
How I Got Started with Stress Testing
Sometime during the nineties I was asked by the support group in the company I worked for to look at
a customer’s computer that would crash every time it ran a vendor database application. To my amaze-
ment, the computer panicked in a frequently used syscall. Stepping through the code, I realized that it
was a simple stack-trashing bug in a user-mode program that had triggered the problem. Two things
were forever imprinted on my mind: a) although it was interesting to meet the customer’s top manage-
ment, it would be much nicer to find these kinds of errors back at the office, and b) I was amazed that
a common user-mode bug had crashed the computer! The same day, I wrote my first stress test pro-
gram—syscall fuzzer—and that kept a lot of people busy for days.

Test Design
A widely used test in the FreeBSD Project is “buildworld.” It is a good test, but when you have run it a
few times in a row there is no gain in continuing. Stress2 uses a different strategy for most of the test
cases, as tests run differently each time they are run—different runtime, different number of threads,
and different VM pressure. The benefit of this strategy is that it provides greater coverage. The down-
side is that it is slightly harder to reproduce errors, but this problem is really negligible compared to the
benefits.

Running the same test in multiple threads is used by many scenarios to stress locking of shared
resources. Some tests synchronize the threads, but others will not, in the hope of achieving a wider
test coverage. A cornerstone of Stress2 is that VM pressure is added to most tests to trigger waiting
points in the kernel. A large number of tests have run without any detectable issues, but the moment
VM pressure is added, panics and deadlocks show up.

A few tests rely on fuzzing. An example is the mmap(2) family of tests.

1 FreeBSD Journal

One tool to improve the quality of
the FreeBSD kernel is the stress2

stress-test suite, which can help
you expose design and imple-
mentation problems while adding
to or updating the kernel code. It was
first checked into svn in 2009, but had
been in use for years before that. In
2014 more than 100 problem reports
were generated using it.

S E E
T E X T
O N L Y

USING FUZZY TESTING TO BUILD

Industrial-
Strength
Systems

•

•

By Peter
Holm

•

Jan/Feb 2016 2

A Typical Work Day with Stress2
I get a patch from one of the FreeBSD committers that is supposed to fix a panic seen. The problem
may already be triggered by some of the existing test scenarios or a new test has to be written. Once
the problem can be repeated within a reasonable time frame, it’s time to test the patch. When the fix
has been verified, I typically run all of the other scenarios, just in case the fix has some side effect,
which happens surprisingly often. It is not unusual for a patch to go through a few revisions before
commit. On a really productive day, I’m able to go through three or four revisions. I try to generate bug
reports with enough information to ensure a fast patch update. A bug report typically looks like this:

https://people.freebsd.org/~pho/stress/log/kostik833.txt.

A full test usually takes more than 24 hours before I’m confident the fix is OK.
When working on a new test scenario, the by-product is quite often one or more new test cases

that trigger other problems than the one reported. These are marked for commit, even though they
may be WIP. The philosophy here is that any test that can crash the kernel is a good test.

As can be seen by this example, it is a team effort. I work with a bunch of extremely talented peo-
ple, and as a team we are incredibly productive.

Memory Leaks
Memory leaks get introduced on a regular basis. I check this by watching vmstat -m and -z. There is a
script I run during tests that does this automatically: stress2/tools/vmstat.sh

Test Hardware
I have observed that different types of hardware make a difference, as some problems can only be
reproduced on one type. Disk speed also plays a role and so does the number of CPUs. Lately I was
reminded of the importance of this. I had a patch for evaluation, which survived all tests. Others, how-
ever, found that a continuous -j7 buildworld on a 6-core machine configured with 1GB of RAM would
trigger a panic. Having swap configured is mandatory for quite a few of the tests. Without swap, it is
very hard to balance the right amount of pressure. That is, without a swap disk, too much VM pressure
triggers OOM killing. I test both i386 and amd64 on real hardware and I use a serial console for all test
hosts, so I can log the output.

Examples
The following describe a few test scenarios I found especially interesting. All are found in the stress2/misc
directory. Common for all tests in this directory is that they are all complete and self-contained test scenar-
ios, implemented as shell scripts. The majority are regression tests; that is, they have once triggered a
panic or a deadlock. The tests can be run individually. Most, but not all, tests use a memory-based file sys-
tem for the tests. The primary benefit is that file system is in an initial consistent state.

