
 ZFS On-Disk Specification
 Draft

Sun Microsystems, Inc.

4150 Network Circle

Santa Clara, CA 95054

U.S.A

1

©2006 Sun Microsystems, Inc. 4150 Network Circle Santa Clara, CA 95054 U.S.A.

This product or document is protected by copyright and distributed under licenses restricting its
use, copying, distribution, and decompilation. No part of this product or document may be
reproduced in any form by any means without prior written authorization of Sun and its licensors, if
any. Third-party software, including font technology, is copyrighted and licensed from Sun
suppliers.

Parts of the product may be derived from Berkeley BSD systems, licensed from the University of
California.

Sun, Sun Microsystems, the Sun logo, Java, JavaServer Pages, Solaris, and StorEdge are
trademarks or registered trademarks of Sun Microsystems, Inc. in the U.S. and other countries.

U.S. Government Rights Commercial software. Government users are subject to the Sun
Microsystems, Inc. standard license agreement and applicable provisions of the FAR and its
supplements.

DOCUMENTATION IS PROVIDED AS IS AND ALL EXPRESS OR IMPLIED
CONDITIONS, REPRESENTATIONS AND WARRANTIES, INCLUDING ANY IMPLIED
WARRANTY OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE OR
NON-INFRINGEMENT, ARE DISCLAIMED, EXCEPT TO THE EXTENT THAT SUCH
DISCLAIMERS ARE HELD TO BE LEGALLY INVALID.

Unless otherwise licensed, use of this software is authorized pursuant to the
terms of the license found at: http://developers.sun.com/berkeley_license.html

Ce produit ou document est protégé par un copyright et distribué avec des licences qui en
restreignent l'utilisation, la copie, la distribution, et la décompilation. Aucune partie de ce produit
ou document ne peut être reproduite sous aucune forme, par quelque moyen que ce soit, sans
l'autorisation préalable et écrite de Sun et de ses bailleurs de licence, s'il y en a. Le logiciel détenu
par des tiers, et qui comprend la technologie relative aux polices de caractères, est protégé par un
copyright et licencié par des fournisseurs de Sun.

Des parties de ce produit pourront être dérivées du système Berkeley BSD licenciés par l'Université
de Californie.

Sun, Sun Microsystems, le logo Sun, Java, JavaServer Pages, Solaris, et StorEdge sont des
marques de fabrique ou des marques déposées, de Sun Microsystems, Inc. aux Etats-Unis et dans
d'autres pays.

CETTE PUBLICATION EST FOURNIE EN L'ETAT ET AUCUNE GARANTIE, EXPRESSE
OU IMPLICITE, N'EST ACCORDEE, Y COMPRIS DES GARANTIES CONCERNANT LA
VALEUR MARCHANDE, L'APTITUDE DE LA PUBLICATION A REPONDRE A UNE
UTILISATION PARTICULIERE, OU LE FAIT QU'ELLE NE SOITPAS CONTREFAISANTE
DE PRODUIT DE TIERS. CE DENI DE GARANTIE NE S'APPLIQUERAIT PAS, DANS LA
MESURE OU IL SERAIT TENU JURIDIQUEMENT NUL ET NON AVENU.

2

Table of Contents
Introduction..5
Chapter One – Virtual Devices (vdevs), Vdev Labels, and Boot Block................................6

Section 1.1: Virtual Devices..6
 Section 1.2: Vdev Labels..6

 Section 1.2.1: Label Redundancy...7
 Section 1.2.2: Transactional Two Staged Label Update..7

Section 1.3: Vdev Technical Details..8
 Section 1.3.1: Blank Space...8
 Section 1.3.2: Boot Block Header..8
 Section 1.3.3: Name-Value Pair List...8
 Section 1.3.4: The Uberblock...12

Section 1.4: Boot Block...14
Chapter Two: Block Pointers and Indirect Blocks..15

 Section 2.1: DVA – Data Virtual Address...15
 Section 2.2 : GRID..16
 Section 2.3: GANG...16
 Section 2.4: Checksum..17
 Section 2.5: Compression..18
 Section 2.6 : Block Size...18
 Section 2.7: Endian..19
 Section 2.8: Type...19
 Section 2.9: Level..20
 Section 2.10: Fill..20
 Section 2.11: Birth Transaction...21
 Section 2.12: Padding..21

Chapter Three: Data Management Unit..22
Section 3.1 : Objects..22
Section 3.2: Object Sets...26

Chapter Four – DSL ..29
Section 4.1 : DSL Infrastructure..29
Section 4.2: DSL Implementation Details...31
Section 4.3: Dataset Internals..32
Section 4.4: DSL Directory Internals..34

Chapter Five – ZAP..37
Section 5.1: The Micro Zap...38
Section 5.2: The Fat Zap...39

Section 5.2.1: zap_phys_t...39
Section 5.2.2: Pointer Table..41
Section 5.2.3: zap_leaf_phys_t...41
Section 5.2.4 : zap_leaf_chunk...43

Chapter Six – ZPL..45
Section 6.1: ZPL Filesystem Layout..45
Section 6.2: Directories and Directory Traversal...45
Section 6.3: ZFS Access Control Lists..47

3

Chapter Seven – ZFS Intent Log..51
Section 7.1: ZIL header...51
Section 7.2: ZIL blocks..52

Chapter Eight – ZVOL (ZFS volume)..55

4

Introduction
ZFS is a new filesystem technology that provides immense capacity (128-bit), provable
data integrity, always-consistent on-disk format, self-optimizing performance, and real-time
remote replication.

ZFS departs from traditional filesystems by eliminating the concept of volumes. Instead,
ZFS filesystems share a common storage pool consisting of writeable storage media.
Media can be added or removed from the pool as filesystem capacity requirements change.
Filesystems dynamically grow and shrink as needed without the need to re-partition
underlying storage.

ZFS provides a truly consistent on-disk format, but using a copy on write (COW)
transaction model. This model ensures that on disk data is never overwritten and all on disk
updates are done atomically.

The ZFS software is comprised of seven distinct pieces: the SPA (Storage Pool Allocator),
the DSL (Dataset and Snapshot Layer), the DMU (Data Management Layer), the ZAP
(ZFS Attribute Processor), the ZPL (ZFS Posix layer), the ZIL (ZFS Intent Log), and
ZVOL (ZFS Volume). The on-disk structures associated with each of these pieces are
explained in the following chapters: SPA (Chapters 1 and 2), DSL (Chapter 5), DMU
(Chapter 3), ZAP (Chapter 4), ZPL (Chapter 6), ZIL (Chapter 7), ZVOL (Chapter 8).

5

Chapter One – Virtual Devices (vdevs), Vdev Labels,
and Boot Block

Section 1.1: Virtual Devices

ZFS storage pools are made up of a collection of virtual devices. There are two types of
virtual devices: physical virtual devices (sometimes called leaf vdevs) and logical virtual
devices (sometimes called interior vdevs). A physical vdev, is a writeable media block
device (a disk, for example). A logical vdev is a conceptual grouping of physical vdevs.

Vdevs are arranged in a tree with physical vdev existing as leaves of the tree. All pools
have a special logical vdev called the “root” vdev which roots the tree. All direct children
of the “root” vdev (physical or logical) are called top-level vdevs. The Illustration below
shows a tree of vdevs representing a sample pool configuration containing two mirrors.
The first mirror (labeled “M1”) contains two disk, represented by “vdev A” and “vdev B”.
Likewise, the second mirror “M2” contains two disks represented by “vdev C” and “vdev
D”. Vdevs A, B, C, and D are all physical vdevs. “M1” and M2” are logical vdevs; they
are also top-level vdevs since they originate from the “root vdev”.

 Section 1.2: Vdev Labels

Each physical vdev within a storage pool contains a 256KB structure called a vdev label.
The vdev label contains information describing this particular physical vdev and all other
vdevs which share a common top-level vdev as an ancestor. For example, the vdev label
structure contained on vdev “C”, in the previous illustration, would contain information
describing the following vdevs: “C”, “D”, and “M2”. The contents of the vdev label are
described in greater detail in section 1.3, Vdev Technical Details.

6

Illustration 1 vdev tree sample configuration

“root vdev”

“M1”
vdev

(Mirror A/B)

“M2”
vdev

(MirrorC/D)

Top Level
vdevs

Internal/Logical Vdevs

Physical/Leaf Vdevs

“A”
vdev
(disk)

“B”
vdev
(disk)

“C”
vdev
(disk)

“D”
vdev
(disk)

The vdev label serves two purposes: it provides access to a pool's contents and it is used to
verify a pool's integrity and availability. To ensure that the vdev label is always available
and always valid, redundancy and a staged update model are used. To provide redundancy,
four copies of the label are written to each physical vdev within the pool. The four copies
are identical within a vdev, but are not identical across vdevs in the pool. During label
updates, a two staged transactional approach is used to ensure that a valid vdev label is
always available on disk. Vdev label redundancy and the transactional update model are
described in more detail below.

Section 1.2.1: Label Redundancy

Four copies of the vdev label are written to each physical vdev within a ZFS storage
pool. Aside from the small time frame during label update (described below), these
four labels are identical and any copy can be used to access and verify the contents
of the pool. When a device is added to the pool, ZFS places two labels at the front
of the device and two labels at the back of the device. The drawing below shows the
layout of these labels on a device of size N: L0 and L1 represent the front two
labels, L2 and L3 represent the back two labels.

Based on the assumption that corruption (or accidental disk overwrites) typically
occurs in contiguous chunks, placing the labels in non-contiguous locations (front
and back) provides ZFS with a better probability that some label will remain
accessible in the case of media failure or accidental overwrite (eg. using the disk as
a swap device while it is still part of a ZFS storage pool).

Section 1.2.2: Transactional Two Staged Label Update

The location of the vdev labels are fixed at the time the device is added to the pool.
Thus, the vdev label does not have copy-on-write semantics like everything else in
ZFS. Consequently, when a vdev label is updated, the contents of the label are
overwritten. Any time on-disk data is overwritten, there is a potential for error. To
ensure that ZFS always has access to its labels, a staged approach is used during
update. The first stage of the update writes the even labels (L0 and L2) to disk. If,
at any point in time, the system comes down or faults during this update, the odd
labels will still be valid. Once the even labels have made it out to stable storage, the
odd labels (L1 and L3) are updated and written to disk. This approach has been
carefully designed to ensure that a valid copy of the label remains on disk at all
times.

