
Efficient Predicate Abstraction
Using Parallel Assignments for
Software Verification Systems

Murray Stokely

Wadham College

University of Oxford

A thesis submitted for the degree of

Master of Science

Summer 2005

Abstract

This thesis shows how formal software verification systems can be im-

proved by utilising parallel assignment in weakest precondition computa-

tions.

We begin with an introduction to modern software verification systems.

Specifically, the method in which software abstractions are built using

counterexample guided abstraction refinement (CEGAR). This approach

consists of an iterative application of model construction, model checking,

counterexample validation and model refinement steps.

In Chapter 2 parallel assignment constructs are introduced. The classical

NP-complete parallel assignment problem is first posed, and then an ad-

ditional restriction is added to create a special case in which the problem

is tractable with an O(n2) algorithm. The parallel assignment problem is

then discussed in the context of weakest precondition computations. In

this special situation where statements can be assumed to execute truly

concurrently, we show that any sequence of simple assignment statements

without function calls can be transformed into an equivalent parallel as-

signment block.

Results of compressing assignment statements into a parallel form with

this algorithm are presented for a wide variety of software applications in

Chapter 3. The proposed algorithms were implemented in the ComFoRT

Reasoning Framework [19] and used to measure the improvement in the

verification of real software applications. This improvement in time proved

to be significant for many classes of software.

Acknowledgements

I would like to thank Joel Ouaknine, my supervisor, for accepting me as

one of his research students this summer. He has provided me with ideas,

inspiration, and encouragement. I would also like to thank Tom Melham

for first introducing me to model checking and computer aided formal

verification.

Byron Cooke’s talk at the Oxford University Computing Laboratory pro-

vided my first exposure to predicate abstraction and modern software

verification tools. He was later kind enough to suggest fruitful directions

of research for this thesis.

Sagar Chaki gave generously of his time to explain aspects of his papers

and to integrate the algorithm from chapter two into his ComFoRT rea-

soning framework. He has nearly been a second supervisor for this work.

Wadham College has been a very enjoyable place to study. I am grateful to

the college fellows and the Middle Common Room officers for encouraging

the students to pursue their academic goals while also providing for an

active graduate social life.

“The next rocket to go astray as a result of a programming language

error may not be an exploratory space rocket on a harmless trip to Venus:

It may be a nuclear warhead exploding over one of our own cities. An un-

reliable programming language generating unreliable programs constitutes

a far greater risk to our environment and to our society than unsafe cars,

toxic pesticides, or accidents at nuclear power stations.”

C.A.R. Hoare
ACM Turing Award Lecture, 1980

Contents

1 Introduction 1

1.1 Model Checking . 2

1.2 Specifications . 3

1.2.1 Temporal Logics . 4

1.3 Software Models . 5

1.3.1 Control Flow Graphs . 6

1.3.2 Augmenting Control Flow Graphs with Data Abstraction . . . 8

1.4 Predicate Abstraction . 8

1.5 Weakest Preconditions . 10

1.6 Thesis Outline . 11

2 Parallel Assignment 13

2.1 Classical Parallel Assignment . 14

2.2 Tractable General Parallel Assignment 16

2.2.1 Analysis . 16

2.2.2 Implementation . 17

2.3 Concurrent Parallel Assignment . 21

2.3.1 Implementation . 23

2.4 Parallel Assignment and Weakest Preconditions 23

3 Experimental Evaluation 26

3.1 Assignment Compression Results . 26

3.1.1 Unix System Software . 27

3.1.2 Graphics Libraries . 28

3.1.3 Results Summary . 28

3.2 Model Checking Results . 28

3.2.1 OpenSSL . 29

3.2.2 Windows Device Drivers . 30

i

3.2.3 Micro-C . 30

3.2.4 Results Summary . 31

3.3 Observations . 31

3.3.1 Compositionality and Partial Order Reduction 32

3.3.2 Property Size . 33

4 Conclusions 36

4.1 Summary . 36

4.2 Future Work . 37

Bibliography 39

A OCaml code for functional atomiser algorithm 42

B C code for imperative atomiser algorithm 50

ii

List of Figures

1.1 LTS for a simple locking protocol. 3

1.2 Example program source and the associated control flow graph. . . . 7

1.3 Example CFG extended with abstract memory states 10

2.1 Sequential Assignments transformed to Parallel Assignments 15

2.2 Sequential Assignments transformed to Parallel Assignments without

reordering. 16

2.3 Example Assignment Compression . 17

2.4 Example parse tree for an assignment statement. 18

2.5 (a) A sequence of four simple assignment statements and the associated

weakest precondition computations that would be calculated in a CE-

GAR loop. (b) A shorter sequence of parallel assignment statements

with fewer associated weakest precondition computations. 25

3.1 Assignment states in two components of a compositional model . . . 32

3.2 Lattice of possible paths from transitions in two components without

parallel assignment. 33

3.3 Parallel Assignment states in two components of a compositional model 33

3.4 Lattice of possible paths from transitions in two components with par-

allel assignment. 34

iii

List of Algorithms

1 Atomise accepts a CFG and loops over the assignment statements

combining adjacent assignments into parallel assignment blocks when-

ever possible. 19

2 CanParallelise accepts a list of assignments suitable for parallel as-

signment and an additional assignment and determines if the new as-

signment can be safely added to the existing parallel assignment block. 19

3 ConcurrentAtomise accepts a CFG and loops over the assignment

statements modifying adjacent assignments as necessary to allow them

to be combined into a single parallel assignment block. 24

iv

List of Tables

3.1 Assignment Compression of Unix System Software 27

3.2 Assignment Compression of Graphics Libraries 28

3.3 OpenSSL benchmarks with ComFoRT model checker + Atomise . . . 29

3.4 Windows device driver benchmarks ComFoRT model checker + Atomise 30

3.5 Micro-C benchmarks ComFoRT model checker + Atomise 30

v

Chapter 1

Introduction

Modern society is increasingly reliant on the correct and efficient working of com-

puter systems. Software malfunctions in critical computer systems have led to the

disclosure of sensitive information, economic and environmental damage, and loss of

life. Pioneering computer scientists such as Alan Turing and C.A.R. Hoare recog-

nised the need to formalise programming languages and provide an axiomatic basis

for computer programming on which formal correctness proofs can be built [18]. Un-

fortunately, the systems programming languages in common use today have made few

improvements to guarantee the reliability and safety of programs expressed in those

languages. As such, the primary methods for validating complex software systems

are simulation, testing, and model checking [11].

Simulation and testing involve providing certain inputs as test cases and observing

the corresponding output of the simulation or software product. Such tests can be

an effective way to find many errors, but it is rarely possible to check all possible

cases of interaction and input [11]. Recent research has engendered a new generation

of software verification tools that operate directly on general purpose programming

languages such as C or Java instead of those written in a restricted modelling language

[8]. These tools are characterised by an extended model checking algorithm which

1

interacts with theorem provers and decision procedures to reason about software

abstractions.

We are interested in checking that a program respects a set of temporal safety

properties. Safety properties are those that state “something bad does not happen”.

An example is requiring that a lock is never released without first being acquired

[3]. Verification of safety properties typically concentrates on the control flow of the

program by performing reachability analysis for particular control points [9].

1.1 Model Checking

Model checking is a method for formally verifying finite-state concurrent systems.

Specifications about the system are expressed as temporal logic formulas, and efficient

symbolic algorithms are used to traverse the model defined by the system and check

if the specification holds or not. Extremely large state-spaces can often be traversed

in minutes. Techniques such as predicate abstraction [17, 9, 2] and partial order

reduction [12] allow possibly infinite state systems, such as software applications,

to be conservatively modelled by finite-state abstractions. Model checking normally

involves an exhaustive search of the state space of the system to determine if some

specification is true or not. This technique has been applied to complex real world

protocols and application software.

The process of model checking involves several distinct tasks:

• specification;

• modelling;

• verification.

2

C

get_lock()

get_lock()release_lock()

release_lock()
A B

Figure 1.1: LTS for a simple locking protocol.

1.2 Specifications

In order to verify that a program acts according to specification, models of both

the specification and the program must be available. Common specifications such as

those for communication protocols or system application programming interfaces are

often specified in terms of state machines.

Formalisms of state machines such as Kripke structures or Labelled Transition

Systems (LTS) are naturally employed for such specifications. An LTS is a directed

graph denoted by a 4-tuple T = (S, s0,L,→) with:

• a finite non-empty set of states S;

• an initial state s0 ∈ S;

• a finite set of actions L;

• and a transition relation →⊆ S × L.× S

The edges of an LTS are labelled by elements of L, and as usual we write s
a
→ t to

mean (s, a, t) ∈→ [24]. An example LTS that could be used to model the behaviour

of a locking protocol is shown in Figure 1.1.

Formally, the LTS in Figure 1.1 would be represented as:

3

Tlocking =

{A,B,C},

A,

{get lock, release lock},

{A
get lock
−→ B,B

release lock
−→ A,A

release lock
−→ C,B

get lock
−→ C}

.

The initial state is A, and if our locking protocol does not allow double locks or

double releases, then state C represents an error state. With this model, it would be

natural to perform reachability analysis to determine if a program ever enters state

C.

1.2.1 Temporal Logics

Temporal logics are often used to specify system behaviour. They describe the order-

ing of events in time without introducing time explicitly [11].

