/*- * Copyright (c) 2011 NetApp, Inc. * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY NETAPP, INC ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL NETAPP, INC OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. * * $FreeBSD: head/sys/amd64/vmm/intel/vmx.c 261504 2014-02-05 04:39:03Z jhb $ */ #include __FBSDID("$FreeBSD: head/sys/amd64/vmm/intel/vmx.c 261504 2014-02-05 04:39:03Z jhb $"); #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include "vmm_host.h" #include "vmm_ipi.h" #include "vmm_msr.h" #include "vmm_ktr.h" #include "vmm_stat.h" #include "vlapic.h" #include "vlapic_priv.h" #include "vmx_msr.h" #include "ept.h" #include "vmx_cpufunc.h" #include "vmx.h" #include "x86.h" #include "vmx_controls.h" #define PINBASED_CTLS_ONE_SETTING \ (PINBASED_EXTINT_EXITING | \ PINBASED_NMI_EXITING | \ PINBASED_VIRTUAL_NMI) #define PINBASED_CTLS_ZERO_SETTING 0 #define PROCBASED_CTLS_WINDOW_SETTING \ (PROCBASED_INT_WINDOW_EXITING | \ PROCBASED_NMI_WINDOW_EXITING) #define PROCBASED_CTLS_ONE_SETTING \ (PROCBASED_SECONDARY_CONTROLS | \ PROCBASED_IO_EXITING | \ PROCBASED_MSR_BITMAPS | \ PROCBASED_CTLS_WINDOW_SETTING) #define PROCBASED_CTLS_ZERO_SETTING \ (PROCBASED_CR3_LOAD_EXITING | \ PROCBASED_CR3_STORE_EXITING | \ PROCBASED_IO_BITMAPS) #define PROCBASED_CTLS2_ONE_SETTING PROCBASED2_ENABLE_EPT #define PROCBASED_CTLS2_ZERO_SETTING 0 #define VM_EXIT_CTLS_ONE_SETTING_NO_PAT \ (VM_EXIT_HOST_LMA | \ VM_EXIT_SAVE_EFER | \ VM_EXIT_LOAD_EFER) #define VM_EXIT_CTLS_ONE_SETTING \ (VM_EXIT_CTLS_ONE_SETTING_NO_PAT | \ VM_EXIT_ACKNOWLEDGE_INTERRUPT | \ VM_EXIT_SAVE_PAT | \ VM_EXIT_LOAD_PAT) #define VM_EXIT_CTLS_ZERO_SETTING VM_EXIT_SAVE_DEBUG_CONTROLS #define VM_ENTRY_CTLS_ONE_SETTING_NO_PAT VM_ENTRY_LOAD_EFER #define VM_ENTRY_CTLS_ONE_SETTING \ (VM_ENTRY_CTLS_ONE_SETTING_NO_PAT | \ VM_ENTRY_LOAD_PAT) #define VM_ENTRY_CTLS_ZERO_SETTING \ (VM_ENTRY_LOAD_DEBUG_CONTROLS | \ VM_ENTRY_INTO_SMM | \ VM_ENTRY_DEACTIVATE_DUAL_MONITOR) #define guest_msr_rw(vmx, msr) \ msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_RW) #define guest_msr_ro(vmx, msr) \ msr_bitmap_change_access((vmx)->msr_bitmap, (msr), MSR_BITMAP_ACCESS_READ) #define HANDLED 1 #define UNHANDLED 0 static MALLOC_DEFINE(M_VMX, "vmx", "vmx"); static MALLOC_DEFINE(M_VLAPIC, "vlapic", "vlapic"); SYSCTL_DECL(_hw_vmm); SYSCTL_NODE(_hw_vmm, OID_AUTO, vmx, CTLFLAG_RW, NULL, NULL); int vmxon_enabled[MAXCPU]; static char vmxon_region[MAXCPU][PAGE_SIZE] __aligned(PAGE_SIZE); static uint32_t pinbased_ctls, procbased_ctls, procbased_ctls2; static uint32_t exit_ctls, entry_ctls; static uint64_t cr0_ones_mask, cr0_zeros_mask; SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_ones_mask, CTLFLAG_RD, &cr0_ones_mask, 0, NULL); SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr0_zeros_mask, CTLFLAG_RD, &cr0_zeros_mask, 0, NULL); static uint64_t cr4_ones_mask, cr4_zeros_mask; SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_ones_mask, CTLFLAG_RD, &cr4_ones_mask, 0, NULL); SYSCTL_ULONG(_hw_vmm_vmx, OID_AUTO, cr4_zeros_mask, CTLFLAG_RD, &cr4_zeros_mask, 0, NULL); static int vmx_no_patmsr; static int vmx_initialized; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, initialized, CTLFLAG_RD, &vmx_initialized, 0, "Intel VMX initialized"); /* * Optional capabilities */ static int cap_halt_exit; static int cap_pause_exit; static int cap_unrestricted_guest; static int cap_monitor_trap; static int cap_invpcid; static int x2apic_virtualization; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, x2apic_virtualization, CTLFLAG_RD, &x2apic_virtualization, 0, "APICv x2apic virtualization"); static int virtual_interrupt_delivery; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, virtual_interrupt_delivery, CTLFLAG_RD, &virtual_interrupt_delivery, 0, "APICv virtual interrupt delivery support"); static int posted_interrupts; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupts, CTLFLAG_RD, &posted_interrupts, 0, "APICv posted interrupt support"); static int pirvec; SYSCTL_INT(_hw_vmm_vmx, OID_AUTO, posted_interrupt_vector, CTLFLAG_RD, &pirvec, 0, "APICv posted interrupt vector"); static struct unrhdr *vpid_unr; static u_int vpid_alloc_failed; SYSCTL_UINT(_hw_vmm_vmx, OID_AUTO, vpid_alloc_failed, CTLFLAG_RD, &vpid_alloc_failed, 0, NULL); /* * Use the last page below 4GB as the APIC access address. This address is * occupied by the boot firmware so it is guaranteed that it will not conflict * with a page in system memory. */ #define APIC_ACCESS_ADDRESS 0xFFFFF000 static void vmx_inject_pir(struct vlapic *vlapic); #ifdef KTR static const char * exit_reason_to_str(int reason) { static char reasonbuf[32]; switch (reason) { case EXIT_REASON_EXCEPTION: return "exception"; case EXIT_REASON_EXT_INTR: return "extint"; case EXIT_REASON_TRIPLE_FAULT: return "triplefault"; case EXIT_REASON_INIT: return "init"; case EXIT_REASON_SIPI: return "sipi"; case EXIT_REASON_IO_SMI: return "iosmi"; case EXIT_REASON_SMI: return "smi"; case EXIT_REASON_INTR_WINDOW: return "intrwindow"; case EXIT_REASON_NMI_WINDOW: return "nmiwindow"; case EXIT_REASON_TASK_SWITCH: return "taskswitch"; case EXIT_REASON_CPUID: return "cpuid"; case EXIT_REASON_GETSEC: return "getsec"; case EXIT_REASON_HLT: return "hlt"; case EXIT_REASON_INVD: return "invd"; case EXIT_REASON_INVLPG: return "invlpg"; case EXIT_REASON_RDPMC: return "rdpmc"; case EXIT_REASON_RDTSC: return "rdtsc"; case EXIT_REASON_RSM: return "rsm"; case EXIT_REASON_VMCALL: return "vmcall"; case EXIT_REASON_VMCLEAR: return "vmclear"; case EXIT_REASON_VMLAUNCH: return "vmlaunch"; case EXIT_REASON_VMPTRLD: return "vmptrld"; case EXIT_REASON_VMPTRST: return "vmptrst"; case EXIT_REASON_VMREAD: return "vmread"; case EXIT_REASON_VMRESUME: return "vmresume"; case EXIT_REASON_VMWRITE: return "vmwrite"; case EXIT_REASON_VMXOFF: return "vmxoff"; case EXIT_REASON_VMXON: return "vmxon"; case EXIT_REASON_CR_ACCESS: return "craccess"; case EXIT_REASON_DR_ACCESS: return "draccess"; case EXIT_REASON_INOUT: return "inout"; case EXIT_REASON_RDMSR: return "rdmsr"; case EXIT_REASON_WRMSR: return "wrmsr"; case EXIT_REASON_INVAL_VMCS: return "invalvmcs"; case EXIT_REASON_INVAL_MSR: return "invalmsr"; case EXIT_REASON_MWAIT: return "mwait"; case EXIT_REASON_MTF: return "mtf"; case EXIT_REASON_MONITOR: return "monitor"; case EXIT_REASON_PAUSE: return "pause"; case EXIT_REASON_MCE: return "mce"; case EXIT_REASON_TPR: return "tpr"; case EXIT_REASON_APIC_ACCESS: return "apic-access"; case EXIT_REASON_GDTR_IDTR: return "gdtridtr"; case EXIT_REASON_LDTR_TR: return "ldtrtr"; case EXIT_REASON_EPT_FAULT: return "eptfault"; case EXIT_REASON_EPT_MISCONFIG: return "eptmisconfig"; case EXIT_REASON_INVEPT: return "invept"; case EXIT_REASON_RDTSCP: return "rdtscp"; case EXIT_REASON_VMX_PREEMPT: return "vmxpreempt"; case EXIT_REASON_INVVPID: return "invvpid"; case EXIT_REASON_WBINVD: return "wbinvd"; case EXIT_REASON_XSETBV: return "xsetbv"; case EXIT_REASON_APIC_WRITE: return "apic-write"; default: snprintf(reasonbuf, sizeof(reasonbuf), "%d", reason); return (reasonbuf); } } #endif /* KTR */ static __inline bool virtualize_apic_accesses(void) { if (virtual_interrupt_delivery && !x2apic_virtualization) return (true); else return (false); } static __inline bool virtualize_x2apic_mode(void) { if (virtual_interrupt_delivery && x2apic_virtualization) return (true); else return (false); } static int vmx_allow_x2apic_msrs(struct vmx *vmx) { int i, error; error = 0; /* * Allow readonly access to the following x2APIC MSRs from the guest. */ error += guest_msr_ro(vmx, MSR_APIC_ID); error += guest_msr_ro(vmx, MSR_APIC_VERSION); error += guest_msr_ro(vmx, MSR_APIC_LDR); error += guest_msr_ro(vmx, MSR_APIC_SVR); for (i = 0; i < 8; i++) error += guest_msr_ro(vmx, MSR_APIC_ISR0 + i); for (i = 0; i < 8; i++) error += guest_msr_ro(vmx, MSR_APIC_TMR0 + i); for (i = 0; i < 8; i++) error += guest_msr_ro(vmx, MSR_APIC_IRR0 + i); error += guest_msr_ro(vmx, MSR_APIC_ESR); error += guest_msr_ro(vmx, MSR_APIC_LVT_TIMER); error += guest_msr_ro(vmx, MSR_APIC_LVT_THERMAL); error += guest_msr_ro(vmx, MSR_APIC_LVT_PCINT); error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT0); error += guest_msr_ro(vmx, MSR_APIC_LVT_LINT1); error += guest_msr_ro(vmx, MSR_APIC_LVT_ERROR); error += guest_msr_ro(vmx, MSR_APIC_ICR_TIMER); error += guest_msr_ro(vmx, MSR_APIC_DCR_TIMER); error += guest_msr_ro(vmx, MSR_APIC_ICR); /* * Allow TPR, EOI and SELF_IPI MSRs to be read and written by the guest. * * These registers get special treatment described in the section * "Virtualizing MSR-Based APIC Accesses". */ error += guest_msr_rw(vmx, MSR_APIC_TPR); error += guest_msr_rw(vmx, MSR_APIC_EOI); error += guest_msr_rw(vmx, MSR_APIC_SELF_IPI); return (error); } u_long vmx_fix_cr0(u_long cr0) { return ((cr0 | cr0_ones_mask) & ~cr0_zeros_mask); } u_long vmx_fix_cr4(u_long cr4) { return ((cr4 | cr4_ones_mask) & ~cr4_zeros_mask); } static void vpid_free(int vpid) { if (vpid < 0 || vpid > 0xffff) panic("vpid_free: invalid vpid %d", vpid); /* * VPIDs [0,VM_MAXCPU] are special and are not allocated from * the unit number allocator. */ if (vpid > VM_MAXCPU) free_unr(vpid_unr, vpid); } static void vpid_alloc(uint16_t *vpid, int num) { int i, x; if (num <= 0 || num > VM_MAXCPU) panic("invalid number of vpids requested: %d", num); /* * If the "enable vpid" execution control is not enabled then the * VPID is required to be 0 for all vcpus. */ if ((procbased_ctls2 & PROCBASED2_ENABLE_VPID) == 0) { for (i = 0; i < num; i++) vpid[i] = 0; return; } /* * Allocate a unique VPID for each vcpu from the unit number allocator. */ for (i = 0; i < num; i++) { x = alloc_unr(vpid_unr); if (x == -1) break; else vpid[i] = x; } if (i < num) { atomic_add_int(&vpid_alloc_failed, 1); /* * If the unit number allocator does not have enough unique * VPIDs then we need to allocate from the [1,VM_MAXCPU] range. * * These VPIDs are not be unique across VMs but this does not * affect correctness because the combined mappings are also * tagged with the EP4TA which is unique for each VM. * * It is still sub-optimal because the invvpid will invalidate * combined mappings for a particular VPID across all EP4TAs. */ while (i-- > 0) vpid_free(vpid[i]); for (i = 0; i < num; i++) vpid[i] = i + 1; } } static void vpid_init(void) { /* * VPID 0 is required when the "enable VPID" execution control is * disabled. * * VPIDs [1,VM_MAXCPU] are used as the "overflow namespace" when the * unit number allocator does not have sufficient unique VPIDs to * satisfy the allocation. * * The remaining VPIDs are managed by the unit number allocator. */ vpid_unr = new_unrhdr(VM_MAXCPU + 1, 0xffff, NULL); } static void msr_save_area_init(struct msr_entry *g_area, int *g_count) { int cnt; static struct msr_entry guest_msrs[] = { { MSR_KGSBASE, 0, 0 }, }; cnt = sizeof(guest_msrs) / sizeof(guest_msrs[0]); if (cnt > GUEST_MSR_MAX_ENTRIES) panic("guest msr save area overrun"); bcopy(guest_msrs, g_area, sizeof(guest_msrs)); *g_count = cnt; } static void vmx_disable(void *arg __unused) { struct invvpid_desc invvpid_desc = { 0 }; struct invept_desc invept_desc = { 0 }; if (vmxon_enabled[curcpu]) { /* * See sections 25.3.3.3 and 25.3.3.4 in Intel Vol 3b. * * VMXON or VMXOFF are not required to invalidate any TLB * caching structures. This prevents potential retention of * cached information in the TLB between distinct VMX episodes. */ invvpid(INVVPID_TYPE_ALL_CONTEXTS, invvpid_desc); invept(INVEPT_TYPE_ALL_CONTEXTS, invept_desc); vmxoff(); } load_cr4(rcr4() & ~CR4_VMXE); } static int vmx_cleanup(void) { if (pirvec != 0) vmm_ipi_free(pirvec); if (vpid_unr != NULL) { delete_unrhdr(vpid_unr); vpid_unr = NULL; } smp_rendezvous(NULL, vmx_disable, NULL, NULL); return (0); } static void vmx_enable(void *arg __unused) { int error; load_cr4(rcr4() | CR4_VMXE); *(uint32_t *)vmxon_region[curcpu] = vmx_revision(); error = vmxon(vmxon_region[curcpu]); if (error == 0) vmxon_enabled[curcpu] = 1; } static void vmx_restore(void) { if (vmxon_enabled[curcpu]) vmxon(vmxon_region[curcpu]); } static int vmx_init(int ipinum) { int error, use_tpr_shadow; uint64_t fixed0, fixed1, feature_control; uint32_t tmp, procbased2_vid_bits; /* CPUID.1:ECX[bit 5] must be 1 for processor to support VMX */ if (!(cpu_feature2 & CPUID2_VMX)) { printf("vmx_init: processor does not support VMX operation\n"); return (ENXIO); } /* * Verify that MSR_IA32_FEATURE_CONTROL lock and VMXON enable bits * are set (bits 0 and 2 respectively). */ feature_control = rdmsr(MSR_IA32_FEATURE_CONTROL); if ((feature_control & IA32_FEATURE_CONTROL_LOCK) == 0 || (feature_control & IA32_FEATURE_CONTROL_VMX_EN) == 0) { printf("vmx_init: VMX operation disabled by BIOS\n"); return (ENXIO); } /* Check support for primary processor-based VM-execution controls */ error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_CTLS_ONE_SETTING, PROCBASED_CTLS_ZERO_SETTING, &procbased_ctls); if (error) { printf("vmx_init: processor does not support desired primary " "processor-based controls\n"); return (error); } /* Clear the processor-based ctl bits that are set on demand */ procbased_ctls &= ~PROCBASED_CTLS_WINDOW_SETTING; /* Check support for secondary processor-based VM-execution controls */ error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED_CTLS2_ONE_SETTING, PROCBASED_CTLS2_ZERO_SETTING, &procbased_ctls2); if (error) { printf("vmx_init: processor does not support desired secondary " "processor-based controls\n"); return (error); } /* Check support for VPID */ error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_VPID, 0, &tmp); if (error == 0) procbased_ctls2 |= PROCBASED2_ENABLE_VPID; /* Check support for pin-based VM-execution controls */ error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_CTLS_ONE_SETTING, PINBASED_CTLS_ZERO_SETTING, &pinbased_ctls); if (error) { printf("vmx_init: processor does not support desired " "pin-based controls\n"); return (error); } /* Check support for VM-exit controls */ error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, VM_EXIT_CTLS_ONE_SETTING, VM_EXIT_CTLS_ZERO_SETTING, &exit_ctls); if (error) { /* Try again without the PAT MSR bits */ error = vmx_set_ctlreg(MSR_VMX_EXIT_CTLS, MSR_VMX_TRUE_EXIT_CTLS, VM_EXIT_CTLS_ONE_SETTING_NO_PAT, VM_EXIT_CTLS_ZERO_SETTING, &exit_ctls); if (error) { printf("vmx_init: processor does not support desired " "exit controls\n"); return (error); } else { if (bootverbose) printf("vmm: PAT MSR access not supported\n"); guest_msr_valid(MSR_PAT); vmx_no_patmsr = 1; } } /* Check support for VM-entry controls */ if (!vmx_no_patmsr) { error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, VM_ENTRY_CTLS_ONE_SETTING, VM_ENTRY_CTLS_ZERO_SETTING, &entry_ctls); } else { error = vmx_set_ctlreg(MSR_VMX_ENTRY_CTLS, MSR_VMX_TRUE_ENTRY_CTLS, VM_ENTRY_CTLS_ONE_SETTING_NO_PAT, VM_ENTRY_CTLS_ZERO_SETTING, &entry_ctls); } if (error) { printf("vmx_init: processor does not support desired " "entry controls\n"); return (error); } /* * Check support for optional features by testing them * as individual bits */ cap_halt_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_HLT_EXITING, 0, &tmp) == 0); cap_monitor_trap = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_PROCBASED_CTLS, PROCBASED_MTF, 0, &tmp) == 0); cap_pause_exit = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_PAUSE_EXITING, 0, &tmp) == 0); cap_unrestricted_guest = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED2_UNRESTRICTED_GUEST, 0, &tmp) == 0); cap_invpcid = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, PROCBASED2_ENABLE_INVPCID, 0, &tmp) == 0); /* * Check support for virtual interrupt delivery. */ procbased2_vid_bits = (PROCBASED2_VIRTUALIZE_APIC_ACCESSES | PROCBASED2_VIRTUALIZE_X2APIC_MODE | PROCBASED2_APIC_REGISTER_VIRTUALIZATION | PROCBASED2_VIRTUAL_INTERRUPT_DELIVERY); use_tpr_shadow = (vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS, MSR_VMX_TRUE_PROCBASED_CTLS, PROCBASED_USE_TPR_SHADOW, 0, &tmp) == 0); error = vmx_set_ctlreg(MSR_VMX_PROCBASED_CTLS2, MSR_VMX_PROCBASED_CTLS2, procbased2_vid_bits, 0, &tmp); if (error == 0 && use_tpr_shadow) { virtual_interrupt_delivery = 1; TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_vid", &virtual_interrupt_delivery); } if (virtual_interrupt_delivery) { TUNABLE_INT_FETCH("hw.vmm.vmx.use_x2apic_virtualization", &x2apic_virtualization); procbased_ctls |= PROCBASED_USE_TPR_SHADOW; procbased_ctls2 |= procbased2_vid_bits; if (x2apic_virtualization) procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_APIC_ACCESSES; else procbased_ctls2 &= ~PROCBASED2_VIRTUALIZE_X2APIC_MODE; /* * Check for Posted Interrupts only if Virtual Interrupt * Delivery is enabled. */ error = vmx_set_ctlreg(MSR_VMX_PINBASED_CTLS, MSR_VMX_TRUE_PINBASED_CTLS, PINBASED_POSTED_INTERRUPT, 0, &tmp); if (error == 0) { pirvec = vmm_ipi_alloc(); if (pirvec == 0) { if (bootverbose) { printf("vmx_init: unable to allocate " "posted interrupt vector\n"); } } else { posted_interrupts = 1; TUNABLE_INT_FETCH("hw.vmm.vmx.use_apic_pir", &posted_interrupts); } } } if (posted_interrupts) pinbased_ctls |= PINBASED_POSTED_INTERRUPT; /* Initialize EPT */ error = ept_init(ipinum); if (error) { printf("vmx_init: ept initialization failed (%d)\n", error); return (error); } /* * Stash the cr0 and cr4 bits that must be fixed to 0 or 1 */ fixed0 = rdmsr(MSR_VMX_CR0_FIXED0); fixed1 = rdmsr(MSR_VMX_CR0_FIXED1); cr0_ones_mask = fixed0 & fixed1; cr0_zeros_mask = ~fixed0 & ~fixed1; /* * CR0_PE and CR0_PG can be set to zero in VMX non-root operation * if unrestricted guest execution is allowed. */ if (cap_unrestricted_guest) cr0_ones_mask &= ~(CR0_PG | CR0_PE); /* * Do not allow the guest to set CR0_NW or CR0_CD. */ cr0_zeros_mask |= (CR0_NW | CR0_CD); fixed0 = rdmsr(MSR_VMX_CR4_FIXED0); fixed1 = rdmsr(MSR_VMX_CR4_FIXED1); cr4_ones_mask = fixed0 & fixed1; cr4_zeros_mask = ~fixed0 & ~fixed1; vpid_init(); /* enable VMX operation */ smp_rendezvous(NULL, vmx_enable, NULL, NULL); vmx_initialized = 1; return (0); } static void vmx_trigger_hostintr(int vector) { uintptr_t func; struct gate_descriptor *gd; gd = &idt[vector]; KASSERT(vector >= 32 && vector <= 255, ("vmx_trigger_hostintr: " "invalid vector %d", vector)); KASSERT(gd->gd_p == 1, ("gate descriptor for vector %d not present", vector)); KASSERT(gd->gd_type == SDT_SYSIGT, ("gate descriptor for vector %d " "has invalid type %d", vector, gd->gd_type)); KASSERT(gd->gd_dpl == SEL_KPL, ("gate descriptor for vector %d " "has invalid dpl %d", vector, gd->gd_dpl)); KASSERT(gd->gd_selector == GSEL(GCODE_SEL, SEL_KPL), ("gate descriptor " "for vector %d has invalid selector %d", vector, gd->gd_selector)); KASSERT(gd->gd_ist == 0, ("gate descriptor for vector %d has invalid " "IST %d", vector, gd->gd_ist)); func = ((long)gd->gd_hioffset << 16 | gd->gd_looffset); vmx_call_isr(func); } static int vmx_setup_cr_shadow(int which, struct vmcs *vmcs, uint32_t initial) { int error, mask_ident, shadow_ident; uint64_t mask_value; if (which != 0 && which != 4) panic("vmx_setup_cr_shadow: unknown cr%d", which); if (which == 0) { mask_ident = VMCS_CR0_MASK; mask_value = cr0_ones_mask | cr0_zeros_mask; shadow_ident = VMCS_CR0_SHADOW; } else { mask_ident = VMCS_CR4_MASK; mask_value = cr4_ones_mask | cr4_zeros_mask; shadow_ident = VMCS_CR4_SHADOW; } error = vmcs_setreg(vmcs, 0, VMCS_IDENT(mask_ident), mask_value); if (error) return (error); error = vmcs_setreg(vmcs, 0, VMCS_IDENT(shadow_ident), initial); if (error) return (error); return (0); } #define vmx_setup_cr0_shadow(vmcs,init) vmx_setup_cr_shadow(0, (vmcs), (init)) #define vmx_setup_cr4_shadow(vmcs,init) vmx_setup_cr_shadow(4, (vmcs), (init)) static void * vmx_vminit(struct vm *vm, pmap_t pmap) { uint16_t vpid[VM_MAXCPU]; int i, error, guest_msr_count; struct vmx *vmx; struct vmcs *vmcs; vmx = malloc(sizeof(struct vmx), M_VMX, M_WAITOK | M_ZERO); if ((uintptr_t)vmx & PAGE_MASK) { panic("malloc of struct vmx not aligned on %d byte boundary", PAGE_SIZE); } vmx->vm = vm; vmx->eptp = eptp(vtophys((vm_offset_t)pmap->pm_pml4)); /* * Clean up EPTP-tagged guest physical and combined mappings * * VMX transitions are not required to invalidate any guest physical * mappings. So, it may be possible for stale guest physical mappings * to be present in the processor TLBs. * * Combined mappings for this EP4TA are also invalidated for all VPIDs. */ ept_invalidate_mappings(vmx->eptp); msr_bitmap_initialize(vmx->msr_bitmap); /* * It is safe to allow direct access to MSR_GSBASE and MSR_FSBASE. * The guest FSBASE and GSBASE are saved and restored during * vm-exit and vm-entry respectively. The host FSBASE and GSBASE are * always restored from the vmcs host state area on vm-exit. * * The SYSENTER_CS/ESP/EIP MSRs are identical to FS/GSBASE in * how they are saved/restored so can be directly accessed by the * guest. * * Guest KGSBASE is saved and restored in the guest MSR save area. * Host KGSBASE is restored before returning to userland from the pcb. * There will be a window of time when we are executing in the host * kernel context with a value of KGSBASE from the guest. This is ok * because the value of KGSBASE is inconsequential in kernel context. * * MSR_EFER is saved and restored in the guest VMCS area on a * VM exit and entry respectively. It is also restored from the * host VMCS area on a VM exit. */ if (guest_msr_rw(vmx, MSR_GSBASE) || guest_msr_rw(vmx, MSR_FSBASE) || guest_msr_rw(vmx, MSR_SYSENTER_CS_MSR) || guest_msr_rw(vmx, MSR_SYSENTER_ESP_MSR) || guest_msr_rw(vmx, MSR_SYSENTER_EIP_MSR) || guest_msr_rw(vmx, MSR_KGSBASE) || guest_msr_rw(vmx, MSR_EFER)) panic("vmx_vminit: error setting guest msr access"); /* * MSR_PAT is saved and restored in the guest VMCS are on a VM exit * and entry respectively. It is also restored from the host VMCS * area on a VM exit. However, if running on a system with no * MSR_PAT save/restore support, leave access disabled so accesses * will be trapped. */ if (!vmx_no_patmsr && guest_msr_rw(vmx, MSR_PAT)) panic("vmx_vminit: error setting guest pat msr access"); vpid_alloc(vpid, VM_MAXCPU); error = 0; if (virtualize_apic_accesses()) { error = vm_map_mmio(vm, DEFAULT_APIC_BASE, PAGE_SIZE, APIC_ACCESS_ADDRESS, VM_MEMATTR_WRITE_BACK); } else if (virtualize_x2apic_mode()) { error = vmx_allow_x2apic_msrs(vmx); } /* XXX this should really return an error to the caller */ KASSERT(error == 0, ("vmx_vminit: error %d initializing apic register " "virtualization", error)); for (i = 0; i < VM_MAXCPU; i++) { vmcs = &vmx->vmcs[i]; vmcs->identifier = vmx_revision(); error = vmclear(vmcs); if (error != 0) { panic("vmx_vminit: vmclear error %d on vcpu %d\n", error, i); } error = vmcs_init(vmcs); KASSERT(error == 0, ("vmcs_init error %d", error)); VMPTRLD(vmcs); error = 0; error += vmwrite(VMCS_HOST_RSP, (u_long)&vmx->ctx[i]); error += vmwrite(VMCS_EPTP, vmx->eptp); error += vmwrite(VMCS_PIN_BASED_CTLS, pinbased_ctls); error += vmwrite(VMCS_PRI_PROC_BASED_CTLS, procbased_ctls); error += vmwrite(VMCS_SEC_PROC_BASED_CTLS, procbased_ctls2); error += vmwrite(VMCS_EXIT_CTLS, exit_ctls); error += vmwrite(VMCS_ENTRY_CTLS, entry_ctls); error += vmwrite(VMCS_MSR_BITMAP, vtophys(vmx->msr_bitmap)); error += vmwrite(VMCS_VPID, vpid[i]); if (virtualize_apic_accesses()) error += vmwrite(VMCS_APIC_ACCESS, APIC_ACCESS_ADDRESS); if (virtual_interrupt_delivery) { error += vmwrite(VMCS_VIRTUAL_APIC, vtophys(&vmx->apic_page[i])); error += vmwrite(VMCS_EOI_EXIT0, 0); error += vmwrite(VMCS_EOI_EXIT1, 0); error += vmwrite(VMCS_EOI_EXIT2, 0); error += vmwrite(VMCS_EOI_EXIT3, 0); } if (posted_interrupts) { error += vmwrite(VMCS_PIR_VECTOR, pirvec); error += vmwrite(VMCS_PIR_DESC, vtophys(&vmx->pir_desc[i])); } VMCLEAR(vmcs); KASSERT(error == 0, ("vmx_vminit: error customizing the vmcs")); vmx->cap[i].set = 0; vmx->cap[i].proc_ctls = procbased_ctls; vmx->cap[i].proc_ctls2 = procbased_ctls2; vmx->state[i].lastcpu = -1; vmx->state[i].vpid = vpid[i]; msr_save_area_init(vmx->guest_msrs[i], &guest_msr_count); error = vmcs_set_msr_save(vmcs, vtophys(vmx->guest_msrs[i]), guest_msr_count); if (error != 0) panic("vmcs_set_msr_save error %d", error); /* * Set up the CR0/4 shadows, and init the read shadow * to the power-on register value from the Intel Sys Arch. * CR0 - 0x60000010 * CR4 - 0 */ error = vmx_setup_cr0_shadow(vmcs, 0x60000010); if (error != 0) panic("vmx_setup_cr0_shadow %d", error); error = vmx_setup_cr4_shadow(vmcs, 0); if (error != 0) panic("vmx_setup_cr4_shadow %d", error); vmx->ctx[i].pmap = pmap; } return (vmx); } static int vmx_handle_cpuid(struct vm *vm, int vcpu, struct vmxctx *vmxctx) { int handled, func; func = vmxctx->guest_rax; handled = x86_emulate_cpuid(vm, vcpu, (uint32_t*)(&vmxctx->guest_rax), (uint32_t*)(&vmxctx->guest_rbx), (uint32_t*)(&vmxctx->guest_rcx), (uint32_t*)(&vmxctx->guest_rdx)); return (handled); } static __inline void vmx_run_trace(struct vmx *vmx, int vcpu) { #ifdef KTR VCPU_CTR1(vmx->vm, vcpu, "Resume execution at %#lx", vmcs_guest_rip()); #endif } static __inline void vmx_exit_trace(struct vmx *vmx, int vcpu, uint64_t rip, uint32_t exit_reason, int handled) { #ifdef KTR VCPU_CTR3(vmx->vm, vcpu, "%s %s vmexit at 0x%0lx", handled ? "handled" : "unhandled", exit_reason_to_str(exit_reason), rip); #endif } static __inline void vmx_astpending_trace(struct vmx *vmx, int vcpu, uint64_t rip) { #ifdef KTR VCPU_CTR1(vmx->vm, vcpu, "astpending vmexit at 0x%0lx", rip); #endif } static VMM_STAT_INTEL(VCPU_INVVPID_SAVED, "Number of vpid invalidations saved"); static void vmx_set_pcpu_defaults(struct vmx *vmx, int vcpu, pmap_t pmap) { struct vmxstate *vmxstate; struct invvpid_desc invvpid_desc; vmxstate = &vmx->state[vcpu]; if (vmxstate->lastcpu == curcpu) return; vmxstate->lastcpu = curcpu; vmm_stat_incr(vmx->vm, vcpu, VCPU_MIGRATIONS, 1); vmcs_write(VMCS_HOST_TR_BASE, vmm_get_host_trbase()); vmcs_write(VMCS_HOST_GDTR_BASE, vmm_get_host_gdtrbase()); vmcs_write(VMCS_HOST_GS_BASE, vmm_get_host_gsbase()); /* * If we are using VPIDs then invalidate all mappings tagged with 'vpid' * * We do this because this vcpu was executing on a different host * cpu when it last ran. We do not track whether it invalidated * mappings associated with its 'vpid' during that run. So we must * assume that the mappings associated with 'vpid' on 'curcpu' are * stale and invalidate them. * * Note that we incur this penalty only when the scheduler chooses to * move the thread associated with this vcpu between host cpus. * * Note also that this will invalidate mappings tagged with 'vpid' * for "all" EP4TAs. */ if (vmxstate->vpid != 0) { if (pmap->pm_eptgen == vmx->eptgen[curcpu]) { invvpid_desc._res1 = 0; invvpid_desc._res2 = 0; invvpid_desc.vpid = vmxstate->vpid; invvpid(INVVPID_TYPE_SINGLE_CONTEXT, invvpid_desc); } else { /* * The invvpid can be skipped if an invept is going to * be performed before entering the guest. The invept * will invalidate combined mappings tagged with * 'vmx->eptp' for all vpids. */ vmm_stat_incr(vmx->vm, vcpu, VCPU_INVVPID_SAVED, 1); } } } /* * We depend on 'procbased_ctls' to have the Interrupt Window Exiting bit set. */ CTASSERT((PROCBASED_CTLS_ONE_SETTING & PROCBASED_INT_WINDOW_EXITING) != 0); static void __inline vmx_set_int_window_exiting(struct vmx *vmx, int vcpu) { if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) == 0) { vmx->cap[vcpu].proc_ctls |= PROCBASED_INT_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Enabling interrupt window exiting"); } } static void __inline vmx_clear_int_window_exiting(struct vmx *vmx, int vcpu) { KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0, ("intr_window_exiting not set: %#x", vmx->cap[vcpu].proc_ctls)); vmx->cap[vcpu].proc_ctls &= ~PROCBASED_INT_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Disabling interrupt window exiting"); } static void __inline vmx_set_nmi_window_exiting(struct vmx *vmx, int vcpu) { if ((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) == 0) { vmx->cap[vcpu].proc_ctls |= PROCBASED_NMI_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Enabling NMI window exiting"); } } static void __inline vmx_clear_nmi_window_exiting(struct vmx *vmx, int vcpu) { KASSERT((vmx->cap[vcpu].proc_ctls & PROCBASED_NMI_WINDOW_EXITING) != 0, ("nmi_window_exiting not set %#x", vmx->cap[vcpu].proc_ctls)); vmx->cap[vcpu].proc_ctls &= ~PROCBASED_NMI_WINDOW_EXITING; vmcs_write(VMCS_PRI_PROC_BASED_CTLS, vmx->cap[vcpu].proc_ctls); VCPU_CTR0(vmx->vm, vcpu, "Disabling NMI window exiting"); } #define NMI_BLOCKING (VMCS_INTERRUPTIBILITY_NMI_BLOCKING | \ VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) #define HWINTR_BLOCKING (VMCS_INTERRUPTIBILITY_STI_BLOCKING | \ VMCS_INTERRUPTIBILITY_MOVSS_BLOCKING) static void vmx_inject_nmi(struct vmx *vmx, int vcpu) { uint32_t gi, info; gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); KASSERT((gi & NMI_BLOCKING) == 0, ("vmx_inject_nmi: invalid guest " "interruptibility-state %#x", gi)); info = vmcs_read(VMCS_ENTRY_INTR_INFO); KASSERT((info & VMCS_INTR_VALID) == 0, ("vmx_inject_nmi: invalid " "VM-entry interruption information %#x", info)); /* * Inject the virtual NMI. The vector must be the NMI IDT entry * or the VMCS entry check will fail. */ info = IDT_NMI | VMCS_INTR_T_NMI | VMCS_INTR_VALID; vmcs_write(VMCS_ENTRY_INTR_INFO, info); VCPU_CTR0(vmx->vm, vcpu, "Injecting vNMI"); /* Clear the request */ vm_nmi_clear(vmx->vm, vcpu); } static void vmx_inject_interrupts(struct vmx *vmx, int vcpu, struct vlapic *vlapic) { int vector, need_nmi_exiting; uint64_t rflags; uint32_t gi, info; if (vm_nmi_pending(vmx->vm, vcpu)) { /* * If there are no conditions blocking NMI injection then * inject it directly here otherwise enable "NMI window * exiting" to inject it as soon as we can. * * We also check for STI_BLOCKING because some implementations * don't allow NMI injection in this case. If we are running * on a processor that doesn't have this restriction it will * immediately exit and the NMI will be injected in the * "NMI window exiting" handler. */ need_nmi_exiting = 1; gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); if ((gi & (HWINTR_BLOCKING | NMI_BLOCKING)) == 0) { info = vmcs_read(VMCS_ENTRY_INTR_INFO); if ((info & VMCS_INTR_VALID) == 0) { vmx_inject_nmi(vmx, vcpu); need_nmi_exiting = 0; } else { VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI " "due to VM-entry intr info %#x", info); } } else { VCPU_CTR1(vmx->vm, vcpu, "Cannot inject NMI due to " "Guest Interruptibility-state %#x", gi); } if (need_nmi_exiting) vmx_set_nmi_window_exiting(vmx, vcpu); } if (virtual_interrupt_delivery) { vmx_inject_pir(vlapic); return; } /* * If interrupt-window exiting is already in effect then don't bother * checking for pending interrupts. This is just an optimization and * not needed for correctness. */ if ((vmx->cap[vcpu].proc_ctls & PROCBASED_INT_WINDOW_EXITING) != 0) { VCPU_CTR0(vmx->vm, vcpu, "Skip interrupt injection due to " "pending int_window_exiting"); return; } /* Ask the local apic for a vector to inject */ if (!vlapic_pending_intr(vlapic, &vector)) return; KASSERT(vector >= 32 && vector <= 255, ("invalid vector %d", vector)); /* Check RFLAGS.IF and the interruptibility state of the guest */ rflags = vmcs_read(VMCS_GUEST_RFLAGS); if ((rflags & PSL_I) == 0) { VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " "rflags %#lx", vector, rflags); goto cantinject; } gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); if (gi & HWINTR_BLOCKING) { VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " "Guest Interruptibility-state %#x", vector, gi); goto cantinject; } info = vmcs_read(VMCS_ENTRY_INTR_INFO); if (info & VMCS_INTR_VALID) { /* * This is expected and could happen for multiple reasons: * - A vectoring VM-entry was aborted due to astpending * - A VM-exit happened during event injection. * - An NMI was injected above or after "NMI window exiting" */ VCPU_CTR2(vmx->vm, vcpu, "Cannot inject vector %d due to " "VM-entry intr info %#x", vector, info); goto cantinject; } /* Inject the interrupt */ info = VMCS_INTR_T_HWINTR | VMCS_INTR_VALID; info |= vector; vmcs_write(VMCS_ENTRY_INTR_INFO, info); /* Update the Local APIC ISR */ vlapic_intr_accepted(vlapic, vector); VCPU_CTR1(vmx->vm, vcpu, "Injecting hwintr at vector %d", vector); return; cantinject: /* * Set the Interrupt Window Exiting execution control so we can inject * the interrupt as soon as blocking condition goes away. */ vmx_set_int_window_exiting(vmx, vcpu); } /* * If the Virtual NMIs execution control is '1' then the logical processor * tracks virtual-NMI blocking in the Guest Interruptibility-state field of * the VMCS. An IRET instruction in VMX non-root operation will remove any * virtual-NMI blocking. * * This unblocking occurs even if the IRET causes a fault. In this case the * hypervisor needs to restore virtual-NMI blocking before resuming the guest. */ static void vmx_restore_nmi_blocking(struct vmx *vmx, int vcpuid) { uint32_t gi; VCPU_CTR0(vmx->vm, vcpuid, "Restore Virtual-NMI blocking"); gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); gi |= VMCS_INTERRUPTIBILITY_NMI_BLOCKING; vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); } static