7

Illustration 2 Vdev Label layout on a block device of size N

L0 L1 L2 L3

0 256K N-512K N-256K512K

Section 1.3: Vdev Technical Details

The contents of a vdev label are broken up into four pieces: 8KB of blank space, 8K of
boot header information, 112KB of name-value pairs, and 128KB of 1K sized uberblock
structures. The drawing below shows an expanded view of the L0 label. A detailed
description of each components follows: blank space (section 1.3.1), boot block header
(section 1.3.2), name/value pair list (section 1.3.3), and uberblock array (section 1.3.4).

Section 1.3.1: Blank Space

ZFS supports both VTOC (Volume Table of Contents) and EFI disk labels as valid
methods of describing disk layout.1 While EFI labels are not written as part of a
slice (they have their own reserved space), VTOC labels must be written to the first
8K of slice 0. Thus, to support VTOC labels, the first 8k of the vdev_label is left
empty to prevent potentially overwriting a VTOC disk label.

Section 1.3.2: Boot Block Header

The boot block header is an 8K structure that is reserved for future use. The
contents of this block will be described in a future appendix of this paper.

Section 1.3.3: Name-Value Pair List

The next 112KB of the label holds a collection of name-value pairs describing this
vdev and all of it's related vdevs. Related vdevs are defined as all vdevs within the
subtree rooted at this vdev's top-level vdev. For example, the vdev label on device
“A” (seen in the illustration below) would contain information describing the
subtree highlighted: including vdevs “A”, “B”, and “M1” (top-level vdev).

1 Disk labels describe disk partition and slice information. See fdisk(1M) and/or format(1M) for more
information on disk partitions and slices. It should be noted that disk labels are a completely separate
entity from vdev labels and while their naming is similar, they should not be confused as being similar.

8

Illustration 3 Components of a vdev label (blank space, boot block header, name/value pairs,
uberblock array)

L0 L1 L2 L3

....Blank Space Name/Value Pairs

Uberblock Array

Boot Header

0 8K 16K 128K 256K

All name-value pairs are stored in XDR encoded nvlists. For more information on
XDR encoding or nvlists, see the libnvpair(3LIB) and nvlist_free(3NVPAIR) man
pages. The following name-value pairs are contained within this 112KB portion of
the vdev_label.

Version:
Name: “version”
Value: DATA_TYPE_UINT64
Description: On disk format version. Current value is “1”.

Name:
Name: “name”
Value: DATA_TYPE_STRING
Description: Name of the pool in which this vdev belongs.

State:
Name: “state”
Value: DATA_TYPE_UINT64
Description: State of this pool. The following table shows all existing pool
states.

9

Illustration 4 vdev tree showing related vdevs in highlighted circle

“root vdev”

“M1”
vdev

(Mirror A/B)

“M2”
vdev

(MirrorC/D)

Top Level
vdevs

Internal/Logical Vdevs

Physical/Leaf Vdevs

“A”
vdev
(disk)

“B”
vdev

(disk)

“C”
vdev
(disk)

“D”
vdev
(disk)

State Value

POOL_STATE_ACTIVE 0

POOL_STATE_EXPORTED 1

POOL_STATE_DESTROYED 2

Table 1 Pool states and values.

Transaction
Name: “txg”
Value: DATA_TYPE_UINT64
Descriptions: Transaction group number in which this label was written to
disk.

Pool Guid
Name: “pool_guid”
Value: DATA_TYPE_UINT64
Description: Global unique identifier (guid) for the pool.

Top Guid
Name: “top_guid”
Value: DATA_TYPE_UINT64
Description: Global unique identifier for the top-level vdev of this subtree.

Guid
Name: “guid”
Value: DATA_TYPE_UINT64
Description: Global unique identifier for this vdev.

Vdev Tree
Name: “vdev_tree”
Value: DATA_TYPE_NVLIST
Description: The vdev_tree is a nvlist structure which is used recursively to
describe the hierarchical nature of the vdev tree as seen in illustrations one
and four. The vdev_tree recursively describes each “related” vdev within
this vdev's subtree. The illustration below shows what the “vdev_tree”
entry might look like for “vdev A” as shown in illustrations one and four
earlier in this document.

10

Each vdev_tree nvlist contains the following elements as described in the
section below. Note that not all nvlist elements are applicable to all vdevs
types. Therefore, a vdev_tree nvlist may contain only a subset of the
elements described below.

Name: “type”
Value: DATA_TYPE_STRING
Description: String value indicating type of vdev. The following
vdev_types are valid.

Type Description

“disk” Leaf vdev: block storage

“file” Leaf vdev: file storage

“mirror” Interior vdev: mirror

“raidz” Interior vdev: raidz

“replacing” Interior vdev: a slight variation on the
mirror vdev; used by ZFS when replacing
one disk with another

“root” Interior vdev: the root of the vdev tree

Table 2 Vdev Type Strings

Name: “id”
Value: DATA_TYPE_UINT64
Description: The id is the index of this vdev in its parent's children
array.

Name: “guid”
Value: DATA_TYPE_UINT64
Description: Global Unique Identifier for this vdev_tree element.

11

Illustration 5 vdev tree nvlist entry for "vdev A" as seen in Illustrations
1 and 4

 type='mirror'
 id=1
 guid=16593009660401351626
 metaslab_array = 13
 metaslab_shift = 22
 ashift = 9
 asize =519569408
 children[0]
 type='disk'
 id=2
 guid=6649981596953412974
 path='/dev/dsk/c4t0d0'
 devid='id1,sd@SSEAGATE_ST373453LW_3HW0J0FJ00007404E4NS/a'
 children[1]
 type='disk'
 id=3
 guid=3648040300193291405
 path='/dev/dsk/c4t1d0'
 devid='id1,sd@SSEAGATE_ST373453LW_3HW0HLAW0007404D6MN/a'

vdev_tree

vdev_tree

vdev_tree

Name: “path”
Value: DATA_TYPE_STRING
Description: Device path. Only used for leaf vdevs.

Name: “devid”
Value: DATA_TYPE_STRING
Description: Device ID for this vdev_tree element. Only used for
vdevs of type disk.

Name: “metaslab_array”
Value: DATA_TYPE_UINT64
Description: Object number of an object containing an array of
object numbers. Each element of this array (ma[i]) is, in turn, an
object number of a space map for metaslab 'i'.

Name: “metaslab_shift”
Value: DATA_TYPE_UINT64
Description: log base 2 of the metaslab size

Name: “ashift”
Value: DATA_TYPE_UINT64
Description: Log base 2 of the minimum allocatable unit for this top
level vdev. This is currently '10' for a RAIDz configuration, '9'
otherwise.

Name: “asize”
Value: DATA_TYPE_UINT64
Description: Amount of space that can be allocated from this top
level vdev

Name: “children”
Value: DATA_TYPE_NVLIST_ARRAY
Description: Array of vdev_tree nvlists for each child of this
vdev_tree element.

Section 1.3.4: The Uberblock

Immediately following the nvpair lists in the vdev label is an array of uberblocks.
The uberblock is the portion of the label containing information necessary to access
the contents of the pool2. Only one uberblock in the pool is active at any point in
time. The uberblock with the highest transaction group number and valid SHA-256
checksum is the active uberblock.

To ensure constant access to the active uberblock, the active uberblock is never

2 The uberblock is similar to the superblock in UFS.

12

overwritten. Instead, all updates to an uberblock are done by writing a modified
uberblock to another element of the uberblock array. Upon writing the new
uberblock, the transaction group number and timestamps are incremented thereby
making it the new active uberblock in a single atomic action. Uberblocks are
written in a round robin fashion across the various vdevs with the pool. The
illustration below has an expanded view of two uberblocks within an uberblock
array.

Uberblock Technical Details
The uberblock is stored in the machine's native endian format and has the following
contents:

ub_magic
The uberblock magic number is a 64 bit integer used to identify a device as
containing ZFS data. The value of the ub_magic is 0x00bab10c (oo-ba-block).
The following table shows the ub_magic number as seen on disk.

Machine Endianness Uberblock Value

Big Endian 0x00bab10c

Little Endian 0x0cb1ba00

Table 3 Uberblock values per machine endian type.

ub_version
The version field is used to identify the on-disk format in which this data is laid out.
The current on-disk format version number is 0x1. This field contains the same
value as the “version” element of the name/value pairs described in section 1.3.3.

ub_txg

13

Illustration 6 Uberblock array showing uberblock contents

L0 L1 L2 L3

....Blank Space Name/Value Pairs

 uint64_t ub_magic
 uint64_t ub_version
 uint64_t ub_txg
 uint64_t ub_guid_sum
 uint64_t ub_timestamp
 blkptr_t ub_rootbp

 uint64_t ub_magic
 uint64_t ub_version
 uint64_t ub_txg
 uint64_t ub_guid_sum
 uint64_t ub_timestamp
 blkptr_t ub_rootbp

 active uberblock

uberblock_phys_t

Boot Header

All writes in ZFS are done in transaction groups. Each group has an associated
transaction group number. The ub_txg value reflects the transaction group in which
this uberblock was written. The ub_txg number must be greater than or equal to the
“txg” number stored in the nvlist for this label to be valid.

ub_guid_sum
The ub_guid_sum is used to verify the availability of vdevs within a pool. When a
pool is opened, ZFS traverses all leaf vdevs within the pool and totals a running
sum of all the GUIDs (a vdev's guid is stored in the guid nvpair entry, see section
1.3.3) it encounters. This computed sum is checked against the ub_guid_sum to
verify the availability of all vdevs within this pool.

ub_timestamp
Coordinated Universal Time (UTC) when this uberblock was written in seconds
since January 1st 1970 (GMT).

ub_rootbp
The ub_rootbp is a blkptr structure containing the location of the MOS. Both the
MOS and blkptr structures are described in later chapters of this document:
Chapters 4 and 2 respectively.

Section 1.4: Boot Block

Immediately following the L0 and L1 labels is a 3.5MB chunk reserved for future use. The
contents of this block will be described in a future appendix of this paper.

14

Illustration 7 Vdev label layout including boot block reserved space.

L0 L1 L2 L3

0 256K N-512K N-256K512K 4M

Boot
Block

Chapter Two: Block Pointers and Indirect Blocks
Data is transferred between disk and main memory in units called blocks. A block pointer
(blkptr_t) is a 128 byte ZFS structure used to physically locate, verify, and describe blocks
of data on disk.

The 128 byte blkptr_t structure layout is shown in the illustration below.

