(intel.

Intel® Itanium® Architecture
Software Developer’s Manual

Volume 1: Application Architecture

Revision 2.2

January 2006

Document Number: 245317-005



THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

INFORMATION IN THIS DOCUMENT IS PROVIDED IN CONNECTION WITH INTEL® PRODUCTS. NO LICENSE, EXPRESS OR IMPLIED, BY
ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS DOCUMENT. EXCEPT AS PROVIDED IN
INTEL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS, INTEL ASSUMES NO LIABILITY WHATSOEVER, AND INTEL DISCLAIMS
ANY EXPRESS OR IMPLIED WARRANTY, RELATING TO SALE AND/OR USE OF INTEL PRODUCTS INCLUDING LIABILITY OR WARRANTIES
RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER
INTELLECTUAL PROPERTY RIGHT. INTEL PRODUCTS ARE NOT INTENDED FOR USE IN MEDICAL, LIFE SAVING, OR LIFE SUSTAINING
APPLICATIONS.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved"” or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate from
published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling
1-800-548-4725, or by visiting Intel's website at http://www.intel.com.

Intel, Intel486, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States
and other countries.

Copyright © 2000-2005, Intel Corporation. All rights reserved.

*Other names and brands may be claimed as the property of others.

ii Volume 1: Intel® Itanium® Architecture Software Developer's Manual



Contents

Part I: Application Architecture Guide

1 ADOUL thiS MBNUAL ..ottt e e s e e s naaeeeas 1:1
11 Overview of Volume 1: Application ArChiteCtUre..........cuuvviiiiiiiiiie e 1:1
1.1.1 Part 1: Application Architecture GUIAE ...........cocccviviiiiiiiieee e 1:1

1.1.2 Part 2: Optimization Guide for the Intel® Itanium® Architecture...................... 1.2

1.2 Overview of Volume 2: System ArChiteCtUre ...........ueeceiiiiiii e 1:2
1.2.1  Part 1: System ArchiteCture GUIAE ...........cooiiiiiiiiiiiiieee e 1:2

1.2.2 Part 2: System Programmer’'s GUIAE..........cc.uuuiiiiiiiiiiiiiii e 1:3

1.2.3  APPENTICES . ...eeiiiiiiiieie ettt ettt e et e et e e e e e 1:4

1.3 Overview of Volume 3: Instruction Set Reference.........cccccvvvivviiiiiiii e, 1:4
1.3.1 Part 1: Intel® [tanium® Instruction Set Descriptions ..........cccccovvvveeeeeiiiieee e, 1:4

1.3.2 Part 2: IA-32 Instruction Set DesCriPtioNS..........cccoovviviiiieeeecr e 1:4

1.4 =] 10110 To] o] e | TP PPPPPPPPPT 15
15 [ YC1F= L= To I Lo Yot U 0 1T o £SO RERRR 1.5
1.6 REVISION HISEOMY ...ttt ettt e e e abneeeeeas 1:6
2 Introduction to the Intel® [tanium® ArchiteCtUre .......cocoovveeeiiie e 1:11
2.1 Operating ENVIFONMENTS. .. ...ciiie i e e e e e e e e e e e e e e e ae e s 1:11
2.2 Instruction Set Transition Model OVEIVIEW ...........oovuiiiiiiiiiiiieiee e 1:12
2.3 Intel® [tanium® INStruction Set FEALUIES ........ecivviieiiee e 1:13
24 Instruction Level ParalleliSmM...........cooiiiiiiiii e 1:13
2.5 Compiler to Processor COmMMUNICALION .........eieiiiiriiieiiiiiee e 1:14
2.6 S 1= o1 U] F= 1o o SR 1:14
2.6.1  Control SPECUIALION ......uuueiiii i e e 1:.14

2.6.2  Data SPECUIALION .......uveiiiiii i 1:15

2.6.3  PrediCation ... 1:15

2.7 REGISEN STACK .....eeiiiiiiiiie et e e s 1:16
2.8 BranCRING .....coiieiiee e 1:16
2.9 =T o153 (= g L] 7= 11 o] o PSS 1:17
2200 O R (o Y= 4 g To o To Lo Y o g1 1= Tox £ U S 1:17
22000 N R |V W [T =T = TS U o] o Lo o S 1:17
2.12  Intel® Itanium® System Architecture FEAtUIeS .........ccccevvvveeiiiieeiiiee et 1:18
2.12.1 Support for Multiple Address Space Operating SyStems ..........cccveeeeeennnn 1:18

2.12.2 Support for Single Address Space Operating SyStems..........ccceevvvvveeernnnn 1:18

2.12.3 System Performance and Scalability..............ccocociiiiiiiii e, 1:18

2.12.4 System Security and Supportability...........cccoeevriiiiiiiiiiii e 1:19

22000 T I = 1 o 1T o o Pt 1:19
3 EXECULION ENVIFONMENT ..ottt ettt e et e e e s et e e e e e eeee 1:21
3.1 Application RegISIEr STALE .........vviiiiiiiiiie e 1:21
3.1.1 Reserved and Ignored Registers and FieldsS ............cccccconiiiiiiininiiene e, 1:21

3.1.2  GeNEral REJISIEIS ...uuuiiiiiiiiiiie e e et st e e e e s e e e e e e e e e e s s naeees 1:23

3.1.3  Floating-point REQISIEIS .......ccceeiiiiiieeeeeeeere e e e 1.24

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual iii



3.1.4  Predicate REQISIEIS ....coii ittt 1:24

3.1.5  BranCh REQISIEIS . .....uuiiiiiiiiiiee ittt 1:24
3.1.6  INSIIUCHION POINTET ...uiiiiiiiiiiiiiie it e e 1:24
3.1.7  Current Frame Marker.........cooiuiiiiiiiiiiiee et 1:25
3.1.8  ApPliICAtiON REQISIEIS.....uuuiiiiiiiiiiie i et e e e e e e e e e aaaeeeeeeaaanee 1:25
3.1.9 Performance Monitor Data Registers (PMD)...........eeieiiieiiiiiiiiiiiiiieiieeeeeeeen 1:30
3.1.10  USEI MASK (UM) .ttt e e e e e e 1:30
3.1.11 Processor ldentification ReQISIErS...........uvieiiiiiiiiiiiiiee e 1:31
3.2 =T 0 T o 1:33
3.2.1 Application Memory Addressing MOdel ..........ccuvvveeeeiiiiiiiiiiiiiiiieee e 1:33
3.2.2 Addressable Units and AlIgNMENt .............coovriiiiiiiiiiiiiiiiis e e e e e e, 1:33
T B =1V, (N @] o (=T 4T o o ISP PPPPPRP 1:33
3.3 INStruction ENCOAING OVEIVIEW.......cciiiiiiiiiiiiiiiiitiie et e ettt e e e e e e e e e e e snnenes 1:34
3.4 Instruction Sequencing CoNSIAEratioNS...........ccoviiiiiiieiiiiie e 1:36
3.4.1 RAW Dependency Special CaseS.........ccccccuvriiririiiieeeeeeiesiiiinineereeeaaaeeesaennns 1:39
3.4.2 WAW Dependency Special CaseS.........cccccuuriiiiriiiieeeeeeissiienineeneeeeaaeaesen e 1:39
3.4.3 WAR Dependency Special CaseS........ccceeeeeiiiiiiiiieieeeirrsnr e e e aeae e 1:40
3.4.4  Processor Behavior on Dependency Violations ...........ccccuvvieieeiiiiieieiiniiines 1:40
35 UNdefiNned BERAVION ........ooiiiiiii et e e e e e e e 1:41
Application Programming MOGEl ...........uuuuiiiiiiiieii s e e e e e e e e e e e e e eeananns 1:43
4.1 =T 0 1S (=T ) = Lod G SESEERP 1:43
4.1.1 Register Stack OPeration ..........cccuvuriiiiiiieeee e e e e e e e s sererrreee s 1:43
4.1.2 Register Stack INSIIUCHIONS.......cccoeiiiiii i e e e e e eeeanes 1:45
4.2 Integer Computation INSIIUCHIONS ........ooiiiiiiiiieee e 1:46
4.2.1  ArithmetiC INSIUCHIONS ....cciiiiieiiii e 1:47
4.2.2  LOGICAl INSIIUCHIONS. ....eeiieiiiiiiie et 1:47
4.2.3  32-bit Addresses and INEGEIS .....cc.uvveviiiiiiiiieeee e e 1:48
4.2.4  Bit Field and Shift INStrUCHIONS.........ccoiiiiiiiiiii e 1:48
4.2.5  Large CONSTANTS . ..uuuiiiiiiiiiiie ettt e e e e e e et e e e e e aee 1:49
4.3 Compare Instructions and PrediCation ... 1:49
O Tt R = =T (o 1 o] o PSR 1:50
4.3.2 CompPare INSHUCHONS ......cuuviiiiiiiiiiiee et 1:50
G TG B O 0 4] o= 1= I o =2 1.51
4.3.4 Predicate Register Transfers.........oooiiiiriiieiiicccie e 1:52
4.4 Memory ACCESS INSIIUCLIONS .........coiiiiiieieeeeere e s 1:53
441 LOA INSIIUCLIONS .....tiiiieiiie ettt e e e e e e e e e e eee e 1:54
4.4.2  STOre INSLIUCTIONS ...uueiiiiiiiieiiieie e e e e ettt er e e e e e e e s e s s e e e e e e e e e e e s s nennreneeees 1:55
4.4.3  Semaphore INSIUCHIONS .......cooiiiiiiiiiiii e e 1:55
4.4.4  CoNntrol SPECUIALION .....cccivee i 1:56
N S B = 1= ] o =T o U] = U1 o] o S 1:59
4.4.6  Memory Hierarchy Control and CONSIStENCY ..........uuvuuviiiiiiiiiiieeeeeeeeeceeeeeeeans 1.64
4.4.7 Memory ACCESS OrderiNg ......ccouiiiiiiiiiiiiiieete e e e e eeee s 1:68
4.5 BranCh INSITUCLIONS. ......uuiiiiiiiiee et e e e e e e s e e e e aeeeeeeeaans 1:69
4.5.1 Modulo-scheduled LOOP SUPPOIt ........uuviiieiiiiiiiiei it 1:70
4.5.2  Branch Prediction HINES..........ooiiiiiii e 1:72
4.5.3 Branch Predict INSIIUCLIONS ........ccouiiiiiiiiii e 1:73
4.6 Multimedia INSTIUCTIONS. ..ottt e e e e e e e e e s aeennes 1:74

Volume 1: Intel® Itanium® Architecture Software Developer's Manual



4.6.1 Parallel ArithmMELIC ....uuiiee e e e e e e 1:74

4.6.2  Parallel ShiftS ......ooiiiiiiiiiie e 1:75

o T B DT L= Y 1 =Y o =0 =T o | 1:76

4.7 ReQIStEr File TranSIOIS ...uviiiiiiie i e e e e e e e e e e aee s 1:76
4.8 (O = (o1 (=T = TaTo I = T ] (g o TS 1:78
4.8.1  CharaCter STINQS ..coeeiieiiiiiie ettt e e e e e e e e e s bbb reeeaaaaaaea s 1:78

A.8.2 Bt SHINGS ..ttt e ettt e e e e e e e e e e r e e e aaaaaeaaaaans 1:78

4.9 Privilege LeVel TranSEr......ouii it e e e e 1:78
5 Floating-point Programming MOdel..........ooiiiiiiiiiii e 1:81
5.1 Data TYPeS and FOIMMALS.........ccoiiiiiiiiiiieeiiie e e e e s e s r e e e e e e e e e s e s s s nereeeeaaees 1:81
L0 O R =T L Y/ o= 1:81

5.1.2  Floating-point Register FOMAL ............coiiiiiiiiiiiiiiiiieiee e 1:82

5.1.3 Representation of Values in Floating-point Registers ............cccooeeiiiiirinneen. 1:82

5.2 Floating-point StatUS REGISIET .........ueiiiiiiiiiee et 1:84
5.3 Floating-point INSTIUCLIONS .......eiiiiiiee e e e e e e e e e e e e e eeee s 1:87
5.3.1  Memory ACCESS INSLIUCHIONS.......cccoiiieiieiiiieee e e e e e s e e e 1:87

5.3.2 Floating-point Register to/from General Register Transfer Instructions....... 1.93

5.3.3  ArthmetiC INSITUCHONS .....ceiiiiiiiiiii it 1:94

5.3.4  Non-arithmetic INStrUCLIONS ..ot 1:96

5.3.5 Floating-point Status Register (FPSR) Status Field Instructions.................. 1:97

5.3.6 Integer Multiply and Add INStrUCHIONS ........cceeeviiiiiiiiiiieeie e 1:97

5.4 Additional IEEE CONSIAEIAtioNS .......cooiviiieeiiiiiieeeiriiiiee et ee e seieee e streee e s snereeeeesnnes 1:98
5.4.1 Floating-point INterruptionS...........oovviveieiiieiieei e 1.98

5.4.2 Definition of OVEIlOW ........cooiiiiiiiiii e 1:102

5.4.3 Definition of Tininess, Inexact and Underflow .............cccccceiiiiniiniiiiinnneen. 1:103

5.4.4 Integer INvalid OPErationsS ..........occueeeeiiiiiiiee et 1:104

5.4.5 Definition of Arithmetic Operations..........ccccccevieeeee s 1:104

5.4.6 Definition and Propagation of NaNS ..........ccccccciieeiii e 1:104

5.4.7 |IEEE Standard Mandated Operations Deferred to Software...................... 1:.104

5.4.8 Additions beyond the IEEE Standard ..............ooooiiiiiiiiiiiii 1:104

6 IA-32 Application Execution Model in an Intel® ltanium® System Environment.......... 1:107
6.1 INSEIUCHION SEE IMOUES .....eeiiiiieeee et e e e e e e e aeeeeeaaeeeas 1:107
6.1.1 Instruction Set Execution in the Intel® Itanium® Architecture..................... 1:108

6.1.2  1A-32 INStruction Set EXECULION ........uviiiiiiiiiieeaiie it 1:108

6.1.3  INStruction Set TranSItioNS .......cc.uuuiiiiiiiieee e 1:109

6.1.4 1A-32 Operating Mode TranSitioNS ........cccoiiieeiiiiiiiiiiiiiieeee e 1:110

6.2 IA-32 Application Register State Model...........cccvviiiiiiiii e 1:111
6.2.1 1A-32 General PUrpose REQISLErS .......ccvviiiiiiiiiieee et 1:114

6.2.2  1A-32 INSLrUCtION POINET.......ciiiiiiiiiiie i 1:115

6.2.3  1A-32 SegMeENt REQISIEIS ...uuuuiuiiiiiii it a e e 1:115

6.2.4 1A-32 Application EFLAG REQISIEN .....cccvvveieieieiiiiiiiciii i e e eeeeeeaans 1:120

6.2.5 1A-32 Floating-point REQISErS .........uuuiiiiiiiiaieeai et 1:122

6.2.6 1A-32 Intel® MMX™ Technology REISIEIS .......cccoeveieirieenieiieenie e 1:126

6.2.7  1A-32 SSE REQISIEIS ..eeiiiiiiiiiiei ittt 1:127

6.3 MEMOIY MOAEI OVEIVIEW......ciiiieeeieiieiciiiiieee et e e e e e e e e s e s e e e e e e e e e e e s s e eeeeeeeas 1:127
6.3.1  MemOry ENAIANESS......uuuuiiiii et e it e e e e e e e e e e e e anaaaeaaes 1:128

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual v



Part II:

1

vi

6.3.2  1A-32 SEgMENTALION. ....cciii ittt 1:128

6.3.3  Self MOdifying COUE ........euviiieiiiiiie e 1:129
6.3.4 Memory Ordering INteractioNS...........cuueeeriieeeeiiiiiiiiieeerr e e e e 1:129
6.4 IA-32 Usage of Intel® [tanium® REQISLErS .........ccccuveieeiiiiiiee ettt 1:130
6.4.1 Register StaCk ENQINE........uuuuuiiiiiii i e e e e e e e e e e eeeaaans 1:130
B.4.2 AL AT it e a e et rr e e nra e e e e anres 1:130
6.4.3 NaT/NaTVal Response for IA-32 INStrUCIONS ...........eeeeiiiiieiiiiniiiiiiiiiieeeee, 1:130
Optimization Guide for the Intel® Itanium® Architecture
About the Optimization GUIAE..........coi i e e e e e e e e e e e nnes 1:137
1.1 Overview of the Optimization GUITE............ccooiiiiiiiiiiiiie e 1:137
Introduction to Programming for the Intel® Itanium® Architecture...........ccccccoveeiinens 1:139
21 OVEIVIBW ..ttt ettt s ettt ettt e skttt e s skttt e e e s bbbt e e e e nbbe e e s e nnbe e e e e enbbeeeeeennees 1:139
2.2 L LSS (=T £ 1:139
2.3 Using Intel® 1tanium® INSrUCHIONS .........ccuveiiiiiiciiie e 1:140
2.3 1 FOIMAL ... e ettt ettt e e e e e e e e e aaeeeeeenaeae 1:140
2.3.2  Expressing ParalleliSm ... 1:141
2.3.3  Bundles and TemMPIAES.......cccccuuriiiiiirieeee e e e e 1:141
2.4 Memory Access and SPECUIALION ..........civeeiiiiiiceee e 1:142
A St R o ¥ 1T = 11 PR 1:142
2.4.2  SPECUIALION. ...ttt e e e e e e e e e 1:142
2.4.3  CoNtrol SPECUIALION .....ccoeiiiiiiiiee et 1:142
244  Data SPECUIALION .......eiiiiiiiiiie ettt 1:143
25 [ =T o= 1o o RO RPN 1:143
2.6 Architectural Support for Procedure CallS..........cccooviiiiiiiciiiiiiiiiccecee e 1:144
A T R = T (= To B =T o £ (= P 1:144
2.6.2 Register Stack ENQINE........oooiiiiiiiiiie e 1:144
2.7 BranChes @nd HINtS ........ooiiiiiiiii ettt e e e e e e e 1:144
2.7.1  Branch INStUCHIONS. .....cciiiieee it eer e e e e e e e e e e eeeeeee s 1:145
2.7.2 Loops and Software PipeliNiNg........ccccceeeiiiiiiiiiiiiieieic e 1:145
2.7.3 ROtatiNg REQISIEIS .....veviiiiiiiiiiie it e e e e e e e e e e e e aeeaaans 1:145
2.8 SUMIMAIY ..ttt e e e et s e e et e et e e e e e e et b s e e e e ee b s e e e e e tabaneeeeaebannaeas 1:146
MEMOTY REFEIENCE .ot s e e e e e e e e s e e s rrerreaaaaeeaes 1:147
3.1 L@ YT T SRS 1:147
3.2 Non-speculative Memory REfEreNCeS .........cuvvviiiiiiiiiiei e 1:147
Tt R S (o] (=538 (o TN 1Y/ =T T o RSSR 1.147
T o - (o L3 o 4 TN\ [=T T Y RSP 1:147
3.2.3  Data PrefetCh HinNt. ... ... 1:148
3.3 INSErUCION DEPENUENCIES ... ...ttt e e e e e e e e e e e e s e e e ananees 1:148
3.3.1  Control DEPENUENCIES.......cuiiiiiiiiiiiee ittt 1:148
3.3.2  Data DEPENUENCIES....ccciiiiiiiee ittt ettt 1:149
3.4 Using Speculation in the Intel® Itanium® Architecture to Overcome Dependencies 1:151
3.4.1 Speculation Model in the Intel® ltanium® Architecture.............cccceeeeeennnee.. 1:151
3.4.2 Using Data Speculation in the Intel® [tanium® Architecture........................ 1:152
3.4.3 Using Control Speculation in the Intel® Itanium® Architecture.................... 1:154

Volume 1: Intel® Itanium® Architecture Software Developer's Manual



3.4.4 Combining Data and Control Speculation .............cooociiiiiiiiiiieie 1:156

3.5 Optimization of Memory ReferenCes ...........evveiiiiiiiiii e 1:156
3.5.1 Speculation Considerations...........cccuuririiiieieeeiies i e e 1:157

3.5.2  Data INterferEnCe.....ccocuveiei it 1:157

CHSTC I @ o] 110741 g e [ @0 o [T 4= 1:158

3.5.4 Using Post-increment Loads and StOreS.........ccccuuviiiiiiiiiiieeeieenieiiiiieeee 1:159

3.5.5  LOOP OPLMIZALION ...uuueiiiiiiiiiieiee ettt ee e e e e e e e e 1:160

3.5.6  Minimizing CheCk COUe.........ccoiiiiiiiiiiiiiiiee e 1:160

3.6 SUMMIBIY .ttt ettt et e e e s e e et e ettt e e e e e s e e s s bbb e e e ettt e e e e e e e asannbrnbenneees 1:161
4 Predication, Control Flow, and InStruction Stream..........ccccooeiiiiiiiiiiiiiiiee e, 1:163
4.1 OVEBIVIBW ...ttt et e e e e e e e et b bt ettt et e e e e e e e s e aanbebbe e e e eeeeaeeeeaaannns 1:163
4.2 e g=To [Tor= 1 1To] o R PR PPPPRP 1:163
4.2.1 Performance Costs of BranChes ..o 1:163

4.2.2 Predication in the Intel® ltanium® Architecture............coccceeiiviiieiee i, 1:164

4.2.3 Optimizing Program Performance Using Predication...........cccccccceeeeeiiinnn, 1:165

4.2.4  Predication CONSIAErations ..........occueeeeeiiiiiieeeniiiieee e siieeee e sireee e svreeee e 1:168

4.2.5 Guidelines for Removing BranChes...........cccccoo i, 1:170

4.3 Control FIOW OPLiMIZAtIONS .....cceiiiiaiiiiiiiiieee et a e 1:171
4.3.1 Reducing Critical Path with Parallel Compares............cccccviiiiiii, 1:171

4.3.2 Reducing Critical Path with Multiway Branches ...........cccccccoiiiiiniinnnn. 1:173

4.3.3 Selecting Multiple Values for One Variable or Register with Predication ... 1:173

4.3.4 Improving Instruction Stream Fetching........ccccccveeivirieeei i, 1:175

4.4 Branch and PrefetCh HINtS ..o 1:176
4.5 SUIMIMAIY ... oo et e e e e e e e e et ettt e et et aete bbbt b e e s ae e e e e e e aaaeaaaeeeeeeenennes 1:177
5 Software Pipelining and LOOP SUPPOIT ...uuuiiiiiiiieee e iciciiiieeee e e e e e s s s e e e e e e e e e e e s nnnnnnnnes 1:179
51 OVEBIVIBW ...ttt e ettt et e e e e e e s e s et et e e e e e e aeeeaeeaaanssntenaneenaeeeeenessannnns 1:179
5.2 Loop Terminology and BasiC LOOP SUPPOIt .......cccevviicvvriiiiieieeeeeeesesssninineeeeeeeeee e 1:179
5.3 (@] 0] 111741 1To] a1 ] 1 o o o S 1:179
LT 70 R o To T o U1 (o] | 1 o R 1:180

5.3.2  Software PipeliniNg..........ueeeeiiiiiiiiiiieeeee e 1:181

5.4 Loop Support Features in the Intel® Itanium® Architecture..........cccccoceveeevieeeiveeeas 1:182
5.4.1 RegiSter ROALION........cuviiiiiiiiiiie et 1:182

5.4.2 Note on Initializing Rotating Predicates.............coovvcciviiiiiieiieeee e 1:183

5.4.3 Software-pipelined Loop BranChes .........cccccooviiiiiiien 1:183

5.4.4 Terminology REVIEW ......ccccoi i i e e e e e e e e e e e e e aenananens 1:187

5.5 Optimization of Loops in the Intel® [tanium® Architecture.............ccceevveeeiiieeevineen, 1:188
551 WHIlE LOOPS ...ttt ettt e e 1:188

5.5.2 Loops with Predicated INStrUCLIONS...........ccooiiiiiiiiiiiiiiee e 1:190

5.5.3  MUItIPIE-EXIt LOOPS ..uuueveiviiieireeieeesesiieiititteeereeeeeeeesssssnssenneeeeeeeeeeeeesneannnnnes 1:191

5.5.4 Software Pipelining ConsiderationS..........cccceeviiiiiieieeeeeeeeeeeeeeeeeeen 1:193

5.5.5 Software Pipelining and Advanced Loads.............cccceeeeeeeviviiiivecieiiiiiin, 1:193

5.5.6  Loop Unrolling Prior to Software Pipelining ..o 1:195

5.5.7 Implementing REAUCHIONS .......ccooiiiiiiiiiiiiiiee et 1:197

5.5.8 Explicit Prolog and EPilog..........cccuueiiaiiiiiiiiiiiiee e 1:198

5.5.9 Redundant Load Elimination in LOOPS........ccccoovviiviiiiiiiieieee e e ss s 1:200

5.6 Y] 01 0 1= Y PP 1:200

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual vii



6 Floating-point APPIICAtIONS .....ei i a e e 1:201
6.1 OVBIVIBW ...ttt et e e e ettt ettt e e e e e e e aa e eb b bbb e e e e e e e aeeeeeeaannnnbbenneees 1:201
6.2 FP Application Performance LIMItErS ... 1:201
6.2.1  EXECULION LAIENCY ..eeiiiiiiieiiieiiitee ettt e e e e 1:201
6.2.2  Execution Bandwidth.............oooiiiiiiiiiiiic e 1:202
(ST T |V (= 0 0 To o Y = 1= o Y 1:202
6.2.4  Memory BanaWidth..........ccoooiiiiiie e 1:203
6.3 Floating-point Features in the Intel® [tanium® Architecture.............ccccceeeeeiiiiveeeeeens 1:203
6.3.1 Large and Wide Floating-point Register Set .........ccccccoiiiiiiiiiiiiiiiieieeeeeeenn, 1:203
6.3.2  Multiply-Add INSIUCHION ... 1:206
6.3.3  Software Divide/Square ROOt SEQUENCE........cccoviuiiiiieiriiiiiee e 1:206
6.3.4 Computational MOAEIS...........ccccuiiiiiiiiieii e 1:208
6.3.5 Multiple Status FIeldsS .........cccuviiiiiiiiiee e 1:208
6.3.6  Other FRALUIES .....eiiiiiiiiie ettt e e bbb e e 1:210
6.3.7  Memory ACCESS CONLIOL ...ttt 1:212
6.4 SUIMIMBIY e e oot e e e e e e e et ettt eae et eetbebab s e s e e e e e e aaeaeaaeeeeeesnnnnnes 1:213
Figures
Part I. Application Architecture Guide
2-1 YA (=] 0 I = 0 VAT 0T T 0= ] 1:12
3-1 Application RegiSter MOUEI .........coiiii i as 1:23
3-2 Frame Marker FOIMAL ...t et e e e e e e s e s bbb e s b e e eeaeaeeas 1:25
3-3 [T O o] 1 1 =L PP 1:27
3-4 (2]l =T o 1Y (=] gl T 1 = 1:27
3-5 BSPSTORE ReQIStEr FOMMAL.......cccieeiiiieieeeeeeeeeeeee s e e e e e e e e e e e e e e e e e e e e e e e e e e aeseeenenrnnnnes 1.28
3-6 RNAT REQISEI FOMMAL.......iiiiiii i e e e e e e e e e e e s e e e e e aaaneas 1:28
3-7 [ ST 0] 11 1 1= | TP TRT T 1:29
3-8 Epilog Count RegiSter FOMMAL...........coiiiiieeieeiiie i e e e e e e e e e n e e e eaaaaas 1:30
3-9 USEI MASK FOIMMAL. .....ciiiiiiiiiiiii ettt r e et e e e e e e e e e s nebbb e reeaaeas 1:30
3-10  CPUID Registers 0 and 1 — Vendor INformation ................ecieiiiiiiieiiieee e 1:31
3-11  CPUID Register 3 — Version INfOrmMation...........ccoooeeieiiiiiiieeeeeres e e e 1:32
3-12  CPUID Register 4 — General Features/Capability BitS.........cccceeeiiiiiiiieeiiiiiiieceeeeeven, 1:32
3-13  Little-eNndian LOAAS ........uueieiiiiiiiiie ettt e e e e e e e e e e e e e 1:34
K I S = 1T BT T [ =Yg e = o £ PO 1:34
3-15  BUNAIE FOMMAL....ci ittt e e e e e e et e e e e e e e s e e s bbb be e e e e e e e e eeeennnbnenees 1:35
4-1 Register Stack Behavior on Procedure Call and Return ............cccoeeeeeeeiiiiiieeeeeeeeen 1:45
4-2 Data Speculation Recovery USING I0.C......coooviiiiiiiiies e e 1:60
4-3 Data Speculation Recovery USING ChK.@..........coouiuiiiiiiiiiiiis e 1:60
4-4 LT g Lo A 1= = o )Y/ 1:65
4-5 Allocation Paths Supported in the Memory Hierarchy.........ccccceeeiiiiiiieeiieiiceceeeenn 1.66
5-1 Floating-point RegISter FOIMAL............ccoiiiiiierie i e eeeeeeas 1:82
5-2 Floating-point Status Register FOrMat ............ooooriiiiiiiiiceir e 1:85
5-3 Floating-point Status Field FOrmMat..............oooiiiiiiiiiec e s 1:85
5-4 Memory to Floating-point Register Data Translation — Single Precision..............cccccccccceeeennn. 1:88
5-5 Memory to Floating-point Register Data Translation — Double Precision................ccccccceeeennnn. 1:89
5-6 Memory to Floating-point Register Data Translation — Double Extended,
Integer, Parallel FP and Fill.........cccooioiiiii i e e e e e 1:90
5-7 Floating-point Register to Memory Data Translation — Single Precision..............ccccccccccceeennn. 1:91
viii Volume 1: Intel® Itanium® Architecture Software Developer's Manual



5-8 Floating-point Register to Memory Data Translation — Double Precision................cccuvvveneee.
5-9 Floating-point Register to Memory Data Translation — Double Extended,

Integer, Parallel FP and Spill.........ooiee s
5-10  Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats .............ccccuvvvveeeeeenn.
5-11  Floating-point Exception Fault Prioritization ...
5-12  Floating-point Exception Trap PrioritiZation..............ceeiiiiiiiiiiiiiiiiieieeee e
6-1 Instruction Set Transition MOEL............oiiiiiiiiiie e
6-2 Instruction Set Mode TranSItiONS ........c.uveiieiiiiii ettt e e e e sbr e e e
6-3 IA-32 Application Register MOl ............ooiiiiiiii e
6-4 IA-32 General Registers (GR8 10 GRLD).....ccoiii it
6-5 IA-32 Segment Register Selector FOIMAL .........oooiiiiiiiiiiiii e
6-6 IA-32 Code/Data Segment Register Descriptor FOrmMat...........oooociiiiiiiiiiiieeeeeeiiiiieeeen
6-7 IA-32 EFLAG REQISLEr (ARZ24) .. .eeiiiiiiii ittt ettt ettt ettt e sbe e e nabe e ene
6-8 IA-32 Floating-point Control Register (FCR) ......ceuiiiiiiiiie e
6-9 IA-32 Floating-point Status Register (FSR) ..........uuuiiiiiiiiiaiaei et
6-10  Floating-point Data RegiSter (FDR).......ccuiiiiiiiiiiiiiiiee et
6-11  Floating-point Instruction Register (FIR) .........uuiiiiiiiiiiiiiiie e
6-12  1A-32 Intel® MMX™ Technology Registers (MMO t0 MMT7) ......cccoveiiiieeiiiie e
6-13  SSE Registers (XMMO-XMMT7) .. ...ttt e et e e e e e e e e e e e e anaebebeeeeaaaaeas
6-14  Memory AddresSing MOUEL.........uuu i e e e

Part 1l: Optimization Guide for the Intel® [tanium® Architecture

3-1 Control Dependency Preventing Code MOtION ..........cuuuiiiiiiiiieieee e e e e e e e
3-2 Speculation Model in the Intel® [tanium® ArchiteCture ..........cccccocvveeeeeiiiieee e
3-3 Minimizing Code Size During SPeculation ............cocciiiiiiiiiiie e
3-4 Using a Single Check for Three Advanced LOadS.........ccccceeeeviviiiiiiiiiiieeieeee e
4-1 Flow Graph lllustrating Opportunities for Off-path Predication............cccccceveveeiiiniicciniiennnnn.
5-1 ctop and cexXit EXECULION FIOW..........ooi oo e e e e s ee e e e e e aee e e an
5-2 wtop and WeXit EXECULION FIOW .......oiiiieiiii i e e e ee s
Tables

Part I: Application Architecture Guide

2-1 Major Operating ENVIFONMENTS .........uiiiiiiiiiiiee ittt e e e
3-1 Reserved and Ignored Registers and Fields ...
3-2 Frame Marker Field DeSCHIPLION .......coiiiiiiiie ittt
3-3 APPHCALION REGISIEIS ....iiiiiiiiiiie ettt e e e s aannee s
3-4 RSC FIeld DESCHIPLION ....ceiiiiiiiiit ettt e et e e et e e e e eneee
3-5 PFES Field DESCIIPLION ....ceiiiiitiiie ettt e e s e e e e enens
3-6 User Mask Field DESCHPHIONS..........uueiieiiiiiiie ettt ettt st e e e e e eees
3-7 CPUID ReQISIEr 3 FIEIAS ..ot e
3-8 CPUID ReQISIEr 4 FIeIAS ..ottt
3-9 Relationship between Instruction Type and Execution Unit TYPe ........cccccvveiiiiiiireeninnnn,
3-10 Template Field Encoding and Instruction SIot Mapping ..........coccveeeeiiiiieieeiniiieeee e
4-1 Architectural Visible State Related to the Register Stack.........c.ccocviiiiiiiiiiiiniiieee e
4-2 Register Stack Management INSIIUCHIONS ...........uviiiiiiiiie e
4-3 Integer Arithmetic INSIFUCTIONS ... ..viiiie i
4-4 Integer LOGICal INSIIUCTIONS........oiiuiiiiiie ittt e
4-5 32-bit Pointer and 32-bit INnteger INStrUCHIONS...........eiiiiiiiiiii e
4-6 Bit Field and Shift INSIIUCHIONS .......cooiiiieee e e e

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual



4-7
4-8

4-10
4-11
4-12
4-13
4-14
4-15
4-16
4-17
4-18
4-19
4-20
4-21
4-22
4-23
4-24
4-25
4-26
4-27
4-28
4-29
4-30
4-31
4-32
4-33
4-34
5-1

5-2

5-4
5-5
5-6
5-7
5-8
5-9
5-10
5-11
5-12
5-13
5-14
5-15
5-16
5-17
6-1
6-2
6-3

6-5
6-6
6-7

Instructions to Generate Large CONSIANTS..........uiiiiiiiiai it 1:49

COMPATE INSITUCHIONS ...ttt ettt e e e e e e s e ettt e et e e e e e e e aesaaaannbbbbeeeeaeeaaaeeaann 1:50
COMPAre TYPE FUNCHON .....uutiiiiiiiieie ettt ettt e e e e e e e e e s e s bbb e e e eeaaaaaaeeeas 1:51
Compare Outcome with NaT SOUICE INPUL .........uiiiiiiiiiiai e 1:52
Instructions and Compare Types ProVided ..........c..uuviiiiiiiiiiaiiiiiieiee e 1:52
MemOry ACCESS INSIIUCLIONS .....coiiiiiiiiiiie ettt e et e e e e e e e e e e e annbaeeees 1:53
State Relating to MEMOIY ACCESS ...cooiiii ittt ettt e e e e e e e aeeeeaaaa s 1:54
State Related to Control SPECUIAtION .........cceuviiiiiiiii e 1:58
Instructions Related to Control SPeCUlation .............cciiiiiiiiiiiiii e 1:59
State Relating to Data SPeCUIAtiON .........oooiiiiiiiiiie e 1:64
Instructions Relating to Data SPeCcUlation ............oooiiiiiiiiiiiiie e 1:64
Locality Hints Specified by Each INStruction Class..........cccuiiiiiiiiiiiiiieeeeee e 1:65
Memory Hierarchy Control Instructions and Hint Mechanisms ...........cccccccceiiiininiiiiiiieeen. 1:67
MemOry Ordering RUIES .......cooiiii ettt e e e e e e e e e e s e beaeeeeeas 1:68
Memory Ordering INSIIUCLIONS ... e e e e e e e e 1:68
2= g To] o T Y] o1 T PP TP 1:69
State Relating to BranChiNg........cooo i a e e 1:70
Instructions Relating to BranChing..............ooiii e 1:70
Instructions that MOdify RRBS ........uuuiiiiiiiiiaiiiie et ee e e e 1:71
Whether Prediction Hint 0N BranChes ............cooiiiiiiiiii e 1:73
Sequential Prefetch Hint 0N BranChes .............uuiiiiiiiiiiiieee e 1:73
Predictor Deallocation HiNt............ooiiiiiiiioie e 1:73
Parallel Arithmetic INSTIUCHIONS .......ccoiiiiiiiieei e 1:75
Parallel Sift INSIFUCTIONS ......ociiiiiiiiie et e e e 1:76
Parallel Data Arrangement INSIUCTIONS. ........oiiiiiiiiiiiiiiiieee e 1:76
Register File Transfer INSIrUCHIONS ..........eiiiiiiiiiiiiie e 1:77
StriNG SUPPOIE INSTIUCTIONS ...ttt e et e et e e e e e e e e e s annbeeaeeeeaaaaeaanns 1:78
Bit SUPPOIt INSLIUCTIONS ...ttt ettt e e e e e e e e e s eabeeeeaaaaeas 1:78
IEEE ReEAI-tYPE PrOPEILIES ...coiiiiiiiiiiiitee ettt ettt e e e e e e e e e bbb eeeaaaaeas 1:81
Floating-point Register ENCOOINGS ........uuiiiiiiiiaiiiiiiiieieeee e 1:83
Floating-point Status Register Field DeSCHPLION .........ccuiiiiiiiiiiiiiiiieeeee e 1:85
Floating-point Status Register's Status Field Description ............ccccuvviiiiiiiieininiiieeeee, 1:85
Floating-point Rounding Control DefinitioNS.............uuuiiiiiiiiiie e 1:86
Floating-point Computation Model Control Definitions ............ccovveeiiiiieieii e 1:86
Floating-point Memory ACCESS INSIIUCHIONS. .......ccciiiiiiiiiiiiiiie e 1.87
Floating-point Register Transfer INSITUCLIONS ..........cc.eiiiiiiiiiiiiiiie e 1:93
General Register (Integer) to Floating-point Register Data Translation (setf)...........ccccc...... 1:94
Floating-point Register to General Register (Integer) Data Translation (getf)...........c.......... 1:94
Floating-point Instruction Status Field Specifier Definition ...........cccocevieini e 1:94
Arithmetic Floating-point INSTIUCHIONS .........cvviiiiiiiiiee et 1:95
Arithmetic Floating-point PSEUdO-0PEratioNS ...........eieiiiiiiiieiiiiiie ettt 1:95
Non-arithmetic Floating-point INSIFUCLIONS ..........ooiiiiiiiiiiieie e 1:96
Non-arithmetic Floating-point PSEUdO-0PErationsS ............ueiiiiiiiiiieeiiiieee e 1:97
FPSR Status Field INSIFUCLIONS ........oiuiiiiiiiiiiiee ettt e e 1:97
Integer Multiply and Add INSIIUCLIONS .......oooiiiiiiiieiiiiiee e 1:98
IA-32 Application RegiSter MapPing ........ceeeeiiiriiieeiiiieee ettt 1:112
IA-32 Segment RegiISter FIeldS ........cc.uuiiiiiiiiiiie e 1:115
IA-32 Environment Initial RegiSter STate ...........ovviiiiiiiiiii e 1:117
IA-32 Environment Runtime Integrity Checks ... 1:119
IA-32 EFLAGS ReQISter FIEIUS.......eiiiiiiiiiiiie ettt 1:121
IA-32 Floating-point RegiSter MapPiNgS .....coocvureiieiiiiiitie ettt 1:122
IA-32 Floating-point Status Register Mapping (FSR) ......ccuuvvviiiiiiiiiieiiee e 1:125

Volume 1: Intel® Itanium® Architecture Software Developer's Manual



Part 1l: Optimization Guide for the Intel® [tanium® Architecture

5-1 (o (o] o ] Mo To] o I I - Tod = TN TSP UUP PP PP PPPPTRPPP
5-2 WEOP LOOP TTACE ... ettt e e e e e e e e et ettt e ettt ae e bbb et e e e e e e e e e e e aaeaaeeeeeeeees

Volume 1: Intel® Itanium® Architecture Software Developer’'s Manual

Xi



Xii Volume 1: Intel® Itanium® Architecture Software Developer's Manual



Part I Application Architecture
Guide






About this Manual 1

The Intel® Itanium® architecture is a uni gue combination of innovative features such as explicit
parallelism, predication, speculation and more. The architecture is designed to be highly scalable to
fill the ever increasing performance requirements of various server and workstation market
segments. The Itanium architecture features a revolutionary 64-bit instruction set architecture
(ISA), which applies a new processor architecture technology called EPIC, or Explicitly Parallel
Instruction Computing. A key feature of the Itanium architecture is | A-32 instruction set
compatibility.

The Intel® Itanium® Architecture Software Devel oper’s Manual provides a comprehensive
description of the programming environment, resources, and instruction set visible to both the
application and system programmer. In addition, it also describes how programmers can take
advantage of the features of the Itanium architecture to help them optimize code.

1.1 Overview of Volume 1: Application Architecture

This volume defines the Itanium application architecture, including application level resources,
programming environment, and the 1A-32 application interface. This volume also describes
optimization techniques used to generate high performance software.

1.1.1 Part 1: Application Architecture Guide

Chapter 1, “About this Manual” provides an overview of al volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “Introduction to the Intel® Itanium® Architecture” provides an overview of the
architecture.

Chapter 3, “Execution Environment” describesthe Itanium register set used by applications and the
memory organization models.

Chapter 4, “ Application Programming Model” gives an overview of the behavior of Itanium
application instructions (grouped into related functions).

Chapter 5, “Floating-point Programming Model” describes the Itanium floating-point architecture
(including integer multiply).

Chapter 6, “IA-32 Application Execution Model in an Intel® Itanium® System Environment”
describes the operation of 1A-32 instructions within the Itanium System Environment from the
perspective of an application programmer.
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Part 2: Optimization Guide for the Intel® Itanium®

Architecture
Chapter 1, “ About the Optimization Guide” gives an overview of the optimization guide.

Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment for the Itanium architecture.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “ Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “ Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications’ discusses current performance limitationsin
floating-point applications and features that address these limitations.

Overview of Volume 2: System Architecture

This volume defines the Itanium system architecture, including system level resources and
programming state, interrupt model, and processor firmware interface. Thisvolume also provides a
useful system programmer's guide for writing high performance system software.

Part 1. System Architecture Guide

Chapter 1, “About thisManual” provides an overview of al volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “ Intel® 1tanium® System Environment” introduces the environment designed to support
execution of Itanium architecture-based operating systems running 1A-32 or Itanium
architecture-based applications.

Chapter 3, “ System State and Programming Model” describes the Itanium architectural state which
isvisible only to an operating system.

Chapter 4, “ Addressing and Protection” defines the resources availabl e to the operating system for
virtual to physical address trandlation, virtual aliasing, physical addressing, and memory ordering.

Chapter 5, “Interruptions” describes all interruptions that can be generated by a processor based on
the Itanium architecture.

Chapter 6, “Register Stack Engine” describes the architectural mechanism which automatically
saves and restores the stacked subset (GR32 — GR 127) of the general register file.

Chapter 7, “Debugging and Performance Monitoring” is an overview of the performance
monitoring and debugging resources that are available in the Itanium architecture.

Volume 1: About this Manual


ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

1.2.2

Chapter 8, “Interruption Vector Descriptions’ lists al interruption vectors.

Chapter 9, “I A-32 Interruption Vector Descriptions” lists |A-32 exceptions, interrupts and
intercepts that can occur during I A-32 instruction set execution in the Itanium System
Environment.

Chapter 10, “Itanium®Architecture-based Operating System Interaction Model with 1A-32
Applications’ defines the operation of | A-32 instructions within the Itanium System Environment
from the perspective of an Itanium architecture-based operating system.

Chapter 11, “Processor Abstraction Layer” describes the firmware layer which abstracts processor
implementation-dependent features.

Part 2: System Programmer’s Guide

Chapter 1, “About the System Programmer’s Guide” gives an introduction to the second section of
the system architecture guide.

Chapter 2, “MP Coherence and Synchronization” describes multiprocessing synchronization
primitives and the Itanium memory ordering model.

Chapter 3, “Interruptions and Serialization” describes how the processor serializes execution
around interruptions and what stateis preserved and made available to low-level system code when
interruptions are taken.

Chapter 4, “Context Management” describes how operating systems need to preserve Itanium
register contents and state. This chapter also describes system architecture mechanisms that allow
an operating system to reduce the number of registersthat need to be spilled/filled on interruptions,
system calls, and context switches.

Chapter 5, “Memory Management” introduces various memory management strategies.

Chapter 6, “Runtime Support for Control and Data Speculation” describes the operating system
support that is required for control and data speculation.

Chapter 7, “Instruction Emulation and Other Fault Handlers’ describes a variety of instruction
emulation handlers that Itanium architecture-based operating systems are expected to support.

Chapter 8, “Floating-point System Software” discusses how processors based on the Itanium
architecture handle floating-point numeric exceptions and how the software stack provides
complete |EEE-754 compliance.

Chapter 9, “I1A-32 Application Support” describes the support an Itanium architecture-based
operating system needs to provide to host |A-32 applications.

Chapter 10, “External Interrupt Architecture” describes the external interrupt architecture with a
focus on how external asynchronous interrupt handling can be controlled by software.

Chapter 11, “1/O Architecture” describes the 1/0 architecture with afocus on platform issues and
support for the existing 1A-32 1/0 port space.

Chapter 12, “Performance Monitoring Support” describes the performance monitor architecture
with afocus on what kind of support is needed from Itanium architecture-based operating systems.
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Chapter 13, “Firmware Overview” introduces the firmware model, and how various firmware
layers (PAL, SAL, EFI) work together to enable processor and system initialization, and operating
system boot.

Appendices

Appendix A, “Code Examples’ provides OS boot flow sample code.

Overview of Volume 3: Instruction Set Reference

This volume is a comprehensive reference to the Itanium instruction set, including instruction
format/encoding.

Part 1: Intel® Itanium® Instruction Set Descriptions

Chapter 1, “About this Manual” provides an overview of all volumesin the Intel® Itanium®

Architecture Software Developer’s Manual.

Chapter 2, “Instruction Reference” provides a detailed description of al Itanium instructions,
organized in alphabetical order by assembly language mnemonic.

Chapter 3, “Pseudo-Code Functions” provides atable of pseudo-code functions which are used to
define the behavior of the Itanium instructions.

Chapter 4, “Instruction Formats® describes the encoding and instruction format instructions.

Chapter 5, “Resource and Dependency Semantics’ summarizes the dependency rules that are
applicable when generating code for processors based on the Itanium architecture.

Part 2: IA-32 Instruction Set Descriptions

Chapter 1, “Base | A-32 Instruction Reference” provides a detailed description of al base 1A-32
instructions, organized in aphabetical order by assembly language mnemonic.

Chapter 2, “1A-32 Intel® MMX ™ Technol ogy Instruction Reference” provides a detailed
description of al 1A-321 ntel® MMX ™ technol ogy instructions designed to increase performance
of multimediaintensive applications. Organized in alphabetical order by assembly language
mnemonic.

Chapter 3, “IA-32 SSE Instruction Reference” provides a detailed description of all 1A-32
Streaming SIMD Extension (SSE) instructions designed to increase performance of multimedia
intensive applications, and is organized in alphabetical order by assembly language mnemonic.
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1.4 Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (I SA) — Defines application and system level resources. These
resources include instructions and registers.

Itanium Architecture—The new | SA with 64-hit instruction capabilities, new performance-
enhancing features, and support for the 1A-32 instruction set.

| A-32 Architecture — The 32-bit and 16-bit Intel architecture as described in the 1A-32 Intel®
Architecture Software Developer’s Manual.

Itanium System Environment — The operating system environment that supports the execution of
both I A-32 and Itanium architecture-based code.

| A-32 System Environment — The operating system privileged environment and resources as
defined by the |A-32 Intel® Architecture Software Devel oper’s Manual. Resources include virtual
paging, control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Itanium Architecture-based Firmware — The Processor Abstraction Layer (PAL) and System
Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) — The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) — The firmware layer which abstracts system features that are
implementation dependent.

1.5 Related Documents

The following documents can be downloaded at the Intel’s Devel oper Site at
http://devel oper.intel.com:

« Inted® Itanium® 2 Processor Reference Manual for Software Development and
Optimization — This document (Document number 251110) describes model-specific
architectural featuresincorporated into the Intel® Itanium® 2 processor, the second processor
based on the Itanium architecture.

« Intel® Itanium® Processor Reference Manual for Software Devel opment — This document
(Document number 245320) describes model-specific architectural features incorporated into
the Intel® Itanium® processor, the first processor based on the Itanium architecture.

« 1A-32Intel® Architecture Software Developer’s Manual — This set of manuals describes the
Intel 32-bit architecture. They are available from the Intel Literature Department by calling
1-800-548-4725 and requesting Document Numbers 243190, 243191and 243192.

« Intel® Itanium® Software Conventions and Runtime Architecture Guide — This document
(Document number 245358) defines general information necessary to compile, link, and
execute a program on an Itanium architecture-based operating system.
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« Intel® Itanium® Processor Family System Abstraction Layer Specification — This document
(Document number 245359) specifies requirements to develop platform firmware for Itanium
architecture-based systems.

» Extensible Firmware I nterface Specification — This document defines a new model for the
interface between operating systems and platform firmware.

1.6 Revision History

Date of Revision Description
Revision Number P
December 2005 2.2 Added TF instruction in Vol 3 Ch 2.

Updated IA-32 CPUID I-page in Vol 4 Ch 2.

Add support for the absence of INIT, PMI, and LINT pins in Vol 2, Part I,
Section 5.8.

Add text to "ev" field of Vol 2, Section 7.2.1 Table 7.4 to define a PMU external
notification mechanism as implementation dependent.

Extensions to PAL procedures to support data poisoning in Vol 2, Part |, Ch
11.

Virtualization Addendum - Requires that processors have a way to
enable/disable vmsw instruction in Vol 2, Part |, Sections 2.2, 3.4 and 11.9.3.

Change the description of CR[IFA] and CRJ[ITIR] to provide hardware the
option of checking them for reserved values on a write. Also mention this
option in the description of the Translation Insertion Format.

Addition of new return status to PAL_TEST_PROC in Vol 2, Part I, Ch 11.

Fix small holes in INTA/XTP definition in Vol 2, Part |, Sections 5.8.4.3 and
5.8.4.4.

Virtualization Addendum - Unimplemented Virtual Address Checking in Vol 3
Ch 2.

Fix small discrepancies in the cmp8xchgl6 definition in Vol 3 Ch 2.

Change rules about overlapping inserts to allow Itanium 2 behavior in Vol 2,
Part I, Section 4.1.8.

Update PAL_BUS_GET/SET_FEATURES bit 52 definition in Vol 2 Ch 11.

Allow register fields in CR.LID register to be read-only and CR.LID checking
on interruption messages by processors optional. See Vol 2, Part |, Ch 5
“Interruptions” and Section 11.2.2 PALE_RESET Exit State for details.

Relaxed reserved and ignored fields checkings in 1A-32 application registers
in Vol 1 Ch 6 and Vol 2, Part |, Ch 10.

Introduced visibility constraints between stores and local purges to ensure
TLB consistency for UP VHPT update and local purge scenarios. See Vol 2,
Part I, Ch 4 and description of ptc. 1 instruction in Vol 3 for details.

Architecture extensions for processor Power/Performance states (P-states).
See Vol 2 PAL Chapter for detalils.

Introduced Unimplemented Instruction Address fault.

Relaxed ordering constraints for VHPT walks. See Vol 2, Part |, Ch 4 and 5 for
details.

Architecture extensions for processor virtualization.

All instructions which must be last in an instruction group results in undefined
behavior when this rule is violated.

Added architectural sequence that guarantees increasing ITC and PMD
values on successive reads.
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Date of

Revision

Revision Number Description
December 2005 2.2 Addition of PAL_BRAND_INFO, PAL_GET_HW_POLICY,
(Continued) PAL_MC_ERROR_INJECT, PAL_MEMORY_BUFFER,
PAL_SET_HW_POLICY and PAL_SHUTDOWN procedures.
Allows IPI-redirection feature to be optional.
Undefined behavior for 1-byte accesses to the non-architected regions in the
IPI block.
Modified insertion behavior for TR overlaps. See Vol 2, Part |, Ch 4 for details.
“Bus parking” feature is now optional for PAL_BUS_GET_FEATURES.
FR32-127 is now preserved in PAL calling convention.
New return value from PAL_VM_SUMMARY procedure to indicate the
number of multiple concurrent outstanding TLB purges.
Performance Monitor Data (PMD) registers are no longer sign-extended.
New memory attribute transition sequence for memory on-line delete. See Vol
2, Part I, Ch 4 for details.
Added 'shared error' (se) bit to the Processor State Parameter (PSP) in
PAL_MC_ERROR_INFO procedure.
Clarified PMU interrupts as edge-triggered.
Modified ‘proc_number’ parameter in PAL_LOGICAL_TO_PHYSICAL
procedure.
Modified pal_copy_info alignment requirements.
New bit in PAL_PROC_GET_FEATURES for variable P-state performance.
Clarified descriptions for check_target_register and
check_target_register_sof.
Various fixes in dependency tables in Vol 3 Ch 5.
Clarified effect of sending IPIs to non-existent processor in Vol 2, Part |, Ch 5.
Clarified instruction serialization requirements for interruptions in Vol 2, Part Il,
Ch 3.
Updated performance monitor context switch routine in Vol 2, Part |, Ch 7.
October 2002 2.1 Added New fc. i Instruction (Sections 4.4.6.1 and 4.4.6.2, Part |, Vol. 1;

Sections 4.3.3,4.4.1,4.45,4.4.7,5.5.2,and 7.1.2, Part |, Vol. 2; Sections 2.5,
2.5.1,25.2,2.5.3,and 4.5.2.1, Part I, Vol. 2; and Sections 2.2, 3, 4.1, 4.4.6.5,
and 4.4.10.10, Part I, Vol. 3).