1.2.1.1 Linear-time Temporal Logic (LTL)

LTL-formulas over atomic propositions p1, . . . , pn are defined by recursion:

φ ::= pi atomic proposition

| ¬φ negation

| φ ∧ ψ conjunction

| φ ∨ ψ disjunction

| Xφ next

| φ U ψ until

4

The next operator, Xφ, intuitively means “φ is true next time”. The until oper-

ator, φ U ψ, means “φ is true until eventually ψ is true”.

Two additional operators can be built from this definition.

Fφ ≡ true U φ

Gφ ≡ ¬(F¬φ)

Where Fφ intuitively means “φ is eventually true” and Gφ means “φ is always

true” [24].

If M is a labelled transition system and Φ is a temporal logic formula, then we

say M |= Φ if every path x0x1x2 . . . through M satisfies Φ. In practice, software

verification often centers on the goal of proving that a given error state can never be

reached. This is equivalent to M |= Gp for suitable model M and LTL proposition

p.

1.3 Software Models

Since a program can, in general, be represented by an infinite-state model, existing

tools do not directly check programs against specifications. Instead, a conservative

finite state abstraction of the program is first generated.

Verification tools such as MAGIC (Modular Analysis of proGrams In C) [22, 7]

employ a framework known as CounterExample Guided Abstraction Refinement

(CEGAR) [10, 8] to iteratively create more precise abstractions of the program until

the desired properties can be proven or a real counterexample generated.

Chaki, et al. [7] summarise the CEGAR process as follows:

• Step 1 (Model Creation). Extract an LTS MImp from the program Π.

The model is computed using the control flow graph (CFG) of the program

5

in combination with an abstraction method called predicate abstraction [17, 2].

Properties such as the equivalence of predicates are decided with the help of a

theorem prover.

• Step 2 (Verification). Verify that the abstraction MImp conforms to the spec-

ification, Spec. If this is the case, the verification is successful. Otherwise, i.e.,

if MImp does not conform to Spec, obtain a possibly spurious counterexample

and perform step 3.

• Step 3 (Validation). Check whether the counterexample extracted in step

2 is valid. If this is the case, then we have found an actual bug and the veri-

fication terminates unsuccessfully. Otherwise construct an explanation for the

spuriousness of the counterexample and proceed to Step 4.

• Step 4 (Refinement). Use the spurious counterexample CE from the previous

step to construct an improved set of predicates. Return to step 1 to extract a

more precise MImp using the new set of predicates instead of the old one. The

new predicate set is constructed in such a way as to guarantee that all spurious

counterexamples encountered so far will not appear in any future iteration of

this loop.

1.3.1 Control Flow Graphs

A control-flow graph (CFG) is used to model the flow of control in the program. A

CFG is a directed graph, G = (N, E) where each node n ∈ N corresponds to a basic

block in the program [14]. Generally, basic blocks begin with labelled statements

and end with branches or jumps. The transitions between nodes represent possible

transitions between the associated basic blocks, engendered by branch statements,

gotos, function calls, or returns in the program code.

6

if (x == y)

then {

x := 7;

y := z + 3;

} else {

z := 9;

}

y := y + 1;

x := 7;
 y := z + 3;

y := y + 1;

z := 9;

if (x == y)

Figure 1.2: Example program source and the associated control flow graph.

The initial abstraction built in step 1 of the CEGAR loop is constructed from

the CFG assuming that every branch in the program can be taken. Thus the first

model is a conservative abstraction of the program’s control flow. The model accepts

a superset of the possible traces of the program [9].

A number of natural simplifications can be made to the C source program before

the CFG is constructed. Typically this involves rewriting expressions with side-effect

free statements, rewriting all loop statements with if and goto, and simplifying

assignment statements. After these source transformations, the definition of a control

location becomes straightforward. Each assignment, goto, and return statement

gives rise to a control location with a unique successor. if statements yield a control

location with exactly two successors [7]. An example code snippet with the associated

control flow graph is illustrated in Figure 1.2.

Some tools, such as SLAM [26], can reason about recursive functions with the help

of pushdown automata [13]. The rest of this introduction assumes only non-recursive

functions, however.

7

1.3.2 Augmenting Control Flow Graphs with Data Abstrac-

tion

For verification purposes, the CFG is too imprecise because it ignores data (memory)

and models only the control flow. It is computationally unfeasible to model the

possible memory values explicitly. It is therefore necessary to augment the CFG with

abstract memory state information [7].

Relevant properties about the memory state can be obtained from the C expres-

sions used as branching conditions. For example, if the control flow graph contains a

branch if x > 0 then in order to reason about the possible paths of control, we only

need to know 1 bit of information rather than all 232 possible values of x on a 32-bit

computer.

If that were the only branch statement in a source function, and hence, the only

relevant data property, then all states in the control flow graph would be split into

two new states in an expanded CFG: one state where the property x > 0 is true, and

one where it is false.

In general, if we have k data properties, each of which is either true or false,

then each control location corresponds to 2k possible states in the model. Thus there

is a state corresponding to each possible valuation of the properties at each control

location.

1.4 Predicate Abstraction

Predicate abstraction, first described by Graf and Säıdi, is a method for combining

theorem proving and model checking techniques to prove properties of infinite state

systems [17, 15]. In order to describe abstract memory states, a fixed set of proper-

ties P = {P1, . . . , Pk} must be obtained from the branch statements in the CFG as

described in the previous section. We call these binary expressions predicates.

8

The relationship between the abstract memory state of our model and the concrete

memory state is concisely defined by Chaki, et al [7] as:

Given a concrete memory state m and a predicate P , we say that m

satisfies P if and only if P evaluates to true during the execution of the

given procedure when the memory state ism. A valuation for P is a vector

v1, . . . , vk of Boolean values, such that vi expresses the Boolean value of

Pi. V denotes the set of all valuations, which is the set of all abstract

memory states. Intuitively, a concrete memory state m is modelled by

v1, . . . , vk if for 1 ≤ i ≤ k, m satisfies Pi if and only if vi is true.

Figure 1.3 shows a simple CFG with five states S0, S1, S2, S3, and S4. The CFG has

been augmented with the predicates P = {(x >= 0), (x > y)}. The expanded CFG

contains 5 ∗ 22 = 20 states, as each possible valuation of the predicates is represented

for each of the original states.

The number of abstract states is thus exponential in the number of predicates.

One large challenge, therefore, is to identify the minimal set of predicates that are

necessary to prove a given property. The CEGAR loop begins with the initial abstrac-

tion and attempts to find counterexamples by iteratively searching and then refining

the abstraction.

In the context of reachability analysis, if the verification step (Step 2) discovers

a path through the abstraction to an error state, then this path must be validated

in Step 3. If the abstraction is spurious, then a more precise refinement must be

obtained by adding additional predicates to P . Techniques have been developed [9]

to guarantee that the set of predicates that eliminate all discovered counterexamples

is minimal.

The abstractions are iteratively refined according to reachable successor states.

Although termination cannot be guaranteed, since the model checking problem is in

9

x >= 0 x < 0

x > y x<=y x > y x<=y

return −1

x > y x<=y x > y x<=y

x >= 0 x < 0

return −3

x := y * y;
if (x >= 0)

x<=yx > yx<=yx > y

x >= 0 x < 0

x > y x<=y x > y x<=y

x<=yx > yx<=yx > y

x < 0x >= 0

return −2

S0

if (x > y)S1 S2

S4S3

x >= 0 x < 0

Figure 1.3: Example CFG extended with abstract memory states

general undecidable, in practice these successive abstractions often converge to a fixed

point in a finite number of steps.

1.5 Weakest Preconditions

The refinement loop in the predicate abstraction process involves computing weakest

preconditions of statements relative to a given predicate. In Hoare Triple notation,

the required connection between a precondition (P), a program (Q), and a description

of the result of its execution (R), is denoted:

P{Q}R

.

This is interpreted as “If the assertion P is true before initiation of a program Q,

10

then the assertion R will be true on its completion.” [18]

Here we consider a statement s and a predicate φ, and let WP(s, φ) denote the

weakest liberal precondition of φ with respect to statement s. WP(s, φ) is defined as

the weakest predicate whose truth before s entails the truth of φ after s terminates.

For assignment statements, the weakest precondition of a predicate φ is obtained

by replacing all occurrences of the left hand side of the assignment statement with

the right hand side of the assignment.

For example, consider the assignment “x = x+ 1” and the predicate “x < 4”:

WP(x = x+ 1, x < 4) = (x+ 1) < 4 = x < 3

The weakest precondition computations are a key part of the predicate abstraction

process. Suppose that our set of predicates is P = {(x = 1) , (x < 4)}. We saw above

that WP(x = x + 1, (x < 4)) = (x < 3), but the predicate (x < 3) is not in our

predicate set P . In such a case a theorem prover may be called to strengthen the

weakest precondition to an expression over the predicates in P [2]. In this example,

a theorem prover would show that (x = 1) → (x < 3). Therefore, if (x = 1) is true

before x=x+1; then (x < 4) is true after. The improvements introduced in this thesis

are designed to reduce the number of necessary calls to the theorem prover as part of

this reasoning about weakest preconditions.

1.6 Thesis Outline

In Chapter 2, parallel assignment statements are introduced. The classical NP-

complete parallel assignment problem is first considered, and then an additional re-

striction is added to create a special case in which the problem is tractable. The

parallel assignment problem is then discussed in the context of weakest precondition

computations. In this special situation where statements can be assumed to exe-

11

cute truly concurrently, we find an even better algorithm for compressing multiple

sequential assignment statements into a single parallel assignment.

