
Alexander Chernikov <melifaro@FreeBSD.org>, September 2022

Netlink for FreeBSD



Agenda

• Motivation


• Netlink overview


• Implementation overview


• Next steps


• Q&A



Network configuration actors

• Who manages runtime network configuration?


• Users?


• Software?



Network configuration actors
• Who manages runtime network configuration?


• Users


• Software 

• NetworkManager, dhcp, ..


• Routing Software (Bird,Frr,GoBGP,mpd,…)


• Containers (containerd, …)


• UIs (pfsense/OpnSense, …)



Existing management APIs
• system(“/sbin/ifconfig”)


• Some tools provide structured output


• Limited portability


• Ioctls / sysctls


• Primary kernel interface


• Low-level, limited documentation


• Limited portability (partially compatible with other *BSDs)


• Synchronous


• Limited extendability



Existing management APIs #2
• Routing socket


• Compatible across *BSDs


• Largely non-extendable


• RTM_VERSION was last bumped 28 years ago


• Synchronous


• Libraries


• libifconfig, libjail


• Largely exposes the same low-level API


• FreeBSD-specific


• Devd


• Event notifications via system(“”)



Management APIs we provide #3

• Kernel Notifications - rtsock


• Compatible across *BSDs


• Largely non-extendable


• Kernel Notifications - Devd


• Event notifications via system(“/some/script”)


• “Subscription” requires configuration changes


• Undocumented devd.pipe interface



Users of the APIs

• Management software is not only C:


• Go, Python, Rust


• APIs need to ported/tested to start their adoption


• Making new (or old) APIs usable is an effort


• Making APIs easily usable is a significant effort 



Summary

• Software layer is the important management mechanism


• APIs we provide are extremely important


• We can do better with APIs



APIs: Netlink
• User<>kernel TLV-based communication protocol


• Defined in RFC 3549


• Supports large dumps and notifications


• Fully asynchronous


• Easily extendable


• Offers reasonable network object models


• High-level CRUD-like APIs


• Can serve as API broker between drivers and userland



APIs: Netlink #2

• De-facto standard in Linux networking


• interfaces, routes, neighbors, smb, macsec, gtp, wireguard, tcp_metrics,..


• Used in other areas


• acpi, vfs, raid, thermal, devlink



What FreeBSD gets from Netlink
• API compatibility with applications relying on Netlink


• Support in go/rust/python netlink abstraction libraries


• Reduce the barrier for app developers to support FreeBSD


• Low-effort support the direct netlink consumers


• net/bird required only headers change to switch to FreeBSD netlink


• Easy interface extendability without breaking old ioctl/rtsock interfaces


• Reduce the barrier for bringing new functionality


• Reduce the barrier for exporting data from drivers


• Standard way of providing userland notifications



• Socket-based


• 16-byte netlink header


• Family header (8-16 bytes)


• Followed by the list of TLVs


• TLVs can be nested


• 32-bit aligned


• Fully async


• operation result is a message

Netlink protocol



• Netlink core suggests CRUD-like object model


• Commands are informally classified into GET/
NEW/DELETE


• Command flags extends the meaning


• Create (“NEW” / “UPDATE”) 


• REPLACE / EXCL to deal with existing object


• CREATE to create if not exists


• APPEND to extend an object


• GET (“READ”)


• Dumps all or matching entries


• DELETE


• Deletes matching object

Netlink ops model



Relevant netlink families

• NETLINK_ROUTE


• First and the biggest (100+ messages)


• Most of “classic” network management is here


• NETLINK_GENERIC


• “Container” family


• Used to declare other families “on the fly”


• String family / group names


• Single socket can interface with any sub-family



NETLINK_ROUTE



• New NETLINK_GENERIC family


• App can communicate within 
multiple families


• Single socket


• Tiny family header


• Families and notification groups 
are strings


• All new customers adopts 
GENERIC netlink

Generic netlink



FreeBSD implementation



Implementation overview
• Derived from 2021 GSoC project by Ng Peng Nam Sean


• Kernel module


• Implements subset of NETLINK_ROUTE family


• Routes, nexthops, interfaces, neighbours


• Notifications for all of the above


• NETLINK_GENERIC framework


• Base “nlctrl” family implemented


• KPI for loading/unloading families


• Code: D36002

https://reviews.freebsd.org/D36002


Implementation overview #2
• Async processing


• Per-socket dispatch taskque


• Allows to call code with M_WAITOK


• Useful to call interface ioctls


• Locking


• Per-socket lock & sockbuf lock


• Reading/writing does not block message dispatching


• No global locks on fast path



• Framework handles all parsing


• Pre-defined parsers for 
common types


• Nested parsers supported


• Detailed error reporting

Message parsing



• Convenient writing KPI


• No message size limits


• Contiguous message space


• Transparently uses mbufs / 
buffers

Message writing



• Biggest state dump: IPv4 full-
view


• AMD Ryzen 7 3700X VM


• HEAD from September, with 
default debug options


• Dedicated C binary reading 
dump


• Size reported by binary, time - 
‘time’


• Netlink RX buffer size=8k

Performance: reading



• Biggest state insertion: IPv4 full-
view


• AMD Ryzen 7 3700X VM


• HEAD from September, with 
default debug options


• net/bird with netlink patch


• Timing reported by bird IO cycle

Performance: writing



Linux ABI compatibility
• Protocol is compatible, but some OS constants differs


• Routing tables: fib 0 vs fib 254


• AF_INET6 value is different


• Interface, interface address flags are different


• Error numbers are different


• Need to rewrite messages both ways


• linux_common depends on netlink 


• 3 hooks to rewrite messages to/from Linux


• Supports resizing (adding/deleting TLVs etc)


• ip(8) works fine for the supported netlink messages



Next steps
• Consider making Netlink the default management API in FreeBSD 14


• Convert all our tools (route, netstat, ifconfig, apr, ndp)


• netstat example: D36529


• Keep rtsock and ioctls compatibility 

• Events from rtsock commands are propagated to Netlink


• And vice versa


• Make rtsock loadable module


• Compile under COMPAT_FREEBSD1<4|5>

https://reviews.freebsd.org/D36529


Questions?

Alexander Chernikov <melifaro@FreeBSD.org> , September 2022

mailto:melifaro@FreeBSD.org