Added New Atomic Operations 1d16, st16, cmp8xchglé (Sections 3.1.8,
3.1.8.6,4.4.1,4.4.2, and 4.4.3, Part |, Vol. 1; Section 4.5, Part |, Vol. 2; and
Sections 2.2, 3, 5.3.2, and 5.4, Part I, Vol. 3).

Added Spontaneous NaT Generation on Speculative Load (Sections 5.5.5
and 11.9, Part I, Vol. 2 and Sections 2.2 and 3, Part |, Vol. 3).

Added New Hint Instruction (Section 2.2, Part I, Vol. 3).

Added Fault Handling Semantics for 1fetch. fault Instruction (Section 2.2,
Part I, Vol. 3).

Added Capability for Allowing Multiple PAL_A_SPEC and PAL_B Entries in
the Firmware Interface Table (Section 11.1.6, Part I, Vol. 2).

Added BR1 to Min-state Save Area and Clarified Alignment (Sections 11.3.2.3
and 11.3.3, Part I, Vol. 2).

Added New PAL Procedures: PAL_LOGICAL_TO_PHYSICAL and
PAL_CACHE_SHARED_INFO (Section 11.9.1, Part I, Vol. 2).

Added Op Fields to PAL_MC_ERROR_INFO (Section 11.9, Part |, Vol. 2).
Added New Error Exit States (Section 11.2.2.2, Part [, Vol. 2).

Added Performance Counter Standardization (Sections 7.2.3 and 11.6, Part I,
Vol. 2).

Modified cPUID [4] for Atomic Operations and Spontaneous Deferral
(Section 3.1.11, Part I, Vol. 1).
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1.8

Date of

Revision

Revision Number Description
October 2002 2.1 Modified PAL_FREQ_RATIOS (Section 11.2.2, Part I, Vol. 2).
(continued) Modified PAL_VERSION (Section 11.9, Part |, Vol. 2).
Modified PAL_CACHE_INFO Store Hints (Section 11.9, Part I, Vol. 2).
Modified PAL_MC_RESUME (Sections 11.3.3 and 11.4, Part |, Vol. 2).
Modified IA_32_Exception (Debug) IIPA Description (Section 9.2, Part I,
Vol. 2).
Clarified Predicate Behavior of alloc Instruction (Section 4.1.2, Part I, Vol. 1
and Section 2.2, Part I, Vol. 3).
Clarified ITC clocking (Section 3.1.8.10, Part I, Vol. 1; Section 3.3.4.2, Part |,
Vol. 2; and Section 10.5.5, Part Il, Vol. 2).
Clarified Interval Time Counter (ITC) Fault (Section 3.3.2, Part I, Vol. 2).
Clarified Interruption Control Registers (Section 3.3.5, Part |, Vol. 2).
Clarified Freeze Bit Functionality in Context Switching and Interrupt
Generation (Sections 7.2.1, 7.2.2, 7.2.4.1, and 7.2.4.2, Part |, Vol. 2).
Clarified PAL_BUS_GET/SET_FEATURES (Section 11.9.3, Part I, Vol. 2).
Clarified PAL_CACHE_FLUSH (Section 11.9, Part I, Vol. 2).
Clarified Cache State upon Recovery Check (Section 11.2, Part I, Vol. 2).
Clarified PALE_INIT Exit State (Section 11.4.2, Part I, Vol. 2).
Clarified Processor State Parameter (Section 11.4.2.1, Part I, Vol. 2).
Clarified Firmware Address Space at Reset (Section 11.1, Part I, Vol. 2).
Clarified PAL PMI, AR.ITC, and PMD Register Values (Sections 11.3, 11.5.1,
and 11.5.2, Part |, Vol. 2).
Clarified Invalid Arguments to PAL (Section 11.9.2.4, Part |, Vol. 2).
Clarified itr/itc Instructions (Section 2.2, Part |, Vol. 3).
December 2001 2.0 Volume 1:

Faults in Id.c that hits ALAT clarification (Section 4.4.5.3.1).

IA-32 related changes (Section 6.2.5.4, Section 6.2.3, Section 6.2.4, Section
6.2.5.3).

Load instructions change (Section 4.4.1).

Volume 2:

Class pr-writers-int clarification (Table A-5).
PAL_MC_DRAIN clarification (Section 4.4.6.1).

VHPT walk and forward progress change (Section 4.1.1.2).
1A-32 IBR/DBR match clarification (Section 7.1.1).

ISR figure changes (pp. 8-5, 8-26, 8-33 and 8-36).

PAL_CACHE_FLUSH return argument change - added new status return
argument (Section 11.8.3).

PAL self-test Control and PAL_A procedure requirement change - added new
arguments, figures, requirements (Section 11.2).

PAL_CACHE_FLUSH clarifications (Section 11).
Non-speculative reference clarification (Section 4.4.6).

RID and Preferred Page Size usage clarification (Section 4.1).
VHPT read atomicity clarification (Section 4.1).

1IP and WC flush clarification (Section 4.4.5).

Revised RSE and PMC typographical errors (Section 6.4).
Revised DV table (Section A.4).
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Date of
Revision

Revision
Number

Description

December 2001
(continued)

2.0

Memory attribute transitions - added new requirements (Section 4.4).
MCA for WC/UC aliasing change (Section 4.4.1).

Bus lock deprecation - changed behavior of DCR ‘Ic’ bit (Section 3.3.4.1,
Section 10.6.8, Section 11.8.3).

PAL_PROC_GET/SET_FEATURES changes - extend calls to allow
implementation-specific feature control (Section 11.8.3).

Split PAL_A architecture changes (Section 11.1.6).
Simple barrier synchronization clarification (Section 13.4.2).

Limited speculation clarification - added hardware-generated speculative
references (Section 4.4.6).

PAL memory accesses and restrictions clarification (Section 11.9).

PSP validity on INITs from PAL_MC_ERROR_INFO clarification (Section
11.8.3).

Speculation attributes clarification (Section 4.4.6).

PAL_A FIT entry, PAL_VM_TR_READ, PSP, PAL_VERSION clarifications
(Sections 11.8.3 and 11.3.2.1).

TLB searching clarifications (Section 4.1).

IA-32 related changes (Section 10.3, Section 10.3.2, Section 10.3.2, Section
10.3.3.1, Section 10.10.1).

IPSR.ri and ISR.ei changes (Table 3-2, Section 3.3.5.1, Section 3.3.5.2,
Section 5.5, Section 8.3, and Section 2.2).

Volume 3:

IA-32 CPUID clarification (p. 5-71).

Revised figures for extract, deposit, and alloc instructions (Section 2.2).
RCPPS, RCPSS, RSQRTPS, and RSQRTSS clarification (Section 7.12).
IA-32 related changes (Section 5.3).

tak, tpa change (Section 2.2).

July 2000

11

Volume 1:
Processor Serial Number feature removed (Chapter 3).
Clarification on exceptions to instruction dependency (Section 3.4.3).

Volume 2:
Clarifications regarding “reserved” fields in ITIR (Chapter 3).

Instruction and Data translation must be enabled for executing 1A-32
instructions (Chapters 3,4 and 10).

FCR/FDR mappings, and clarification to the value of PSR.ri after an RFI
(Chapters 3 and 4).

Clarification regarding ordering data dependency.

Qut-of-order IPI delivery is now allowed (Chapters 4 and 5).

Content of EFLAG field changed in IIM (p. 9-24).

PAL_CHECK and PAL_INIT calls — exit state changes (Chapter 11).
PAL_CHECK processor state parameter changes (Chapter 11).
PAL_BUS_GET/SET_FEATURES calls — added two new bits (Chapter 11).

PAL_MC_ERROR_INFO call — Changes made to enhance and simplify the
call to provide more information regarding machine check (Chapter 11).

PAL_ENTER_IA_32_Env call changes — entry parameter represents the entry
order; SAL needs to initialize all the 1A-32 registers properly before making
this call (Chapter 11).

PAL_CACHE_FLUSH — added a new cache_type argument (Chapter 11.
PAL_SHUTDOWN - removed from list of PAL calls (Chapter 11).
Clarified memory ordering changes (Chapter 13).

Clarification in dependence violation table (Appendix A).
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Date of
Revision

Revision
Number

Description

July 2000
(continued)

11

Volume 3:
fmix instruction page figures corrected (Chapter 2).
Clarification of “reserved” fields in ITIR (Chapters 2 and 3).

Modified conditions for alloc/loadrs/flushrs instruction placement in bundle/
instruction group (Chapters 2 and 4).

IA-32 JMPE instruction page typo fix (p. 5-238).
Processor Serial Number feature removed (Chapter 5).

January 2000

1.0

Initial release of document.
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Introduction to the Intel® Itanium®

Architecture 2

The Itanium architecture was designed to overcome the performance limitations of traditional
architectures and provide maximum headroom for the future. To achieve this, the Itanium
architecture was designed with an array of innovative features to extract greater instruction level
parallelism including speculation, predication, large register files, aregister stack, advanced branch
architecture, and many others. 64-bit memory addressability was added to meet theincreasing large
memory footprint requirements of datawarehousing, e-business, and other high performance server
applications. The Itanium architecture has an innovative floating-point architecture and other
enhancements that support the high performance requirements of workstation applications such as
digital content creation, design engineering, and scientific analysis.

The Itanium architecture also provides binary compatibility with the | A-32 instruction set.
Processors based on the Itanium architecture can run 1 A-32 applications on an Itanium
architecture-based operating system that supports execution of 1A-32 applications. Such processors
can run 1A-32 application binaries on 1A-32 legacy operating systems assuming the platform and
firmware support existsin the system. The Itanium architecture also provides the capability to
support mixed 1A-32 and Itanium architecture-based code execution.

2.1 Operating Environments

The Itanium architecture supports two operating system environments (see Figure 2-1):
* |A-32 System Environment: supports |A-32 32-bit operating systems.
* Itanium System Environment: supports Itanium architecture-based operating systems.

The architectural model aso supports a mixture of 1A-32 and Itanium architecture-based
applications within a single Itanium architecture-based operating system. Table 2-1 definesthe
major supported operating environments.
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Figure 2-1. System Environments

IA-32 System Environment Intel® Itanium® System Environment
Application IA-32 Instructions IA-32 Instructions Itanium®
Segmentation Segmentation
Operating IA-32 Paging Paging
System & Interruption & Interruption
Environment Handling Handling
in the Intel® Itanium®
Architecture

Table 2-1. Major Operating Environments

System Application Usage
Environment Environment 9
IA-32 System IA-32 Instruction Set | IA-32 PM, RM and VM86 application and operating system environment.
Environment Compatible with 1A-32 Intel® Pentium®, Pentium® Pro, Pentium® 11 and
Pentium® 111 processors.

Intel® Itanium® Not supported, Itanium architecture-based applications cannot execute in the
Instruction Set 1A-32 System Environment.

Itanium® System | 1A-32 Protected Mode | IA-32 Protected Mode applications in the Intel® Itanium® System Environment.

Environment IA-32 Real Mode IA-32 Real Mode applications in the Intel® Itanium® System Environment.
1A-32 Virtual Mode 1A-32 Virtual 86 Mode applications in the Intel® Itanium® System Environment.
Intel® Itanium® Itanium architecture-based applications on Intel® Itanium architecture-based
Instruction Set operating systems.

2.2 Instruction Set Transition Model Overview

Within the Itanium System Environment, the processor can execute either |A-32 or Itanium
instructions at any time. Three special instructions and interruptions are defined to transition the
processor between the |A-32 and the Itanium instruction set.

* jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the Itanium
instruction set.

* br.ia (Itanium instruction) Branch to an |A-32 target instruction, and change the instruction
set to |A-32.

e rfi (Itanium instruction) “Return from interruption” is defined to return to an |A-32 or
Itanium instruction.

* Interrupts transition the processor to the Itanium instruction set for al interrupt conditions.
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The jmpe and br . ia instructions provide alow overhead mechanism to transfer control between
the instruction sets. These instructions are typically incorporated into “thunks’ or “stubs’ that
implement the required call linkage and calling conventions to call dynamic or statically linked
libraries. See Section 6.1, “Instruction Set Modes’ for additional details.

2.3 Intel® Itanium® Instruction Set Features

Itanium architecture incorporates features which enable high sustained performance and remove
barriers to further performance increases. The Itanium architecture is based on the following
principles:
» Explicit parallelism
» Mechanisms for synergy between the compiler and the processor
» Massive resources to take advantage of instruction level parallelism
« 128 integer and floating-point registers, 64 1-bit predicate registers, 8 branch registers
 Support for many execution units and memory ports
* Features that enhanceinstruction level parallelism
« Speculation (which minimizes memory latency impact).
« Predication (which removes branches).
 Software pipelining of loops with low overhead
« Branch prediction to minimize the cost of branches
* Focused enhancements for improved software performance
« Specia support for software modularity
 High performance floating-point architecture
« Specific multimediainstructions

The following sections highlight these important features of the Itanium architecture.

2.4 Instruction Level Parallelism

Instruction Level Paralelism (ILP) isthe ability to execute multiple instructions at the same time.
The Itanium architecture allows issuing of independent instructions in bundles (three instructions
per bundle) for parallel execution and can issue multiple bundles per clock. Supported by alarge
number of parallel resources such as large register files and multiple execution units, the Itanium
architecture enabl es the compiler to manage work in progress and schedul e simultaneous threads of
computation.

The Itanium architecture incorporates mechanisms to take advantage of ILP. Compilers for
traditional architectures are often limited in their ability to utilize speculative information because
it cannot always be guaranteed to be correct. The Itanium architecture enables the compiler to
exploit speculative information without sacrificing the correct execution of an application (see
“Speculation” on page 1:14). In traditional architectures, procedure calls limit performance since
registers need to be spilled and filled. The Itanium architecture enables procedures to communicate
register usage to the processor. This allows the processor to schedule procedure register operations
even when thereis alow degree of ILP. See “Register Stack” on page 1:16.

Volume 1: Introduction to the Intel® Itanium® Architecture 1:13



2.5

2.6

2.6.1

1:14

Compiler to Processor Communication

The Itanium architecture provides mechanisms, such as instruction templates, branch hints, and
cache hints to enable the compiler to communicate compile-time information to the processor. In
addition, it allows compiled code to manage the processor hardware using runtime information.
These communication mechanisms are vital in minimizing the performance penalties associated
with branches and cache misses.

The cost of branchesis minimized by permitting code to communicate branch information to the
hardware in advance of the actual branch.

Every memory load and store in the Itanium architecture has a 2-bit cache hint field in which the
compiler encodesiits prediction of the spatial and/or temporal locality of the memory area being
accessed. A processor based on the Itanium architecture can use this information to determine the
placement of cache linesin the cache hierarchy to improve utilization. Thisis particularly
important as the cost of cache missesis expected to increase.

Speculation

There are two types of speculation: control and data. In both control and data speculation, the
compiler exposes ILP by issuing an operation early and removing the latency of this operation from
critical path. The compiler will issue an operation speculatively if it is reasonably sure that the
speculation will be beneficial. To be beneficial two conditions should hold: (1) it must be
statistically frequent enough that the probability it will require recovery issmall, and (2) issuing the
operation early should expose further ILP-enhancing optimization. Speculation is one of the
primary mechanisms for the compiler to exploit statistical ILP by overlapping, and therefore
tolerating, the latencies of operations.

Control Speculation

Control speculation isthe execution of an operation before the branch which guardsit. Consider the
code sequence below:

if (a>b) load(ld addrl, targetl)
else load(ld addr2, target2)

If the operation load (1d_addrl, targetl)wereto be performed prior to the determination of
(a>b), then the operation would be control speculative with respect to the controlling condition
(a>b) . Under normal execution, the operation load (1d_addrl, targetl) may or may not
execute. If the new control speculative load causes an exception, then the exception should only be
serviced if (a>b) istrue. When the compiler uses control speculation, it leaves acheck operation at
the original location. The check verifies whether an exception has occurred and if so it branchesto
recovery code. The code sequence above now translates into:

/* off critical path */
sload(ld addrl, targetl)
sload (1ld _addr2, target2)

/* other operations including uses of targetl/target2 */
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if (a>b) scheck(targetl,recovery addrl)
else scheck(target2, recovery addr2)

2.6.2 Data Speculation

Data speculation is the execution of a memory load prior to a store that preceded it and that may
potentially alias with it. Data speculative loads are also referred to as “advanced loads.” Consider
the code sequence below:

store (st_addr,data)
load(ld_addr, target)
use (target)

The process of determining at compile time the relationship between memory addressesis called
disambiguation. In the example above, if 1d_addr and st_addr cannot be disambiguated, and if
the load were to be performed prior to the store, then the load would be data speculative with
respect to the store. If memory addresses overlap during execution, a data-specul ative load issued
before the store might return a different value than aregular load issued after the store. Therefore
analogous to control speculation, when the compiler data speculates aload, it leaves a check
instruction at the original location of the load. The check verifies whether an overlap has occurred
and if so it branches to recovery code. The code sequence above now translates into:

/* off critical path */
aload(1ld_addr, target)

/* other operations including uses of target */
store (st_addr,data)

acheck (target, recovery addr)
use (target)

2.6.3 Predication

Predication is the conditional execution of instructions. Conditional execution isimplemented
through branchesin traditional architectures. The Itanium architecture implements this function
through the use of predicated instructions. Predication removes branches used for conditional
execution resulting in larger basic blocks and the elimination of associated mispredict penalties.

To illustrate, an unpredicated instruction
rl = r2 + r3

when predicated, would be of the form
if (p5) rl = r2 + r3

In this example ps is the controlling predicate that decides whether or not the instruction executes
and updates state. If the predicate value is true, then the instruction updates state. Otherwise it
generally behaves like anop. Predicates are assigned values by compare instructions.

Predicated execution avoids branches, and simplifies compiler optimizations by converting a
control dependency to a data dependency. Consider the original code:

if (a>b) ¢ =c + 1
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2.7

2.8

1:16

else d=d * e + £

The branch at (a>b) can be avoided by converting the code above to the predicated code:

pT, pF = compare (a>b)
if (pT) ¢ =c + 1
if (pF) d =d * e + £

The predicate pT is set to 1 if the condition evaluates to true, and to O if the condition evaluates to
false. The predicate pr is the complement of pT. The control dependency of theinstructionsc = ¢
+ landd = d * e + £ onthebranch with the condition (a>b) isnow converted into a data
dependency on compare (a>b) through predicates pT and pF (the branch is eliminated). An added
benefit isthat the compiler can schedule the instructions under pT and pF to executein paralel. Itis
also worth noting that there are several different types of compare instructions that write predicates
in different mannersincluding unconditional compares and parallel compares.

Register Stack

The Itanium architecture avoids the unnecessary spilling and filling of registers at procedure call
and return interfaces through compiler-controlled renaming. At acall site, anew frame of registers
isavailable to the called procedure without the need for register spill and fill (either by the caller or
by the callee). Register access occurs by renaming the virtual register identifiersin the instructions
through a base register into the physical registers. The callee can freely use available registers
without having to spill and eventually restore the caller’sregisters. The callee executesan alloc
instruction specifying the number of registersit expectsto usein order to ensure that enough
registers are available. If sufficient registers are not available (stack overflow), the alloc stallsthe
processor and spillsthe caller’s registers until the requested number of registers are available.

At the return site, the base register is restored to the value that the caller was using to access
registers prior to the call. Some of the caller’s registers may have been spilled by the hardware and
not yet restored. In this case (stack underflow), the return stalls the processor until the processor has
restored an appropriate number of the caller’s registers. The hardware can exploit the explicit
register stack frame information to spill and fill registers from the register stack to memory at the
best opportunity (independent of the calling and called procedures).

Branching

In addition to removing branches through the use of predication, several mechanisms are provided
to decrease the branch misprediction rate and the cost of the remaining mispredicted branches.
These mechanisms provide ways for the compiler to communicate information about branch
conditions to the processor.

Branch predict instructions are provided which can be used to communicate an early indication of
the target address and the location of the branch. The compiler will try to indicate whether a branch
should be predicted dynamically or statically. The processor can use thisinformation to initialize
branch prediction structures, enabling good prediction even the first time a branch is encountered.
Thisis beneficial for unconditional branches or in situations where the compiler has information
about likely branch behavior.
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For indirect branches, a branch register is used to hold the target address. Branch predict
instructions provide an indication of which register will be used in situations when the target
address can be computed early. A branch predict instruction can also signal that an indirect branch
isaprocedure return, enabling the efficient use of call/return stack prediction structures.

Specia loop-closing branches are provided to accelerate counted loops and modul o-scheduled
loops. These branches and their associated branch predict instructions provide information that
allowsfor perfect prediction of loop termination, thereby eliminating costly mispredict penalties
and a reduction of the loop overhead.

2.9 Register Rotation

Modulo scheduling of aloop is analogous to hardware pipelining of afunctional unit since the next
iteration of the loop starts before the previousiteration has finished. Theiteration is split into stages
similar to the stages of an execution pipeline. Modulo scheduling alows the compiler to execute
loop iterationsin parallel rather than sequentially. The concurrent execution of multiple iterations
traditionally requires unrolling of the loop and software renaming of registers. The Itanium
architecture allows the renaming of registers which provide every iteration with its own set of
registers, avoiding the need for unrolling. Thiskind of register renaming is called register rotation.
Theresult isthat software pipelining can be applied to a much wider variety of loops — both small
aswell aslarge with significantly reduced overhead.

2.10 Floating-point Architecture

The Itanium architecture defines a floating-point architecture with full IEEE support for the single,
double, and double-extended (80-bit) datatypes. Some extensions, such asafused multiply and add
operation, minimum and maximum functions, and aregister file format with alarger range than the
double-extended memory format, are also included. 128 floating-point registers are defined. Of
these, 96 registers are rotating (not stacked) and can be used to modulo schedule loops compactly.
Multiple floating-point status registers are provided for speculation.

The Itanium architecture has parallel FP instructions which operate on two 32-bit single precision
numbers, resident in a single floating-point register, in parallel and independently. These
instructions significantly increase the single precision floating-point computation throughput and
enhance the performance of 3D intensive applications and games.

2.11 Multimedia Support

The Itanium architecture has multimedia instructions which treat the general registers as
concatenations of eight 8-bit, four 16-bit, or two 32-hit elements. These instructions operate on
each element in parallel, independent of the others. They are useful for creating high performance
compression/decompression algorithms that are used by applications which have sound and video.
Itanium multimediainstructions are semantically compatible with HP's MAX-2* multimedia
technology and Intel’s MM X and SSE technology instructions.
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2121

2.12.2

2.12.3

1:18

Intel® Itanium® System Architecture Features

Support for Multiple Address Space Operating Systems

Most contemporary commercia operating systems utilize a Multiple Address Space (MAS) model
with the following characteristics:

Protection is enforced among processes by placing each process within a unique address space.
Translation Lookaside Buffers (TLBs), which hold virtual to physical mappings, often need to be
flushed on a process context switch.

Some memory areas may be shared among processes, e.g. kernel areas and shared libraries. Most
operating systems assume at least one local and one global space.

To promote sharing of data between processes, MAS operating systems aggressively use virtua
aliases to map physical memory locations into the address spaces of multiple processes. Virtual
aliases create multiple TLB entries for the same physical data leading to reduced TLB efficiency.

The MAS model is supported by dividing the virtual address space into several regions. Region
identifiers associated with each region are used to tag translations to a given address space. On a
process switch, region identifiers uniquely identify the set of trand ations belonging to a process,
thereby avoiding TLB flushes. Region identifiers also provide a unique intermediate virtual address
that help avoid thrashing problems in virtual-indexed caches and TLBs. Regions provide efficient
global/shared areas between processes, while reducing the occurrences of virtual aiasing.

Support for Single Address Space Operating Systems

A single address space (SAS) operating system style architecture is the basis for much of the
current design work on future 64-bit operating systems. As operating systems (and other large,
complex programs like databases) migrate from monoalithic programs into cooperating subsystems,
an SAS architecture becomes an important performance differentiation in future systems. The SAS
or hybrid environments enable a more efficient use of hardware resources.

Common mechanisms are used in both SAS and MAS models such as page level accessrightsto
enforce protection, although the reliance on the feature set will differ under each model. While
most of the architected features are utilized in each model, protection keys exist to enable asingle
global address space operating environment.

System Performance and Scalability

Performance and scalability are achieved through a variety of features. Memory attributes, locking
primitives, cache coherency, and memory ordering model work together to allow the efficient
sharing of datain a multiprocessor environment. In addition, the Itanium architecture enables low
latency fault, trap, and interrupt handlers along with light-weight domain crossings. Performance
analysisisaided by the inclusion of several performance monitors, and mechanisms to support
software profiling.
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2.12.4

2.13

System Security and Supportability

Security and supportability result from a number of primitives which provide avery powerful
runtime and debug environment. The protection model includes four protection rings and enables
increased system integrity by offering a more sophisticated protection scheme than has generally
been available. The machine check model allows detailed information to be provided describing the
type of error involved and supports recovery for many types of errors. Several mechanisms are
provided for debugging both system and application software.

Terminology

Thisfollowing terms are used in the remainder of this document:
e [tanium Instruction Set — The Itanium architecture defines the 64-bit instruction set

extensions to the | A-32 architecture.

| A-32 Architecture— The 32-bit and 16-bit Intel architecture as described in the 1A-32 Intel®
Architecture Software Developer’s Manual.

[tanium System Environment — System environment that supports the execution of both
IA-32 and Itanium architecture-based code.

| A-32 System Environment — Operating system privileged environment as defined by the
IA-32 Intel® Architecture Software Devel oper’s Manual. Resources include virtual paging,
control registers, debugging, performance monitoring, machine checks, and the set of
privileged instructions.

Platform — Application and operating system resources external to the processor such as:
memory maps, external devices (e.g. DMA), keyboard controllers, buses (e.g. PCl), option
cards, interrupt controllers, bridges, etc.

Itanium Architecture-based Firmware — The Processor Abstraction Layer (PAL) and
System Abstraction Layer (SAL).

Processor Abstraction Layer (PAL) — Thefirmware layer which abstracts processor features
that are implementation dependent.

System Abstraction Layer (SAL) —The firmware layer which abstracts platform features that
are implementation dependent.
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Execution Environment 3

The architectural state consists of registers and memory. The results of instruction execution
become architecturally visible according to a set of execution sequencing rules. This chapter
describes the application architectural state and the rules for execution sequencing. See Chapter 6
for details on 1A-32 instruction set execution.

3.1 Application Register State

Thefollowing isalist of the registers available to application programs (see Figure 3-1):

» General Registers (GRs) — General purpose 64-hit register file, GRO - GR127. |A-32 integer
and segment registers are contained in GR8 - GR31 when executing |A-32 instructions.

» Floating-point Registers (FRs) — Floating-point register file, FRO - FR127. |A-32
floating-point and multi-media registers are contained in FR8 - FR31 when executing |A-32
instructions.

* Predicate Registers (PRs) — Single-bit registers, used in predication and branching, PRO -
PR63.

¢ Branch Registers (BRs) — Registers used in branching, BRO - BR7.

« Instruction Pointer (I P) — Register which holds the bundle address of the currently executing
instruction, or byte address of the currently executing 1A-32 instruction.

e Current Frame Marker (CFM) — State that describes the current general register stack
frame, and FR/PR rotation.

« Application Registers (ARs) — A collection of special-purpose registers.

« Performance Monitor Data Registers (PM D) — Data registers for performance monitor
hardware.

e User Mask (UM) — A set of single-hit values used for alignment traps, performance monitors,
and to monitor floating-point register usage.

» Processor Identifiers (CPUID) — Registers that describe processor
implementati on-dependent features.

| A-32 application register state is entirely contained within the larger Itanium application register
set and is accessible by Itanium instructions. | A-32 instructions cannot access the Itanium register
set. See Section 6.2, “1A-32 Application Register State Model” for details on 1A-32 register
assignments.

3.1.1 Reserved and Ignored Registers and Fields

Registers which are not defined are either reserved or ignored. An access to areserved register
raises an lllegal Operation fault. A read of an ignored register returns zero. Software may write
any valueto an ignored register and the hardware will ignore the value written. In variable-sized
register sets, registers which are unimplemented in a particular processor are also reserved
registers. An accessto one of these unimplemented registers causes a Reserved Register/Field fault.
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Within defined registers, fields which are not defined are either reserved or ignored. For reserved
fields, hardware will always return a zero on aread. Software must always write zeros to these
fields. Any attempt to write anon-zero value into areserved field will raise a Reserved
Register/Field fault. Reser ved fields may have a possible future use.

For ignored fields, hardware will return a0 on aread, unless noted otherwise. Software may write
any value to these fields since the hardware will ignore any value written. Except where noted
otherwise some | A-32 ignored fields may have a possible future use.

Table 3-1 summarizes how the processor treats reserved and ignored registers and fields.

Table 3-1. Reserved and Ignored Registers and Fields

1:.22

Type Read Write
Reserved register lllegal Operation fault lllegal Operation fault
Ignored register 0 Value written is discarded
Reserved field 0 Write of non-zero causes Reserved Reg/Field fault
Ignored field 0 (unless noted otherwise) Value written is discarded

For defined fields in registers, values which are not defined are reserved. Software must always
write defined values to these fields. Any attempt to write areserved value will raise a Reserved
Register/Field fault. Certain registers areread-only registers. A writeto aread-only register raises
an Illlegal Operation fault.

When fields are marked as reserved, it is essential for compatibility with future processors that
software treat these fields as having a future, though unknown effect. Software should follow these
guidelines when dealing with reserved fields:

» Do not depend on the state of any reserved fields. Mask all reserved fields before testing.
Do not depend on the state of any reserved fields when storing to memory or aregister.
» Do not depend on the ahility to retain information written into reserved or ignored fields.

» Where possible reload reserved or ignored fields with values previoudly returned from the
same register, otherwise load zeros.
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Figure 3-1. Application Register Model
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3.1.2
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General Registers

A set of 128 (64-bit) general registers provide the central resource for all integer and integer
multimedia computation. They are numbered GRO through GR127, and are available to all
programs at all privilege levels. Each general register has 64 bits of normal data storage plus an
additional bit, the NaT bit (Not a Thing), which is used to track deferred speculative exceptions.

The general registers are partitioned into two subsets. General registers 0 through 31 are termed the
static general registers. Of these, GRO is special in that it always reads as zero when sourced as an
operand, and attempting to write to GR 0 causes an Illegal Operation fault. General registers 32
through 127 are termed the stacked general registers. The stacked registers are made available to
aprogram by allocating aregister stack frame consisting of a programmable number of local and
output registers. See “Register Stack” on page 1:43 for a description. A portion of the stacked
registers can be programmatically renamed to accelerate loops. See “Modulo-scheduled Loop
Support” on page 1:70..

General registers 8 through 31 contain the | A-32 integer, segment selector and segment descriptor
registers. See “1A-32 General Purpose Registers’ on page 1:114 for details on | A-32 register
assignments.
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3.1.3

3.1.4

3.1.5

3.1.6
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Floating-point Registers

A set of 128 (82-bit) floating-point registers are used for all floating-point computation. They are
numbered FRO through FR127, and are available to all programs at all privilege levels. The
floating-point registers are partitioned into two subsets. Floating-point registers 0 through 31 are
termed the static floating-point registers. Of these, FRO and FR1 are special. FRO aways reads as
+0.0 when sourced as an operand, and FR 1 always reads as +1.0. When either of theseisused asa
destination, afault israised. Deferred speculative exceptions are recorded with a special register
value called NaTVal (Not a Thing Value).

Floating-point registers 32 through 127 are termed the rotating floating-point registers. These
registers can be programmeatically renamed to accelerate loops. See “M odul o-scheduled Loop
Support” on page 1:70..

Floating-point registers 8 through 31 contain the | A-32 floating-point and multi-media registers
when executing | A-32 instructions. For details, See “IA-32 Foating-point Registers’ on
page 1:122..

Predicate Registers

A set of 64 (1-bit) predicate registers are used to hold the results of compare instructions. These
registers are numbered PRO through PR63, and are available to al programs at all privilege levels.
These registers are used for conditional execution of instructions.

The predicate registers are partitioned into two subsets. Predicate registers 0 through 15 are termed
the static predicate registers. Of these, PRO alwaysreads as ‘1’ when sourced as an operand, and
when used as a destination, the result is discarded. The static predicate registers are also used in
conditional branching. See “Predication” on page 1:50.

Predicate registers 16 through 63 are termed the rotating predicate registers. These registers can
be programmatically renamed to accelerate loops. See “Modul o-scheduled Loop Support” on
page 1:70..

Branch Registers

A set of 8 (64-bit) branch registers are used to hold branching information. They are numbered
BR 0 through BR 7, and are available to all programs at all privilege levels. The branch registers
are used to specify the branch target addresses for indirect branches. For more information see
“Branch Instructions’ on page 1:69.

Instruction Pointer

The Instruction Pointer (IP) holds the address of the bundle which contains the current executing
instruction. The IP can be read directly with amov ip instruction. The IP cannot be directly written,
but isincremented as instructions are executed, and can be set to a new value with a branch.
Because instruction bundles are 16 bytes, and are 16-byte aligned, the least significant 4 bits of IP
are always zero. See “Instruction Encoding Overview” on page 1:34.. For |A-32 instruction set
execution, 1P holds the zero extended 32-bit virtual linear address of the currently executing 1A-32
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instruction. |A-32 instructions are byte-aligned, therefore the least significant 4 bits of IP are

preserved for |A-32 instruction set execution. See “1A-32 Instruction Pointer” on page 1:115. for
|A-32 instruction set execution details.

3.1.7 Current Frame Marker

Each general register stack frame is associated with aframe marker. The frame marker describes

the state of the general register stack. The Current Frame Marker (CFM) holds the state of the

current stack frame. The CFM cannot be directly read or written (see “ Register Stack” on

page 1:43).

The frame markers contain the sizes of the various portions of the stack frame, plus three Register

Rename Base values (used in register rotation). The layout of the frame markersis shown in

Figure 3-2 and the fields are described in Table 3-2.

On acall, the CFM is copied to the Previous Frame Marker field in the Previous Function State
register (see Section 3.1.8.11, “Previous Function State (PFS— AR 64)”). A new value iswritten to
the CFM, creating a new stack frame with no locals or rotating registers, but with a set of output
registers which are the caller’s output registers. Additionally, all Register Rename Base registers

(RRBs) are set to 0. See “Modulo-scheduled Loop Support” on page 1:70.

Figure 3-2. Frame Marker Format
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Table 3-2. Frame Marker Field Description

Field Bits Description
sof 6:0 Size of stack frame
sol 13:7 Size of locals portion of stack frame
sor 17:14 Size of rotating portion of stack frame

(the number of rotating registers is 8 * sor)

rrb.gr 24:18 Register Rename Base for general registers
rrb.fr 31:25 Register Rename Base for floating-point registers
rrb.pr 37:32 Register Rename Base for predicate registers

3.1.8 Application Registers

The application register file includes special -purpose data registers and control registers for

application-visible processor functions for both the 1A-32 and Itanium instruction set architectures.
These registers can be accessed by Itanium architecture-based applications (except where noted).
Table 3-3 contains alist of the application registers.
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Table 3-3. Application Registers

Register Name Description Execution Unit

Type

AR 0-7 KR 0-72 Kernel Registers 0-7 M

AR 16 RSC Register Stack Configuration Register

AR 17 BSP Backing Store Pointer (read-only)

AR 18 BSPSTORE Backing Store Pointer for Memory Stores

AR 19 RNAT RSE NaT Collection Register

AR 21 FCR IA-32 Floating-point Control Register

AR 24 EFLAGP IA-32 EFLAG register

AR 25 CSD IA-32 Code Segment Descriptor / Compare and

Store Data register

AR 26 SSD IA-32 Stack Segment Descriptor

AR 27 CFLG? IA-32 Combined CRO and CR4 register

AR 28 FSR IA-32 Floating-point Status Register

AR 29 FIR IA-32 Floating-point Instruction Register

AR 30 FDR IA-32 Floating-point Data Register

AR 32 ccv Compare and Exchange Compare Value Register

AR 36 UNAT User NaT Collection Register

AR 40 FPSR Floating-point Status Register

AR 44 ITC Interval Time Counter

AR 48 - AR 63 Ignored Morl

AR 64 PFS Previous Function State |

AR 65 LC Loop Count Register

AR 66 EC Epilog Count Register

AR 112 - AR 127 Ignored Mor |

a. Writes to these registers when the privilege level is not zero result in a Privileged Register fault. Reads are

always allowed.

b. Some |A-32 EFLAG field writes are silently ignored if the privilege level is not zero. See Section 10.3.2, “IA-32

System EFLAG Register” on page 2:235 for details.

Application registers can only be accessed by either aM or | execution unit. Thisis specified in the
last column of the table. The ignored registers are for future backward-compatible extensions.

See Section 10.2, “ System Register Model” on page 2:231 for the field definition of each 1A-32

application register.
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3.1.8.1 Kernel Registers (KR 0-7 — AR 0-7)

Eight user-visible 64-bit data kernel registers are provided to convey information from the
operating system to the application. These registers can be read at any privilege level but are
writable only at the most privileged level. KRO - KR2 are also used to hold additional 1A-32
register state when the 1A-32 instruction set is executing. See Section 10.1, “Instruction Set
Transitions” on page 2:231 for register details when calling 1A-32 code.

3.1.8.2 Register Stack Configuration Register (RSC — AR 16)

The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation
of the Register Stack Engine (RSE). Refer to Chapter 6, “ Register Stack Engine” in Volume 2 for
details. The RSC format is shown in Figure 3-3 and the field description is contained in Table 3-4.
Instructions that modify the RSC can never set the privilege level field to amore privileged level
than the currently executing process.

Figure 3-3. RSC Format
63 30 29 16 15 5 4 3 2 1 0

T T ool o [mode
34 14 11 1 2 2
Table 3-4. RSC Field Description
Field Bits Description

mode 1:0 RSE mode — controls how aggressively the RSE saves and restores register
frames. Eager and intensive settings are hints and can be implemented as lazy.
Bit Pattern RSE Mode Bit 1: Bit O:

eager loads eager stores

00 enforced lazy disabled disabled
10 load intensive enabled disabled
01 store intensive disabled enabled
11 eager enabled enabled

pl 3:2 RSE privilege level — loads and stores issued by the RSE are at this privilege
level

be 4 RSE endian mode — loads and stores issued by the RSE use this byte ordering
(O: little endian; 1: big endian)

loadrs 29:16 RSE load distance to tear point — value used in the 1oadrs instruction for
synchronizing the RSE to a tear point

3.1.8.3 RSE Backing Store Pointer (BSP — AR 17)

The RSE Backing Store Pointer is a 64-bit read-only register (Figure 3-4). It holds the address of
the location in memory which is the save location for GR 32 in the current stack frame. See
Section 6.1, “RSE and Backing Store Overview” on page 2:129.

Figure 3-4. BSP Register Format

63 3 2 1 0
61 3

Volume 1: Execution Environment 1:27


ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

3.1.84 RSE Backing Store Pointer for Memory Stores (BSPSTORE — AR 18)

The RSE Backing Store Pointer for memory storesis a 64-bit register (Figure 3-5). It holds the
address of the location in memory to which the RSE will spill the next value. See Section 6.1, “RSE
and Backing Store Overview” on page 2:129.

Figure 3-5. BSPSTORE Register Format

63 3 2 10
‘ pointer ‘ ig ‘
61 3

3.1.85 RSE NaT Collection Register (RNAT —AR 19)

The RSE NaT Collection Register is a 64-bit register (Figure 3-6) used by the RSE to temporarily
hold NaT bitswhen it is spilling general registers. Bit 63 always reads as zero and ignores al
writes. See Section 6.1, “RSE and Backing Store Overview” on page 2:129.

Figure 3-6. RNAT Register Format

63 0
‘ ig ‘ RSE NaT Collection
1 63

3.1.8.6 Compare and Store Data register (CSD — AR 25)

The Compare and Store Dataregister is a 64-bit register that provides data to be stored by the
Itanium st16 and cmp8xchgie instructions, and receives data loaded by the Itanium 1d16
instruction.

For implementations that do not support the 1d16, st16 and cmp8xchglé instructions, bits 61:60
may be optionally implemented. This means that on move application register instructions the
implementation can either ignore writes and return zero on reads, or write the value and return the
last value written on reads. For implementations that do support the 1d16, st16 and cmp8xchgile
instructions, all bits of CSD are implemented.

For A-32 execution, thisregister isthe 1A-32 Code Segment Descriptor. See Section 6.2.3, “1A-32
Segment Registers’ on page 1:115.

3.1.8.7 Compare and Exchange Value Register (CCV —AR 32)

The Compare and Exchange Value Register isa64-bit register that contains the compare value used
as the third source operand in the Itanium cmpxchg instruction.

3.1.8.8 User NaT Collection Register (UNAT — AR 36)

The User NaT Collection Register is a 64-bit register used to temporarily hold NaT bits when
saving and restoring general registerswiththe 1ds.£i11 and st8.spill instructions.
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3.1.8.9 Floating-point Status Register (FPSR — AR 40)

The floating-point status register (FPSR) controls traps, rounding mode, precision control, flags,
and other control bits for Itanium floating-point instructions. FPSR does not control or reflect the
status of 1A-32 floating-point instructions. For more details on the FPSR, see “ Floating-point Status
Register” on page 1:84.

3.1.8.10 Interval Time Counter (ITC — AR 44)

The Interval Time Counter (ITC) isa64-bit register which counts up at afixed relationship to the
input clock to the processor. The ITC may be clocked at a somewhat lower frequency than the
instruction execution frequency. This clocking relationship is described in the PAL procedure
PAL_FREQ RATIOS on page 2:381. The ITC is guaranteed to be clocked at a constant rate, even
if the instruction execution frequency may vary.

A sequence of reads of the ITC is guaranteed to return ever-increasing values (except for the case
of the counter wrapping back to 0) corresponding to the program order of the reads. Applications
can directly sample the ITC for time-based cal culations.

System software can secure the interval time counter from non-privileged access. When secured, a
read of the ITC at any privilege level other than the most privileged causes a Privileged Register
fault. The ITC can be written only at the most privileged level. The 1A-32 Time Stamp Counter
(TSC) issimilar to ITC counter. ITC can directly be read by the |A-32 rdtsc (read time stamp
counter) instruction. System software can secure the I TC from non-privileged 1A-32 access. When
secured, an 1A-32 read of the ITC at any privilege level other than the most privileged raises an
IA_32_ Exception(GPfault).

3.1.8.11  Previous Function State (PFS — AR 64)

The Previous Function State register (PFS) contains multiple fields: Previous Frame Marker (pfm),
Previous Epilog Count (pec), and Previous Privilege Level (ppl). Figure 3-7 diagrams the PFS
format and Table 3-5 describes the PFSfields. These values are copied automatically on acall from
the CFM register, Epilog Count Register (EC) and PSR.cpl (Current Privilege Level in the
Processor Status Register) to accelerate procedure calling.

When abr.call or brl.call isexecuted, the CFM, EC, and PSR.cpl are copied to the PFS and
the old contents of the PFS are discarded. When abr. ret is executed, the PFSis copied to the
CFM and EC. PFS.ppl is copied to PSR.cpl, unless this action would increase the privilege level.
For more details on the PSR see Chapter 3, “System State and Programming Model” in Volume 2.

The PFS.pfm has the same layout asthe CFM (see Section 3.1.7, “ Current Frame Marker”), and the
PFS.pec has the same layout as the EC (see Section 3.1.8.13, “Epilog Count Register (EC — AR

66)”).
Figure 3-7. PFS Format
6362 61 58 57 52 51 38 37 0
‘ ppl ‘ v ‘ pec ‘ rv pfm
2 4 6 14 38
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Table 3-5. PFS Field Description

3.1.8.12

3.1.8.13

Field Bits Description
pfm 37:0 Previous Frame Marker
pec 57:52 Previous Epilog Count
ppl 63:62 Previous Privilege Level

Loop Count Register (LC —AR 65)

The Loop Count register (LC) is a 64-bit register used in counted loops. LC is decremented by
counted-loop-type branches.

Epilog Count Register (EC — AR 66)

The Epilog Count register (EC) is a 6-bit register used for counting the final (epilog) stagesin
modul o-scheduled loops. See “Modulo-scheduled Loop Support” on page 1:70.. A diagram of the
EC register isshown in Figure 3-8.

Figure 3-8. Epilog Count Register Format

3.1.9

3.1.10

63 6 5 0
‘ ig ‘ epilog count
58 6

Performance Monitor Data Registers (PMD)

A set of performance monitoring registers can be configured by privileged software to be
accessible at al privilege levels. Performance monitor data can be directly sampled from within the
application. The operating system is allowed to secure user-configured performance monitors.
Secured performance counters return zeros when read, regardless of the current privilege level. The
performance monitors can only be written at the most privileged level. Refer to Chapter 7,
“Debugging and Performance Monitoring” in Volume 2 for details. Performance monitors can be
used to gather performance information for the execution of both |A-32 and Itanium instruction
Ssets.

User Mask (UM)

The user mask is a subset of the Processor Status Register and is accessible to application
programs. The user mask controls memory access alignment, byte-ordering and user-configured
performance monitors. It also records the modification state of floating-point registers. Figure 3-9
show the user mask format and Table 3-6 describes the user mask fields. For more details on the
PSR refer to “Processor Status Register (PSR)” on page 2:22.

Figure 3-9. User Mask Format

1:30
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Table 3-6. User Mask Field Descriptions

3.1.11

Field Bit Description

be 1 Big-endian memory access enable

(controls loads and stores but not RSE memory accesses)

0: accesses are done little-endian

1: accesses are done big-endian

This bit is ignored for IA-32 data memory accesses. 1A-32 data references are always
performed little-endian.

up 2 User performance monitor enable (including 1A-32)
0: user performance monitors are disabled
1: user performance monitors are enabled

ac 3 Alignment check for data memory references (including 1A-32)
0: unaligned data memory references may cause an Unaligned Data Reference fault.
1: all unaligned data memory references cause an Unaligned Data Reference fault.

mfl 4 Lower (f2.. f31) floating-point registers written — This bit is set to one when an Intel®
Itanium® instruction that uses register f2..f31 as a target register, completes. This bit is
sticky and is only cleared by an explicit write of the user mask. See Section 3.3.2,
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

mfh 5 Upper (f32.. f127) floating-point registers written — This bit is set to one when an Intel®
Itanium® instruction that uses register f32..f127 as a target register, completes. This bit
is sticky and only cleared by an explicit write of the user mask. See Section 3.3.2,
“Processor Status Register (PSR)” for conditions when IA-32 instructions set this bit.

Processor Identification Registers

Application level processor identification information isavailablein aregister file termed: CPUID.
Thisregister fileis divided into afixed region, registers 0 to 4, and avariable region, register 5 and
above. The CPUID[3].number field indicates the maximum number of 8-byte registers containing
processor specific information.

The CPUID registers are unprivileged and accessed using the indirect mov (from) instruction. All
registers beyond register CPUID[3].number are reserved and raise a Reserved Register/Field fault
if they are accessed. Writes are not permitted and no instruction exists for such an operation.

Vendor information islocated in CPUID registers 0 and 1 and specify avendor name, in ASCII, for
the processor implementation (Figure 3-10). All bytes after the end of the string up to the 16th byte
are zero. Earlier ASCI| characters are placed in lower number register and lower numbered byte
positions.

Figure 3-10. CPUID Registers 0 and 1 —Vendor Information

63 0
CPUID[O]‘ \ \ \ \ \ \ \ byte 0 \

CPUID[l]‘ byte 15 \ \ \ \ ‘ ‘ ‘ ‘
64

CPUID register 2 isan ignored register (reads from this register return zero).

CPUID register 3 contains several fields indicating version information related to the processor
implementation. Figure 3-11 and Table 3-7 specify the definitions of each field.
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Figure 3-11. CPUID Register 3 —Version Information
63 40 39 32 31 24 23 16 15 8 7 0

24 8 8 8 8 8

Table 3-7. CPUID Register 3 Fields

Field Bits Description

number 7:0 The index of the largest implemented CPUID register (one less than the number of
implemented CPUID registers). This value will be at least 4.

revision 15:8 Processor revision number. An 8-bit value that represents the revision or stepping
of this processor implementation within the processor model.

model 23:16 Processor model number. A unique 8-bit value representing the processor model
within the processor family.

family 31:24 Processor family number. A unique 8-bit value representing the processor family.

archrev 39:32 Architecture revision. An 8-bit value that represents the architecture revision

number that the processor implements.

CPUID register 4 provides general application-level information about processor features. As
shownin Figure 3-12, it isa set of flag bits used to indicate if a given feature is supported in the
processor model. When a bit is one the feature is supported; when 0 the feature is not supported.
The defined feature bits in the current architecture are listed in Table 3-8. As new features are
added (or removed) from future processor models the presence (or removal) of new featureswill be
indicated by new feature bits.

CPUID register 4 islogically split into two halves, both of which contain general feature and
capability information but which have different usage models and access capabilities; this
information reflects the status of any enabled or disabled features. Both the upper and lower halves
of CPUID register 4 are accessible through the move indirect register instruction; depending on the
implementation, the latency for this access can be long and this access method is not appropriate for
low-latency code versioning using self-selection. In addition, the upper half of CPUID register 4is
also accessible using the test feature instruction; the latency for this accessis comparable to that of
the test bit instruction and this access method enables low-latency code versioning using self
selection.

Thisregister does not contain |A-32 instruction set features. |A-32 instruction set features can be
acquired by the |A-32 cpuid instruction.

Figure 3-12. CPUID Register 4 — General Features/Capability Bits
63 3 2 1

Table 3-8. CPUID Register 4 Fields

Field Bits Description
Ib 0 Processor implements the long branch (brl) instructions.
sd 1 Processor implements spontaneous deferral (see Section 5.5.5, “Deferral of

Speculative Load Faults” on page 2:100).

ao 2 Processor implements 16-byte atomic operations (see “Ild — Load”, “st — Store” and
“cmpxchg — Compare and Exchange” instructions in Volume 3).
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3.2 Memory

This section describes an Itanium architecture-based application program’s view of memory. This
includes a description of how memory is accessed, for both 32-bit and 64-bit applications. The size
and alignment of addressable unitsin memory is also given, along with a description of how byte
ordering is handled.

The system view of memory and of virtual memory management is given in Chapter 4,
“Addressing and Protection” in Volume 2. The IA-32 instruction set view of memory and virtual
memory management is defined in Section 10.6, “ System Memory Model” on page 2:252.

3.2.1 Application Memory Addressing Model

Memory is byte addressable and is accessed with 64-bit pointers. A 32-bit pointer model without a
hardware mode is supported architecturally. Pointers which are 32 bitsin memory are loaded and
manipulated in 64-bit registers. Software must explicitly convert 32-bit pointersinto 64-bit pointers
before use. For details on 32-bit addressing, refer to “32-bit Virtual Addressing” on page 2:67.

3.2.2 Addressable Units and Alignment

Memory can be addressed in units of 1, 2, 4, 8, 10 and 16 bytes.

It is recommended that all addressable units be stored on their naturally aligned boundaries.
Hardware and/or operating system software may have support for unaligned accesses, possibly
with some performance cost. 10-byte floating-point values should be stored on 16-byte aligned
boundaries.

Bits within larger units are always numbered from O starting with the least-significant bit.
Quantities loaded from memory to general registers are aways placed in the least-significant
portion of the register (loaded values are placed right justified in the target general register).

Instruction bundles (three instructions per bundl€) are 16-byte units that are always aligned on
16-byte boundaries.

3.2.3 Byte Ordering

The UM .be hit in the User Mask controls whether loads and stores use little-endian or big-endian
byte ordering for Itanium architecture-based code. When the UM .be bit is 0, larger-than-byte loads
and stores are little endian (lower-addressed bytes in memory correspond to the lower-order bytes
in the register). When the UM .be hit is 1, larger-than-byte loads and stores are big endian
(lower-addressed bytes in memory correspond to the higher-order bytesin the register). Load byte
and store byte are not affected by the UM.be bit. The UM .be bit does not affect instruction fetch,
IA-32 references, or the RSE. Instructions are always accessed by the processor as little-endian
units. When instructions are referenced as big-endian data, the instruction will appear reversed in a
register.