The following show what a test in stress2/misc can look like:

#!/bin/sh

"panic: not suspended thread 0xc674c870" seen.

for i in `find /proc ! -type d`; do
dd if=$i of=/dev/null > /dev/null 2>&1
dd if=/dev/random of=$i > /dev/null 2>&1

done

Many of the tests in stress2/misc use the more general stress test programs found in stress2/testcases.

trim6.sh
Quite often test cases written for one purpose also catch different problems. This test case was origi-
nally written for a problem deleting a large file on a file system with option TRIM enabled, but was
later able to trigger both a deadlock and a panic during file creation. The test in this example is quite

3 FreeBSD Journal

simple: write a very large file to a fast (SSD) disk. From the r287361 commit log: By doing file extension
fast, it is possible to create excess supply of the D_NEWBLK kinds of dependencies (i.e., D_ALLOCDI-
RECT and D_ALLOCINDIR) which can exhaust kmem.

crossmp.sh
A different and productive example of parallelization is the Cross Mount Point test case, which is

responsible for 6 bug reports. The tests mount and unmount 15 different file systems / mount points in
parallel.

callout_reset_on.sh
The scenario I have spent the most time on is from pr. kern/166340, a very detailed bug report:

Processes under FreeBSD 9.0 would hang in uninterruptible sleep with apparently no syscall (empty
wchan). A later change to the callout wheel would trigger a panic: Bad link elm 0xfffff80012ba8ec8
prev->next != elm with this scenario.

mmap10.sh
This is one of the fuzz test cases. The general idea is to pass random values to system calls in an

attempt to flush out errors in the code. Once you get past the simple missing parameter validation prob-
lems, more interesting problems tend to surface. This test scenario generated the following unique prob-
lems by passing random values to mlock(2), mprotect(2), and mlockall(2):

panic: deadlkres: possible deadlock detected for 0xcb0ea930, blocked for 1801709
ticks
panic: pmap active 0xfffff800a90cfd78
panic: vm_fault_copy_wired: page missing
panic: vm_object_backing_scan: object mismatch
panic: vm_page_dirty: page is invalid!
panic: vmspace_fork: entry 0xfffff80019793d00 eflags 50c

rename3.sh
Some test scenarios are written or suggested by others. For example, this small rename test scenario

by Tor Egge: "Test vulnerability to transient failures when a directory closer to the root directory is
renamed". This has triggered multiple deadlocks.

isofs2.sh
This is the latest test and a very simple one. Create an isofs file system with a copy of date(1). Mount

the file system and run the copy of "date." This would trigger a "panic: witness_warn" as reported
here: https://people.freebsd.org/~pho/stress/log/isofs2.txt

marcus5.sh
This is an example of a test that was a spin-off of a search for a different issue. The test triggered a

problem with how VFS_SYNC() was implemented: https://people.freebsd.org/~pho/stress/log/marcus5.txt

md8.sh
This is a regression test for unmapped unaligned IO over a vnode-backed md(4) volume. So, with the

buffer "data" page aligned, the tests are:

read(fd, data + 512, MAXPHYS)
write(fd, data + 512, MAXPHYS)

The Details
Fetch stress2 by:

svnlite checkout svn://svn.freebsd.org/base/user/pho/stress2
cd stress2
make

Jan/Feb 2016 4

This will build some basic test programs in the sub-directory "testcases." All new development
is done in the "misc" directory where there are currently some 400 test scenarios. These tests are
often referred to as regression tests. The real value is the way they stress different corners of the
kernel. Tests in the "misc" directory can either be run separately or by control of the "all.sh"
script. For example, run all the tmpfs(5) scenarios once by:

$./all.sh -o tmpfs*
20150907 22:02:12 all: tmpfs2.sh
20150907 22:06:11 all: tmpfs9.sh
:

In Conclusion
Stress2 is a developer tool for finding problems in the
FreeBSD kernel. It is not a substitute for real world testing,
but just a tool for finding some of the problems.

This work is sponsored by EMC / Isilon Storage Division.

PETER HOLM (pho@FreeBSD.org) has been finding errors in
FreeBSD since 1999. The Stress2 test suite is in constant
development, as new tests are added as a result of bug
reports or patch tests.

•

•