In Chapter 3, experiments are presented which show the level of assignment com-

pression which can be achieved from a broad class of software. The algorithms from

Chapter 2 have also been implemented in the ComFoRT Reasoning framework, and

results are presented showing the time and memory space improvements for model

checking a selection of applications. In Chapter 4, we conclude by providing a sum-

mary and directions of future work.

12

Chapter 2

Parallel Assignment

Sequences of assignment instructions are called straight line programs or linear blocks.

Parallel assignment is a construct that permits the updating of multiple variables as

a single atomic operation. As illustrated by Sethi [25], the Fibonacci sequence can

be very cleanly generated with the parallel assignment f0, f1 := f1, f0 + f1. When f0

and f1 are both initialised to 1, then repeated execution of this parallel assignment

will lead to f1 taking on the values of the Fibonacci sequence (2,3,5,8,. . .).

Some programming languages such as Algol 68 and Common Lisp provide support

for expressing parallel assignment. For other languages, parallel assignment instruc-

tions can be implemented by a straight line program that may need to use additional

temporary storage. For example, the simple swap of two variables can be expressed

with the parallel assignment x, y := y, x. As a straight line program, we must store

the value of x in a temporary variable before overwriting its contents, hence the linear

block of three assignment statements: t := x;x := y; y := t.

For the purpose of verification, we are interested in identifying sequential assign-

ment statements in straight line code that can be replaced with equivalent parallel

assignment statements. This operation compresses multiple control points for sequen-

tial assignment statements into a single parallel assignment control point. The new

13

parallel assignment control point consists of a list of assignment statements.

In this chapter we consider a number of possible approaches to finding sequences

of assignments suitable for parallel assignment.

• In Section 2.1, we require that each assignment in a parallel assignment block

may be executed in any order without affecting the other assignment statements

in that parallel block. In this scenario, the example x, y := y, x would not be a

valid parallel assignment because x := y; y := x is different from y := x;x := y

whenever x 6= y.

• In Section 2.2, we add an additional restriction to the classical parallel assign-

ment problem by disallowing reordering of the assignment statements. This

produces a tractable problem for which efficient algorithms can be obtained.

• In Section 2.3, we see that we have additional flexibility in the context of weakest

pre-condition computations. We can assume that the assignments in a parallel

assignment block must all be executed concurrently.

2.1 Classical Parallel Assignment

The classical parallel assignment problem is stated by Garey and Johnson [16] as

follows.

Instance: Set V = {v1, v2, . . . , vn} of variables, set A = {A1, A2, . . . , An} of

assignments, each Ai of the form “vi ← op(Bi)” for some subset Bi ⊆ V , and a

positive integer K.

14

 . . .
Assignment #N

Assignment #1
Assignment #2
Assignment #3

Parallel Assignment Block #3

Parallel Assignment Block #2

Parallel Assignment Block #1

Assignment #4
Assignment #5

Figure 2.1: Sequential Assignments transformed to Parallel Assignments

A1 : v1 := op(B1)

A2 : v2 := op(B2)

A3 : v3 := op(B3)

...

An : vn := op(Bn)

Question: Is there an ordering vπ(1), vπ(2), . . . , vπ(n) of V such that there are at

most K values of i, 1 ≤ i ≤ n, for which vπ(i) ∈ Bπ(j) for some j > i?

Thus our problem of compressing the sequential assignment statements into as few

parallel assignment statements as possible would be equivalent to the optimisation

problem of finding the minimum satisfying K.

Unfortunately, Sethi [25] showed that this problem is NP-Hard via a reduction

from the feedback node set problem. In the next section we consider a greedy al-

gorithm which identifies parallel assignments with the additional restriction that the

sequential assignments must be adjacent. That is to say, no reordering of the assign-

ments is allowed even if this would not disrupt the data dependencies. In Section 2.3

we consider the special circumstances of statements in weakest precondition compu-

tations to perform even better compression of single assignment statements.

15

 . . .
Assignment #N

Assignment #1
Assignment #2
Assignment #3
Assignment #4
Assignment #5

Parallel Assignment Block #2

Parallel Assignment Block #3

Parallel Assignment Block #1

Parallel Assignment Block #4

Figure 2.2: Sequential Assignments transformed to Parallel Assignments without
reordering.

2.2 Tractable General Parallel Assignment

In this section we consider a modified version of the classical parallel assignment

problem where reordering of the assignment statements is not allowed. The instance

introduced in the previous section is still used, but the question becomes:

Question: Are there at most K values of i, 1 ≤ i ≤ n, for which vi ∈ Bj for some

j > i?

Figure 2.1 illustrates a transformation from sequential to parallel assignment state-

ments involving reordering that would be allowed in the classical parallel assignment

problem. Figure 2.2 shows a similar transformation with the additional condition

preventing reordering. A more explicit example with 4 simple assignment statements

is provided in Figure 2.3(a). The limitation described above that prevents reordering

would allow us to transform this into Figure 2.3(b). If reordering were allowed, this

could be written even more efficiently as in Figure 2.3(c).

2.2.1 Analysis

For each of the n assignments Ai, and for each j, i < j ≤ n, we must test if vi ∈ Bj.

Therefore, we will need (n−1)+(n−2)+(n−3)+ . . .+3+2+1 = (n−1)2

2
set inclusion

operations. If each set Bj is represented as a bit field where the ith bit represents

inclusion of vi and we have that ‖Bj‖ < C for some constant C, then set inclusion

16

x = 1;

y = x;

u = 2;

v = u;

(a)

x = 1;

y = x ||| u = 2;

v = u;

(b)

x = 1 ||| u = 2;

y = x ||| v = u;

(c)

Figure 2.3: (a) shows a sequence of four sequential assignment statements. (b) shows
the parallel assignment found by the atomiser algorithm. (c) shows the best possible
parallel assignment that exists if we allow reordering as in the classical problem.

can be determined in constant time, yielding an O(n2) algorithm.

Recall that n will not be the number of control locations in the entire program.

Instead, n is the number of assignments in a sequential list of assignment statements

in one node of the control flow graph. As such, n is never a very large number.

2.2.2 Implementation

In order to reason about the variables on the right hand side of assignment statements,

we need more information than what is provided by the control flow graph. The parse

tree [1] provides the expression-level syntactic information we need to reason about

individual assignments. We are not interested in a parse tree for the entire program

source code, however. Instead, we expect the control flow graph to maintain a pointer

to a parse tree for each individual assignment statement. Figure 2.4 shows what the

parse tree would look like for the simple assignment statement x := y + 1. Given

such a parse tree, one can easily build up lists of variables on the left-hand side (LHS)

and right-hand side (RHS) of an assignment statement.

Given a control flow graph data structure that includes pointers to the parse trees

for individual assignment statements, the process of creating a new CFG that utilises

parallel assignment statements is described in Algorithm 1. This algorithm visits each

node in the control flow graph and then follows a greedy strategy to build up lists of

17

1

=

x +

y

Figure 2.4: Example parse tree for an assignment statement.

parallel assignment statements.

Each assignment statement in the CFG node is compared to the running list

of assignments in the parallel assignment block. If the assignment statement is not

suitable for parallel assignment with all of the other assignments in the current parallel

assignment block, then that assignment block is finished and a new one is started.

This algorithm relies on another algorithm to determine whether an assignment

statement s1 can be included in the block of parallel assignments P1. Algorithm

2, canParallelise, illustrates the decision procedure in the simpler case of just two

assignment statements.

2.2.2.1 CIL/OCaml Implementation

The C Intermediate Language (CIL) is a high level language representation along

with a set of tools that permit easy analysis and source to source translation of C

programs [23]. It breaks down certain complicated constructs of the C language into

simpler ones. For example, CIL does not allow procedure calls inside the argument

of another procedure call, expressions with side-effects (such as x++), or shortcut

evaluations (such as x && y). It is coupled with a front end that can analyse and

transform not just ANSI C, but also Microsoft C and GNU C extensions into this

simplified C Intermediate Language.

The CIL tools are written in the OCaml extended functional programming lan-

18

Algorithm 1 Atomise accepts a CFG and loops over the assignment statements
combining adjacent assignments into parallel assignment blocks whenever possible.

Input: A CFG
Output: A CFG in which assignment statements have been parallelised
for all N ∈ CFG do

if N contains a statement list S then
Let parallel list = first s ∈ S.
for all statement s ∈ S with successor statement s′. do

if canParallelise(parallel list, s′) then
append s′ to parallel list .

else
Append parallel list to new list
Initialise parallel list with s′.

end if
end for
Append parallel list to new list
Replace statement list S in CFG node N with new list.

end if
end for

Algorithm 2 CanParallelise accepts a list of assignments suitable for parallel as-
signment and an additional assignment and determines if the new assignment can be
safely added to the existing parallel assignment block.