Figure 3-13 shows various loadsin little-endian format. Figure 3-14 shows various loads in big
endian format. Stores are not shown but behave similarly.
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Figure 3-13. Little-endian Loads

Memor Registers
y 63 9
7 0
Address LD1[1]=> | 0 olololo]o
0 a
1 b
63
2 c
LD2[2]=> | O o|lo|] o] o] d
3 d
4 e 63
5 f LD4[4]=> | O o|lO0|h | g]| f
6 g
7 h 63
LD8 [0] => h f e d c b
Figure 3-14. Big-endian Loads
Memory Registers
Address 7 0 63
0 a LD1[1]=> | 0 olo|lo|o]o
1 b
2 C 63
3 d LD2[2]=> | 0O 0|0 |O0]|O0]cC
4 e
63
5 f
LD4 [4] => 0 0 0 e f g
6 g
7 h 63
LD8[0]=> | a c d e f g
3.3 Instruction Encoding Overview

Each instruction is categorized into one of six types; each instruction type may be executed on one
or more execution unit types. Table 3-9 lists the instruction types and the execution unit type on

which they are executed.

Table 3-9. Relationship between Instruction Type and Execution Unit Type

Instruction Type

Description

Execution Unit Type

A Integer ALU

l-unit or M-unit

| Non-ALU integer

l-unit

1:34
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Table 3-9. Relationship between Instruction Type and Execution Unit Type (Continued)

Instruction Type Description Execution Unit Type
M Memory M-unit
F Floating-point F-unit
B Branch B-unit
L+X Extended l-unit/B-unit

Three instructions are grouped together into 128-bit sized and aligned containers called bundles.
Each bundle contains three 41-hit instruction slots and a 5-bit template field. The format of a
bundleis depicted in Figure 3-15.

Figure 3-15. Bundle Format

12
7 87 86 46 45 5 4 0
instruction slot 2 instruction slot 1 instruction slot 0 ‘ template ‘

41 41 41 5

During execution, architectural stopsin the program indicate to the hardware that one or more
instructions before the stop may have certain kinds of resource dependencies with one or more
instructions after the stop. A stop is present after each slot having adouble line to theright of it in
Table 3-10. For example, template 00 has no stops, while template 03 has a stop after ot 1 and
another after slot 2.

In addition to the location of stops, the template field specifies the mapping of instruction slots to
execution unit types. Not all possible mappings of instructions to units are available. Table 3-10
indicates the defined combinations. The three rightmost columns correspond to the three instruction
slotsin abundle. Listed within each column is the execution unit type controlled by that instruction
slot.

Table 3-10. Template Field Encoding and Instruction Slot Mapping

Template Slot 0 Slot 1 Slot 2
00 M-unit I-unit l-unit
01 M-unit I-unit l-unit ||
02 M-unit l-unit l-unit ‘
03 M-unit l-unit l-unit ||
04 M-unit L-unit X-unit® ‘
05 M-unit L-unit X-unit®
06
07
08 M-unit M-unit l-unit
09 M-unit M-unit l-unit | |
OA M-unit M-unit l-unit ‘
0B M-unit M-unit lunit ||
oC M-unit F-unit lunit |
oD M-unit F-unit l-unit | |
OE M-unit M-unit F-unit ‘
OF M-unit M-unit F-unit | |
10 M-unit I-unit B-unit
11 M-unit I-unit B-unit | |
12 M-unit B-unit B-unit ‘
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Table 3-10. Template Field Encoding and Instruction Slot Mapping (Continued)

3.4

1:36

Template Slot 0 Slot 1 Slot 2
13 M-unit B-unit B-unit
14
15
16 B-unit B-unit B-unit
17 B-unit B-unit B-unit ||
18 M-unit M-unit B-unit |
19 M-unit M-unit B-unit
1A
1B
1C M-unit F-unit B-unit
1D M-unit F-unit B-unit
1E
1F

a. The MLX template was formerly called MLI, and for
compatibility, the X slot may encode break.i and nop.i
in addition to any X-unit instruction.

Extended instructions, used for long immediate integer and long branch instructions, occupy two
instruction slots. Depending on the major opcode, extended instructions execute on a B-unit (long
branch/call) or an I-unit (all other L+X instructions).

Instruction Sequencing Considerations

Itanium architecture-based code consists of a sequence of instructions and stops packed in bundles.
Instruction execution is ordered as follows:

» Bundles are ordered from lowest to highest memory address. Instructions in bundles with
lower memory addresses are considered to precede instructionsin bundleswith higher memory
addresses. The byte order of each bundle in memory islittle-endian (the template field is
contained in byte 0 of abundle).

 Within abundle, instructions are ordered from instruction slot 0 to instruction slot 2 as
specified in Figure 3-15 on page 1:35.

Instruction execution consists of four phases:

1. Read theinstruction from memory (fetch)

2. Read architectura state, if necessary (read)

3. Perform the specified operation (execute)

4. Update architectural state, if necessary (update).
Aninstruction group is asequence of instructions starting at a given bundle address and slot
number and including al instructions at sequentially increasing slot numbers and bundle addresses
up to the first stop, taken branch, Break Instruction fault due to abreak.b, or Illegal Operation
fault due to a Reserved or Reserved if PR[qp] is one encoding in the B-type opcode space. For the

instructionsin an instruction group to have well-defined behavior, they must meet the ordering and
dependency requirements described below.
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For the purpose of clarification, the following do not end instruction groups:
» Break instructions other than break.b (break. f, break. i, break.m, break.x)
* Check instructions (chk. s, chk . a, £chkf)
e rfi instructions not followed by a stop
 brl instructions not followed by a stop

« |nterruptions other than a Break Instruction fault dueto abreak.b or an lllegal Operation fault
due to aReserved or Reserved if PR[gp] is 1 encoding in the B-type opcode space

Thus, even if one of the above causes achangein control flow, the instructions at sequentially
increasing addresses beyond the location of the changein control flow up to the next true end of the
instruction group had the change of control flow not occurred, can still cause undefined valuesto be
seen at the target of the change of control flow, if they cause a dependency violation. There are
never, however, any dependencies between the instructions at the target of the change in control
flow and those preceding the change in control flow, even for the above cases.

If the instructions in instruction groups meet the resource-dependency requirements, then the
behavior of a program will be as though each individual instruction is sequenced through these
phasesin the order listed above. The order of a phase of a given instruction relative to any phase of
apreviousinstruction is prescribed by the instruction sequencing rules bel ow.

« Thereisno apriori relationship between the fetch of an instruction and the read, execute, or
update of any dynamically previousinstruction. The sync.i and sr1z.i instructions can be
used to enforce a sequential relationship between the fetch of all dynamically succeeding
instructions and the update of all dynamically previous instructions.

» Between instruction groups, every instruction in a given instruction group will behave as
though its read occurred after the update of al the instructions from the previous instruction
group. All instructions are assumed to have unit latency. Instructions on opposing sides of a
stop are architecturally considered to be separated by at least one unit of latency.

Some system state updates require more stringent requirements than those described here. See
Section 3.2, “ Serialization” on page 2:17 for details.

» Within an instruction group, every instruction will behave as though its read of the memory
and Advanced Load Address Table (ALAT) state occurred after the update of the memory and
ALAT state of all prior instructionsin that instruction group.

< Within an instruction group, every instruction will behave as though its read of the register
state occurred before the update of the register state by any instruction (prior or later) in that
instruction group, except as noted in the Register dependencies and Memory dependencies
described below.

The ordering rules above form the context for register dependency restrictions, memory
dependency restrictions and the order of exception reporting. These dependency restrictions apply
only between instructions whose resource reads and writes are not dynamically disabled by
predication.

» Register dependencies: Within an instruction group, read-after-write (RAW) and
write-after-write (WAW) register dependencies are not allowed (except as noted in “RAW
Dependency Specia Cases’ on page 1:39 and “WAW Dependency Special Cases’ on
page 1:39). Write-after-read (WAR) register dependencies are allowed (except as hoted in
“WAR Dependency Special Cases’ on page 1:40).

These dependency restrictions apply to both explicit register accesses (from the instruction’s
operands) and implicit register accesses (such as application and control registersimplicitly
accessed by certain instructions). Predicate register PRO is excluded from these register
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dependency restrictions, since writes to PRO are ignored and reads always return 1 (one).

Some system state updates require more stringent requirements than those described here. See
Section 3.2, “ Serialization” on page 2:17 for details.

» Memory dependencies. Within an instruction group, RAW, WAW, and WAR memory
dependencies and ALAT dependencies are allowed. A load will observe the results of the most
recent store to the same memory address. In the event that multiple stores to the same address
are present in the same instruction group, memory will contain the result of the latest store
after execution of the instruction group. A store following aload to the same address will not
affect the dataloaded by the load. Advanced loads, check loads, advanced load checks, stores,
and memory semaphore instructions implicitly accessthe ALAT. RAW, WAW, and WAR
ALAT dependencies are allowed within an instruction group and behave as described for
memory dependencies.

The net effect of the dependency restrictions stated above is that a processor may execute all (or
any subset) of theinstructions within alegal instruction group concurrently or serially with the end
result being identical. If these dependency restrictions are not met, the behavior of the program is
undefined (see “Undefined Behavior” on page 1:41).

Exceptions are reported in instruction order. The dependency restrictions apply independent of the
presence or absence of exceptions — that is, restrictions must be satisfied whether or not an
exception occurs within an instruction group. At the point of exception delivery for a correctly
formed instruction group, all prior instructions will have completed their update of architectural
state. All subsequent instructions will not have updated architectural state. If an instruction group
violates a dependency requirement, then the update of architectural state before and after an
exception is not guaranteed (the fault handler sees an undefined value on the registersinvolvedin a
dependency violation even if the exception occurs between the first and second instructions in the
violation). In the event multiple exceptions occur while executing instructions from the same
instruction group, the exception occurring on the earliest instruction will be reported.

The instruction sequencing resulting from the rules stated above is termed sequential execution.

The ordering rules and the dependency restrictions allow the processor to dynamically re-order
instructions, execute instructions with non-unit latency, or even concurrently execute instructions
on opposing sides of astop or taken branch, provided that correct sequencing is enforced and the
appearance of sequential execution is presented to the programmer.

IPisaspecial resourcein that reads and writes of 1P behave as though the instruction stream was
being executed serially, rather than in parallel. RAW dependencies on IP are alowed, and the
reader getsthe IP of the bundle in which it is contained. So, each bundle being executed in parallel
logicaly reads I P, increments it and writes it back. WAW is also allowed.

Ignored ARs are not exceptional for dependency checking purposes. RAW and WAW dependencies
to ignored ARs are not allowed.

For more details on resource dependencies, see Chapter 5, “ Resource and Dependency Semantics’
in Volume 3.
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3.4.1 RAW Dependency Special Cases

There are four specia cases in which RAW register dependencies within an instruction group are
permitted. These special cases are the alloc instruction, check load instructions, instructions that
affect branching, and the 1d8.£111 and st8.spill instructions.

The alloc instruction implicitly writes the Current Frame Marker (CFM) which isimplicitly read
by all instructions accessing the stacked subset of the general register file. Instructions that access
the stacked subset of the general register file may appear in the same instruction group as alloc and
will see the stack frame specified by the alloc.

Note:  Someinstructions have RAW or WAW dependencies on resources other than CFM
affected by a1loc and are thus not alowed in the same instruction group after an alloc:
flushrs, loadrs, move from AR[BSPSTORE], move from AR[RNAT], br.cexit,
br.ctop, br.wexit, br.wtop, br.call, brl.call, br.ia, br.ret, clrrrb, cover,
and rfi. See Chapter 5, “Resource and Dependency Semantics’ in Volume 3 for details.
Also note that alloc isrequired to be the first instruction in an instruction group.

A check load instruction may or may not perform aload since it is dependent upon its
corresponding advanced load. If the check load missesthe ALAT it will execute aload from
memory. A check |oad and a subsequent instruction that reads the target of the check load may exist
in the same instruction group. The dependent instruction will get the new value loaded by the check
load.

A branch may read branch registers and may implicitly read predicate registers, the LC, EC, and
PFS application registers, aswell as CFM. Except for LC, EC and predicate registers, writesto any
of these registers by a non-branch instruction will be visible to a subsequent branch in the same
instruction group. Writes to predicate registers by any non-floating-point instruction will be visible
to a subseguent branch in the same instruction group. RAW register dependencies within the same
instruction group are not allowed for LC and EC. Dynamic RAW dependencies where the predicate
writer is afloating-point instruction and the reader is abranch are also not allowed within the same
instruction group. Branches br . cond, br.call, brl.cond, brl.call, br.ret and br.ia work
like other instructions for the purposes of register dependency; i.e., if their qualifying predicateisO,
they are not considered readers or writers of other resources. Branchesbr . cloop, br.cexit,
br.ctop, br.wexit, and br.wtop are exceptiona in that they are always readers or writers of
their resources, regardless of the value of their qualifying predicate. Anindirect brp isconsidered a
reader of the specified BR.

The1ds.fill and st8.spill instructionsimplicitly access the User NaT Collection application
register (UNAT). For these instructions the restriction on dynamic RAW register dependencieswith
respect to UNAT applies at the bit level. These instructions may appear in the same instruction
group provided they do not access the same bit of UNAT. RAW UNAT dependencies between
1d8.fill or st8.spill instructions and mov ar= or mov =ar instructions accessing UNAT must
not occur within the same instruction group.

For the purposes of resource dependencies, CFM istreated as a single resource.

3.4.2 WAW Dependency Special Cases

There are three specia casesin which WAW register dependencies within an instruction group are
permitted. The special cases are compare-type instructions, floating-point instructions, and the
st8.spill instruction.
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3.4.3

3.4.4

1:40

The set of compare-type instructionsincludes: cmp, cmp4, tbit, tnat, fcmp, frsgrta, frcepa, and
fclass. Compare-type instructions in the same instruction group may target the same predicate
register provided:
» The compare-type instructions are either all AND-type compares or all OR-type compares
(AND-type compares correspond to “.and” and “.andcm” completers, OR-type compares
correspond to “.or” and “.orcm” compl eters), or

* The compare-typeinstructions all target PRO. All WAW dependenciesfor PRO are allowed; the
compares can be of any types and can be of differing types.

All other WAW dependencies within an instruction group are disallowed, including WAW register
dependencies with move to PR instructions that access the same predicate registers as another
writer.

Note: The moveto PR instructions only writes those PRs indicated by its mask, but the move
from PR instructions always reads all the predicate registers.

Floating-point instructions implicitly write the Floating-point Status Register (FPSR) and the
Processor Status Register (PSR). Multiple floating-point instructions may appear in the same
instruction group since the restriction on WAW register dependencies with respect to the FPSR and
PSR do not apply. The state of FPSR and PSR after executing the instruction group will be the
logical OR of all writes.

The sts.spill instruction implicitly writes the UNAT register. For thisinstruction the restriction
on WAW register dependencies with respect to UNAT applies at the bit level. Multiple sts.spill
instructions may appear in the same instruction group provided they do not write the same bit of
UNAT. WAW register dependencies between st8.spill instructionsand mov ar= instructions
targeting UNAT must not occur within the same instruction group.

WAR Dependency Special Cases

The WAR dependency between the reading of predicate register 63 by any B-type instruction and
the subsequent writing of predicate register 63 by a modulo-scheduled loop type branch (br . ctop,
br.cexit, br.wtop, Or br.wexit) without an intervening stop is not allowed. Otherwise, WAR
dependencies within an instruction group are allowed.

Processor Behavior on Dependency Violations

If a program violates read-after-write, write-after-write or write-after-read resource dependency
rules within an instruction group, then processor behavior is undefined. Constraints on undefined
behavior are described in “Undefined Behavior” on page 1:41.

To help debug code that violates the architectural resource dependency rules, some processor
implementations may provide dependency violation detection hardware that may cause an
instruction group that contains an illegal dependency to take an Illegal Dependency fault (defined
in Chapter 5, “Interruptions’ in Volume 2). However, even in implementations that provide such
checking, software can not assume the processor will catch all dependency violations or even catch
the same violation every time it occurs.

However, all processor models that provide dependency violation detection hardware are required
to satisfy the following dependency violation reporting constraints:
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« All detected dependency violations must be reported as I1legal Dependency Faults (defined in
Chapter 5, “Interruptions”’ in Volume 2). When an Illegal Dependency fault is taken, the value
of the resource subject to the dependency violation is undefined. Undetected dependency
violations cause undefined program behavior as described in “ Undefined Behavior” on
page 1:41.

« All detected read-after-write and write-after-write dependency violations must be delivered as
Illegal Dependency Faults on the second operation, i.e. on the reader in the RAW case, and on
second resource writer in the WAW case.

« All detected write-after-read dependency violations (on predicate register 63) must be
delivered as Illegal Dependency faults on the second operation, the predicate writer.

« lllegal Dependency faults are delivered strictly in program order. If an interruption, branch or
speculation check are taken between the first and the second operation of a dependency
violation, then the Illegal Dependency fault is not taken.

Note:  Since an instruction group starts at a given entry point (stop or target of a control flow
transfer), instructions that precede the entry point are not considered part of theinstruction
group and must not take part in any dependency violation checking. For example, if an
rfiisdoneto dot 1 of abundle, theinstruction in slot 0 and instructions in bundles with
lower memory addresses are not part of the new instruction group, and must not take part
in any dependency violation checking.

3.5 Undefined Behavior

Architecturally undefined behavior that applies to one or more instructions is listed below:

« RAW and WAW register dependencies within the sameinstruction group are disallowed except
asnoted in Section 3.4, “Instruction Sequencing Considerations’ on page 1:36. Their behavior
within an instruction group is undefined. Undefined behavior includes the possibility of an
Illegal Operation fault.

» Reading aregister outside of the defined general register stack frame boundaries (as
determined by the most recent alloc, return, or call) will return an undefined result. All
processors will not raise an interruption in this situation.

An undefined scenario is an event or sequence of events whose outcome is not defined in the
architecture. For the behavior of Itanium instructions, refer to Chapter 2, “Instruction Reference” in
Volume 3. For the behavior of IA32 instructions, refer to Volume 3, Part 113, “1A-32 Instruction Set
Descriptions.” Therefore, the result of an undefined scenario is strictly implementation dependent.
User should not rely on these undefined behaviors for correct program behavior and compatibility
across future implementations.

Volume 1: Execution Environment 1:41


ftp://download.intel.com/design/Itanium/manuals/245319.pdf
ftp://download.intel.com/design/Itanium/manuals/245319.pdf
ftp://download.intel.com/design/Itanium/manuals/245319.pdf
ftp://download.intel.com/design/Itanium/manuals/245318.pdf

1:42 Volume 1: Execution Environment



Application Programming Model 4

4.1

4.1.1

This section describes the architectural functionality from the perspective of the application
programmer. Itanium instructions are grouped into related functions and an overview of their
behavior is given. Unless otherwise noted, al immediates are sign extended to 64 bits before use.
The floating-point programming model is described separately in Chapter 5, “Floating-point
Programming Model” in Volume 1. Refer to Volume 3: Instruction Set Reference for detailed
information on Itanium instructions.

The main features of the programming model covered here are:
» Genera Register Stack
* Integer Computation Instructions
« Compare Instructions and Predication
* Memory Access Instructions and Speculation
 Branch Instructions and Branch Prediction
» Multimedia Instructions
» Register File Transfer Instructions
 Character Strings and Population Count
* Privilege Level Transfer

Register Stack

Asdescribed in “ General Registers’ on page 1:23, the general register fileisdivided into static and
stacked subsets. The static subset isvisible to all procedures and consists of the 32 registers from
GR 0through GR 31. The stacked subset islocal to each procedure and may vary in size from zero
to 96 registers beginning at GR 32. The register stack mechanism isimplemented by renaming
register addresses as a side-effect of procedure calls and returns. The implementation of this
rename mechanism is not otherwise visible to application programs. The register stack is disabled
during IA-32 instruction set execution.

The static subset must be saved and restored at procedure boundaries according to software
convention. The stacked subset is automatically saved and restored by the Register Stack Engine
(RSE) without explicit software intervention (for details on the RSE see Chapter 6, “ Register Stack
Engine” in Volume 2). All other register files are visible to all procedures and must be
saved/restored by software according to software convention.

Register Stack Operation

Theregistersin the stacked subset visible to agiven procedure are called aregister stack frame. The
frame is further partitioned into two variable-size areas: the local area and the output area.

Immediately after acall, the size of the local area of the newly activated frame is zero and the size
of the output areais equal to the size of the caller’s output area and overlaysthe caller’s output area.
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Thelocal and output areas of aframe can be re-sized using the al1oc instruction which specifies
immediates that determine the size of frame (sof) and size of locals (sol).

Note:  Intheassembly language, alloc usesthree immediate operands to determine the values
of sol and sof: the size of inputs; the size of locals; and the size of outputs. The value of sol
is determined by adding the size of inputsimmediate and the size of localsimmediate; the
value of sof is determined by adding all three immediates.

The value of sof specifies the size of the entire stacked subset visible to the current procedure; the
value of sol specifiesthe size of the local area. The size of the output areais determined by the
difference between sof and sol. The values of these parameters for the currently active procedure
are maintained in the Current Frame Marker (CFM).

Reading a stacked register outside the current frame will return an undefined result. Writing a
stacked register outside the current frame will cause an Illegal Operation fault.

When abr.call or brl.call isexecuted, the CFM is copied to the Previous Frame Marker
(PFM) field in the Previous Function State application register (PFS), and the callee's frameis
created asfollows:

» Thestacked registers are renamed such that thefirst register in the caller’s output area becomes
GR 32 for the callee

» Thesizeof thelocal areais set to zero
» Thesize of the callee's frame (sofy;) is set to the size of the caller’s output area (sof, - sol )

Vaues in the output area of the caller’sregister stack frame are visible to the callee. This overlap
permits parameter and return value passing between procedures to take place entirely in registers.

Procedure frames may be dynamically re-sized by issuing an alloc instruction. Analloc
instruction causes no renaming, but only changes the size of the register stack frame and the
partitioning between local and output areas. Typically, when a procedureis called, it will alocate
some number of local registersfor its use (which will include the parameters passed to it in the
caller’s output registers), plus an output area (for passing parameters to proceduresit will call).
Newly alocated registers (including their NaT bits) have undefined values.

When abr. ret isexecuted, CFM isrestored from PFM and the register renaming isrestored to the
caller’s configuration. The PFM is procedurelocal state and must be saved and restored by non-leaf
procedures. The CFM is not directly accessible in application programs and is updated only
through the execution of calls, returns, alloc, cover, and clrrrb.

Figure 4-1 depicts the behavior of the register stack on a procedure call from procA (caller) to
procB (callee). The state of the register stack is shown at four points:. prior to the call, immediately
following the call, after procB has executed an alloc, and after procB returnsto procA.
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Figure 4-1. Register Stack Behavior on Procedure Call and Return

Instruction Execution Stacked GRs Frame Markers
CFM PFM
32 46 52 sol sof sol sof
Caller's Frame (procA) Local A Output A 14 21 X X
- sof =21
call sol,=14 | a
\ 52 38
Callee’s Frame (procB)
After Call Output B; 0o 7 14 21
“ I
alloc | sofp1=7
\ |32 48 50
Callee’s Frame (procB)
After alloc Local B Output B, 16 19| |14 21
~ o
sofy,=19
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4.1.2

The majority of application programs need only issue alloc instructions and save/restore PFM in
order to effectively utilize the register stack. A detailed knowledge of the Register Stack Engine
(RSE) isrequired only by certain specialized application software such as user-level thread
packages, debuggers, etc. See Chapter 6, “Register Stack Engine” in Volume 2.

Register Stack Instructions

The alloc instruction is used to change the size of the current register stack frame. An alloc
instruction must be the first instruction in an instruction group otherwise the results are undefined.
An alloc instruction affects the register stack frame seen by all instructionsin an instruction
group, including the al1oc itself. If the qualifying predicate for alloc isnot PRO, an Illegal
Operation fault israised. An alloc does not affect the values or NaT bits of the allocated registers.
When aregister stack frame is expanded, newly allocated registers may have their NaT bit set.

In addition, there are three instructions which provide explicit control over the state of the register
stack. These instructions are used in thread and context switching which necessitate a
corresponding switch of the backing store for the register stack. See Chapter 6, “Register Stack
Engine” in Volume 2 for details on explicit management of the RSE.
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The f1lushrs instruction is used to force all previous stack frames out to backing store memory. It
stallsinstruction execution until all active framesin the physical register stack up to, but not
including the current frame are spilled to the backing store by the RSE. A £1lushrs instruction
must be the first instruction in an instruction group; otherwise, the results are undefined. A
flushrs cannot be predicated.

The cover instruction creates a new frame of zero size (sof = sol = 0). The new frame s created
above (not overlapping) the present frame. Both the local and output areas of the previous stack

frame are automatically saved. A cover instruction must be the last instruction in an instruction
group; otherwise, operation is undefined. A cover cannot be predicated.

The 1oadrs instruction ensures that the specified portion of the register stack is present in the
physical registers. It stalls instruction execution until the number of bytes specified in the loadrs
field of the RSC application register have been filled from the backing store by the RSE (starting
from the current BSP). By specifying a zero value for RSC.loadrs, 1oadrs can be used to indicate
that all stacked registers outside the current frame must be loaded from the backing store before
being used. In addition, stacked registers outside the current frame (that have not been spilled by
the RSE) will not be stored to the backing store. A 1ocadrs instruction must be the first instruction
in an instruction group otherwise the results are undefined. A 1oadrs cannot be predicated.

Table 4-1 lists the architectural visible state relating to the register stack. Table 4-2 summarizes the
register stack management instructions. Call- and return-type branches, which affect the stack, are
described in “Branch Instructions’ on page 1:69.

Table 4-1. Architectural Visible State Related to the Register Stack

Table 4-2.

4.2

1:46

Register Description
AR[PFS].pfm Previous Frame Marker field
AR[RSC] Register Stack Configuration application register
AR[BSP] Backing store pointer application register
AR[BSPSTORE] Backing store pointer application register for memory stores
AR[RNAT] RSE NaT collection application register

Register Stack Management Instructions

Mnemonic Operation
alloc Allocate register stack frame
flushrs Flush register stack to backing store
loadrs Load register stack from backing store
cover Cover current stack frame

Integer Computation Instructions

The integer execution units provide a set of arithmetic, logical, shift and bit-field-manipulation
instructions. Additionally, they provide a set of instructions to accelerate operations on 32-bit data

and pointers.

Arithmetic, logical and 32-bit acceleration instructions can be executed on both |- and M-units

Volume 1: Application Programming Model



4.2.1 Arithmetic Instructions

Addition and subtraction (add, sub) are supported with regular two input forms and special three
input forms. The three input addition form adds one to the sum of two input registers. The three
input subtraction form subtracts one from the difference of two input registers. The three input
forms share the same mnemonics as the two input forms and are specified by appending a“1” asa
third source operand.

The immediate form of addition uses aregister and a 14-hit immediate; the immediate form of
subtraction uses aregister and an 8-bit immediate. In both cases, the immediate is sign-extended
before being added or subtracted. The immediate form is obtained simply by specifying an
immediate rather than aregister as the first operand. Also, addition can be performed between a
register and a 22-bit immediate; however, the source register must be GR 0, 1, 2 or 3.

A shift left and add instruction (sh1add) shifts one register operand to the left by 1 to 4 bits and
adds the result to a second register operand. Table 4-3 summarizes the integer arithmetic
instructions.

Table 4-3. Integer Arithmetic Instructions

Mnemonic Operation
add Addition
add...,1 Three input addition
sub Subtraction
sub...,1 Three input subtraction
shladd Shift left and add

Note that an integer multiply instruction is defined which uses the floating-point registers. See
“Integer Multiply and Add Instructions’ on page 1:97 for details. Integer divide is performed in
software similarly to floating-point divide.

4.2.2 Logical Instructions

Instructions to perform logical AND (and), OR (or), and exclusive OR (xor) between two
registers or between aregister and an immediate are defined. The andem instruction performs a
logical AND of aregister or an immediate with the complement of another register. Table 4-4
summarizes the integer logical instructions.

Table 4-4. Integer Logical Instructions

Mnemonic Operation
and Logical and
or Logical or
andcm Logical and complement
XOor Logical exclusive or
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32-bit Addresses and Integers

Support for 32-bit addresses is provided in the form of add instructions that perform region bit
copying. This supports the virtual address trandlation model (see “32-bit Virtual Addressing” on
page 2:67 for details). The add 32-bit pointer instruction (addp) adds two registers or aregister and
an immediate, zeroes the most significant 32-bits of the result, and copies bits 31:30 of the second
source to bits 62:61 of the result. The shladdp instruction operates similarly but shifts the first
source to the left by 1 to 4 bits before performing the add, and is provided only in the two-register
form.

In addition, support for 32-bit integers is provided through 32-bit compare instructions and
instructions to perform sign and zero extension. Compare instructions are described in “ Compare
Instructions and Predication” on page 1:49. The sign and zero extend (sxt, zxt) instructions take
an 8-bit, 16-bit, or 32-bit value in aregister, and produce a properly extended 64-bit result.

Table 4-5 summarizes 32-bit pointer and 32-bit integer instructions.

Table 4-5. 32-bit Pointer and 32-bit Integer Instructions

4.2.4
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Mnemonic Operation
addp 32-bit pointer addition
shladdp Shift left and add 32-bit pointer
sxt Sign extend
zZxXt Zero extend

Bit Field and Shift Instructions

Four classes of instructions are defined for shifting and operating on bit fields within a general
register: variable shifts, fixed shift-and-mask instructions, a 128-bit-input funnel shift, and special
compare operations to test an individual bit within a general register. The compare instructions for
testing asingle bit (tbit), or for testing the NaT bit (tnat) are described in “Compare Instructions
and Predication” on page 1:49.

The variable shift instructions shift the contents of a general register by an amount specified by
another general register. The shift right signed (shr) and shift right unsigned (shr . u) instructions
shift the contents of aregister to the right with the vacated bit positions filled with the sign bit or
zeroes respectively. The shift left (sh1) instruction shifts the contents of aregister to the left.

Thefixed shift-and-mask instructions (ext r, dep) are generalized forms of fixed shifts. The extract
instruction (extr) copies an arbitrary bit field from a general register to the least-significant bits of
the target register. The remaining bits of the target are written with either the sign of the bit field
(extr) or with zero (extr .u). The length and starting position of the field are specified by two
immediates. Thisis essentially a shift-right-and-mask operation. A simple right shift by afixed
amount can be specified by using shr with an immediate value for the shift amount. Thisisjust an
assembly pseudo-op for an extract instruction where the field to be extracted extends all the way to
the left-most register bit.

The deposit instruction (dep) takes afield from either the least-significant bits of agenera register,
or from an immediate value of all zeroes or al ones, placesit at an arbitrary position, and fills the
result to the left and right of the field with either bits from a second general register (dep) or with
zeroes (dep . z). The length and starting position of the field are specified by two immediates. This
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is essentially a shift-left-mask-merge operation. A simple left shift by a fixed amount can be
specified by using sh1 with an immediate value for the shift amount. Thisis just an assembly
pseudo-op for dep . z where the deposited field extends all the way to the left-most register bit.

The shift right pair (shrp) instruction performs a 128-bit-input funnel shift. It extracts an arbitrary
64-bit field from a 128-hit field formed by concatenating two source general registers. The starting
position is specified by an immediate. This instruction can be used to accel erate the adjustment of
unaligned data. A bit rotate operation can be performed by using shrp and specifying the same

register for both operands.

Table 4-6 summarizes the bit field and shift instructions.

Table 4-6. Bit Field and Shift Instructions

Mnemonic Operation
shr Shift right signed
shr.u Shift right unsigned
shl Shift left
extr Extract signed (shift right and mask)
extr.u Extract unsigned (shift right and mask)
dep Deposit (shift left, mask and merge)
dep.z Deposit in zeroes (shift left and mask)
shrp Shift right pair

4.2.5 Large Constants

A special instruction is defined for generating large constants (see Table 4-7). For constants up to
22 hitsin size, the add instruction can be used, or the mov pseudo-op (pseudo-op of add with GRO,
which alwaysreads 0). For larger constants, the move long immediate instruction (mov1) is defined
to write a 64-bit immediate into a general register. Thisinstruction occupies two instruction slots
within the same bundle, and is the only such instruction.

Table 4-7. Instructions to Generate Large Constants

Mnemonic Operation
mov Move 22-bit immediate
movl Move 64-bit immediate
4.3 Compare Instructions and Predication

A set of compare instructions provides the ability to test for various conditions and affect the
dynamic execution of instructions. A compare instruction tests for a single specified condition and
generates a boolean result. These results are written to predicate registers. The predicate registers
can then be used to affect dynamic execution in two ways: as conditions for conditional branches,
or as qualifying predicates for predication.
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Table 4-8.

Predication

Predication isthe conditional execution of instructions. The execution of most instructionsis gated
by a qualifying predicate. If the predicate istrue, the instruction executes normally; if the predicate
isfalse, the instruction does not modify architectural state (except for the unconditional type of
compare instructions, floating-point approximation instructions and while-loop branches).
Predicates are one-bit values and are stored in the predicate register file. A zero predicate is
interpreted as false and a one predicate isinterpreted as true (predicate register PRO is hardwired to
one).

A few instructions cannot be predicated. These instructions are; allocate stack frame (alloc),
branch predict (brp), bank switch (bsw), clear rrb (c1rrrb), cover stack frame (cover), enter
privileged code (epc), flush register stack (f1ushrs), load register stack (1oadrs), counted
branches (br . cloop, br.ctop, br.cexit), and return from interruption (r£1i).

Compare Instructions

Predicate registers are written by the following instructions: general register compare (cmp, cmp4),
floating-point register compare (fcmp), test bit and test NaT (tbit, tnat), floating-point class
(fclass), and floating-point reciprocal approximation and reciprocal square root approximation
(frcpa, fprecpa, frsqgrta, fprsqgrta). Most of these compare instructions (all but £rcpa,
fprcpa, frsgrta and fprsgrta) Set two predicate registers based on the outcome of the
comparison. The setting of the two target registersis described below in “Compare Types’ on
page 1:51. Compare instructions are summarized in Table 4-8.

Compare Instructions

Mnemonic Operation
cmp, cmp4 GR compare
tbit Test bitin a GR
tnat Test GR NaT bit
femp FR compare
fclass FR class
frcpa, fprecpa Floating-point reciprocal approximation
frsqgrta, fprsqgrta Floating-point reciprocal square root approximation

The 64-bit (cmp) and 32-bit (cmp4) compare instructions compare two registers, or aregister and an
immediate, for one of ten relations (e.g., >, <=). The compare instructions set two predicate targets
according to the result. The cmp4 instruction compares the least-significant 32-bits of both sources
(the most significant 32-bits are ignored).

Thetest bit (tbit) instruction sets two predicate registers according to the state of asingle bitin a
genera register (the position of the bit is specified by animmediate). The test NaT (tnat)
instruction sets two predicate registers according to the state of the NaT bit corresponding to a
genera register.

The fcmp instruction compares two floating-point registers and sets two predicate targets according
to one of eight relations. The £class instruction sets two predicate targets according to the
classification of the number contained in the floating-point register source.
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The frcpa, fprcpa, frsqrta and fprsqgrta instructions set a single predicate target if their
floating-point register sources are such that a valid approximation can be produced, otherwise the
predicate target is cleared.

Compare Types

Compareinstructions can have as many as five compare types. Normal, Unconditional, AND, OR,
or DeMorgan. The type defines how the instruction writesits target predicate registers based on the
outcome of the comparison and on the qualifying predicate. The description of these typesis
contained in Table 4-9. In thetable, “qp” refersto the value of the qualifying predicate of the
compare and “result” refers to the outcome of the compare relation (one if the comparerelation is
true and zero if the compare relation is false).

Table 4-9. Compare Type Function

Operation
Compare Type Completer - - -
First Predicate Target Second Predicate Target
Normal none if (qp) {target = result} if (qp) {target =!result}
. if (qp) {target = result} if (gp) {target =Iresult}
Unconditional unc else {target = 0} else {target = 0}
AND and if (qp &&!result) {target = 0} if (qp &&!result) {target = 0}
andcm if (qp && result) {target = 0} if (qp && result) {target = 0}
OR or if (qp && result) {target = 1} if (qp && result) {target = 1}
orcm if (qp &&!result) {target = 1} if (qp &&!result) {target = 1}
or.andcm if (qp && result) {target = 1} if (qp && result) {target = 0}
DeMorgan - -
and.orcm if (gp &&!result) {target = 0} if (qp &&!result) {target = 1}

The Normal compare type simply writes the compare result to the first predicate target and the
complement of the result to the second predicate target.

The Unconditional compare type behaves the same as the Normal type, except that if the qualifying
predicateis 0, both predicate targets are written with 0. This can be thought of as an initialization of
the predicate targets, combined with a Normal compare. Note that compare instructions with the
Unconditional type modify architectural state when their qualifying predicate isfalse.

The AND, OR and DeMorgan types are termed “ parallel” compare types because they allow
multiple simultaneous compares (of the same type) to target a single predicate register. This
provides the ability to compute alogical equationsuchasps = (r4 == 0) || (r5 == r6) ina
single cycle (assuming p5 was initialized to 0 in an earlier cycle). The DeMorgan compare typeis
just a combination of an OR type to one predicate target and an AND type to the other predicate
target. Multiple OR-type compares (including the OR part of the DeMorgan type) may specify the
same predicate target in the same instruction group. Multiple AND-type compares (including the
AND part of the DeMorgan type) may al so specify the same predicate target in the same instruction

group.

For al compare instructions (except for tnat and fclass), if one or both of the source registers
contains adeferred exception token (NaT or NaTVal —see“ Control Speculation” on page 1:56), the
result of the compare is different. Both predicate targets are treated the same, and are either written
to 0 or left unchanged. In combination with speculation, this allows predicated code to be turned off
in the presence of adeferred exception. fclass behavesthisway aswell if NaTVal is not one of
the classes being tested for. Table 4-10 describes the behavior.
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Table 4-10. Compare Outcome with NaT Source Input

Compare Type Operation
Normal if (qp) {target = 0}
Unconditional target=0
AND if (gp) {target = O}
OR (not written)
DeMorgan (not written)

Only a subset of the compare types are provided for some of the compare instructions. Table 4-11
lists the compare types which are available for each of the instructions.

Table 4-11. Instructions and Compare Types Provided

4.3.4
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Instruction Relation Types Provided

cmp, cmp4 a==b,al=b, Normal, Unconditional,
a>0,a>=0,a<0,a<=0, AND, OR, DeMorgan
0>a,0>=a,0<a,0<=a
All other relations Normal, Unconditional

tbit, tnat All Normal, Unconditional,

AND, OR, DeMorgan
fcmp, fclass All Normal, Unconditional
frcpa, frsqgrta, Not Applicable Unconditional

fprcpa, fprsgrta

Predicate Register Transfers

Instructions are provided to transfer between the predicate register file and ageneral register. These
instructions operatein a*“broadside” manner whereby multiple predicate registersare transferred in
parallel, such that predicate register N is transferred to/from bit N of ageneral register.

The move to predicates instruction (mov pr=) loads multiple predicate registers from a general
register according to amask specified by animmediate. The mask contains one bit for each of PR 1
through PR 15 (PR O is hardwired to 1) and one bit for al of PR 16 through PR63 (the rotating
predicates). A predicate register is written from the corresponding bit in a general register if the
corresponding mask bit is 1; if the mask bit is O the predicate register is not modified.

The moveto rotating predicatesinstruction (mov pr.rot=) copies48 bitsfrom animmediate value
into the 48 rotating predicates (PR 16 through PR 63). Theimmediate value includes 28 bits, and is
sign-extended. Thus PR 16 through PR 42 can be independently set to new values, and PR 43
through PR 63 are all set to either O or 1.

The move from predicates instruction (mov =pr) transfers the entire predicate register fileinto a
general register target.

For all of these predicate register transfers, the predicate registers are accessed as though the
register rename base (CFM.rrb.pr) were 0. Typically, therefore, software should clear CFM.rrb.pr
before initializing rotating predicates.
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Memory Access Instructions

Memory is accessed by simple load, store and semaphore instructions, which transfer datato and
from general registers or floating-point registers. The memory address is specified by the contents
of ageneral register.

Most load and store instructions can also specify base-address-register update. Base update adds
either an immediate value or the contents of ageneral register to the address register, and placesthe
result back in the address register. The update is done after the load or store operation, i.e., itis
performed as an address post-increment.

For highest performance, data should be aligned on natural boundaries. Within a4K-byte boundary,
accesses misaligned with respect to their natural boundaries will always fault if UM.ac (alignment
check bit inthe User Mask register) is 1. If UM.acisO, then an unaligned access will succeed if itis
supported by the implementation; otherwiseit will cause an Unaligned Data Reference fault. Please
see the processor-specific documentation for further information. All memory accesses that cross a
4K -byte boundary will cause an Unaligned Data Reference fault independent of UM .ac.
Additionally, all semaphoreinstructionswill cause an Unaligned Data Reference fault if the access
isnot aligned to its natural boundary, independent of UM .ac.

Accesses to memory quantities larger than a byte may be done in abig-endian or little-endian
fashion. The byte ordering for all memory access instructions is determined by UM.be in the User
Mask register. All 1A-32 memory references are performed little-endian.

Load, store and semaphore instructions are summarized in Table 4-12 and the state related to
memory reference instructions is summarized in Table 4-13.

Table 4-12. Memory Access Instructions

Mnemonic
Floating-point Operation
General
Normal Load Pair
1d 1df 1ldfp Load
1d.s 1df.s ldfp.s Speculative load
ld.a ldf.a ldfp.a Advanced load
ld.sa ldf.sa ldfp.sa Speculative advanced load
ld.c.nc, ld.c.clr |1df.c.nc, ldfp.c.nc, Check load
ldf.c.clr ldfp.c.clr

ld.c.clr.acq Ordered check load
1d.acq Ordered load
ld.bias Biased load
1d4.£ill 1df.fill Register Fill
st stf Store
st.rel Ordered store
st.spill stf.spill Register Spill
cmpxchg Compare and exchange
xchg Exchange memory and GR
fetchadd Fetch and add
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Table 4-13. State Relating to Memory Access

4.4.1
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Register Function
UM.be User mask byte ordering
UM.ac User mask Unaligned Data Reference fault enable
UNAT GR NaT collection
ccv Compare and Exchange Compare Value application register
CsD Compare and Store Data application register

Load Instructions

Load instructions transfer data from memory to a general register, ageneral register and the
Compare and Store Data (CSD) register, afloating-point register or a pair of floating-point
registers.

For general register loads, access sizes of 1, 2, 4, 8, and 16 bytes are defined. For sizes|ess than
eight bytes, the loaded value is zero extended to 64-bits. The 16-byte genera -register load
instructions load two adjacent 8-byte quantities into a general register and the CSD register. The
16-byte general-register load instructions cannot specify base register update.

For floating-point loads, the following access sizes are defined: single precision (4 bytes), double
precision (8 bytes), double-extended precision (10 bytes), and integer/parallel FP (8 bytes). The
value(s) loaded from memory are converted into floating-point register format (see “Memory
Access Instructions’ on page 1:87 for details).

The floating-point load pair instructions load two adjacent single precision (4 bytes each), double
precision (8 bytes each), or integer/parallel FP (8 bytes each) numbers into two independent
floating-point registers (see the 1dfp instruction description for restrictions on target register
specifiers). Floating-point load pair instructions can specify base register update, but only by an
immediate value equal to double the data size.

Variants of both general and floating-point register loads are defined for supporting
compiler-directed control and data speculation. These use the general register NaT bits and the
ALAT. See “Control Speculation” on page 1:56 and “Data Speculation” on page 1:59.

Variants are also provided for controlling the memory/cache subsystem. An ordered load can be
used to force ordering in memory accesses. See“Memory Access Ordering” on page 1:68. A biased
load provides a hint to acquire exclusive ownership of the accessed line. See “Memory Hierarchy
Control and Consistency” on page 1:64.

Special-purpose loads are defined for restoring register values that were spilled to memory. The
1d8.fil1 instruction loads a general register and the corresponding NaT bit (defined for an 8-byte
accessonly). The 1df . £i11 instruction loads a value in floating-point register format from
memory without conversion (defined for 16-byte access only). See “Register Spill and Fill” on
page 1:58.
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Store Instructions

Store instructions transfer data from a general register, a general register and the CSD register, or
floating-point register to memory. Store instructions are always non-speculative. Store instructions
can specify base-address-register update, but only by an immediate value. A variant isalso
provided for controlling the memory/cache subsystem. An ordered store can be used to force
ordering in memory accesses.

Both general and floating-point register stores are defined with the same access sizes as their |oad
counterparts. The only exception isthat there are no floating-point store pair instructions. The
16-byte general-register store instructions store two adjacent 8-byte quantities from a general
register and the CSD register.

Specia purpose stores are defined for spilling register values to memory. The st8.spill
instruction stores a general register and the corresponding NaT bit (defined for 8-byte access only).
This allows the result of a speculative calculation to be spilled to memory and restored. The
stf.spill instruction stores afloating-point register in memory in the floating-point register
format without conversion. Thisallowsregister spill and restore code to be written to be compatible
with possible future extensions to the floating-point register format. The stf . spill instruction
also does not fault if the register containsa NaTVal, and is defined for 16-byte access only. See
“Register Spill and Fill” on page 1:58.

Semaphore Instructions

Semaphore instructions atomically load a general register from memory, perform an operation and
then store aresult to the same memory location. Semaphore instructions are always
non-speculative. No base register update is provided.

Three types of atomic semaphore operations are defined: exchange (xchg); compare and exchange
(cmpxchg); and fetch and add (fetchadd).

The xchg target isloaded with the zero-extended contents of the memory location addressed by the
first source and then the second source is stored into the same memory location.

The cmpxchg target isloaded with the zero-extended contents of the memory location addressed by
thefirst source; if the zero-extended value is equal to the contents of the Compare and Exchange
Compare Va ue application register (CCV), then the second source is stored into the same memory
location. The cmp8xchgi6 instruction loads the target with 8 bytes from the memory location
addressed by the first source; if thisvalueis equal to the contents of the CCV register, then the
second source and the CSD register are both stored into memory at the 16-byte-aligned address
which contains the memory location loaded.

The fetchadd instruction specifies one general register source, one general register target, and an
immediate. The fetchadd target isloaded with the zero-extended contents of the memory location
addressed by the source and then the immediate is added to the loaded value and the result is stored
into the same memory location.
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Control Speculation

Special mechanisms are provided to allow for compiler-directed speculation. This specul ation takes
two forms, control speculation and data speculation, with a separate mechanism to support each.
See also “Data Speculation” on page 1:59.

Control Speculation Concepts

Control speculation describes the compiler optimization where an instruction or a sequence of
instructions is executed before it is known that the dynamic control flow of the program will
actually reach the point in the program where the sequence of instructionsis needed. Thisis done
with instruction sequences that have long execution latencies. Starting the execution early allows
the compiler to overlap the execution with other work, increasing the parallelism and decreasing
overall execution time. The compiler performs this optimization when it determines that it is very
likely that the dynamic control flow of the program will eventually require this calculation. In cases
where the control flow is such that the calculation turns out not to be needed, its results are simply
discarded (the results in processor registers are smply not used).

Since the speculative instruction sequence may not be reguired by the program, no exceptions
encountered that would be visible to the program can be signalled until it is determined that the
program’s control flow does require the execution of thisinstruction sequence. For this reason, a
mechanism is provided for recording the occurrence of an exception so that it can be signalled later
if and when it is necessary. In such a situation, the exception is said to be deferred. When an
exception is deferred by an instruction, a special token iswritten into the target register to indicate
the existence of a deferred exception in the program.

Deferred exception tokens are represented differently in the general and floating-point register
files. In general registers, an additional bit is defined for each register called the NaT bit (Not a
Thing). Thus general registers are 65 bitswide. A NaT bit equal to 1 indicates that the register
contains a deferred exception token, and that its 64-bit data portion contains an
implementation-specific value that software cannot rely upon. In floating-point registers, adeferred
exception isindicated by a specific pseudo-zero encoding called the NaT Val (see “ Representation
of Valuesin Floating-point Registers’ on page 1:82 for details).

Control Speculation and Instructions

Instructions are divided into two categories. speculative (instructions which can be used
speculatively) and non-speculative (instructions which cannot). Non-speculative instructions will
raise exceptionsif they occur and are therefore unsafe to schedule before they are known to be
executed. Speculative instructions defer exceptions (they do not raise them) and are therefore safe
to schedule before they are know to be executed.

Loads to general and floating-point registers have both non-speculative (14, 1df, 1dfp) and
speculative (1d. s, 1df . s, 1dfp. s) variants. Generally, all computation instructions which write
their resultsto general or floating-point registers are speculative. Any instruction that modifies state
other than a general or floating-point register is non-speculative, since there would be no way to
represent the deferred exception (there are afew exceptions).
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Deferred exception tokens propagate through the program in a dataflow manner. A speculative
instruction that reads a register containing a deferred exception token will propagate a deferred
exception token into its target. Thus a chain of instructions can be executed speculatively, and only
the result register need be checked for a deferred exception token to determine whether any
exceptions occurred.

At the point in the program when it is known that the result of a speculative calculation is needed, a
speculation check (chk . s) instruction is used. Thisinstruction tests for a deferred exception token.
If noneisfound, then the speculative cal culation was successful, and execution continues normally.
If a deferred exception token is found, then the speculative cal culation was unsuccessful and must
be re-done. In this case, the chk . s instruction branches to a new address (specified by an
immediate offset in the chk . s instruction). Software can use this mechanism to invoke code that
contains a copy of the speculative calculation (but with non-speculative loads). Sinceit is now
known that the calculation is required, any exceptions which now occur can be signalled and
handled normally.

Since computational instructions do not generally cause exceptions, the only instructions which
generate deferred exception tokens are speculative loads. (IEEE floating-point exceptions are
handled specially through a set of aternate status fields. See “ Floating-point Status Register” on
page 1:84.) Other speculative instructions propagate deferred exception tokens, but do not generate
them.

Control Speculation and Compares

As stated earlier, most instructions that write a register file other than the general registers or the
floating-point registers are non-speculative. The compare (cmp, cmp4, fcmp), test bit (tbit),
floating-point class (fclass), and floating-point approximation (£rcpa, frsqrta) instructions are
special cases. These instructions read general or floating-point registers and write one or two
predicate registers.

For these instructions, if any source contains a deferred exception token, al predicate targets are
either cleared or left unchanged, depending on the compare type (see Table 4-10 on page 1:52).
Software can use this behavior to ensure that any dependent conditional branches are not taken and
any dependent predicated instructions are nullified. See “ Predication” on page 1:50.

Deferred exception tokens can also be tested for with certain compare instructions. The test NaT
(tnat) instruction tests the NaT bit corresponding to the specified general register and writes two
predicate results. The floating-point class (fc1ass) instruction can be used to test for aNaTVal ina
floating-point register and write the result to two predicate registers. fclass does not clear both
predicate targets in the presence of aNaTVal input if NaTVal is one of the classes being tested for.

Control Speculation without Recovery

A non-speculative instruction that reads aregister containing a deferred exception token will raisea
Register NaT Consumption fault. Such instructions can be thought of as performing a
non-recoverable speculation check operation. In some compilation environments, it may be true
that the only exceptions that are deferred are fatal errors. In such a program, if the result of a
speculative calculation is checked and a deferred exception token is found, execution of the
program is terminated. For such a program, the results of speculative calculations can be checked
simply by using non-speculative instructions.

Volume 1: Application Programming Model 1:57



4445

4.4.4.6

Operating System Control over Exception Deferral

An additional mechanism is defined that allows the operating system to control the exception
behavior of speculative loads. The operating system has the option to select which exceptions are
deferred automatically in hardware and which exceptions will be handled (and possibly deferred)
by software. See Section 5.5.5, “Deferral of Speculative Load Faults’ on page 2:100.

Register Spill and Fill

Special store and load instructions are provided for spilling a register to memory and preserving
any deferred exception token, and for restoring a spilled register.

The spill and fill general register instructions (st8.spill, 1d8.£1i11) aredefined to save/restorea
genera register along with the corresponding NaT bit.

The st8.spill instruction writes a general register’s NaT bit into the User NaT Collection
application register (UNAT), and, if the NaT bit was O, writes the register’s 64-bit data portion to
memory. If the register’s NaT bit was 1, the UNAT is updated, but the memory update is
implementation specific, and must consistently follow one of three spill behaviors:

* Thests.spill may not update memory with the register’s 64-bit data portion, or
e Thests.spill may write azero to the specified memory location, or

* Thests.spill may write the register’s 64-bit data portion to memory, only if that
implementation returns a zero into the target register of all NaTed speculative loads, and that
implementation also guaranteesthat all NaT propagating instructions perform all computations
as specified by the instruction pages.

Bits 8:3 of the memory address determine which bit in the UNAT register is written.

The 1d8.fi11 instruction loads a general register from memory taking the corresponding NaT bit
from the bit in the UNAT register addressed by bits 8:3 of the memory address. The UNAT register
must be saved and restored by software. It isthe responsibility of software to ensure that the

contents of the UNAT register are correct while executing st8.spill and 1d8.fi11 instructions.

The floating-point spill and fill instructions (st£.spill, 1df.£i11) are defined to savelrestore a
floating-point register (saved as 16 bytes) without surfacing an exception if the FR contains a
NaTVal (these instructions do not affect the UNAT register).

The general and floating-point spill/fill instructions allow spilling/filling of registersthat are targets
of a speculative instruction and may therefore contain a deferred exception token. Note also that
transfers between the general and floating-point register files cause a conversion between the two
deferred exception token formats.

Table 4-14 lists the state relating to control speculation. Table 4-15 summarizes the instructions
related to control speculation.