Section 2.1: DVA – Data Virtual Address

The data virtual address is the name given to the combination of the vdev
and offset portions of the block pointer, for example the combination of
vdev1 and offset1 make up a DVA (dva1). ZFS provides the capability of
storing up to three copies of the data pointed to by the block pointer, each
pointed to by a unique DVA (dva1, dva2, or dva3). The data stored in each
of these copies is identical. The number of DVAs used per block pointer is
purely a policy decision and is called the “wideness” of the block pointer:

15

Illustration 8 Block pointer structure showing byte by byte
usage.

 64 56 48 40 32 24 16 8 0

 0 vdev1 | GRID ASIZE

 1 G offset1

 2 vdev2 GRID ASIZE

 3 G offset2

 4 vdev3 GRID ASIZE

 5 G offset3

 6 E lvl type cksum comp PSIZE LSIZE

 7 padding

 8 padding

 9 padding

 a birth txg

 b fill count

 c checksum[0]

 d checksum[1]

 e checksum[2]

 f checksum[3]

single wide block pointer (1 DVA), double wide block pointer (2 DVAs),
and triple wide block pointer (3 DVAs).

The vdev portion of each DVA is a 32 bit integer which uniquely identifies
the vdev ID containing this block. The offset portion of the DVA is a 63 bit
integer value holding the offset (starting after the vdev labels (L0 and L1)
and boot block) within that device where the data lives. Together, the vdev
and offset uniquely identify the block address of the data it points to.

The value stored in offset is the offset in terms of sectors (512 byte blocks).
To find the physical block byte offset from the beginning of a slice, the
value inside offset must be shifted over (<<) by 9 (29 =512) and this value
must be added to 0x400000 (size of two vdev_labels and boot block).

physical block address = (offset << 9) + 0x400000 (4MB)

Section 2.2 : GRID

Raid-Z layout information, reserved for future use.

Section 2.3: GANG

A gang block is a block whose contents contain block pointers. Gang blocks
are used when the amount of space requested is not available in a
contiguous block. In a situation of this kind, several smaller blocks will be
allocated (totaling up to the size requested) and a gang block will be created
to contain the block pointers for the allocated blocks. A pointer to this gang
block is returned to the requester, giving the requester the perception of a
single block.

Gang blocks are identified by the “G” bit.

“G” bit value Description

0 non-gang block

1 gang block

Table 4 Gang Block Values

Gang blocks are 512 byte sized, self checksumming blocks. A gang block
contains up to 3 block pointers followed by a 32 byte checksum. The format
of the gang block is described by the following structures.

16

typedef struct zio_gbh {
blkptr_t zg_blkptr[SPA_GBH_NBLKPTRS];
uint64_t zg_filler[SPA_GBH_FILLER];
zio_block_tail_t zg_tail.;

} zio_gbh_phys_t;

zg_blkptr: array of block pointers. Each 512 byte gang block can
hold up to 3 block pointers.

zg_filler: The filler fields pads out the gang block so that it is nicely
byte aligned.

typedef struct zio_block_tail {
uint64_t zbt_magic;
zio_cksum_t zbt_cksum;

}

zbt_magic: ZIO block tail magic number. The value is
0x210da7ab10c7a11 (zio-data-bloc-tail).

typedef zio_cksum {
uint64_t zc_word[4];

}zio_cksum_t;

zc_word: four 8 byte words containing the checksum for this gang
block.

Section 2.4: Checksum

By default ZFS checksums all of its data and metadata. ZFS supports
several algorithms for checksumming including fletcher2, fletcher4 and
SHA-256 (256-bit Secure Hash Algorithm in FIPS 180-2, available at
http://csrc.nist.gov/cryptval). The algorithm used to checksum this block is
identified by the 8 bit integer stored in the cksum portion of the block
pointer. The following table pairs each integer with a description and
algorithm used to checksum this block's contents.

17

Description Value Algorithm

on 1 fletcher2

off 2 none

label 3 SHA-256

gang header 4 SHA-256

zilog 5 fletcher2

fletcher2 6 fletcher2

fletcher4 7 fletcher4

SHA-256 8 SHA-256

Table 5 Checksum Values and associated checksum algorithms.

A 256 bit checksum of the data is computed for each block using the
algorithm identified in cksum. If the cksum value is 2 (off), a checksum will
not be computed and checksum[0], checksum[1], checksum[2], and
checksum[3] will be zero. Otherwise, the 256 bit checksum computed for
this block is stored in the checksum[0], checksum[1], checksum[2], and
checksum[3] fields.

Note: The computed checksum is always of the data, even if this is a gang
block. Gang blocks (see above) and zilog blocks (see Chapter 7) are self
checksumming.

Section 2.5: Compression

ZFS supports several algorithms for compression. The type of compression
used to compress this block is stored in the comp portion of the block
pointer.

Description Value Algorithm

on 1 lzjb

off 2 none

lzjb 3 lzjb

Table 6 Compression Values and associated algorithm.

Section 2.6 : Block Size

The size of a block is described by three different fields in the block pointer;
psize, lsize, and asize.

lsize: Logical size. The size of the data without compression, raidz
or gang overhead.

psize: physical size of the block on disk after compression

18

asize: allocated size, total size of all blocks allocated to hold this data
including any gang headers or raid-Z parity information

If compression is turned off and ZFS is not on Raid-Z storage, lsize, asize,
and psize will all be equal.

All sizes are stored as the number of 512 byte sectors (minus one) needed to
represent the size of this block.

Section 2.7: Endian

ZFS is an adaptive-endian filesystem (providing the restrictions described in
Chapter One) that allows for moving pools across machines with different
architectures: little endian vs. big endian. The “E” portion of the block
pointer indicates which format this block has been written out in. Block are
always written out in the machine's native endian format.

Endian Value

Little Endian 1

Big Endian 0

Table 7 Endian Values

If a pool is moved to a machine with a different endian format, the contents
of the block are byte swapped on read.

Section 2.8: Type

The type portion of the block pointer indicates what type of data this block
holds. The type can be the following values. More detail is provided in
chapter 3 regarding object types.

19

Type Value

DMU_OT_NONE 0

DMU_OT_OBJECT_DIRECTORY 1

DMU_OT_OBJECT_ARRAY 2

DMU_OT_PACKED_NVLIST 3

DMU_OT_NVLIST_SIZE 4

DMU_OT_BPLIST 5

DMU_OT_BPLIST_HDR 6

DMU_OT_SPACE_MAP_HEADER 7

DMU_OT_SPACE_MAP 8

DMU_OT_INTENT_LOG 9

DMU_OT_DNODE 10

DMU_OT_OBJSET 11

DMU_OT_DSL_DATASET 12

DMU_OT_DSL_DATASET_CHILD_MAP 13

DMU_OT_OBJSET_SNAP_MAP 14

DMU_OT_DSL_PROPS 15

DMU_OT_DSL_OBJSET 16

DMU_OT_ZNODE 17

DMU_OT_ACL 18

DMU_OT_PLAIN_FILE_CONTENTS 19

DMU_OT_DIRECTORY_CONTENTS 20

DMU_OT_MASTER_NODE 21

DMU_OT_DELETE_QUEUE 22

DMU_OT_ZVOL 23

DMU_OT_ZVOL_PROP 24

Table 8 Object Types

Section 2.9: Level

The level portion of the block pointer is the number of levels (number of
block pointers which need to be traversed to arrive at this data.). See
Chapter 3 for a more complete definition of level.

Section 2.10: Fill

The fill count describes the number of non-zero block pointers under this
block pointer. The fill count for a data block pointer is 1, as it does not have
any block pointers beneath it.

The fill count is used slightly differently for block pointers of type
DMU_OT_DNODE. For block pointers of this type, the fill count contains

20

the number of free dnodes beneath this block pointer. For more information
on dnodes see Chapter 3.

Section 2.11: Birth Transaction

The birth transaction stored in the “birth txg” block pointer field is a 64 bit
integer containing the transaction group number in which this block pointer
was allocated.

Section 2.12: Padding

The three padding fields in the block pointer are space reserved for future
use.

21

Chapter Three: Data Management Unit
The Data Management Unit (DMU) consumes blocks and groups them into logical units
called objects. Objects can be further grouped by the DMU into object sets. Both objects
and object sets are described in this chapter.

Section 3.1 : Objects

With the exception of a small amount of infrastructure, described in chapters 1 and 2,
everything in ZFS is an object. The following table lists existing ZFS object types; many
of these types are described in greater detail in future chapters of this document.

Type Description

DMU_OT_NONE Unallocated object

DMU_OT_OBJECT_DIRECTORY DSL object directory ZAP object

DMU_OT_OBJECT_ARRAY Object used to store an array of object
numbers.

DMU_OT_PACKED_NVLIST Packed nvlist object.

DMU_OT_SPACE_MAP SPA disk block usage list.

DMU_OT_INTENT_LOG Intent Log

DMU_OT_DNODE Object of dnodes (metadnode)

DMU_OT_OBJSET Collection of objects.

DMU_OT_DSL_DATASET_CHILD_MAP DSL ZAP object containing child DSL
directory information.

DMU_OT_DSL_OBJSET_SNAP_MAP DSL ZAP object containing snapshot
information for a dataset.

DMU_OT_DSL_PROPS DSL ZAP properties object containing
properties for a DSL dir object.

DMU_OT_BPLIST Block pointer list – used to store the
“deadlist” : list of block pointers
deleted since the last snapshot, and the
“deferred free list” used for sync to
convergence.

DMU_OT_BPLIST_HDR BPLIST header: stores the bplist_phys_t
structure.

DMU_OT_ACL ACL (Access Control List) object

DMU_OT_PLAIN_FILE ZPL Plain file

DMU_OT_DIRECTORY_CONTENTS ZPL Directory ZAP Object

DMU_OT_MASTER_NODE ZPL Master Node ZAP object: head
object used to identify root directory,
delete queue, and version for a
filesystem.

22

Type Description

DMU_OT_DELETE_QUEUE The delete queue provides a list of
deletes that were in-progress when the
filesystem was force unmounted or as a
result of a system failure such as a
power outage. Upon the next mount of
the filesystem, the delete queue is
processed to remove the files/dirs that
are in the delete queue. This mechanism
is used to avoid leaking files and
directories in the filesystem.

