
Contents
NAME 1

SYNOPSIS 1

DESCRIPTION 1

OPTIONS 2

ENVIRONMENT 4

USE CASES 4

OTHER 12

BUGS AND MISFEATURES 13

COPYRIGHT AND LICENSING 13

AUTHOR 13

DOCUMENT REVISION INFORMATION 14

NAME

tsshbatch - Run Commands On Batches Of Machines

SYNOPSIS

tsshbatch.py [-KNSehktvxy -G ’file dest’ -P ’file dest’ -f cmdfile -n name -p pw] -H ’host ..’ | hostlistfile [command arg ...]

DESCRIPTION

tsshbatch is a tool to enable you to issue a command to many hosts without hav-
ing to log into each one separately. When writing scripts, this overcomes the ssh
limitation of not being able to specify the password on the command line.

You can also use tsshbatch to GET and PUT files from- and to many hosts at once.

tsshbatch also understands basic sudo syntax and can be used to access a host,
sudo a command, and then exit.

tsshbatch thus allows you to write complex, hands-off scripts that issue commands
to many hosts without the tedium of manual login and sudo promotion. System ad-
ministrators, especially, will find this helpful when working in large server farms.

1

OPTIONS

tsshbatch supports a variety of options which can be specified on either the com-
mand line or in the $TSSHBATCH environment variable:

-K Force prompting for passwords. This
is used to override a prior -k argu-
ment.

-G spec GET file on host and write local dest
directory. spec is a quoted pair of
strings. The first specifies the path
of the source file (on the remote ma-
chine) to copy. The second, specifies
the destination directory (on the local
machine):

tsshbatch.py -G "/foo/bar/baz /tmp" hostlist

This copies /foo/bar/baz from
every machine in hostlistfile
to the local /tmp/ directory. Since
all the files have the same name, they
would overwrite each other if copied
into the same directory. So, tsshbatch
prepends the string hostname: to
the name of each file it saves locally.

-H hostlistfile List of hosts on which to run the com-
mand. This should be enclosed in
quotes so that the list of hosts is handed
to the -H option as a single argument:

-H ’host1 host2 host3’

-N Force interactive username dialog. This
cancels any previous request for key
exchange authentication.

-P spec PUT file from local machine to re-
mote machine destination directory.
spec is a quoted pair of strings. The
first specifies the path of the source
file (on the local machine) to copy.
The second, specifies the destination
directory (on the remote machine):

tsshbatch.py -P "/foo/bar/baz /tmp" hostlist

This copies /foo/bar/baz on the
local machine to /tmp/ on every host
in hostlist.

-S Force prompting for sudo password

2

-e Don’t report remote host stderr out-
put

-f cmdfile Read commands from a file. This file
can be commented freely with the #
character. Leading- and trailing whites-
pace on a line are ignored.

-h Print help information

-k Use ssh keys instead of name/password
credentials

-n name Login name to use

-p pw Password to use when logging in and/or
doing sudo

-t Test mode: Only show what would
be done but don’t actually do it. This
also prints diagnostic information about
any variable definitions, the list of hosts,
any GET and PUT requests, and final
command strings after all variable sub-
stitutions have been applied. This is
the default program behavior.

-v Print detailed program version infor-
mation and exit

-x Override any previous -t specifica-
tions and actually execute the com-
mands. This is useful if you want
to put -t in the $TSSHBATCH envi-
ronment variable so that the default is
always run the program in test mode.
Then, when you’re ready to actually
run commands, you can override it
with -x on the command line.

-y Turn on ’noisy’ reporting for addi-
tional detail on every line, instead of
just at the top of the stdout and
stderr reporting. This is helpful
when you are filtering the output through
something like grep that only returns
matching lines and thus no context
information.

If the -H option is not selected, the item immediately following the options is under-
stood to be the name of the hostlistfile. This is a file that contains the name of
each host - one per line - on which to run the commands. This file can be commented
freely with the # character. Leading- and trailing whitespace on a line are ignored.

3

The last entry on the command line is optional and defines a command to run. tsshbatch
will attempt to execute it on every host you’ve specified either via -H or a hostfile:

tsshbatch.py -Hmyhost ls -al /etc

This will do a ls -al /etc on myhost.

Be careful when using metacharacters like &&, <<, >>, <, > and so on in your
commands. You have to escape and quote them properly or your local shell will inter-
fere with them being properly conveyed to the remote machine.

If you’ve specified a cmdfile containing the commands you want run via the -f
option, these commands will run before the command you’ve defined on the command
line. It is always the last command run on each host.