Table 4-14. State Related to Control Speculation

1.58

Register Description
NaT bits 65th bit associated with each GR indicating a deferred exception
NaTVal Pseudo-Zero encoding for FR indicating a deferred exception
UNAT User NaT collection application register
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Table 4-15. Instructions Related to Control Speculation

4.4.5
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4.4.5.2

Mnemonic Operation
ld.s, 1ldf.s, 1ldfp.s GR and FR speculative loads
1d8.f111, 1df.fill Fill GR with NaT collection, fill FR
st8.spill, stf.spill Spill GR with NaT collection, spill FR
chk.s Test GR or FR for deferred exception token
tnat Test GR NaT bit and set predicate

Data Speculation

Just as control speculative loads and checks allow the compiler to schedule instructions across
control dependencies, data speculative loads and checks allow the compiler to scheduleinstructions
across some types of ambiguous data dependencies. This section details the usage model and
semantics of data speculation and related instructions.

Data Speculation Concepts

An ambiguous memory dependency is said to exist between a store (or any operation that may
update memory state) and aload when it cannot be statically determined whether the load and store
might access overlapping regions of memory. For convenience, a store that cannot be statically
disambiguated relative to a particular load is said to be ambiguous relative to that load. In such
cases, the compiler cannot change the order in which the load and store instructions were originally
specified in the program. To overcome this scheduling limitation, aspecial kind of load instruction
called an advanced load can be scheduled to execute earlier than one or more stores that are
ambiguous relative to that load.

Aswith control speculation, the compiler can also specul ate operations that are dependent upon the
advanced load and later insert a check instruction that will determine whether the speculation was
successful or not. For data speculation, the check can be placed anywhere the original non-data
speculative load could have been schedul ed.

Thus, a data-specul ative sequence of instructions consists of an advanced load, zero or more
instructions dependent on the value of that load, and a check instruction. This means that any
seguence of stores followed by aload can be transformed into an advanced load followed by a
sequence of stores followed by a check. The decision to perform such atransformation is highly
dependent upon the likelihood and cost of recovering from an unsuccessful data speculation.

Data Speculation and Instructions

Advanced loads are available in integer (14d. a), floating-point (1df . a), and floating-point pair
(1dfp.a) forms. When an advanced load is executed, it allocates an entry in a structure called the
Advanced Load Address Table (ALAT). Later, when acorresponding check instruction is executed,
the presence of an entry indicates that the data speculation succeeded; otherwise, the speculation
failed and one of two kinds of compiler-generated recovery is performed:

1. Thecheck load instruction (1d.c, 1df.c, or 1dfp.c) isused for recovery when the only
instruction scheduled before a store that is ambiguous relative to the advanced load is the
advanced load itself. The check load searchesthe ALAT for a matching entry. If found, the
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speculation was successful; if amatching entry was not found, the speculation was
unsuccessful and the check load reloads the correct value from memory. Figure 4-2 shows
this transformation.

Figure 4-2. Data Speculation Recovery Using Id.c

Before Data Speculation After Data Speculation
// Other instructions 1d8.a ré6 = [r8];; // Advanced load
st8 [r4] = ri2 // Other instructions
1ds ré6 = [r8];; st8 [r4] = ri2
add r5 = r6, r7;; 1d8.c.clr ré6 = [r8] // Check load
st8 [r18] = r5 add r5 = r6, r7;;
st8 [r18] = 5

2. Theadvanced load check (chk. a) is used when an advanced load and several instructions
that depend on the loaded value are scheduled before a store that is ambiguous relative to the
advanced load. The advanced load check works like the speculation check (chk. s) inthat, if
the speculation was successful, execution continues inline and no recovery is necessary; if
specul ation was unsuccessful, the chk . a branches to compiler-generated recovery code. The
recovery code contains instructions that will re-execute all the work that was dependent on
the failed data speculative load up to the point of the check instruction. Aswith the check
load, the success of a data speculation using an advanced load check is determined by
searching the ALAT for amatching entry. Thistransformation is shown in Figure 4-3.

Figure 4-3. Data Speculation Recovery Using chk.a
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Before Data Speculation After Data Speculation
// Other instructions 1d8.a ré6 = [r8];;
st8 [r4] = ri2 // Other instructions
1ds8 r6 = [r8];; add r5 = r6, r7;;
add r5 = r6, r7;; // Other instructions
st8 [r18] = r5 st8 [r4] = ri12
chk.a.clr r6, recover
back:
st8 [r18] = 5

// Somewhere else in program

recover:
148 r6 = [r8];;
add r5 = r6, r7
br back

Recovery code may use either anormal or advanced load to obtain the correct value for the failed
advanced load. An advanced load is used only when it is advantageous to have an ALAT entry
reallocated after afailed speculation. The last instruction in the recovery code should branch to the
instruction following the chk. a.

Detailed Functionality of the ALAT and Related Instructions

The ALAT isthe structure that holds the state necessary for advanced |oads and checks to operate
correctly. The ALAT issearched in two different ways: by physical addressesand by ALAT register
tags. An ALAT register tag isaunique number derived from the physical target register number and
type in conjunction with other implementati on-specific state. |mplementation-specific state might
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include register stack wraparound information to distinguish one instance of a physical register that
may have been spilled by the RSE from the current instance of that register, thus avoiding the need
to purge the ALAT on all register stack wraparounds.

| A-32 instruction set execution leaves the contents of the ALAT undefined. Software can not rely
on ALAT values being preserved across an instruction set transition. On entry to |A-32 instruction
set, existing entriesin the ALAT are ignored.

4.45.3.1 Allocating and Checking ALAT Entries

Advanced loads perform the following actions:

1. TheALAT register tag for the advanced load is computed. (For 1dfp. a, atag is computed
only for the first target register.)

If an entry with amatching ALAT register tag exists, it is removed.

3. A new entry isalocated in the ALAT which contains the new ALAT register tag, the load
access size, and atag derived from the physical memory address.

4, Thevalue at the address specified in the advanced load is |oaded into the target register and,
if specified, the base register is updated and an implicit prefetch is performed.

Since the success of a check is determined by finding a matching register tag in the ALAT, both the
chk.a and the target register of a 1d. c must specify the same register as their corresponding
advanced load. Additionally, the check load must use the same address and operand size asthe
corresponding advanced | oad; otherwise, the value written into the target register by the check load
is undefined.

An advanced load check performs the following actions:
1. Itlooksfor amatching ALAT entry and if found, falls through to the next instruction.
2. If no matching entry isfound, the chk . a branches to the specified address.

An implementation may choose to implement afailing advanced load check directly as abranch or
as afault where the fault-handler emulates the branch. Although the expected mode of operation is
for an implementation to detect matching entriesin the ALAT during checks, an implementation
may fail acheck instruction even when an entry with amatching ALAT register tag exists. Thiswill
be arare occurrence but software must not assume that the ALAT does not contain the entry.

A check load checks for amatching entry inthe ALAT. If no matching entry isfound, it reloads the
value from memory and any faults that occur during the memory reference are raised. When a
matching entry isfound, there is flexibility in the actions that a processor can perform:

1. Theimplementation may chooseto either leave the target register unchanged or to reload the
value from memory.

2. If theimplementation chooses to | eave the target register unchanged and one or more
exception conditions related to the data access or trandation of the check load occurs, the
implementation may choose to either raise the highest-priority of these faults or ignore them
all and continue execution. The faults that can be ignored are those rel ated to data access and
trandation (Data Nested TLB fault, Alternate Data TLB fault, VHPT Datafault, Data TLB
fault, Data Page Not Present fault, Data NaT Page Consumption fault, Data Key Miss fault,
Data Key Permission fault, Data Access Rights fault, Data Dirty Bit fault, Data Access Bit
fault, Data Debug fault, Unaligned Data Reference fault, Unsupported Data Reference fault).
See Table 5-6, “Interruption Priorities’ on page 2:104.
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3. If theimplementation chooses to perform areload, then any faults that occur because of the
reload can not be ignored.

4. If thesize, type, or address fieldsin the matching ALAT entry do not match that provided by
acheck load, the value returned by the check load is undefined. In such cases the
implementation may choose to raise afault or when the “no clear” variant of the check load
isissued, an implementation may choose to update the address, size, or type fields of the
matching ALAT entry or to leave the entry unchanged.

If the check load was an ordered check load (1d.c.clr.acq), then it is performed with the
semantics of an ordered load (1d.acq). ALAT register tag lookups by advanced load checks and
check loads are subject to memory ordering constraints as outlined in “Memory Access Ordering”
on page 1:68.

In addition to the flexibility described above, the size, organization, matching algorithm, and
replacement algorithm of the ALAT are implementation dependent. Thus, the success or failure of
specific advanced loads and checksin aprogram may change: when the program is run on different
processor implementations, within the execution of a single program on the same implementation,
or between different runs on the same implementation.

4.45.3.2 Invalidating ALAT Entries

In addition to entries removed by advanced loads, ALAT entry invalidations can occur implicitly by
events that alter memory state or explicitly by any of the following instructions: 1d.c.clr,
1d.c.clr.acq, chk.a.clr, invala, invala.e. Eventsthat may implicitly invalidate ALAT
entries include those that change memory state or memory tranglation state such as:

1. The execution of stores, semaphores, or ptc.ga on other processors in the coherence
domain.

2. The execution of store or semaphore instructions issued on the local processor.
3. Platform-visible removal of a cache line from the processor’s caches.

When one of these events occurs, hardware checks each memory region represented by an entry in
the ALAT to seeif it overlaps with the locations affected by the invalidation event. ALAT entries
whose memory regions overlap with the invalidation event locations are removed. Note that some
invalidation events may require that multiple entries be removed from the ALAT. For example, the
ptc.ga ingtruction is page aligned, thus aptc . ga from another processor would require that
hardware invalidate all ALAT entriesrelated to that page. Stores due to RSE spills are not checked
for ALAT invalidation and do not cause ALAT entriesto be removed. See Section 6.9, “RSE and
ALAT Interaction” on page 2:141. When an external agent can observe that the processor has
removed a physical address range from its caches, then that address range is guaranteed to be
invalidated from that processor’s ALAT aswell.

An implementation may invalidate entries over areas larger than explicitly required by a specific
invalidation event, and more generally, to invalidate any ALAT entry at any time. For example, a
st1 only accesses one byte, but an implementation could choose to invalidate all ALAT entries
whose memory region isin the same cache line. An implementation may also provide an ALAT
with zero entries (i.e., all 1d. c/chk.a instructionswould act asif an ALAT miss had occurred).

Software is responsible for explicitly invalidating all affected ALAT entries whenever:

1. Software explicitly changesthe virtual to physical register mapping on rotating registersthat
have been the target of advanced loads (c1rrrb).
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4.45.5

Software changes the virtual to physical memory mapping.

Software accesses the RSE backing store with advanced loads. See Section 6.9, “RSE and
ALAT Interaction” on page 2:141 (since RSE stores do not invalidate ALAT entries).

4, Software explicitly changes the virtual to physical register mapping on stacked registers by
switching the RSE backing stores. See Section 6.11.3, “ Synchronous Backing Store Switch”
on page 2:143.

Combining Control and Data Speculation

Control speculation and data speculation are not mutually exclusive; a given load may be both
control and data speculative. Both control speculative (1d. sa, 1df.sa, 1dfp.sa) and non-control
speculative (1d. a, 1df . a, 1dfp.a) variants of advanced loads are defined for general and
floating-point registers. If a speculative advanced |oad generates a deferred exception token then:

Any existing ALAT entry with the same ALAT register tag isinvalidated.
No new ALAT entry is alocated.
If the target of the load was a general-purpose register, its NaT bit is set.

A 0w DN P

If the target of the load was a floating-point register, then NaTVal iswritten to the target
register.

If a speculative advanced load does not generate adeferred exception, then its behavior isthe same
as the corresponding non-control speculative advanced load.

Since there can be no matching entry in the ALAT after a deferred fault, a single advanced load
check or check load is sufficient to check both for data speculation failures and to detect deferred
exceptions.

Instruction Completers for ALAT Management

To help the compiler manage the alocation and deallocation of ALAT entries, two variants of
advanced |oad checks and check loads are provided: variantswith clear (chk.a.clr, 1d.c.clr,
1ld.c.clr.acq, 1df.c.clr, 1dfp.c.clr) and variants with no clear (chk.a.nc, 1d.c.nc,
1df.c.nc, 1dfp.c.nc).

The clear variants are used when the compiler knows that the ALAT entry will not be used again
and wants the entry explicitly removed. This allows software to indicate when entries are
unneeded, making it less likely that a useful entry will be unnecessarily forced out because all
entries are currently allocated.

For the clear variants of check load, any ALAT entry with the same ALAT register tag is
invalidated independently of whether the address or size fields of the check load and the
corresponding advanced load match. For chk . a.clr, theentry isguaranteed to beinvalidated only
when the instruction falls through (the recovery codeis not executed). Thus, afaling chk.a.clr
may or may not clear any matching ALAT entries. In such cases, the recovery code must explicitly
invalidate the entry in question if program correctness depends on the entry being absent after a
failed chk.a.clr.

Non-clear variants of both kinds of data speculation checks act as a hint to the processor that an
existing entry should be maintained in the ALAT or that a new entry should be allocated when a
matching ALAT entry doesn’t exist. Such variants can be used within loops to check advanced
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loads which were presumed loop-invariant and moved out of the loop by the compiler. This
behavior ensures that if the check load fails on oneiteration, then the check load will not
necessarily fail on all subsequent iterations. Whenever anew entry isinserted into the ALAT or
when the contents of an entry are updated, the information written into the ALAT only uses
information from the check load and does not use any residual information from a prior entry. The
non-clear variant of chk. a, chk.a.nc, does not alocate entries and the ‘nc’ completer actsas a
hint to the processor that the entry should not be cleared.

Table 4-16 and Table 4-17 summarize state and instructions relating to data speculation.

Table 4-16. State Relating to Data Speculation

Structure Function
ALAT Advanced load address table

Table 4-17. Instructions Relating to Data Speculation

4.4.6

446.1

1.64

Mnemonic Operation
1d.a, 1df.a, 1dfp.a GR and FR advanced load
st, st.rel, st.spill, stf, stf.spill GR and FR store
cmpxchg, fetchadd, xchg GR semaphore
1d.c.clr,1d.c.clr.acq, 1df.c.clz, GR and FR check load, clear on ALAT hit
ldfp.c.clr
ld.c.nc, 1df.c.nc, 1dfp.c.nc GR and FR check load, re-allocate on ALAT miss
1d.sa, 1df.sa, 1dfp.sa GR and FR speculative advanced load
chk.a.clr, chk.a.nc GR and FR advanced load check
invala Invalidate all ALAT entries
invala.e Invalidate individual ALAT entry for GR or FR

Memory Hierarchy Control and Consistency

Hierarchy Control and Hints

Memory access instructions are defined to specify whether the data being accessed possesses
temporal locality. In addition, memory access instructions can specify which levels of the memory
hierarchy are affected by the access. This leads to an architectural view of the memory hierarchy
depicted in Figure 4-4 composed of zero or more levels of cache between the register files and
memory where each level may consist of two parallel structures: atemporal structure and a
non-temporal structure. Note that this view applies to data accesses and not instruction accesses.
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Figure 4-4. Memory Hierarchy

Level 1 Level 2 Level N
- — — 1 - — — 1 r— — — 1
| \ | \ | |
| Temporal ‘ | Temporal ‘ | Temporal ‘
Structure Structure Structure
| \ | \ | |
Register
Files | | - — [~ Memory
| Non- | | Non- | | Non- |
| | temporal | | | | temporal | | | | temporal | |
| Structure | | Structure | | Structure |
L . _ 1 L . _ 1 L . _ 1
| |
Cache

The temporal structures cache memory accessed with temporal locality; the non-temporal
structures cache memory accessed without temporal locality. Both structures assume that memory
accesses possess spatial locality. The existence of separate temporal and non-temporal structures,
aswell as the number of levels of cache, isimplementation dependent. Please see the
processor-specific documentation for further information.

Three mechanisms are defined for allocation control: locality hints; explicit prefetch; and implicit
prefetch. Locality hints are specified by load, store, and explicit prefetch (1fetch) instructions. A
locality hint specifies ahierarchy level (e.g., 1, 2, al). An access that is tempora with respect to a
given hierarchy level istreated as temporal with respect to all lower (higher numbered) levels. An
access that is non-temporal with respect to agiven hierarchy level istreated as temporal with
respect to al lower levels. Finding a cache line closer in the hierarchy than specified in the hint
does not demote the line. This enables the precise management of linesusing 1fetch and then
subsequent uses by . nta loads and stores to retain that level in the hierarchy. For example,
specifying the.nt2 hint by a prefetch indicates that the data should be cached at level 3.
Subsequent loads and stores can specify .nta and have the dataremain at level 3.

Locality hints do not affect the functional behavior of the program and may be ignored by the
implementation. The locality hints available to loads, stores, and explicit prefetch instructions are
given in Table 4-18. Instruction accesses are considered to possess both temporal and spatial
locality with respect to level 1.

Table 4-18. Locality Hints Specified by Each Instruction Class

Instruction Type
Mnemonic Locality Hint Ifetch,
Load Store Ifetch.fault
none Temporal, level 1 X X X
ntl Non-temporal, level 1 X X
nt2 Non-temporal, level 2 X
nta Non-temporal, all levels X X X

Each locality hint implies aparticular allocation path in the memory hierarchy. The allocation paths
corresponding to the locality hints are depicted in Figure 4-5. The allocation path specifies the
structures in which the line containing the data being referenced would best be allocated. If theline
isaready at the same or higher level in the hierarchy no movement occurs. Hinting that a datum
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should be cached in atemporal structure indicates that it islikely to be read in the near future.
Hinting that a datum should not be cached in atemporal structureindicatesthat itisnot likely to be
read in the near future. For stores, the.nta completer also hintsthat the store may be part of a set of
streaming stores that would likely overwrite the entire cache line without any datain that line first
being read, enabling the processor to avoid fetching the data.

Figure 4-5. Allocation Paths Supported in the Memory Hierarchy

Level 1 Level 2 Level 3
| r— — — — "1 - — — /"
| | | | Temporal, level 1
-
| Temporal o Temporal . Temporal ‘ Non-temporal, level 1
|| Structure || |/ Structure || | Structure | |
| | | Non-temporal, level 2
| | !
\ /] [/l \ Memory
< | |/ |
‘ Non-temporal . Non-temporal ‘ Non-temporal ‘
| B Structure || || Structure || || Structure || Non-temporal, all levels
| I [ \
L - - _— _ L - - — — 4 L — — —
| |
Cache
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Explicit prefetch is defined in the form of the line prefetch instruction (1fetch, 1fetch. fault).
The Ifetch instructions moves the line containing the addressed byte to alocation in the memory
hierarchy specified by the locality hint. If the line is already at the same or higher level in the
hierarchy, no movement occurs. Both immediate and register post-increment are defined for
1fetch and 1fetch. fault. The 1fetch instruction does not cause any exceptions, does not
affect program behavior, and may be ignored by the implementation. The 1fetch. fault
instruction affects the memory hierarchy in exactly the same way as 1fetch but takes exceptions
asif it were a 1-byte load instruction.

Implicit prefetch is based on the address post-increment of loads, stores, 1fetch and

1fetch. fault. Theline containing the post-incremented address is moved in the memory
hierarchy based on the locality hint of the originating load, store, 1fetch or 1fetch. fault. If the
lineis aready at the same or higher level in the hierarchy then no movement occurs. Implicit
prefetch does not cause any exceptions, does not affect program behavior, and may be ignored by
the implementation.

Another form of hint that can be provided on loadsisthe 1d.bias load type. Thisisahint to the
implementation to acquire exclusive ownership of the line containing the addressed data. The bias
hint does not affect program functionality and may be ignored by the implementation.

The following instructions are defined for flush control: flush cache (fc, £c. i) and flush write
buffers (fwb). The fc instruction invalidates the cache linein all levels of the memory hierarchy
above memory. If the cache line is not consistent with memory, then it is copied into memory
before invalidation. The £c. i instruction ensures the data cache line associated with an addressis
coherent with the instruction caches. The fc. i instruction is not required to invalidate the targeted
cache line nor write the targeted cache line back to memory if it isinconsistent with memory, but
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may do so if thisis required to make the targeted cache line coherent with the instruction caches.
The fwb instruction provides a hint to flush all pending buffered writesto memory (no indication of
completion occurs).

Table 4-19 summarizes the memory hierarchy control instructions and hint mechanisms.

Table 4-19. Memory Hierarchy Control Instructions and Hint Mechanisms

4.4.6.2

Mnemonic Operation
.ntl and.nta completer on loads Load usage hints
.nta completer on stores Store usage hints
Prefetch line at post-increment address on loads and stores Prefetch hint
1lfetch, 1fetch.fault with.ntl,.nt2, and.nta hints Prefetch line
fc, fc.i Flush cache
fwb Flush write buffers

Memory Consistency

In the Itanium architecture, instruction accesses made by a processor are not coherent with respect
to instruction and/or data accesses made by any other processor, nor are instruction accesses made
by a processor coherent with respect to data accesses made by that same processor. Therefore,
hardware is not required to keep a processor’s instruction caches consistent with respect to any
processor’s data caches, including that processor’s own data caches; nor is hardware required to
keep a processor’s instruction caches consistent with respect to any other processor’s instruction
caches. Data accesses from different processors in the same coherence domain are coherent with
respect to each other; this consistency is provided by the hardware. Data accesses from the same
processor are subject to data dependency rules; see “Memory Access Ordering” below.

The mechanism(s) by which coherence is maintained isimplementation dependent. Separate or
unified structures for caching data and instructions are not architecturally visible. Within this
context there are two categories of datamemory hierarchy control: allocation and flush. Allocation
refersto movement towards the processor in the hierarchy (lower numbered levels) and flush refers
to movement away from the processor in the hierarchy (higher numbered levels). Allocation and
flush occur in line-sized units; the minimum architecturally visible line size is 32 bytes (aligned on
a 32-byte boundary). The line size in an implementation may be smaller in which case the
implementation will need to move multiple lines for each allocation and flush event. An
implementation may allocate and flush in units larger than 32 bytes.

In order to guarantee that awrite from a given processor becomes visible to the instruction stream
of that same, and other, processors, the affected line(s) must be made coherent with instruction
caches. Software may usethe fc. i instruction for this purpose. Memory updates by DMA devices
are coherent with respect to instruction and data accesses of processors. The consistency between
instruction and data caches of processors with respect to memory updates by DMA devicesis
provided by the hardware. In case a program modifiesitsown instructions, the sync.i and srlz.i
instructions are used to ensure that prior coherency actions are observed by a given point in the
program. Refer to the description sync. i on page 3:236 in Volume 3: Instruction Set Reference for
an example of self-modifying code.
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4.4.7

Memory Access Ordering

Memory data access ordering must satisfy read-after-write (RAW), write-after-write (WAW), and
write-after-read (WAR) data dependencies to the same memory location. In addition, memory
writes and flushes must observe control dependencies. Except for these restrictions, reads, writes,
and flushes may occur in an order different from the specified program order. Note that no ordering
exists between instruction accesses and data accesses or between any two instruction accesses. The
mechanisms described below are defined to enforce a particular memory access order. In the
following discussion, the terms “previous’ and “ subsequent” are used to refer to the program
specified order. Theterm “visible” isused to refer to al architecturally visible effects of performing
amemory access (at aminimum thisinvolves reading or writing memory).

Memory accesses follow one of four memory ordering semantics: unordered, release, acquire or
fence. Unordered data accesses may become visible in any order. Release data accesses guarantee
that all previous data accesses are made visible prior to being made visible themselves. Acquire
data accesses guarantee that they are made visible prior to all subsequent data accesses. Fence
operations combine the release and acquire semantics into a bi-directional fence, i.e., they
guarantee that al previous data accesses are made visible prior to any subsequent data accesses
being made visible.

Explicit memory ordering takes the form of aset of instructions: ordered |oad and ordered check
load (1d.acq, 1d.c.clr.acq), ordered store (st . rel), semaphores (cmpxchg, xchg, fetchadd),
and memory fence (mf). The 1d.acq and 1d.c.clr.acq instructions follow acquire semantics.
The st . rel follows release semantics. The mf instruction is a fence operation. The xchg,
fetchadd.acq, and cmpxchg. acq instructions have acquire semantics. The cmpxchg. rel, and
fetchadd. rel instructions have release semantics. The semaphore instructions also have implicit
ordering. If thereisawrite, it will always follow the read. In addition, the read and write will be
performed atomically with no intervening accesses to the same memory region.

Table 4-20 illustrates the ordering interactions between memory accesses with different ordering
semantics. “O” indicates that the first and second reference are performed in order with respect to
each other. A “-” indicates that no ordering isimplied other than data dependencies (and control
dependencies for writes and flushes).

Table 4-20. Memory Ordering Rules

. Second Reference
First Reference -
Fence Acquire Release Unordered
fence O (@) O O
acquire (@) O (@) (@)
release (@) - (@) —
unordered (0] - O -

Table 4-21 summarizes memory ordering instructions related to cacheable memory. For definitions
of the ordering rules related to non-cacheable memory, cache synchronization, and privileged
instructions, refer to Section 4.4.7, “ Sequentiality Attribute and Ordering” on page 2:77.

Table 4-21. Memory Ordering Instructions

1.68

Mnemonic Operation

ld.acq, 1d.c.clr.acq Ordered load and ordered check load

st.rel Ordered store
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Table 4-21. Memory Ordering Instructions (Continued)

4.5

xchg Exchange memory and general register
cmpxchg.acq, cmpxchg.rel Conditional exchange of memory and general register
fetchadd.acq, fetchadd.rel |Addimmediate to memory

mf Memory ordering fence

Branch Instructions

Branch instructions effect atransfer of control flow to a new address. Branch targets are
bundle-aligned, which means control is always passed to the first instruction slot of the target
bundle (slot 0). Branch instructions are not required to be the last instruction in an instruction
group. Infact, an instruction group can contain arbitrarily many branches (provided that the normal
RAW and WAW dependency requirements are met). If abranch istaken, only instructions up to the
taken branch will be executed. After ataken branch, the next instruction executed will be at the
target of the branch.

There are three categories of branches: |P-relative branches, long branches, and indirect branches.
| P-relative branches specify their target with asigned 21-bit displacement, which is added to the I P
of the bundle containing the branch to give the address of the target bundle. The displacement
allows a branch reach of ¥16MBytes. Long branches are IP-relative with a 60-bit displacement,
allowing the target to be anywhere in the 64-bit address space. Because of the long immediate, long
branches occupy two instruction slots. Indirect branches use the branch registers to specify the
target address.

There are several branch types, as shown in Table 4-22. The conditional branch br . cond or brisa
branch which istaken if the specified predicate is 1, and not-taken otherwise. The conditional call
branch br.cal1 does the same thing, and in addition, writes alink address to a specified branch
register and adjusts the general register stack (see “Register Stack” on page 1:43). The conditional
return br . ret does the same thing as an indirect conditional branch, plus it adjusts the general
register stack. Unconditional branches, calls and returns are executed by specifying PR O (whichis
aways 1) as the predicate for the branch instruction. The long branches, br1 . cond or brl, and
brl.call areidentical to br.cond oOr br, and br.call, respectively, except for their longer
displacement.

Table 4-22. Branch Types

Mnemonic Function Branch Condition Target Address
br.cond or br Conditional branch Qualifying predicate IP-rel or Indirect
br.call Conditional procedure call Qualifying predicate IP-rel or Indirect
br.ret Conditional procedure return Qualifying predicate Indirect
br.ia Invoke the IA-32 instruction set | Unconditional Indirect
br.cloop Counted loop branch Loop count IP-rel
br.ctop, br.cexit |Modulo-scheduled counted loop |Loop countand Epilog | IP-rel

count
br.wtop, br.wexit |Modulo-scheduled while loop Qualifying predicate IP-rel
and Epilog count
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Table 4-22. Branch Types (Continued)

Mnemonic Function Branch Condition Target Address
brl.cond or brl |Long conditional branch Qualifying predicate IP-rel
brl.call Long conditional procedure call | Qualifying predicate IP-rel

The counted loop type (br . cloop) usesthe Loop Count (LC) application register. If LCis
non-zero then it is decremented and the branch istaken. If LC is zero, the branch fallsthrough. The
modul o-scheduled loop type branches (br . ctop, br. cexit, br.wtop, br.wexit) aredescribedin
“Modul o-scheduled Loop Support” on page 1:70. The loop type branches (br . cloop, br. ctop,
br.cexit, br.wtop, br.wexit) are allowed only in slot 2 of abundle. A loop type branch
executed in slot 0 or 1 will cause an Illegal Operation fault.

Instructions are provided to move data between branch registers and general registers (mov =br,
mov br=). Table 4-23 and Table 4-24 summarize state and instructions relating to branching.

Table 4-23. State Relating to Branching

Table 4-24. Instructions Relating to Branching

45.1

1:70

Register Function
BRs Branch registers
PRs Predicate registers
CFM Current Frame Marker
PFS Previous Function State application register
LC Loop Count application register
EC Epilog Count application register

Mnemonic Operation
br Branch
brl Long branch
brp Provide early hint information about a future branch
mov =br Move from BR to GR
mov br= Move from GR to BR

Modulo-scheduled Loop Support

Support for software-pipelined loops is provided through rotating registers and loop branch types.
Software pipelining of aloop is analogous to hardware pipelining of afunctiona unit. The loop
body is partitioned into multiple “ stages” with zero or more instructionsin each stage.

M odulo-scheduled loops have three phases:. prolog, kernel, and epilog. During the prolog phase,
new loop iterations are started each time around (filling the software pipeline). During the kernel
phase, the pipelineisfull. A new loop iteration is started, and another is finished each time around.
During the epilog phase, no new iterations are started, but previous iterations are completed
(draining the software pipeline).

A predicate is assigned to each stage to control the activation of the instructions in that stage (this
predicateis called the “ stage predicate”). To support the pipelining effect of stage predicates and
registersin a software-pipelined loop, afixed sized area of the predicate and floating-point register
files (PR16-PR63 and FR32-FR127), and a programmable sized area of the general register file, are
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defined to “rotate.” The size of the rotating area in the general register fileis determined by an
immediate in the alloc instruction. Thisimmediate must be either zero or amultiple of 8. The
general register rotating areais defined to start at GR32 and overlay the local and output areas,
depending on their relative sizes. The stage predicates are allocated in the rotating area of the
predicate register file. For counted loops, PR16 is architecturally defined to be the first stage
predicate with subsequent stage predicates extending to higher predicate register numbers. For
whileloops, the first stage predicate may be any rotating predicate with subsequent stage predicates
extending to higher predicate register numbers. Software isrequired to initialize the stage (rotating)
predicates prior to entering the loop. An aloc instruction may not change the size of the rotating
portion of the register stack frame unless al rotating register bases (rrb’s) in the CFM are zero. All
rrb’s can be set to zero with the c1rrrb instruction. The clrrrb.pr form can be used to clear just
the rrb for the predicate registers. The c1rrrb instruction must be the last instruction in an
instruction group.

Rotation by one register position occurs when a software-pipelined loop type branch is executed.
Registers are rotated towards larger register numbers in awraparound fashion. For example, the
valuein register X will be located in register X+1 after one rotation. If X isthe highest addressed
rotating register its value will wrap to the lowest addressed rotating register. Rotation is
implemented by renaming register numbers based on the value of arotating register base (rrb)
contained in CFM. An independent rrb is defined for each of the three rotating register files:
CFM.rrb.gr for the general registers, CFM.rrb.fr for the floating-point registers, and CFM.rrb.pr for
the predicate registers. General registers only rotate when the size of the rotating region is not equal
to zero. Floating-point and predicate registers always rotate. When rotation occurs, two or al three
rrb’s are decremented in unison. Each rrb is decremented modulo the size of their respective
rotating regions (e.g., 96 for rrb.fr). The operation of the rotating register rename mechanism is not
otherwise visible to software. The instructions that modify the rrb’s are listed in Table 4-25.

Table 4-25. Instructions that Modify RRBs

Mnemonic Operation
clrrrb Clears all rrb’s
clrrrb.pr Clears rrb.pr
br.call, brl.call Clears all rrb’s
cover Clears all rrb’s
br.ret Restores CFM.rrb’s from PFM.rrb's
rfi Restores CFM.rrb’s from IFM.rrb’s if IFM.v==1
br.ctop, br.cexit, Decrements all rrb’s
br.wtop, and br.wexit

There are two categories of software-pipelined loop branch types: counted and while. Both
categories have two forms: top and exit. The “top” variant is used when the loop decision islocated
at the bottom of the loop body. A taken branch will continue the loop while a not-taken branch will
exit theloop. The “exit” variant is used when the loop decision islocated somewhere other than the
bottom of the loop. A not-taken branch will continue the loop and a taken branch will exit the loop.
The “exit” variant is also used at intermediate pointsin an unrolled pipelined loop.

The branch condition of a counted loop branch is determined by the specific counted |oop type
(ctop or cexit), the value of the loop count application register (LC), and the value of the epilog
count application register (EC). Note that the counted loop branches do not use a qualifying
predicate. LC isinitialized to one less than the number of iterations for the counted loop and EC is
initialized to the number of stages into which the loop body has been partitioned. While LC is
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greater than zero, the branch direction will continue the loop, LC will be decremented, registers
will be rotated (rrb’s are decremented), and PR 16 will be set to 1 after rotation. (For each of the
loop-type branches, PR 63 is written by the branch, and after rotation this value will bein PR 16.)

Execution of a counted loop branch with LC egual to zero signals the start of the epilog. Whilein
the epilog and while EC is greater than one, the branch direction will continue the loop, EC will be
decremented, registers will be rotated, and PR 16 will be set to O after rotation. Execution of a
counted loop branch with LC equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to O after rotation. A counted loop type branch executed with both LC and EC equal to
zero will have a branch direction to exit the loop. LC, EC, and the rrb’s will not be modified (no
rotation) and PR 63 will be set to 0. LC and EC equal to zero can occur in some types of optimized,
unrolled software-pipelined loops if the target of a cexit branch is set to the next sequential bundle
and the loop trip count is not evenly divisible by the unroll amount.

The direction of awhile loop branch is determined by the specific while loop type (wtop or wexit),
the value of the qualifying predicate, and the value of EC. The while loop branches do not use LC.
While the qualifying predicate is one, the branch direction will continue the loop, registers will be
rotated, and PR 16 will be set to 0 after rotation. While the qualifying predicateis zero and EC is
greater than one, the branch direction will continue the loop, EC will be decremented, registerswill
be rotated, and PR 16 will be set to O after rotation. The qualifying predicate is one during the
kernel and zero during the epilog. During the prolog, the qualifying predicate may be zero or one
depending upon the scheme used to program the pipelined while loop. Execution of awhile loop
branch with qualifying predicate equal to zero and EC equal to one signals the end of the loop; the
branch direction will exit the loop, EC will be decremented, registers will be rotated, and PR 16
will be set to O after rotation. A while loop branch executed with a zero qualifying predicate and
with EC equal to zero has a branch direction to exit the loop. EC and the rrb’s will not be modified
(no rotation) and PR 63 will be set to 0.

For while loops, theinitiaization of EC depends upon the scheme used to program the pipelined
while loop. Often, the first valid condition for the while loop branch is not computed until several
stages into the prolog. Therefore, software pipelines for while loops often have several speculative
prolog stages. During these stages, the qualifying predicate can be set to zero or one depending
upon the scheme used to program the loop. If the qualifying predicate is one throughout the prolog,
EC will be decremented only during the epilog phase and isinitialized to one more than the number
of epilog stages. If the qualifying predicate is zero during the speculative stages of the prolog, EC
will be decremented during this part of the prolog, and theinitialization value for EC is increased
accordingly.

Branch Prediction Hints

Information about branch behavior can be provided to the processor to improve branch prediction.
Thisinformation can be encoded in two ways. with branch hints as part of a branch instruction
(referred to as hints), and with separate Branch Predict instructions (brp) where the entire
instruction is hint information. Hints and brp instructions do not affect the functional behavior of
the program and may be ignored by the processor.

Branch instructions can provide three types of hints:

» Whether prediction strategy: This describes (for COND, CALL and RET type branches)
how the processor should predict the branch condition. (For the loop type branches, prediction
isbased on LC and EC.) The suggested strategies that can be hinted are shown in Table 4-26.
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Table 4-26. Whether Prediction Hint on Branches

Completer

Strategy

Operation

spnt

Static Not-Taken

Ignore this branch, do not allocate prediction resources for this
branch.

sptk

Static Taken

Always predict taken, do not allocate prediction resources for
this branch.

dpnt

Dynamic Not-Taken

Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict not-taken.

dptk

Dynamic Taken

Use dynamic prediction hardware. If no dynamic history
information exists for this branch, predict taken.

» Sequential prefetch: Thisindicates how much code the processor should prefetch at the
branch target (shown in Table 4-27). Please see the processor-specific documentation for
further information.

Table 4-27. Sequential Prefetch Hint on Branches

Completer

Hint

Sequential Prefetch

Operation

few

Prefetch few lines

When prefetching code at the branch target, stop prefetching
after a few (implementation-dependent number of) lines.

many

Prefetch many lines

When prefetching code at the branch target, prefetch more
lines (also an implementation-dependent number).

 Predictor deallocation: This provides re-use information to allow the hardware to better
manage branch prediction resources. Normally, prediction resources keep track of the
most-recently executed branches. However, sometimes the most-recently executed branch is
not useful to remember, either because it will not be re-visited any time soon or because a hint
instruction will re-supply the information prior to re-visiting the branch. In such cases, thishint
can be used to free up the prediction resources.

Table 4-28. Predictor Deallocation Hint

Completer

Operation

none

Don’t deallocate

clr

Deallocate branch information

4.5.3

Branch Predict Instructions

Branch predict instructions are entire instructions whose only purpose is to provide early
information about future branches. Branch predict instructions provide the following pieces of

information:

« Location of the branch: A displacement in the brp instruction added to the IP of the bundle
containing the brp instruction gives the | P of the bundle containing the future branch.

» Target of the branch: IP-relative brp instructions specify the target of the future branch with
a21-bit displacement (just like in branches). The displacement plus the I P of the bundle
containing the brp instruction gives the target address. Indirect brp instructions specify the
branch register which will be used by the future branch.

« Branch importance: This hint indicates to hardware that it should employ avery fast (but
small) prediction structure for this branch (useful on tight loops).
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» Whether prediction strategy: Same as the strategy hint on branches, except that the available
hints are dightly different. Static not-taken is not provided (it's not useful to provide early
indication of such branches), and only one form of Dynamic prediction is provided. Instead,
two strategies are included to indicate that the branch will be a“positive” (CLOOP, CTOP,
WTOP) or “negative” (CEXIT, WEXIT) loop-type.

The move to branch register instruction can also provide this same hint information, simplifying the
setup for a hinted indirect branch.

Multimedia Instructions

Multimediainstructions (see Table 4-29) treat the general registers as concatenations of eight 8-bit,
four 16-hit, or two 32-bit elements. They operate on each element independently and in parallel.
The elements are always aligned on their natural boundaries within a general register. Most
multimediainstructions are defined to operate on multiple element sizes. Three classes of
multimediainstructions are defined: arithmetic, shift and data arrangement.

Parallel Arithmetic

There are three forms of parallel addition and subtraction: modulo (padd, psub), signed saturation
(padd. sss, psub. sss), and unsigned saturation (padd.uuu, padd.uus, psub.uuu, psub .uus).
The modulo forms have the result wraparound the largest or smallest representable value in the
range of the result element. In the saturating forms, results larger than the largest representable
value of the range of the result element, or smaller than the smallest representable value of the
range, are clamped to the largest or smallest value in the range of the result element respectively.
The signed saturation form treats both sources as signed and clamps the result to the limits of a
signed range. The unsigned saturation form treats one source as unsigned and clamps the result to
the limits of an unsigned range. Two variants are defined that treat the second source as either
signed (.uus) or unsigned (.uuu).

The parallel average instruction (pavg, pavg. raz) adds corresponding elements from each source
and right shifts each result by one bit. In the simple form of the instruction, the carry out of the
most-significant bit of each sum iswritten into the most significant bit of the result element. In the
round-away-from-zero form, a1l is added to each sum before shifting. The parallel average subtract
instruction (pavgsub) performs asimilar operation on the difference of the sources.

The parallel shift left and add instruction (pshladd) performsaleft shift on the elements of thefirst
source and then adds them to the corresponding el ements from the second source. Signed saturation
is performed on both the shift and the add operations. The parallel shift right and add instruction
(pshradd) issimilar to pshladd. Both of theseinstructions are defined for 2-byte elements only.

The parallel compare instruction (pcmp) compares the corresponding elements of both sources and
writes al ones (if true) or al zeroes (if false) into the corresponding elements of the target
according to one of two relations (== or >).

The parallel multiply right instruction (pmpy . r) multiplies the corresponding two even-numbered
signed 2-byte elements of both sources and writes the results into two 4-byte elementsin the target.
The pmpy . 1 instruction performs asimilar operation on odd-numbered 2-byte elements. The
parallel multiply and shift right instruction (pmpyshr, pmpyshr . u) multiplies the corresponding
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2-byte elements of both sources producing four 4-byte results. The 4-byte results are shifted right
by 0, 7, 15, or 16 bits as specified by the instruction. The least-significant 2 bytes of the 4-byte
shifted results are then stored in the target register.

The parallel sum of absolute difference instruction (psad) accumulates the absolute difference of
corresponding 1-byte elements and writes the result in the target.

The parallel minimum (pmin.u, pmin) and the parallel maximum (pmax . u, pmax) instructions
deliver the minimum or maximum, respectively, of the corresponding 1-byte or 2-byte elementsin
the target. The 1-byte elements are treated as unsigned values and the 2-byte elements are treated as
signed values.

Table 4-29. Parallel Arithmetic Instructions

4.6.2

Mnemonic Operation 1-byte 2-byte 4-byte
padd Parallel modulo addition X X X
padd.sss | Parallel addition with signed saturation X X
padd.uuu, Parallel addition with unsigned saturation X X
padd.uus
psub Parallel modulo subtraction X X X
psub.sss Parallel subtraction with signed saturation X X
psub.uuu, | Parallel subtraction with unsigned saturation X X
psub.uus
pavg Parallel arithmetic average X X
pavg.raz Parallel arithmetic average with round away from zero X X
pavgsub Parallel average of a difference X X
pshladd Parallel shift left and add with signed saturation X
pshradd Parallel shift right and add with signed saturation X
pcmp Parallel compare X X X
pmpy .1 Parallel signed multiply of odd elements X
pupy.r Parallel signed multiply of even elements X
pmpyshr Parallel signed multiply and shift right X
pmpyshr . u | Parallel unsigned multiply and shift right X
psad Parallel sum of absolute difference X
pmin Parallel minimum X X
pmax Parallel maximum X X

Parallel Shifts

The parallel shift left instruction (psh1) individually shifts each element of the first source by a
count contained in either a general register or an immediate. The parallel shift right instruction
(pshr) performs an individual arithmetic right shift of each element of one source by a count
contained in either agenera register or an immediate. The pshr.u instruction performs an
unsigned right shift. Table 4-30 summarizes the types of parallel shift instructions.

Volume 1: Application Programming Model 1:.75



Table 4-30. Parallel Shift Instructions

4.6.3

Mnemonic Operation 1-byte 2-byte 4-byte
pshl Parallel shift left X X
pshr Parallel signed shift right X X
pshr.u Parallel unsigned shift right X %

Data Arrangement

The mix right instruction (mix. r) interleaves the even-numbered elements from both sources into
the target. The mix left instruction (mix.1) interleaves the odd-numbered elements. The unpack
low instruction (unpack . 1) interleaves the elementsin the least-significant 4 bytes of each source
into the target register. The unpack high instruction (unpack . h) interleaves elements from the most
significant 4 bytes. The pack instructions (pack . sss, pack.uss) convert from 32-bit or 16-bit
elementsto 16-bit or 8-bit elements respectively. The least-significant half of larger elementsin
both sources are extracted and written into smaller elementsin the target register. The pack . sss
instruction treats the extracted elements as signed values and performs signed saturation on them.
The pack . uss instruction performs unsigned saturation. The mux instruction (mux) copies
individual 2-byte or 1-byte elementsin the source to arbitrary positions in the target according to a
specified function. For 2-byte elements, an 8-bit immediate allows all possible permutationsto be
specified. For 1-byte elements the copy function is selected from one of five possibilities (reverse,
mix, shuffle, alternate, broadcast). Table 4-31 describes the various types of parallel data
arrangement instructions.

Table 4-31. Parallel Data Arrangement Instructions

4.7

1.76

Mnemonic Operation 1-byte 2-byte | 4-byte
mix.1l Interleave odd elements from both sources X X X
mix.r Interleave even elements from both sources X X X
mux Arbitrary copy of individual source elements X X
pack.sss |Convert from larger to smaller elements with signed saturation X X
pack.uss |Convertfrom larger to smaller elements with unsigned X

saturation
unpack.1l Interleave least-significant elements from both sources X X X
unpack.h |Interleave most significant elements from both sources X X X

Register File Transfers

Table 4-32 shows the instructions defined to move values between the general register file and the
floating-point, branch, predicate, performance monitor, processor identification, and application
register files. Several of the transfer instructions share the same mnemonic (mov). The value of the
operand identifies which register fileis accessed.
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Table 4-32. Register File Transfer Instructions

Mnemonic

getf.exp, getf.sig

Move FR exponent or significand to GR

getf.s, getf.d

Move single/double precision memory format from FR to GR

setf.s, setf.d

Move single/double precision memory format from GR to FR

setf.exp, setf.sig

Move from GR to FR exponent or significand

mov =br Move from BR to GR
mov br= Move from GR to BR
mov =pr Move from predicates to GR

mov pr=, MOV pr.rot=

Move from GR to predicates

Move from GR to AR

mov ars=

mov =ar Move from AR to GR

mov =psr.um Move from user mask to GR

mov psr.ums= Move from GR to user mask

sum, rum Set and reset user mask

mov =pmdl[...] Move from performance monitor data register to GR

mov =cpuidl[...] Move from processor identification register to GR

mov =ip Move from Instruction Pointer

Memory access instructions only target or source the general and floating-point register files. It is
necessary to use the genera register file as an intermediary for transfers between memory and all
other register files except the floating-point register file.

Two classes of move are defined between the general registers and the floating-point registers. The
first type moves the significand or the sign/exponent (getf.sig, setf.sig, getf.exp,
setf.exp). The second type moves entire single or double precision numbers (getf.s, setf.s,
getf.d, setf.d). Theseinstructions also perform a conversion between the deferred exception
token formats.

Instructions are provided to transfer between the branch registers and the general registers. The
move to branch register instruction can also optionally include branch hints. See “Branch
Prediction Hints” on page 1:72.

Instructions are defined to transfer between the predicate register file and a general register. These
instructions operatein a“broadside” manner whereby multiple predicate registers are transferred in
parallel (predicate register N istransferred to and from bit N of a general register). The moveto
predicate instruction (mov pr=) transfersageneral register to multiple predicate registers according
to amask specified by an immediate. The mask contains one hit for each of the static predicate
registers (PR 1 through PR 15— PR O is hardwired to 1) and one bit for all of the rotating predicates
(PR 16 through PR63). A predicate register is written from the corresponding bit in agenera
register if the corresponding mask bit is set. If the mask bit is clear then the predicate register is not
modified. The rotating predicates are transferred as if CFM.rrb.pr were zero. The actual valuein
CFM.rrb.pr isignored and remains unchanged. The move from predicate instruction (mov =pr)
transfers the entire predicate register fileinto a general register target.

In addition, instructions are defined to move values between the general register file and the user
mask (mov psr.um=andmov =psr.um). The sum and rum instructions set and reset the user mask.
The user mask is the non-privileged subset of the Process Status Register (PSR).
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4.8.1

Themov =pmd[] instruction is defined to move from a performance monitor data (PMD) register
to agenerd register. If the operating system has not enabled reading of performance monitor data
registersin user level then al zeroes are returned. Themov =cpuid[] instruction is defined to
move from a processor identification register to a general register.

Themov =ip instruction is provided for copying the current value of the instruction pointer (1P)
into ageneral register.

Character and Bit Strings

A small set of special instructions accel erate operations on character and bit-field data.

Character Strings

The compute zero index instructions (czx. 1, czx. r) treat the general register source as either eight
1-byte or four 2-byte elements and write the general register target with the index of the first zero
element found. If there are no zero elementsin the source, the target is written with a constant one
higher than the largest possible index (8 for the 1-byte form, 4 for the 2-byte form). The czx.1
instruction scans the source from left to right with the left-most element having an index of zero.
The czx. r instruction scans from right to left with the right-most element having an index of zero.
Table 4-33 summarizes the compute zero index instructions.

Table 4-33. String Support Instructions

4.8.2

Mnemonic Operation 1-byte 2-byte
czx.1l Locate first zero element, left to right X X
CcZX.T Locate first zero element, right to left X X
Bit Strings

The population count instruction (popcnt) writes the number of bits that have avalue of 1 in the
source register into the target register.

Table 4-34. Bit Support Instructions

4.9

1.78

Mnemonic Operation
popcnt Count number of ones in source register

Privilege Level Transfer

Three instructions may cause a privilege level change: break (break), enter privileged code (epc)
and branch return (br . ret). The break instruction is defined to cause a Break Instruction fault
which can be used to transfer privilege levels. The break instruction contains an immediate which
is made available to a dedicated fault handler. The epc instruction increases the privilege level
without causing an interruption or a control flow transfer. The new privilege level is specified by
the TLB entry for the page containing the epc, if virtual address translation for instruction fetches
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is enabled. If the privilege level specified by PFS.ppl (in the Previous Function State application
register) islower than the current privilege level (as specified by PSR.cpl in the Processor Status
Register) epc raises an lllegal Operation fault. The br . ret instruction is defined to demote the
privilege level if PFS.ppl islower than PSR.cpl. A br.ret will never increase privilege level.
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Floating-point Programming Model 5

5.1

5.1.1

The floating-point architectureis fully compliant with the ANSI/IEEE Standard for Binary
Floating-Point Arithmetic (Std. 754-1985). Thereis full IEEE support for single, double, and
double-extended real formats. The two |EEE methods for controlling rounding precision are
supported. The first method converts results to the double-extended exponent range. The second
method converts results to the destination precision. Some |EEE extensions such as fused multiply
and add, minimum and maximum operations, and a register format with alarger range than the
minimum double-extended format are also included.

Data Types and Formats

Six datatypes are supported directly: single, double, double-extended real (IEEE real types); 64-bit
signed integer, 64-bit unsigned integer, and the 82-bit floating-point register format. A “Parallel
FP” format where apair of |EEE single precision values occupy a floating-point register’s
significand is also supported. A seventh data type, |EEE-style quad-precision, is supported by
software routines. A future architecture extension may include additional support for the
quad-precision real type.

Real Types

The parameters for the supported | EEE real types are summarized in Table 5-1.

Table 5-1. IEEE Real-type Properties

‘ Single ‘ Double ‘ Double-Extended Quad-Precision
IEEE Real-Type Parameters
Sign +or— +or— +or— +or—
Emax +127 +1023 +16383 +16383
Enmin 126 41022 16382 16382
Exponent bias +127 +1023 +16383 +16383
Precision (bits) 24 53 64 113
IEEE Memory Formats

Total memory format width (bits) 32 64 80 128
Sign field width (bits) 1 1 1 1
Exponent field width (bits) 8 11 15 15
Significand field width (bits) 23 52 64 112
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51.2 Floating-point Register Format

Data contained in the floating-point registers can be either integer or real type. The format of data
in the floating-point registersis designed to accommodate both of these types with no loss of
information.

Real numbersreside in 82-bit floating-point registersin athree-field binary format (see
Figure 5-1). The threefields are:

» The 64-bit significand field, bgs. bgobg; | b1bg. contains the number's significant digits. This
field is composed of an explicit integer bit (significand{ 63}), and 63 bits of fraction
(significand{ 62:0} ).

» The 17-bit exponent field locates the binary point within or beyond the significant digits (i.e.,
it determines the number's magnitude). The exponent field is biased by 65535 (OXFFFF). An
exponent field of all onesis used to encode the special values for |EEE signed infinity and
NaNs. An exponent field of al zeros and a significand field of all zerosis used to encode the
specia vauesfor |IEEE signed zeros. An exponent field of all zeros and a non-zero significand
field encodes the double-extended real denormals and double-extended real
pseudo-denormals.

» The 1-bit sign field indicates whether the number is positive (sign=0) or negative (sign=1).

Figure 5-1. Floating-point Register Format

81 80 64 63 0
‘sign ‘ exponent significand (with explicit integer bit)
1 17 64

The value of afinite floating-point number, encoded with non-zero exponent field, can be
calculated using the expression:

(-1)(sign) * p(exponent - 65535) x (ignificand{63}.significand{62:0},)

The value of afinite floating-point number, encoded with zero exponent field, can be calculated
using the expression:

(-1)(sign) « 2(-16382) x (sjgnificand{63}.significand{62:0},)
Integers (64-bit signed/unsigned) and Parallel FP numbers reside in the 64-bit significand field. In
their canonical form, the exponent field is set to 0x1003E (biased 63) and the sign field is set to 0.