DMU_OT_ZVOL ZFS volume (ZVOL)

DMU_OT_ZVOL_PROP ZVOL properties

Table 9 DMU Object Types

Objects are defined by 512 bytes structures called dnodes3. A dnode describes and
organizes a collection of blocks making up an object. The dnode (dnode_phys_t
structure), seen in the illustration below, contains several fixed length fields and two
variable length fields. Each of these fields are described in detail below.

dn_type
An 8-bit numeric value indicating an object's type. See Table 8 for a list of valid
object types and their associated 8 bit identifiers.

dn_indblkshift and dn_datablkszsec
ZFS supports variable data and indirect (see dn_nlevels below for a description of
indirect blocks) block sizes ranging from 512 bytes to 128 Kbytes.

3 A dnode is similar to an inode in UFS.

23

Illustration 9 dnode_phys_t structure

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels
uint8_t dn_nblkptr;
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[N];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

fixed length
fields

variable
length fields

dn_indblkshift: 8-bit numeric value containing the log (base 2) of the size
(in bytes) of an indirect block for this object.

dn_datablkszsec: 16-bit numeric value containing the data block size (in
bytes) divided by 512 (size of a disk sector). This value can range between 1
(for a 512 byte block) and 256 (for a 128 Kbyte block).

dn_nblkptr and dn_blkptr
dn_blkptr is a variable length field that can contains between one and three block
pointers. The number of block pointers that the dnode contains is set at object
allocation time and remains constant throughout the life of the dnode.

dn_nblkptr : 8 bit numeric value containing the number of block pointers in
this dnode.

dn_blkptr: block pointer array containing dn_nblkptr block pointers

dn_nlevels
dn_nlevels is an 8 bit numeric value containing the number of levels that make up
this object. These levels are often referred to as levels of indirection.

Indirection
A dnode has a limited number (dn_nblkptr, see above) of block pointers to
describe an object's data. For a dnode using the largest data block size
(128KB) and containing the maximum number of block pointers (3), the
largest object size it can represent (without indirection) is 384 KB: 3 x
128KB = 384KB. To allow for larger objects, indirect blocks are used. An
indirect block is a block containing block pointers. The number of block
pointers that an indirect block can hold is dependent on the indirect block
size (represented by dn_indblkshift) and can be calculated by dividing the
indirect block size by the size of a blkptr (128 bytes). The largest indirect
block (128KB) can hold up to 1024 block pointers. As an object's size
increases, more indirect blocks and levels of indirection are created. A new
level of indirection is created once an object grows so large that it exceeds
the capacity of the current level. ZFS provides up to six levels of
indirection to support files up to 264 bytes long.

The illustration below shows an object with 3 levels of blocks (level 0, level
1, and level 2). This object has triple wide block pointers (dva1, dva2, and
dva3) for metadata and single wide block pointers for its data (see Chapter
two for a description of block pointer wideness). The blocks at level 0 are
data blocks.

24

dn_maxblkid
An object's blocks are identified by block ids. The blocks in each level of
indirection are numbered from 0 to N, where the first block at a given level is given
an id of 0, the second an id of 1, and so forth.

The dn_maxblkid field in the dnode is set to the value of the largest data (level
zero) block id for this object.

Note on Block Ids: Given a block id and level, ZFS can determine the exact
branch of indirect blocks which contain the block. This calculation is done
using the block id, block level, and number of block pointers in an indirect
block. For example, take an object which has 128KB sized indirect blocks.
An indirect block of this size can hold 1024 block pointers. Given a level 0
block id of 16360, it can be determined that block 15 (block id 15) of level 1
contains the block pointer for level 0 blkid 16360.

level 1 blkid = 16360%1024 = 15

This calculation can be performed recursively up the tree of indirect blocks
until the top level of indirection has been reached.

25

Illustration 10 Object with 3 levels. Triple wide block pointers used for metadata; single wide block
pointers used for data.

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 3
uint8_t dn_nblkptr = 3
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[3];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

dn_blkptr[]

...
Level 2

Level 1Level 1

Level 0

......

dva3 dva3 dva3

dva2 dva2 dva2

dva1 dva1 dva1

...

dn_secphys
The sum of all asize values for all block pointers (data and indirect) for this object.

dn_bonus, dn_bonuslen, and dn_bonustype
The bonus buffer (dn_bonus) is defined as the space following a dnode's block
pointer array (dn_blkptr). The amount of space is dependent on object type and can
range between 64 and 320 bytes.

dn_bonus: dn_bonuslen sized chunk of data . The format of this data is
defined by dn_bonustype.

dn_bonuslen: Length (in bytes) of the bonus buffer.

dn_bonustype: 8 bit numeric value identifying the type of data contained
within the bonus buffer. The following table shows valid bonus buffer types
and the structures which are stored in the bonus buffer. The contents of
each of these structures will be discussed later in this specification.

Bonus Type Description Metadata
Structure

Value

DMU_OT_PACKED_NVLIST_SIZE Bonus buffer type containing
size in bytes of a
DMU_OT_PACKED_NVLIST
object.

uint64_t

4

DMU_OT_SPACE_MAP_HEADER Spa space map header. space_map_obj_t 7

DMU_OT_DSL_DIR DSL Directory object used to
define relationships and
properties between related
datasets.

dsl_dir_phys_t

12

DMU_OT_DSL_DATASET DSL dataset object used to
organize snapshot and usage
static information for objects of
type DMU_OT_OBJSET.

dsl_dataset_phys_t

16

DMU_OT_ZNODE ZPL metadata znode_phys_t 17

Table 10 Bonus Buffer Types and associated structures.

Section 3.2: Object Sets

The DMU organizes objects into groups called object sets. Object sets are used in ZFS to
group related objects, such as objects in a filesystem, snapshot, clone, or volume.

Object sets are represented by a 1K byte objset_phys_t structure. Each member of this
structure is defined in detail below.

26

os_type
The DMU supports several types of object sets, where each object set type has it's
own well defined format/layout for its objects. The object set's type is identified by
a 64 bit integer, os_type. The table below lists available DMU object set types and
their associated os_type integer value.

Object Set Type Description Value

DMU_OST_NONE Uninitialized Object Set 0

DMU_OST_META DSL Object Set , See Chapter 4 1

DMU_OST_ZFS ZPL Object Set, See Chapter 6 2

DMU_OST_ZVOL ZVOL Object Set, See Chapter 8 3

Table 11 DMU Object Set Types

os_zil_header
The ZIL header is described in detail in Chapter 7 of this document.

metadnode
As described earlier in this chapter, each object is described by a dnode_phys_t.
The collection of dnode_phys_t structures describing the objects in this object set
are stored as an object pointed to by the metadnode. The data contained within this
object is formatted as an array of dnode_phys_t structures (one for each object
within the object set).

Each object within an object set is uniquely identified by a 64 bit integer called an
object number. An object's “object number” identifies the array element, in the
dnode array, containing this object's dnode_phys_t.

The illustration below shows an object set with the metadnode expanded. The
metadnode contains three block pointers, each of which have been expanded to
show their contents. Object number 4 has been further expanded to show the
details of the dnode_phys_t and the block structure referenced by this dnode.

27

Illustration 11 objset_phys_t
structure

dnode_phys_t metadnode
zil_header_t os_zil_header
uint64_t os_type

objset_phys_t

28

Illustration 12 Object Set

dnode_phys_t metadnode
zil_header_t os_zil_header
uint64_t os_type
char os_pad[376]

dn_type DMU_OT_DNODE
dn_indblkshift;
dn_nlevels 1
dn_nblkptr 3
dn_bonustype;
dn_checksum;
dn_compress;
dn_pad[1];
dn_datablkszsec;
dn_bonuslen;
dn_pad2[4];
dn_maxblkid;
dn_secphys;
dn_pad3[4];
dn_blkptr[3];
dn_bonus[BONUSLEN]

dn_blkptr[]

...
 0 1 2 3 4 1023 1024 10

25
10

26
10

27
10

28
10

29

20
47

20
48

uint8_t dn_type;
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 3
uint8_t dn_nblkptr = 3
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[3];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

dn_blkptr[]

Level 2

Level 1Level 1

Level 0

......

.....

objset_phys_t

Chapter Four – DSL
The DSL (Dataset and Snapshot Layer) provides a mechanism for describing and managing
relationships-between and properties-of object sets. Before describing the DSL and the
relationships it describes, a brief overview of the various flavors of object sets is necessary.

Object Set Overview
ZFS provides the ability to create four kinds of object sets: filesystems, clones,
snapshots, and volumes.

ZFS filesystem: A filesystem stores and organizes objects in an easily
accessible, POSIX compliant manner.

ZFS clone: A clone is identical to a filesystem with the exception of its
origin. Clones originate from snapshots and their initial contents are
identical to that of the snapshot from which it originated.

ZFS snapshot: A snapshot is a read-only version of a filesystem, clone, or
volume at a particular point in time.

ZFS volume: A volume is a logical volume that is exported by ZFS as a
block device.

ZFS supports several operations and/or configurations which cause interdependencies
amongst object sets. The purpose of the DSL is to manage these relationships. The
following is a list of such relationships.

Clones: A clone is related to the snapshot from which it originated. Once a clone is
created, the snapshot in which it originated can not be deleted unless the clone is
also deleted.

Snapshots: A snapshot is a point-in-time image of the data in the object set in which
it was created. A filesystem, clone, or volume can not be destroyed unless its
snapshots are also destroyed.

Children: ZFS support hierarchically structured object sets; object sets within object
sets. A child is dependent on the existence of its parent. A parent can not be
destroyed without first destroying all children.

Section 4.1 : DSL Infrastructure

Each object set is represented in the DSL as a dataset. A dataset manages space
consumption statistics for an object set, contains object set location information, and keeps
track of any snapshots inter-dependencies.

Datasets are grouped together hierarchically into collections called Dataset Directories.

29

Dataset Directories manage a related grouping of datasets and the properties associated
with that grouping. A DSL directory always has exactly one “active dataset”. All other
datasets under the DSL directory are related to the “active” dataset through snapshots,
clones, or child/parent dependencies.

The following picture shows the DSL infrastructure including a pictorial view of how
object set relationships are described via the DSL datasets and DSL directories. The top
level DSL Directory can be seen at the top/center of this figure. Directly below the DSL
Directory is the “active dataset”. The active dataset represents the live filesystem.
Originating from the active dataset is a linked list of snapshots which have been taken at
different points in time. Each dataset structure points to a DMU Object Set which is the
actual object set containing object data. To the left of the top level DSL Directory is a child
ZAP4 object containing a listing of all child/parent dependencies. To the right of the DSL
directory is a properties ZAP object containing properties for the datasets within this DSL
directory. A listing of all properties can be seen in Table 12 below.