You can put as many -f arguments as you wish on the command line and the contents
of these files will be run in the order they appeared from left-to-right on the command
line.

tsshbatch does all the GETs, then all the PUTs before attempting to do any com-
mand processing. If no GETs, PUTs, or commands have been specified, tsshbatch
will exit silently, since "nothing to do" really isn’t an error.

ENVIRONMENT

tsshbatch respects the $TSSHBATCH environment variable. You may set this vari-
able with any options above you commonly use to avoid having to key them in each
time you run the program. For example:

export TSSHBATCH="-n jluser -p l00n3y"

This would cause all subsequent invocations of tsshbatch to attempt to use the login
name/password credentials of jluser and l00n3y respectively.

tsshbatch also supports searching for files over specified paths with the $TSSHBATCHCMDS
and $TSSHBATCHHOSTS environment variables. Their use is described later in this
document.

USE CASES

1) Different Ways To Specify Targeted Hostnames

There are two ways to specify the list of hosts on which you want to run
the specified command:

∙ On the command line via the -H option:

tsshbatch.py -H ’hostA hostB’ uname -a

This would run the command uname -a on the hosts
hostA and hostB respectively.

4

Notice that the list of hosts must be separated by spaces
but passed as a single argument. Hence we enclose them
in single quotes.

∙ Via a host list file:

tsshbatch.py myhosts df -Ph

Here, tsshbatch expects the file myhosts to contain
a list of hosts, one per line, on which to run the command
df -Ph. As an example, if you want to target the hosts
larry, curly and moe in foo.com, myhosts would
look like this:

larry.foo.com
curly.foo.com
moe.foo.com

This method is handy when there are standard "sets" of
hosts on which you regularly work. For instance, you may
wish to keep a host file list for each of your production
hosts, each of your test hosts, each of your AIX hosts, and
so on.

You may use the # comment character freely throughout a
host list file to add comments or temporarily comment out
a particular host line.

You can even use the comment character to temporarily
comment out one or most hosts in the list given to the -H
command line argument. For example:

tsshbatch.py -H "foo #bar baz" ls

This would run the ls command on hosts foo and baz
but not bar. This is handy if you want to use your shell’s
command line recall to save typing but only want to repeat
the command for some of the hosts your originally Speci-
fied.

2) Authentication Using Name And Password

The simplest way to use tsshbatch is to just name the hosts can com-
mand you want to run:

tsshbatch.py linux-prod-hosts uptime

By default, tsshbatch uses your login name found in the $USER envi-
ronment variable when logging into other systems. In this example, you’ll
be prompted only for your password which tsshbatch will then use to
log into each of the machines named in linux-prod-hosts. (Notice
that his assumes your name and password are the same on each host!)

Typing in your login credentials all the time can get tedious after awhile so
tsshbatch provides a means of providing them on the command line:

tsshbatch.py -n joe.luser -p my_weak_pw linux-prod-hosts uptime

5

This allows you to use tsshbatch inside scripts for hands-free opera-
tion.

If your login name is the same on all hosts, you can simplify this further
by defining it in the environment variable:

export TSSHBATCH="-n joe.luser"

Any subsequent invocation of tsshbatch will only require a password
to run.

HOWEVER, there is a huge downside to this - your plain text password is
exposed in your scripts, on the command line, and possibly your command
history. This is a pretty big security hole, especially if you’re an admin-
istrator with extensive privileges. (This is why the ssh program does not
support such an option.) For this reason, it is strongly recommended that
you use the -p option sparingly, or not at all. A better way is to push ssh
keys to every machine and use key exchange authentication as described
below.

However, there are times when you do have use an explicit password, such
as when doing sudo invocations. It would be really nice to use -p and
avoid having to constantly type in the password. There are two strate-
gies for doing this more securely than just entering it in plain text on the
command line:

∙ Temporarily store it in the environment variable:

export TSSHBATCH="-n joe.luser -p my_weak_pw"

Do this interactively after you log in, not from a script (oth-
erwise you’d just be storing the plain text password in a
different script). The environment variable will persist as
long as you’re logged in and disappear when you log out.

If you use this just make sure to observe three security
precautions:

1) Clear your screen immediately after doing
this so no one walking by can see the pass-
word you just entered.

2) Configure your shell history system to ig-
nore commands beginning with export TSSHBATCH.
That way your plain text password will never
appear in the shell command history.

3) Make sure you don’t leave a logged in ses-
sion unlocked so that other users could walk
up and see your password by displaying the
environment.

This approach is best when you want your login creden-
tials available for the duration of an entire login session.

∙ Store your password in an encrypted file and decrypt it
inline.