5.1.3 Representation of Values in Floating-point Registers

The floating-point register encodings are grouped into classes and subclasses and listed below in
Table 5-2 (shaded encodings are unsupported). The last two table entries contain the values of the
constant floating-point registers, FR 0 and FR 1. The constant valuein FR 1 does not change for the
parallel single precision instructions or for the integer multiply accumulate instruction.
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Table 5-2. Floating-point Register Encodings

Sign Biased Significand
Class or Subclass a git) Exponent i.bb...bb
(17-bits) | (Explicit Integer Bit is Shown) (64-bits)
NaNs 0/1 OX1FFFF 1.000...01 through 1.111...11
Quiet NaNs 0/1 OX1FFFF 1.100...00 through 1.111...11
Quiet NaN Indefinite? 1 Ox1FFFF |1.100...00
Signaling NaNs 0/1 OX1FFFF 1.000...01 through 1.011...11
Infinity 0/1 Ox1FFFF 1.000...00
Pseudo-NaNs 0/1 Ox1FFFF 0.000...01 through 0.111...11
Pseudo-Infinity 0/1 OX1FFFF 0.000...00
Normalized Numbers 0/1 0x00001 1.000...00 through 1.111...11
(Floating-point Register Format Normals) through
Ox1FFFE
Integers or Parallel FP 0 0x1003E 1.000...00 through 1.111...11
(large unsigned or negative signed integers)
Integer IndefiniteP 0 0x1003E 1.000...00
IEEE Single Real Normals 0/1 OxOFF81 1.000...00...(40)0s

through through
0x1007E 1.111...11...(40)0s

IEEE Double Real Normals 0/1 0x0FCO01 1.000...00...(11)0s
through through
Ox103FE  |1.111...11...(11)0s

IEEE Double-Extended Real Normals 0/1 0x0C001 1.000...00 through 1.111...11
through
0x13FFE

Normal numbers with the same value as | 0/1 0x0C001 1.000...00 through 1.111...11
Double-Extended Real
Pseudo-Denormals

IA-32 Stack Single Real Normals 0/1 0x0C001 1.000...00...(40)0s
(produced when the computation model through through
is |1A-32 Stack Single) 0x13FFE 1.111...11...(40)0s
1A-32 Stack Double Real Normals 0/1 0x0C001 1.000...00...(11)0s
(produced when the computation model through through
is IA-32 Stack Double) O0x13FFE 1.111...11...(11)0s
Unnormalized Numbers 0/1 0x00000 0.000...01 through 1.111...11
(Floating-point Register Format unnormalized 0x00001 0.000...01 through 0.111...11
numbers) through
Ox1FFFE
0x00001 0.000...00
through
Ox1FFFD
Ox1FFFE 0.000...00
Integers or Parallel FP 0 0x1003E 0.000...00 through 0.111...11
(positive signed/unsigned integers)
IEEE Single Real Denormals 0/1 Ox0FF81 0.000...01...(40)0s
through
0.111...11...(40)0s
IEEE Double Real Denormals 0/1 0x0FCO01 0.000...01...(11)0s
through
0.111...11...(11)0s
Register Format Denormals 0/1 0x00001 0.000...01 through 0.111...11
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Table 5-2. Floating-point Register Encodings (Continued)

5.2

1.84

Biased Significand
Exponent i.bb...bb
(17-bits) | (Explicit Integer Bit is Shown) (64-bits)

Sign

Class or Subclass (1 bit)

Unnormal numbers with the same value as | 0/1 0x0C001 0.000...01 through 0.111...11
IEEE Double-Extended Real Denormals

IEEE Double-Extended Real Denormals 0/1 0x00000 0.000...01 through 0.111...11
IA-32 Stack Single Real Denormals 0/1 0x00000 0.000...01....(40)0s
(produced when computation model is through
IA-32 Stack Single) 0.111...11...(40)0s
IA-32 Stack Double Real Denormals 0/1 0x00000 0.000...01...(11)0s
(produced when computation model is through
IA-32 Stack Double) 0.111...11...(11)0s

Double-Extended Real Pseudo-Denormals | 0/1 0x00000 1.000...00 through 1.111...11
(IA-32 stack and memory format)

Pseudo-Zeros 0/1 0x00001 0.000...00
through

Ox1FFFD
1 Ox1FFFE 0.000...00
NaTVal® 0 OX1FFFE 0.000...00
Zero 0/1 0x00000 0.000...00
FR 0 (positive zero) 0 0x00000 0.000...00
FR 1 (positive one) 0 OXOFFFF 1.000...00

a. Created by a masked real invalid operation.
b. Created by a masked integer invalid operation.
c. Created by an unsuccessful speculative memory operation.

All register encodings are allowed as inputs to arithmetic operations. The result of an arithmetic
operation is always the most normalized register format representation of the computed value, with
the exponent range limited from Emin to Emax of the destination type, and the significand
precision limited to the number of precision bits of the destination type. Computed values, such as
zeros, infinities, and NaNs that are outside these bounds are represented by the corresponding
unique register format encoding. Double-extended real denormal results are mapped to the register
format exponent of 0x00000 (instead of 0x0C001). Unsupported encodings (Pseudo-NaNs and
Pseudo-Infinities), Pseudo-zeros and Double-extended Real Pseudo-denormals are never produced
as aresult of an arithmetic operation.

Arithmetic on pseudo-zeros operates exactly as an equivalently signed zero, with one exception.
Pseudo-zero multiplied by infinity returns the correctly signed infinity instead of an Invalid
Operation Floating-Point Exception fault (and QNaN). Also, pseudo-zeros are classified as
unnormalized numbers, not zeros.

Floating-point Status Register

The Floating-Point Status Register (FPSR) contains the dynamic control and status information for
floating-point operations. There is one main set of control and status information (FPSR.sf0), and

three alternate sets (FPSR.sf1, FPSR.sf2, FPSR.sf3). The FPSR layout is shown in Figure 5-2 and

itsfields are defined in Table 5-3. Table 5-4 gives the FPSR’s status field description and

Figure 5-3 shows their layout.
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Figure 5-2. Floating-point Status Register Format

63 58 57 45 44 32 31 19 18 6 5 0
rv sf3 sf2 sfl sfo ‘ traps ‘
6 13 13 13 13 6
Table 5-3. Floating-point Status Register Field Description
Field Bits Description
traps.vd 0 Invalid Operation Floating-Point Exception fault (IEEE Trap) disabled when this
bit is set
traps.dd 1 Denormal/Unnormal Operand Floating-Point Exception fault disabled when this
bit is set
traps.zd 2 Zero Divide Floating-Point Exception fault (IEEE Trap) disabled when this bit is
set
traps.od 3 Overflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set
traps.ud 4 Underflow Floating-Point Exception trap (IEEE Trap) disabled when this bit is set
traps.id 5 Inexact Floating-Point Exception trap (IEEE Trap) disabled when this bit is set
sf0 18:6 Main status field
sfl 31:19 Alternate status field 1
sf2 44:32 Alternate status field 2
sf3 57:45 Alternate status field 3

Figure 5-3. Floating-point Status Field Format
12 11 10 9 8 7 6 5 4 3 2 1 0

Table 5-4.

FPSR.sfx
flags controls
i‘u‘o‘z‘d‘vtd‘ rc‘pc ‘wre‘ftz
6

Floating-point Status Register’s Status Field Description

Field Bits Description
ftz 0 Flush-to-Zero mode
wre 1 Widest range exponent (see Table 5-6)
pc 3:2 Precision control (see Table 5-6)
rc 5:4 Rounding control (see Table 5-5)
td 6 Traps disabled?®
v 7 Invalid Operation (IEEE Flag)
d 8 Denormal/Unnormal Operand
z 9 Zero Divide (IEEE Flag)
o] 10 Overflow (IEEE Flag)
u 11 Underflow (IEEE Flag)
i 12 Inexact (IEEE Flag)

a. td is a reserved bit in the main status field, FPSR.sf0

The Denormal/Unnormal Operand status flag is an |EEE-style sticky flag that is set if the valueis
used in an arithmetic instruction and in an arithmetic calculation; e.g. unorm*NaN doesn't set this
flag. As depicted in Table 5-2 on page 1:83, canonical single/double/double-extended denormal,
double-extended pseudo-denormal and register format denormal encodings are a subset of the
floating-point register format unnormalized numbers.
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Note:  The Floating-Point Exception fault/trap occurs only if an enabled floating-point exception
occurs during the processing of the instruction. Hence, setting aflag bit of a statusfield to
1in software will not cause an interruption. The status fields flags are merely indications
of the occurrence of floating-point exceptions.

Flush-to-Zero (FTZ) mode causes results which encounter “tininess’ (see “ Definition of Tininess,
Inexact and Underflow” on page 1:103) to be truncated to the correctly signed zero. Flush-to-Zero
mode can be enabled only if Underflow is disabled. If Underflow is enabled then it takes priority
and Flush-to-Zero mode is ignored. Note that the software exception handler could examine the
Flush-to-Zero mode bit and choose to emul ate the Flush-to-Zero operation when an enabled
Underflow exception arises. The FPSR.sfx.u and FPSR.sfx.i bitswill be set to 1 when aresult is
flushed to the correctly signed zero because of Flush-to-Zero mode. If enabled, an inexact result
exception is signaled.

A floating-point result is rounded based on the instruction’s.pc completer and the status field’swre,
pc, and rc control fields. The result’s significand precision and exponent range are determined as
described in Table 5-6, “Floating-point Computation Model Control Definitions’ on page 1:86. If
the result isn't exact, FPSR.sfx.rc specifies the rounding direction (see Table 5-5).

Table 5-5. Floating-point Rounding Control Definitions

Nearest - Infinity + Infinity Zero
(or even) (down) (up) (truncate/chop)
FPSR.sfx.rc 00 01 10 11
Table 5-6. Floating-point Computation Model Control Definitions
Computation Model Control Fields Computation Model Selected
Instruction’s.pc FPSR.six's FPSR.six's Significand Exponent
: Dynamic pc | Dynamic wre e Computational Style
Completer Field Field Precision Range
.S ignored 0 24 bits 8 bits IEEE real single
ignored 0 53 bits 11 bits |EEE real double
.S ignored 1 24 bits 17 bits Register format range,
single precision
d ignored 1 53 bits 17 bits Register format range,
double precision
none 00 0 24 bits 15 bits IA-32 stack single
none 01 0 N.A. N.A. Reserved
none 10 0 53 bits 15 bits 1A-32 stack double
none 11 0 64 bits 15 bits 1A-32 double-extended
none 00 1 24 bits 17 bits Register format range,
single precision
none 01 1 N.A. N.A. Reserved
none 10 1 53 bits 17 bits Register format range,
double precision
none 11 1 64 bits 17 bits Register format range,
double-extended precision
not applicable? ignored ignored 24 bits 8 bits A pair of IEEE real singles
not applicableb ignored ignored 64 bits 17 bits Register format range,
double-extended precision

a. For parallel FP instructions which have no.pc completer (e.g., fpma).
b. For non-parallel FP instructions which have no.pc completer (e.g., frcpa).
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The trap disable (sfx.td) control bit allows oneto easily set up alocal |EEE exception trap default
environment. If FPSR.sfx.td is clear (enabled), the FPSR.traps bits are used. If FPSR.sfx.td is set,
the FPSR.traps bits are treated as if they are all set (disabled). Note that FPSR.sf0.td is areserved
field which returns 0 when read.

5.3 Floating-point Instructions

This section describes the floating-point instructions. Refer to Volume 3: Instruction Set Reference
for a detailed description.

5.3.1 Memory Access Instructions

There are floating-point load and store instructions for the single, double, double-extended
floating-point real datatypes, and the Parallel FP or signed/unsigned integer data type. The
addressing modes for floating-point load and store instructions are the same as for integer load and
storeinstructions, except for floating-point load pair instructions which can have an implicit
base-register post increment. The memory hint options for floating-point load and store instructions
are the same as those for integer load and store instructions. (See Section 4.4.6, “Memory
Hierarchy Control and Consistency” on page 1:64.) Table 5-7 lists the types of floating-point load
and store instructions. The floating-point load pair instructions require the two target registersto be
odd/even or even/odd. See “Idfp — Floating-point Load Pair” on page 3:147. The floating-point
store instructions (st £s, st£d, stfe) require the value in the floating-point register to have the
same type as the store for the format conversion to be correct.

Table 5-7. Floating-point Memory Access Instructions

Operations Load to FR Load Pair to FR Store from FR
Single 1dfs ldfps stfs
Integer/Parallel FP 1dfs 1dfps stfs8
Double 1dfd ldfpd stfd
Double-extended ldfe stfe
Spillffill 1df.fill stf.spill

Unsuccessful speculative loadswrite aNaT Val into the destination register or registers (see Section
4.4.4, “Control Speculation™). Storing a NaTVal to memory will cause a Register NaT
Consumption fault, except for the spill instruction (st £.spill).

Saving and restoring floating-point registers is accomplished by the spill and fill instructions
(stf.spill, 1df.£fi11) using a 16-byte memory container. These are the only instructions that
can be used for saving and restoring the actual register contents since they do not fault on NaTVal.
They save and restore all types (single, double, double-extended, register format and integer or
Parallel FP) and will ensure compatibility with possible future architecture extensions.

Figure 5-4, Figure 5-5, Figure 5-6, Figure 5-7, Figure 5-8 and Figure 5-9 describe how single

precision, double precision, double-extended precision, integer/parallel FP, and spill/fill datais
translated during transfers between floating-point registers and memory.
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Figure 5-4. Memory to Floating-point Register Data Translation —Single Precision

int
sign exponent |nbietger significand

FR: 1 0

Memory/GR:

Single-precision Load/setf.s — normal numbers

integer

sign exponent bit significand
FR: Ox1FFFF 1 0
Memory/GR: 1111111 (1

Single-precision Load/setf.s — infinities and NaNs

. integer o
sign exponent bit significand
FR: 0 0 0
Memory/GR: goooaogg @ O 0 0

Single-precision Load/setf.s — zeros

integer
sign exponent bitg significand
FR: OxOFF81 o 0
Memory/GR: 00aacaa (o

Single-precision Load/setf.s — denormal numbers
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Figure 5-5. Memory to Floating-point Register Data Translation —Double Precision

integer

sign exponent bit significand
= [T & o]
Memory/GR: e e e Je g Je

Double-precision Load/setf.d — normal numbers

. integer .
sign exponent bit significand
OXIFFFF | | o |

-

!

Memory/GR: ‘

e J

Double-precision Load/setf.d — infinities and NaNs

. integer I
sign exponent bit significand

N 0

'|'|
Y
/ o

Memory/GR: ‘0000004 loooo oH 0 || 0 H 0 H 0 H 0

Double-precision Load/setf.d — zeros

. integer .

sign exponent bit significand
FR: M‘ch ‘ )o L0 ‘
vemory/GR: | dodoooq 0dag | | | | | | | |

Double-precision Load/setf.d — denormal numbers

Volume 1: Floating-point Programming Model

1:89




Figure 5-6. Memory to Floating-point Register Data Translation —Double Extended, Integer,
Parallel FP and Fill

. integer N
sign exponent bit significand

T

Double-extended-precision Load — normal/unnormal numbers

integer

sign exponent blt significand
‘ OX1FFFF ’ |
Memory: g prnd | L [ JL JL L L L

Double-extended-precision Load — infinities and NaNs

. integer

sign exponent bit significand

Lo [ |
wemory[osssd fidoossd [ [ J[ J[ J[_J[_J[ _J[

Double-extended-precision Load — denormal/pseudo-denormals and zeros

. integer L
sign exponent bit significand
H ‘ 0x1003E | ‘ |
wemoier: | [ L [ L L [ L]

Integer/Parallel FP Load/setf.sig

. integer -
sign exponent bit significand

il L |

A\ T

wemor:[J [ ][OOI OO

Register Fill
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Figure 5-7. Floating-point Register to Memory Data Translation — Single Precision

) integer -
sign exponent bit significand

FR:

Memory/GR:

Single-precision Store/getf.s

O =AND

Figure 5-8. Floating-point Register to Memory Data Translation —Double Precision

integer
sign exponent bit significand

FR:

X '

Memory/GR:

Double-precision Store/getf.d

U =AND
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Figure 5-9. Floating-point Register to Memory Data Translation —Double Extended, Integer,
Parallel FP and Spill

. integer o
sign exponent bit significand

=] | | |

Memory/GR: | ‘ ‘ ‘ | ‘ ‘ | ’ | ‘ ‘ ‘ | ‘ ‘

Integer/Parallel FP Store/getf.sig

) integer N
sign exponent bit significand

, ¢

vemory: | N N N O N

Double Extended-precision Store

FR:

) integer N
sign exponent bit significand

=] y |

=y

wemary: [ 0[] [0 [o o] [o [ JL T L IL L]

Register Spill

Both little-endian and big-endian byte ordering is supported on floating-point loads and stores. For
both single and double memory formats, the byte ordering isidentical to the 32-bit and 64-bit
integer data types (see Section 3.2.3, “Byte Ordering”). The byte-ordering for the spill/fill memory
and double-extended formats is shown in Figure 5-10.
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Figure 5-10. Spill/Fill and Double-extended (80-bit) Floating-point Memory Formats

Memory Formats

Floating-point Register Format (82-bit)

Spill/Fill (128-bit) Double-Extended (80-bit) 63 0
7LE0 7BEo 7LEO 7BEO ﬂ exp. } significand

0] sO 00 0|s0O 0|sel’

11|sl 110 11s1 1!e0’ se2|el |e0|s7|s6|s5|s4|s3|s2|s1|s0
2|82 210 2|s2 2|s7 \ ¢

3|s3 3]0 3|s3 3| s6

4| s4 4] 0 4| s4 4! s5 sel’je0' |s7|s6|s5|s4|s3|s2|sl|sO
3|55 > [se2 5|85 5| s4 Double-Extended (80-bit) Interpretation
6 | s6 6 el 6 | s6 6|s3

7| s7 7 |e0 7|s7 7|82

8| el 8 |s7 8| el 8|sl

9 el 9 | s6 9 sel| 9|s0

10 |se2| 10 |s5

11| 0 11 | s4

12| 0 12 | s3

13| 0 13 | s2

14| 0 14 | s1

15| 0 15 | sO

5.3.2 Floating-point Register to/from General Register Transfer

Instructions

The setf and get £ instructions (see Table 5-8) transfer data between floating-point registers (FR)
and genera registers (GR). These instructions will translate a general register NaT to/from a
floating-point register NaTVal. For all other operands, the.s and.d variants of the set £ and getf
instructions trandate to/from FR as per Figure 5-4, Figure 5-5, Figure 5-7 and Figure 5-8. The
memory representation is read from or written to the GR. The. exp and. sig variants of the set £
and get £ instructions operate on the sign/exponent and significand portions of a floating-point
register, respectively, and their trandation formats are described in Table 5-9 and Table 5-10.

Table 5-8. Floating-point Register Transfer Instructions

Operations GRto FR FR to GR
Single setf.s getf.s
Double setf.d getf.d
Sign and Exponent setf.exp getf.exp
Significand/Integer setf.sig getf.sig
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Table 5-9. General Register (Integer) to Floating-point Register Data Translation (setf)

General . . . . . . .
Register Floating-Point Register (.sig) Floating-Point Register (.exp)
Class NaT | Integer | Sign ‘ Exponent ‘ Significand Sign Exponent ‘ Significand
NaT 1 ignore NaTVal NaTVal
integers 0 000...00 0 0x1003E integer integer{17} integer{16:0} 0x8000000000000000
through
111..11

Table 5-10. Floating-point Register to General Register (Integer) Data Translation (getf)

Floating-Point Register General Register (.sig) General Register (.exp)

Class Sign Exponent | Significand | NaT Integer NaT Integer
NaTVal 0 Ox1FFFE 0.000...00 1 0x0000000000000000 1 OX1FFFE
integers or 0 0x1003E 0.000...00 0 significand 0 0x1003E
parallel FP through

1.111..11

other any any any 0 significand 0 ((sign<<17) | exponent)
5.3.3 Arithmetic Instructions

All arithmetic floating-point instructions, except fcvt . xf (which is always exact), have a.sf
specifier. Thisindicates which of the four FPSR’s status fields will both control and record the
status of the execution of the instruction (see Table 5-11). The status field specifies: enabled
exceptions, rounding mode, exponent width, precision control, and which status field’s flags to
update. See “Floating-point Status Register” on page 1:84..

Table 5-11. Floating-point Instruction Status Field Specifier Definition

.sf Specifier .s0 sl .s2 .s3
Status field FPSR.sf0 FPSR.sfl FPSR.sf2 FPSR.sf3

Most arithmetic floating-point instructions can specify the precision and range of the result. The
precision is determined either statically using a.pc completer or dynamically using the.pc field of
the FPSR status field. The range is determined similarly except thewre field of the FPSR status
field isalso used. Normal (non Parallel FP) arithmetic instructions that do not have a.pc completer
use the floating-point register format precision and range. See Table 5-6 for details.
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Table 5-12 lists the arithmetic floating-point instructions and Table 5-13 lists the arithmetic

pseudo-operation definitions.

Table 5-12. Arithmetic Floating-point Instructions

Parallel FP

fevt.fx.trunc.sf

Operation Normal FP Mnemonic(s) Mnemonic(s)
Floating-point multiply and add fma.pc.sf fpma.sf
Floating-point multiply and subtract fms.pc.sf fpms.sf
Floating-point negate multiply and add fnma.pc.sf fpnma.sf
Floating-point reciprocal approximation frcpa.sf fprcpa.sf
Floating-point reciprocal square root approximation frsqgrta.sf fprsqgrta.sf
Floating-point compare fecmp. frel. fctype.sf | fpcmp. frel.sf
Floating-point minimum fmin.sf fpmin. sf
Floating-point maximum fmax.sf fpmax.sf
Floating-point absolute minimum famin. sf fpamin.sf
Floating-point absolute maximum famax.sf fpamax.sf
Convert floating-point to signed integer foevt.fx.sf fpevt.fx.sf

fpevt. fx.trunc.sf

Convert floating-point to unsigned integer

fevt.fxu.sf
fevt.fxu.trunc.sft

fpevt.fxu.sf
fpecvt. fxu.trunc.sf

Convert signed integer to floating-point

fevt . xf

N.A.

Table 5-13. Arithmetic Floating-point Pseudo-operations

Operation Mnemonic Operation Used

Floating-point multiplication (IEEE) fmpy.pc.sf fma, using FR 0 for addend

Parallel FP multiplication fpmpy. sf fpma, using FR 0 for addend

Floating-point negate multiplication (IEEE) fnmpy.pc.sf fnma, using FR 0 for addend

Parallel FP negate multiplication fpnmpy . sf fpnma, using FR 0 for addend

Floating-point addition (IEEE) fadd.pc.sf fma, using FR 1 for multiplicand

Floating-point subtraction (IEEE) fsub.pc.sf fms, using FR 1 for multiplicand

Floating-point normalization fnorm.pc.sf fma, using FR 1 for multiplicand and FR O for
addend

Convert unsigned integer to floating-point fevt.xuf .pc.sf | fma, using FR 1 for multiplicand and FR 0 for
addend

There are no pseudo-operations for Parallel FP addition, subtraction, negation or normalization
since FR 1 does not contain a packed pair of single precision 1.0 values. A parallel FP addition can
be performed by first forming apair of 1.0 valuesin aregister (using the £pack instruction) and
then using the £pma instruction. Similarly, an integer add operation can be generated by first
forming an integer 1 in afloating-point register (using the fcvt . £x instruction) and then using the

xma instruction.

The fmpy pseudo-operation delivers the IEEE compliant result by rounding the product and
without performing the addition inherent in the fma. An £ma with the addend specified as aregister
other than FR 0, and containing the value +0.0, will not deliver the IEEE compliant multiply result

in some cases.
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5.34 Non-arithmetic Instructions

The non-arithmetic floating-point instructions always use the floating-point register (82-bit)
precision since they do not have a.pc completer nor a.sf specifier.

The fclass instruction is used to classify the contents of afloating-point register. The fmerge
instruction is used to merge data from two floating-point registers into one floating-point register.
The fmix, fsxt, fpack, and f£swap instructions are used to manipulate the Parallel FP datain the
floating-point significand. The fand, fandem, for, and £xor instructions are used to perform
logical operations on the floating-point significand. The fselect instruction is used for
conditional selects.

The fneg pseudo-operation (see Table 5-15) simply reverses the sign bit of the operand and is
therefore not equivalent to the | EEE negation operation. For the | EEE negation operation, an fnma
using FR 1 as the multiplicand and FR 0 as the addend must be used.

Table 5-14 lists the non-arithmetic floating-point instructions and Table 5-15 lists the
non-arithmetic pseudo-operation definitions.

Table 5-14. Non-arithmetic Floating-point Instructions

Operation Mnemonic(s)
Floating-point classify fclass.fcrel. fctype
Floating-point merge sign fmerge.s
Parallel FP merge sign fpmerge.s
Floating-point merge negative sign fmerge.ns
Parallel FP merge negative sign fpmerge.ns
Floating-point merge sign and exponent fmerge.se
Parallel FP merge sign and exponent fpmerge.se
Floating-point mix left fmix.1
Floating-point mix right fmix.r
Floating-point mix left-right fmix.1lr
Floating-point sign-extend left fext.1l
Floating-point sign-extend right fsxt.r
Floating-point pack fpack
Floating-point swap fswap
Floating-point swap and negate left fswap.nl
Floating-point swap and negate right fswap.nr
Floating-point And fand
Floating-point And Complement fandcm
Floating-point Or for
Floating-point Xor fxor
Floating-point Select fselect
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Table 5-15. Non-arithmetic Floating-point Pseudo-operations

5.3.5

Operation Mnemonic Operation Used
Floating-point absolute value fabs fmerge. s, with sign from FR 0
Parallel FP absolute value fpabs fpmerge. s, with sign from FR 0
Floating-point negate fneg fmerge.ns
Parallel FP negate fpneg fpmerge.ns
Floating-point negate absolute value fnegabs fmerge . ns, with sign from FR 0
Parallel FP negate absolute value fpnegabs fpmerge . ns, with sign from FR 0

Floating-point Status Register (FPSR) Status Field
Instructions

Speculation of floating-point operations requires that the status flags be stored temporarily in one
of the alternate status fields (not FPSR.sf0). After a speculative execution chain has been
committed, a fchkf instruction can be used to update the main status field flags (FPSR.sf0.flags).
This operation will preserve the correctness of the IEEE flags. The £chkf instruction does this by
comparing the flags of the status field with the FPSR.sf0.flags and FPSR.traps. If the flags of the
alternate status field indicate the occurrence of an event that corresponds to an enabled
floating-point exception in FPSR.traps, or an event that is not already registered in the
FPSR.sf0O.flags (i.e., the flag for that event in FPSR.sfO.flagsis clear), then the £chkf instruction
branches to recovery code. If neither of these cases arise then the £chkf instruction does nothing.

The fsetc instruction allows bit-wise modification of a statusfield’s control bits. The
FPSR.sf0.controls are ANDed with a 7-bit immediate and-mask and ORed with a 7-bit immediate
or-mask to produce the control bitsfor the statusfield. The £c1rf instruction clearsall of the status
field'sflagsto zero.

Table 5-16. FPSR Status Field Instructions

5.3.6

Operation Mnemonic(s)
Floating-point check flags fchkf.sf
Floating-point clear flags fclrf.sf
Floating-point set controls fsetc.sf

Integer Multiply and Add Instructions

Integer (fixed-point) multiply is executed in the floating-point unit using the three-operand xma
instructions. The operands and result of these instructions are floating-point registers. The xma
instructions ignore the sign and exponent fields of the floating-point register, except for aNaT Val
check. The product of two 64-bit source significands is added to the third 64-bit significand (zero
extended) to produce a 128-hit result. The low and high versions of the instruction select the
appropriate low/high 64-bits of the 128-bit result, respectively, and writeit into the destination
register as a canonical integer. The signed and unsigned versions of the instructions treat the input
multiplicands as signed and unsigned 64-bit integers respectively.
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Table 5-17. Integer Multiply and Add Instructions

5.4

5.4.1

54.1.1

1.98

Integer Multiply and Add Low High

Signed xma. 1l xma.h

Unsigned xma .lu (pseudo-op) xma . hu

Additional IEEE Considerations

This section describes the support of the |EEE standard in the areas where specific details are | eft
open to implementation.

Floating-point Interruptions

Floating-point interruptions are precise. The exception reporting and handling occurs on the
instruction which causes the interruption. There are three floating-point interruptions. Disabled
Floating-Point Register fault, Floating-Point Exception fault, and Floating-Point Exception trap
(see Chapter 5, “Interruptions’ in Volume 2 for more details).

Exceptions are processed according to a predetermined precedence. Precedence in exception
handling means that higher-priority exceptions are flagged first and results are delivered according
to the requirements of that exception. Lower-priority exceptions are not flagged even if they occur.
For example, dividing an SNaN by zero causes an invalid operation exception (due to the SNaN)
and not a zero-divide exception; the exception disabled result is the quieted version of the SNaN,
not infinity. However, an |EEE Inexact Floating-Point Exception trap can accompany an |EEE
Underflow or Overflow Floating-Point Exception trap.

For instructions that access the floating-point register file, the Disabled Floating-point Register
fault has the highest priority.

Disabled Floating-point Register Fault

Two bitsin the PSR, PSR.dfl and PSR.dfh, (see Section 3.3.2, “ Processor Status Register (PSR)”
on page 2:22) can be used by an operating system to enable or disable access to two subsets of
floating-point registers. FR 2 to FR 31, and FR 32 to FR 127, respectively. The Disabled
Floating-Point Register fault occurs when an access (read or write) is made to a FR which has been
disabled. Operating systems can use this fault to identify atask asinteger or floating-point and
optimize the default set of registerswhich get saved on atask switch. If amainly integer task isable
touseonly FR 2 to FR 32 for executing integer multiply and divide operations, then context switch
time may be reduced by disabling access to the high floating-point registers.
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54.1.2 Floating-point Exception Fault

A Floating-Point Exception fault occurs if one of the following four circumstances arises:

1. The processor requests system software assistance to complete the operation, viathe
Software Assist fault

The |EEE Invalid Operation trap is enabled and this condition occurs
The |EEE Zero Dividetrap is enabled and this condition occurs

The Denormal/Unnormal Operand trap is enabled and an unnormalized operand (denormals
are represented as unnormalized numbersin the register file) is encountered by a
floating-point arithmetic instruction

If aFloating-Point Exception fault occurs, the only indication of which fault occurred isin the
ISR.code. The appropriate status flags are not updated in the FPSR.

There is no requirement that the Software Assist Floating-Point Exception fault ever be signaled
(except for certain operands in the £rcpa and the £rsqgrta instructions), nor isthere amode to
forceits use. If thereis no input NaTVal operand, a processor implementation may signal a
Software Assist Floating-Point Exception fault at any time during the operation. In order to ensure
maximum floating-point performance, most implementations will not use this exception except in
difficult situations such as operations consuming denormal numbers.

The precedence among Floating-point Exception faults for arithmetic operationsis depicted in
Figure 5-11.
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Figure 5-11. Floating-point Exception Fault Prioritization

Terminal Decisio
State Poin

FP Fault
ISR.v=1

NaTVal
Response

Invalid
Enabled?

Unsupported
Operand?

QNaN Ind
FLAGS.v=1

) 4
SNaN Invalid FP Fault
Operand? Enabled? ISR.v=1
N

FLAGS.v=1

Reg prioritized
NaN resp (f4,f2,f3)

Invalid
Enabled?

Other Invalid
QOperation?

FP Fault
ISR.v=1
FP Fault
ISR.z=1

QNaN Ind
FLAGS.v=1

ZeroDiv
Enabled?

Zero
Divide?®)

SWA Fault
ISR.swa=1

IEEE Resp
FLAGS.z=1

FP Fault
ISR.d=1

UnNormal
Operand?

Denormal
Enabled?

_ | COMPUTE (1)=For frcpa/fprcpa
FLAGS.d=1 OPERATION (2)=For frcpa/frsqrta

1:100 Volume 1: Floating-point Programming Model




5.4.1.3 Floating-point Exception Trap

A Floating-point Exception trap occursif one of the following four circumstances arises.

1. The processor requests system software assistance to complete the operation, viathe
Software Assist trap

2. ThelEEE Overflow trap is enabled and an overflow occurs
3. ThelEEE Underflow trap is enabled and an underflow occurs

4. ThelEEE Inexact trap is enabled and an inexact result occurs

When an overflow, underflow, or inexact result occurs, the appropriate status flags are updated in
the FPSR. If enabled, a Floating-Point Exception trap occurs, and an indication of which enabled
trap occurred is stored in I SR.code and the fpa bit in ISR.code (I1SR{ 14}) is set as described in the
next paragraph.

ISR.fpaisset to 1 when the magnitude of the delivered result is greater than the magnitude of the
infinitely precise result. It is set to 0 otherwise. The magnitude of the delivered result may be
greater if:

» Thesignificand isincremented during rounding, or

« A larger pre-determined value (e.g., infinity) is substituted for the computed result (e.g., when
overflow is disabled).

There is no requirement that the Software Assist Floating-Point Exception trap ever be signaled,
nor isthere amode to forceits use. In order to ensure maximum floating-point performance, most
implementations will not use this exception except in difficult situations, such as operations
creating denormal numbers. The occurrence of a Software Assist trap isindicated when atrap bitis
setin I1SR.code, but that trap is disabled. The destination register contains the trap enabled response
for that trap.

The precedence among Floating-point Exception traps for arithmetic operationsis depicted in
Figure 5-12.
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Figure 5-12. Floating-point Exception Trap Prioritization
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54.2 Definition of Overflow

The overflow exception can occur whenever the rounded true result would exceed, in magnitude,
the largest finite number in the destination format.

The |EEE Overflow Floating-Point Exception trap disabled response for al normal and Parallel-FP
arithmetic instructionsis to either return an infinity or the correctly signed maximum finite value
for the destination precision. This depends on the rounding mode, the sign of the result, and the
operation. An inexact result exception is signaled.

The |EEE Overflow Floating-Point Exception trap enabled response for all normal arithmetic
instructionsis to return the true biased exponent value MOD 217 and for all Parallel-FP arithmetic
instructionsisto return the true biased exponent value MOD 28 Thevalue'ssi gnificand isrounded
to the specified precision and written to the destination register. If the rounded value is different
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from the infinitely-precise value, then inexactnessis signaled. If the significand was rounded by
adding aoneto its least significant bit, then bit £pa in ISR.codeis set to 1. Finally, an interruption
due to a Floating-Point Exception trap will occur.

Note that when rounding to single, double, or double-extended real, the overflow trap enabled
response for normal (non Parallel FP) arithmetic instructionsis not guaranteed to be in the range of
avalid single, double, or double-extended real quantity, becauseit isin 17-bit exponent format.

54.3 Definition of Tininess, Inexact and Underflow

Tininess is detected after rounding, and is said to occur when anon-zero result (computed as
though the exponent range were unbounded) would lie strictly between +25M" and -2EMN. See
Table 5-1 for the values of Emin for each real type. Creation of atiny result may cause an exception
later (such as overflow upon division because it is so small).

I nexactnessis said to occur when the result differs from what would have been computed if both
the exponent range and precision were unbounded.

How tininess and inexactness trigger the underflow exception depends on whether the Underflow
Floating-Point Exception trap is disabled or enabled. If the trap is disabled then the underflow
exception is signaled when the result is both tiny and inexact. If the trap is enabled then the
underflow exception is signaled when the result is tiny, regardless of inexactness. Note that in the
event that the Underflow Floating-Point Exception trap is disabled and tininess but not inexactness
occurs, then neither underflow nor inexactness is signaled, and the result is a denormal.

The |EEE Underflow Floating-Point Exception trap disabled response for all normal and
Parallel-FP arithmetic instructionsisto denormalize theinfinitely precise result and then round it to
the destination precision. The result may be a denormal, zero, or anormal. Theinexact exceptionis
signaled when appropriate.

The |IEEE Underflow Floating-Point Exception trap enabled response for all normal arithmetic
instructions isto return the true biased exponent value MOD 2%and for all Parallel-FP arithmetic
instructions isto return the true biased exponent value MOD 28 Thes gnificand is rounded to the
specified precision and written to the destination register independent of the possibility of the
exponent calculation requiring aborrow. If the rounded valueis different from theinfinitely-precise
value, then inexactnessis signaled. If the significand was rounded by adding a one to its least
significant bit, then bit fpa in ISR.codeis set to 1. Finaly, an interruption due to a Floating-Point
Exception trap will occur.

Note:  When rounding to single, double, or double-extended real, the underflow trap enabled
response for normal (non Parallel FP) arithmetic instructionsis not guaranteed to bein the
range of avalid single, double, or double-extended real quantity, because it isin 17-bit
exponent format.

When Flush-to-Zero mode is enabled, the behavior for tiny resultsis different. If an instruction
would deliver atiny result, a correctly signed zero is delivered instead and the appropriate
FPSR.sfx.u and FPSR.sfx.i bits are set. This mode may improve the performance on
implementations that do not implement denormal handling in hardware. When the Flush-to-Zero
mode is enabled, floating-point exception software assist traps will not occur when producing tiny
results.
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5.4.4

5.4.5

5.4.6

5.4.7

5.4.8

1:104

Integer Invalid Operations

Floating-point to integer conversions which are invalid (in the IEEE sense) signal an Invalid
Operation Floating-Point Exception fault. If the IEEE Invalid Operation trap is disabled, then the
largest magnitude negative integer is the result, even for unsigned integer operations.

Definition of Arithmetic Operations

Arithmetic operations are those that compute on the operands by treating each operand’s encoding
as avalue, whereas non-arithmetic operations perform bit manipulations on the input operands
without regard to the value represented by the encoding (except for NaTVal detection).
Non-arithmetic instructions do not cause Floating-point Exception faults or traps, but can cause the
Disabled Floating-point Register fault.

Definition and Propagation of NaNs

Signaling NaNs have a zero in the most significant fractional bit of the significand. Quiet NaNs
have a one in the most significant fractional bit of the significand. This definition of signaling and
quiet NaNs easily preserves “NaNness’ when converting between different precisions. When
propagating NaNs in operations that have more than one NaN operand, the result NaN is chosen
from one of the operand NaNs in the following priority based on register encoding fields: first £4,
then £2, and lastly £3.

IEEE Standard Mandated Operations Deferred to Software

The following |EEE mandated operations will be implemented in software:
 String to floating-point conversion
* Floating-point to string conversion
« Divide (with help from frcpa or £prcpa instruction)
» Squareroot (with help from frsqrta or fprsgrta instruction)
» Remainder (with help from frcpa or £fprcpa instruction)
* Floating-point to integer valued floating-point conversion

« Correctly wrapping the exponent for single, double, and double-extended overflow and
underflow values, as recommended by the |EEE standard

Additions beyond the IEEE Standard

* Thefused multiply and add (fma, £fms, fnma, £pma, £pms, £pnma) operations enable efficient
software divide, square root, and remainder algorithms.

» The extended range of the 17-bit exponent in the register format allows simplified
implementation of many basic numeric algorithms by the careful numeric programmer.

» TheNaTVal isanatural extension of the IEEE concept of NaNs. It is used to support
speculative execution.

* Flush-to-Zero modeis an industry standard addition.
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* The minimum and maximum instructions allow the efficient execution of the common Fortran
Intrinsic Functions: MIN(), MAX(), AMIN(), AMAX(); and C language idioms such as
a<b?ab.

« All mixed precision operations are allowed. The |EEE standard suggests that implementations
alow lower precision operands to produce higher precision results; thisis supported. The
| EEE standard also suggests that implementations not allow higher precision operandsto
produce lower precision results; this suggestion is not followed. When computations with
higher precision operands produce values beyond the destination precision range, the
information provided in the | SR.code allows the true result to be unambiguously determined
by software. The correct wrapping count and the appropriate bias amount can also be
computed.

« An |EEE style quad-precision real type that is supported in software.
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IA-32 Application Execution Model in an
Intel® Itanium® System Environment 6

6.1

This chapter describes the 1A-32 execution model from the perspective of an application
programmer using the Itanium architecture, interfacing with |A-32 code, while operating in the
[tanium System Environment. The main features covered are:

* |A-32 integer, segment, floating-point, MM X technology, and SSE register state mappings
* Instruction set transitions
* 1A-32 memory and addressing model overview

This chapter does not cover the details of 1A-32 application programming model, 1A-32
instructions and registers. Refer to the |A-32 Intel® Architecture Software Devel oper’s Manual for
details regarding 1A-32 application programming model .

The Itanium architecture can support 16-bit Real Mode, 16-bit VM86, and 16-bit/32-bit Protected
Mode | A-32 applications in the context of an Itanium architecture-based operating system.
Whether an | A-32 application is actually supported on specific operating systemsis determined by
the infrastructure provided by that specific operating system.

Instruction Set Modes

The processor can be executing either 1A-32 or Itanium instructions at any point in time. PSR.is
(defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:22) specifies the currently
executing instruction set, where 1 indicates | A-32 instructions are executing, and 0 indicates
Itanium instructions are executing. Three special instructions and interruptions are defined to
transition the processor between the 1A-32 and the Itanium instruction sets as shown in Figure 6-1.

* jmpe (IA-32 instruction) Jump to an Itanium target instruction, and transition to the Itanium
instruction set.

e br.ia (Itanium instruction) Branch to an 1A-32 target instruction, and change the instruction
set to 1A-32.

e rfi (Itanium instruction) “Return from interruption” is defined to return to either an 1A-32 or
[tanium instruction when resuming from an interruption.

« Interruptions transition the processor to the Itanium instruction set for al interruption
conditions.

The jmpe and br . ia instructions provide alow overhead mechanism to transfer control between
the instruction sets. These primitives typically are incorporated into “thunks’ or “stubs’ that
implement the required call linkage and calling conventions to call dynamic or statically linked
libraries.
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Figure 6-1.
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While the processor executes from the Itanium instruction set (PSR.isis 0):

Itanium instructions are fetched, decoded and executed by the processor.

Itanium instructions can access the entire Itanium and | A-32 application register state. This
includes | A-32 segment descriptors, selectors, general registers, physical floating-point
registers, MM X technology registers, and SSE registers. See Section 6.2, “1A-32 Application
Register State Model” for adescription of the register state mapping.

Segmentation is disabled. No segmentation protection checks are applied nor are segment
bases added to compute virtual addresses. All computed addresses are virtual addresses.

254 virtual addresses can be generated and memory management is used for all memory and
1/O references.

IA-32 Instruction Set Execution

While the processor is executing the |A-32 instruction set (PSR.isis 1) within the Itanium System
Environment, the 1A-32 application architecture as defined by the Pentium Il processor is used,
namely:

IA-32 16/32-hit application level, MM X technology, and SSE instructions are fetched,
decoded, and executed by the processor. I nstructions are confined to 32/16-bit operations.
Only 1A-32 application level register stateisvisible (i.e. |A-32 generd registers, MM X
technology, and SSE registers, selectors, EFLAGS, FP registers and FP control registers).
Itanium application and control register state is not visible, e.g. branch, predicate, application,
control, debug, test, and performance monitor registers.

IA-32, Real Mode, VM 86 and Protected M ode segmentation isin effect. Segment protection
checks are applied and virtual addresses generated according to 1A-32 segmentation rules.
GDT and LDT segments are defined to support 1A-32 segmented applications. Segmented 16-
and 32-bit codeis fully supported.

Virtual addresses are confined to the lower 4G bytes of virtual region 0. Itanium architecture
memory management is used to tranglate virtual to physical addresses for all |A-32 instruction
set memory and |/O Port references.

Instruction and Data memory references are forced to be little-endian. Memory ordering uses
the Pentium 111 processor memory ordering model.
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« |1A-32 operating system resources; |A-32 paging, MTRRs, IDT, control registers, debug
registers and privileged instructions are superseded by resources defined in the Itanium
architecture. All accesses to these resources result in an interception fault.

6.1.3 Instruction Set Transitions

The following section summarizes behavior for each instruction set transition. Detailed instruction
description on jmpe (IA-32 instruction) and br . ia (Itanium instruction) should be consulted for
details.

Operating systems can disable instruction set transitions (jmpe and br . ia) by setting PSR.di to
one. If PSR.di isone, execution of jmpe Or br. ia resultsin aDisabled Instruction Set Transition
Fault. System level instruction set transitions dueto either r£1 or an interruption ignore the state of
PSR.di (defined in Section 3.3.2, “Processor Status Register (PSR)” on page 2:22).

6.1.3.1 JMPE Instruction

jmpe regl6/32; jmpe displé6/32 isused to jump and transfer control to the Itanium instruction
set. There are two forms; register indirect and absolute. The absolute form computes the Itanium
target virtual address asfollows:

IP{31:0} =displ6/32 + CSD.base
IP{63:32} = 0

Theindirect form reads a 16/32-bit register location and then computes the Itanium target address
asfollows:

IP{31:0} = [regl6/32] + CSD.base
IP{63:32} = 0

jmpe targets are forced to be 16-byte aligned, and are constrained to the lower 4G-bytes of the
64-bit virtual address space due to limited |A-32 addressability. If there are any pending 1A-32
numeric exceptions, jmpe is nullified, and an 1A-32 floating-point exception fault is generated.

Transitionsinto the Itanium instruction set do not change the privilege level of the processor.

6.1.3.2 Branch to IA Instruction

Thebr.ia instructionisused to unconditionally branch to the |A-32 instruction set. |A-32 targets
are specified by a 32-bit virtual address target (not an effective address). The |A-32 virtual address
is truncated to 32-hits. The br. ia branch hints should always be set to predicted static taken. The
processor transitions to the | A-32 instruction set as follows:

IP{31:0} = BR[b]{31:0}
1P{63:32} 0
EIP{31:0} Ip{31:0} - CSD.base

Transitionsinto the |A-32 instruction set do not change the privilege level of the processor.
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6.1.4

Software should ensure the code segment descriptor and selector are properly loaded beforeissuing
the branch. If the target EIP value exceeds the code segment limit or has a code segment privilege
violation, an 1A-32 GPFault(0) exception is reported on the target | A-32 instruction.

The processor does not ensure Itanium instruction set generated writes into the 1A-32 instruction
stream are observed by the processor. For details, see “ Self Modifying Code” on page 1:129.
Before entering the | A-32 instruction set, Itanium architecture-based software must ensure all prior
register stack frames have been flushed to memory. All registersleft in the current and prior register
stack frames are left in an undefined state after | A-32 instruction set execution. Software can not
rely on the value of these registers across an instruction set transition. For details, see “ Register
Stack Engine” on page 1:130.

IA-32 Operating Mode Transitions

Asdescribed in “1A-32 Instruction Set Execution” on page 1:108, jmpe, br.ia, and rfi
instructions and interruptions can transition the processor between the two instruction set modes.
Transitions are allowed between the Itanium architecture and al major |A-32 modes. As shown in
Figure 6-2, br.ia and r£1i will transition the processor from the Itanium instruction set into 1A-32
VM86, Real Mode or Protected Mode. While jmpe and interruptions will transition the processor
from either IA-32 VM 86, Real Mode or Protected Mode into the Itanium instruction set. Mode
transitions between | A-32 Real Mode, Protected Mode and VM 86 definitions are the same asthose
defined in the IA-32 Intel® Architecture Software Devel oper’s Manual.

Figure 6-2. Instruction Set Mode Transitions

1:110
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IPSR.is IPSR.is
PSR.is & PSR.is &
ICRO.pe Itanium CRO.pe & EFLAG.vm

Instruction Set

Itanium architecture-based interface code is responsible for setting up and loading a consistent
Protected Mode, Real Mode, or VM 86 environment (e.g. loading segment selectors and
descriptors, etc.) asdefined in “ Segment Descriptor and Environment Integrity” on page 1:117. The
processor applies additional segment descriptor checks to ensure operations are performed in a
consistent manner.
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6.2 IA-32 Application Register State Model

Asshown in Figure 6-3 and Table 6-1, |A-32 general purpose registers, segment selectors, and
segment descriptors, are mapped into the lower 32-bits of Itanium general purpose registers GR8 to
GR31. The floating-point register stack, MM X technology, and SSE registers are mapped on
Itanium floating-point registers FR8 to FR31.

To promote straight-forward parameter passing, integer and | EEE floating-point register and
memory data types are binary compatible between both | A-32 and Itanium instruction sets.

Figure 6-3. IA-32 Application Register Model

APPLICATION REGISTER SET
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|:| Not used by IA-32 execution

Some Itanium registers are modified to an undefined state by hardware as a side-effect during
|A-32 instruction set execution as noted in Table 6-1 and Figure 6-2. Generally, Itanium system
stateis not affected by | A-32 instruction set execution. Itanium architecture-based code can
reference all registers (including 1A-32), while IA-32 instruction set references are confined to the
|A-32 visible application register state.

Registers are assigned the following conventions during transitions between |A-32 and Itanium
instruction sets.
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» |A-32 state: Theregister contains an | A-32 register during | A-32 instruction set execution.
Expected 1A-32 values should be loaded before switching to the |A-32 instruction set. After
completion of 1A-32 instructions, these registers contain the results of the execution of 1A-32
instructions. These registers may contain any value during Itanium instruction execution
according to Itanium software conventions. Software should follow 1A-32 and Itanium calling
conventions for these registers.

» Undefined: Registers marked as undefined may be used as scratch areas for execution of
IA-32 instructions by the processor and are not ensured to be preserved across instruction set
transitions.

 Shared: Shared registers contain valuesthat have similar functionality in either instruction set.
For example, the stack pointer (ESP) and instruction pointer (1P) are shared.

» Unmoadified: These registers are not altered by 1A-32 execution. Itanium architecture-based
code can rely on these values not being modified during | A-32 instruction set execution. The
register will have the same contents when entering the | A-32 instruction set and when exiting
the 1A-32 instruction set.

Table 6-1. IA-32 Application Register Mapping

Intel® Itanium® Reg 1A-32 Reg Convention ‘ Size ‘ Description
General Purpose Integer Registers
GRO constant 0
GR1-3 undefined’ scratch for IA-32 execution
GR4-7 unmodified Intel® Itanium® preserved registers
GR8 EAX
GR9 ECX
GR10 EDX
GR11 EBX .

322 IA-32 general purpose registers
GR12 ESP
GR13 EBP
GR14 ESI
GR15 EDI
IA-32 state
GR16{15:0} DS
GR16{31:16} ES
GR16{47:32} FS
GR16{63:48} GS
64 IA-32 selectors
GR17{15:0} CS
GR17{31:16} SS
GR17{47:32} LDT
GR17{63:48} TSS
GR18-23 undefined’ scratch for IA-32 execution
GR24 ESD I1A-32 state 64 IA-32 segment descriptors (register
format)b
GR25-26 undefined’ scratch for IA-32 execution
GR27 DSD
GR28 FSD ] ]
GR29 GsD IA-32 state 64 IA-32 sbegment descriptors (register
format)

GR30 LDTDS
GR31 GDTD
GR32-127 undefinedd IA-32 code execution space
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Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention ‘ Size ‘ Description

Process Environment

IP IP shared 64 shared 1A-32 and Intel® Itanium® virtual
Instruction Pointer

Floating-point Registers

FRO constant +0.0

FR1 constant +1.0

FR2-5 unmodified Intel® Itanium® preserved registers
FR6-7 undefined 1A-32 code execution space

FR8 MMO/FPO

FR9 MM1/ FP1

FR10 MM2/FP2 IA-32 Intel MMX technology registers
FR11 MM3/FP3 (aliased on 64-bit FP mantissa)
FR12 MM4/FP4 IA-32 state 64/80 IA-32 FP registers (physical registers
FR13 MMS/FP5 mapping)*®

FR14 MM6/FP6

FR15 MM7/FP7

FR16-17 XMMO

FR18-19 XMM1

ER20-21 XMM2 IA-32 SSE registers

FR22-23 XMM3 low order 64-bits of XMMO are mapped to

IA-32 state 64 FR16{63:0}

FR24-25 XMM4 high order 64-bits of XMMO are mapped to

FR26-27 XMM5 FR17{63:0}

FR28-29 XMM6

FR30-31 XMM7

FR32-127 undefinedf 1A-32 code execution space

Predicate Registers

PRO constant 1

PR1-63 undefinedf IA-32 code execution space

Branch Registers

BRO-5 unmodified Intel® Itanium® preserved registers

BR6-7 undefined IA-32 code execution space

Application Registers

RSC

BSP » not used for 1A-32 execution

BSPSTORE unmodified Intel® Itanium® preserved registers

RNAT

Cccv undefinedf 64 1A-32 code execution space

UNAT unmodified not used for IA-32 execution, Intel®
Itanium® preserved register

FPSR.sf0 unmodified Intel® Itanium® numeric status and
controls register

FPSR.sf1,2,3 undefinedf IA-32 code execution space.
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Table 6-1. IA-32 Application Register Mapping (Continued)

Intel® Itanium® Reg IA-32 Reg Convention | Size Description
FSR FSW,FTW, 64 IA-32 numeric status and tag word and
MXCSR SSE status

FCR FCW, MXCSR 64 IA-32 numeric and SSE control

FIR FOP, FIP, FCS | A-32 state 64 IA-32 x87 numeric environment opcode,
code selector and IP

FDR FEA, FDS 64 IA-32 x87 numeric environment data
selector and offset

ITC TSC shared 64 shared IA-32 time stamp counter (TSC)
and Intel® Itanium® Interval Timer

PFS not used for IA-32 code execution, Prior

LC unmodified EC is preserved in PFM

EC Intel® Itanium® preserved registers

EFLAG EFLAG 32 IA-32 System/Arithmetic flags,
writes of some bits condition by CPL and
EFLAG.iopl.