A detailed description of Datasets and DSL Directories are described in the Dataset
Internals and DSL Directories Internals sections below.

4 The ZAP is explained in Chapter 5.

30

Illustration 13 DSL Infrastructure

DSL
Dataset

DMU
Object Set
(snapshot)

DSL
Directory

DSL
Child Dataset
ZAP Object

DSL
Directory
(child2)

DSL
Directory
(child1)

DSL
Dataset

(snapshot)

DSL
Dataset

(snapshot)

DSL
Dataset
DSL

Dataset

DSL
Dataset
(active)

DMU
Object Set

(active)

DMU
Object Set
(snapshot)

Snapshots

Child Dataset
Information

D
SL

 I
n f

ra
st

ru
c t

ur
e

DSL
Properties

ZAP Object

Section 4.2: DSL Implementation Details

The DSL is implemented as an object set of type DMU_OST_META. This object set is
often called the Meta Object Set, or MOS. There is only one MOS per pool and the
uberblock (see Chapter One) points to it directly.

There is a single distinguished object in the Meta Object Set. This object is called the
object directory and is always located in the second element of the dnode array (index 1).
All objects, with the exception of the object directory, can be located by traversing through
a set of object references starting at this object.

The object directory
The object directory is a ZAP object (an object containing name/value pairs -see
chapter 5 for a description of ZAP objects) containing three attribute pairs
(name/value) named: root_dataset, config, and sync_bplist.

root_dataset: The “root_dataset” attribute contains a 64 bit integer value
identifying the object number of the root DSL directory for the pool. The
root DSL directory is a special object whose contents reference all top level
datasets within the pool. The “root_dataset” directory, is an object of type
DMU_OT_DSL_DIR and will be explained in greater detail in Section 4.4:
DSL Directory Internals.

config: The “config” attribute contains a 64 bit integer value identifying
the object number for an object of type DMU_OT_PACKED_NVLIST.
This object contains XDR_ENCODED name value pairs describing this
pools vdev configuration. Its contents are similar to those described in
section 1.3.3: name/value pairs list.

sync_bplist: The “sync_bplist” attribute contains a 64 bit integer value
identifying the object number for an object of type
DMU_OT_SYNC_BPLIST. This object contains a list of block pointers
which need to be freed during the next transaction.

The illustration below shows the meta object set (MOS) in relation to the uberblock and
label structures discussed in Chapter 1.

31

Section 4.3: Dataset Internals

Datasets are stored as an object of type DMU_OT_DSL_DATASET. This object type uses
the bonus buffer in the dnode_phys_t to hold a dsl_dataset_phys_t structure. The contents
of the dsl_dataset_phys_t structure are shown below.

 uint64_t ds_dir_obj: Object number of the DSL directory referencing this dataset.

uint64_t ds_prev_snap_obj: If this dataset represents a filesystem, volume, or
clone, this field contains the 64 bit object number for the most recent snapshot
taken; this field is zero if no snapshots have been taken.

If this dataset represents a snapshot, this field contains the 64 bit object number for
the snapshot taken prior to this snapshot. This field is zero if there are no previous

32

Illustration 14 Meta Object Set

 L0 L1 Boot L2 L3

....Blank
Space Name/Value Pairs

uberblock_phys_t array

uint64_t ub_magic
uint64_t ub_version
uint64_t ub_txg
uint64_t ub_vdev_sum
uint64_t ub_timestamp
blkptr_t ub_rootbp

dnode_phys_t metadnode
zil_header_t os_zil_header
uint64_t os_type =
 DMU_OST_META

uint8_t dn_type =DMU_OT_DNODE
uint8_t dn_indblkshift;
uint8_t dn_nlevels
uint8_t dn_nblkptr;
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[3];
uint8_t dn_bonus[BONUSLEN]

dnode_phys_t

...
 0 1 2 3 4 1022 1023

uint8_t dn_type= DMU_OT_OBJECT_DIRECTORY
uint8_t dn_indblkshift;
uint8_t dn_nlevels = 1
uint8_t dn_nblkptr = 1;
uint8_t dn_bonustype;
uint8_t dn_checksum;
uint8_t dn_compress;
uint8_t dn_pad[1];
uint16_t dn_datablkszsec;
uint16_t dn_bonuslen;
uint8_t dn_pad2[4];
uint64_t dn_maxblkid;
uint64_t dn_secphys;
uint64_t dn_pad3[4];
blkptr_t dn_blkptr[1];
uint8_t dn_bonus[BONUSLEN]

root_dataset = 2
config = 4
sync_bplist = 1023

ob
je

ct
_d

ir
ec

to
ry

ro
ot

_d
at

as
et

co
nf

ig

sy
nc

_b
pl

is
t

10
24

10
25

10
26

10
27

10
28

20
46

20
47

20
48

20
49

20
50

20
51

20
52

30
70

30
71

Boot
Hdr

snapshots.

uint64_t ds_prev_snap_txg: The transaction group number when the previous
snapshot (pointed to by ds_prev_snap_obj) was taken.

uint64_t ds_next_snap_obj: This field is only used for datasets representing
snapshots. It contains the object number of the dataset which is the most recent
snapshot. This field is always zero for datasets representing clones, volumes, or
filesystems.

uint64_t ds_snapnames_zapobj: Object number of a ZAP object (see Chapter 5)
containing name value pairs for each snapshot of this dataset. Each pair contains
the name of the snapshot and the object number associated with it's DSL dataset
structure.

uint64_t ds_num_children: Always zero if not a snapshot. For snapshots, this is
the number of references to this snapshot: 1 (from the next snapshot taken, or from
the active dataset if no snapshots have been taken) + the number of clones
originating from this snapshot.

uint64_t ds_creation_time: Seconds since January 1st 1970 (GMT) when this
dataset was created.

uint64_t ds_creation_txg: The transaction group number in which this dataset
was created.

uint64_t ds_deadlist_obj: The object number of the deadlist (an array of blkptr's
deleted since the last snapshot).

uint64_t ds_used_bytes: unique bytes used by the object set represented by this
dataset

uint64_t ds_compressed_bytes: number of compressed bytes in the object set
represented by this dataset

uint64_t ds_uncompressed_bytes: number of uncompressed bytes in the object set
represented by this dataset

uint64_t ds_unique_bytes:
When a snapshot is taken, its initial contents are identical to that of the active copy
of the data. As the data changes in the active copy, more and more data becomes
unique to the snapshot (the data diverges from the snapshot). As that happens, the
amount of data unique to the snapshot increases. The amount of unique snapshot
data is stored in this field: it is zero for clones, volumes, and filesystems.

uint64_t ds_fsid_guid: 64 bit ID that is guaranteed to be unique amongst all

33

currently open datasets. Note, this ID could change between successive dataset
opens.

uint64_t ds_guid: 64 bit global id for this dataset. This value never changes
during the lifetime of the object set.

uint64_t ds_restoring: The field is set to “1” if ZFS is in the process of restoring
to this dataset through 'zfs restore'5

blkptr_t ds_bp: Block pointer containing the location of the object set that this
dataset represents.

Section 4.4: DSL Directory Internals

The DSL Directory object contains a dsl_dir_phys_t structure in its bonus buffer. The
contents of this structure are described in detail below.

uint64_t dd_creation_time: Seconds since January 1st, 1970 (GMT) when this
DSL directory was created.

uint64_t dd_head_dataset_obj: 64 bit object number of the active dataset object

uint64_t dd_parent_obj:64 bit object number of the parent DSL directory

uint64_t dd_clone_parent_obj: For cloned object sets, this field contains the
object number of snapshot used to create this clone.

uint64_t dd_child_dir_zapobj: Object number of a ZAP object containing name-
value pairs for each child of this DSL directory.

uint64_t dd_used_bytes: Number of bytes used by all datasets within this
directory: includes any snapshot and child dataset used bytes.

uint64_t dd_compressed_bytes: Number of compressed bytes for all datasets
within this DSL directory.

uint64_t dd_uncompressed_bytes: Number of uncompressed bytes for all
datasets within this DSL directory.

uint64_t dd_quota: Designated quota, if any, which can not be exceeded by the
datasets within this DSL directory.

uint64_t dd_reserved: The amount of space reserved for consumption by the
datasets within this DSL directory.

5 See the ZFS Admin Guide for information about the zfs command.

34

uint64_t dd_props_zapobj: 64 bit object number of a ZAP object containing the
properties for all datasets within this DSL directory. Only the non-inherited /
locally set values are represented in this ZAP object. Default, inherited values are
inferred when there is an absence of an entry.

The following table shows valid property values.
Property Description Values

aclinherit Controls inheritance behavior
for datasets.

discard = 0

noallow = 1

passthrough = 3

secure = 4 (default)

aclmode Controls chmod and file/dir
creation behavior for datasets.

discard = 0

groupmask = 2 (default)

passthrough = 3

atime Controls whether atime is
updated on objects within a
dataset .

off = 0

on = 1 (default)

checksum Checksum algorithm for all
datasets within this DSL
Directory.

on = 1 (default)

off = 0

compression Compression algorithm for all
datasets within this DSL
Directory.

on = 1

off = 0 (default)

devices Controls whether device
nodes can be opened on
datasets.

devices = 0

nodevices = 1 (default)

exec Controls whether files can be
executed on a dataset.

exec = 1 (default)

noexec = 0

mountpoint Mountpoint path for datasets
within this DSL Directory.

string

quota Limits the amount of space all
datasets within a DSL
directory can consume.

quota size in bytes or

zero for no quota (default)

readonly Controls whether objects can
be modified on a dataset.

readonly = 1

readwrite = 0 (default)

recordsize Block Size for all objects
within the datasets contained
in this DSL Directory

recordsize in bytes

reservation Amount of space reserved for
this DSL Directory, including
all child datasets and child
DSL Directories.

reservation size in bytes

35

Property Description Values

setuid Controls whether the set-UID
bit is respected on a dataset.

setuid = 1 (default)

nosetuid = 0

sharenfs Controls whether the datasets
in a DSL Directory are shared
by NFS.

string – any valid nfs share
options

snapdir Controls whether .zfs is
hidden or visible in the root
filesystem.

hidden = 0

visible = 1 (default)

volblocksize For volumes, specifies the
block size of the volume. The
blocksize cannot be
changed once the volume has
been written, so it should be
set at volume creation time.

between 512 to 128K, powers
of two.

