
Neel Natu
Peter Grehan

BHyVe  
BSD Hypervisor

1

Introduction

BHyVe stands for “BSD Hypervisor”
– Pronounced like beehive

Type 2 Hypervisor (aka hosted hypervisor)
– FreeBSD is the Host OS

Availability
– NetApp is releasing the source code under the BSD license!
– Snapshot against 8.1 in svn repository: /projects/bhyve_ref

Work In Progress

2

Status

Guest
– FreeBSD/amd64 releases 7.2 and 8.1
– SMP - up to 8 virtual cpus
– I/O - virtio or pci passthru
– Minor kernel patches required

Host
– FreeBSD/amd64 release 8.1
– Unmodified GENERIC kernel

Hardware
– Requires hardware virtualization assist with Nested Page Tables
– Intel VT-x is supported
– AMD-V support in progress

3

BHyVe: Logical View

4

FreeBSD
Host Operating System

Hypervisor
Module

Host Application Host Application

Guest Operating System

Guest
App

Guest
App

Virtual Machine

BHyVe: Implementation

5

vcpus

vm enter vm exit

Guest
Physical
Memory

address
translation

allocmem setreg run ioemul

host threads

virtio-net virtio-blocklegacy i/o
uart, rtc …

ioctls, memory management, apic emulation

Intel VT-x or AMD-V Nested Page Tables

Host user

Host kernel

vmrun

vmm.ko

Virtual
machine

CPU Virtualization

Requires Intel VT-x or AMD-V virtualization assists

Trap into the hypervisor for a variety of reasons
– Instructions like RDMSR, OUTB, CPUID, HLT, PAUSE
– Hardware interrupts

Local APIC is emulated
– x2APIC mode
– Accessed by the guest using RDMSR/WRMSR
– Startup IPI is handled in user-space

Creates a thread context for the virtual cpu
– IPIs between virtual cpus map to a fast host IPI

6

Memory Virtualization

Requires hardware support for Nested Page Tables
– Guest Physical to Host Physical translation

Memory is allocated and pinned to virtual machines
– No sharing between virtual machines
– No allocate-on-demand
– Hard allocation makes pci passthru a lot easier

Memory allocated to virtual machines is hidden from the host
– Kernel config option MAXMEM
– hw.physmem tunable

7

PCI I/O Virtualization

PCI bus topology and configuration emulated in user-space
– Intercept access to PCI config address and data registers

Two types of PCI devices on the virtual PCI bus
– virtio
– passthru

Interrupt delivery through MSI only
– Single as well as multi-vector MSI is supported
– Legacy is hard because it requires IOAPIC emulation
– MSI-X is hard because it requires instruction emulation

8

virtio

Paravirtualized device specification
– http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

FreeBSD virtio block and net drivers from
deboomerang@gmail.com
– Not publicly available under a BSD license

Backend virtio-net and virtio-block devices in user-space
– virtio-net uses /dev/tapN to send and receive ethernet frames
– virtio-block reads/writes to a file on the host filesystem

9

http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf
mailto:deboomerang@gmail.com

PCI Passthru

Guest has direct access to a PCI device
Some configuration registers are still emulated
– BAR registers
– MSI capability
DMA transfers will target guest physical addresses
– IOMMU translates from guest physical to host physical addresses
Stub driver in the host forwards interrupts from the device to the
guest
Virtual MSI capability for passthru devices that only support
legacy interrupts
‘blackhole’ driver prevents the host from attaching to passthru
devices

10

Guest Modifications

Custom console and debug port
– Done for expediency
– Not necessary if we have a 16550 device model

Local APIC access via x2APIC MSRs

AP bringup changed to start execution directly in 64-bit mode

– Required if real-mode guest execution is not supported

11

User-space API

A virtual machine appears in the host filesystem as a device
node

ioctls used to control and configure the virtual machine
– 20 in total
– For e.g. setreg, pincpu, run, interrupt, getstats

Can read(), write() and mmap() the virtual machine device node
– Useful to inspect the virtual machine's memory
– dd if=/dev/vmm/testvm of=memdump bs=1024 count=1024

12

Performance

Features
– Address space identifiers for virtual cpus
– Minimal overhead host IPIs
– Some guest state is lazily saved only on “slow” trap to user-space

Guest floating point registers
System call related MSRs

“make buildworld”
– 4 cores, 2GB memory, 1GbE NIC, 1 SATA disk
– /usr/src is mounted over NFS
– /usr/obj is mounted on a block device

13

Configuration Build time in seconds
Bare Metal 1308
Partitioned 1336
Virtualized 1446

Future Opportunities

Support Windows, Linux and *BSD guests

Support AMD’s hardware virtualization assist

Guest suspend/resume and live migration

BIOS emulation

14

15

