreeBSD Project)
 Bartłomiej Sięka (Semihalf)

 Grzegorz Bernacki, Michał Mazur, Marcin Ropa,
Łukasz Wójcik, Piotr Zięcik (all Semihalf)

 FreeBSD and NetBSD on APM86290 System on Chip

Any questions?