Defaults to 8K

volsize Volume size, only applicable
to volumes.

volume size in bytes

zoned Controls whether a dataset is
managed through a local zone.

on = 1

off = 0 (default)

Table 12 Editable Property Values stored in the dd_props_zabobj

36

Chapter Five – ZAP

The ZAP (ZFS Attribute Processor) is a module which sits on top of the DMU and operates
on objects called ZAP objects. A ZAP object is a DMU object used to store attributes in
the form of name-value pairs. The name portion of the attribute is a zero-terminated string
of up to 256 bytes (including terminating NULL). The value portion of the attribute is an
array of integers whose size is only limited by the size of a ZAP data block.

ZAP objects are used to store properties for a dataset, navigate filesystem objects, store
pool properties and more. The following table contains a list of ZAP object types.

ZAP Object Type

DMU_OT_OBJECT_DIRECTORY

DMU_OT_DSL_DIR_CHILD_MAP

DMU_OT_DSL_DS_SNAP_MAP

DMU_OT_DSL_PROPS

DMU_OT_DIRECTORY_CONTENTS

DMU_OT_MASTER_NODE

DMU_OT_DELETE_QUEUE

DMU_OT_ZVOL_PROP

 Table 13 ZAP Object Types

ZAP objects come in two forms; microzap objects and fatzap objects. Microzap objects are
a lightweight version of the fatzap and provide a simple and fast lookup mechanism for a
small number of attribute entries. The fatzap is better suited for ZAP objects containing
large numbers of attributes.

The following guidelines are used by ZFS to decide whether or not to use a fatzap or a
microzap object.

A microzap object is used if all three conditions below are met:
• all name-value pair entries fit into one block. The maximum data block size in

ZFS is 128KB and this size block can fit up to 2047 microzap entries.
• The value portion of all attributes are of type uint64_t.
• The name portion of each attribute is less than or equal to 50 characters in

length (including NULL terminating character).

If any of the above conditions are not met, a fatzap object is used.

The first 64 bit word in each block of a ZAP object is used to identify the type of ZAP
contents contained within this block. The table below shows these values.

37

Identifier Description Value

ZBT_MICRO This block contains microzap
entries

(1ULL << 63) + 3

ZBT_HEADER This block is used for the
fatzap. This identifier is only
used for the first block in a
fatzap object.

(1ULL << 63) + 1

ZBT_LEAF This block is used for the
fatzap. This identifier is used
for all blocks in the fatzap with
the exception of the first.

(1ULL << 63) + 0

Table 14 ZAP Object Block Types

Section 5.1: The Micro Zap

The microzap implements a simple mechanism for storing a small number of attributes. A
microzap object consists of a single block containing an array of microzap entries
(mzap_ent_phys_t structures). Each attribute stored in a microzap object is represented by
one of these microzap entry structures.

A microzap block is laid out as follows: the first 128 bytes of the block contain a microzap
header structure called the mzap_phys_t. This structure contains a 64 bit ZBT_MICRO
value indicating that this block is used to store microzap entries. Following this value is a
64 bit salt value that is stirred into the hash so that the hash function is different for each
ZAP object. The next 42 bytes of this header is intentionally left blank and the last 64 bytes
contain the first microzap entry (a structure of type mzap_ent_phys_t). The remaining
bytes in this block are used to store an array of mzap_ent_phys_t structures. The
illustration below shows the layout of this block.

The mzap_ent_phys_t structure and associated #defines are shown below.

#define MZAP_ENT_LEN 64
#define MZAP_NAME_LEN (MZAP_ENT_LEN - 8 – 4 - 2)

typedef struct mzap_ent_phys {
 uint64_t mze_value;
 uint32_t mze_cd;
 uin16_t mze_pad;
 char mze_name[MZAP_NAME_LEN];
} mzap_ent_phys_t;

38

Illustration 15 Microzap block layout

sa
lt padding3

mzap_ent_phys_t array

microzap block

...
first 128 bytes

mze_value: 64 bit integer
mze_cd: 32 bit collision differentiator (“CD”): associated with an entry
whose hash value is the same as another entry within this ZAP object.
When an entry is inserted into the ZAP object, the lowest CD which is not
already used by an entry with the same hash value is assigned. In the
absence of hash collisions, the CD value will be zero.
mze_pad: reserved for future use
mze_name: NULL terminated string less than or equal to 50 characters in
length

Section 5.2: The Fat Zap

The fatzap implements a flexible architecture for storing large numbers of attributes, and/or
attributes with long names or complex values (not uint64_t). This section begins with an
explanation of the basic structure of a fatzap object and is followed by a detailed
explanation of each component of a fatzap object.

All entries in a fatzap object are arranged based on a 64 bit hash of the attribute's name.
The hash is used to index into a pointer table (as can be seen on the left side of the
illustration below). The number of bits used to index into this table (sometimes called the
prefix) is dependent on the number of entries in the table. The number of entries in the
table can change over time. As policy stands today, the pointer table will grow if the
number of entries hashing to a particular bucket exceeds the capacity of one leaf block
(explained in detail below). The pointer table entries reference a chain of fatzap blocks
called leaf blocks, represented by the zap_leaf_phys structure. Each leaf block is broken up
into some number of chunks (zap_leaf_chunks) and each attribute is stored in one or more
of these leaf chunks. The illustration below shows the basic fatzap structures, each
component is explained in detail in the following sections.

Section 5.2.1: zap_phys_t

The first block of a fatzap object contains a 128KB zap_phys_t structure. Depending on the

39

Illustration 16 fatzap structure overview

zap_leaf_phys_tpointer table zap_leaf_phys_t

zap_leaf_phys_t

First Block in ZAP Object

zap_phys_t

zap leaf chunks zap leaf chunks

zap leaf chunks

size of the pointer table, this structure may contain the pointer table. If the pointer table is
too large to fit in the space provided by the zap_phys_t, some information about where it
can be found is store in the zap_table_phys portion of this structure. The definitions of the
zap_phys_t contents are as follows:

zap_block_type:
64 bit integer identifying type of ZAP block. Always set to ZBT_HEADER (see
Table 14) for the first block in the fatzap.

zap_magic:
64 bit integer containing the ZAP magic number: 0x2F52AB2AB (zfs-zap-zap)

zap_table_phys:
structure whose contents are used to describe the pointer table

zt_blk:
Blkid for the first block of the pointer table. This field is only used when
the pointer table is external to the zap_phys_t structure; zero otherwise.

zt_numblks:
Number of blocks used to hold the pointer table. This field is only used
when the pointer table is external to the zap_phys_t structure; zero
otherwise.

zt_shift:
Number of bits used from the hash value to index into the pointer table. If
the pointer table is contained within the zap_phys, this value will be 13.

uint64_t zt_nextblk:
uint64_t zt_blks_copied:

40

Illustration 17 zap_phys_t structure

uint64_t zap_block_type
uint64_t zap_magic
struct zap_table_phys {

uint64_t zt_blk
uint64_t zt_numblks
uint64_t zt_shift
uint64_t zt_nextblk
uint64_t zt_blk_copied

} zap_ptrtbl;

uint64_t zap_freeblk
uint64_t zap_num_leafs
uint64_t zap_num_entries
uint64_t zap_salt
uint64_t zap_pad[8181]
uint64_t zap_leafs[8192]

zap_phys_t

The above two fields are used when the pointer table changes sizes.

zap_freeblk: 64 bit integer containing the first available ZAP block that can be
used to allocate a new zap_leaf.

zap_num_leafs:
Number of zap_leaf_phys_t structures (described below) contained within this ZAP
object.

zap_salt:
The salt value is a 64 bit integer that is stirred into the hash function, so that the
hash function is different for each ZAP object.

zap_num_entries:
Number of attributes stored in this ZAP object.

zap_leafs[8192]:
The zap_leaf array contains 213 (8192) slots. If the pointer table has fewer than 213

entries, the pointer table will be stored here. If not, this field is unused.

Section 5.2.2: Pointer Table

The pointer table is a hash table which uses a chaining method to handle collisions. Each
hash bucket contains a 64 bit integer which describes the level zero block id (see Chapter 3
for a description of block ids) of the first element in the chain of entries hashed here. An
entries hash bucket is determined by using the first few bits of the 64 bit ZAP entry hash
computed from the attribute's name. The value used to index into the pointer table is called
the prefix and is the zt_shift high order bits of the 64 bit computed hash.

Section 5.2.3: zap_leaf_phys_t

The zap_leaf_phys_t is the structure referenced by the pointer table. Collisions in the
pointer table result in zap_leaf_phys_t structures being strung together in a link list fashion.
The zap_leaf_phys_t structure contains a header, a hash table, and some number of chunks.

typedef struct zap_leaf_phys {
 struct zap_leaf_header {
 uint64_t lhr_block_type;
 uint64_t lhr_next;
 uint64_t lhr_prefix;
 uint32_t lhr_magic;
 uint16_t lhr_nfree;
 uint16_t lhr_nentries;
 uint16_t lhr_prefix_len;
 uint16_t lh_freelist;
 uint8_t lh_pad2[12];
 } l_hdr; /* 2 24-byte chunks */

41

 uint16_t l_hash[ZAP_LEAF_HASH_NUMENTRIES];
 union zap_leaf_chunk {
 struct zap_leaf_entry {
 uint8_t le_type;
 uint8_t le_int_size;
 uint16_t le_next;
 uint16_t le_name_chunk;
 uint16_t le_name_length;
 uint16_t le_value_chunk;
 uint16_t le_value_length;
 uint16_t le_cd;
 uint8_t le_pad[2];
 uint64_t le_hash;
 } l_entry;
 struct zap_leaf_array {
 uint8_t la_type;
 uint8_t la_array[ZAP_LEAF_ARRAY_BYTES];
 uint16_t la_next;
 } l_array;
 struct zap_leaf_free {
 uint8_t lf_type;
 uint8_t lf_pad[ZAP_LEAF_ARRAY_BYTES];
 uint16_t lf_next;

 } l_free;
 } l_chunk[ZAP_LEAF_NUMCHUNKS];
} zap_leaf_phys_t;

Header
The header for the ZAP leaf is stored in a zap_leaf_header structure. It's
description is as follows:

lhr_block_type: always ZBT_LEAF (see Table 14 for values)

lhr_next: 64 bit integer block id for the next leaf in a block chain.

lhr_prefix and lhr_prefix_len: Each leaf (or chain of leafs) stores the ZAP
entries whose first lhr_prefixlen bits of their hash value equals lhr_prefix.
lhr_prefixlen can be equal to or less than zt_shift (the number of bits used to
index into the pointer table) in which case multiple pointer table buckets
reference the same leaf.

lhr_magic: leaf magic number == 0x2AB1EAF (zap-leaf)

lhr_nfree: number of free chunks in this leaf (chunks described below)

lhr_nentries: number of ZAP entries stored in this leaf

lhr_freelist: head of a list of free chunks, 16 bit integer used to index
into the zap_leaf_chunk array

42

 Leaf Hash
The next 8KB of the zap_leaf_phys_t is the zap leaf hash table. The entries in the
has table reference chunks of type zap_leaf_entry. Twelve bits (the twelve
following the lhr_prefix_len used to uniquely identify this block) of the attribute's
hash value are used to index into the this table. Hash table collisions are handled by
chaining entries. Each bucket in the table contains a 16 bit integer which is the
index into the zap_leaf_chunk array.