Input: Assignment list l and an assignment statement s1.
Output: A boolean answer as to whether the statements may be executed in par-
allel.
Let LHS (s) be a function returning the variable on the left hand side of single
assignment s.
Let LHS List(l) be a function returning the variables on the left hand side of the
assignments in assignment list l.
Let RHS (s) be a function returning the list of variables on the right hand side of
assignment s.
Let RHS List(l) be a function returning the variables on the right hand side of the
assignments in assignment list l.
if LHS (s1) ∈ RHS List(l) or RHS (s1) ∩ LHS List(l) 6= ∅ then

return false
else

return true
end if

19

guage. OCaml is a variant of ML that includes object oriented features. An imple-

mentation of Algorithm 1 in OCaml is provided in Appendix A. The code in this

appendix is implemented as a visitor method for basic blocks of the Control Flow

Graph. It makes use of the rich collection of data structures provided by CIL and

can be compiled into the bundled cilly utility to compress sequential assignment

statements in C source files and output compression statistics.

In addition to the expressive advantages, CIL was chosen in part because it is the

parsing framework upon which the the Berkeley Lazy Abstraction Software Verifica-

tion Tool (BLAST) is implemented. BLAST [6] is a verification system for checking

safety properties of C programs that uses a variant of the abstract – model check –

refine loop described in Chapter 1.

Assignment compression results from this tool are described in the following chap-

ter. By integrating this algorithm into BLAST, one could thus obtain further results

about the affects of this assignment compression on the model checking process.

2.2.2.2 C Implementation

An implementation of Algorithm 1 in the C Programming Language is provided in Ap-

pendix B. The parser for this implementation was generated with the Bison LALR(1)

parser generator [5] following the ANSI C language definition in [21]. The language

translation and control flow graph implementation follows the general techniques out-

lined in [1, 14].

This implementation was integrated into the ComFoRT reasoning framework to

obtain the model checking results presented in Chapter 3.

20

2.3 Concurrent Parallel Assignment

The algorithms described in the two previous sections are based on two assumptions.

The first assumption is that we can not change the form of the individual assignment

statements. The second assumption is that we must guarantee that the assignments in

a parallel block can be executed in any order without affecting the result. In fact nei-

ther of these assumptions is necessary in the context of building parallel assignments

for weakest precondition computations.

Consider the following example:

x := y

z := x

Algorithm 1 would not be able to combine these two assignment statements be-

cause the left hand side of one is present in the right hand side of the other. However,

it is possible to change the second assignment without altering the result of the block.

x := y

z := y

With this modification, our existing algorithm would be able to combined these

two assignments into a single parallel assignment block. It is also clear that the result

is exactly the same as the original sequence of assignments.

In general, we can define a function that accepts a sequence of simple assignment

statements S without pointers and without function calls and returns an equivalent

parallel assignment statement.

Proof by Induction:

The base case of a single assignment, S = {s1}, is vacuously true. f(S) = S is

the function.

21

Now, let S be a sequence of n sequential assignment statements and let S+ denote

the the sequence S and the successor of the last assignment in S, s′. Suppose a

function g exists to transform the sequence S of assignments into an equivalent parallel

assignment, g(S). (Inductive hypothesis)

We build a new function h(S+) as follows:

for all v ∈ RHS(s′) do

if v = LHS(s̃) for some s̃ ∈ g(S) then

Replace v in s′ with RHS(s̃)

end if

end for

Output (g(S),s’)

By the replacement construction on s′ we guarantee that it can be combined with

g(S) in a parallel block, thus proving our result inductively.

With concurrent parallel assignment, the left hand side of all assignment state-

ments are updated simultaneously. This means that instances of all variables in the

parallel assignment block refer to the valuations before the parallel block is entered.

If an assignment statement needs to utilise the valuation of a variable after another

assignment statement, then that assignment must be rewritten with the procedure

outlined in the previous proof.

As one final illustration, consider again the assignment list introduced in Figure

2.3(a).

x = 1;

y = x;

u = 2;

v = u;

22

The classical parallel assignment problem seeks to find the optimal ordering of the

assignment statements so as to find a minimal set of parallel assignment statements,

such as:

x = 1 ||| u = 2;

y = x ||| v = u;

In the context of weakest pre-condition computations, however, we can keep track

of the before and after state of each variable. The following example shows how this

could be calculated in our weakest precondition computations, where X0 means the

value of X before the parallel assignment block, and X1 means the value after the

block.

x1 = 1 ||| u1 = 2 ||| y1 = x1 ||| v1 = u1

x1 = 1 ||| u1 = 2 ||| y1 = 1 ||| v1 = 2

2.3.1 Implementation

The ConcurrentAtomise algorithm described in the previous section is presented in

Algorithm 3.

2.4 Parallel Assignment and Weakest Preconditions

In section 1.5 we introduced weakest preconditions and described the computation of

WP(s, φ) for a statement s and predicate φ. For assignment statements, the weakest

precondition of a predicate φ was obtained by replacing all occurrences of the left

hand side of s with the right hand side of the assignment. This can be represented

in replacement notation by φ[LHS/RHS].

This replacement operation extends naturally when s is a parallel assignment

block. Each variable in φ that occurs on the left hand side of an assignment in

23

Algorithm 3 ConcurrentAtomise accepts a CFG and loops over the assignment
statements modifying adjacent assignments as necessary to allow them to be combined
into a single parallel assignment block.

Input: A CFG
Output: A CFG in which assignment statements have been parallelised
for all N ∈ CFG do

if N contains a statement list S then
Let parallel list = first s ∈ S.
for all statement s ∈ S with successor statement s′. do

for all v ∈ RHS(s′) do
if v = LHS(s̃) for some s̃ ∈ parallel list then

Replace v in s′ with RHS(s̃)
end if

end for
append s′ to parallel list .

end for
Replace statement list S in CFG node N with parallel list.

end if
end for

s is replaced with the corresponding right hand side. For example, the weakest

precondition of parallel assignment a, c := b, a and the same predicate φ would be

denoted φ[a/b, c/a]. Figure 2.5(a) shows a sequence of assignment statements and

the associated weakest precondition computations. Figure 2.5(b) shows the same

sequence of assignment statements after it has been compressed with the Atomiser

algorithm into a smaller sequence of parallel assignment statements.

24

x := y

a := b

y := z

c := b

(a)

WP(c := b,Φ)

WP(y := z,Φ)

WP(a := b,Φ)

WP(x := y,Φ)

x, a := y, b

y, c := z, b

(b)

WP(y, c := z, b,Φ)

WP(x, a := y, b,Φ)

Figure 2.5: (a) A sequence of four simple assignment statements and the associated
weakest precondition computations that would be calculated in a CEGAR loop. (b)
A shorter sequence of parallel assignment statements with fewer associated weakest
precondition computations.

25

Chapter 3

Experimental Evaluation

We implemented the atomiser algorithm inside both the ComFoRT Reasoning Frame-

work from Carnegie Mellon and the Berkeley CIL tool. The goals of this experimen-

tation were as follows. The first goal was to determine how much compression of

assignment statements could be obtained for real programs in several different appli-

cation domains. The second goal was to determine if this compression would in fact

speed up the model checking process. The final goal was to characterise the class

of software where model checking could benefit the most from utilisation of parallel

assignment statements.

3.1 Assignment Compression Results

In this section we describe our results in the context of the first goal mentioned above,

i.e, checking the effectiveness of the Atomiser and ConcurrentAtomiser algorithms at

compressing the assignment control locations in real software source code.

The results in this section were obtained with the Berkeley CIL parser and the

parallel assignment compressor, atomiser.ml, provided in Appendix A. The relative

length and frequency of sequences of simple assignment statements varies with differ-

ent software application domains. The experiments that follow were chosen because

26

Utility Source File LOC Loc1 Loc2 Loc3
fsck fsck.c 1208 102 72 62
ifconfig ifconfig.c 2335 174 140 122
ifconfig af inet6.c 1436 76 61 56
mount mount ufs.c 227 10 6 5
ping ping.c 3242 312 200 181
bdes bdes.c 2357 284 253 220
gzip trees.c 1221 299 192 147
gzip deflate.c 477 103 65 59
gzip inflate.c 1491 377 254 169
grep search.c 2033 239 191 181

totals 16027 1976 1434 1202
average compression 72.6% 60.8%

Table 3.1: Assignment Compression of Unix System Software

they represent a broad spectrum of relevant software applications.

3.1.1 Unix System Software

The first benchmark set includes Unix system software from the FreeBSD 6.0 oper-

ating system. The utilities chosen include the file system consistency check utility

(fsck), ifconfig, mount, ping, bdes, gzip, and grep.

Table 3.1 illustrates the results. The first column provides the name of the utility.

The second column provides the name of the source file. The third column lists the

number of lines of code in the source file. Specifically, this means the lines of code

after the C pre-processor has been run and the CIL transformations performed but

without counting any #line directives inserted by the pre-processor. The fourth

column lists the number of simple assignment statements in the source file. The fifth

column lists the number of assignment statements in the new source file generated

with the Atomiser algorithm. The sixth column lists the number of assignments in

the new source file generated with the ConcurrentAtomiser algorithm.

27

Library Source File LOC Loc1 Loc2 Loc3
png png.c 1108 87 60 57
png pnggccrd.c 2835 511 262 229
png pngrtan.c 6221 1859 930 629
jpeg jmemmgr.c 1232 252 174 160
jpeg jquant1.c 1361 257 125 96
jpeg jquant2.c 1803 466 264 176
jpeg transupp.c 3826 637 414 345

totals 18386 4069 2229 1692
average compression 54.8% 41.6%

Table 3.2: Assignment Compression of Graphics Libraries

3.1.2 Graphics Libraries

The second benchmark set includes the popular PNG and JPEG libraries used by

most commercial and open source software to read and write those popular graphics

file formats. Table 3.2 illustrates the assignment compression results for the largest

source files of libpng v1.2.8 and libjpeg v6b.