Csb Csb 64 IA-32 code segment (register format)b

IA-32 state - b
SSD SSD IA-32 stack segment (register format)
CFLG CRO/CR4 64 IA-32 control flags

CRO=CFLG{31:0}, CR4=CFLG{63:32},
writable at CPL=0 only.

a. On transitions into the IA-32 instruction set the upper 32-bits are ignored. On exit the upper 32-bits are sign
extended from bit 31.

b. Segment descriptor formats differ from the iA-32 memory format, see “IA-32 Segment Registers” on
page 1:115 for details. Modification of a selector or descriptor does not set the access/busy bit in memory.

c. The GDT/LDT descriptors are NOT protected from modification by Itanium architecture-based user level code

d. All registers in the current and prior registers frames are left in an undefined state after IA-32 execution.
Software must preserve these values before entering the IA-32 instruction set.

e. 1A-32 floating-point register mappings are physical and do not reflect the |1A-32 top of stack value.

f. These registers are used by the processor and may be left an undefined state following 1A-32 instruction set
execution. Software should preserve required values before entering IA-32 code.

6.2.1 IA-32 General Purpose Registers

Integer registers are mapped into the lower 32-bits of Itanium general registers GR8 to GR15.
Valuesin the upper 32-bits of GR8 to GR15 are ignored on entry to 1A-32 execution. After the
IA-32 instruction set completes execution, the upper 32-bits of GR8 - GR15 are sign-extended from
bit 31.

Based on |A-32 and Itanium calling conventions, the required | A-32 state must be loaded in
memory or registers by Itanium architecture-based code before entering the 1A-32 instruction set.

Figure 6-4. IA-32 General Registers (GR8 to GR15)

63 32 31 0
sign extended ‘ EAX.. EDI{31:0}
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6.2.2 IA-32 Instruction Pointer

The processor maintains two instruction pointers for | A-32 instruction set references, EIP (32-bit
effective address) and | P (a 64-bit virtual address equivalent to the Itanium instruction set IP). IPis
generated by adding the code segment base to EIP and zero extending to 64-bits. P should not be
confused with the 16-bit effective address instruction pointer of the 8086. EIP is an offset within
the current code segment, while IPisa64-bit virtual pointer shared with the Itanium instruction set.
The following relationship is defined between EIP and | P while executing | A-32 instructions.

1P{63:32} = 0;
IP{31:0} = EIP{31:0} + CSD.Base;

EIP is added to the code segment base and zero extended into a 64-bit virtual address on every
IA-32 ingtruction fetch. If during an 1A-32 instruction fetch, EIP exceeds the code segment limit, a
GPFault is generated on the referencing instruction. Effective instruction addresses (sequential
values or jJump targets) above 4G-bytes are truncated to 32 bits, resulting in a4-G byte wraparound
condition.

6.2.3 IA-32 Segment Registers

| A-32 segment selectors and descriptors are mapped to GR16 - GR29 and AR25 - AR26.
Descriptors are maintained in an unscrambled format shown in Figure 6-6. Thisformat differsfrom
the 1A-32 scrambled memory descriptor format. The unscrambled register format is designed to
support fast conversion of 1A-32 segmented 16/32-bit pointersinto virtual addresses by Itanium
architecture-based code. 1A-32 segment register load instructions unscramble the GDT/LDT
memory format into the descriptor register format on a segment register load. Itanium
architecture-based software can also directly load descriptor registers provided they are properly
unscrambled by software. When Itanium architecture-based software |oads these registers, no data
integrity checks are performed at that time if illegal values are loaded in any fields. For a complete
definition of all bit fields and field semantics refer to the IA-32 Intel® Architecture Software
Developer’s Manual.

Figure 6-5. IA-32 Segment Register Selector Format

63 48 47 32 31 16 15 0
GS FS ES DS GR16

TSS LDT SS CS GR17

Figure 6-6. IA-32 Code/Data Segment Register Descriptor Format
63 62 61 60 59 58 57 56 55 52 51 32 31 0

‘ g ‘d/b‘ ig ‘av‘ p ‘ dpl ‘ S ‘ type lim{19:0} base{31:0}

Table 6-2. IA-32 Segment Register Fields

Field Bits Description
selector 15:0 Segment Selector value, see the 1A-32 Intel® Architecture Software Developer’'s Manual
for bit definition.
base 31:.0 Segment Base value. This value when zero extended to 64-bits, points to the start of the
segment in the 64-bit virtual address space for IA-32 instruction set memory references.
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Table 6-2. IA-32 Segment Register Fields (Continued)

6.2.3.1

1:116

Field Bits Description

lim 51:32 | Segment Limit. Contains the maximum effective address value within the segment for
expand up segments for IA-32 instruction set memory references. For expand down
segments, limit defines the minimum effective address within the segment. See the
IA-32 Intel® Architecture Software Developer’'s Manual for details and segment limit fault
conditions. The segment limit is scaled by (lim << 12) | OxFFF if the segment’s g-bit is 1.

type 55:52 | Type identifier for data/code segments, including the Access bit (bit 52). See the 1A-32
Intel® Architecture Software Developer’s Manual for encodings and definition.

S 56 Non System Segment. If 1, a data segment, if 0 a system segment.

dpl 58:57 | Descriptor Privilege Level. The DPL is checked for memory access permission for 1A-32
instruction set memory references.

p 59 Segment Present bit. If 0, and a IA-32 memory reference uses this segment an
IA_32_Exception(GPFault) is generated for data segments (CS, DS, ES, FS, GS) and
an |A_32_Exception(StackFault) for SS.

av 60 Ignored — This field is ignored by the processor during I1A-32 instruction set execution.
This field is available for I1A-32 software use and there will be no future use for this field.
For Itanium instructions, implementations which do not support the 1d16, st16 and
cmp8xchglé instructions can either ignore writes and return zero on reads, or write the
value and return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

ig 61 Ignored — This field is ignored by the processor during I1A-32 instruction set execution.
This field may have a future use and should be set to zero by IA-32 software. For Itanium
instructions, implementations which do not support the 1d16, st16 and cmp8xchglé
instructions can either ignore writes and return zero on reads, or write the value and
return the last value written on reads. Implementations which do support these
instructions write the value and return the last value written on reads.

d/b 62 Segment Size. If 0, IA-32 instruction set effective addresses within the segment are
truncated to 16-bits. Otherwise, effective addresses are 32-bits. The code segment’s
d/b-bit also controls the default operand size for I1A-32 instructions. If 1, the default
operand size is 32-bits, otherwise 16-bits.

g 63 Segment Limit Granularity. If 1, scales the segment limit by lim=(lim<<12) | OxFFF for
IA-32 instruction set memory references. This field is ignored for Intel® Itanium®
instruction set memory references.

Data and Code Segments

On the transition into 1A-32 code, the |A-32 segment descriptor and selector registers (GDT, LDT,
DS, ES, CS, SS, FS and GS) must be initialized by Itanium architecture-based code to the required
values based on 1A-32 and Itanium calling conventions and the segmentation model used.

Itanium architecture-based code may manually load a descriptor with an 8-byte fetch from the
LDT/GDT, unscramble the descriptor and write the segment base, limit and attribute. Alternately,
Itanium architecture-based software can switch to the IA-32 instruction set and perform the
required segment load with an |A-32 Mov Sreg instruction. If Itanium architecture-based code
explicitly loads the segment descriptors, it isresponsible for the integrity of the segment descriptor.

The processor does not ensure coherency between descriptors in memory and the descriptor
registers, nor does the processor set segment access bitsin the LDT/GDT if segment registers are
loaded by Itanium instructions.
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6.2.3.2

Segment Descriptor and Environment Integrity

For 1A-32 instruction set execution, most segment protection checks are applied by the processor
when the segment descriptor is loaded by 1A-32 instructions into a ssgment register. However,
segment descriptor |oads from the Itanium instruction set into the general purpose register file
perform no such protection checks, nor are segment Access-hits updated by the processor.

If Itanium architecture-based software directly loads adescriptor, it isresponsible for the validity of
the descriptor, and ensuring integrity of the | A-32 Protected Mode, Real Mode or VM 86
environments. Table 6-3 defines software guidelines for establishing theinitial 1A-32 environment.
The processor checks the integrity of the IA-32 environment as defined in “1A-32 Environment
Runtime Integrity Checks’ on page 1:119. On the transitions between |A-32 and Itanium
architecture-based code, the processor does NOT alter the base, limit or attribute values of any
segment descriptor, nor isthere achangein privilege level.

Table 6-3. IA-32 Environment Initial Register State

Register Field Real Mode Protected Mode VM86 Mode
PSR cpl 0 Privilege Level 3
EFLAG vm 0 0 1
CRO pe 0 1 1
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl PSR.cpl (0) PSR.cpl® PSR.cpl (3)
d-bit 16-bitd 16/32-bit 16-bit
Cs type data rd/wr, expand up execute data rd/wr, expand up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl PSR.cpl (0) PSR.cpl PSR.cpl (3)
d-bit 16-bitd 16/32-bit size 16-bit
SS type data rd/wr, expand up data types data rd/wr, expand up
s-bit 1 1 1
p-bit 1 1 1
a-bit 1 1 1
g-bit/limit OXFFFF® limit OXFFFF
selector base >> 42 selector base >> 4
base selector << 4P base selector << 4
dpl dpl >= PSR.cpl (0) dpl >= PSR.cpl dpl >= PSR.cpl (3)
d-bit 16-bitd 16/32-bit 0
22 ESS type data rd/wr, expand up data types data rd/wr, expand up
s-bit 1 1 1
a-bit 1 1 1
p-bit 1 1/0' 1
g-bit/limit OXFFFF® limit OXFFFF
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Table 6-3. IA-32 Environment Initial Register State (Continued)

1:118

Register Field Real Mode Protected Mode VM86 Mode
PSR cpl 0 Privilege Level
EFLAG vm 0 0
CRO pe 0 1
selector selector
base base
dpl dpl >= PSR.cpl
d-bit 0
LD_EBSDT’ typ.e N/A Idt/gdt/tss types
s-bit 0
p-bit 1
a-bit 1
g-bit/limit limit

~ooooe

Selectors should be set to 16*base for normal RM 64KB operation.

Segment base should be set to selector/16 for normal RM 64KB operation.

Unless a conforming code segment is specified

Segment size should be set to 16-bits for normal RM 64KB operation.

Segment limit should be set to OXFFFF for normal RM 64KB operation.

For valid segments the p-bit should be set to 1, for null segments the p-bit should be set to 0.

6.2.3.2.1 Protected Mode

Itanium architecture-based software should follow these rules for setting up the segment
descriptors for Protected Mode environment before entering the |A-32 instruction set:

Itanium architecture-based software should ensure the stack segment descriptor register’s
DPL==PSR.cpl.

For DSD, ESD, FSD and GSD segment descriptor registers, Itanium architecture-based
software should ensure DPL>=PSR.cpl.

For CSD segment descriptor register, Itanium architecture-based software should ensure
DPL==PSR.cpl (except for conforming code segments).

Software should ensure that all code, stack and data segment descriptor registers do not contain
encodings for any system segments.

Software should ensure the a-bit of all segment descriptor registers are set to 1.

Software should ensure the p-bit is set to 1 for all valid data segmentsand to O for all NULL
data segments.

6.2.3.2.2 VM86

Itanium architecture-based software should follow these rules when setting up segment descriptors
for the VM 86 environment before entering the 1A-32 instruction set:

PSR.cpl must be 3 (or IPSR.cpl must be 3 for r£i).

Itanium architecture-based software should ensure the stack segment descriptor register’s
DPL==PSR.cpl==3 and set to 16-bit, data read/write, expand up.

For CSD, DSD, ESD, FSD and GSD segment descriptor registers, Itanium architecture-based
software should ensure DPL==3, the segment is set to 16-bit, data read/write, expand up.

Software should ensure that all code, stack and data segment descriptor registers do not contain
encodings for any system segments.
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6.2.3.3

« Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

» Software should ensure that the relationship Base = Selector* 16, is maintained for all DSD,
CSD, ESD, SSD, FSD, and GSD segment descriptor registers, otherwise processor operationis
unpredictable.

* Software should ensure that the DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
register'slimit value is set to OXFFFF, otherwise spurious segment limit faults (GPFault or
Stack Faults) may be generated.

* |tanium architecture-based software should ensure all segment descriptor registers are data
read/write, including the code segment. The processor will ignore execute permission faults.

6.2.3.2.3 Real Mode

Itanium architecture-based software should follow these rules when setting up segment descriptors
for the Real Mode environments before entering the |A-32 instruction set, otherwise software
operation is unpredictable.

« Itanium architecture-based software should ensure PSR.cpl is0

« Itanium architecture-based software should ensure the stack segment descriptor register’s DPL
isO.

 Software should ensure that all code, stack and data segment descriptor registers do not contain
encodings for any system segments.

« Software should ensure the P-bit and A-bit of all segment descriptor registersis one.

« For normal real mode 64K operations, software should ensure that the relationship Base =
Selector* 16, is maintained for all DSD, CSD, ESD, SSD, FSD, and GSD segment descriptor
registers.

« For normal real mode 64K operations, software should ensure that the DSD, CSD, ESD, SSD,
FSD, and GSD segment descriptor register’s limit valueis set to OXFFFF and the segment size
is set to 16-hit (64K)

« Itanium architecture-based software should ensure all segment descriptor registers indicate
readable, writable, including the code segment for normal Real Mode operation.

IA-32 Environment Runtime Integrity Checks

Processorsin the Itanium processor family perform additional runtime checksto verify the integrity
of the | A-32 environments. These checks are in addition to the runtime checks defined on 1A-32
processors and are high-lighted in Table 6-4. Existing | A-32 runtime checks are listed but not
highlighted. Descriptor fields not listed in the table are not checked. As defined in the table,
runtime checks are performed either on 1A-32 instruction code fetches or on an | A-32 data memory
reference to one of the specified segment registers. These runtime checks are not performed during
transitions from the Itanium instruction set to the I1A-32 instruction set.

Table 6-4. IA-32 Environment Runtime Integrity Checks

Reference Resource Real Mode Protected Mode VM86Mode Fault
PSR.cpl is not 0 ignored is not 3
EFLAG.vmC EFLAG.vmis 1 and CFLG.pe is 0
FLG.pe Code Fetch Fault
all code fetches a
EFLAG.vif EFLAG.vip & EFLAG.vif & CFLG.pe & (GPFault(0))
EFLAG.vip PSR.cpl==3 &
(CFLG.pvi | (EFLAG.vm & CFLG.vme))
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Table 6-4. IA-32 Environment Runtime Integrity Checks (Continued)

Reference Resource Real Mode Protected Mode VM86Mode Fault
dpl ignored dpl is not 3
d-bit is not 16-bit
all code fetches type ignored (can be exec or data) Code Fetch Fault
cs GPFault if data expand down (GPFault(0))
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl dpl'=PSR.cpl
d-bit ignored is not 16-bit
data memory type ignored data expand down
- - Stack Fault
references to SS read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to - - GPFault(0)
DS, ES, FS and GS read and not readable, write and not writeable
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
d-bit ignored is not 16-bit
data memory type ignored data expand down
references to rd/wr checks are rd and not readable, rd/wr checks are | GPFault(0)
Cs ignored wr and not writeable ignored
s, p, a-bits are not 1
g-bit/limit segment limit violation
dpl ignored
memory typfe |-gnored
references to s-bit is not 0 GPFault
LDT,GDT, a, d-bits ignored (Selector/0)°
TSS p-bit isnot 1
g-bit/limit segment limit violation

a. Code Fetch Faults are delivered as higher priority GPFault(0).
b. The GP Fault error code is the selector value if the reference is to GDT or LDT. Otherwise the error code is zero.

6.2.4

IA-32 Application EFLAG Register

The EFLAG (AR24) register is made up of two major components, user arithmetic flags (CF, PF,
AF, ZF, SF, OF, and ID) and system control flags (TF, IF, IOPL, NT, RF, VM, AC, VIF, VIP). None
of the arithmetic or system flags affect Itanium instruction execution. See Table 6-5, “1A-32
EFLAGS Register Fields” on page 1:121 for the behavior on [A-32 and Itanium instruction
reads/writes to this application register. For details on system flagsin the |A-32 EFLAGS register,
see Section 10.3.2, “1A-32 System EFLAG Register” on page 2:235.

1:120
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Figure 6-7. IA-32 EFLAG Register (AR24)
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The arithmetic flags are used by the |A-32 instruction set to reflect the status of | A-32 operations,
control 1A-32 string operations, and control branch conditions for 1A-32 instructions. These flags
areignored by Itanium instructions. Flags ID, OF, DF, SF, ZF, AF, PF and CF are defined in the

IA-32 Intel® Architecture Software Devel oper’s Manual.

Table 6-5. IA-32 EFLAGS Register Fields

EFLAG? Bits Description
cf 0 IA-32 Carry Flag. See the IA-32 Intel® Architecture Software Developer's Manual for
details.

1 Ignored — For |A-32 instructions, writes are ignored, reads return one. For Itanium
instructions, the implementation can either ignore writes and return one on reads; or
write the value, and return the last value written on reads.

3,5, Ignored — For IA-32 instructions, writes are ignored, reads return zero. For Itanium

15 instructions, the implementation can either ignore writes and return zero on reads, or
write the value and return the last value written on reads.

pf 2 IA-32 Parity Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

af 4 IA-32 Aux Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

zf 6 IA-32 Zero Flag. See the 1A-32 Intel® Architecture Software Developer’s Manual for
details.

sf 7 IA-32 Sign Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

tf 8 ) )

_f See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:235.

i

df 10 IA-32 Direction Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

of 11 IA-32 Overflow Flag. See the IA-32 Intel® Architecture Software Developer’s Manual for
details.

iopl 13:12

nt 14

rf 16

vm 17 . .

18 See Section 10.3.2, “IA-32 System EFLAG Register” on page 2:235.

ac

vif 19

vip 20

a. On entry into the IA-32 instruction set all bits may be read by subsequent |1A-32 instructions, after exit from the
IA-32 instruction set these bits represent the results of all prior IA-32 instructions. None of the EFLAG bits alter
the behavior of Itanium instruction set execution.
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6.2.5

IA-32 Floating-point Registers

IA-32 floating-point register stack, numeric controls and environment are mapped into the Itanium
floating-point registers FR8 - FR15 and the application register name space as shown in Table 6-6.

Table 6-6. IA-32 Floating-point Register Mappings

6.2.5.1

6.2.5.2

1:.122

® m®
Intel™ ltanium IA-32 Reg Size (bits) Description
Reg
FR8 ST[(TOS + N)==0]
FR9 ST[(TOS + N)==1] IA-32 numeric register stack
FR10 ST[(TOS + N)==2]
FR11 STI(TOS + N)==3] Accesses to FR8 - FR15 by Intel® Ita_nium®
80 instructions ignore the 1A-32 TOS adjustment
FR12 ST[(TOS + N)==4]
FR13 ST[(TOS + N)==5] IA-32 accesses use the TOS adjustment for a
ER14 ST(TOS + N)==6] given register N
FR15 ST[(TOS + N)==7]
FCR (AR21) FCW, MXCSR 64 IA-32 numeric and SSE control register
FSR (AR28) FSW,FTW, MXCSR 64 IA-32 numeric and SSE status and tag word
FIR (AR29) FOP, FCS, FIP 64 IA-32 numeric instruction pointer
FDR (AR30) FDS, FEA 48 IA-32 numeric data pointer

IA-32 Floating-point Stack

IA-32 floating-point registers are defined as follows:
* |A-32 numeric register stack is mapped to FR8 - FR15, using the Intel 8087 80-hit IEEE

floating-point format.

For 1A-32 instruction set references, floating-point registers are logically mapped into FR8 -
FR15 based on the 1A-32 top-of-stack (TOS) pointer held in FCR.top. FR8 represents a
physical register after the TOS adjustment and is not necessarily the top of the logical
floating-point register stack.

For Itanium instruction set references, the floating-point register numbers are physical and not
afunction of the numeric TOS pointer, e.g. references to FR8 always return the value in
physical register FR8 regardless of the TOS value. Itanium architecture-based software cannot
necessarily assume that FR8 contains the 1A-32 logical register ST(0). It is highly
recommended that typically A-32 calling conventions be used which pass fl oating-point
values through memory.

Special Cases

For 1A-32 floating-point instructions, loading a single or double denormal resultsin a normalized
double-extended value placed in the target floating-point register. For Itanium instructions, loading
asingle or double denormal resultsin an un-normalized denormal value placed in the target
floating-point register. There are two canonical exponent values in the Itanium architecture which
indicate single precision and double precision denormals.
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When transferring floating-point values from Itanium to |A-32 instructions, it is highly
recommended that typical | A-32 calling conventions be followed which pass floating-point values
through the memory stack. If software does pass floating-point values from | A-32 to Itanium
architecture-based code via the floating-point registers, software must ensure the following:

 Single or double precision Itanium denormals must be converted into a normalized double
extended precision value expected by | A-32 instructions. Software can convert Itanium
denormals by multiplying by 1.0 in double extended precision (fma.sfx fr = fr, f1, £0).
If anillegal single or double precision denormal is encountered in | A-32 floating-point
operations, an 1A-32 Exception (FPError Invalid Operand) fault is generated.

* Floating-point values must be within the range of the A-32 80-bit (15-bit exponent) double
extended precision format. The Itanium architecture uses 82 bits (17-bit widest range
exponent) for intermediate cal culations. Software must ensure all floating-point register values
passed to |A-32 instructions are representable in double extended precision 80-bit format,
otherwise processor operation is model specific and undefined. Undefined behavior can
include but is not limited to: the generation of an IA_32_ Exception (FPError Invalid
Operation) fault when used by an 1A-32 floating-point instruction, rounding of out-of-range
values to zero/denormal/infinity and possible IA_32_Exception (FPError
Overflow/Underflow) faults, or float-point register(s) containing out of range values silently
converted to QNAN or SNAN (conversion could occur during entry to the |A-32 instruction
set or on use by an | A-32 floating-point instruction). Software can ensure all passed
floating-point register values are within range by multiplying by 1.0 in double extended
precision format (with widest range exponent disabled) by using fma.sfx fr = fr, f1, fo.

 Floating-point NaTVal values must not be propagated into 1A-32 floating-point instructions,
otherwise processor operation is model specific and undefined. Processors may silently
convert floating-point register(s) containing NaTVal to a SNAN (during entry to the 1A-32
instruction set or on a consuming 1A-32 floating-point instruction). Dependent |A-32
floating-point instructions that directly or indirectly consume a propagated NaTVal register
will either propagate the NaTVal indication or generate an |A_32_Exception (FPError Invalid
Operand) fault. Whether a processor generates the fault or propagates the NaTVal is model
specific. In no case will the processor allow a NaTVal register to be used without either
propagating the NaTVal or generating an |A_32_Exception (FPError Invalid Operand) fault.

Note: Itisnot possible for |A-32 code to read a NaTVal from amemory location with an 1A-32
floating-point load instruction, since a NatVal cannot be expressed by a 80-bit double
extended precision number.

It is highly recommended that floating-point values be passed on the memory stack per typical

| A-32 calling conventions to avoid numeric problems with NatVal and Itanium denormals.

6.2.5.3 IA-32 Floating-point Control Registers

FPSR controls Itanium floating-point instructions control and status bits. FPSR does not control

| A-32 floating-point instructions or reflect the status of 1A-32 floating-point instructions. |A-32
floating-point and SSE instructions have separate control and status registers, namely floating-point
control register (FCR) and floating-point status register (FSR).

FCR contains the |A-32 FCW bits and all SSE control bits as shown in Figure 6-8.

FSR contains the 1A-32 floating-point status flags FSW, FTW, and SSE status fields as shown in
Figure 6-9. The Tag fields indicate whether the corresponding 1A-32 logical floating-point register
is empty. Tag encodings for zero and special conditions such as Nan, Infinity or Denormal of each

Volume 1: IA-32 Application Execution Model in an Intel® Itanium® System Environment 1:123



IA-32 logical floating-point register are not supported. However, |A-32 instruction set reads of
FTW compute the additional special conditions of each 1A-32 floating-point register. Itanium
architecture-based code can issue a floating-point classify operation to determine the disposition of
each 1A-32 floating-point register.

FCR and FSR collectively hold all 1A-32 floating-point control, status and tag information. 1A-32
instructions that are updated and controlled by MXSCR, FCW, FSW and FTAG effectively update
FSR and are controlled by FSR. 1A-32 reads/writes of MXCSR, FSW, FCW and FTW return the
same information as reads/writes of FSR and FCR by Itanium instructions.

Software must ensure that FCR and FSR are properly loaded for IA-32 numeric execution before
entering the |A-32 instruction set. For Itanium instructions accessing ignored fields, the
implementation can either ignore writes and return the specified constant on reads, or write the
value and return the last value written on reads. For Itanium instructions accessing reserved fields,
the implementation can either raise Reserved Register/Field fault on non-zero writes and return
zero on reads, or write the value (no Reserved Register/Field fault), and return the last value written
on reads.

Figure 6-8. IA-32 Floating-point Control Register (FCR)

IA-32 FCW{12:0}
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
|c\ RC ‘ PC ‘0 ‘ 1 ‘PM‘UM‘OM‘ZM‘DM‘IM‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 3938 37 36 35 34 33 32
D EOM - < oo s

IA-32 MXCSR (control)

Figure 6-9. IA-32 Floating-point Status Register (FSR)

1:124

IA-32 FTW{15:0} 1A-32 FSW{15 0}
30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 151413121110 9

4 3
‘0’TG7‘ ’TGG‘ ’TGS‘ ’TG4‘ ’TG3‘ ’TGZ‘ ‘TGI‘ ‘TGO‘ \03‘ TOP ‘CZ‘Cl’CO‘ES‘SF‘PE‘UE‘OE‘ZE’DE‘IE‘
63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 4645444342 41 40 39 38 37 36 35 34 33 32

RO oo [cucoczeoee

IA-32 MXCSR (status)
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Table 6-7. 1A-32 Floating-point Status Register Mapping (FSR)

6.25.4

IA-32 State

Intel® Itanium®

State

Bits

IA-32 Usage

Usage in the Intel®
Itanium® Architecture

FSW, FTW, MXCSR state in the FSR Register

ignored

39:47

FSW.ie FSR.ie 0 Invalid operation Exception
FSW.de FSR.de 1 Denormalized operand
Exception
FSW.ze FSR.ze 2 Zero divide Exception
FSW.oe FSR.oe 3 Overflow Exception None of these bit% reflect
FSW.ue FSR.ue 4 Underflow Exception the _S‘at};S of Iptel .
— 8 Itanium™ floating-point
FSW.pe FSR.pe 5 Precision Exception execution.
FSW.sf FSR.sf 6 Stack Fault o
FSW.es FSR.es? 7 Error Summary See Fhe IA-32 Intel
- — Architecture Software
FSW.c3:0 FSR.c3:0 8:10,14 Numeric Condition codes Developer's Manual for
FSW.top FSR.top 11:13 Top of IA-32 numeric stack | IA-32 numeric flag details
FSW.b FSR.b 15 IA-32 FPU Busy always
equals state of FSW.ES
FTW FSR.tg 16,18,20,22 Numeric Tags 0-NotEmpty,
{7:0° 24,26,28,30 | 1-Empty©
zeros 17,19,21,23,25, | Ignored — Writes are
27,29,31, 39:47 | ignored, reads return zero
MXCSR.ie FSR.ie 32 SSE Invalid operation
Exception
MXCSR.de FSR.de 33 SSE Denormalized operand | poes not reflect the status
Exception of Intel® Itanium®
MXCSR.ze FSR.ze 34 SSE Zero divide Exception | floating-point execution.
MXCSR.oe FSR.oe 35 SSE Overflow Exception ®
- See |A-32 Intel
MXCSR.ue FSR.ue 36 SSE Underflow Exception Architecture Software
MXCSR.pe FSR.pe 37 SSE Precision Exception Developer’s Manual for

Ignored — Writes are
ignored, reads return zero

a. Exception Summary bit, see Section 6.2.5.4, “|A-32 Floating-point Environment” for details

b. Tag encodings indicate whether each IA-32 numeric register contains an zero, NaN, Infinity or Denormal are
not supported by reads of FSR by Itanium instructions. 1A-32 instruction set reads of the FTW field do return
zero, Nan, Infinity and Denormal classifications.

c. All MMX technology instructions set all Numeric Tags to 0 = NotEmpty. However, MMX technology instruction
EMMS sets all Numeric Tags to 1 = Empty.

IA-32 Floating-point Environment

To support the Intel 8087 delayed numeric exception model, FSR, FDR and FIR contain pending
information related to the numeric exception. FDR contains the operand’s effective address and
segment selector. FIR contains the numeric instruction’s effective address, code segment sel ector,
and opcode bits. FSR summaries the type of numeric exception in the IE, DE, ZE, OE, UE, PE, SF
and ES-bits. The ES-bit summarizes the | A-32 floating-point exception status as follows:

* When FSR.esisread by Itanium architecture-based code, the value returned is a summary of
any unmasked pending exceptions contained in the FSR, IE, DE, ZE, OE, UE, and PE bits.
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Note:  Reads of the ES-bit do not necessarily return the last value written if the ES-bit is
inconsistent with the other pending exception bitsin FSR.

» When FSR.esis set to 1 by Itanium architecture-based code, delayed 1A-32 numeric
exceptions are generated on the next 1A-32 floating-point instruction, regardless of numeric
exception information written into FSR bits; |E, DE, ZE, OE, UE, and PE.

» When FSR.esiswritten with inconsistent state with respect to the FSR bits (IE, DE, ZE, OE,
and PE), subsequent numeric exceptions may report inconsistent floating-point status bits.

For Itanium instructions, the implementation can either raise Reserved Register/Field faults on
non-zero writes to the reserved fields, or write the value and return the last value written on reads.
FSR, FDR, and FIR must be preserved across a context switch to generate and accurately report
numeric exceptions.

Figure 6-10. Floating-point Data Register (FDR)
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
‘ operand offset (fea)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

Figure 6-11. Floating-point Instruction Register (FIR)

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
code offset (fip)

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

_ opcode {10:0} (fop)

6.2.6 IA-32 Intel® MMX™ Technology Registers

code selector (fcs)

The eight |A-32 Intel MM X technology registers are mapped on the eight Itanium floating-point
registers FR8 - FR15 where MMO is mapped to FR8 and MM7 is mapped to FR15. The MM X
technology register mapping for the | A-32 floating-point stack view is dependent on the
floating-point |A-32 Top-of-Stack value.

Figure 6-12. 1A-32 Intel® MMX™ Technology Registers (MMO to MM7)

81 80 64 63 0
\ 1 \ ones MMO..MM7{31:0} \ FR8-15

» When avalueiswritten to an MM X technology register using an 1A-32 MM X technology
instruction:
» The exponent field of the corresponding floating-point register (bits 80-64) and the sign
bit (bit 81) are set to all ones.
* The mantissa (bits 63-0) is set to the MM X technology data value.
* When avaueisread from an MMX technology register by an |A-32 MM X technology
instruction:

» Theexponent field of the corresponding floating-point register (bits 80-64) and its sign bit
(bit 81) are ignored, including any NaT Val encodings.
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Asaresult of this mapping, the mantissa of a floating-point value written by either IA-32 or
Itanium floating-point instructions will also appear in an |A-32 MM X technology register. An
IA-32 MMX technology register will also appear in one of the eight mapped floating-point
register’s mantissafield.

To avoid performance degradation, software programmers are strongly recommended not to
intermix |A-32 floating and |A-32 MM X technology instructions. See the |A-32 Intel®
Architecture Software Devel oper’s Manual for MM X technology coding guidelines for details.

6.2.7 IA-32 SSE Registers

The eight 128-bit 1A-32 SSE registers (XMMO0-7) are mapped on sixteen physical Itanium
floating-point register pairs FR16 - FR31. The low order 64-bits of XMMO are mapped to
FR16{63:0}, and the high order 64-bits of XMMO are mapped to FR17{63:0} .

Figure 6-13. SSE Registers (XMM0O-XMM7)

81 80 64 63 0
\ 0 \ 0x1003E \ XMMO-7{127:64} ‘FR17-31, odd
81 80 64 63 0
\ 0 \ 0x1003E \ XMMO-7{63:0} ‘FR16-30, even

* When avaueiswritten to an SSE register using 1A-32 SSE instructions:

« The exponent field of the corresponding Itanium floating-point register (bits 80-64) is set
to Ox1003E and the sign bit (bit 81) isset to 0.

¢ The mantissa (bits 63-0) is set to the XMM data value bits{ 63:0} for even registers and
bits{ 127:64} for odd registers.

* When a SSE register is read using 1A-32 SSE instructions:

» The exponent field of the corresponding Itanium floating-point register (bits 80-64) and
the sign bit (bit 81) are ignored, including any NaTVal encodings.

6.3 Memory Model Overview

Virtual addresses within either the Itanium or |A-32 instruction set are defined to address the same
physical memory location. Itanium instructions directly generate 64-bit virtual addresses. |A-32
instructions generate 16- or 32-bit effective addresses that are then converted into 32-bit virtual
addresses by | A-32 segmentation. 32-bit virtual addresses are then converted into 64-bit virtual
addresses by zero extending to 64-bits. Zero extension places al 1A-32 memory referencesin the
lower 4G-bytes of the 64-bit virtual address space within virtual region 0. Virtual addresses
generated by either instruction set are then translated into physical addresses using memory
management mechanisms defined in Chapter 4, “ Addressing and Protection” in Volume 2.
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Figure 6-14. Memory Addressing Model

6.3.1

6.3.2

1:128

16-/32-bit 32-bit Virtual 64-bit Virtual
Effective Address Address Address
Base ——¢
1A-32 ; Zero
Index Segmentation Extend |
Displacement—/
Intel® Itanium®  Base -
Architecture

Memory Endianess

Memory integer and floating-point (IEEE) data types are binary compatible between the | A-32 and
Itanium instruction sets. Itanium architecture-based applications and operating systems that interact
with 1A-32 code should use “little-endian” accesses to ensure that memory formats are the same.
All 1A-32 instruction data and instruction memory references are forced to “little-endian.”

IA-32 Segmentation

Segmentation is not used for Itanium instruction set memory references. Segmentation is
performed on | A-32 instruction set memory references based on the state of EFLAGvm and
CFLG.pe. Either Real Mode, VM 86, or Protected Mode segmentation rules are followed as defined
inthe 1A-32 Intel® Architecture Software Devel oper’s Manual, specificaly:

» |A-32 Data 16/32-bit Effective Addresses: 16 or 32-hit effective addresses are generated,
based on CSD.d, SSD.b and prefix overrides, by the addition of a base register, scaled index
register and 16/32-bit displacement value. Starting effective addresses (first byte of multi-byte
operands) larger than 16 or 32 bits are truncated to 16 or 32-bits. Ending (last byte of
multi-byte operands) 16-bit effective addresses can extend above the 64K byte boundary,
however, ending 32-bit effective addresses are truncated to 32-bits and do not extend above the
4G-byte effective address boundary. Refer to the 1A-32 Intel® Architecture Software
Developer’s Manual for complete details on wrap conditions.

* |A-32 Code 16/32-bit Effective Addresses: 16 or 32-bit EIP, based on CSD.d, is used asthe
effective address. Starting EIP values (first byte of multi-byte instruction) larger than 16 or 32
bits are truncated to 16 or 32-bits. Ending (last byte of multi-byte instruction) 16-bit effective
addresses can extend above the 64K byte boundary, however, ending 32-bit EIP values are
truncated to 32-bits and do not extend above the 4G-byte effective address boundary.

* 1A-32 32-bit Virtual Address Generation: The resultant 16 or 32-bit effective addressis
mapped into the 32-bit virtual address space by the addition of a segment base. Full segment
protection and limit checks are verified as specified by the IA-32 Intel® Architecture Software
Developer’s Manual and additional checks as specified in this section. Starting 32-bit virtual
addresses are truncated to 32-bits after the addition of the segment base. Ending virtual address
(last byte of amultiple byte operand or instruction) is truncated (wrapped) at the 4G-byte
virtual boundary
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6.3.3

6.3.4

* 1A-32 64-bit Address Generation: The resultant 32-bit virtual addressis converted into a
64-bit virtual address by zero extending to 64-bits, this places all | A-32 instruction set memory
references within the first 4G-bytes of the 64-bit virtual address space within virtual region O.

If IA-32 codeis utilizing aflat segmented model (segment bases are set to zero) then |A-32 and
Itanium architecture-based code can freely exchange pointers after a pointer has been zero
extended to 64-hits. For segmented | A-32 code, effective address pointers must befirst transformed
into avirtual address before they are shared with Itanium architecture-based code.

Self Modifying Code

While operating in the | A-32 instruction set, self modifying code and instruction cache coherency
(coherency with respect to the local processor’s data cache) is supported for al |A-32 programs.
Self modifying code detection is directly supported at the same level of compatibility as the
Pentium processor. Software must insert an 1A-32 branch instruction between the store operation
and the instruction modified for the updated instruction bytes to be recognized.

It is undefined whether the processor will detect alA-32 self modifying code event for the
following conditions; 1) PSR.dt or PSR.it iSO, or 2) there are virtual aliases to different physical
addresses between the instruction and data TLBs. To ensure self modifying code works correctly
for 1A-32 applications, the operating system must ensure that there are no virtual aliasesto different
physical addresses between the instruction and data TLBs.

When switching from the Itanium instruction set to the | A-32 instruction set, and while executing
Itanium instructions, self modifying code and instruction cache coherency are not directly
supported by the processor hardware. Specificaly, if amodification is made to |A-32 instructions
by Itanium instructions, Itanium architecture-based code must explicitly synchronize the
instruction caches with the code sequence defined in “Memory Consistency” on page 1:67.
Otherwise the modification may or may not be observed by subsequent |A-32 instructions.

When switching from the 1A-32 to the Itanium instruction sets, modification of the local instruction
cache contents by |A-32 instructions is detected by the processor hardware. The processor ensures
that the instruction cache is made coherent with respect to the modification and all subsequent
Itanium instruction fetches see the modification.

Memory Ordering Interactions

IA-32 instructions are mapped into the Itanium memory ordering model as follows:;
« All 1A-32 stores have release semantics
« All IA-32 loads have acquire semantics

< All 1A-32 read-modify-write or lock instructions have release and acquire semantics (fully
fenced).

Instruction set transitions do not automatically fence memory data references. To ensure proper
ordering software needs to take into account the following ordering rules.

Transitions from Itanium instruction set to 1A-32 instruction set
 All data dependencies are honored, | A-32 loads see the results of all prior Itanium stores
» 1A-32 stores (release) can not pass any prior Itanium load or store
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6.4

6.4.1

6.4.2

6.4.3

1:130

* |A-32 loads (acquire) can pass prior Itanium unordered loads or any prior Itanium storeto a
different address. Itanium architecture-based software can prevent 1A-32 loads from passing
prior Itanium loads and stores by issuing an acquire operation (or mf) before the instruction set
transition.

Transitions from 1A-32 instruction set to Itanium instruction set
« All data dependencies are honored, Itanium loads see the results of al prior |A-32 stores
* Itanium stores or loads can not pass prior |A-32 loads (acquire)

* Itanium unordered stores or any Itanium load can pass prior |A-32 stores (release) to a
different address. Itanium architecture-based software can prevent Itanium loads and stores
from passing prior | A-32 stores by issuing a release operation (or mf) after the instruction set
transition.

IA-32 Usage of Intel® Itanium® Registers

This section lists software considerations for the Itanium general and floating-point registers, and
the ALAT when interacting with |A-32 code.

Register Stack Engine

Software must ensure that all dirty registersin the register stack have been flushed to the backing
store using a £1ushrs instruction before starting |A-32 execution viaeither thebr.ia or rfi.
Any dirty registersleft in the current and prior register stack frames are left in an undefined state.
Software can not rely on the value of these registers across an instruction set transition.

Once lA-32 instruction set execution is entered, the RSE is effectively disabled, regardless of any
RSE control register enabling conditions.

After exiting the | A-32 instruction set due to a jmpe instruction or interruption, all stacked registers
are marked as invalid and the number of clean registersis set to zero.

ALAT

IA-32 instruction set execution leaves the contents of the ALAT undefined. Software cannot rely on
ALAT state being preserved across an instruction set transition. On entry to 1A-32 code, existing
entriesin the ALAT areignored. For details on the ALAT, refer to Section 4.4.5.2, “Data
Speculation and Instructions’ on page 1:59.

NaT/NaTVal Response for IA-32 Instructions

If Itanium architecture-based code sets aNaT condition in the integer registers or aNaTVal
condition in afloating-point register, MM X technology, or SSE register before switching to the
IA-32 instruction set the following conditions can arise:
* When the |A-32 instruction set is entered, NaT values must not be contained in any register
defined to contain 1A-32 state, otherwise processor operation is model specific and undefined.
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Processors may generate a NaT Register Consumption Abort on any |A-32 instruction at any
time (including the first IA-32 instruction) for all 1A-32 integer, MM X technology, SSE, or FP
instructions regardless of whether not that instruction directly (or indirectly) references a
register containing a NaT. NaT Register Consumption aborts encountered during 1A-32
execution may terminate 1A-32 instructions in the middle of execution with architectural state
already modified.

» Floating-point NaTVal values must not be propagated into 1A-32 floating-point instructions,
otherwise processor operation is model specific and undefined. Processors may convert
floating-point register(s) containing NaTVal to a SNAN (during entry to the |A-32 instruction
set or on a consuming |A-32 floating-point instruction). Dependent 1A-32 floating-point
instructions that directly or indirectly consume a propagated NaTVal register will either
propagate the NaTVal indication or generate an |A_32_Exception (FPError Invalid Operand)
fault. Whether a processor generates the fault or propagates the NaTVal is model specific. In
no case will the processor allow a NaTVal register to be used without either propagating the
NaTVal or generating an |1A_32 Exception (FPError Invalid Operand) fault.

Note: Itisnot possible for |A-32 code to read a NaTVal from amemory location with an 1A-32
floating-point load instruction since a NaTVal cannot be expressed by a 80-bit double
extended precision number. It is highly recommended that floating-point values be passed
on the memory stack per typical 1A-32 calling conventions to avoid problems with NatVal
and Itanium denormals.

« |A-32 SSE instructions that directly or indirectly consume aregister containing a NaT Val
encoding, will ignore the NaTVal encoding and interpret the register’s mantissafield asalegal
datavalue.

* 1A-32 MMX technology instructionsthat directly or indirectly consume aregister containing a
NaTVal encoding, will ignore the NaTVal encoding and interpret the register’s mantissafield
asalega datavalue.

Software should not rely on the behavior of NaT or NaTVal during 1A-32 instruction execution, or
propagate NaT or NaTVal into |A-32 instructions.
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Part Il: Optimization Guide for the
Intel® Itanium® Architecture






About the Optimization Guide 1

The second portion of this document explainsin detail optimization techniques associated with the
Itanium instruction set. It isintended for those interested in furthering their understanding of
application architecture features and optimization techniques that benefit application performance.
Intel and theindustry are devel oping compilers to take advantage of these techniques. Application
devel opers are not advised to use this as aguide to assembly language programming for the Itanium
architecture.

Note:  To demonstrate techniques, this guide contains code examples that are not targeted
towards a specific processor based on the Itanium architecture, but rather a hypothetical
implementation. For these code examples, ALU operations are assumed to take one cycle
and loads take two cycles to return from first level cache and that there are two load/store
execution units and four ALUs. Other latencies and execution unit details are described as
needed

1.1 Overview of the Optimization Guide
Chapter 2, “Introduction to Programming for the Intel® Itanium® Architecture” provides an
overview of the application programming environment.

Chapter 3, “Memory Reference” discusses features and optimizations related to control and data
speculation.

Chapter 4, “Predication, Control Flow, and Instruction Stream” describes optimization features
related to predication, control flow, and branch hints.

Chapter 5, “ Software Pipelining and Loop Support” provides a detailed discussion on optimizing
loops through use of software pipelining.

Chapter 6, “Floating-point Applications’ discusses current performance limitations in floating-
point applications and features that address these limitations.
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Introduction to Programming for the
Intel® Itanium® Architecture 2

2.1 Overview

The Itanium instruction set is designed to allow the compiler to communicate information to the
processor to manage resource characteristics such asinstruction latency, issue width, and functional
unit assignment. Although such resources can be statically scheduled, the Itanium architecture does
not require that code be written for a specific microarchitecture implementation in order to be
functional.

The Itanium architecture includes a complete instruction set with new features designed to:
* Increase instruction-level parallelism (ILP).
* Better manage memory latencies.
« Improve branch handling and management of branch resources.
 Reduce procedure call overhead.

The architecture also enables high floating-point performance and provides direct support for
multimedia applications.

Complete descriptions of the syntax and semantics of Itanium instructions can be found in Volume
3: Instruction Set Reference. Though this chapter provides a high level introduction to
application level programming, it assumes prior experience with assembly language programming
aswell as some familiarity with the Itanium application architecture. Optimization is explored in
other chapters of this guide.

2.2 Registers

The architecture defines 128 general purpose registers, 128 floating-point registers, 64 predicate
registers, and up to 128 special purpose registers. The large number of architectural registers enable
multiple computations to be performed without having to frequently spill and fill intermediate data
to memory.

There are 128, 64-bit general purposeregisters (r0-r127) that are used to hold values for
integer and multimedia computations. Each of the 128 registers has one additional NaT (Not a
Thing) bit which is used to indicate whether the value stored in the register is valid. Execution of
Itanium speculative instructions can result in aregister’s NaT bit being set. Register r0 is
read-only and contains avalue of zero (0). Attempting to writeto r0 will cause afault.

There are 128, 82-bit floating-point registers (£0-£127) that are used for floating-point
computations. The first two registers, £0 and £1, are read-only and read as +0.0 and +1.0,
respectively. Instructions that writeto £0 or £1 will fault.
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There are 64, one-bit predicate registers (p0-p63) that control conditional execution of
instructions and conditional branches. Thefirst register, po, isread-only and always reads true (1).
The results of instructions that write to p0 are discarded.

There are 8, 64-bit branch registers (b0-b7) that are used to specify the target addresses of
indirect branches.

Thereis space for up to 128 application registers (axr0-ar127) that support various functions.
Many of these register dots are reserved for future use. Some application registers have assembler
aliases. For example, aré66 isthe Epilogue Counter and iscaled ar . ec.

Theinstruction pointer isa64-bit register that pointsto the currently executing instruction
bundle.

Using Intel® Itanium® Instructions

Itanium instructions are grouped into 128-bit bundles of three instructions. Each instruction
occupies the first, second, or third slot of abundle. Instruction format, expression of parallelism,
and bundle specification are described bel ow.

Format

A basic Itanium instruction has the following syntax:
[ap] mnemonic[.comp] dest=srcs

Where:

ap Specifiesaqualifying predicateregister. Thevalue of the qualifying predicate determines
whether the results of the instruction are committed in hardware or discarded. When the
value of the predicate register istrue (1), the instruction executes, its results are
committed, and any exceptions that occur are handled as usual. When the valueis false
(0), theresults are not committed and no exceptions are raised. Most Itanium instructions
can be accompanied by a qualifying predicate.

mnemonic Specifies a name that uniquely identifies an Itanium instruction.

comp Specifies one or more instruction completers. Compl etersindicate optional variationson
abase instruction mnemonic. Completers follow the mnemonic and are separated by
periods.

dest Represents the destination operand(s), which istypically the result value(s) produced by
an instruction.

sres Represents the source operands. Most Itanium instructions have at least two input source
operands.
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Expressing Parallelism

The Itanium architecture requires the compiler or assembly writer to explicitly indicate groups of
instructions, called instruction groups, that have no register read after write (RAW) or write after
write (WAW) register dependencies. Instruction groups are delimited by stopsin the assembly
source code. Since instruction groups have no RAW or WAW register dependencies, they can be
issued without hardware checks for register dependencies between instructions. Both of the
exampl es below show two instruction groups separated by stops (indicated by double semicolons):

1d8 rl=[r5] ;; // First group

add r3=rl,r4 // Second group

A more complex example with multiple register flow dependencies is shown below:
1d8 ril=[r5] // First group
sub ré=r8,r9 ;;// First group
add r3=rl,r4 // Second group
st8 [r6]l=ril2 // Second group

All instructions in a single instruction group may not necessarily issue in parallel because specific
implementations may not have sufficient resources to issue all instructions in an instruction group.

Bundles and Templates

In assembly code, each 128-hit bundleis enclosed in curly braces and contains atemplate
specification and three instructions. Thus, a stop may be specified at the end of any bundle or in the
middle of abundle by using one of two specia template types that implicitly include mid-bundie
stops.

Each instruction in abundle is 41-bits long. Five other bits are used by a template-type
specification. Bundle templates enable processors based on the Itanium architecture to dispatch
instructions with simple instruction decoding, and stops enable explicit specification of parallelism.

There arefive dlot types (M, |, F, B, and L), six instruction types (M, I, A, F, B, L), and 12 basic
template types (M1, MI_I, MLX, MMI, M_MI, MFI, MMF, MIB, MBB, BBB, MMB, MFB).
Each basic template type has two versions: one with a stop after the third slot and one without.
Instructions must be placed in slots corresponding to their instruction types based on the template
specification, except for A-type instructions that can go in either | or M dlots. For example, a
template specification of . MI I meansthat of the three instructionsin abundle, thefirstisa
memory (M) or A-type instruction, and the next two are ALU integer (T) or A-typeinstructions:

{ ‘mii
1d4 r28=[r8] // Load a 4-byte value
add r9=2,rl // 2+rl and put in r9

add r30=1,rl // 1+rl and put in r30

}
For readability, most code examples in this book do not specify templates or braces.

Note:  Bundle boundaries have no direct correlation with instruction group boundaries asinstruc-
tion groups can extend over an arbitrary number of bundles. Instruction groups begin and
end where stops are set in assembly code, and dynamically whenever abranch is taken or
astop is encountered.
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Memory Access and Speculation

The Itanium architecture provides memory access only through register load and store instructions
and special semaphore instructions. The architecture also provides extensive support for hiding
memory latency via programmer-controlled specul ation.

Functionality

Data and instructions are referenced by 64-bit addresses. Instructions are stored in memory in little
endian byte order, in which the least significant byte appears in the lowest addressed byte of a
memory location. For data, modes for both big and little endian byte order are supported and can be
controlled by abit in the User Mask Register.

Integer loads of one, two, and four bytes are zero-extended, since all 64 bits of each register are
always written. Integer stores write one, two, four, or eight bytes of registers to memory as
specified.

Speculation

Speculation allows a programmer to break data or control dependencies that would normally limit
code mation. The two kinds of speculation are called control speculation and data speculation. This
section summarizes speculation in the Itanium architecture. See Chapter 3, “Memory Reference’
for more detailed descriptions of speculative instruction behavior and application.

Control Speculation

Control speculation allows loads and their dependent uses to be safely moved above branches.
Support for thisis enabled by special NaT bits that are attached to integer registers and by special
NatVal values for floating-point registers. When a speculative load causes an exception, it is not
immediately raised. Instead, the NaT bit is set on the destination register (or NatVal iswritten into
the floating-point register). Subsequent speculative instructions that use a register with a set NaT
bit propagate the setting until a non-speculative instruction checks for or raises the deferred
exception.

For example, in the absence of other information, the compiler for atypical RISC architecture
cannot safely move the load above the branch in the sequence below:
(pl) br.cond.dptk L1 // Cycle 0
148 r3=[r5];; // Cycle 1
shr r7=r3,r87 // Cycle 3

Supposing that the latency of aload is 2 cycles, the shift right (shr) instruction will stall for 1.
However, by using the specul ative loads and checks provided in the Itanium architecture, two
cycles can be saved by rewriting the above code as shown below:

1d8.s r3=[r5] // Earlier cycle
// Other instructions

(pl) br.cond.dptk Ll;; // Cycle 0
chk.s r3,recovery // Cycle 1
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shr r7=r3,r87 // Cycle 1

This code assumes r5 is ready when accessed and that there are sufficient instructionsto fill the
latency betweenthe 1d8 . s and the chk. s.

Data Speculation

Data speculation allows loads to be moved above possibly conflicting memory references.
Advanced loads exclusively refer to data speculative loads. Review the order of loads and storesin
this assembly sequence:

st8 [r55]=r45 // Cycle O

1d8 r3=[r5] ;; // Cycle 0

shr r7=r3,r87 // Cycle 2

The Itanium architecture allows the programmer to move the load above the store even if it is not
known whether the load and the store reference overlapping memory locations. Thisis
accomplished using special advanced load and check instructions:

1d8.a r3=[r5] // Advanced load

// Other instructions

st8 [r55]=r45 // Cycle 0
1d8.c r3=[r5] // Cycle 0 - check
shr r7=r3,r87 // Cycle 0

Note: The shr instruction in this schedule could issue in cycle O if there were no conflicts
between the advanced load and intervening stores. If there were a conflict, the check load
instruction (148 . ¢) would detect the conflict and reissue the load.

Predication

Predication is the conditional execution of an instruction based on aqualifying predicate. A
qualifying predicate is a predicate register whose value determines whether the processor commits
the results computed by an instruction.

The values of predicate registers are set by the results of instructions such as compare (cmp) and
test bit (tbit). When the value of a qualifying predicate associated with an instruction istrue (1),
the processor executes the instruction, and instruction results are committed. When the valueis
false (0), the processor discards any results and raises no exceptions. Consider the following
C code:

if (a) |

This code can be implemented in the Itanium architecture using qualifying predicates so that
branches are removed. The pseudo-code shown below implements the C expressions without
branches:
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cmp.ne pl,p2=a,r0 // pl <- al'= 0

cmp.ne p3,p4=e,r0 ;; // p3 <- e =20
(pl)add b=c,d // If al!= 0 then add
(p3)sub h=i,j // If e!= 0 then sub

See Chapter 4, “Predication, Control Flow, and Instruction Stream” for detailed discussion of
predication. There are afew special cases where predicated instructions read or write architectural
resources regardless of their qualifying predicate.