6

First, you have to store your password in an encrypted for-
mat. There are several ways to do this, but gpg is com-
monly used:

echo "my_weak_pw" | gpg -c >mysecretpw

Provide a decrypt passphrase, and you’re done.

Now, you can use this by decrypting it inline as needed:

#!/bin/sh
A demo scripted use of tsshbatch with CLI password passing

MYPW=‘cat mysecretpw | gpg‘ # User will be prompted for unlock passphrase

sshbatch.py -n joe.luser -p $MYPW hostlist1 command1 arg
sshbatch.py -n joe.luser -p $MYPW hostlist2 command2 arg
sshbatch.py -n joe.luser -p $MYPW hostlist3 command3 arg

This approach is best when you want your login creden-
tials available for the duration of the execution of a script.
It does require the user to type in a passphrase to unlock
the encrypted password file, but your plain text password
never appears in the wild.

3) Authentication Using Key Exchange

For most applications of tsshbatch, it is much simpler to use key-based
authentication. For this to work, you must first have pushed ssh keys to all
your hosts. You then instruct tsshbatch to use key-based authentication
rather than name and password. Not only does this eliminate the need to
constantly provide name and password, it also eliminates passing a plain
text password on the command line and is thus far more secure. This also
overcomes the problem of having different name/password credentials on
different hosts.

By default, tsshbatch will prompt for name and password if they are
not provided on the command line. To force key-based authentication, use
the -k option:

tsshbatch.py -k AIX-prod-hosts ls -al

This is so common that you may want to set it in your $TSSHBATCH
environment variable so that keys are used by default. If you do this, there
may still be times when you want for force prompting for passwords rather
than using keys. You can do this with the -K option which effectively
overrides any prior -k selection.

4) Executing A sudo Command

tsshbatch is smart enough to handle commands that begin with the
sudo command. It knows that such commands require a password no
matter how you initially authenticate to get into the system. If you provide
a password - either via interactive entry or the -p option - by default,
tsshbatch will use that same password for sudo promotion.

7

If you provide no password - you’re using -k and have not provided a
password via -p - tsshbatch will prompt you for the password sudo
should use.

You can force tsshbatch to ask you for a sudo password with the
-S option. This allows you to have one password for initial login, and a
different one for sudo promotion.

Any time you a prompted for a sudo password and a login password
has been provided (interactive or -p), you can accept this as the sudo
password by just hitting Enter.

5) Precedence Of Authentication Options

tsshbatch supports these various authentication options in a particular
heirarchy using a "first match wins" scheme. From highest to lowest, the
precedence is:

1. Key exchange

2. Forced prompting for name via -N. Notice this can-
cels any previously requested key exchange authenti-
cation.

3. Command Line/$TSSHBATCH environment variable
sets name

4. Name picked up from $USER (Default behavior)

If you try to use Key Exchange and tsshbatch detects a command be-
ginning with sudo, it will prompt you for a password anyway. This is
because sudo requires a password to promote privilege.

6) File Transfers

The -G and -P options specify file GET and PUT respectively. Both are
followed by a quoted file transfer specification in the form:

"path-to-source-file path-to-destination-directory"

Note that this means the file will always be stored under its original name
in the destination directory. Renaming isn’t possible during file transfer.

However, tsshbatch always does GETs then PUTs then any outstand-
ing command (if any) at the end of the command line. This permits things
like renaming on the remote machine after a PUT:

tsshbatch.py -P "foo ./" hostlist mv -v foo foo.has.a.new.name

GETs are a bit of a different story because you are retrieving a file of the
same name on every host. To avoid having all but the last one clobber the
previous one, tsshbatch makes forces the files you GET to be uniquely
named by prepending the hostname and a ":" to the actual file name:

tsshbatch.py -H myhost -G "foo ./"

This saves the file myhost:foo in the ./ on your local machine.

8

These commands do not recognize any special directory shortcut symbols
like ~/ like the shell interpreter might. You must name file and directory
locations using ordinary pathing conventions. You can put as many of
these requests on the command line as you like to enable GETs and PUTs
of multiple files. You cannot, however, use filename wildcards to specify
multi-file operations.

You can put multiple GETs or PUTs on the command line for the same
file. They do not override each other but are cummulative. So this:

tsshbatch.py -P"foo ./" -P"foo /tmp" ...

Would put local file foo in both ./ and /tmp on each host specified.
Similarly, you can specify multiple files to GET from remote hosts and
place them in the same local directory:

tsshbatch.py -G"/etc/fstab ./tmp" -G"/etc/rc.conf ./tmp" ...

If any file transfer fails, for any reason, the program is aborted and no
further work is done.