3.1.3 Results Summary

On the body of software tested in this section, the Atomiser algorithm reduces the

number of assignment statement control points to 63% of the original total. The

ConcurrentAtomiser algorithm provides another 10% reduction in control points.

3.2 Model Checking Results

The ComFoRT Reasoning Framework [19] uses model checking to predict whether

software will meet specific safety and reliability requirements. The model checking

engine is derived from MAGIC [8], a tool developed by the model checking group at

Carnegie Mellon University (CMU).

The source code for ComFoRT is not publicly available at this time, but Sagar

28

Name LOC Loc1 Loc2 Loc3 Time1 Time2 Time3 Mem1 Mem2 Mem3
Server 2483 207 172 171 9.8 8.8 8.4 135.3 136.2 133.8
Client 2484 175 145 144 17.5 11.7 12.4 128.9 128.1 127.7
Srvr-Clnt locations are as above 165.8 136.7 128.4 201.1 194.7 192.3

Table 3.3: OpenSSL benchmarks with ComFoRT model checker + Atomise

Chaki from Carnegie Mellon was kind enough to integrate the atomiser algorithms

into this tool and then run his benchmarks on a collection of Windows device drivers,

OpenSSL, and Micro-C benchmarks. These benchmarks show the improvement in

time and memory space that is provided by the assignment compression.

3.2.1 OpenSSL

The first set of benchmarks was run on the OpenSSL source code. The OpenSSL

library implements the Secure Sockets Layer (SSL v2/v3) and Transport Layer Se-

curity (TLS v1) protocols. It is widely used by web browsers, ssh clients, and other

secure network applications on many different computing platforms.

Table 3.3 provides model checking results for the OpenSSL benchmarks. The

Server test is the geometric mean of four benchmarks with same source code but

different specifications. The Client test is the geometric mean of two benchmarks

with same source code but different specifications. The Srvr-Clnt test is the geometric

mean of sixteen benchmarks with same source code but different specifications.

Each test was run under three different model checking conditions:

1. no assignment parallelisation;

2. parallelisation with the Atomiser algorithm (individual assignments not changed)

3. parallelisation with with ConcurrentAtomiser algorithm (individual assignments

changed as necessary)

29

Name LOC Loc1 Loc2 Loc3 Time1 Time2 Time3 Mem1 Mem2 Mem3
cdaudio 10171 2613 1447 1298 52.6 52.7 53.0 272.6 264.0 269.6
diskperf 4824 1187 719 617 15.9 15.8 15.7 176.3 176.3 175.0
floppy 9579 3478 1957 1845 130.4 130.5 129.3 468.8 468.8 470.4
kbfiltr 3905 560 331 286 1.9 1.9 1.8 129.1 128.7 126.3
parclass 26623 2840 1649 1450 74.5 73.7 72.3 335.5 335.5 340.0
parport 12431 4634 2935 2409 384.5 381.1 375.6 1102.3 1102.3 1127.2

Table 3.4: Windows device driver benchmarks ComFoRT model checker + Atomise

Name LOC Loc1 Loc2 Loc3 Time1 Time2 Time3 Mem1 Mem2 Mem3
Safety 6279 2699 1789 1589 35.5 35.7 36.0 229.2 229.2 223.5
Liveness locations are as above 182.2 144.4 134.4 272.3 260.6 260.4

Table 3.5: Micro-C benchmarks ComFoRT model checker + Atomise

For each condition above, the number of assignments is listed (Loc) as well as the

the time in seconds (Time), and the number of megabytes of memory (Mem) required

for model checking.

3.2.2 Windows Device Drivers

The second set of ComFoRT benchmarks was run on a collection of Windows device

drivers. The results are presented in Table 3.4 in the same format as the last section.

Note that although significant assignment compression is achieved, the model checking

time is not improved substantially.

3.2.3 Micro-C

The final set of ComFoRT benchmarks was run on Micro-C. The results are presented

in 3.5. The same source code was used against two different specifications. One

describing a Safety property and the other a Liveness property. The most striking

result in this table is perhaps the fact that model checking of the Safety property

is not improved with assignment compression, but the speed of Liveness property

verification is significantly improved.

30

3.2.4 Results Summary

There is certainly a compression in terms of the number of control locations using

either of the two atomiser algorithms. In general, the difference between no compres-

sion, and the Atomiser algorithm is more significant than that between the Atomiser

and ConcurrentAtomiser algorithms. Actual performance of the model checker does

improve is many cases, in particular for SSL and Micro-C. The improvement is marked

for time, but somewhat marginal for space. The lack of improvement for the device

drivers may be because of the relatively small number of predicates necessary to com-

plete the verification. This means that the number of states does not decrease as

dramatically with the reduction in the number of control locations as for the other

benchmarks. More experiments with other examples may provide additional support

for these observations.

3.3 Observations

The difference between the two assignment compression algorithms was more pro-

nounced in the CIL implementation than in the ComFoRT implementation. This can

be explained by the fact that the CIL tool performs additional simplifications to the

source code before the atomiser algorithm is run. These transformations involve the

creation of new temporary variables and assignments to those variables to simplify

control flow and always provide unique return statements for procedures.

After examining the data, two scenarios can be seen as contributing to the ob-

served speedup in model checking times with the Atomiser algorithms.

• Compositionality and Partial Order Reduction

• Property size

31

z’:=9z:=5

4

5

6

1

2

3

x:=3

y:=4

x’:=2

y’:=7

Figure 3.1: Assignment states in two components of a compositional model

3.3.1 Compositionality and Partial Order Reduction

Asynchronous systems such as the OpenSSL Srvr-Clnt benchmark are often described

using an interleaving model of computation [11]. Concurrent events are modelled by

allowing their execution in all possible orders relative to each other. Figure 3.1 shows

3 transitions (assignment statements) on each of two separate components. The

transitions are labelled between 1 and 3 for the first component and between 4 and

6 for the second component. The sequence of control along each component is fixed,

but there is no guarantee about the relative order, or interleaving, of the transitions

of the two components. The model checker does not know that the interleavings do

not matter, and so it will try all possible interleavings of the two for model checking.

The lattice representing all possible transition interleavings is represented in Figure

3.2.

With parallel assignment statements, the 6 transitions of Figure 3.1 would be

reduced to two transitions as in Figure 3.3. The much simpler associated lattice

with parallel assignments is shown in Figure 3.4. The ConcurrentAtomiser algorithm

allows for a special case of partial order reduction to eliminate the different equivalent

interleaving orderings [12]. This has the effect of dramatically reducing the number

32

2

4

3

36

2

3

1

4

4 1

5 1

6 1

2

5 6 2

4 3 5

6

5

Figure 3.2: Lattice of possible paths from transitions in two components without
parallel assignment.

of required calls to the theorem prover to reason about the predicates as part of the

weakest precondition computations.

3.3.2 Property Size

The Micro-C benchmarks in Table 3.5 provide another important illustration of sit-

uations where the algorithms in this thesis can be especially beneficial.

x’,y’,z’:=2,7,91 x,y,z:=3,4,5 2

Figure 3.3: Parallel Assignment states in two components of a compositional model

33

2

2 1

1

Figure 3.4: Lattice of possible paths from transitions in two components with parallel
assignment.

Both the Safety and Liveness properties are sequential one component systems

here, so there is no benefit from reducing the interleaving paths as described in the

previous section.

In the process of model checking a Büchi automaton for the negation of the prop-

erty is constructed. This automaton is then synchronised with the abstract model

of the software to obtain a new product automaton on which reachability analysis is

performed.

Consider the safety property M |= “locks & unlocks alternate” and the event

alphabet Σ = {a, b, c, lock, unlock}:

unlock

unlock lock

a,b,c

a,b,c,lock,unlock

S1 S2

S3

lock

a,b,c

Suppose we also have an abstract model for our system:

34

U2

U3U4

b

 a
U1

unlock lock

We can then take the cross-product to define a new modified Kripke structure:

...

S1,U1

S1,U2

a

lock

In this way our LTL property is translated to reachability with the cross product.

With this cross product construction one finds that the size of the Büchi automata

of the property acts as a scaling factor for the size of the product automata.

For the Micro-C safety property, the Büchi automata is relatively simple with just

4 states. For the liveness property, however, the automata has 51 states. Therefore

any small reduction in the abstract software model size will be improved further

by this factor. This explains why the same level of assignment compression has a

significant effect for the liveness benchmark but not for the safety benchmark.

It would be interesting to see what improvements in time and memory could be

obtained by implementing these algorithms into other model checking tools such as

BLAST [6] and SLAM [4].

35

Chapter 4

Conclusions

4.1 Summary

The aim of this thesis has been to explore the use of parallel assignment in software

verification systems.

We began in Chapter 1 with a description of how modern software verification

tools use predicate abstraction, theorem provers, and model checkers to verify prop-

erties of software written in general purpose programming languages. In Chapter

2 we introduced parallel assignment statements. The classical NP-complete parallel

assignment problem was first posed, and then an additional restriction was added to

create a special case in which the problem is tractable with an O(n2) algorithm. The

parallel assignment problem was then discussed in the context of weakest precondition

computations. In this special situation where statements can be assumed to execute

truly concurrently, we provided an inductive proof that any sequence of simple as-

signment statements without function calls can be transformed into an equivalent

parallel assignment block.