Architectural Support for Procedure Calls

Calling conventions normally require callee and caller saved registers which can incur significant
overhead during procedure calls and returns. To address this problem, a subset of the Itanium
genera registers are organized as alogically infinite set of stack frames that are allocated from a
finite pool of physical registers.

Stacked Registers

Registers ro through r31 are called global or static registers and are not part of the stacked
registers. The stacked registers are numbered 32 up to a user-configurable maximum of r127.

A called procedure specifies the size of its new stack frame using the al1loc instruction. The
procedure can use this instruction to allocate up to 96 registers per frame shared amongst input,
output, and local values. When acall is made, the output registers of the calling procedure are
overlapped with the input registers of the called procedure, thus allowing parameters to be passed
with no register copying or spilling.

The hardware renames physical registers so that the stacked registers are always referenced in a
procedure starting at r32.

Register Stack Engine

Management of the register stack is handled by a hardware mechanism called the Register Stack
Engine (RSE). The RSE moves the contents of physical registers between the general register file
and memory without explicit program intervention. This provides a programming model that looks
like an unlimited physical register stack to compilers; however, saving and restoring of registers by
the RSE may be costly, so compilers should still attempt to minimize register usage.

Branches and Hints

Since branches have a major impact on program performance, the Itanium architecture includes
features to improve their performance by:

» Using predication to reduce the number of branchesin the code. Thisimprovesinstruction
fetching because there are fewer control flow changes, decreases the number of branch
mispredicts since there are fewer branches, and it increases the branch prediction hit rates since
there isless competition for prediction resources.
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* Providing software hints for branches to improve hardware use of prediction and prefetching
resources.

» Supplying explicit support for software pipelining of loops and exit prediction of counted
loops.

Branch Instructions

Branching in the Itanium architecture is largely expressed the same way as on other
microprocessors. The major difference isthat branch triggers are controlled by predicates rather
than conditions encoded in branch instructions. The architecture also provides arich set of hintsto
control branch prediction strategy, prefetching, and specific branch types like loops, exits, and
branches associated with software pipelining. Targets for indirect branches are placed in branch
registers prior to branch instructions.

Loops and Software Pipelining

Compilers sometimes try to improve the performance of loops by using unrolling. However,
unrolling is not effective on al loops for the following reasons:

 Unrolling may not fully exploit the parallelism available.
 Unralling istailored for astatically defined number of loop iterations.
 Unralling can increase code size.

To maintain the advantages of loop unrolling while overcoming these limitations, the Itanium
architecture provides architectural support for software pipelining. Software pipelining enables the
compiler to interleave the execution of several loop iterations without having to unroll aloop.
Software pipelining is performed using:

 Loop-branch instructions.

e LC and EC application registers.

* Rotating registers and loop stage predicates.

« Branch hints that can assign a specia prediction mechanism to important branches.

In addition to software pipelined while and counted loops, the architecture provides particular
support for simple counted loops using the br . cloop instruction. The c1oop branch instruction
usesthe 64-bit Loop Count (1.C) application register rather than a qualifying predicate to determine
the branch exit condition.

For a complete discussion of software pipelining support, see Chapter 5, “ Software Pipelining and
Loop Support.”

Rotating Registers

Rotating registers enable succinct implementation of software pipelining with predication.
Rotating registers are rotated by one register position each time one of the special loop branchesis
executed. Thus, after one rotation, the content of register x will be found in register X+1 and the
value of the highest numbered rotating register will befoundin r32. The size of therotating region
of general registers can be any multiple of 8 and isselected by afieldinthealloc instruction. The
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predicate and floating-point registers can also be rotated but the number of rotating registersis not
programmable; predicate registers p16 through p63 arerotated, and floating-point registers £32
through £127 are rotated.

Summary

The Itanium architecture provides features that reduce the effects of traditional microarchitectural
performance barriers by enabling:

» Improved ILP with alarge number of registers and software scheduling of instruction groups
and bundles.

Better branch handling through predication.

» Reduced overhead for procedure calls through the register stack mechanism.
Streamlined loop handling through hardware support of software pipelined loops.
Support for hiding memory latency using speculation.
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Overview

Memory latency is amajor factor in determining the performance of integer applications. In order

to help reduce the effects of memory latency, the Itanium architecture explicitly supports software
pipelining, large register files, and compiler-controlled speculation. This chapter discusses features
and optimizations related to compiler-controlled speculation. See Chapter 5, “ Software Pipelining

and Loop Support” for a complete description of how to use software pipelining.

The early sections of this chapter review non-speculative load and store in the Itanium architecture,
and general concepts and terminology related to data dependencies. The concept of speculation is
then introduced, followed by discussions and examples of how speculation is used. The remainder
of this chapter describes several important optimizations related to memory access and instruction
scheduling.

Non-speculative Memory References

The Itanium architecture supports non-specul ative loads and stores, aswell as explicit memory hint
instructions.

Stores to Memory

Itanium integer store instructions can write either 1, 2, 4, or 8 bytes and 4, 8, or 10 bytes for
floating-point stores. For example, a st4 instruction will write the first four bytes of aregister to
memory.

Although the Itanium architecture uses alittle endian memory byte order by default, software can
change the byte order by setting the big endian (be) bit of the user mask (UM).

Loads from Memory

Itanium integer load instructions can read either 1, 2, 4, or 8 bytes from memory depending on the
type of load issued. Loads of 1, 2, or 4 bytes of data are zero-extended to 64-bits prior to being
written into their target registers.

Although loads are provided for various data types, the basic data type is the quadword (8 bytes).
Apart from afew exceptions, all integer operations are on quadword data. This can be particularly
important when dealing with signed integers and 32-bit addresses, or any addresses that are shorter
than 64 bits.
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Data Prefetch Hint

The 1fetch instruction requests that lines be moved between different levels of the memory
hierarchy. Like all hint instructions defined in the Itanium architecture, 1fetch has no effect on
program correctness, and any microarchitecture implementation may choose to ignoreit.

Instruction Dependencies

Data and control dependencies are fundamental factors in optimization and instruction scheduling.
Such dependencies can prevent acompiler from scheduling instructions in an order that would
yield shorter critical paths and better resource usage since they restrict the placement of instructions
relative to other instructions on which they are dependent.

In general, memory references are the major source of control and data dependencies that cannot be
broken due to getting awrong answer (if a data dependency is broken) or raising afault that should
not be raised (if a control dependency is broken). This section describes:

» Background material on memory reference dependencies.

* Descriptions of how dependencies constrain code scheduling on traditional architectures.

Section 3.4 describes memory reference features defined in the Itanium architecture that increase
the number of dependencies that can be removed by a compiler.

Control Dependencies

Aninstruction is control dependent on a branch if the direction taken by the branch affects whether
the instruction is executed. In the code below, the load instruction is control dependent on the
branch:

(pl)br.cond some label

1d8 r4=[r5]

The following sections provide overviews of control dependencies and their effects on
optimization.

Instruction Scheduling and Control Dependencies

The code below contains a control dependency at the branch instruction:

add r7=r6,1 // Cycle 0
add rl3=r25,r27
cmp.eq pl,p2=rl2,r23

(pl)br.cond some label ;;

1d4 r2=[r3];; // Cycle 1
sub r4=r2,rll // Cycle 3

A compiler cannot safely move the load instruction before the branch unlessit can guarantee that
the moved load will not cause afatal program fault or otherwise corrupt program state. Since the
load cannot be moved upward, the schedule cannot be improved using normal code motion.
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Thus, the branch creates a barrier to instructions whose execution depends upon it. In Figure 3-1,
the load in block B cannot be moved up because of a conditional branch at the end of block A.

Figure 3-1. Control Dependency Preventing Code Motion

3.3.2

3.3.2.1

Block A

Block B

Data Dependencies

A data dependency exists between an instruction that accesses a register or memory location and
another instruction that alters the same register or location.

Basics of Data Dependency

The following basic terms describe data dependencies between instructions:

Write-after-write (WAW)
A dependency between two instructions that write to the same register or memory
location.

Write-after-read (WAR)
A dependency between two instructions in which an instruction reads aregister or
memory location that a subsequent instruction writes.

Read-after-write (RAW)
A dependency between two instructions in which an instruction writesto aregister or
memory location that is read by a subsequent instruction.

Ambiguous memory dependencies
Dependencies between aload and a store, or between two stores where it cannot be
determined if the involved instructions access overlapping memory locations.
Ambiguous memory references include possible WAW, WAR, or RAW dependencies.

Independent memory references
References by two or more memory instructions that are known not to have conflicting

memory accesses.
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Data Dependency in the Intel® Itanium® Architecture

The Itanium architecture requires the programmer to insert stops between RAW and WAW register
dependencies to ensure correct code results. For example, in the code below, the add instruction
computes avaluein r4 needed by the sub instruction:

add r4=r5,r6 ;;// Instruction group 1

sub r7=r4,r9 // Instruction group 2

The stop after the add instruction terminates one instruction group so that the sub instruction can
legally read r4.

On the other hand, implementations based on the Itanium architecture are required to observe
memory-based dependencies within an instruction group. In asingle instruction group, a program
can contain memory-based data dependent instructions and hardware will produce the same results
asif the instructions were executed sequentially and in program order. The pseudo-code bel ow
demonstrates a memory dependency that will be observed by hardware:

mov rlé=1

mov rl7=2 ;;

st8 [rl5]=rle

st8 [rl4l=rl7;;

If the addressin r14 isequal to the addressin r15, uni-processor hardware guarantees that the
memory location will contain thevaluein r17 (2). The following RAW dependency isalso legal in
the same instruction group even if software is unable to determine if r1 and r2 overlap:

st8 [rl]=x

1d4 y=[r2]

Instruction Scheduling and Data Dependencies

The dependency rules are sufficient to generate correct code, but to generate efficient code, the
compiler must take into account the latencies of instructions. For example, the generic
implementation has atwo cycle latency to the first level data cache. In the code below, the stop
maintains correct ordering, but a use of r2 is scheduled only one cycle after itsload:

add r7=r6,1 // Cycle 0

add rl3=r25,r27

cmp.eq pl,p2=rl2,r23;;

add rll=rl13,r29 // Cycle 1
1d4 r2=[r3];;
sub r4=r2,rll // Cycle 3

Since the latency of aload istwo cycles, the sub instruction will stall until cyclethree. To avoid a
stall, the compiler can move the load earlier in the schedule so that the machine can perform useful
work each cycle:

1d4 r2=[r3] // Cycle 0

add r7=r6,1

add r13=r25,r27

cmp.eq pl,p2=rl2,r23;;

add rll=rl13,r29;; // Cycle 1

sub r4=r2,rll // Cycle 2
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In this code, there are enough independent instructions to move the load earlier in the schedule to
make better use of the functional units and reduce execution time by one cycle.

Now suppose that the original code sequence contained an ambiguous memory dependency
between a store instruction and the load instruction:

add r7=r6,1 // Cycle 0O

add rl3=r25,r27

cmp.ne pl,p2=rl2,r23;;

st4 [r29]=rl3 // Cycle 1
1d4 r2=[r3];;
sub r4=r2,rll // Cycle 3

In this case, the load cannot be moved past the store due to the memory dependency. Stores will
cause data dependencies if they cannot be disambiguated from loads or other stores.

In the absence of other architectural support, stores can prevent moving loads and their dependent
instructions: The following C language statements could not be reordered unlessptrl and ptr2
were statically known to point to independent memory locations:

*ptrl = 6;

X = *ptr2;

Using Speculation in the Intel® Itanium®

Architecture to Overcome Dependencies

Both data and control dependencies constrain optimization of program code. The Itanium
architecture provides support for two basic techniques used to overcome dependencies:

Data speculation Allows aload and possibly its uses to be moved across ambiguous memory
writes.

Control speculation Allows aload and possibly its uses to be moved across a branch on which the
load is control dependent.

These techniques are used to hide load latencies and reduce execution time.

Speculation Model in the Intel® Itanium® Architecture

The limitationsimposed by dependencies on instruction scheduling can be solved by separating the
loading of data from the exception handling or the acknowledgment of data conflicts. The Itanium
architecture supports special speculative versions of instructions to accomplish this:

 Control speculative load instructions defer exceptions.
» Data speculative load instructions save address information.
 Special check instructions check for exceptions or data conflicts.

An Itanium specul ative load can be moved above a dependency barrier (shown as a dashed line) as
shown in Figure 3-2.
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Figure 3-2. Speculation Model in the Intel® Itanium® Architecture
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The check detects a deferred exception or a conflict with an intervening store and provides a
mechanism to recover from failed speculation. With this support, speculative loads and their uses
can be scheduled earlier than non-speculative instructions. As aresult, the memory latencies of
these loads can be hidden more easily than for non-speculative loads.

3.4.2 Using Data Speculation in the Intel® Itanium® Architecture

Data speculation in the Itanium architecture uses a special load instruction (1d. a) called an
advanced |load instruction and an associated check instruction (chk . a or 14d. c) to validate
data-speculated resuilts.

When the 14. a instruction is executed, an entry is allocated in a hardware structure called the
ALAT. The ALAT isindexed by physical register number and records the load address, the type of
the load, and the size of the load.

A check instruction must be executed before the result of an advanced |oad can be used by any
non-speculative instruction. The check instruction must specify the same register number as the
corresponding advanced |oad.

When a check instruction is executed, the ALAT is searched for an entry with the same target
physical register number and type. |If an entry isfound, execution continues normally with the next
instruction.

If no matching entry isfound, the specul ative results need to be recomputed:

» Useachk. a if aload and some of its uses are speculated. The chk . a jumpsto
compiler-generated recovery code to re-execute the load and dependent instructions.

* Useald.c if nousesof theload are speculated. The 1d. c reissues the load.

Entries are removed from the ALAT due to:
» Storesthat write to addresses overlapping with ALAT entries.
 Other advanced loads that target the same physical registers as ALAT entries.

 Implementation-defined hardware or operating system conditions needed to maintain
correctness.

« Limitations of the capacity, associativity, and matching algorithm used for agiven
implementation of the ALAT.
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Advanced Load Example

Advanced loads can reduce the critical path of a sequence of instructions. In the code below, aload
and store may access conflicting memory addresses:

st8 [r4]l=rl2 // Cycle 0: ambiguous store
148 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

On the generic machine model, the code above would execute in four cycles, but it can be rewritten
using an advanced load and check:
1d8.a r6=[r8] // Cycle -2 or earlier

// Other instructions

st8 [r4]=rl2 // Cycle 0: ambiguous store
1d8.c r6=[r8] // Cycle 0: check load

add r5=r6,r7;; // Cycle 0

st8 [r18]=r5 // Cycle 1

The original load has been turned into a check load, and an advanced load has been scheduled
above the ambiguous store. If the speculation succeeds, the execution time of the remaining
non-speculative code is reduced because the latency of the advanced load is hidden.

Recovery Code Example

Consider again the non-speculative code from the last section:

st8 [r4]l=rl2 // Cycle 0: ambiguous store
148 r6=[r8];; // Cycle 0: load to advance
add r5=r6,r7;; // Cycle 2
st8 [r18]=r5 // Cycle 3

The compiler could move up not only the load, but also one or more of its uses. Thistransformation
usesachk. a rather than a 1d. c instruction to validate the advanced load. Using the same
exampl e code sequence but now advancing the add aswell asthe 1ds8 resultsin:

1d8.a ré6=[r8];; // Cycle -3

// other instructions
add r5=r6,r7 // Cycle -1: add that uses r6
// Other instructions
sts8 [r4]=r12 // Cycle 0
chk.a r6,recover // Cycle 0: check
back: // Return point from jump to recover

st8 [r18]=r5 // Cycle 0

Recovery code must aso be generated:

recover:

148 r6=[r8] ;; // Reload ré6 from [r8]
add r5=r6,r7 // Re-execute the add
br back // Jump back to main code
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If the speculation fails, the check instruction branchesto the label recover where the speculated
code isre-executed. If the speculation succeeds, execution time of the transformed code is three
cyclesless than the origina code.

Terminology Review

Terms related to speculation, such as advanced loads and check |oads, have well-defined meanings
in the lItanium architecture. The terms below were introduced in the preceding sections:

Data speculative load
A speculative load that is statically scheduled prior to one or more stores upon which it
may be dependent. The data speculative load instructionis 14.. a.

Advanced load
A data speculative load.

Check load
An instruction that checks whether a corresponding advanced load needs to be
re-executed and does so if required. The check load instructionis 1d. c.

Advanced load check
An instruction that takes a register number and an offset to a set of compiler-generated
instructions to re-execute speculated instructions when necessary. The advanced |oad
check instruction is chk . a.

Recovery code
Program code that is branched to by a speculation check. Recovery code repeats aload
and chain of dependent instructionsto recover from a speculation failure.

Using Control Speculation in the Intel® Itanium®

Architecture

The check to determine if control speculation was successful is similar to that for data speculation.

The NaT Bit

The Not A Thing (NaT) bit is an extra bit on each of the general registers. A register NaT bit
indicates whether the content of aregister isvalid. If the NaT hit is set to one, the register contains
adeferred exception token due to an earlier speculation fault. 1n afloating-point register, the
presence of a specia value called the NaTVal signals a deferred exception.

During a control speculative load, the NaT bit on the destination register of the load may be set if
an exception occurs and it is deferred. The exact set of events and exceptions that cause an
exception to be deferred (thus causing the NaT bit to be set), dependsin part upon operating system
policy. When a speculative instruction reads a source register that has its NaT bit set, NaT bits of
the target registers of that instruction are also set. That is, NaT bits are propagated through
dependent computations.
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Control Speculation Example

When a control speculative load is scheduled, the compiler must insert a speculative check,

chk. s, dong al paths on which results of the speculative load are consumed. |f anon-speculative
instruction (other than a chk . s) reads aregister with its NaT bit set, aNaT consumption fault
occurs, and the operating system will terminate the program.

The code sequence below illustrates a basic use of control speculation:
(pl)br.cond some_label// Cycle 0

1d8 rl=[r5];; // Cycle 1

add r2=rl,r3 // Cycle 3

This code can be rewritten using a control speculative load and check. The check can be placed in
the same basic block asthe original load:
1d8.s rl=[r5];; // Cycle -2

// Other instructions

(pl)br.cond some_label// Cycle 0
chk.s rl,recovery // Cycle 0O
add r2=rl,r3 // Cycle 0

Until a speculation check is reached dynamically, the results of the control speculative chain of
instructions cannot be stored to memory or otherwise accessed non-speculatively without the
possibility of afault. If aspeculation check is executed and the NaT bit on the checked register is
set, the processor will branch to recovery code pointed to by the check instruction.

It isalso possible to test for the presence of set NaT bits and NaTVals using the test NaT (tnat)
and floating-point class (Eclass) instructions.

Although every speculative computation needs to be checked, this does not mean that every
speculative load requiresitsown chk . s. Speculative checks can be optimized by taking advantage
of the propagation of NaT bits through registers as described in Section 3.5.6.

Spills, Fills and the UNAT Register

Saving and restoring of registers that may have set NaT bitsis enabled by st8.spill and
1ds.£1i11 instructions and the User NaT Collection application register (UNAT).

The “spill general register and NaT” instruction, st8.spill, saves eight bytes of ageneral
register to memory and writesits NaT bit into the UNAT. Bits 8:3 of the memory address of the
store determine which UNAT bit is written with the register NaT value. The “fill general register”
instruction, 1ds8 . £i111, reads eight bytes from memory into ageneral register and setsthe register
NaT bit according to the value in the UNAT. Software is responsible for saving and restoring the
UNAT contents to ensure correct spilling and filling of NaT bits.

The corresponding floating-point instructions, stf . spill and 1df.£i11, save and restore
floating-point registers in floating-point register format without surfacing exceptions due to
NaTVals.
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Terminology Review

The terms below are related to control speculation:

Control speculative load
A speculative load that is scheduled prior to an earlier controlling branch. Referencesto
“speculativeloads’ without qualifiersgenerally refer to control speculativeloadsand not
data speculative loads. Loads using the 1d.. s instruction are control speculative loads.

Speculation check
An instruction that checks whether a speculative instruction has deferred an exception.
Speculation check instructions include labels that point to compiler-generated recovery
code. The speculation check instruction is chk. s.

Recovery code
Code executed to recover from a speculation failure. Control speculative recovery code
is analogous to data speculative recovery code.

Combining Data and Control Speculation

A load that is both data and control speculative is called a speculative advanced load. The 1d. sa
instruction performs al the operations of both a speculative load and an advanced load. An ALAT
entry will not be allocated if thistype of load generates a deferred exception token, so an advanced
load check instruction (chk . a) is sufficient to check for both interference from subsequent stores
and for deferred exceptions.

Optimization of Memory References

Speculation can increase parallelism and help to hide latency by enabling more code motion than
can be performed on traditional architectures. Speculation can increase the application of
traditional loop optimizations such asinvariant code motion and common subexpression
elimination. The Itanium architecture also offers post-increment loads and stores that improve
instruction throughput without increasing code size.

Memory reference optimization should take several factors into account including:
« Difference between the execution costs of speculative and non-speculative code.
* Codesize.
* Interference probabilities and properties of the ALAT (for data speculation).

The remainder of this chapter discusses these factors and optimizations relating to memory
accesses.
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3.5.1 Speculation Considerations

The use of data speculation requires more attention than the use of control speculation. In part this
is due to the fact that one control speculative load cannot inadvertently cause another control
speculative load to fail. Such an effect is possible with data speculative loads since the ALAT has
limited capacity and the replacement policy of ALAT entriesis implementation dependent. For
example, if an advanced load isissued and there are no unused AL AT entries, the hardware may
choose to invalidate an existing entry to make room for a new one.

Moreover, exceptions associated with control speculative cal culations are uncommon in correct
code since they are related to events such as page faults and TLB misses. However, excessive
control speculation can be expensive as associated instructionsfill issue slots.

Although the static critical path of a program may be reduced by the use of data speculation, the
following factors contribute to the benefit/dynamic cost of data speculation:

* The probability that an intervening store will interfere with an advanced load.
» The cost of recovering from afailed advanced load.

 The specific microarchitectural implementation of the ALAT: its size, associativity, and
matching algorithm.

Determining interference probabilities can be difficult, but dynamic memory profiling can help to
predict how often ambiguous loads and stores will conflict.

When using advanced loads, there should be case-by-case consideration as to whether advancing
only aload and using a1d. ¢ might be preferable to advancing both aload and its uses, which
would require the use of the potentially more expensive chk . a.

Even when recovery code is not executed, its presence extends the lifetimes of registers used in
data and control speculation, thus increasing register pressure and possibly the cost of register
movement by the Register Stack Engine (RSE). See Section 3.5.3 for information on
considerations for recovery code placement.

352 Data Interference

Data references with low interference probabilities and high path probabilities can make the best
use of data speculation. In the pseudo-code bel ow, assume the probabilities that the storesto *p1
and *p2 conflict with var are independent.

*pl = /* Prob interference = 0.30 */
*p2 = /* Prob interference = 0.40 */

= var /* Load to be advanced */

If the compiler advances the load from var above the stores to pointersp1 and p2, then:
Prob that stores to pl or p2 interfere with var
= 1.0 - (Prob pl will not interfere with var *
Prob p2 will not interfere with var)
1.0 - (0.70 * 0.60)
0.58
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Given theinterference probabilities above, there isa’58% probability at least one of p1 and p2 will
interfere with aload from var if it isadvanced above both of them. A compiler can use traditional
heuristics concerning data interference and interprocedural memory access information to estimate
these probabilities.

When advancing loads past function calls, the following should be considered:

« If acalled function has many storesin it, it ismore likely that actual or aliased ALAT conflicts
will occur.

« If other advanced loads are executed during the function call, it is possible that their physical
register numberswill either beidentical or conflict with ALAT entries allocated from callsin
parent functions.

« If it isunknown whether alarge number of advanced loads will be executed by the called
routines, then the possibility that the capacity of that ALAT may be exceeded must be
considered.

Optimizing Code Size

Part of the decision of when to speculate should involve consideration of any possible increasesin
code size. Such consideration is not particular to speculation, but to any transformations that
cause code to be duplicated, such asloop unrolling, procedure inlining, or tail duplication.
Techniques to minimize code growth are discussed later in this section.

In general, control speculation increases the dynamic code size of a program since some of the
speculated instructions are executed and their results are never used. Recovery code associated
with control speculation primarily contributes to the static size of the binary sinceit islikely to be
placed out-of-line and not brought into cache until a speculative computation fails (uncommon for
control speculation).

Data speculation has a similar effect on code size except that it islesslikely to compute values that
are never used since most non-control speculative data speculative loads will have their results
checked. Also, since control speculative loads only fail in uncommon situations such as deferred
datarelated faults (depending on operating system configuration), while data specul ative loads can
fail dueto ALAT conflicts, actual memory conflicts, or aliasing in the ALAT, the decision asto
where to place recovery code for advanced loads is more difficult than for control speculation and
should be based on the expected conflict rate for each load.

Asageneral rule, efficient compilers will attempt to minimize code growth related to speculation.
As an example, moving aload above the join of two paths may require duplication of speculative
code on every path. The flow graph depicted in Figure 3-3 and the explanation shows how this
could arise.
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Figure 3-3. Minimizing Code Size During Speculation

3.5.4

Block A
Block B Block C
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Id

If the compiler or programmer advanced the load up to block B from its original non-speculative
position, all speculative code would need to be duplicated in both blocks B and C. This duplicated
code might be able to occupy NOP slots that already exist. But if space for the codeis not already
available, it might be preferable to advance the load to block A since only one copy would be
required in this case.

Using Post-increment Loads and Stores

Post-increment loads and stores can improve performance by combining two operationsin asingle
instruction. Although the text in this section mentions only post-increment loads, most of the
information appliesto stores as well.

Post-increment loads are issued on M-units and can increment their address register by either an
immediate value or by the contents of a general register. The following pseudo-code that performs
two |loads:

1d8 r2=[r1]

add rl=1,rl ;;

1d8 r3=[rl]

can be rewritten using a post-increment oad:
1d8 r2=[rl1l],1 ;;
1d8 r3=[r1]

Post-increment loads may not offer direct savings in dependency path height, but they are
important when cal cul ating addresses that feed subsequent loads:

» A post-increment load avoids code size expansion by combining two instructions into one.

« Adds can beissued on either I-units or M-units. When a program combines an add with aload,
an |-unit or M-unit resource remains availabl e that otherwise would have been consumed.
Thus, throughput of dependent adds and loads can be doubled by using post-increment loads.

A disadvantage of post-increment loads is that they create new dependencies between
post-increment loads and the operations that use the post-increment values. In some cases, the
compiler may wish to separate post-increment loads into their component instructions to improve
the overall schedule. Alternatively, the compiler could wait until after instruction scheduling and
then opportunistically find places where post-increment loads could be substituted for separate load
and add instructions.
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Loop Optimization

In cyclic code, speculation can extend the use of classical loop optimizations like invariant code
motion. Examine this pseudo-code:
while (cond) {
c = a + b; // Probably loop invariant

*ptr++ = ¢;// May point to a or b

}

Thevariables a and b are probably loop invariant; however, the compiler must assume the storesto
*ptr will overwrite the values of a and b unless analysis can guarantee that this can never happen.
The use of advanced loads and checks allows code that islikely to be invariant to be removed from
aloop, even when a pointer cannot be disambiguated:

1d4.a rl = [&al
1d4.a r2 = [&b]
add r3 = rl,r2// Move computation out of loop

while (cond) {
chk.a.nc rl, recoverl
Ll: chk.a.nc r2, recover2
L2: *p++ = r3

}
At the end of the module:

recoverl: // Recover from failed load of a
1ldd.a rl = [&a]
add r3 = rl, r2
br.sptk L1 // Unconditional branch

recover2: // Recover from failed load of b
ld4.a r2 = [&b]
add r3 = rl, r2
br.sptk L2 // Unconditional branch

Using speculation in this loop hides the latency of the calculation of ¢ whenever the speculated
code is successful.

Since checks have both a clear (clr) and no clear (nc) form, the programmer must decide which to
use. Thisexample shows that when checks are moved out of 1oops, the no clear version should be
used. Thisis because the clear (clr) version will cause the corresponding ALAT entry to be
removed (which would cause the next check to that register to fail).

Minimizing Check Code

Checks of speculative loads can sometimes be combined to reduce code size. The propagation of
NaT bits and NaT Vals via speculative instructions can permit a single check of a speculative result
to replace multiple intermediate checks. The code below demonstrates this optimization potential ;

1d4.s rl=[r10] // Speculatively load to rl

1d4.s r2=[r20] // Speculatively load to r2

add r3=rl,r2;;// Add two speculative values
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// Other instructions

chk.s r3,immz1 //
st4 [r30]=r1 //
st4 [r40]=r2 //
st4 [r50]=r3 //

Check
Store
Store
Store

for NaT bit in r3
rl
r2
r3

Only the result register,

r3, needsto be checked before stores of any of r1, r2, or r3. If aNaT bit

were set at the time of the control speculative loads of r1 or r2, the NaT bit would have been
propagated to r3 from r1 or r2 viathe add instruction.

Another way to reduce the amount of check code is to use control flow analysisto avoid issuing
extrald.c or 1d.a ingtructions. For example, the compiler can schedule a single check where it
is known to be reached by all copies of the advanced load. The portion of aflow graph shown in
Figure 3-4 demonstrates where this technique might be applied.

Figure 3-4. Using a Single Check for Three Advanced Loads

| Id.a | | Id.a |
Advanced loads from addr
to the same register, R
| | | Id.a |
Stores | *pl = | | *p2 = | | *p3 = |

Single load check of
register R

A single check in the lowermost block shown for al of the advanced loadsis correct if both of these
conditions are met:

» Thelowermost block post-dominates al of the blocks with advanced loads from location
addr.

» The lowermost block precedes any uses of the advanced loads from addr .

3.6 Summary

The examplesin this chapter show where the Itanium architecture can take advantage of existing
techniques like dynamic profiling and disambiguation. Special architectural support allows
implementation of speculation in common scenarios in which it would normally not be allowed.
Speculation, in turn, increases | LP by making greater code motion possible, thus enhancing
traditional optimizations such as those involving loops.

Even though the speculation model can be applied in many different situations, careful cost and
benefit analysisis needed to insure best performance.
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Predication, Control Flow, and
Instruction Stream 4

4.1

4.2

4.2.1

4211

Overview

This chapter is divided into three sections that describe optimizations related to predication, control
flow, and branch hints as follows:
» The predication section describes if-conversion, predicate usage, and code scheduling to
reduce the affects of branching.

« The control flow optimization section describes optimizations that collapse and converge
control flow by using parallel compares, multiway branches, and multiple register writers
under predicate.

» Thebranch and prefetch hints section describes how hints are used to improve branch and
prefetch performance.

Predication

Predication allows the compiler to convert control dependenciesinto data dependencies. This
section describes several sources of branch-related performance considerations, followed by a
summary of predication mechanism, followed by a series of descriptions of optimizations and
techniques based on predication.

Performance Costs of Branches

Branches can decrease application performance by consuming hardware resources for prediction at
execution time and by restricting instruction scheduling freedom during compilation.

Prediction Resources

Branch prediction resources include branch target buffers, branch prediction tables, and the logic
used to control these resources. The number of branches that can accurately be predicted islimited
by the size of the buffers on the processor, and such buffers tend to be small relative to the total
number of branches executed in a program.

This limitation means that branch intensive code may have alarge portion of its execution time
spent due to contention for prediction resources. Furthermore, even though the size of the
predictorsis aprimary factor in determining branch prediction performance, some branches are
best predicted with different types of predictors. For example, some branches are best predicted
statically while others are more suitably predicted dynamically. Of those predicted dynamically,
some are of greater importance than others, such as loop branches.
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Since the cost of amisprediction is generally proportional to pipeline length, good branch
prediction is essential for processors with long instruction pipelines. Thus, optimizing the use of
prediction resources can significantly improve the overall performance of an application.

Suppose, for instance, that the conditional in the code below is mispredicted 30% of the time and
branch mispredictions incur aten cycle penalty. On average, the mispredicted branch will add
three cycles to each execution of the code sequence (30% * 10 cycles):
if (r1)
r2
else

r3 + r4;
r7 = r6 - r5;

Equivalent Itanium architecture-based code that has not been optimized is shown below. It requires
five instructions including two branches and executes in two cycles, not including potential
misprediction or taken-branch penalty cycles:

cmp . eq pl,p2=rl,r0 // Cycle 0
(pl) br.cond else_clause // Cycle 0

add r2=r3,r4 // Cycle 1

br end if // Cycle 1
else clause:

sub r7=r6,r5 // Cycle 1
end if:

Using the information above, this code will take five cyclesto execute on average even thought the
critical pathisonly two cycleslong (2 cycles + (30% * 10 cycles) =5). If the branch
misprediction penalty could be eliminated (either by reducing contention for resources or by
removing the branch itself), performance of the code sequence would improve by afactor of two.

Instruction Scheduling

Branches limit the ability of the compiler to move instructions that alter memory state or that can
raise exceptions, because instructionsin a program are control dependent on all lexically enclosing
branches. In addition to the control dependencies, compound conditionals can take several cyclesto
compute and may themselves require intermediate branches in languages like C that require
short-circuit evaluation.

Control speculation is the primary mechanism used to perform global code motion for Itanium
architecture-based compilers. However, when an instruction does not have a speculative form or
the instruction could potentially corrupt memory state, control speculation may be insufficient to
alow code motion. Thus, techniques that allow greater freedom in code motion or eliminate
branches can improve the compiler’s ability to schedule instructions.

Predication in the Intel® Itanium® Architecture

Now that the performance implications of branching have been described, this section overviews
predication in the Itanium architecture — the primary mechanism used by optimizations described in
this section.

Almost al Itanium instructions can be tagged with aguarding predicate. If the value of the
guarding predicate is false at execution time, then the predicated instruction’s architectural updates
are suppressed, and the instruction behaves like anop. If the predicate is true, then the instruction
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behaves asif it were unpredicated. There are a small number of instructions such as unconditional
compares and floating-point square-root and reciprocal approximate instructions whose qualifying
predicate do not operate as described above. See Part |:, “ Application Architecture Guide” for
additional information.

The following sequence shows a set of predicated instructions:
(pl) add rl=r2,r3

(p2) 1d8 r5=[r7]

(p3) chk.s r4,recovery

To set the value of a predict register, the architecture provides compare and test instructions such as
those as shown below.

cmp.eq pl,p2=r5,r6

tbit p3,p4=r6,5

Additionally, a predicate almost always requires a stop to separate its producing instruction and its
use:

cmp.eq pl,p2=rl,r2;;
(pl)add rl=r2,r3

The only exception to thisrule involves an integer compare or test instruction that sets a predicate
that is used as the condition for a subsequent branch instruction:

cmp.eq pl,p2=rl,r2 // No stop required
(pl)br.cond some_target

4.2.3 Optimizing Program Performance Using Predication

This section describes predication-related optimizations, their use, and basic performance analysis
techniques. Following are descriptions of optimizations including if-conversion, misprediction
elimination, off-path predication, upward code maotion, and downward code motion.

4231 Applying if-Conversion

One of the most important optimizations enabled by predication is the complete removal of
branches from some program sequences. Without predication, the pseudo-code below would
require a branch instruction to conditionally jump around the if-block code:
if (ra) {
add rl=r2,r3
1d8 r6=[r5]

}

Using predication, the sequence can be written without a branch:
cmp.ne pl,p0=r4,0 ;;// Set predicate reg

(pl)add rl=r2,r3

(pl)1d8 r6=[r5]

The process of predicating instructions in conditional blocks and removing branchesisreferred to

asif-conversion. Onceif-conversion has been performed, instructions can be scheduled more freely
because there are fewer branches to limit code motion, and there are fewer branches competing for
issue slots.
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In addition to removing branches, this transformation will make dynamic instruction fetching more
efficient since there are fewer possibilities for control flow changes. Under more complex
circumstances, several branches can be removed. The following C code sequence:
if (r1)
r2 = r3 + r4;
else
r7 = r6 - r5;

can be rewritten in [tanium architecture-based assembly code without branches as:
cmp.nepl,p2 = rl,0;;

(pl) add r2 = r3,r4

(p2) sub r7 = r6,r5

Since instructions from opposite sides of the conditional are predicated with complementary
predicates they are guaranteed not to conflict, hence the compiler has more freedom when
scheduling to make the best use of hardware resources. The compiler could also try to schedule
these statements with earlier or later code since several branches and labels have been removed as
part of if-conversion.

Since the branches have been removed, no branch misprediction is possible and there will be no
pipeline bubbles due to taken branches. Such effects are significant in many large applications, and
these transformations can greatly reduce branch-induced stalls or flushesin the pipeline.

Thus, comparing the cost of the code above with the non-predicated version above shows that:
» Non-predicated code consumes: 2 cycles + (30% * 10 cycles) = 5 cycles.
* Predicated code consumes: 2 cycles.

In this case, predication saves an average of three cycles.

Off-path Predication

If acompiler has dynamic profile information, it is possible to form an instruction schedul e based
on the control flow path that is most likely to execute — this path is called the main trace. In some
cases, execution paths not on the main trace are still executed frequently, and thus it may be
beneficial to use predication to minimize their critical paths as well.

Themain trace of aflow graph ishighlighted in Figure 4-1. Although blocks A and B are not on the
main trace, suppose they are executed a significant number of times.

Figure 4-1. Flow Graph lllustrating Opportunities for Off-path Predication

1.166

Block B

Block A

Volume 1: Predication, Control Flow, and Instruction Stream




If some of the instructionsin block A or block B can be included in the main trace without
increasing its critical path, then techniques of upward code motion can be applied to reduce the
critical path through blocks A and B when they are taken. An example of how to use predication to
implement upward code motion is given in the next section.

4.2.3.3 Upward Code Motion

When traditional control speculation isinadequate, it may still be possible to predicate an
instruction and move it up or down in the schedule to reduce dependency height. Thisis possible
because predicating an instruction replaces a control dependency with a data dependency. If the
data dependency is less constraining than the control dependency, such a transformation may
improve the instruction schedule.

Given the Itanium architecture-based assembly sequence below, the store instruction cannot be
moved above the enclosing conditional instruction because it could cause an address fault or other
exception, depending upon the branch direction:

(pl)br.cond some_label // Cycle 0
st4 [r34] = r23 // Cycle 1
1d4 r5 = [r56] // Cycle 1
1d4 r6 = [r57] // Cycle 2:no cycle 1 M's

One reason why it might be desirable to move the store instruction up isto alow loads below it to
move up.

Note:  Ambiguous stores are barriers beyond which normal loads cannot move. In this case,
moving the store also frees up an M-unit slot. To rewrite the code so that the store comes
before the branch, p2 has been assigned the complement of p1:

(p2) st4 [r34] = r23 // Cycle 0
(p2)1d4 15 = [r56] // Cycle 0
(pl)br.cond some_label // Cycle 0

1d4 r6 = [r57] // Cycle 1

Since the storeis now predicated, no faults or exceptions are possible when the branch istaken, and
memory stateis only updated if and when the original home block of the storeis entered. Oncethe
storeis moved, it is also possible to move the load instruction without having to use advanced or
speculative loads (aslong as r'5 is not live on the taken branch path).

4234 Downward Code Motion

Aswith upward code motion, downward code motion isnormally difficult in the presence of stores.
The next example shows how code can be moved downward past alabel, atransformation that is
often unsafe without predication:

1ds r56 = [r45];; // Cycle 0: load

sta [r23] = r56;; // Cycle 2: store
label A:

add - // Cycle 3

add

add .

add e
In the code above, suppose the latency between the load and the store is two clocks. Assuming the
load instruction cannot be moved upward due to other dependencies, the only way to schedule the
instructions so that the load latency is covered isto move the store downward past the |abel.
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The following code demonstrates the overall idea of using predicates to enable downward code
motion. In actual compiler-generated code, the predicates that are explicitly computed in this
example might already be available in predicate registers and not require extrainstructions.

// Point which “dominates” label A

cmp.ne pl,p0 = r0,r0 // Initialize pl to false

// Other instructions

cmp.eq pl,p0 = r0,r0 // Initialize pl to true

148 r56=[r45];; // Cycle 0
label A:

add o // Cycle 1

add

add .

add i
(pl) st4 [r23]=r56 // Cycle 2
Here, downward code motion saves one cycle. There are examples of more sophisticated situations
involving cyclic scheduling, other store-constrained code motion, or pulling code from outside
loops into them, but they are not described here.

Cache Pollution Reduction

L oads and stores with predicatesthat are false at runtime are generally likely not to cause any cache
lines to be removed, replaced, or brought in. Also, no extra instructions or recovery code are
required as would be necessary for control or data speculation. Therefore, when the use of
predication yields the same critical path length as data or control speculation, it is almost always
preferable to use predication.

Predication Considerations

Even though predication can have a variety of beneficia effects, there are several cases where the
use of predication should be carefully considered. Such cases are usually associated with execution
paths that have unbalanced total latencies or over-usage of a particular resource such as those
associated with memory operations.

Unbalanced Execution Paths

The simple conditional below has an unbalanced flow-dependency height. Suppose that
non-predicated assembly for this sequence takes two clocks for the if-block and approximately
18 clocksif we assume aset £ takes 8 clocks, aget £ takes 2 clocks, and an xma takes 6 clocks:

if (r4) // 2 clocks
r3 = r2 + rl;
else // 18 clocks
r3 = r2 * rl;
£f (x3); // An integer use of r3
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If-converted Itanium architecture-based code is shown below. The cycle numbers shown depend
upon the values of p1 and p2 and assume the latencies shown:

// Issue cycle if p2 is:TrueFalse

cmp.ne pl,p2=r4,r0;; // O 0
(pl)add r3=r2,rl /11
(p2)setf fl=r1 // 1 1
(p2) setf f2=r2;; // 1 1
(p2)xma.l £f3=f1,f2,f0;; // 9 2
(p2)getf r3=£3;; // 15 3
(p2)use of r3 // 17 4

This code takes 18 cyclesto complete if p2 istrue and five cyclesif p2 isfalse. When analyzing
such cases, consider execution weights, branch misprediction probabilities, and prediction costs
along each path.

In the three scenarios presented bel ow, assume a branch misprediction costs ten cycles. No
instruction cache or taken-branch penalties are considered.

Case 1l

Suppose the if-clause is executed 50% of the time and the branch is never mispredicted. The
average number of clocksfor:

» Unpredicated codeis. (2 cycles* 50%) + (18 cycles* 50%) = 10 clocks
» Predicated codeis: (5 cycles* 50%) + (18 cycles* 50%) = 11.5 clocks

In this case, if-conversion would increase the cost of executing the code.

Case 2

Suppose the if-clause is executed 70% of the time and the branch mispredicts 10% if the time with
mispredicts costing 10 clocks. The average number of clocks for:

 Unpredicated codeis:

(2 cycles* 70%) + (18 cycles* 30%) + (10 cycles* 10%) = 7.8 clocks
* Predicated codeis:

(5 cycles* 70%) + (18 cycles* 30%) = 8.9 clocks

In this case, if-conversion still would increase the cost of executing the code.

Case 3

Supposetheif-clause is executed 30% of the time and the branch mispredicts 30% of thetime. The
average number of clocksfor:

« Unpredicated codeis:

(2 cycles* 30%) + (18 cycles* 70%) + (10 cycles* 30%) = 16.2 clocks
* Predicated codeis:

(5 cycles* 30%) + (18 cycles* 70%) = 14.1 clocks

In this case, if-conversion would decrease the execution cost by more than two clocks, on average.
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Overlapping Resource Usage

Before performing if-conversion, the programmer must consider the execution resources consumed
by predicated blocks in addition to considering flow-dependency height. The resource availability
height of aset of instructions is the minimum number of cycles taken considering only the
execution resources required to execute them.

The code below is derived from an if-then-€else statement. Given the generic machine model that
has only two load/store (M) units. |If acompiler predicates and combines these two blocks, then the
resource availability height through the block will be four clocks since that is the minimum amount
of time necessary to issue eight memory operations:

then clause:

1d ril=[r21] // Cycle 0
1d r2=[r22] // Cycle 0
st [r32]=r3 // Cycle 1
st [r33]=r4 ;;// Cycle 1
br end if

else_clause:
1d r3=[r23] // Cycle
1d r4=[r24] // Cycle

st [r34]=r5 // Cycle
st [r35]=r6 ;;// Cycle
end if:

H P O O

Aswith the examplein the previous section, assuming various misprediction rates and taken branch
penalties changes the decision as to when to predicate and when not to predicate. One case is
illustrated below.

Case 1

Suppose the branch condition mispredicts 10% of the time and that the predicated code takes four
clocks to execute. The average number of clocksfor:

» Non-predicated codeis: (10 cycles* 10%) + 2 cycles= 3 cycles
» Predicated codeis: 4 cycles

Predicating this code would increase execution time even though the flow dependency heights of
the branch paths are equal.

Guidelines for Removing Branches

The following if-conversion guidelines apply to cases where only local behavior of the code and its
execution profile are known:

1. Theflow dependency and resource availability heights of both paths must be considered
when deciding whether to predicate or not.

2. If if-conversion increases the length of any control path through the original code sequence,
careful analysis using profile or misprediction data must be performed to ensure that
execution time of the converted code is equivalent to or better than unpredicated code.

3. If if-conversion removes a branch that is mispredicted a significant percentage of the time,
the transformation frequently pays off even if the blocks are significantly unbalanced since

Volume 1: Predication, Control Flow, and Instruction Stream



4.3

4.3.1

mispredictions are very expensive.

4. If the flow-dependeny heights of the paths being if-converted are nearly equal and there are
sufficient resources to execute both streams simultaneously, if-conversion is often
advantageous.

Although these guidelines are useful for optimizing segments of code, the behavior of some
programsis limited by non-local effects such as overall branch behavior, sensitivity to code size,
percentage of time spent servicing branch mispredictions, etc. In these situations, the decision to
use if-convert or perform other speculative transformation becomes more involved.

Control Flow Optimizations

A common occurrence in programsis for several control flows to converge at one point or for
multiple control flows to start from one point. In the first case, multiple flows of control are often
computing the value of the same variable or register and the join point represents the point at which
the program needs to select the correct value before proceeding. In the second case, multiple flows
may begin at a point where severa independent paths are taken based on a set of conditions.

In addition to these multiway joins and branches, the computation of complex compound
conditions normally requires a tree-like computation to reduce several conditionsinto one. The
Itanium architecture provides special instructions that allow such conditions to be computed in
fewer tree levels.

A third control-flow related optimization uses predication to improve instruction fetching by
if-conversion to generate straight-line sequences that can be efficiently fetched. The use and
optimization of these casesis described in the remainder of this section.

Reducing Critical Path with Parallel Compares

The computation of the compound branch condition shown below requires several instructions on
processors without specia instructions:
if (rA || B || rC || D ) {

/* If-block instructions */

}

/* after if-block */

The pseudo-code below, shows one possible solution uses a sequence of branches:
cmp.ne pl,p0 = rA,0
cmp.ne p2,p0 = rB,0
(pl)br.cond if block
(p2)br.cond if_ block
cmp.ne p3,p0 = rC,0
cmp.ne p4,p0 = rD,0
(p3)br.cond if block
(p4)br.cond if block
// after if-block

On many implementations based on the Itanium architecture, this sequence is likely to require at
least two cyclesto executeif all the conditions are false, plus the possibility of more cycles due to
one or more branch mispredictions. Another possible sequence computes an or-tree reduction:
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or rl = rA,rB
or r2 = rC,xD;;
or r3 =rl,r2;;
cmp.ne pl,p2 = r3,0
(pl) br if block

This solution requires three cycles to compute the branch condition which can then be used to
branch to the if-block.

Note: Itisalso possibleto predicate the if-block using p1 to avoid branch mispredictions.

To reduce the cost of compound conditionals, the Itanium architecture has specia parallel compare
instructions to optimize expressions that have and or operations. These compare instructions are
special in that multiple and/or compare instructions are alowed to target the same predicate
within asingleinstruction group. This feature allows the possibility that a compound conditional
can beresolved in asingle cycle.

For this usage model to work properly, the architecture requires that the programmer ensure that
during any given execution of the code, that all instructions that target a given predicate register
must either:

e Writethe samevalue (O or 1) or
» Do not write the target register at all.

This usage model means that sometimes a parallel compare may not update the value of its target
registers and thus, unlike normal compares, the predicates used in parallel compares must be
initialized prior to the parallel compare. Please see Part |, “ Application Architecture Guide” for
full information on the operation of parallel compares.

Initialization code must be placed in an instruction group prior to the parallel compare. However,
since the initialization code has no dependencies on prior values, it can generally be scheduled
without contributing to the critical path of the code.

Theinstructions below shows how to generate code for the example above using parallel compares:
cmp . ne pl,p0 = r0,r0;; // initialize pl to O
cmp.ne.or pl,p0 = rA,r0
cmp.ne.or pl,p0 = rB,r0
cmp.ne.or pl,p0 = rC,r0
cmp.ne.or pl,p0 = rD,r0
(pl)br.cond if block

Itisaso possibleto use pl to predicate theif-block in-lineto avoid a possible misprediction. More
complex conditional expressions can also be generated with parallel compares:
if ((rA < 0) && (rB == -15) && (rC > 0))
/* If-block instructions */

The assembly pseudo-code below shows a possible sequence for the C code above:
cmp . eq pl,p0=x0,r0;; // initialize pl to 1
cmp.ne.and pl,p0=rB,-15
cmp.ge.and pl,p0=rA,r0
cmp.le.and pl,p0=rC,r0

When used correctly, and or compares write both target predicates with the same value or do not
write the target predicate at all. Another variation on parallel compare usage is where both the if
and else part of acomplex conditional are needed:

if ( rA == 0 || rB == 10 )
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rl = r2 + r3;
else
r4d = r5 - r6;

Parallel compares have an andcm variant that computes both the predicate and its complement
simultaneously.
cmp . ne pl,p2 = r0,r0;; // initialize pl,p2
cmp.eg.or.andcm pl,p2 = rA,r0
cmp.eqg.or.andcm pl,p2 = rB,10;;
(pl)add rl=r2,r3
(p2) sub r4=r5,r6

Clearly, these instructions can be used in other combinations to create more complex conditions.

4.3.2 Reducing Critical Path with Multiway Branches

While there are no special instructions to support branches with multiple conditions and multiple
targets, the Itanium architecture has implicit support by allowing multiple consecutive B-slot
instructions within an instruction group.

An example uses a basic block with four possible successors. The following Itanium
architecture-based multi-target branch code uses a BBB bundle template and can branch to either
block B, block C, block D, or fall through to block A:

label AA:

. // Instructions in block AA

)br.cond label B
)br.cond label C
)br.cond label D

// Fall through to A
label A:
... // Instructions in block A

The ordering of branches isimportant for program correctness unless all branches are mutually
exclusive, in which case the compiler can choose any ordering desired.

4.3.3 Selecting Multiple Values for One Variable or Register with
Predication

A common occurrence in programs is for a set of paths that compute different values for the same
variable to join and then continue. A variant of thisiswhen separate paths need to compute
separate results but could otherwise use the same registers since the paths are known to be
complementary. The use of predication can optimize these cases.

4.3.3.1 Selecting One of Several Values

When severa control paths that each compute a different value of a single variable meet, a
sequence of conditionalsis usually required to select which value will be used to update the
variable. The use of predication can efficiently implement this code without branches:
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switch (W)

case 1:
rA = rB + rC;
break;

case 2:
rA = rE + rF;
break;

case 3:
rA = rH - rI;
break;

The entire switch-block above can be executed in asingle cycle using predication if al of the
predicates have been computed earlier. Assume that if rw equals 1, 2, or 3, then one of p1, p2, or
p3 istrue, respectively:

(pl)add rA=rB, rC

(p2)add rA=rE, rF

(p3)sub rA=rH,rI;;

Without this predication capability, numerous branches or conditional move operations would be
needed to collapse these values.

The Itanium architecture allows multiple instructions to target the same register in the same clock
provided that only one of the instructions writing the target register is predicated true in that clock.
Similar capabilities exist for writing predicate registers, as discussed in Section 4.3.1.

Reducing Register Usage

In some instancesiit is possible to use the same register for two separate computationsin the
presence of predication. This techniqueis similar to the technique for allowing multiple writers to
store avaueinto the same register, although it is aregister allocation optimization rather than a
critical path issue.

After if-conversion, it is particularly common for sequences of instructions to be predicated with
complementary predicates. The contrived sequence below shows instructions predicated by p1 and
p2, which are known by the compiler to be complementary:
1)add rl=r2,r3
2)sub r5=r4,r56
1)1d8 r7=[r2]
p2)1d8 r9=[r6];;
l)a use of ril
2)a use of r5
1l)a use of r7
2)a use of r9
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Assuming registersr1, r5, r7, and r9 are used for compiler temporaries, each of whichislive
only until its next use, the preceding code segment can be rewritten as:
pl)add rl=r2,r3
p2)sub rl=r4,r56// Reuse rl
1d8 r7=[r2]
1d8 r7=[r6];;// Reuse r7
use of rl

use of r7

(
(p2)
(p1)
(p2)
(p1)
(p2)
(p1)
(p2)

a
a use of ril
a
a

use of r7

The new sequence uses two fewer registers. With the 128 registers defined in the architecture, this
may not seem essential, but reducing register use can still reduce program and register stack engine
spills and fills that can be common in codes with high instruction-level parallelism.

