CAM-based ATA implementation

Alexander Motin
mav(@FreeBSD.org

* Generic ATA

— Generic ATA controller - is just a continuation of 16bit ISA
bus, allowing CPU directly access ATA device registers;

— Controller 1s transparent and knows nothing about
commands or requests;

— PIO mode data transfer 1s just a direct CPU access to the
device data register. ISA DMA controller does the same, but
in hardware;

— As soon as DMA uses different bus protocol, ATA has
specific commands for it, different from PIO;

— master/slave addressing 1s just one bit of device register,
controller 1s unaware of it, as result, no shared bus access, no
bus arbitration, devices can’t be accessed in parallel;

— Generic PCI ATA controllers switched to BusMastering for
DMA and added 32bit register access to speedup PIO. No
architecture changes.

« ATA(4) was started more then 10 years ago and it was tuned to
support generic ATA controllers with all their specifics:

— controller 1s completely transparent and 1s not aware of
command processing, as result, command protocol
implemented in software, no any offload or queueing;

— ATAPI adds ability to transport SCSI commands over ATA
bus by adding PACKET command with specific command
protocol, but keeps all ATA bus negotiation and
management.

— Late ATA adds TCQ support, but it wasn’t effective due to
lack of hardware support in controller. ATA(4) doesn’t
support it.

« SATA 1.x

— SATA introduces new bus protocols, made to transport
abstract frames - FIS (Frame Information Structure).

— Now controller should be aware of commands (full sets of
Command Registers) to generate command FIS properly and
responsible for incoming FIS parsing.

— Legacy ATA compatibility implemented via set of shadow
registers. Bus protocol now completely separated from
controller API.

— Unluckily, to make transition easier, new logical bus
protocol 1s still based on the same set of register transfers as
before. No new functionality added, except new serial link
control.

« SATA 1.xNCQ

— SATA deprecates TCQ and introduces NCQ (not mandatory
for 1.x). NCQ mmplies hardware queue handling to be
implemented by controller using First Party DMA
mechanism.

— NCQ introduces two new ATA commands READ FPDMA
QUEUED and WRITE FPDMA QUEUED with different
completion reporting scheme and error recovery. There 1s no
NCQ variant for ATAPI.

« AHCI

— AHCI 1s a SATA-only controllers without legacy support.

— AHCI removes PIO support. PIO transfer requests now also
handled by controller using BusMastering.

— Every SATA port operates independently, no master/slave.

— AHCI handles queue of up to 32 commands per port in
hardware. Both NCQ and regular commands could be
queued, but not at the same time.

— AHCI is now de-facto standard for on-board SATA
controllers, but most of controllers also have legacy
emulation mode. Emulation mode hides most of AHCI
features.

« SATA 2.x

— This standard doubles interface speed, makes NCQ support
mandatory and allows to connect up to 15 devices to single
controller port, using Port Multipliers (PMP).

— PMP works alike to VLAN-capable Ethernet switch,
distributing FISes using 4bit field in FIS header on the way
down and populating it on the way up.

— To properly fill/parse that field, HBA should have PMP
support.

— Initiall AHCI unable to track status of several drives beyond
PMP, so they can’t work 1n parallel, even using NCQ.

— FIS-based switching capability was introduced at AHCI 1.2,
to address that issue, but none of existing AHCI HBAs
support 1t yet.

— SATA 2.x Siliconlmage HBAs have own API and support
FIS-based switching to effectively use PMP.

* Few words about SAS:

— SAS electrically compatible SATA,

— SAS uses different protocol, based on SCSI commands,

— SAS allows port bundling to reach higher bandwidth,

— SAS supports much more devices, using Expanders.
Expanders could cascade.

— SAS HBAs could emulate SATA protocol to support SATA
drives,

— SAS Expanders could tunnel SATA protocol to support
SATA drives.

e Main technology improvements:

— new controllers use completely different API,

— SATA controllers support command queueing,

— SATA controllers and disks support NCQ,

— SATA 2.x controllers support PMP and FIS-based
switching,

— ATAPI is able to tunnel SCSI commands over ATA.