Chapter 3 provided experimental results of the algorithms from Chapter 2 to

identify sequences of assignment statements and combine those suitable for paral-

36

lelisation. Results of this assignment compression were provided for a wide variety

of software applications. We then provided results of implementing this algorithm

into the ComFoRT model checker. The improvement in time was significant for some

classes of software, while the improvement in memory space was somewhat marginal.

We then analysed the relative speedups that the Atomiser algorithms provided for

several different classes of software.

The primary contributions of this thesis can be summarised as follows.

• A survey of modern software verification tools for general purpose programming

languages.

• A survey of parallel assignment transformations.

• A greedy algorithm, Atomiser , to implement general parallel assignment state-

ments from straight line code.

• A concurrent parallel assignment algorithm, ConcurrentAtomiser , that can be

used for software verification tools.

• Experimental results showing the compression of assignment statements in a

broad class of software.

• Experimental results showing the improvement in speed and space of model

checking systems augmented with the Atomiser and ConcurrentAtomiser algo-

rithms.

4.2 Future Work

This work focussed on a single transformation of the control flow graph of the software

before the abstraction and modelling steps took place. However, this is part of a much

broader class of possible improvements to the software model checking process. Other

37

static transformations may enable the further reduction of the number of necessary

states. For example, recent work on pathslicing [20] illustrates how static analysis

of the control flow graph can remove a large number of unnecessary states from the

abstract model.

There may also be more fruitful applications of partial order reduction in modern

software verification tools.

It would be interesting to implement the atomiser algorithm into other software

verification tools to verify the observations made at the end of Chapter 3.

38

Bibliography

[1] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers: Principles, Tech-

niques, and Tools. Addison-Wesley, 1986.

[2] Thomas Ball, Rupak Majumdar, Todd Millstein, and Sriram K. Rajamani. Au-

tomatic predicate abstraction of c programs. In PLDI ’01: Proceedings of the

ACM SIGPLAN 2001 conference on Programming language design and imple-

mentation, pages 203–213, New York, NY, USA, 2001. ACM Press.

[3] Thomas Ball and Sriram K. Rajamani. Automatically validating temporal safety

properties of interfaces. In 8th International SPIN Workshop, pages 103–122,

New York, NY, USA, 2001. ACM Press.

[4] Thomas Ball and Sriram K. Rajamani. The slam project: debugging system soft-

ware via static analysis. In POPL ’02: Proceedings of the 29th ACM SIGPLAN-

SIGACT symposium on Principles of programming languages, pages 1–3, New

York, NY, USA, 2002. ACM Press.

[5] Bison website. http://www.gnu.org/bison.

[6] Blast website. http://www-cad.eecs.berkeley.edu/rupak/blast.

[7] Sagar Chaki, Edmund Clarke, Alex Groce, Somesh Jha, and Helmut Veith. Mod-

ular verification of software components in c. In ICSE ’03: Proceedings of the

25th International Conference on Software Engineering, pages 385–395, Wash-

ington, DC, USA, 2003. IEEE Computer Society.

[8] Sagar Chaki, Edmund Clarke, Alex Groce, Joel Ouaknine, Ofer Strichman, and

K. Yorav. Efficient verification of sequential and concurrent c programs.

[9] Sagar Chaki, Edmund Clarke, Alex Groce, and Ofer Strichman. Predicate ab-

straction with minimum predicates.

39

[10] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut Veith.

Counterexample-guided abstraction refinement for symbolic model checking. J.

ACM, 50(5):752–794, 2003.

[11] Edmund M. Jr. Clarke, Orna Grumberg, and Doron A. Peled. Model Checking.

MIT Press, 1999.

[12] E.M. Clarke, O. Grumberg, M. Minea, and D. Peled. State space reduction using

partial order techniques. International Journal on Software Tools for Technology

Transfer (STTT), 2:279–287, 1999.

[13] Stephen A. Cook. Characterizations of pushdown machines in terms of time-

bounded computers. J. ACM, 18(1):4–18, 1971.

[14] Keith D. Cooper and Linda Torczon. Engineering a Compiler. Elsevier Science,

2004.

[15] Satyaki Das, David L. Dill, and Seungjoon Park. Experience with predicate ab-

straction. In CAV ’99: Proceedings of the 9th International Conference on Com-

puter Aided Verification, pages 160–171, London, UK, 1999. Springer-Verlag.

[16] Michael R. Garey and David S. Johnson. Computers and Intractability. Bell

Telephone Laboratories, 1979.

[17] Susanne Graf and Hassen Säıdi. Construction of abstract state graphs with pvs.

In CAV ’97: Proceedings of the 9th International Conference on Computer Aided

Verification, pages 72–83, London, UK, 1997. Springer-Verlag.

[18] C.A.R. Hoare. An axiomatic basis for computer programming. Communications

of the ACM, 12:576–80,583, 1969.

[19] James Ivers and Natasha Sharygina. Overview of comfort: A model checking rea-

soning framework. Technical Report CMU/SEI-2004-TN-018, Carnegie Mellon

Software Engineering Institute, 2004.

[20] Ranjit Jhala and Rupak Majumdar. Path slicing. In PLDI ’05: Proceedings

of the 2005 ACM SIGPLAN conference on Programming language design and

implementation, pages 38–47, New York, NY, USA, 2005. ACM Press.

[21] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.

Prentice Hall, 2nd edition, 1988.

40

[22] Magic website. http://www.cs.cmu.edu/~chaki/magic.

[23] George C. Necula, Scott McPeak, S.P. Rahul, and Westley Weimer. Cil: Inter-

mediate language and tools for analysis and transformation of c programs. In

Proceedings of Conference on Compiler Construction, 2002.

[24] Luke Ong. Automata, logic & games lecture notes. Hilary Term 2005.

[25] Ravi Sethi. A note on implementing parallel assignment instructions. Informa-

tion Processing Letters, 2:91–95, 1973.

[26] Slam website. http://research.microsoft.com/slam.

41

Appendix A

OCaml code for functional
atomiser algorithm

The following code is suitable for integration into the Berkeley CIL[23] transformation

tool. It is written in the OCaml functional programming language.

(*

* Atomizer

*

* A tool to conservatively utilize parallel assignment statements.

* Implemented as a visitor method for statement objects through the

* Berkeley CIL tool.

*

*)

open Pretty

open Cil

(** An atomizer to combine parallel assignment statements. *)

(* Statistics Counters *)

let stat_parassign = ref 0

let stat_assign = ref 0

(** The function that will be called with parallelizable assignment

statements as arguments. This can be defined as a MACRO to put it

into whatever format is desired. *)

42

let atomize_fun = emptyFunction "CAN_ATOMIZE"

let atomize_exp = (Lval((Var(atomize_fun.svar)),NoOffset))

(** Convert a list of instructions into a list of expressions with

lvalues on the even numbered points of the list, and the assignment

expressions on the odd numbered points of the list. *)

let mkExpList (l : instr list) =

(** Convert an assignment instruction to an lvalue/expression pair. *)

let mkExp (i : instr) : exp list =

match i with

| Set (lv,e,l) -> stat_assign := !stat_assign + 1; Lval lv :: e :: []

| _ -> []

in

List.concat (List.map mkExp l)

(** Create an instruction from a list of instructions that can be

evaluated in parallel. If there is more than one element in the list,

output a call to the atomize function with each of the assignments

passed as an argument to the atomizefunction. If there is only one

element in the list, simply output that instruction. *)

let myInstr (l : instr list) =

if List.length l > 1 then begin

stat_parassign := !stat_parassign + 1;

(Call(None,atomize_exp,mkExpList l,locUnknown))

end else

List.hd l

(** Recursively builds a list of lvalues present in the given expression. *)

let rec buildVarList (e : exp) : Cil.lval list =

match e with

| Lval l -> l :: []

| UnOp (u, expr1, t) -> buildVarList expr1

| BinOp (b, expr1, expr2, t) -> buildVarList expr1 @ buildVarList expr2

| _ -> []

43

let rec arrayHelper (off: offset) : Cil.lval list =

match off with

| Index (exp,offset2) -> buildVarList exp @ arrayHelper offset2

| _ -> []

(** Recursively build a list of lvalues present in array indices *)

let rec buildArrayVarList (e : exp) : Cil.lval list =

match e with

| Lval (host,offset) -> arrayHelper offset

| UnOp (u, expr1, t) -> buildArrayVarList expr1

| BinOp (b, expr1, expr2, t) -> buildArrayVarList expr1 @ buildArrayVarList expr2

| _ -> []

let arrayHelperLHS (host, offset) = (arrayHelper offset)

let buildRval (i: instr) : lval list =

match i with

| Set(lval, exp, loc) ->

buildVarList exp @ buildArrayVarList exp @ arrayHelperLHS lval

| _ -> []

let rec compare_lval_offset offset1 offset2 : bool =

match offset1,offset2 with

| NoOffset,_ -> true

| _,NoOffset -> true

| Field(fieldinfo1,newoffset1),Field(fieldinfo2,newoffset2) ->

(fieldinfo1.fname = fieldinfo2.fname) &&

(compare_lval_offset newoffset1 newoffset2)

| Field(fieldinfo1,newoffset1),Index(exp2,newoffset2) -> false

| Index(exp1,newoffset1),Field(fieldinfo2,newoffset2) -> false

| Index(exp1,newoffset1),Index(exp2,newoffset2) -> true

(* This is conservatively wrong, we need to traverse the expression and see if it