void vmx_clear_nmi_blocking(struct vmx *vmx, int vcpuid) { uint32_t gi; VCPU_CTR0(vmx->vm, vcpuid, "Clear Virtual-NMI blocking"); gi = vmcs_read(VMCS_GUEST_INTERRUPTIBILITY); gi &= ~VMCS_INTERRUPTIBILITY_NMI_BLOCKING; vmcs_write(VMCS_GUEST_INTERRUPTIBILITY, gi); } static int vmx_emulate_cr_access(struct vmx *vmx, int vcpu, uint64_t exitqual) { int cr, vmcs_guest_cr, vmcs_shadow_cr; uint64_t crval, regval, ones_mask, zeros_mask; const struct vmxctx *vmxctx; /* We only handle mov to %cr0 or %cr4 at this time */ if ((exitqual & 0xf0) != 0x00) return (UNHANDLED); cr = exitqual & 0xf; if (cr != 0 && cr != 4) return (UNHANDLED); regval = 0; /* silence gcc */ vmxctx = &vmx->ctx[vcpu]; /* * We must use vmcs_write() directly here because vmcs_setreg() will * call vmclear(vmcs) as a side-effect which we certainly don't want. */ switch ((exitqual >> 8) & 0xf) { case 0: regval = vmxctx->guest_rax; break; case 1: regval = vmxctx->guest_rcx; break; case 2: regval = vmxctx->guest_rdx; break; case 3: regval = vmxctx->guest_rbx; break; case 4: regval = vmcs_read(VMCS_GUEST_RSP); break; case 5: regval = vmxctx->guest_rbp; break; case 6: regval = vmxctx->guest_rsi; break; case 7: regval = vmxctx->guest_rdi; break; case 8: regval = vmxctx->guest_r8; break; case 9: regval = vmxctx->guest_r9; break; case 10: regval = vmxctx->guest_r10; break; case 11: regval = vmxctx->guest_r11; break; case 12: regval = vmxctx->guest_r12; break; case 13: regval = vmxctx->guest_r13; break; case 14: regval = vmxctx->guest_r14; break; case 15: regval = vmxctx->guest_r15; break; } if (cr == 0) { ones_mask = cr0_ones_mask; zeros_mask = cr0_zeros_mask; vmcs_guest_cr = VMCS_GUEST_CR0; vmcs_shadow_cr = VMCS_CR0_SHADOW; } else { ones_mask = cr4_ones_mask; zeros_mask = cr4_zeros_mask; vmcs_guest_cr = VMCS_GUEST_CR4; vmcs_shadow_cr = VMCS_CR4_SHADOW; } vmcs_write(vmcs_shadow_cr, regval); crval = regval | ones_mask; crval &= ~zeros_mask; vmcs_write(vmcs_guest_cr, crval); if (cr == 0 && regval & CR0_PG) { uint64_t efer, entry_ctls; /* * If CR0.PG is 1 and EFER.LME is 1 then EFER.LMA and * the "IA-32e mode guest" bit in VM-entry control must be * equal. */ efer = vmcs_read(VMCS_GUEST_IA32_EFER); if (efer & EFER_LME) { efer |= EFER_LMA; vmcs_write(VMCS_GUEST_IA32_EFER, efer); entry_ctls = vmcs_read(VMCS_ENTRY_CTLS); entry_ctls |= VM_ENTRY_GUEST_LMA; vmcs_write(VMCS_ENTRY_CTLS, entry_ctls); } } return (HANDLED); } static enum vie_cpu_mode vmx_cpu_mode(void) { if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LMA) return (CPU_MODE_64BIT); else return (CPU_MODE_COMPATIBILITY); } static enum vie_paging_mode vmx_paging_mode(void) { if (!(vmcs_read(VMCS_GUEST_CR0) & CR0_PG)) return (PAGING_MODE_FLAT); if (!(vmcs_read(VMCS_GUEST_CR4) & CR4_PAE)) return (PAGING_MODE_32); if (vmcs_read(VMCS_GUEST_IA32_EFER) & EFER_LME) return (PAGING_MODE_64); else return (PAGING_MODE_PAE); } static int ept_fault_type(uint64_t ept_qual) { int fault_type; if (ept_qual & EPT_VIOLATION_DATA_WRITE) fault_type = VM_PROT_WRITE; else if (ept_qual & EPT_VIOLATION_INST_FETCH) fault_type = VM_PROT_EXECUTE; else fault_type= VM_PROT_READ; return (fault_type); } static boolean_t ept_emulation_fault(uint64_t ept_qual) { int read, write; /* EPT fault on an instruction fetch doesn't make sense here */ if (ept_qual & EPT_VIOLATION_INST_FETCH) return (FALSE); /* EPT fault must be a read fault or a write fault */ read = ept_qual & EPT_VIOLATION_DATA_READ ? 1 : 0; write = ept_qual & EPT_VIOLATION_DATA_WRITE ? 1 : 0; if ((read | write) == 0) return (FALSE); /* * The EPT violation must have been caused by accessing a * guest-physical address that is a translation of a guest-linear * address. */ if ((ept_qual & EPT_VIOLATION_GLA_VALID) == 0 || (ept_qual & EPT_VIOLATION_XLAT_VALID) == 0) { return (FALSE); } return (TRUE); } static int vmx_handle_apic_write(struct vlapic *vlapic, uint64_t qual) { int error, handled, offset; bool retu; if (!virtualize_apic_accesses()) return (UNHANDLED); handled = 1; offset = APIC_WRITE_OFFSET(qual); switch (offset) { case APIC_OFFSET_ID: vlapic_id_write_handler(vlapic); break; case APIC_OFFSET_LDR: vlapic_ldr_write_handler(vlapic); break; case APIC_OFFSET_DFR: vlapic_dfr_write_handler(vlapic); break; case APIC_OFFSET_SVR: vlapic_svr_write_handler(vlapic); break; case APIC_OFFSET_ESR: vlapic_esr_write_handler(vlapic); break; case APIC_OFFSET_ICR_LOW: retu = false; error = vlapic_icrlo_write_handler(vlapic, &retu); if (error != 0 || retu) handled = 0; break; case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_LVT ... APIC_OFFSET_ERROR_LVT: vlapic_lvt_write_handler(vlapic, offset); break; case APIC_OFFSET_TIMER_ICR: vlapic_icrtmr_write_handler(vlapic); break; case APIC_OFFSET_TIMER_DCR: vlapic_dcr_write_handler(vlapic); break; default: handled = 0; break; } return (handled); } static bool apic_access_fault(uint64_t gpa) { if (virtualize_apic_accesses() && (gpa >= DEFAULT_APIC_BASE && gpa < DEFAULT_APIC_BASE + PAGE_SIZE)) return (true); else return (false); } static int vmx_handle_apic_access(struct vmx *vmx, int vcpuid, struct vm_exit *vmexit) { uint64_t qual; int access_type, offset, allowed; if (!virtualize_apic_accesses()) return (UNHANDLED); qual = vmexit->u.vmx.exit_qualification; access_type = APIC_ACCESS_TYPE(qual); offset = APIC_ACCESS_OFFSET(qual); allowed = 0; if (access_type == 0) { /* * Read data access to the following registers is expected. */ switch (offset) { case APIC_OFFSET_APR: case APIC_OFFSET_PPR: case APIC_OFFSET_RRR: case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_CCR: allowed = 1; break; default: break; } } else if (access_type == 1) { /* * Write data access to the following registers is expected. */ switch (offset) { case APIC_OFFSET_VER: case APIC_OFFSET_APR: case APIC_OFFSET_PPR: case APIC_OFFSET_RRR: case APIC_OFFSET_ISR0 ... APIC_OFFSET_ISR7: case APIC_OFFSET_TMR0 ... APIC_OFFSET_TMR7: case APIC_OFFSET_IRR0 ... APIC_OFFSET_IRR7: case APIC_OFFSET_CMCI_LVT: case APIC_OFFSET_TIMER_CCR: allowed = 1; break; default: break; } } if (allowed) { vmexit->exitcode = VM_EXITCODE_INST_EMUL; vmexit->u.inst_emul.gpa = DEFAULT_APIC_BASE + offset; vmexit->u.inst_emul.gla = VIE_INVALID_GLA; vmexit->u.inst_emul.cr3 = vmcs_guest_cr3(); vmexit->u.inst_emul.cpu_mode = vmx_cpu_mode(); vmexit->u.inst_emul.paging_mode = vmx_paging_mode(); } /* * Regardless of whether the APIC-access is allowed this handler * always returns UNHANDLED: * - if the access is allowed then it is handled by emulating the * instruction that caused the VM-exit (outside the critical section) * - if the access is not allowed then it will be converted to an * exitcode of VM_EXITCODE_VMX and will be dealt with in userland. */ return (UNHANDLED); } static int vmx_exit_process(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) { int error, handled; struct vmxctx *vmxctx; struct vlapic *vlapic; uint32_t eax, ecx, edx, idtvec_info, idtvec_err, intr_info, reason; uint64_t qual, gpa; bool retu; CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_VIRTUAL_NMI) != 0); CTASSERT((PINBASED_CTLS_ONE_SETTING & PINBASED_NMI_EXITING) != 0); handled = 0; vmxctx = &vmx->ctx[vcpu]; qual = vmexit->u.vmx.exit_qualification; reason = vmexit->u.vmx.exit_reason; vmexit->exitcode = VM_EXITCODE_BOGUS; vmm_stat_incr(vmx->vm, vcpu, VMEXIT_COUNT, 1); /* * VM exits that could be triggered during event injection on the * previous VM entry need to be handled specially by re-injecting * the event. * * See "Information for VM Exits During Event Delivery" in Intel SDM * for details. */ switch (reason) { case EXIT_REASON_EPT_FAULT: case EXIT_REASON_EPT_MISCONFIG: case EXIT_REASON_APIC_ACCESS: case EXIT_REASON_TASK_SWITCH: case EXIT_REASON_EXCEPTION: idtvec_info = vmcs_idt_vectoring_info(); if (idtvec_info & VMCS_IDT_VEC_VALID) { idtvec_info &= ~(1 << 12); /* clear undefined bit */ vmcs_write(VMCS_ENTRY_INTR_INFO, idtvec_info); if (idtvec_info & VMCS_IDT_VEC_ERRCODE_VALID) { idtvec_err = vmcs_idt_vectoring_err(); vmcs_write(VMCS_ENTRY_EXCEPTION_ERROR, idtvec_err); } /* * If 'virtual NMIs' are being used and the VM-exit * happened while injecting an NMI during the previous * VM-entry, then clear "blocking by NMI" in the Guest * Interruptibility-state. */ if ((idtvec_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { vmx_clear_nmi_blocking(vmx, vcpu); } vmcs_write(VMCS_ENTRY_INST_LENGTH, vmexit->inst_length); } default: idtvec_info = 0; break; } switch (reason) { case EXIT_REASON_CR_ACCESS: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CR_ACCESS, 1); handled = vmx_emulate_cr_access(vmx, vcpu, qual); break; case EXIT_REASON_RDMSR: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RDMSR, 1); retu = false; ecx = vmxctx->guest_rcx; error = emulate_rdmsr(vmx->vm, vcpu, ecx, &retu); if (error) { vmexit->exitcode = VM_EXITCODE_RDMSR; vmexit->u.msr.code = ecx; } else if (!retu) { handled = 1; } else { /* Return to userspace with a valid exitcode */ KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, ("emulate_wrmsr retu with bogus exitcode")); } break; case EXIT_REASON_WRMSR: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_WRMSR, 1); retu = false; eax = vmxctx->guest_rax; ecx = vmxctx->guest_rcx; edx = vmxctx->guest_rdx; error = emulate_wrmsr(vmx->vm, vcpu, ecx, (uint64_t)edx << 32 | eax, &retu); if (error) { vmexit->exitcode = VM_EXITCODE_WRMSR; vmexit->u.msr.code = ecx; vmexit->u.msr.wval = (uint64_t)edx << 32 | eax; } else if (!retu) { handled = 1; } else { /* Return to userspace with a valid exitcode */ KASSERT(vmexit->exitcode != VM_EXITCODE_BOGUS, ("emulate_wrmsr retu with bogus exitcode")); } break; case EXIT_REASON_HLT: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_HLT, 1); vmexit->exitcode = VM_EXITCODE_HLT; vmexit->u.hlt.rflags = vmcs_read(VMCS_GUEST_RFLAGS); break; case EXIT_REASON_MTF: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_MTRAP, 1); vmexit->exitcode = VM_EXITCODE_MTRAP; break; case EXIT_REASON_PAUSE: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_PAUSE, 1); vmexit->exitcode = VM_EXITCODE_PAUSE; break; case EXIT_REASON_INTR_WINDOW: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INTR_WINDOW, 1); vmx_clear_int_window_exiting(vmx, vcpu); return (1); case EXIT_REASON_EXT_INTR: /* * External interrupts serve only to cause VM exits and allow * the host interrupt handler to run. * * If this external interrupt triggers a virtual interrupt * to a VM, then that state will be recorded by the * host interrupt handler in the VM's softc. We will inject * this virtual interrupt during the subsequent VM enter. */ intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); KASSERT((intr_info & VMCS_INTR_VALID) != 0 && (intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_HWINTR, ("VM exit interruption info invalid: %#x", intr_info)); vmx_trigger_hostintr(intr_info & 0xff); /* * This is special. We want to treat this as an 'handled' * VM-exit but not increment the instruction pointer. */ vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXTINT, 1); return (1); case EXIT_REASON_NMI_WINDOW: /* Exit to allow the pending virtual NMI to be injected */ if (vm_nmi_pending(vmx->vm, vcpu)) vmx_inject_nmi(vmx, vcpu); vmx_clear_nmi_window_exiting(vmx, vcpu); vmm_stat_incr(vmx->vm, vcpu, VMEXIT_NMI_WINDOW, 1); return (1); case EXIT_REASON_INOUT: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_INOUT, 1); vmexit->exitcode = VM_EXITCODE_INOUT; vmexit->u.inout.bytes = (qual & 0x7) + 1; vmexit->u.inout.in = (qual & 0x8) ? 1 : 0; vmexit->u.inout.string = (qual & 0x10) ? 1 : 0; vmexit->u.inout.rep = (qual & 0x20) ? 1 : 0; vmexit->u.inout.port = (uint16_t)(qual >> 16); vmexit->u.inout.eax = (uint32_t)(vmxctx->guest_rax); break; case EXIT_REASON_CPUID: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_CPUID, 1); handled = vmx_handle_cpuid(vmx->vm, vcpu, vmxctx); break; case EXIT_REASON_EXCEPTION: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EXCEPTION, 1); intr_info = vmcs_read(VMCS_EXIT_INTR_INFO); KASSERT((intr_info & VMCS_INTR_VALID) != 0, ("VM exit interruption info invalid: %#x", intr_info)); /* * If Virtual NMIs control is 1 and the VM-exit is due to a * fault encountered during the execution of IRET then we must * restore the state of "virtual-NMI blocking" before resuming * the guest. * * See "Resuming Guest Software after Handling an Exception". */ if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && (intr_info & 0xff) != IDT_DF && (intr_info & EXIT_QUAL_NMIUDTI) != 0) vmx_restore_nmi_blocking(vmx, vcpu); /* * If the NMI-exiting VM execution control is set to '1' * then an NMI in non-root operation causes a VM-exit. * NMI blocking is in effect for this logical processor so * it is sufficient to simply vector to the NMI handler via * a software interrupt. */ if ((intr_info & VMCS_INTR_T_MASK) == VMCS_INTR_T_NMI) { KASSERT((intr_info & 0xff) == IDT_NMI, ("VM exit due " "to NMI has invalid vector: %#x", intr_info)); VCPU_CTR0(vmx->vm, vcpu, "Vectoring to NMI handler"); __asm __volatile("int $2"); return (1); } break; case EXIT_REASON_EPT_FAULT: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_EPT_FAULT, 1); /* * If 'gpa' lies within the address space allocated to * memory then this must be a nested page fault otherwise * this must be an instruction that accesses MMIO space. */ gpa = vmcs_gpa(); if (vm_mem_allocated(vmx->vm, gpa) || apic_access_fault(gpa)) { vmexit->exitcode = VM_EXITCODE_PAGING; vmexit->u.paging.gpa = gpa; vmexit->u.paging.fault_type = ept_fault_type(qual); } else if (ept_emulation_fault(qual)) { vmexit->exitcode = VM_EXITCODE_INST_EMUL; vmexit->u.inst_emul.gpa = gpa; vmexit->u.inst_emul.gla = vmcs_gla(); vmexit->u.inst_emul.cr3 = vmcs_guest_cr3(); vmexit->u.inst_emul.cpu_mode = vmx_cpu_mode(); vmexit->u.inst_emul.paging_mode = vmx_paging_mode(); } /* * If Virtual NMIs control is 1 and the VM-exit is due to an * EPT fault during the execution of IRET then we must restore * the state of "virtual-NMI blocking" before resuming. * * See description of "NMI unblocking due to IRET" in * "Exit Qualification for EPT Violations". */ if ((idtvec_info & VMCS_IDT_VEC_VALID) == 0 && (qual & EXIT_QUAL_NMIUDTI) != 0) vmx_restore_nmi_blocking(vmx, vcpu); break; case EXIT_REASON_VIRTUALIZED_EOI: vmexit->exitcode = VM_EXITCODE_IOAPIC_EOI; vmexit->u.ioapic_eoi.vector = qual & 0xFF; vmexit->inst_length = 0; /* trap-like */ break; case EXIT_REASON_APIC_ACCESS: handled = vmx_handle_apic_access(vmx, vcpu, vmexit); break; case EXIT_REASON_APIC_WRITE: /* * APIC-write VM exit is trap-like so the %rip is already * pointing to the next instruction. */ vmexit->inst_length = 0; vlapic = vm_lapic(vmx->vm, vcpu); handled = vmx_handle_apic_write(vlapic, qual); break; default: vmm_stat_incr(vmx->vm, vcpu, VMEXIT_UNKNOWN, 1); break; } if (handled) { /* * It is possible that control is returned to userland * even though we were able to handle the VM exit in the * kernel. * * In such a case we want to make sure that the userland * restarts guest execution at the instruction *after* * the one we just processed. Therefore we update the * guest rip in the VMCS and in 'vmexit'. */ vmexit->rip += vmexit->inst_length; vmexit->inst_length = 0; vmcs_write(VMCS_GUEST_RIP, vmexit->rip); } else { if (vmexit->exitcode == VM_EXITCODE_BOGUS) { /* * If this VM exit was not claimed by anybody then * treat it as a generic VMX exit. */ vmexit->exitcode = VM_EXITCODE_VMX; vmexit->u.vmx.status = VM_SUCCESS; vmexit->u.vmx.inst_type = 0; vmexit->u.vmx.inst_error = 0; } else { /* * The exitcode and collateral have been populated. * The VM exit will be processed further in userland. */ } } return (handled); } static __inline int vmx_exit_astpending(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) { vmexit->rip = vmcs_guest_rip(); vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_BOGUS; vmx_astpending_trace(vmx, vcpu, vmexit->rip); vmm_stat_incr(vmx->vm, vcpu, VMEXIT_ASTPENDING, 1); return (HANDLED); } static __inline int vmx_exit_rendezvous(struct vmx *vmx, int vcpu, struct vm_exit *vmexit) { vmexit->rip = vmcs_guest_rip(); vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_RENDEZVOUS; vmm_stat_incr(vmx->vm, vcpu, VMEXIT_RENDEZVOUS, 1); return (UNHANDLED); } static __inline int vmx_exit_inst_error(struct vmxctx *vmxctx, int rc, struct vm_exit *vmexit) { KASSERT(vmxctx->inst_fail_status != VM_SUCCESS, ("vmx_exit_inst_error: invalid inst_fail_status %d", vmxctx->inst_fail_status)); vmexit->inst_length = 0; vmexit->exitcode = VM_EXITCODE_VMX; vmexit->u.vmx.status = vmxctx->inst_fail_status; vmexit->u.vmx.inst_error = vmcs_instruction_error(); vmexit->u.vmx.exit_reason = ~0; vmexit->u.vmx.exit_qualification = ~0; switch (rc) { case VMX_VMRESUME_ERROR: case VMX_VMLAUNCH_ERROR: case VMX_INVEPT_ERROR: vmexit->u.vmx.inst_type = rc; break; default: panic("vm_exit_inst_error: vmx_enter_guest returned %d", rc); } return (UNHANDLED); } static int vmx_run(void *arg, int vcpu, register_t startrip, pmap_t pmap, void *rendezvous_cookie) { int rc, handled, launched; struct vmx *vmx; struct vm *vm; struct vmxctx *vmxctx; struct vmcs *vmcs; struct vm_exit *vmexit; struct vlapic *vlapic; uint64_t rip; uint32_t exit_reason; vmx = arg; vm = vmx->vm; vmcs = &vmx->vmcs[vcpu]; vmxctx = &vmx->ctx[vcpu]; vlapic = vm_lapic(vm, vcpu); vmexit = vm_exitinfo(vm, vcpu); launched = 0; KASSERT(vmxctx->pmap == pmap, ("pmap %p different than ctx pmap %p", pmap, vmxctx->pmap)); VMPTRLD(vmcs); /* * XXX * We do this every time because we may setup the virtual machine * from a different process than the one that actually runs it. * * If the life of a virtual machine was spent entirely in the context * of a single process we could do this once in vmx_vminit(). */ vmcs_write(VMCS_HOST_CR3, rcr3()); vmcs_write(VMCS_GUEST_RIP, startrip); vmx_set_pcpu_defaults(vmx, vcpu, pmap); do { /* * Interrupts are disabled from this point on until the * guest starts executing. This is done for the following * reasons: * * If an AST is asserted on this thread after the check below, * then the IPI_AST notification will not be lost, because it * will cause a VM exit due to external interrupt as soon as * the guest state is loaded. * * A posted interrupt after 'vmx_inject_interrupts()' will * not be "lost" because it will be held pending in the host * APIC because interrupts are disabled. The pending interrupt * will be recognized as soon as the guest state is loaded. * * The same reasoning applies to the IPI generated by * pmap_invalidate_ept(). */ disable_intr(); if (curthread->td_flags & (TDF_ASTPENDING | TDF_NEEDRESCHED)) { enable_intr(); handled = vmx_exit_astpending(vmx, vcpu, vmexit); break; } if (vcpu_rendezvous_pending(rendezvous_cookie)) { enable_intr(); handled = vmx_exit_rendezvous(vmx, vcpu, vmexit); break; } vmx_inject_interrupts(vmx, vcpu, vlapic); vmx_run_trace(vmx, vcpu); rc = vmx_enter_guest(vmxctx, vmx, launched); enable_intr(); /* Collect some information for VM exit processing */ vmexit->rip = rip = vmcs_guest_rip(); vmexit->inst_length = vmexit_instruction_length(); vmexit->u.vmx.exit_reason = exit_reason = vmcs_exit_reason(); vmexit->u.vmx.exit_qualification = vmcs_exit_qualification(); if (rc == VMX_GUEST_VMEXIT) { launched = 1; handled = vmx_exit_process(vmx, vcpu, vmexit); } else { handled = vmx_exit_inst_error(vmxctx, rc, vmexit); } vmx_exit_trace(vmx, vcpu, rip, exit_reason, handled); } while (handled); /* * If a VM exit has been handled then the exitcode must be BOGUS * If a VM exit is not handled then the exitcode must not be BOGUS */ if ((handled && vmexit->exitcode != VM_EXITCODE_BOGUS) || (!handled && vmexit->exitcode == VM_EXITCODE_BOGUS)) { panic("Mismatch between handled (%d) and exitcode (%d)", handled, vmexit->exitcode); } if (!handled) vmm_stat_incr(vm, vcpu, VMEXIT_USERSPACE, 1); VCPU_CTR1(vm, vcpu, "returning from vmx_run: exitcode %d", vmexit->exitcode); VMCLEAR(vmcs); return (0); } static void vmx_vmcleanup(void *arg) { int i, error; struct vmx *vmx = arg; if (virtualize_apic_accesses()) vm_unmap_mmio(vmx->vm, DEFAULT_APIC_BASE, PAGE_SIZE); for (i = 0; i < VM_MAXCPU; i++) vpid_free(vmx->state[i].vpid); /* * XXXSMP we also need to clear the VMCS active on the other vcpus. */ error = vmclear(&vmx->vmcs[0]); if (error != 0) panic("vmx_vmcleanup: vmclear error %d on vcpu 0", error); free(vmx, M_VMX); return; } static register_t * vmxctx_regptr(struct vmxctx *vmxctx, int reg) { switch (reg) { case VM_REG_GUEST_RAX: return (&vmxctx->guest_rax); case VM_REG_GUEST_RBX: return (&vmxctx->guest_rbx); case VM_REG_GUEST_RCX: return (&vmxctx->guest_rcx); case VM_REG_GUEST_RDX: return (&vmxctx->guest_rdx); case VM_REG_GUEST_RSI: return (&vmxctx->guest_rsi); case VM_REG_GUEST_RDI: return (&vmxctx->guest_rdi); case VM_REG_GUEST_RBP: return (&vmxctx->guest_rbp); case VM_REG_GUEST_R8: return (&vmxctx->guest_r8); case VM_REG_GUEST_R9: return (&vmxctx->guest_r9); case VM_REG_GUEST_R10: return (&vmxctx->guest_r10); case VM_REG_GUEST_R11: return (&vmxctx->guest_r11); case VM_REG_GUEST_R12: return (&vmxctx->guest_r12); case VM_REG_GUEST_R13: return (&vmxctx->guest_r13); case VM_REG_GUEST_R14: return (&vmxctx->guest_r14); case VM_REG_GUEST_R15: return (&vmxctx->guest_r15); default: break; } return (NULL); } static int vmxctx_getreg(struct vmxctx *vmxctx, int reg, uint64_t *retval) { register_t *regp; if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { *retval = *regp; return (0); } else return (EINVAL); } static int vmxctx_setreg(struct vmxctx *vmxctx, int reg, uint64_t val) { register_t *regp; if ((regp = vmxctx_regptr(vmxctx, reg)) != NULL) { *regp = val; return (0); } else return (EINVAL); } static int vmx_shadow_reg(int reg) { int shreg; shreg = -1; switch (reg) { case VM_REG_GUEST_CR0: shreg = VMCS_CR0_SHADOW; break; case VM_REG_GUEST_CR4: shreg = VMCS_CR4_SHADOW; break; default: break; } return (shreg); } static int vmx_getreg(void *arg, int vcpu, int reg, uint64_t *retval) { int running, hostcpu; struct vmx *vmx = arg; running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); if (running && hostcpu != curcpu) panic("vmx_getreg: %s%d is running", vm_name(vmx->vm), vcpu); if (vmxctx_getreg(&vmx->ctx[vcpu], reg, retval) == 0) return (0); return (vmcs_getreg(&vmx->vmcs[vcpu], running, reg, retval)); } static int vmx_setreg(void *arg, int vcpu, int reg, uint64_t val) { int error, hostcpu, running, shadow; uint64_t ctls; struct vmx *vmx = arg; running = vcpu_is_running(vmx->vm, vcpu, &hostcpu); if (running && hostcpu != curcpu) panic("vmx_setreg: %s%d is running", vm_name(vmx->vm), vcpu); if (vmxctx_setreg(&vmx->ctx[vcpu], reg, val) == 0) return (0); error = vmcs_setreg(&vmx->vmcs[vcpu], running, reg, val); if (error == 0) { /* * If the "load EFER" VM-entry control is 1 then the * value of EFER.LMA must be identical to "IA-32e mode guest" * bit in the VM-entry control. */ if ((entry_ctls & VM_ENTRY_LOAD_EFER) != 0 && (reg == VM_REG_GUEST_EFER)) { vmcs_getreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(VMCS_ENTRY_CTLS), &ctls); if (val & EFER_LMA) ctls |= VM_ENTRY_GUEST_LMA; else ctls &= ~VM_ENTRY_GUEST_LMA; vmcs_setreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(VMCS_ENTRY_CTLS), ctls); } shadow = vmx_shadow_reg(reg); if (shadow > 0) { /* * Store the unmodified value in the shadow */ error = vmcs_setreg(&vmx->vmcs[vcpu], running, VMCS_IDENT(shadow), val); } } return (error); } static int vmx_getdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) { struct vmx *vmx = arg; return (vmcs_getdesc(&vmx->vmcs[vcpu], reg, desc)); } static int vmx_setdesc(void *arg, int vcpu, int reg, struct seg_desc *desc) { struct vmx *vmx = arg; return (vmcs_setdesc(&vmx->vmcs[vcpu], reg, desc)); } static int vmx_inject(void *arg, int vcpu, int type, int vector, uint32_t code, int code_valid) { int error; uint64_t info; struct vmx *vmx = arg; struct vmcs *vmcs = &vmx->vmcs[vcpu]; static uint32_t type_map[VM_EVENT_MAX] = { 0x1, /* VM_EVENT_NONE */ 0x0, /* VM_HW_INTR */ 0x2, /* VM_NMI */ 0x3, /* VM_HW_EXCEPTION */ 0x4, /* VM_SW_INTR */ 0x5, /* VM_PRIV_SW_EXCEPTION */ 0x6, /* VM_SW_EXCEPTION */ }; /* * If there is already an exception pending to be delivered to the * vcpu then just return. */ error = vmcs_getreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), &info); if (error) return (error); if (info & VMCS_INTR_VALID) return (EAGAIN); info = vector | (type_map[type] << 8) | (code_valid ? 