Section 5.2.4 : zap_leaf_chunk

Each leaf contains an array of chunks. There are three types of chunks: zap_leaf_entry,
zap_leaf_array, and zap_leaf_free. Each attribute is represented by some number of these
chunks: one zap_leaf_entry and some number of zap_leaf_array chunks. The illustration
below shows how these chunks are arranged. A detailed description of each chunk type
follows the illustration.

zap_leaf_entry: The leaf hash table (described above) points to chucks of
this type. This entry contains pointers to chunks of type zap_leaf_array
which hold the name and value for the attributes being stored here.

le_type: ZAP_LEAF_ENTRY == 252

le_int_size: Size of integers in bytes for this entry.

le_next: Next entry in the zap_leaf_chunk chain. Chains occur
when there are collisions in the hash table. The end of the chain is
designated by a le_next value of 0xffff.

le_name_chunk: 16 bit integer identifying the chunk of type

43

Illustration 18 zap leaf structure

uint8_t le_type = 252
uint8_t le_int_size
uint16_t le_next
uint16_t le_name_chunk
uint16_t le_name_length
uint16_t le_value_chunk
uint16_t le_value_length
uint32_t le_cd
uint64_t le_hash

uint8_t le_type = 252
uint8_t le_int_size
uint16_t le_next
uint16_t le_name_chunk
uint16_t le_name_length
uint16_t le_value_chunk
uint16_t le_value_length
uint32_t le_cd
uint64_t le_hash

uint8_t le_type = 252
uint8_t le_int_size
uint16_t le_next=0xffff
uint16_t le_name_chunk
uint16_t le_name_length
uint16_t le_value_chunk
uint16_t le_value_length
uint32_t le_cd
uint64_t le_hash

zap_leaf_entry zap_leaf_entry zap_leaf_entry

uint8_t la_type = 251
uint8_t la_array[21]
uint16_t la_next

uint8_t la_type = 251
uint8_t la_array[21]
uint16_t la_next=0xffff

uint8_t la_type = 251
uint8_t la_array[21]
uint16_t la_next

uint8_t la_type = 251
uint8_t la_array[21]
uint16_t la_next

uint8_t la_type = 251
uint8_t la_array[21]
uint16_t la_next=0xffff

zap_leaf_array zap_leaf_array

zap_leaf_array zap_leaf_array zap_leaf_array

one zap entry

zap_leaf_array which contains the first 21 characters of this
attribute's name.

le_name_length: The length of the attribute's name, including the
NULL character.

le_value_chunk:16 bit integer identifying the first chunk (type
zap_leaf_array) containing the first 21 bytes of the attribute's value.

le_value_length: The length, in integer increments (le_int_size)

le_cd: The collision differentiator (“CD”) is a value associated with
an entry whose hash value is the same as another entry within this
ZAP object. When an entry is inserted into the ZAP object, the
lowest CD which is not already used by an entry with the same hash
value is assigned. In the absence of hash collisions, the CD value
will be zero.

le_hash: 64 bit hash of this attribute's name.

zap_leaf_array: Chunks of the zap_leaf_array hold either the name or the
value of the ZAP attribute. These chunks can be strung together to provide
for long names or large values. zap_leaf_array chunks are pointed to by a
zap_leaf_entry chunk.

la_type: ZAP_LEAF_ARRAY == 251

la_array: 21 byte array containing the name or value's
value. Values of type “integer” are always stored in big endian
format, regardless of the machine's native endianness.

la_next: 16 bit integer used to index into the zap_leaf_chunk array
and references the next zap_leaf_array chunk for this attribute; a
value of 0xffff (CHAIN_END) is used to designate the end of the
chain

zap_leaf_free: Unused chunks are kept in a chained free list. The root of
the free list is stored in the leaf header.

lf_type: ZAP_LEAF_FREE == 253

lf_next: 16 bit integer pointing to the next free chunk.

44

Chapter Six – ZPL
The ZPL, ZFS POSIX Layer, makes DMU objects look like a POSIX filesystem. POSIX
is a standard defining the set of services a filesystem must provide. ZFS filesystems
provide all of these required services.

The ZPL represents filesystems as an object set of type DMU_OST_ZFS. All snapshots,
clones and filesystems are implemented as an object set of this type. The ZPL uses a well
defined format for organizing objects in its object set. The section below describes this
layout.

Section 6.1: ZPL Filesystem Layout

A ZPL object set has one object with a fixed location and fixed object number. This object
is called the “master node” and always has an object number of 1. The master node is a
ZAP object containing three attributes: DELETE_QUEUE, VERSION, and ROOT.

Name: DELETE_QUEUE
Value: 64 bit object number for the delete queue object
Description: The delete queue provides a list of deletes that were in-progress when
the filesystem was force unmounted or as a result of a system failure such as a
power outage. Upon the next mount of the filesystem, the delete queue is
processed to remove the files/dirs that are in the delete queue. This mechanism is
used to avoid leaking files and directories in the filesystem.

Name: VERSION
Value: Currently a value of “1”.
Description: ZPL version used to lay out this filesystem.

Name: ROOT
Value: 64 bit object number
Description: This attribute's value contains the object number for the top level
directory in this filesystem, the root directory.

Section 6.2: Directories and Directory Traversal

Filesystem directories are implemented as ZAP objects (object type
DMU_OT_DIRECTORY). Each directory holds a set of name-value pairs which contain
the names and object numbers for each directory entry. Traversing through a directory tree
is as simple as looking up the value for an entry and reading that object number.

All filesystem objects contain a znode_phys_t structure in the bonus buffer of it's dnode.
This structure stores the attributes for the filesystem object. The znode_phys_t structure is
shown below.

45

typedef struct znode_phys {
 uint64_t zp_atime[2];
 uint64_t zp_mtime[2];
 uint64_t zp_ctime[2];
 uint64_t zp_crtime[2];
 uint64_t zp_gen;
 uint64_t zp_mode;
 uint64_t zp_size;
 uint64_t zp_parent;
 uint64_t zp_links;
 uint64_t zp_xattr;
 uint64_t zp_rdev;
 uint64_t zp_flags;
 uint64_t zp_uid;
 uint64_t zp_gid;
 uint64_t zp_pad[4];
 zfs_znode_acl_t zp_acl;
} znode_phys_t

zp_atime: Two 64 bit integers containing the last file access time in seconds
(zp_atime[0]) and nanoseconds (zp_atime[1]) since January 1st 1970 (GMT).

zp_mtime: Two 64 bit integers containing the last file modification time in seconds
(zp_mtime[0]) and nanoseconds (zp_mtime[0]) since January 1st 1970 (GMT).

zp_ctime: Two 64 bit integers containing the last file change time in seconds
(zp_ctime[0]) and nanoseconds (zp_ctime[1]) since January 1st 1970 (GMT).

zp_crtime: Two 64 bit integers containing the file's creation time in seconds
(zp_crtime[0]) and nanoseconds (zp_crtime[1]) since January 1st 1970 (GMT).

zp_gen: 64 bit generation number, contains the transaction group number of the
creation of this file.

zp_mode: 64 bit integer containing file mode bits and file type. The lower 8 bits of
the mode contain the access mode bits, for example 755. The 9th bit is the sticky bit
and can be a value of zero or one. Bits 13-16 are used to designate the file type.
The file types can be seen in the table below.

46

Type Description Value in bits 13-16

S_IFIFO Fifo 0x1

S_IFCHR Character Special Device 0x2

S_IFDIR Directory 0x4

S_IFBLK Block special device 0x6

S_IFREG Regular file 0x8

S_IFLNK Symbolic Link 0xA

S_IFSOCK Socket 0xC

S_IFDOOR Door 0xD

S_IFPORT Event Port 0xE

Table 15 File Types and their associated mode bits

zp_size: size of file in bytes
zp_parent: object id of the parent directory containing this file
zp_links: number of hard links to this file
zp_xattr: object ID of a ZAP object which is the hidden attribute directory. It is
treated like a normal directory in ZFS, except that its hidden and an application will
need to "tunnel" into the file via openat() to get to it.
zp_rdev: dev_t for files of type S_IFCHR or S_IFBLK
zp_flags: Persistent flags set on the file. The following are valid flag values.

Flag Value

ZFS_XATTR 0x1

ZFS_INHERIT_ACE 0x2

Table 16 zp_flag values

zp_uid: 64 bit integer (uid_t) of the files owner.
zp_gid: 64 bit integer (gid_t) owning group of the file.
zp_acl: zfs_znode_acl structure containing any ACL entries set on this file. The
zfs_znode_acl structure is defined below.

Section 6.3: ZFS Access Control Lists

Access control lists (ACL) serve as a mechanism to allow or restrict user access privileges
on a ZFS object. ACLs are implemented in ZFS as a table containing ACEs (Access
Control Entries).

The znode_phys_t contains a zfs_znode_acl structure. This structure is shown below.

#define ACE_SLOT_CNT 6

typedef struct zfs_znode_acl {
 uint64_t z_acl_extern_obj;

47

 uint32_t z_acl_count;
 uint16_t z_acl_version;
 uint16_t z_acl_pad;
 ace_t z_ace_data[ACE_SLOT_CNT];
} zfs_znode_acl_t;

z_acl_extern_obj: Used for holding ACLs that won't fit in the znode. In other
words, its for ACLs great than 6 ACEs. The object type of an extern ACL is
DMU_OT_ACL.

z_acl_count: number of ACE entries that make up an ACL
z_acl_version: reserved for future use.
z_acl_pad: reserved for future use.
z_ace_data: Array of up to 6 ACEs.