Warning
tsshbatch does not preserve file permissions when transferring files. Re-
call that commands are always run after file transfers, so you can manually
manage permissions like this:

tsshbatch.py -P"myfile ./tmp" hostlist chmod 640 ./tmp/myfile
This gets pretty clumsy for transferring more than one or two files. A better
way to do this is to create a tarball of the source files, GET or PUT the tarball
where you want it, and then untar it.

7) Commenting

Both the cmdfile and hostlistfile can be freely commented using
the # character. Everything from that character to the end of that line is
ignored. Similarly, you can use whitespace freely, except in cases where it
would change the syntax of a command or host name.

8) Includes

You may also include other files as you wish with the .include filename
directive anywhere in the cmdfile or hostlistfile. This is useful
for breaking up long lists of things into smaller parts. For example, sup-
pose you have three host lists, one for each major production areas of your
network:

hosts-development
hosts-stage
host-production

You might typically run different tsshbatch jobs on each of these sets
of hosts. But suppose you now want to run a job on all of them. Instead
of copying them all into a master file (which would be instantly obso-
lete if you changed anything in one of the above files), you could create
hosts-all with this content:

9

.include hosts-development

.include hosts-stage

.include hosts-production

That way if you edited any of the underlying files, the hosts-all would
reflect the change.

Similarly you can do the same thing with the cmdfile to group similar
commands into separate files and include them.

tsshbatch does not enforce a limit on how deeply nested .includes
can be. An included file can include another file and so on. However, if
a circular include is detected, the program will notify you and abort. This
happens if, say, file1 includes file2, file2 includes file3, and file3 includes
file1. This would create an infinite loop of includes if permitted. You can,
of course, include the same file multiple times, either in a single file or
throughout other included files, so long as no circular include is created.

9) Search Paths

tsshbatch supports the ablity to search paths to find files you’ve refer-
enced. The search path for cmdfiles is specified in the $TSSHBATCHCMDS
environment variable. The hostlistfiles search path is specified in
the $TSSHBATCHHOSTS environment variable. These are both in stan-
dard path delimited format for your operating system. For example, on
Unix-like systems these look like this:

export TSSHBATCHCMDS="/usr/local/etc/.tsshbatch/commands:/home/me/.tsshbatch/commands"

And so forth.

These paths are honored both for any files you specify on the command
line as well as for any files you reference in a .include directive. This
allows you to maintain libraries of standard commands and host lists in
well known locations and .include the ones you need.

tsshbatch will always first check to see if a file you’ve specified is
in your local (invoking) directory and/or whether it is a fully qualified file
name before attempting to look down a search path. If a file exist in several
locations, the first instance found "wins". So, for instance, if you have a file
called myhosts somewhere in the path defined in $TSSHBATCHHOSTS,
you can override it by creating a file of same name in your current working
directory.

tsshbatch also checks for so-called "circular includes" which would
cause an infinite inclusion loop. It will abort upon discovering this, prior
to any file transfers or commands being executed.

10) Defining Variables

tsshbatch allows you to define variables which will then
be used to replace matching strings in both cmdfiles and
hostlistfiles. For example, suppose you have this in a
hostlistfile:

.define DOMAIN=.my.own.domain.com

10

host1DOMAIN
host2DOMAIN
host3DOMAIN

At runtime, the program will actually connect to host1.my.own.domain.com,
host2.my.domain.com, and so on. This allows for ease of modular-
ization and maintenance of your files.

Similarly, you might want define MYCMD=some_long_string so you
don’t have to type some_long_string over and over again in a cmdfile.

There are some "gotchas" to this:

∙ The general form of a variable definition is:

.define name = value

You have to have a name but the value is optional. .define
FOO= simply replaces any subsequent FOO strings with
nothing, effectively removing them.

Any = symbols to the right of the one right after name are
just considered part of the variables value.

Whitespace around the = symbol is optional but allowed.

∙ Variables are substituted in the order they appear:

.define LS = ls -alr
LS /etc # ls -alr /etc
.define LS = ls -1
LS /foo # ls -1 /foo

∙ Variable names and values are case sensitive.

∙ Variables may be defined in either cmdfiles or hostlistfiles
but they are visible to any subsequent file that gets read.
For instance, cmdfiles are read before any hostlistfiles.
Any variables you’ve defined in a cmdfile that happen
to match a string in one of your hostnames will be substi-
tuted.

This is usually not what you want, so be careful. One way
to manage this is to use variables names that are highly
unlikely to ever show up in a hostname or command. That
way your commands and hostnames will not accidentally
get substrings replaced with variable values. For example,
you might use variable names like --MYLSCOMMAND--
or __DISPLAY_VGS__.

