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• Generic ATA
– Generic ATA controller - is just a continuation of 16bit ISA

bus, allowing CPU directly access ATA device registers;
– Controller is transparent and knows nothing about

commands or requests;
– PIO mode data transfer is just a direct CPU access to the

device data register. ISA DMA controller does the same, but
in hardware;

– As soon as DMA uses different bus protocol, ATA has
specific commands for it, different from PIO;

– master/slave addressing is just one bit of device register,
controller is unaware of it, as result, no shared bus access, no
bus arbitration, devices can’t be accessed in parallel;

– Generic PCI ATA controllers switched to BusMastering for
DMA and added 32bit register access to speedup PIO. No
architecture changes.



• ATA(4) was started more then 10 years ago and it was tuned to
support generic ATA controllers with all their specifics:
– controller is completely transparent and is not aware of

command processing, as result, command protocol
implemented in software, no any offload or queueing;

– ATAPI adds ability to transport SCSI commands over ATA
bus by adding PACKET command with specific command
protocol, but keeps all ATA bus negotiation and
management.

– Late ATA adds TCQ support, but it wasn’t effective due to
lack of hardware support in controller. ATA(4) doesn’t
support it.



• SATA 1.x
– SATA introduces new bus protocols, made to transport

abstract frames - FIS (Frame Information Structure).
– Now controller should be aware of commands (full sets of

Command Registers) to generate command FIS properly and
responsible for incoming FIS parsing.

– Legacy ATA compatibility implemented via set of shadow
registers. Bus protocol now completely separated from
controller API.

– Unluckily, to make transition easier, new logical bus
protocol is still based on the same set of register transfers as
before. No new functionality added, except new serial link
control.



• SATA 1.x NCQ
– SATA deprecates TCQ and introduces NCQ (not mandatory

for 1.x). NCQ implies hardware queue handling to be
implemented by controller using First Party DMA
mechanism.

– NCQ introduces two new ATA commands READ FPDMA
QUEUED and WRITE FPDMA QUEUED with different
completion reporting scheme and error recovery. There is no
NCQ variant for ATAPI.



• AHCI
– AHCI is a SATA-only controllers without legacy support.
– AHCI removes PIO support. PIO transfer requests now also

handled by controller using BusMastering.
– Every SATA port operates independently, no master/slave.
– AHCI handles queue of up to 32 commands per port in

hardware. Both NCQ and regular commands could be
queued, but not at the same time.

– AHCI is now de-facto standard for on-board SATA
controllers, but most of controllers also have legacy
emulation mode. Emulation mode hides most of AHCI
features.



• SATA 2.x
– This standard doubles interface speed, makes NCQ support

mandatory and allows to connect up to 15 devices to single
controller port, using Port Multipliers (PMP).

– PMP works alike to VLAN-capable Ethernet switch,
distributing FISes using 4bit field in FIS header on the way
down and populating it on the way up.

– To properly fill/parse that field, HBA should have PMP
support.

– Initiall AHCI unable to track status of several drives beyond
PMP, so they can’t work in parallel, even using NCQ.

– FIS-based switching capability was introduced at AHCI 1.2,
to address that issue, but none of existing AHCI HBAs
support it yet.

– SATA 2.x SiliconImage HBAs have own API and support
FIS-based switching to effectively use PMP.



• Few words about SAS:
– SAS electrically compatible SATA,
– SAS uses different protocol, based on SCSI commands,
– SAS allows port bundling to reach higher bandwidth,
– SAS supports much more devices, using Expanders.

Expanders could cascade.
– SAS HBAs could emulate SATA protocol to support SATA

drives,
– SAS Expanders could tunnel SATA protocol to support

SATA drives.



• Main technology improvements:
– new controllers use completely different API,
– SATA controllers support command queueing,
– SATA controllers and disks support NCQ,
– SATA 2.x controllers support PMP and FIS-based

switching,
– ATAPI is able to tunnel SCSI commands over ATA.
– SAS controllers support SATA protocol, allowing SATA

disks to be connected,
– SAS Expanders could tunnel SATA protocol over SAS,

• Most of this features are not supported by ATA(4).



• ATA(4) structure
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• Original CAM(4) structure

...

XPT

sesXsaXcdXdaX

atapicam

passX

aha umass ahc

Periph drivers.

Transport: Command queues. Bus management. Error handling.

GEOM User-level

PCIISA USB ATA(4)

SCSI Interface Modules (SIM): Controller hardware drivers.



• Updated CAM(4) structure
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Interface Modules: Controller hardware drivers.

Bus management. Specific error handling.



• ahci(4) supports:
– most of modern on-board, and some add-in SATAs,
– up to 32 commands queue,
– NCQ,
– PMP (without FIS-based switching yet, no hardware),
– MSI (one or multiple vectors),
– Command Completion Coalescing (if somebody wish),
– effective SATA power management,
– I/Os of any size, up to MAXPHYS



• siis(4) supports:
– several chips (3124 - fast PCI-X, 3132/3531 - moderate

PCIe x1)
– up to 31 queued commands
– NCQ
– PMP (_with_ FIS-based switching)
– MSI not working for some reason for me now
– minimal SATA power management
– I/Os of any size, up to MAXPHYS



• wrapped ata(4) supports:
– legacy chips,
– no queued commands,
– no NCQ,
– no PMP (require a lot of cleanup, difficult to keep compat),
– MSI supported for some controllers,
– minimal SATA power management,
– I/Os up to 64/128K



• How it looks now (device list):



• How it looks now (camcontrol identify):



• Performance:
– Number of linear 512b reads per second from OCZ Vertex

SSD on ICH8 AHCI HBA, for different number of threads.
Generic ATA(4), CAM w/o NCQ and CAM with NCQ.



• Burst performance:
– 2xSiI3124 PCI-X cards with 10 drives on 4 PMPs and give

up to 1GB/s burst performance. Generic ata(4) gave about
240MB/s.



• Questions?