An ACE specifies an access right to an individual user or group for a specific object.

typedef struct ace {
 uid_t a_who;
 uint32_t a_access_mask;
 uint16_t a_flags;
 uint16_t a_type;
} ace_t;

a_who: This field is only meaningful when the ACE_OWNER, ACE_GROUP and
ACE_EVERYONE flags (set in a_flags, described below) are not asserted. The
a_who field contains a UID or GID. If the ACE_IDENTIFIER_GROUP flag is set
in a_flags (see below), the a_who field will contain a GID. Otherwise, this field
will contain a UID.

a_access_mask: 32 bit access mask. The table below shows the access attribute
associated with each bit.

48

Attribute Value

ACE_READ_DATA 0x00000001

ACE_LIST_DIRECTORY 0x00000001

 ACE_WRITE_DATA 0x00000002

ACE_ADD_FILE 0x00000002

ACE_APPEND_DATA 0x00000004

ACE_ADD_SUBDIRECTORY 0x00000004

ACE_READ_NAMED_ATTRS 0x00000008

ACE_WRITE_NAMED_ATTRS 0x00000010

ACE_EXECUTE 0x00000020

ACE_DELETE_CHILD 0x00000040

ACE_READ_ATTRIBUTES 0x00000080

ACE_WRITE_ATTRIBUTES 0x00000100

ACE_DELETE 0x00010000

ACE_READ_ACL 0x00020000

ACE_WRITE_ACL 0x00040000

ACE_WRITE_OWNER 0x00080000

ACE_SYNCHRONIZE 0x00100000

Table 17 Access Mask Values

a_flags: 16 bit integer whose value describes the ACL entry type and inheritance
flags.

ACE flag Value

ACE_FILE_INHERIT_ACE 0x0001

ACE_DIRECTORY_INHERIT_ACE 0x0002

ACE_NO_PROPAGATE_INHERIT_ACE 0x0004

ACE_INHERIT_ONLY_ACE 0x0008

ACE_SUCCESSFUL_ACCESS_ACE_FLAG 0x0010

ACE_FAILED_ACCESS_ACE_FLAG 0x0020

ACE_IDENTIFIER_GROUP 0x0040

ACE_OWNER 0x1000

ACE_GROUP 0x2000

ACE_EVERYONE 0x4000

Table 18 Entry Type and Inheritance Flag Value

a_type: The type of this ace. The following types are listed in the table below.

49

Type Value Description

ACE_ACCESS_ALLOWED_ACE_TYPE 0x0000 Grants access as described in
a_access_mask.

ACE_ACCESS_DENIED_ACE_TYPE 0x0001 Denies access as described in
a_access_mask.

ACE_SYSTEM_AUDIT_ACE_TYPE 0x0002 Audit the successful or failed
accesses (depending on the
presence of the successful/failed
access flags) as defined in the
a_access_mask. 6

ACE_SYSTEM_ALARM_ACE_TYPE 0x0003 Alarm the successful of failed
accesses as defined in the
a_access_mask.7

Table 19 ACE Types and Values

6 The action taken as an effect of triggering an audit is currently undefined in Solaris.
7 The action taken as an effect of triggering an alarm is currently undefined in Solaris.

50

Chapter Seven – ZFS Intent Log

The ZFS intent log (ZIL) saves transaction records of system calls that change the file
system in memory with enough information to be able to replay them. These are stored in
memory until either the DMU transaction group (txg) commits them to the stable pool and
they can be discarded, or they are flushed to the stable log (also in the pool) due to a fsync,
O_DSYNC or other synchronous requirement. In the event of a panic or power failure, the
log records (transactions) are replayed.

There is one ZIL per file system. Its on-disk (pool) format consists of 3 parts:

 - ZIL header
 - ZIL blocks
 - ZIL records

A log record holds a system call transaction. Log blocks can hold many log records and the
blocks are chained together. Each ZIL block contains a block pointer in the trailer(blkptr_t)
to the next ZIL block in the chain. Log blocks can be different sizes. The ZIL header points
to the first block in the chain. Note there is not a fixed place in the pool to hold blocks.
They are dynamically allocated and freed as needed from the blocks available. The
illustration below shows the ZIL structure showing log blocks and log records of different
sizes:

More details of the current ZIL on disk structures are given below.

Section 7.1: ZIL header

There is one of these per ZIL and it has a simple structure:

typedef struct zil_header {
 uint64_t zh_claim_txg; /* txg in which log blocks were claimed */
 uint64_t zh_replay_seq; /* highest replayed sequence number */
 blkptr_t zh_log; /* log chain */

} zil_header_t;

51

Illustration 19 Overview of ZIL Structure

Header

Log Block Log Block

...Log Record

Log Record

Trailer

Log Record

Trailer

Section 7.2: ZIL blocks

ZIL blocks contain ZIL records. The blocks are allocated on demand and are of a variable
size according to need. The size field is part of the blkptr_t which points to a log block.
Each block is filled with records and contains a zil_trailer_t at the end of the block:

ZIL Trailer
typedef struct zil_trailer {

blkptr_t zit_next_blk; /* next block in chain */
uint64_t zit_nused; /* bytes in log block used */
zio_block_tail_t zit_bt; /* block trailer */

} zil_trailer_t;

ZIL records
ZIL record common structure
ZIL records all start with a common section followed by a
record (transaction) specific structure. The common log
record structure and record types (values for lrc_txtype) are:

typedef struct { /* common log record header */
uint64_t lrc_txtype; /* intent log transaction type */
uint64_t lrc_reclen; /* transaction record length */
uint64_t lrc_txg; /* dmu transaction group number */
uint64_t lrc_seq; /* intent log sequence number */

} lr_t;

#define TX_CREATE 1 /* Create file */
#define TX_MKDIR 2 /* Make directory */
#define TX_MKXATTR 3 /* Make XATTR directory */
#define TX_SYMLINK 4 /* Create symbolic link to a file */
#define TX_REMOVE 5 /* Remove file */
#define TX_RMDIR 6 /* Remove directory */
#define TX_LINK 7 /* Create hard link to a file */
#define TX_RENAME 8 /* Rename a file */
#define TX_WRITE 9 /* File write */
#define TX_TRUNCATE 10 /* Truncate a file */
#define TX_SETATTR 11 /* Set file attributes */
#define TX_ACL 12 /* Set acl */

ZIL record specific structures
For each of the record (transaction) types listed above there is a specific structure
which embeds the common structure. Within each record enough information is
saved in order to be able to replay the transaction (usually one VOP call). The VOP
layer will pass in-memory pointers to vnodes. These have to be converted to stable
pool object identifiers (oids). When replaying the transaction the VOP layer is
called again. To do this we reopen the object and pass it's vnode. Some of the
record specific structures are used for more than one transaction type. The
lr_create_t record specific structure is used for: TX_CREATE, TX_MKDIR,
TX_MKXATTR and TX_SYMLINK, and lr_remove_t is used for both

52

TX_REMOVE and TX_RMDIR. All fields (other than strings and user data) are 64
bits wide. This provides for a well defined alignment which allows for easy
compatibility between different architectures, and easy endianness conversion if
necessary. Here's the definition of the record specific structures:

typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_doid; /* object id of directory */
uint64_t lr_foid; /* object id of created file object */
uint64_t lr_mode; /* mode of object */
uint64_t lr_uid; /* uid of object */
uint64_t lr_gid; /* gid of object */
uint64_t lr_gen; /* generation (txg of creation) */
uint64_t lr_crtime[2]; /* creation time */
uint64_t lr_rdev; /* rdev of object to create */
/* name of object to create follows this */
/* for symlinks, link content follows name */

} lr_create_t;

typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_doid; /* obj id of directory */
/* name of object to remove follows this */

} lr_remove_t;

typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_doid; /* obj id of directory */
uint64_t lr_link_obj; /* obj id of link */

 /* name of object to link follows this */
} lr_link_t;

typedef struct {
 lr_t lr_common; /* common portion of log record */

uint64_t lr_sdoid; /* obj id of source directory */
uint64_t lr_tdoid; /* obj id of target directory */
/* 2 strings: names of source and destination follow this */

} lr_rename_t;

typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* file object to write */
uint64_t lr_offset; /* offset to write to */
uint64_t lr_length; /* user data length to write */
uint64_t lr_blkoff; /* offset represented by lr_blkptr */
blkptr_t lr_blkptr; /* spa block pointer for replay */
/* write data will follow for small writes */

} lr_write_t;

typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* object id of file to truncate */
uint64_t lr_offset; /* offset to truncate from */
uint64_t lr_length; /* length to truncate */

53

} lr_truncate_t;

typedef struct {
 lr_t lr_common; /* common portion of log record */

uint64_t lr_foid; /* file object to change attributes */
uint64_t lr_mask; /* mask of attributes to set */
uint64_t lr_mode; /* mode to set */
uint64_t lr_uid; /* uid to set */
uint64_t lr_gid; /* gid to set */
uint64_t lr_size; /* size to set */
uint64_t lr_atime[2]; /* access time */
uint64_t lr_mtime[2]; /* modification time */

} lr_setattr_t;

typedef struct {
lr_t lr_common; /* common portion of log record */
uint64_t lr_foid; /* obj id of file */
uint64_t lr_aclcnt; /* number of acl entries */
/* lr_aclcnt number of ace_t entries follow this */

} lr_acl_t;

54

Chapter Eight – ZVOL (ZFS volume)
ZVOL (ZFS Volumes) provides a mechanism for creating logical volumes. ZFS volumes
are exported as block devices and can be used like any other block device. ZVOLs are
represented in ZFS as an object set of type DMU_OST_ZVOL (see Table 11). A ZVOL
object set has a very simple format consisting of two objects: a properties object and a data
object, object type DMU_OT_ZVOL_PROP and DMU_OT_ZVOL respectively. Both
objects have statically assigned object Ids. Each object is described below.

ZVOL Properties Object
Type: DMU_OT_ZVOL_PROP
Object #: 2
Description:The ZVOL property object is a ZAP object containing attributes
associated with this volume. A particular attribute of interest is the “volsize”
attribute. This attribute contains the size, in bytes, of the volume.

ZVOL Data
Type: DMU_OT_ZVOL
Object #: 1
Description: This object stores the contents of this virtual block device.

55