(fieldinfo1 = fieldinfo2) &&

(compare_lval_offset newoffset1 newoffset2)

*)

44

(** Compare two lvalues and determine if they refer to the same

variable. This may need to recurse in case there are structures or

arrays involved, as we should consider ’mystruct.x’ and ’mystruct.x.y’

as referring to the same variable here. *)

let rec compare_lval (lhost1, loffset1) (lhost2, loffset2) : bool =

if (compare lhost1 lhost2) = 0 then compare_lval_offset loffset1 loffset2

(* this means a.x and a are the same. but also a.x.p and a.x.q, which is wrong *)

else false

(* let rec compare_lval (lhost1, loffset1) (lhost2, loffset2) : bool =

if (lhost1 = lhost2) then true

else false

*)

(* Remember: equality between cyclic data structures does not terminate! *)

let rec intersect (l1: ’a list) (l2: ’a list) : bool =

if (l1 = []) then false

else (List.exists (function x -> compare_lval (List.hd l1) x) l2) ||

(intersect (List.tl l1) l2)

(** A class to visit statements in the abstract syntax tree and

parallelize those sequential assignment statements that the dependency

graph allows. *)

class blockAtomizeVisitor = object (self)

inherit nopCilVisitor

(** The list of lvalues present in the running list of sequential

assignments that can be parallelized. *)

val mutable lhsList : Cil.lval list = []

val mutable rhsList : Cil.lval list = []

(** Initializes the running list of lvalues on the left hand side of

the list of parallelized assignment statements. If the first

instruction is a Set, then the list is initialized with the lvalue on

the left hand side of the Set. Otherwise, it is initalized to the

empty list. *)

45

method private initLists (s1: instr) : unit =

match s1 with

| Set(lval, exp, loc) ->

lhsList <- lval :: [];

rhsList <- buildRval s1

| _ -> lhsList <- []

(** Decision function that returns true if the two given

instructions are both assignment statements and the dependency graph

of the variables allows them to be parallelized. If so, it also

updates the running list of lvalues on the left hand side of the

parallelized assignment statement. *)

method private canAtomize (s1: instr) (s2: instr) : bool =

match s1, s2 with

| Set(lval, exp, loc), Set(lval2, exp2, loc2) ->

let rval1 = buildRval s1

in

let rval2 = buildRval s2

in

if ((intersect lhsList rval2) ||

(List.exists (function x -> compare_lval lval2 x) rhsList))

then begin (* can’t atomize, set lhs for next iteration *)

lhsList <- lval2 :: [];

rhsList <- rval2;

false

end else begin (* can atomize, append to lhs *)

if !Errormsg.verboseFlag then

ignore (warn "can atomize:\n%a@!--and--\n%a@!" d_instr s1 d_instr s2);

lhsList <- lval2 :: lhsList;

rhsList <- rval2 @ rhsList;

true

end;

| _ -> false;

(** Visitor method for statement objects. For those statements that

are lists of instructions, this visitor seeks out atomizable

46

sequential assignment statements and rebuilds the statement in

parallelized form. *)

method vstmt (s: stmt) : stmt visitAction =

let myList = ref []

in

let myParList = ref []

in

match s.skind with

(* Here, we need to iterate over the list building up a new

list of atomized instructions. *)

| Instr(l) ->

(* if s.labels = [] then () else Printf.printf "We have labels!\n"; *)

if (List.length l > 0) then begin

let myinstrs = Array.of_list l

in

let i = ref 0

in

if !Errormsg.verboseFlag then

Printf.printf " - len of array = %d\n" (Array.length myinstrs);

(* Maintain a new list of instructions, including list of lists of

instrs for parallel case, and then update the stmt to point

to this new list of instrs after the while loop. *)

self#initLists myinstrs.(!i);

myParList := myinstrs.(!i) :: [];

while !i < (Array.length myinstrs - 1) do

if (self#canAtomize myinstrs.(!i) myinstrs.(!i + 1))

then begin

myParList := myinstrs.(!i + 1) :: !myParList;

end

else begin

(* Output the parallel list which has ended, and begin

a new parallel list. That is, append a new

instruction which is a parallelized version of

47

myParList onto MyList *)

myList := (myInstr !myParList) :: !myList;

myParList := myinstrs.(!i + 1) :: [];

end;

i := !i + 1

done;

(* In either case we have a myParList with some

instructions, so we should generate a new

instruction of myParList and append it to myList. *)

myList := (myInstr !myParList) :: !myList;

if !Errormsg.verboseFlag then

Printf.printf "mylist.length : %d\n" (List.length !myList);

(* We cannot create a new statement and use ChangeTo

here, or else any goto statements that pointed to

this statement would get confused and print out

__invalid_label. *)

s.skind <- Instr (List.rev !myList);

DoChildren

end

else DoChildren

| _ -> DoChildren

end

let feature : featureDescr =

{ fd_name = "atomize";

fd_enabled = Cilutil.atomize;

fd_description = "parallelize sequential assignment statements";

fd_extraopt = [];

fd_doit =

48

(function (f: file) ->

if not !Cilutil.makeCFG then begin

Errormsg.s (Errormsg.error "--doatomize: you must also specify --domakeCFG\n")

end;

let blockAtomizer = new blockAtomizeVisitor in

visitCilFileSameGlobals blockAtomizer f;

Printf.printf "Total Assignments: %d\nParallel Assignments: %d\n" !stat_assign !stat_parassign;

);

fd_post_check = true;

}

49

Appendix B

C code for imperative atomiser
algorithm

/*

* Atomize

*

* An algorithm to identify and combine sequential assignment

* statements that are suitable for parallelization.

*

*/

#include <stdio.h>

#include <stdlib.h>

#include <string.h>

#include "common.h"

#include "cfg.h"

extern int f_verbose;

extern char string_tbl[]; /* string space, and pointers into it */

/* Data structure for binary parse tree */

typedef struct s_parsetree {

int thistoken;

attr_t attr; /* contains type, value for consts,

* and symbol table entry for

50

* variables. */

struct s_parsetree *child1;

struct s_parsetree *child2;

struct s_parsetree *next;

struct s_parsetree *prev;

} parsetree_t;

/* Data structure for holding the list of variables and parse tree of

* a given expression. */

typedef struct s_parlist {

parsetree_t *root; /* root of this assignment statement

* syntax tree. */

struct varlist_entry *lhs; /* linked list of vars on LHS */

struct varlist_entry *rhs; /* linked list of vars on RHS */

struct s_parlist *next;

} parlist_t;

typedef struct s_expression {

parsetree_t *tree; /* parse tree, with ’=’ as root */

struct s_expression *next;

} expression_t;

typedef enum {stmt_expression, stmt_expression_list, stmt_labeled} statementtype_t;

typedef struct s_expressionlist {

int length;

expression_t *first;

expression_t *last;

} expressionlist_t;

51

typedef struct s_statement {

statementtype_t type;

union {

expression_t *exp;

expressionlist_t *explist;

} ptr;

struct s_statement *next;

} statement_t;

typedef struct s_statementlist {

int length;

statement_t *first;

statement_t *last;

} statementlist_t;

/*

* atomizeCFG(cfgNode_t *cfg)

*

* Atomize a basic block (node of a CFG). The basic block is assumed

* to not contain any labels or branches.

*/

void

atomizeCFG(cfgNode_t *cfg) {

statementlist_t *stmtlist;

statement_t *stmt, *temp;

parlist_t *parList, *nextparList;

if (cfg == NULL)

return;

if (cfg->stmtlist == NULL)

return;

52

stmtlist = cfg->stmtlist;

stmt = stmtlist->first;

while (stmt->next != NULL) {

if ((stmt->type != stmt_expression) ||

(stmt->next->type != stmt_expression))

continue;

/* For each expression, generate a list of variables

* that is read from or written to in the assignment.

* For example, in ’array[x] = y’ we would have

* ’array’ on the lhs list and ’x’ and ’y’ on the rhs

* list. */

parList = mkParList(stmt->ptr.exp->tree);

nextparList = mkParList(stmt->next->ptr.exp->tree);

if (can_atomize(parList, nextparList)) {

/* Greedy algorithm. Combine these two, then

* compare amalgamation with next

* statement. */

stmt->ptr.exp->tree = mkTree(MY_PARALLEL_OP,

stmt->ptr.exp->tree, stmt->next->ptr.exp->tree);

temp = stmt->next->next;

/* Cleanup */

free(stmt->next->ptr.exp);

free(stmt->next);

freeParList(parList);

freeParList(nextparList);

/* Rather than freeing all of this stuff, the

* first list can be reused so we don’t have

53

* to calculate it again in the next iteration

* of the loop, as in the older algorithm at

* the bottom of this file. */

stmt->next = temp;

} else {

stmt = stmt->next;

}

}

}

/*

* can_atomize(list1, list2) - returns a boolean decision as to

* whether two assignment statements can be parallelized.

*

* list1 and list2 contain variables used in the first and second

* assignment statements. Each list has both an lhs and rhs member.

