

BHyVe BSD Hypervisor

Neel Natu Peter Grehan

Introduction

- BHyVe stands for "BSD Hypervisor"
 - Pronounced like beehive
- Type 2 Hypervisor (aka hosted hypervisor)
 - FreeBSD is the Host OS
- Availability
 - NetApp is releasing the source code under the BSD license!
 - Snapshot against 8.1 in svn repository: /projects/bhyve_ref
- Work In Progress

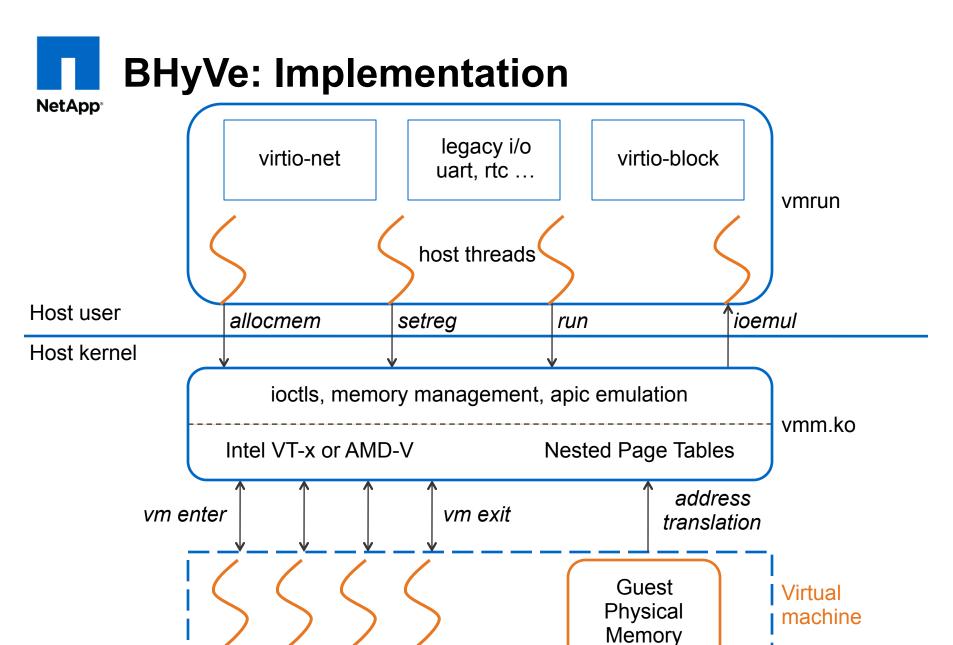
Status

Guest

- FreeBSD/amd64 releases 7.2 and 8.1
- SMP up to 8 virtual cpus
- I/O virtio or pci passthru
- Minor kernel patches required

Host

- FreeBSD/amd64 release 8.1
- Unmodified GENERIC kernel


Hardware

- Requires hardware virtualization assist with Nested Page Tables
- Intel VT-x is supported
- AMD-V support in progress

BHyVe: Logical View

Virtual Machine Guest Guest App App **Host Application Host Application** Guest Operating System FreeBSD Hypervisor Module **Host Operating System**

vcpus

CPU Virtualization

- Requires Intel VT-x or AMD-V virtualization assists
- Trap into the hypervisor for a variety of reasons
 - Instructions like RDMSR, OUTB, CPUID, HLT, PAUSE
 - Hardware interrupts
- Local APIC is emulated
 - x2APIC mode
 - Accessed by the guest using RDMSR/WRMSR
 - Startup IPI is handled in user-space
 - Creates a thread context for the virtual cpu
 - IPIs between virtual cpus map to a fast host IPI

Memory Virtualization

- Requires hardware support for Nested Page Tables
 - Guest Physical to Host Physical translation
- Memory is allocated and pinned to virtual machines
 - No sharing between virtual machines
 - No allocate-on-demand
 - Hard allocation makes pci passthru a lot easier
- Memory allocated to virtual machines is hidden from the host
 - Kernel config option MAXMEM
 - hw.physmem tunable

PCI I/O Virtualization

- PCI bus topology and configuration emulated in user-space
 - Intercept access to PCI config address and data registers
- Two types of PCI devices on the virtual PCI bus
 - virtio
 - passthru
- Interrupt delivery through MSI only
 - Single as well as multi-vector MSI is supported
 - Legacy is hard because it requires IOAPIC emulation
 - MSI-X is hard because it requires instruction emulation

- Paravirtualized device specification
 - http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
- FreeBSD virtio block and net drivers from deboomerang@gmail.com
 - Not publicly available under a BSD license
- Backend virtio-net and virtio-block devices in user-space
 - virtio-net uses /dev/tapN to send and receive ethernet frames
 - virtio-block reads/writes to a file on the host filesystem

PCI Passthru

- Guest has direct access to a PCI device
- Some configuration registers are still emulated
 - BAR registers
 - MSI capability
- DMA transfers will target guest physical addresses
 - IOMMU translates from guest physical to host physical addresses
- Stub driver in the host forwards interrupts from the device to the guest
- Virtual MSI capability for passthru devices that only support legacy interrupts
- 'blackhole' driver prevents the host from attaching to passthru devices

Guest Modifications

- Custom console and debug port
 - Done for expediency
 - Not necessary if we have a 16550 device model
- Local APIC access via x2APIC MSRs
- AP bringup changed to start execution directly in 64-bit mode
 - Required if real-mode guest execution is not supported

User-space API

- A virtual machine appears in the host filesystem as a device node
- ioctls used to control and configure the virtual machine
 - 20 in total
 - For e.g. setreg, pincpu, run, interrupt, getstats
- Can read(), write() and mmap() the virtual machine device node
 - Useful to inspect the virtual machine's memory
 - dd if=/dev/vmm/testvm of=memdump bs=1024 count=1024

Performance

Features

- Address space identifiers for virtual cpus
- Minimal overhead host IPIs
- Some guest state is lazily saved only on "slow" trap to user-space
 - Guest floating point registers
 - System call related MSRs
- "make buildworld"
 - 4 cores, 2GB memory, 1GbE NIC, 1 SATA disk
 - /usr/src is mounted over NFS
 - /usr/obj is mounted on a block device

Configuration	Build time in seconds
Bare Metal	1308
Partitioned	1336
Virtualized	1446



Future Opportunities

- Support Windows, Linux and *BSD guests
- Support AMD's hardware virtualization assist
- Guest suspend/resume and live migration
- BIOS emulation

Thank you