— SAS controllers support SATA protocol, allowing SATA
disks to be connected,

— SAS Expanders could tunnel SATA protocol over SAS,

* Most of this features are not supported by ATA(4).

 ATA(4) structure

GEOM CAM
adx acdX ‘ aLo!iX astX —latapicam
Periph drivers
| |
ata
Command queue. NewBus. IRO, DMA. Error handling.
Quite fuzzy API
Generic ATA Sil AHCI
Bus management B. m. B. m.
SA |CardBus| PCI PMP PMP
SA CBus PCI

Original CAM(4) structure

GEOM User-level
daX cdX saX sesX passX
Periph drivers.

XPT

Transport: Command queues. Bus management. Error handling.

aha umass ahc atapicam
SUSI Interface Modules (SIM): Contrgller hardware driviers.

ISA USB PCI ATA(4)

« Updated CAM(4) structure

GEOM

User-level

daX

cdX

saX

adaX

Periph drivers

pmpX

D

sesX

passX

XPT

Transport: Command queues. Generic error handling.

SPI rru
Bus manage

SATA

SAS
nt. Specific error handling.

aha

umass

Inter

ahc

race Module

SAS

s: Controller

ahci

hardware dr

SliS

VCIS.

ata

PCI

* ahci(4) supports:
— most of modern on-board, and some add-in SATAs,
— up to 32 commands queue,
- NCQ,
— PMP (without FIS-based switching yet, no hardware),
— MSI (one or multiple vectors),
— Command Completion Coalescing (if somebody wish),
— effective SATA power management,

— 1/Os of any size, up to MAXPHYS

* s118(4) supports:
— several chips (3124 - fast PCI-X, 3132/3531 - moderate
PClIe x1)
— up to 31 queued commands
— NCQ
— PMP (_with_ FIS-based switching)
— MSI not working for some reason for me now

— minimal SATA power management
— 1/Os of any size, up to MAXPHYS

« wrapped ata(4) supports:
— legacy chips,
— no queued commands,
— no NCQ,
— no PMP (require a lot of cleanup, difficult to keep compat),
— MSI supported for some controllers,
— minimal SATA power management,

— [/Os up to 64/128K

* How it looks now (device list):

%atacontrol list
1T No such file or directory

lun 0
lun 0
lun 0
2 lun
;15 lun
O lun 0
0 lun 0

m o W

t
t
t
]
t
t
t

M o M

* How 1t looks now (camcontrol identify):

%camcontrol identify adal
passd: <QCZ-VERTEX 1.30> ATA/ATAPI-7 SATA 2.x device

protocol ATA-ATAPT-7 SATA 2.
device model OCZ-VERTEX

gerial number HZ62LMLO36XYSDZVG1TI
firmware revision 1.30

cylinders 16383

heads 16

sectors~strack 63

LBA supported 125045424 gectors
LBA48 supported 125045424 gectors
FIO supported PIC4

DM& supported WOMAZ UDMAG

overlap not supported

Feature Support Enable Value
write cache Ve Ves

read ahead Ve Ves

Native Command Queuing (NCQ) Ve 31-0x1F
Tagged Command Queuing (TCQ) no no 31-0x1F
SMART Ves Ves

microcode download Ve Ves

gecurlity Ve no

power management ves VCE:

advanced power management no no 00200
automatic acoustic management no no 0000 0.0x00

Performance:

— Number of linear 512b reads per second from OCZ Vertex
SSD on ICH8 AHCI HBA, for different number of threads.
Generic ATA(4), CAM w/o NCQ and CAM with NCQ.

30000

25000

20000 n

15000 \ - —-ATA

Lk S ———————— B B i
\ = CAM
£ L # i i L NC':!

10000

5000

* Burst performance:
— 2xS113124 PCI-X cards with 10 drives on 4 PMPs and give
up to 1GB/s burst performance. Generic ata(4) gave about
240MB/s.

* Questions?

