
Neel Natu
Peter Grehan

BHyVe
BSD Hypervisor

1

Introduction

  BHyVe stands for “BSD Hypervisor”
–  Pronounced like beehive

  Type 2 Hypervisor (aka hosted hypervisor)
–  FreeBSD is the Host OS

  Availability
–  NetApp is releasing the source code under the BSD license!
–  Snapshot against 8.1 in svn repository: /projects/bhyve_ref

  Work In Progress

2

Status

  Guest
–  FreeBSD/amd64 releases 7.2 and 8.1
–  SMP - up to 8 virtual cpus
–  I/O - virtio or pci passthru
–  Minor kernel patches required

  Host
–  FreeBSD/amd64 release 8.1
–  Unmodified GENERIC kernel

  Hardware
–  Requires hardware virtualization assist with Nested Page Tables
–  Intel VT-x is supported
–  AMD-V support in progress

3

BHyVe: Logical View

4

FreeBSD
Host Operating System

Hypervisor
Module

Host Application Host Application

Guest Operating System

Guest
App

Guest
App

Virtual Machine

BHyVe: Implementation

5

vcpus

vm enter vm exit

Guest
Physical
Memory

address
translation

allocmem setreg run ioemul

host
threads

virtio-net virtio-block legacy i/o
uart, rtc …

ioctls, memory management, apic emulation

Intel VT-x or AMD-V Nested Page Tables

Host user

Host kernel

vmrun

vmm.ko

Virtual
machine

CPU Virtualization

  Requires Intel VT-x or AMD-V virtualization assists

  Trap into the hypervisor for a variety of reasons
–  Instructions like RDMSR, OUTB, CPUID, HLT, PAUSE
–  Hardware interrupts

  Local APIC is emulated
–  x2APIC mode
–  Accessed by the guest using RDMSR/WRMSR
–  Startup IPI is handled in user-space

  Creates a thread context for the virtual cpu

–  IPIs between virtual cpus map to a fast host IPI

6

Memory Virtualization

  Requires hardware support for Nested Page Tables
–  Guest Physical to Host Physical translation

  Memory is allocated and pinned to virtual machines
–  No sharing between virtual machines
–  No allocate-on-demand
–  Hard allocation makes pci passthru a lot easier

  Memory allocated to virtual machines is hidden from the host
–  Kernel config option MAXMEM
–  hw.physmem tunable

7

PCI I/O Virtualization

  PCI bus topology and configuration emulated in user-space
–  Intercept access to PCI config address and data registers

  Two types of PCI devices on the virtual PCI bus
–  virtio
–  passthru

  Interrupt delivery through MSI only
–  Single as well as multi-vector MSI is supported
–  Legacy is hard because it requires IOAPIC emulation
–  MSI-X is hard because it requires instruction emulation

8

virtio

  Paravirtualized device specification
–  http://ozlabs.org/~rusty/virtio-spec/virtio-paper.pdf

  FreeBSD virtio block and net drivers from
deboomerang@gmail.com
–  Not publicly available under a BSD license

  Backend virtio-net and virtio-block devices in user-space
–  virtio-net uses /dev/tapN to send and receive ethernet frames
–  virtio-block reads/writes to a file on the host filesystem

9

PCI Passthru

  Guest has direct access to a PCI device
  Some configuration registers are still emulated

–  BAR registers
–  MSI capability

  DMA transfers will target guest physical addresses
–  IOMMU translates from guest physical to host physical addresses

  Stub driver in the host forwards interrupts from the device to the
guest

  Virtual MSI capability for passthru devices that only support
legacy interrupts

  ‘blackhole’ driver prevents the host from attaching to passthru
devices

10

Guest Modifications

  Custom console and debug port
–  Done for expediency
–  Not necessary if we have a 16550 device model

  Local APIC access via x2APIC MSRs

  AP bringup changed to start execution directly in 64-bit mode

–  Required if real-mode guest execution is not supported

11

User-space API

  A virtual machine appears in the host filesystem as a device
node

  ioctls used to control and configure the virtual machine
–  20 in total
–  For e.g. setreg, pincpu, run, interrupt, getstats

  Can read(), write() and mmap() the virtual machine device node
–  Useful to inspect the virtual machine's memory
–  dd if=/dev/vmm/testvm of=memdump bs=1024 count=1024

12

Performance

  Features
–  Address space identifiers for virtual cpus
–  Minimal overhead host IPIs
–  Some guest state is lazily saved only on “slow” trap to user-space

  Guest floating point registers
  System call related MSRs

  “make buildworld”
–  4 cores, 2GB memory, 1GbE NIC, 1 SATA disk
–  /usr/src is mounted over NFS
–  /usr/obj is mounted on a block device

13

Configuration Build time in seconds
Bare Metal 1308
Partitioned 1336
Virtualized 1446

Future Opportunities

  Support Windows, Linux and *BSD guests

  Support AMD’s hardware virtualization assist

  Guest suspend/resume and live migration

  BIOS emulation

14

15

