
CAM-based ATA implementation

Alexander Motin
mav@FreeBSD.org



• Generic ATA
– Generic ATA controller - is just a continuation of 16bit ISA

bus, allowing CPU directly access ATA device registers;
– Controller is transparent and knows nothing about

commands or requests;
– PIO mode data transfer is just a direct CPU access to the

device data register. ISA DMA controller does the same, but
in hardware;

– As soon as DMA uses different bus protocol, ATA has
specific commands for it, different from PIO;

– master/slave addressing is just one bit of device register,
controller is unaware of it, as result, no shared bus access, no
bus arbitration, devices can’t be accessed in parallel;

– Generic PCI ATA controllers switched to BusMastering for
DMA and added 32bit register access to speedup PIO. No
architecture changes.



• ATA(4) was started more then 10 years ago and it was tuned to
support generic ATA controllers with all their specifics:
– controller is completely transparent and is not aware of

command processing, as result, command protocol
implemented in software, no any offload or queueing;

– ATAPI adds ability to transport SCSI commands over ATA
bus by adding PACKET command with specific command
protocol, but keeps all ATA bus negotiation and
management.

– Late ATA adds TCQ support, but it wasn’t effective due to
lack of hardware support in controller. ATA(4) doesn’t
support it.



• SATA 1.x
– SATA introduces new bus protocols, made to transport

abstract frames - FIS (Frame Information Structure).
– Now controller should be aware of commands (full sets of

Command Registers) to generate command FIS properly and
responsible for incoming FIS parsing.

– Legacy ATA compatibility implemented via set of shadow
registers. Bus protocol now completely separated from
controller API.

– Unluckily, to make transition easier, new logical bus
protocol is still based on the same set of register transfers as
before. No new functionality added, except new serial link
control.



• SATA 1.x NCQ
– SATA deprecates TCQ and introduces NCQ (not mandatory

for 1.x). NCQ implies hardware queue handling to be
implemented by controller using First Party DMA
mechanism.

– NCQ introduces two new ATA commands READ FPDMA
QUEUED and WRITE FPDMA QUEUED with different
completion reporting scheme and error recovery. There is no
NCQ variant for ATAPI.



• AHCI
– AHCI is a SATA-only controllers without legacy support.
– AHCI removes PIO support. PIO transfer requests now also

handled by controller using BusMastering.
– Every SATA port operates independently, no master/slave.
– AHCI handles queue of up to 32 commands per port in

hardware. Both NCQ and regular commands could be
queued, but not at the same time.

– AHCI is now de-facto standard for on-board SATA
controllers, but most of controllers also have legacy
emulation mode. Emulation mode hides most of AHCI
features.



• SATA 2.x
– This standard doubles interface speed, makes NCQ support

mandatory and allows to connect up to 15 devices to single
controller port, using Port Multipliers (PMP).

– PMP works alike to VLAN-capable Ethernet switch,
distributing FISes using 4bit field in FIS header on the way
down and populating it on the way up.

– To properly fill/parse that field, HBA should have PMP
support.

– Initiall AHCI unable to track status of several drives beyond
PMP, so they can’t work in parallel, even using NCQ.

– FIS-based switching capability was introduced at AHCI 1.2,
to address that issue, but none of existing AHCI HBAs
support it yet.

– SATA 2.x SiliconImage HBAs have own API and support
FIS-based switching to effectively use PMP.



• Few words about SAS:
– SAS electrically compatible SATA,
– SAS uses different protocol, based on SCSI commands,
– SAS allows port bundling to reach higher bandwidth,
– SAS supports much more devices, using Expanders.

Expanders could cascade.
– SAS HBAs could emulate SATA protocol to support SATA

drives,
– SAS Expanders could tunnel SATA protocol to support

SATA drives.



• Main technology improvements:
– new controllers use completely different API,
– SATA controllers support command queueing,
– SATA controllers and disks support NCQ,
– SATA 2.x controllers support PMP and FIS-based

switching,
– ATAPI is able to tunnel SCSI commands over ATA.
– SAS controllers support SATA protocol, allowing SATA

disks to be connected,
– SAS Expanders could tunnel SATA protocol over SAS,

• Most of this features are not supported by ATA(4).



• ATA(4) structure

SiI

ata

astXafdXacdXadX

AHCI

atapicam

PCICardBus

Generic ATA

ISA

Periph drivers

Command queue. NewBus. IRQ, DMA. Error handling.

GEOM CAM

Bus management B. m.

PMP PMP

Quite fuzzy API

PCIISA CBus

B. m.



• Original CAM(4) structure

...

XPT

sesXsaXcdXdaX

atapicam

passX

aha umass ahc

Periph drivers.

Transport: Command queues. Bus management. Error handling.

GEOM User-level

PCIISA USB ATA(4)

SCSI Interface Modules (SIM): Controller hardware drivers.



• Updated CAM(4) structure

SAS

XPT

adaXsaXcdXdaX

ahci

pmpX

aha umass ahc siis

sesX

ata

passX

GEOM User-level

PCIISA USB ISA

ATASATASPI SAS

Periph drivers.

Transport: Command queues. Generic error handling.

Interface Modules: Controller hardware drivers.

Bus management. Specific error handling.



• ahci(4) supports:
– most of modern on-board, and some add-in SATAs,
– up to 32 commands queue,
– NCQ,
– PMP (without FIS-based switching yet, no hardware),
– MSI (one or multiple vectors),
– Command Completion Coalescing (if somebody wish),
– effective SATA power management,
– I/Os of any size, up to MAXPHYS



• siis(4) supports:
– several chips (3124 - fast PCI-X, 3132/3531 - moderate

PCIe x1)
– up to 31 queued commands
– NCQ
– PMP (_with_ FIS-based switching)
– MSI not working for some reason for me now
– minimal SATA power management
– I/Os of any size, up to MAXPHYS



• wrapped ata(4) supports:
– legacy chips,
– no queued commands,
– no NCQ,
– no PMP (require a lot of cleanup, difficult to keep compat),
– MSI supported for some controllers,
– minimal SATA power management,
– I/Os up to 64/128K



• How it looks now (device list):



• How it looks now (camcontrol identify):



• Performance:
– Number of linear 512b reads per second from OCZ Vertex

SSD on ICH8 AHCI HBA, for different number of threads.
Generic ATA(4), CAM w/o NCQ and CAM with NCQ.



• Burst performance:
– 2xSiI3124 PCI-X cards with 10 drives on 4 PMPs and give

up to 1GB/s burst performance. Generic ata(4) gave about
240MB/s.



• Questions?