∙ Variable substitution is also performed on any host names
or commands passed on the command line.

11) Using The Current Hostname In Commands And File Transfers

There are times when it’s convenient to be able to embed the name of the
current host in either a command or in a file transfer specification. For

11

example, suppose you want to use a single invocation of tsshbatch to
transfer files in a host-specific way. You might name your files like this:

myfile.host1
myfile.host2

Now, all you have to do is this:

tsshbatch.py -xH "host 1 host2" -P "myfile.<HOSTNAME> ./"

When run, tsshbatch will substitute the name of the current host in
place of the string <HOSTNAME>.

You can do this in commands (and commands within command files) as
well:

tsshbatch -x hosts ’echo I am running on <HOSTNAME>’

Be careful to escape and quote things properly, especially from the the
command line, since < and > are recognized by the shell as metacharacters.

There are two forms of host name substitution possible. The first, <HOSTNAME>
will use the name as you provided it, either as an argument to -H or from
within a host file.

The second, <HOSTSHORT>, will only use the portion of the name string
you provided up to the leftmost period.

So, if you specify myhost1.frumious.edu, <HOSTNAME> will be
replaced with that entire string, and <HOSTSHORT> will be replaced by
just myhost1.

Notice that, in no case does tsshbatch do any DNS lookups to figure
this stuff out. It just manipulates the strings you provide as hostnames.

OTHER

Comments can go anywhere.

Directives like .define and .include must be the first non-whitespace text on the
left end of a line. If you do this in a cmdfile:

foo .include bar

tsshbatch thinks you want to run the command foowith an argument of .include
bar. If you do it in a hostlistfile, the program thinks you’re tryingto contact
a host called foo .include bar. In neither case is this likely to be quite what
you had in mind. Similarly, everything to the right of the directive is considered its
argument (up to any comment character).

Whitespace is not significant at the beginning or end of a line but it is preserved within
.define and .include directive arguments as well as within commmand defini-
tions.

Strictly speaking, you do not have to have whitespace after a directive. This is recog-
nized:

12

.includesomefileofmine

.definemyvar=foo

But this is strongly discouraged because it’s really hard to read.

tsshbatch writes the stdout of the remote host(s) to stdout on the local ma-
chine. It similarly writes remote stderr output to the local machine’s stderr. If
you wish to suppress stderr output, either redirect it on your local command line or
use the -e option to turn it off entirely.

You will not be able to run remote sudo commands if the host in question enables the
Defaults requiretty in its sudoers configuration.

You must have a reasonably current version of Python installed. If your Python instal-
lation does not install paramiko you’ll have to install it manually, since tsshbatch
requires these libraries as well.

BUGS AND MISFEATURES

When sudo is presented a bad password, it ordinarily prints a string indicating some-
thing is wrong. tsshbatch looks for this to let you know that you’ve got a problem
and then terminates further operation. This is so that you do not attempt to log in with
a bad password across all the hosts you have targeted. (Many enterprises have policies
to lock out a user ID after some small number of failed login/access attempts.)

However, some older versions of sudo (noted on a RHEL 4 host running sudo
1.6.7p5) do not return any feedback when presented with a bad password. This means
that tsshbatch cannot tell the difference between a successful sudo and a system
waiting for you to reenter a proper password. In this situation, if you enter a bad pass-
word, the the program will hang. Why? tsshbatch thinks nothing is wrong and
waits for the sudo command to complete. At the same time, sudo itself is waiting for
an updated password. In this case, you have to kill tsshbatch and start over. This
typically requires you to put the program in background (‘Ctrl-Z in most shells) and
then killing that job from the command line.

There is no known workaround for this problem.

COPYRIGHT AND LICENSING

tsshbatch is Copyright (c) 2011-2014 TundraWare Inc.

For terms of use, see the tsshbatch-license.txt file in the program distribu-
tion. If you install tsshbatch on a FreeBSD system using the ’ports’ mechanism, you
will also find this file in /usr/local/share/doc/tsshbatch.

AUTHOR

Tim Daneliuk

13

tsshbatch@tundraware.com

DOCUMENT REVISION INFORMATION

$Id: tsshbatch.rst,v 1.136 2014/03/27 23:40:59 tundra Exp $

You can find the latest version of this program at:

http://www.tundraware.com/Software/tsshbatch

14

http://www.tundraware.com/Software/tsshbatch

	Contents
	NAME
	SYNOPSIS
	DESCRIPTION
	OPTIONS
	ENVIRONMENT
	USE CASES
	OTHER
	BUGS AND MISFEATURES
	COPYRIGHT AND LICENSING
	AUTHOR
	DOCUMENT REVISION INFORMATION