* Intitially, the lhs contains only one variable that is being

* assigned to. However, if this assignment has already been

* parallelized then it may contain more than one variable in the lhs

* list. i.e. x = y + z ||| w = u - v, then {x,w} in LHS and

* {y,z,u,v} in RHS.

*/

int

can_atomize(parlist_t *list1, parlist_t *list2) {

if ((list2 == NULL) || (list1 == NULL))

return 0;

return !(compare_sides(list1->lhs, list2->rhs) ||

compare_sides(list2->lhs, list1->rhs));

}

/*

* compare_sides(varlist_entry *lhs, varlist_entry *rhs)

*

54

* returns 1 if any variable from the left hand side list occurs in

* the right hand side list.

*/

int

compare_sides(struct varlist_entry *lhs, struct varlist_entry *rhs) {

struct varlist_entry *temp_lhs;

struct varlist_entry *temp_rhs;

/* foreach variable on the left hand side. */

for (temp_lhs = lhs; temp_lhs != NULL; temp_lhs = temp_lhs->next) {

for (temp_rhs = rhs; temp_rhs != NULL; temp_rhs = temp_rhs->next)

if (compare_var(temp_lhs, temp_rhs))

return 1;

}

}

return 0;

}

/*

* compare_var(varlist_entry *left, varlist_entry *right)

*

* returns 1 if the variables are the same. For simple scalars this

* is easy, but is slightly more involved for structures, where for

* example we may have ’myStruct->member->a’ and ’myStruck->member’

* being compared.

*/

int

compare_var(struct varlist_entry *left, struct varlist_entry *right) {

if ((left == NULL) || (right == NULL))

return 0;

if (left->type != right->type) {

return 0;

} else {

55

if (left->type == structure_t) {

return compare_struct(left->structure,

right->structure);

} else {

return (left->symb == right->symb);

}

}

}

/*

* Compare if two structures are the same or not. return 1 if the same.

*

* At this point, just check the base struct name, not any members.

*/

int

compare_struct(struct varlist *left, struct varlist *right) {

if ((left == NULL) || (right == NULL) ||

(left->head == NULL) || (right->head == NULL))

return 0;

return compare_struct_helper(left->head, right->head);

}

/*

* This screams out for a recursive solution. Recursively check

* deeper levels of structure/member referencing until one is

* different.

*/

int

compare_struct_helper(struct varlist_entry *left, struct varlist_entry *right) {

/* check this level */

if (left->symb != right->symb)

return 0;

56

/* same at this level, i.e a.b and a.c */

/* what if one of the next levels is null */

if ((left->next == NULL) || (right->next == NULL))

return 1; /* they they are the same. */

/* otherwise we have more levels to check. */

return compare_struct_helper(left->next, right->next);

}

void

append_varlist(struct varlist_entry *list, struct varlist_entry *new) {

struct varlist_entry *temp;

if (list == NULL) {

list = new;

return;

}

temp = list;

while (temp->next != NULL)

temp = temp->next;

temp->next = new;

}

void

merge_varlist(struct varlist *vlist, struct varlist *add) {

struct varlist_entry *temp;

if ((add == NULL) || (add->head == NULL))

return;

if (vlist->head == NULL) {

vlist->head = add->head;

57

vlist->tail = add->tail;

} else {

temp = vlist->head;

while (temp->next != NULL)

temp = temp->next;

temp->next = add->head;

vlist->tail = add->tail;

}

}

/*

* push a variable onto the parallelized list.

*/

void

push_varlist(struct varlist *varlist, struct symbol_rec *var, type_t type) {

struct varlist_entry *temp;

if (varlist->head == NULL) {

varlist->head = (struct varlist_entry *)

malloc(sizeof(struct varlist_entry));

memset(varlist->head, 0, sizeof(struct varlist_entry));

varlist->head->type = type;

varlist->head->symb = var;

varlist->head->next = NULL;

varlist->tail = varlist->head;

} else {

temp = varlist->head;

while (temp->next != NULL) {

temp = temp->next;

}

temp->next = (struct varlist_entry *)

malloc(sizeof(struct varlist_entry));

memset(temp->next, 0, sizeof(struct varlist_entry));

temp = temp->next;

58

temp->symb = var;

temp->next = NULL;

}

}

/*

* push a structure onto the parallelized list.

*/

void

push_varlist_struct(struct varlist *varlist, struct varlist *structure) {

struct varlist_entry *temp;

if (varlist->head == NULL) {

varlist->head = (struct varlist_entry *)

malloc(sizeof(struct varlist_entry));

memset(varlist->head, 0, sizeof(struct varlist_entry));

varlist->head->type = structure_t;

varlist->head->structure = structure;

varlist->head->next = NULL;

} else {

temp = varlist->head;

while (temp->next != NULL) {

temp = temp->next;

}

temp->next = (struct varlist_entry *)

malloc(sizeof(struct varlist_entry));

memset(temp->next, 0, sizeof(struct varlist_entry));

temp = temp->next;

temp->structure = structure;

temp->next = NULL;

}

}

/*

59

* mkVarList(list, tree) - builds a list of variables used in an

* expression (tree).

*/

struct varlist *

mkVarList(parsetree_t *tree) {

struct varlist *structure;

struct varlist *varlist;

if (tree == NULL)

return NULL;

varlist = (struct varlist *)malloc(sizeof(struct varlist));

memset(varlist, 0, sizeof(struct varlist));

if (tree->attr.type == structure_t) {

structure = (struct varlist *)malloc(sizeof(struct varlist));

memset(structure, 0, sizeof(struct varlist));

mkStruct(structure, tree);

push_varlist_struct(varlist, structure);

return varlist;

}

if (tree->attr.type == array_t) {

if (f_verbose)

printf("array!\n");

/* push the name of the array onto the stack */

/* This doesn’t work properly if this array is in a

* structure, for example a.b[3]. This need to

* integrate with the symbol table code better. */

merge_varlist(varlist, mkVarList(tree->child1));

60

/* These variables should be on RHS even if they are

* on LHS however! array[x] = 9 means x is not

* modified */

return varlist;

}

if ((tree->child1 == NULL) && (tree->child2 == NULL)) {

if (tree->attr.var == 1) {

push_varlist(varlist, tree->attr.val.pval, int_t);

return varlist;

}

} else {

merge_varlist(varlist, mkVarList(tree->child1));

merge_varlist(varlist, mkVarList(tree->child2));

return varlist;

}

return varlist;

}

/*

* Return a list of variables in the array indices of tree.

*/

struct varlist *

arrayIndexList(parsetree_t *tree) {

struct varlist *varlist;

if (tree == NULL)

return NULL;

varlist = (struct varlist *)malloc(sizeof(struct varlist));

memset(varlist, 0, sizeof(struct varlist));

if (tree->attr.type == array_t) {

61

merge_varlist(varlist, mkVarList(tree->child2));

return varlist;

}

merge_varlist(varlist, arrayIndexList(tree->child1));

merge_varlist(varlist, arrayIndexList(tree->child2));

return varlist;

}

void

freeParList(parlist_t *list) {

if (list == NULL)

return;

freeVarEntry(list->rhs);

freeVarEntry(list->lhs);

free(list);

}

void

freeVarList(struct varlist *varlist) {

struct varlist_entry *temp;

if (varlist == NULL)

return;

temp = varlist->head;

freeVarEntry(temp->next);

free(temp);

free(varlist);

}

void

freeVarEntry(struct varlist_entry *var) {

if (var == NULL)

return;

62

freeVarEntry(var->next);

free(var);

}

/*

* mkParList(tree) - Takes an abstract syntax tree for an assignment statement

* and returns a list of variables used on the LHS and the RHS.

*/

parlist_t *

mkParList(parsetree_t *tree) {

parlist_t *list;

struct varlist *varlist;

if (tree == NULL)

return NULL;

list = (parlist_t *)malloc(sizeof(parlist_t));

memset(list, 0, sizeof(parlist_t));

list->root = tree;

/* even for a single assignment, there can be multiple

* variables on LHS. For example, a[x], and other expressions

* with variables for array indices. No, x acts like RHS in

* such a case. */

varlist = mkVarList(tree->child1);

list->lhs = varlist->head;

free(varlist);

varlist = mkVarList(tree->child2);

merge_varlist(varlist, arrayIndexList(tree->child1));

63

merge_varlist(varlist, arrayIndexList(tree->child2));

list->rhs = varlist->head;

free(varlist);

return list;

}

/*

* mkStruct - return a structure datatype that describes the structure

* variable passed in through the parse tree ’tree’. The root of

* ’tree’ is expected to be a TOK_ARROW or TOK_DOT token that

* separates one part of an identifier (the base structure) from the

* field.

*/

void

mkStruct(struct varlist *vlist, parsetree_t *tree) {

struct varlist_entry *temp;

if (tree == NULL)

return;

/* if current node is a leaf, add to stack, otherwise call on

* children in order. */

if ((tree->child1 == NULL) && (tree->child2 == NULL)) {

temp = vlist->tail;

vlist->tail = (struct varlist_entry *)

malloc(sizeof(struct varlist_entry));

memset(vlist->tail, 0, sizeof(struct varlist_entry));

vlist->tail->symb = tree->attr.val.pval;

if (temp == NULL) {

vlist->head = vlist->tail;

64

} else {

temp->next = vlist->tail;

}

} else {

mkStruct(vlist, tree->child1);

mkStruct(vlist, tree->child2);

}

return;

}

65