1 << 11 : 0); info |= VMCS_INTR_VALID; error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_INTR_INFO), info); if (error != 0) return (error); if (code_valid) { error = vmcs_setreg(vmcs, 0, VMCS_IDENT(VMCS_ENTRY_EXCEPTION_ERROR), code); } return (error); } static int vmx_getcap(void *arg, int vcpu, int type, int *retval) { struct vmx *vmx = arg; int vcap; int ret; ret = ENOENT; vcap = vmx->cap[vcpu].set; switch (type) { case VM_CAP_HALT_EXIT: if (cap_halt_exit) ret = 0; break; case VM_CAP_PAUSE_EXIT: if (cap_pause_exit) ret = 0; break; case VM_CAP_MTRAP_EXIT: if (cap_monitor_trap) ret = 0; break; case VM_CAP_UNRESTRICTED_GUEST: if (cap_unrestricted_guest) ret = 0; break; case VM_CAP_ENABLE_INVPCID: if (cap_invpcid) ret = 0; break; default: break; } if (ret == 0) *retval = (vcap & (1 << type)) ? 1 : 0; return (ret); } static int vmx_setcap(void *arg, int vcpu, int type, int val) { struct vmx *vmx = arg; struct vmcs *vmcs = &vmx->vmcs[vcpu]; uint32_t baseval; uint32_t *pptr; int error; int flag; int reg; int retval; retval = ENOENT; pptr = NULL; switch (type) { case VM_CAP_HALT_EXIT: if (cap_halt_exit) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls; baseval = *pptr; flag = PROCBASED_HLT_EXITING; reg = VMCS_PRI_PROC_BASED_CTLS; } break; case VM_CAP_MTRAP_EXIT: if (cap_monitor_trap) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls; baseval = *pptr; flag = PROCBASED_MTF; reg = VMCS_PRI_PROC_BASED_CTLS; } break; case VM_CAP_PAUSE_EXIT: if (cap_pause_exit) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls; baseval = *pptr; flag = PROCBASED_PAUSE_EXITING; reg = VMCS_PRI_PROC_BASED_CTLS; } break; case VM_CAP_UNRESTRICTED_GUEST: if (cap_unrestricted_guest) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls2; baseval = *pptr; flag = PROCBASED2_UNRESTRICTED_GUEST; reg = VMCS_SEC_PROC_BASED_CTLS; } break; case VM_CAP_ENABLE_INVPCID: if (cap_invpcid) { retval = 0; pptr = &vmx->cap[vcpu].proc_ctls2; baseval = *pptr; flag = PROCBASED2_ENABLE_INVPCID; reg = VMCS_SEC_PROC_BASED_CTLS; } break; default: break; } if (retval == 0) { if (val) { baseval |= flag; } else { baseval &= ~flag; } VMPTRLD(vmcs); error = vmwrite(reg, baseval); VMCLEAR(vmcs); if (error) { retval = error; } else { /* * Update optional stored flags, and record * setting */ if (pptr != NULL) { *pptr = baseval; } if (val) { vmx->cap[vcpu].set |= (1 << type); } else { vmx->cap[vcpu].set &= ~(1 << type); } } } return (retval); } struct vlapic_vtx { struct vlapic vlapic; struct pir_desc *pir_desc; struct vmx *vmx; }; #define VMX_CTR_PIR(vm, vcpuid, pir_desc, notify, vector, level, msg) \ do { \ VCPU_CTR2(vm, vcpuid, msg " assert %s-triggered vector %d", \ level ? "level" : "edge", vector); \ VCPU_CTR1(vm, vcpuid, msg " pir0 0x%016lx", pir_desc->pir[0]); \ VCPU_CTR1(vm, vcpuid, msg " pir1 0x%016lx", pir_desc->pir[1]); \ VCPU_CTR1(vm, vcpuid, msg " pir2 0x%016lx", pir_desc->pir[2]); \ VCPU_CTR1(vm, vcpuid, msg " pir3 0x%016lx", pir_desc->pir[3]); \ VCPU_CTR1(vm, vcpuid, msg " notify: %s", notify ? "yes" : "no");\ } while (0) /* * vlapic->ops handlers that utilize the APICv hardware assist described in * Chapter 29 of the Intel SDM. */ static int vmx_set_intr_ready(struct vlapic *vlapic, int vector, bool level) { struct vlapic_vtx *vlapic_vtx; struct pir_desc *pir_desc; uint64_t mask; int idx, notify; vlapic_vtx = (struct vlapic_vtx *)vlapic; pir_desc = vlapic_vtx->pir_desc; /* * Keep track of interrupt requests in the PIR descriptor. This is * because the virtual APIC page pointed to by the VMCS cannot be * modified if the vcpu is running. */ idx = vector / 64; mask = 1UL << (vector % 64); atomic_set_long(&pir_desc->pir[idx], mask); notify = atomic_cmpset_long(&pir_desc->pending, 0, 1); VMX_CTR_PIR(vlapic->vm, vlapic->vcpuid, pir_desc, notify, vector, level, "vmx_set_intr_ready"); return (notify); } static int vmx_pending_intr(struct vlapic *vlapic, int *vecptr) { struct vlapic_vtx *vlapic_vtx; struct pir_desc *pir_desc; struct LAPIC *lapic; uint64_t pending, pirval; uint32_t ppr, vpr; int i; /* * This function is only expected to be called from the 'HLT' exit * handler which does not care about the vector that is pending. */ KASSERT(vecptr == NULL, ("vmx_pending_intr: vecptr must be NULL")); vlapic_vtx = (struct vlapic_vtx *)vlapic; pir_desc = vlapic_vtx->pir_desc; pending = atomic_load_acq_long(&pir_desc->pending); if (!pending) return (0); /* common case */ /* * If there is an interrupt pending then it will be recognized only * if its priority is greater than the processor priority. * * Special case: if the processor priority is zero then any pending * interrupt will be recognized. */ lapic = vlapic->apic_page; ppr = lapic->ppr & 0xf0; if (ppr == 0) return (1); VCPU_CTR1(vlapic->vm, vlapic->vcpuid, "HLT with non-zero PPR %d", lapic->ppr); for (i = 3; i >= 0; i--) { pirval = pir_desc->pir[i]; if (pirval != 0) { vpr = (i * 64 + flsl(pirval) - 1) & 0xf0; return (vpr > ppr); } } return (0); } static void vmx_intr_accepted(struct vlapic *vlapic, int vector) { panic("vmx_intr_accepted: not expected to be called"); } static void vmx_set_tmr(struct vlapic *vlapic, int vector, bool level) { struct vlapic_vtx *vlapic_vtx; struct vmx *vmx; struct vmcs *vmcs; uint64_t mask, val; KASSERT(vector >= 0 && vector <= 255, ("invalid vector %d", vector)); KASSERT(!vcpu_is_running(vlapic->vm, vlapic->vcpuid, NULL), ("vmx_set_tmr: vcpu cannot be running")); vlapic_vtx = (struct vlapic_vtx *)vlapic; vmx = vlapic_vtx->vmx; vmcs = &vmx->vmcs[vlapic->vcpuid]; mask = 1UL << (vector % 64); VMPTRLD(vmcs); val = vmcs_read(VMCS_EOI_EXIT(vector)); if (level) val |= mask; else val &= ~mask; vmcs_write(VMCS_EOI_EXIT(vector), val); VMCLEAR(vmcs); } static void vmx_post_intr(struct vlapic *vlapic, int hostcpu) { ipi_cpu(hostcpu, pirvec); } /* * Transfer the pending interrupts in the PIR descriptor to the IRR * in the virtual APIC page. */ static void vmx_inject_pir(struct vlapic *vlapic) { struct vlapic_vtx *vlapic_vtx; struct pir_desc *pir_desc; struct LAPIC *lapic; uint64_t val, pirval; int rvi, pirbase; uint16_t intr_status_old, intr_status_new; vlapic_vtx = (struct vlapic_vtx *)vlapic; pir_desc = vlapic_vtx->pir_desc; if (atomic_cmpset_long(&pir_desc->pending, 1, 0) == 0) { VCPU_CTR0(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " "no posted interrupt pending"); return; } pirval = 0; lapic = vlapic->apic_page; val = atomic_readandclear_long(&pir_desc->pir[0]); if (val != 0) { lapic->irr0 |= val; lapic->irr1 |= val >> 32; pirbase = 0; pirval = val; } val = atomic_readandclear_long(&pir_desc->pir[1]); if (val != 0) { lapic->irr2 |= val; lapic->irr3 |= val >> 32; pirbase = 64; pirval = val; } val = atomic_readandclear_long(&pir_desc->pir[2]); if (val != 0) { lapic->irr4 |= val; lapic->irr5 |= val >> 32; pirbase = 128; pirval = val; } val = atomic_readandclear_long(&pir_desc->pir[3]); if (val != 0) { lapic->irr6 |= val; lapic->irr7 |= val >> 32; pirbase = 192; pirval = val; } VLAPIC_CTR_IRR(vlapic, "vmx_inject_pir"); /* * Update RVI so the processor can evaluate pending virtual * interrupts on VM-entry. */ if (pirval != 0) { rvi = pirbase + flsl(pirval) - 1; intr_status_old = vmcs_read(VMCS_GUEST_INTR_STATUS); intr_status_new = (intr_status_old & 0xFF00) | rvi; if (intr_status_new > intr_status_old) { vmcs_write(VMCS_GUEST_INTR_STATUS, intr_status_new); VCPU_CTR2(vlapic->vm, vlapic->vcpuid, "vmx_inject_pir: " "guest_intr_status changed from 0x%04x to 0x%04x", intr_status_old, intr_status_new); } } } static struct vlapic * vmx_vlapic_init(void *arg, int vcpuid) { struct vmx *vmx; struct vlapic *vlapic; struct vlapic_vtx *vlapic_vtx; vmx = arg; vlapic = malloc(sizeof(struct vlapic_vtx), M_VLAPIC, M_WAITOK | M_ZERO); vlapic->vm = vmx->vm; vlapic->vcpuid = vcpuid; vlapic->apic_page = (struct LAPIC *)&vmx->apic_page[vcpuid]; vlapic_vtx = (struct vlapic_vtx *)vlapic; vlapic_vtx->pir_desc = &vmx->pir_desc[vcpuid]; vlapic_vtx->vmx = vmx; if (virtual_interrupt_delivery) { vlapic->ops.set_intr_ready = vmx_set_intr_ready; vlapic->ops.pending_intr = vmx_pending_intr; vlapic->ops.intr_accepted = vmx_intr_accepted; vlapic->ops.set_tmr = vmx_set_tmr; } if (posted_interrupts) vlapic->ops.post_intr = vmx_post_intr; vlapic_init(vlapic); return (vlapic); } static void vmx_vlapic_cleanup(void *arg, struct vlapic *vlapic) { vlapic_cleanup(vlapic); free(vlapic, M_VLAPIC); } struct vmm_ops vmm_ops_intel = { vmx_init, vmx_cleanup, vmx_restore, vmx_vminit, vmx_run, vmx_vmcleanup, vmx_getreg, vmx_setreg, vmx_getdesc, vmx_setdesc, vmx_inject, vmx_getcap, vmx_setcap, ept_vmspace_alloc, ept_vmspace_free, vmx_vlapic_init, vmx_vlapic_cleanup, };