Improving Instruction Stream Fetching

Instructions flow through the pipeline most efficiently when they are executed in large blocks with
no taken branches. Whenever the instruction pointer needs to be changed, the hardware may have
to insert bubbles into the pipeline either while the target prediction is taking place or because the
target address is not computed until later in the pipeline.

By using predication to reduce the number of control flow changes, the fetching efficiency will
generaly improve. The only case where predication is likely to reduce instruction cache efficiency
iswhen there isalarge increase in the number of instructions fetched which are subsequently
predicated off. Such a situation usesinstruction cache space for instructions that compute no useful
results.

Instruction Stream Alignment

For many processors, when a program branchesto anew location, instruction fetching is performed
on instruction cache lines. If the target of the branch does not start on a cache line boundary, then
fetching from that target will likely not retrieve an entire cache line. This problem can be avoided if
aprogrammer aligns instruction groups that cross more than one bundle so that the instruction
groups do not span cache line boundaries. However, padding al labels would cause an
unacceptable increase in code size. A more practical approach aligns only tops of loops and
commonly entered basic blocks when the first instruction group extends across more than one
bundle. That is, if both of the following conditions are true at some label L, then padding previous
instruction groups so that L is aligned on a cache line boundary is recommended:

» Thelabel is commonly branched to from out-of-line. Examples include tops of loops and
commonly executed else clauses.

» Theinstruction group starting at label L. extends across more than one bundle.
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To illustrate, assume code at |abel 1. in the segment below is not cache-aligned and that a cache
boundary occurs between the two bundles. If a program were to branch to 1., then execution may
split issue after the third add instruction even though there are no resource oversubscriptions or
stops:

L:

{ .mii
add rl=r2,r3
add r4=r5,r6
add r7=xr8,r9

1

{ .mfb
148 rl4=[r56] ;;
nop. £
nop.b

}

On the other hand, if . were aligned on an even-numbered bundle, then all four instructions at L.
could issuein one cycle.

Branch and Prefetch Hints

Branch and prefetch hints are architecturally defined to allow the compiler or hand coder to provide
extrainformation to the hardware. Compared to hardware, the compiler has more time, looks at a
wider instruction window (including the source), and performs more analysis. Transfer of this
knowledge to the processor can help to reduce penalties associated with I-cache accesses and
branch prediction.

Two types of branch-related hints are defined by the Itanium architecture: branch prediction hints
and instruction prefetch hints. Branch prediction hintslet the compiler recommend the resources (if
any) that should be used to dynamically predict specific branches. With prefetch hints, the compiler
can indicate the areas of the code that should be prefetched to reduce demand I-cache misses.

Hints can be specified as completers on branch (br) and move to branch register (abbreviated
mov2br in this text since the actual mnemonic ismov br=xx). The hints on branch instructions
are the easiest to use since the instruction already exists and the hint completer just hasto be
specified. mov2br instructions are used for indirect branches. The exact interpretation of these hints
isimplementation specific although the general behavior of hintsis expected to be similar between
processor generations.

It isalso possible to re-write the hint fields on branches later using a binary rewriting tools. This
can occur statically or at execution time based on profile data without changing the correctness of
the program. This technique allows static hints to be tailored for usage patterns that may not be
fully known at compilation time or when the binaries are first distributed.
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4.5 Summary

This chapter has presented awide variety of topics related to optimizing control flow including
predication, branch architecture, multiway branches, parallel compares, instruction stream
alignment, and branch hints. Although such topics could have been presented in separate chapters,
the interplay between the features is best understood by their effects on each other.

Predication and itsinterplay on scheduling region formation is central to the performance of the
Itanium architecture. Unfortunately, discussion of compiler algorithms of this nature are far beyond
the scope of this document.
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5.1

5.2

5.3

Overview

The Itanium architecture provides extensive support for software-pipelined loops, including
register rotation, specia loop branches, and application registers. When combined with predication
and support for speculation, these features help to reduce code expansion, path length, and branch
mispredictions for loops that can be software pipelined.

The beginning of this chapter reviews basic loop terminology and instructions, and describes the
problems that arise when optimizing loops in the absence of architectural support. Specific loop
support features of the Itanium architecture are then introduced. The remainder of this chapter
describes the programming and optimization of various type of loops.

Loop Terminology and Basic Loop Support

L oops can be categorized into two types: counted and while. In counted loops, the loop condition is
based on the value of aloop counter and the trip count can be computed prior to starting theloop. In
while loops, the loop condition isamore general calculation (not asimple count) and the trip count
is unknown. Both types are directly supported in the architecture.

The Itanium architecture improves the performance of conventional counted loops by providing a
specia counted loop branch (the br . c1oop instruction) and the Loop Count application register
(LC). Thebr.cloop instruction does not have a branch predicate. Instead, the branching
decision is based on the value of the I.C register. If the L.C register is greater than zero, it is
decremented and the br . c1oop branch istaken.

Optimization of Loops

In many loops, there are not enough independent instructions within a single iteration to hide
execution latency and make full use of the functional units. For example, in the loop body below,
thereisvery little ILP:

L1l:1d4 r4d = [r5],4;; // Cycle 0 load postinc 4
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3 store postinc 4
br.cloop L1;; // Cycle 3

In this code, all the instructions from iteration X are executed before iteration X+1 is started.
Assuming that the store from iteration X and the load from iteration X+1 are independent memory
references, utilization of the functional units could be improved by moving independent
instructions from iteration X+1 to iteration X, effectively overlapping iteration X with iteration
X+1.
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This section describes two general methods for overlapping loop iterations, both of which result in
code expansion on traditional architectures. The code expansion problem is addressed by loop
support features in the Itanium architecture that are explored later in this chapter. The loop above
will be used as arunning example in the next few sections.

Loop Unrolling

Loop unrolling is a technique that seeks to increase the available instruction level parallelism by
making and scheduling multiple copies of the loop body together. The registersin each copy of the
loop body are given different names to avoid unnecessary WAW and WAR data dependencies. The
code below shows the loop from our example on page 1:179 after unrolling twice (total of two
copies of the original loop body) and instruction scheduling, assuming two memory ports and atwo
cycle latency for loads. For simplicity, assume that the loop trip count is aconstant N that isa
multiple of two, so that no exit branch is required after the first copy of the loop body:

L1:1d4 r4d = [r5],4;; // Cycle 0
1d4 rld = [r5],4;; // Cycle 1
add r7 = rd4d,r9;; // Cycle 2
add rl7 = rl4,r9 // Cycle 3
st4 [r6] = x7,4;; // Cycle 3
st4 [r6] = rl7,4 // Cycle 4
br.cloop L1;; // Cycle 4

The above code does not expose as much ILP as possible. The two |oads are serialized because they
both use and update r5. Similarly the two stores both use and update r6. A variable which is
incremented (or decremented) once each iteration by the same amount is called an induction
variable. The singleinduction variable x5 (and similarly r6) can be expanded into two registers as
shown in the code below:

add rl5 = 4,r5
add rle = 4,r6;;

L1:1d4 r4 = [r5],8 // Cycle 0
1d4 rlda = [rl5],8;; // Cycle 0
add r7 = r4,r9 // Cycle 2
add rl7 = rl4,r9;; // Cycle 2
st4 [r6] r7,8 // Cycle 3
st4 [r16] = r17,8 // Cycle 3
br.cloop L1;; // Cycle 3

Compared to the original loop on page 1:179, twice as many functional units are utilized and the

code size istwice as large. However, no instructions are issued in cycle 1 and the functional units
are still under utilized in the remaining cycles. The utilization can be increased by unrolling the

loop more times, but at the cost of further code expansion. The loop below is unrolled four times
(assuming the trip count is multiple of four):

add rl5 = 4,r5
add r25 = 8,r5
add r35 = 12,r5
add rlé = 4,16
add r26 = 8,16
add r36 = 12,r6;;

L1:1d4 r4 = [r5],16 // Cycle 0
144 rl4 = [rls5],16;; // Cycle 0
1d4 r24 = [r25],16 // Cycle 1
1d4 r34 = [r35],16;; // Cycle 1
add r7 = r4,r9 // Cycle 2
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add rl7 = rl4,r9;; // Cycle 2
st4 [r6] = r7,16 // Cycle 3
st4 [r16] = rl7,16 // Cycle 3
add r27 = r24,r9 // Cycle 3
add r37 = r34,r9;; // Cycle 3
st4 [r26] = r27,16 // Cycle 4
st4 [r36] = r37,16 // Cycle 4
br.cloop L1;; // Cycle 4

The two memory ports are now utilized in every cycle except cycle 2. Four iterations are now
executed in five cycles verses the two iterations in four cycles for the previous version of the loop.

Software Pipelining

Software pipelining is atechnique that seeks to overlap loop iterationsin amanner that is

analogous to hardware pipelining of a functional unit. Each iteration is partitioned into stages with

zero or more instructionsin each stage. A conceptual view of asingle pipelined iteration of the loop

from page 1:179 in which each stageis one cycle long is shown below:

stage 1:1d4 r4 = [r5],4

stage 2:--- // empty stage

stage 3:add r7 = r4,r9
4

stage st4 [r6] = r7,4

The following is a conceptual view of five pipelined iterations:
1 2 3 4 5 Cycle

add 1d4 X+2
st4 add 1d4 X+3
st4 add 1d4 X+4

st4 add X+5

st4 add X+6

st4 X+7

The number of cycles between the start of successive iterations is called the initiation interval (11).
In the above example, the |1 is one. Each stage of a pipelined iteration is 1l cycleslong. Most of
the examples in this chapter utilize modulo scheduling, which is a particular form of software
pipelining in which the Il is a constant and every iteration of the loop has the same schedule. It is
likely that software pipelining algorithms other than modulo scheduling could benefit from the loop
support features. Therefore the examplesin this chapter are discussed in terms of software
pipelining rather than modulo scheduling.

Software pipelined loops have three phases: prolog, kernel, and epilog, as shown below:

1 2 3 4 5 Phase
1d4
1d4 Prolog
add 1d4
st4 add 1d4 Kernel
st4 add 1d4
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st4 add
st4 add Epilog
st4

During the prolog phase, anew loop iteration is started every Il cycles (every cycle for the above
example) to fill the pipeline. During the first cycle of the prolog, stage 1 of the first iteration
executes. During the second cycle, stage 1 of the second iteration and stage 2 of the first iteration
execute, etc. By the start of the kernel phase, the pipelineisfull. Stage 1 of the fourth iteration,
stage 2 of the third iteration, stage 3 of the second iteration, and stage 4 of the first iteration
execute. During the kernel phase, a new loop iteration is started, and another is completed every |1
cycles. During the epilog phase, no new iterations are started, but the iterations already in progress
are completed, draining the pipeline. In the above example, iterations 3-5 are completed during the
epilog phase.

The software pipelineis coded asaloop that is very different from the original source codeloop. To
avoid confusion when discussing loops and loop iterations, we use the term source loop and source
iteration to refer back to the original source code loop, and the term kernel loop and kernel
iteration to refer to the loop that implements the software pipeline.

In the above example, the load from the second source iteration isissued before result of the first
load is consumed. Thus, in many cases, |oads from successive iterations of the loop must target
different registers to avoid overwriting existing live values. Intraditional architectures, this
requires unrolling of the kernel loop and software renaming of the registers, resulting in code
expansion. Furthermore, in traditional architectures, separate blocks of code are generated for the
prolog, kernel, and epilog phases, resulting in additional code expansion.

Loop Support Features in the Intel® Itanium®

Architecture

The code expansion that results from loop optimizations (such as software pipelining and loop
unrolling) on traditional architectures can increase the number of instruction cache misses, thus
reducing overall performance. The loop support features in the Itanium architecture allow some
loops to be software pipelined without code expansion. Register rotation provides a renaming
mechanism that reduces the need for loop unrolling and software renaming of registers. Special
software pipelined loop branches support register rotation and, combined with predication, reduce
the need to generate separate blocks of code for the prolog and epilog phases.

Register Rotation

Register rotation renames registers by adding the register number to the value of aregister rename
base (rrb) register contained in the CFM. The rrb register is decremented when certain special
software pipelined loop branches are executed at the end of each kernel iteration. Decrementing the
rrb register makesthe value in register X appear to move to register X+1. If X isthe highest
numbered rotating register, its value wraps to the lowest numbered rotating register.

A fixed-sized area of the predicate and floating-point register files (p16-p63 and £32-£127), and
a programmable-sized area of the general register file are defined to rotate. The size of the rotating
areain the general register fileis determined by an immediate in the al1loc instruction and must
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be either zero or amultiple of 8, up to a maximum of 96 registers. The lowest numbered rotating
register in the general register fileisr32. Anrrb register is provided for each of the three rotating
register files: CFM. rrb.gr for the genera registers, CFM. rrb. £r for the floating-point
registers, CFM. rrb . pr for the predicate registers. The software pipelined loop branches
decrement all the rrb registers simultaneously.

Below is an example of register rotation. The swp_branch pseudo-instruction represents a
software pipelined loop branch:
L1:1d4 r35 = [r4],4 // post increment by 4

st4 [r5] = ¥r37,4 // post increment by 4

swp_branch L1 ;;

The value that the load writesto r35 isread by the store two kernel iterations (and two rotations)
later asr37. Inthe meantime, two more instances of the load are executed. Because of register
rotation, those instances write their result to different registers and do not modify the value needed
by the store.

The rotation of predicate registers serves two purposes. Thefirst isto avoid overwriting a
predicate value that is still needed. The second purpose isto control the filling and draining of the
pipeline. To do this, a programmer assigns a predicate to each stage of the software pipeline to
control the execution of the instructions in that stage. This predicate is called the stage predicate.
For counted loops, p16 isarchitecturally defined to be the predicate for the first stage, p17 is
defined to be the predicate for the second stage, etc. A conceptual view of a pipelined source
iteration of the example counted loop on page 1:179 is shown below. Each stage is one cycle long
and the stage predicates are shown:

stage 1:(plé6)1d4 r4 = [r5],4
stage 2: (pl7) --- // empty stage
stage 3:(pl8)add r7 = r4,r9
stage 4:(pl9)st4 [r6] = r7,4

A register rotation takes place at the end of each stage (when the software-pipelined loop branch is
executed in the kernel loop). Thusal writtento p16 enablesthe first stage and then is rotated to
p17 at the end of thefirst stage to enable the second stage for the same sourceiteration. Each one
written to p16 sequentially enables all the stages for a new source iteration. This behavior is used

to enable or disable the execution of the stages of the pipelined loop during the prolog, kernel, and
epilog phases as described in the next section.

Note on Initializing Rotating Predicates

In this chapter, theinstruction mov pr.rot = immed isused toinitialize rotating predicates.
Thisinstruction ignores the value of CFM.rrb.pr. Thus, the examplesin this chapter are written
assuming that CFM.rrb.pr is always zero prior to the initialization of predicate registers using mov
pr.rot = immed.

Software-pipelined Loop Branches

The special software-pipelined loop branches allow the compiler to generate very compact code for
software-pipelined loops by supporting register rotation and by controlling the filling and draining
of the software pipeline during the prolog and epilog phases. Generally speaking, each time a
software-pipelined loop branch is executed, the following actions take place:
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1. A decision is made on whether or not to continue kernel loop execution.

2. pleéissettoavaueto control execution of the stages of the software pipeline (pé63 is
written by the branch, and after rotation this value will bein p1e6).

Theregisters are rotated (rrb registers are decremented).

The Loop Count (1.c) and/or the Epilog Count (EC) application registers are selectively
decremented.

There are two types of software-pipelined loop branches: counted and while.

Counted Loop Branches

Figure 5-1 shows a flowchart for modulo-scheduled counted loop branches.

During the prolog and kernel phase, a decision to continue kernel 1oop execution means that a new
sourceiteration is started. Register rotation must occur so that the new source iteration does not
overwriteregistersthat arein use by prior source iterations that are still in the pipeline. p16 isset
to 1 to enable the stages of the new source iteration. L.C is decremented to update the count of
remaining source iterations. EC is not modified.

During the epilog phase, the decision to continue loop execution means that the software pipeline
has not yet been fully drained and execution of the source iterations in progress must continue.
Register rotation must continue because the remaining source iterations are still writing results and
the consumers of the results expect rotation to occur. p16 isnow set to 0 because there are no more
new source iterations and the instructions that correspond to non-existent source iterations must be
disabled. EC contains the count of the remaining execution stages for the last sourceiteration andis
decremented during the epilog. For most loops, when a software pipelined loop branch is executed
with EC equal to 1, it indicates that the pipeline has been drained and a decision is made to exit the
loop. The special case in which a software-pipelined loop branch is executed with EC equal to 0 can
occur in unrolled software-pipelined loops if the target of the cexit branch is set to the next
sequential bundle.
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Figure 5-1. ctop and cexit Execution Flow
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There are two types of software-pipelined loop branches for counted loops. br . ctop istaken
when a decision to continue kernel 1oop execution is made, and is not taken otherwise. It isused
when the loop execution decision is located at the bottom of the loop. br . cexit isnot taken
when a decision to continue kernel loop execution is made, and is taken otherwise. It is used when
the loop execution decision is located somewhere other than the bottom of the loop.

Counted Loop Example

A conceptual view of apipelined iteration of the example counted loop on page 1:179 with |1 equal
to oneis shown below:

stage 1:(plé6)1ld4 r4 = [r5],4
stage 2:(pl7)--- // empty stage
stage 3:(pl8)add r7 = r4,r9
stage 4:(pl9) st4 [r6] = r7,4

To generate an efficient pipeline, the compiler must take into account the latencies of instructions
and the available functional units. For this example, theload latency istwo and the load and add are
scheduled two cycles apart. The pipeline below is coded assuming there are two memory ports and
the loop count is 200.

Note:  Rotating GRs have now been included in the code (the code directly preceding did not).

Also, induction variables that are post incremented must be allocated to the static portion

of the register file:
mov lc = 199 // LC =loop count - 1

// EC =epilog stages + 1

mov pr.rot = 1l<<16;;// PR16 = 1,

mov ec = 4

rest = 0
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Ll:

pl6)1d4 r32 [r5],4// Cycle 0

(

(pl8)add r35 = r34,r9// Cycle 0
(p19)st4 [r6] = r36,4// Cycle 0O
br.ctop L1;; // Cycle 0

The memory ports are fully utilized. Table 5-1 shows atrace of the execution of thisloop.

Table 5-1. ctop Loop Trace

5.4.3.3
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Port/Instructions State before br.ctop
Cycle
M | M B pl6 pl7 p18 p19 LC EC

0 1d4 br.ctop 1 0 0 0 199 4
1 1d4 br.ctop 1 1 0 0 198 4
2 1d4 add br.ctop 1 1 1 0 197 4
3 1d4 add st4 br.ctop 1 1 1 1 196 4
100 1d4 add st4 br.ctop 1 1 1 1 99 4
199 1d4 add st4 br.ctop 1 1 1 1 0 4
200 add st4 br.ctop 0 1 1 1 0 3
201 add st4 br.ctop 0 0 1 1 0 2
202 st4 br.ctop 0 0 0 1 0 1
0 0 0 0 0 0

In cycle 3, the kernel phase is entered and the fourth iteration of the kernel loop executesthe 1d4,
add, and st4 from the fourth, second, and first source iterations respectively. By cycle 200, all
200 loads have been executed, and the epilog phase is entered. When the br . ctop isexecuted in
cycle202, EC isequal to 1. EC isdecremented, the registers are rotated one last time, and execution
falls out of the kernel 1oop.

Note:  After thisfinal rotation, EC and the stage predicates (p16 - p19) areO.

Itisdesirable to allocate variables that are loop variant to the rotating portion of the register file
whenever possible to preserve space in the static portion for loop invariant variables. Induction
variables that are post incremented must be allocated to the static portion of the register file.

While Loop Branches

Figure 5-2 shows the flowchart for while loop branches.

There are afew differencesin the operation of the whileloop branch compared to the counted loop
branch. The while loop branch does not access 1.¢ — abranch predicate determines the behavior of
this branch instead. During the kernel and epilog phases, the branch predicate is one and zero
respectively. During the prolog phase, the branch predicate may be either zero or one depending on
the scheme used to program the while loop. Also, p16 isalways set to zero after rotation. The
reasons for these differences are related to the nature of while loops and will be explained in more
depth with an examplein alater section.
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5.4.4 Terminology Review

The terms below were introduced in the preceding sections:

Initiation Interval (I1)
The number of cycles between the start of successive source iterationsin a software

pipelined loop. Each stage of the pipelineis|l cycleslong.

Prolog  Thefirst phase of a software-pipelined loop, in which the pipelineisfilled.

Kernel The second phase of a software-pipelined loop, in which the pipeline isfull.

Epilog

Source Iteration

An iteration of the original source code loop.

Kernel Iteration

An iteration of the loop that implements the software pipeline.

Register Rotation
A form of register renaming that is visible to software. Registers are renamed with

respect to aregister rename base that is decremented.

Induction Variable
Valuethat isincremented (or decremented) once per sourceiteration by the same amount.
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Optimization of Loops in the Intel® Itanium®

Architecture

Register rotation, predication, and the software pipelined loop branches allow the generation of
compact, yet highly parallel code. Speculation can further increase loop performance by removing
dependency barriers that limit the throughput of software pipelined loops. Register rotation
removes the requirement that kernel loops be unrolled to allow software renaming of the registers.
However in some cases performance can be increased by unrolling the source loop prior to
software pipelining, or by generating explicit prolog and/or epilog blocks. The remainder of this
chapter discusses |oop optimizations.

While Loops

The programming scheme for while loops depends upon the structure of the loop. This section
discusses do-while loops, in which the loop condition is computed at the bottom of the loop.
Optimizing compilers often transform while loops (where the condition is computed at the top of
the loop) into do-while loops by moving the condition computation to the bottom of the loop and
placing a copy of the condition computation prior to the loop to reduce the number of branchesin
the loop. The remainder of this section refersto such loops simply as while loops. Below isa
simple while loop:

L1:1d4 r4 = [r5],4;; // Cycle 0
st4 [r6] = r4,4 // Cycle 2
cmp.ne pl,p0 = r4,r0 // Cycle 2

(pl) br L1;; // Cycle 2

A conceptual view of a pipelined iteration of thisloop with Il equal to one is shown below:

stage 1: 1d4 r4 = [x5],4
stage 2: --- // empty stage
stage 3: st4 [r6]l= r4,4

cmp.ne.unc pl,p0 = r4,r0

(pl) br Ll

Thefollowing isaconceptual view of four overlapped source iterations assuming the load and store
are independent memory references.  The store, compare, and branch instructions in stage two are
represented by the pseudo-instruction scb:

1 2 3 4 Cycle

scb X+5

Notice that the load for the second source iteration is executed before the compare and branch of
thefirst sourceiteration. That is, theload (and the update of r5) is speculative. Theloop condition
is not computed until cycle X+2, but in order to maximize the use of resources, it isdesirable to
start the second source iteration at cycle X+1. Without the support for control speculation in the
Itanium architecture, the second source iteration could not be started until cycle X+3.

Volume 1: Software Pipelining and Loop Support



The computation of the loop condition for while loopsis very different from that of counted loops.
In counted loops, it is possible to compute the loop condition in one cycle using a counted loop
branch. Thisiswhat abr . ctop instruction doeswhen it setsp16. In whileloops, acompare must
compute the loop condition and set the stage predicates. The stages prior to the one containing the
compare are called the speculative stages of the pipeline, becauseit is not possible for the compare
to completely control the execution of these stages. Therefore, the stage predicate set by the
compare is used (after rotation) to control the first non-speculative stage of the pipeline.

The pipelined version of the whileloop on page 1:188 is shown below. A check for the speculative

load isincluded:
mov ec = 2
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0
Ll:
1d4.s r32 = [r5],4 // Cycle 0
(pl8) chk.s r34, recovery // Cycle 0
(pl8) cmp.ne pl7,p0 = r34,r0 // Cycle 0
(pl8) st4 [r6] = r34,4 // Cycle 0
(pl7) br.wtop.sptk L1;; // Cycle 0

L2:

To explain why the kernel loop is programmed the way it is, it is helpful to examine atrace of the
execution of the loop (assume there are 200 source iterations) shown in Table 5-2.

Thereis no stage predicate assigned to the load because it is speculative. The compare setsp17.
Thisisthe branch predicate for the current iteration and, after rotation, the stage predicate for the
first non-specul ative stage (stage three) of the next sourceiteration. During the prolog, the compare
cannot produceitsfirst valid result until cycle two. Theinitialization of the predicates provides a
pipeline that disables the compare until the first sourceiteration reaches stagetwo in cycletwo. At
that point the compare starts generating stage predicates to control the non-specul ative stages of the
pipeline. Notice that the compare is conditional. If it were unconditional, it would always write a
zero to p17 and the pipeline would not get started correctly.

Table 5-2. wtop Loop Trace

Port/Instructions State before br.wtop
Cycle
M | | M B pl6 pl7 p18 EC

0 Id4.s br.wtop 1 0 0 2
1 ld4.s br.wtop 0 1 0 1
2 Id4.s cmp chk st4 br.wtop 0 1 1 1
3 ld4.s cmp chk st4 br.wtop 0 1 1 1
100 ld4.s cmp chk st4 br.wtop 0 1 1 1
199 ld4.s cmp chk st4 br.wtop 0 1 1 1
200 Id4.s cmp chk st4 br.wtop 0 1 1 1
201 ld4.s cmp chk st4 br.wtop 0 0 1 1

0 0 0 0

Volume 1: Software Pipelining and Loop Support 1:189



5.5.2

1:190

The executions of br . wtop in the first two cycles of the prolog do not correspond to any of the
sourceiterations. Their purposeis simply to continue the kernel loop until the first valid loop
condition can be produced. In cycle one, the branch predicate p17 isone. For this programming
scheme, the branch predicate of the br . wtop is always a one during the last speculative stage of
the first source iteration. During all the prior stages, the branch predicate is zero. If the branch
predicateis zero, the br . wtop continues the kernel loop only if EC is greater than one. It also
decrements EC. Thus EC must beinitialized to (# epilog stages + # specul ative pipeline stages). In
the above example, thisis0+2 =2,

In cycle 201, the compare for the 200" source iteration is executed.  Since thisis the final source
iteration, the result of the compare isazero and p17 isunmodified. The zero that was rotated into
pl7 fromplé causesthe br . wtop to fall through to the loop exit. EC is decremented and the
registers are rotated one last time.

In the above example, there are no epil og stages. As soon as the branch predicate becomes zero, the
kernel loop is exited.

Loops with Predicated Instructions

Instructions that already have predicates in the source loop are not assigned stage predicates. They
continue to be controlled by compare instructionsin the loop body. For example, the following loop
contains predicated instructions:

L1l:1dfs f4 = [r5],4
1dfs £f9 = [x8],4;;
fecmp.ge.unc pl,p2 = £4,£9;;
(pl)stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

br.cloop L1 ;;

Below isa possible pipeline with an 1l of 2, assuming afloating-point load latency of 9 cycles:

stage 1:(ple)ldfs f4 = [x5],4
(p16) 1dfs £f9 = [r8],4;;
--- // empty cycle
stage 2-4: --- // empty stages
stage 5: --- // empty cycle
(p20) fcmp.ge.unc pl,p2 = £4,£9;;

stage 6: --- // empty cycle
(p1) stfs [r9] = f4, 4
(p2) stfs [r9] = f9, 4

The following is the code to implement the pipeline:

mov lc = 199 // LC = loop count - 1
mov ec = 6 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0

Ll:

(pl6) 1ldfs £f32 = [r5],4

(pl6) ldfs £38 = [r8],4;;

(p32) stfs [r9] = £37, 4

(p20) fcmp.ge.unc p31,p32 = £36,£42

(p33) stfs [r9] = f43, 4

L2: br.ctop.sptk L1;;
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Multiple-exit Loops

All of the example loops discussed so far have a single exit at the bottom of the loop. The loop
below contains multiple exits — an exit at the bottom associated with the loop closing branch, and
an early exit in the middle:

Ll: 1d4 r4 = [r5],4;;
1d4 r9 = [r4l;;
cmp.eq.unc pl,p0 = r9,r7

(pl) br.cond exit // early exit
add r8 = -1,r8;;

cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;

L oops with multiple exits require special care to ensure that the pipeline is correctly drained when
the early exit is taken. There are two ways to generate a pipelined version of the above loop:
(2) convert it to asingle exit loop, or (2) pipeline it with the multiple exits explicitly present.

Converting Multiple Exit Loops to Single Exit Loops

Thefirst isto transform the multiple exit loop into a single exit loop. In the source loop, execution
of the add, the second compare and the second branch is guarded by the first branch. The loop can
be transformed into a single exit loop by using predicates to guard the execution of these
instructions and moving the early exit branch out of the loop as shown below:

Ll: 1d4 r4 = [r5],4;;

1d4 r9 = [r4l;;
cmp.eqg.unc pl,p2 = r9,r7
add r8 = -1,1r8;;

(p2) cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;
(pl) br.cond exit // early exit if pl is 1

The computation of p3 determines if either exit of the source loop would have been taken. If p3 is
zero, the loop isexited and p1 is used to determine which exit was actually taken. The add is
executed speculatively (it is not guarded by p2) to keep the dependency from the cmp . eq to the
add from limiting the l1. It is assumed that either r8 isnot live out at the early exit or that
compensation code is added at the target of the early exit. The pipelinefor thisloop is shown below
with the stage predicate assignments but no other rotating register alocation. The compare and the
branch at the end of stage 4 are not assigned stage predicates because they already have qualifying
predicates in the source loop:

stage 1: 1d4.s r4 = [r5],4;; // II = 2
--- // empty cycle
stage 2: --- // empty cycle
1d4.s r9 = [r4];;
stage 3: --- // empty stage
stage 4:
(p19) add r8 = -1,r8
(p19) cmp.eg.unc pl,p2 = r9,r7;;
(p2) cmp.ge.unc p3,p0 = r8,r0
(p3) br.cond L1;;

Volume 1: Software Pipelining and Loop Support 1:191



The code to implement this pipeline is shown below complete with the chk instruction:

mov ec = 3
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0
Ll: 1d4.s r32 = [r5],4 // Cycle 0
(p19) chk.s 136, recovery // Cycle 0
(p19) add r8 = -1,r8 // Cycle 0
(p19) cmp.eqg.unc p31,p32 = r36,r7;;// Cycle 0
1d4.s 134 = [r33] // Cycle 1
(p32) cmp.ge pl8,p0 = r8,r0 // Cycle 1
L2
(p18) br.wtop.sptk L1;; // Cycle 1
(p32) br.cond exit // early exit if p32 is 1

Note:  When theloopisexited, one final rotation occurs, rotating the valueinp31 top32. Thus,
p32 isused as the branch predicate for the early exit branch.

5.5.3.2 Pipelining with Explicit Multiple Exits

The second approach is to combine the last three instructionsin the loop into abr . c1oop
instruction and then pipeline theloop. The pipeline using this approach is shown below:
stage 1:1d4.s r4 = [r5],4;; // II =1
stage 4:1d4.s r9 = [r4];;
stage 6:cmp.eq.unc pl,p0 = r9,r7
(pl)br.cond exit
br.cloop L1;;

There are five specul ative stages in this pipeline because a non-specul ative decision to initiate
another loop iteration cannot be made until thebr . cond and br . cloop are executed in stage 6.
The code to implement this pipeline is shown below assuming atrip count of 200:

mov lc = 204
mov ec =1
mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0
L1
1d4.s 132 = [r5],4 // Cycle 0
(p21) chk.s 138, recovery // Cycle 0
(p21) cmp.eqg.unc pl,p0 = r38,r7 // Cycle 0
1d4.s 136 = [r35] // Cycle 0
(pl) br.cond exit // Cycle 0
L2: br.ctop.sptk L1; // Cycle 0

When the kernel loop is exited at either thebr . cond or thebr . ctop, the last source iteration is
complete. Thus, EC isinitialized to 1 and there is no explicit epilog block generated for the early
exit. TheLC register isinitialized to five more than 199 because there are five speculative stages.
The purpose of thefirst five executions of br . ct op issimply to keep the loop going until the first
valid branch predicate is generated for the br.cond. During each of these executions, L.C is
decremented, so five must be added to the L.C initialization amount to compensate.

A smaller Il isachieved with the second approach. This pipelined code will also work if LC is
initialized to 199 and EC isinitialized to 6. However, if the early exit istaken, L.C will have been
decremented too many times and will need to be adjusted if it is used at the target of the early exit.
If there is any epilog when the early exit is taken, that epilog must be explicit.
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5.5.5

5.5.5.1

Software Pipelining Considerations

There may be instances where it may not be desirable to pipeline aloop. Software pipelining
increases the throughput of iterations, but may increase the time required to complete asingle
iteration. As aresult, loops with very small trip counts may experience decreased performance
when pipelined. For example, consider the following loop:

L1:1d4 r4 = [r5],4 // Cycle 0
144 r7 = [r8],4;; // Cycle 0O
st4 [r6] = r4,4 // Cycle 2
st4 [r9] = r7,4 // Cycle 2
br.cloop L1;; // Cycle 2

Thefollowing is a possible pipeline with an 11 of 2:

stage 1:1d4 r4 = [r5],4 // Cycle 0
1d4 7 = [r8],4;; // Cycle 0
--- // empty cycle
stage 2:--- // empty cycle
st4 [r6] = r4,4 // Cycle 3
st4 [r9] = r7,4;; // Cycle 3

In the source loop, oneiteration is completed every three cycles. In the software pipelined loop, it
takes four cyclesto complete the first iteration. Thereafter, iterations are completed every two
cycles. If the trip count is two, the execution time of both versions of the loop is the same, six
cycles. If the average trip count of the loop is less than two, the software pipelined version of the
loop is slower than the source loop.

In addition, it may not be desirable to pipeline a floating-point loop that contains a function call.
The number of floating-point registers used by the loop is not known until after theloop is
pipelined. After pipelining, it may be difficult to find empty slotsfor the instructions needed to save
and restore the caller-saved floating-point registers across the function call.

Software Pipelining and Advanced Loads

Advanced loads allow some code that is likely to be invariant to be removed from loops, thus
reducing the resource requirements of the loop. Use of advanced loads also can reduce the critical
path through the iterations, allowing asmaller Il to be achieved. See Chapter 3, “Memory
Reference” for more information on advanced loads. However, caution must be exercised when
using advanced loads with register rotation. For this discussion, we assume an ALAT with 32
entries.

Capacity Limitations

An advanced load with a destination that is arotating register targets a different physical register
and allocates anew ALAT entry for each kernel iteration. For example, the simple loop below
replaces 32 ALAT entriesin 32 iterations:

Ll:(ple) 1ld4.a r32 = [r8]
(p47) 1d4.c ré63 = [r8]
br.ctop L1;;
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To avoid unnecessary ALAT misses, the check load or advanced load check must be executed
before alater advanced |oad causes a replacement of the entry being checked. In the simple loop
above, the unnecessary ALAT misses do not occur because the check load is done within 31
iterations of the advanced load. In the example below, an ALAT missis encountered for every
check load because the advanced |oad replaces an entry just before the corresponding check load is
executed:

Ll:(pl6) 1d4.a r32 = [r8]
(p48) 1d4.c r64 = [r8]
br.ctop L1;;

Conflicts in the ALAT

Using an advanced load to remove alikely invariant load from aloop while advancing another load
inside the loop resultsin poor performanceif the latter load targets arotating register. The advanced
load that targets the rotating register will eventually invalidate the ALAT entry for the loop
invariant load. Thereafter, every execution of the check load for the loop invariant load will cause
an ALAT miss.

When more than one advanced load in the loop targets a rotating register, the registers must be
assigned and the register lifetimes controlled so that the check load for a particul ar advanced load X
is executed before any of the other advanced |oads can invalidate the entry allocated by load X. For
example, the following loop successfully targets rotating registers with two advanced |oads without
any ALAT misses because the two advanced load — check load pairs never create more than 32
simultaneously live ALAT entries:
Ll:(pl6) 1ld4.a r32 [r8]
(p31) 1d4.c r47 = [r8]
(pl6) 1d4.a r48 = [r9]
[

(p31) 1d4.c r63 = [r9]
br.ctop L1;;

When the code cannot be arranged to avoid ALAT misses, it may be best to assign static registersto
the destinations of the advanced |oads and unroll the loop to explicitly rename the destinations of
the advanced |oads where necessary. The following example shows how to unroll the loop to
avoid the use of rotating registers. The loop has an Il equal to 1 and the check load is executed one
cycle (and one rotation) after the advanced load:

Ll:(pl6) 1d4.a r33 = [r8]
(p17) 1d4.c r34 = [r8]
br.ctop L1;;

Static registers can be assigned to the destinations of the loads if the loop is unrolled twice:

Ll:(pl6) 1ld4.a r3 = [r8]
(pl17) 1ld4.c r4 = [r8]
br.cexit L2;;
(pl6) 1d4.a r4 = [r8]
(p17) 1d4.c r3 = [r8]
br.ctop L1;;
L2: //

Rotating registers could still be used for the values that are not generated by advanced loads. The
effect of this unrolling on instruction cache performance must be considered as part of the cost of
advancing aload.
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5.5.6

Loop Unrolling Prior to Software Pipelining

In some cases, higher performance can be achieved by unrolling the loop prior to software
pipelining. Loops that are resource constrained can be improved by unrolling such that the limiting
resource is more fully utilized. In the following example if we assume the target processor has only
two memory units, the loop performance is bound by the number of memory units:

L1:1d4 r4 = [r5],4 // Cycle 0
1d4 r9 = [r8],4;; // Cycle 0
add r7 = r4,r9;; // Cycle 2
st4 [r6] = r7,4 // Cycle 3
br.cloop L1;; // Cycle 3

A pipelined version of thisloop must have an 1 of at |east two because there are three memory
instructions, but only two memory units. If theloop is unrolled twice prior to software pipelining
and assuming the storeisindependent of theloads, an |1 of 3 can be achieved for the new loop. This
isan effective Il of 1.5 for the original source loop. Below is a possible pipeline for the unrolled
loop:

stage 1:(plé) 1ld4 r4 = [r5],8 // odd iteration
(pl6) 1d4 r9 = [r8],8;; // odd iteration
stage 2: (plé) 1ld4 rl4 = [rl5],8 // even iteration
(pl6) 144 rl9 = [rl8],8;; // even iteration
// --- empty cycle
stage 3:(pl8) add r7 = r4,r9 // odd iteration
(p17) add rl7 = rl4,rl9;; // even iteration
stage 4: // --- empty cycle
(p19) st4 [r6] = r7,8 // odd iteration
(p18) st4 [r16] = rl7,8;; // even iteration

The unrolled loop contains two copies of the source loop body, one that corresponds to the odd
source iterations and one that corresponds to the even source iterations. The assignment of stage
predicates must take this into account. Recall that each one written to p16 sequentially enables all
the stages for anew source iteration. During stage one of the above pipeline, the stage predicate
for theodd iterationisinpl6. The stage predicate for the even iteration does not exist yet. During
stage two of the above pipeline, the stage predicate for the odd iteration isin p17 and the new stage
predicate for the even iteration isinp16. Thuswithin the same pipeline stage, if the stage
predicate for the odd iteration isin predicate register X, the stage predicate for the even iteration is
in predicate register X-1. The pseudo-code to implement this pipeline assuming an unknown trip
count is shown below:

add rl5 = r5,4
add rl8 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 4 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0
Ll:
(pl6) 1d4 r33 = [r5],8 // Cycle 0 odd iteration
(pl18) add r39 = r35,r38 // Cycle 0 odd iteration
(pl17) add r38 = r34,r37 // Cycle 0 even iteration
(ple) 1d4 r36 = [r8],8 // Cycle 0 odd iteration
br.cexit.spnt L3;; // Cycle 0
(ple) 1d4 r33 = [rl5],8 // Cycle 1 even iteration
(pl6) 1d4 r36 = [rl8],8;; // Cycle 1 even iteration
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(pl9) st4 [r6] = r40,8 // Cycle 2 odd iteration

(pl8) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3:

Notice that the stages are not equal in length. Stages 1 and 3 are one cycle each, and stages 2 and 4
aretwo cycles each. Also, the length of the epilog phase varieswith thetrip count. If the trip count
is odd, the number of epilog stages is three, starting after the br.cexit and ending at thebr . ctop.
If the trip count is even, the number of epilog stagesistwo, starting after thebr . ctop and ending
at thebr . ctop. The EC must be set to account for the maximum number of epilog stages. Thus
for thisexample, EC isinitialized to four. When the trip count is even, one extra epilog stageis
executed and br .exit L3 istaken. All of the stage predicates used during the extra epilog
stages are equal to 0, so nothing is executed.

The extraepilog stage for even trip counts can be eliminated by setting the target of thebr . cexit
branch to the next sequential bundle and initializing EC to three as shown below:

add rl5 = 5,4
add rlg8 = r8,4
mov lc = r2 // LC = loop count - 1
mov ec = 3 // EC = epilog stages + 1
mov pr.rot=1<<16;; // PR16 = 1, rest = 0
Ll:
(pl6) 1d4 r33 = [r5],8 // Cycle 0 odd iteration
(pl8) add r39 = r35,r38 // Cycle 0 odd iteration
(pl17) add r38 = r34,r37 // Cycle 0 even iteration
(pl6) 1d4 r36 = [r8],8 // Cycle 0 odd iteration
br.cexit.spnt 1L4;; // Cycle 0
L4:
(pl6) 1ld4 r33 = [rl5],8 // Cycle 1 even iteration
(ple) 1d4 r36 = [rl1l8],8;; // Cycle 1 even iteration
(p19) st4 [r6] = r40,8 // Cycle 2 odd iteration
(pl18) st4 [r16] = r39,8 // Cycle 2 even iteration
L2: br.ctop.sptk L1;; // Cycle 2
L3

If the loop trip count is even, two epilog stages are executed and the kernel loop is exited at the
br. ctop. If thetrip count is odd, the first two epilog stages are executed and then thebr . cexit
branch is taken. Because the target of the br . cexit branchisthe next sequential bundle (L4), a
third epilog stage is executed before the kernel loop is exited at the br . ctop. This optimization
saves one stage at the end of the loop when the trip count is even, and is beneficia for short trip
count loops.

Although unrolling can be beneficial, there are afew considerations before trying to unroll and
software pipeline. Unrolling reduces the trip count of the loop that is given to the pipeliner, and thus
may make pipelining of the loop undesirable since low trip count loops sometimes run faster
unpipelined. Unrolling also increases the code size, which may adversely affect instruction cache
performance. Unrolling is most beneficial for small loops because the potential performance
degradation due to under utilized resources is greater and the effect of unrolling on the instruction
cache performance is smaller compared to large loops.
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5.5.7

Implementing Reductions

In the following example, a sum of productsis accumulated in register f7:

mov £7 = 0;; // initialize sum
Ll:1dfs f4 = [r5],4

1dfs fo9 = [r8],4;;

fma £f7 = £f4,£f9,£f7;; // accumulate

br.cloop L1 ;;

The performance is bound by the latency of the £ma instruction which we assumeis 5 cyclesfor
these examples. A pipelined version of thisloop must have an Il of at least five because the fma
latency isfive. By making use of register rotation, the loop can be transformed into the one bel ow.

Note that the loop has not yet been pipelined. The register rotation and special loop branches are
being used to enable an optimization prior to software pipelining.

mov lc = 199 // LC = loop count - 1
mov ec =1 // Not pipelined, so no epilog
mov £33 = 0 // initialize 5 sums
mov f34 = 0
mov f35 = 0
mov f36 = 0
mov £37 = 0;;
Ll:1dfs f4 = [r5],4
1dfs fo9 = [r8],4;;
fma f32 = f4,f9,£37;; // accumulate
br.ctop L1 ;;
fadd £f10 = £33,£34 // add sums

fadd £11 = £35,£36;;
fadd f12 = f10,£f11;;
fadd £7 = £12,£37

Thisloop maintains five independent sumsin registers £33-£37. The fma instruction in iteration
X produces aresult that is used by the fma instruction in iteration X+5. Iterations X through X+4
areindependent, allowing an Il of oneto be achieved. The code for a pipelined version of the loop
assuming two memory ports and a nine cycle latency for afloating-point load is shown below:

mov lc = 199 // LC = loop count - 1
mov ec = 10 // EC = epilog stages + 1
mov pr.rot=1<<16 // PR16 = 1, rest = 0
mov £33 = 0 // initialize sums
mov £f34 =0
mov £f35 = 0
mov f36 = 0
mov £37 =0

Ll:

(pl6)1ldfs £50 = [r5],4 // Cycle 0

(pl6)ldfs f60 = [r8],4 // Cycle 0

(p25)fma f41 = £59,f69,f46 // Cycle 0
br.ctop.sptk L1;; // Cycle 0
fadd £f10 = f42,f43 // add sums

fadd £11 = £44,£45;;
fadd f12 = £10,£11;;
fadd £7 = f12,f46
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5.5.8

1:198

Explicit Prolog and Epilog

In some cases, an explicit prolog is necessary for code correctness. This can occur in cases where a
speculative instruction generates avalue that islive across sourceiterations. Consider the following

loop:
1d4 r3 = [r5];;

L1:1d4 ré6 = [r8],4 // Cycle 0
1d4 r5 = [r9],4;; // Cycle 0
add r7 = r3,r6;; // Cycle 2
1d4 r3 = [r5] // Cycle 3
and rlo = 3,r7;; // Cycle 3
cmp.ne pl,p0=rl0,rll // Cycle 4

(pl)br.cond L1;; // Cycle 4

The following is a possible pipeline for the loop:

stage 1: ld4.s 1r6 = [r8],4 // II = 2
ld4.s 5 = [r9],4;;
--- // empty cycle
stage 2: --- // empty cycle
ld4.s 136 = [r5]
add r7 = r37,r6;;

stage 3:(pl8) and rl0 = 3,r7;;
(pl8) cmp.ne pl,p0 = rl0,rll
(pl) br.wtop L1;;

Note that, in the code above, the 1d4 and the add instructionsin stage 2 have been reordered.
Register rotation has been used to eliminate the WAR register dependency from the add to the
1d4. Thefirst two stages are speculative. The code to implement the pipeline is shown below:

1d4 r36 = [r5]

mov ec = 2

mov pr.rot = 1 << 16;; // PR16 = 1, rest = 0
Ll: 1d4.s r32 = [r8],4 // Cycle 0

1d4.s r34 = [r9],4 // Cycle 0
(p18) and r40 = 3,r39;; // Cycle 0

1d4.s 136 = [r35] // Cycle 1

add r38 = r37,r33 // Cycle 1
(p18) chk.s r40, recovery // Cycle 1
(pl18) cmp.ne pl7,p0 = r40,rll // Cycle 1
(p17) br.wtop L1;; // Cycle 1

The problem with this pipelined loop is that the value written to r36 prior to theloop is
overwritten beforeit isused by the add. Thevalue is overwritten by theload into r36 in the first
kernel iteration. Thisload isin the second stage of the pipeline, but cannot be controlled during the
first kernel iteration because it is speculative and does not have a stage predicate. This problem can
be solved by peeling off one iteration of the kernel and excluding from that copy any instructions
that are not in the first stage of the pipeline as shown below.

Note that the destination register numbers for the instructions in the explicit prolog have been
increased by one. Thisisto account for the fact that there is no rotation at the end of the peeled
kernel iteration.

144 r37 = [r5]

mov ec =1

mov pr.rot = 1<<17;; // PR17 = 1, rest = 0
1d4 r33 = [rx8],4
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144 r35 = [r9],4
Ll: 1d4.s r32 = [r8],4 // Cycle 0
1d4.s r34 = [r9],4 // Cycle 0
(pl8)and r40 = 3,r39;; // Cycle 0
1d4.s r36 = [r35] // Cycle 1
add r38 = r37,r33 // Cycle 1
(pl8)chk.sr40, recovery // Cycle 1
(pl8)cmp.ne pl7,p0 = r40,rll // Cycle 1
(pl7)br.wtop L1;; -// Cycle 1

In some cases, higher performance can be achieved by generating separate blocks of code for all or
part of the prolog and/or epilog phase. It is clear from the execution trace of the pipelined counted
loop from page 1:185 that the functional units are under-utilized during the prolog and epilog
phases. Part of the prolog and epilog could be peeled off and merged with the code preceding and
following theloop. The following isapipelined version of that counted loop with an explicit
prolog and epilog:

mov lc = 196

mov ec =1
prolog:

144 r35 = [r5],4;; // Cycle 0
1d4 r34 = [r5],4;; // Cycle 1
144 r33 = [r5],4 // Cycle 2
add r36 = r35,r9;; // Cycle 2

Ll:

1d4 r32 = [r5],4

add r35 = r34,r9

st4 [r6] = r36,4

L2:br.ctop L1;;
epilog:

add r35 = r34,r9 // Cycle 0

st4 [r6] = ¥36,4;; // Cycle 0

add r34 = r33,r9 // Cycle 1

st4 [r6] = r35,4;; // Cycle 1

st4 [r6] = r34,4 // Cycle 2

The entire prolog (first three iterations of the kernel l1oop) and epilog (last three iterations) have
been peeled off. No attempt has been made to reschedule the peeled instructions. The stage
predicates have been removed from the instructions since they are not required for controlling the
prolog and epilog phases. Removing them from the prolog makes the prolog instructions
independent of the rotating predicates and eliminates the need for software-pipelined loop branches
between prolog stages. Thusthe entire prolog isindependent of theinitialization of Lc and EC that
precede it. The register numbersin the prolog and epilog have been adjusted to account for the lack
of rotation between stages during those phases.

Note:  This code assumes that the trip count of the source loop is at least four. If the minimum
trip count is unknown at compile time, then a runtime check of the trip count must be
added before the prolog. If thetrip count is less than four, then control branches to a copy
of the original loop.

If this pipelined loop is nested inside an outer loop, there exists afurther optimization opportunity.
The outer loop could be rotated such that the kernel loop is at the top followed by the epilog for the
current outer loop iteration and the prolog for the next outer loop iteration. A copy of the prolog
would also be added prior to the outer loop.

Note:  From the earlier trace of the counted loop execution, the functional unit usage of the pro-
log and epilog are complimentary such that they could be very nicely overlapped.
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5.5.9

5.6

1:200

The drawback of creating an explicit prolog or epilog is code expansion.

Redundant Load Elimination in Loops

Unrolling of aloop is sometimes necessary to remove copy operations created by |oop

optimizations. The following is an example of redundant load elimination. In the code below, each

iteration loads two values, one of which has aready been loaded by the previous source iteration:
add r8 = r5,4;;

L1:1d4 r4 = [r5],4 // alil
1d4 r9 = [r8],4;; // ali+l]
add r7 = r4,r9;;
st4 [r6] = r7,4

br.cloop L1;;

The redundant load can be eliminated by adding a copy of thefirst load prior to the loop and
changing the load to a copy (mov):

add r8 = r5,4
1d4 r9 = [r5],4;; // alil
L1l:mov r4 = r9 // alil = previous ali+1]
1d4 r9 = [r8],4;; // ali+1]
add r7 = r4,r9;;
st4 [r6] = x7,4

br.cloop L1;;

In traditional architectures, the mov instruction can only be removed by unrolling the loop twice.
Oneinstruction is removed from the loop at the cost of two times code expansion. The register
rotation feature in the Itanium architecture can be used to eliminate the mov instruction without
unrolling the loop:

add r8 = r5,4
1d4 r33 = [x5],4;; // alil
L1:1d4 r32 = [r8],4;; // ali+l]
add r7 = r33,r32;;
st4 [re] = r7,4
br.ctop L1;;
Summary

The examplesin this chapter show how featuresin the Itanium architecture can be used to optimize
loops without the code expansion required with traditional architectures. Register rotation,
predication, and the software-pipelined loop branches all contribute to this capability. Control
speculation increases the overlap of theiterations of while loops. Data speculation increases the
overlap of iterations of loops that have loads and stores that cannot be disambiguated.
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Floating-point Applications 6

6.1

6.2

6.2.1

Overview

The Itanium floating-point architecture is fully ANSI/IEEE-754 standard compliant and provides
performance enhancing features such as the fused multiply accumulate instruction, the large
floating-point register file (with static and rotating sections), the extended range register file data
representation, the multiple independent floating-point status fields, and the high bandwidth
memory access instructions that enable the creation of compact, high performance, floating-point
application code.

The beginning of this chapter reviews some specific performance limitations that are common in
floating-point intensive application codes. Later, architectural features that address these
limitations are presented with illustrative code examples. The remainder of this chapter highlights
the optimization of some commonly used kernels using these features.

FP Application Performance Limiters

Floating-point applications are characterized by a predominance of loops. Some loops compute
complex calculations on regularly structured data, others simply copy data from one place to
another, while others perform gather/scatter-type operations that simultaneously compute and
rearrange data. The following sections describe code characteristicsthat limit performance and how
they affect these different kinds of loops.

Execution Latency

L oops often contain recurrence relationships. Consider the tri-diagonal elimination kernel from the
Livermore Fortran Kernel suite.
DO 51 =2, N
5X[1] = Z[1] * (Y[i] - X[i-1])

The dependency between X [1] and X [1-1] limitsthe iteration time of the loop to be the sum of
the latency of the subtract and the multiply. The available parallelism can be increased by unrolling
the loop and can be exploited by replicating computation, however the fundamental limitation of
the data dependency remains.

Sometimes, even if the loop is vectorizable and can be software pipelined, the iteration time of the
loop islimited by the execution latency of the hardware that executes the code. A simple vector
divide (shown below) isatypical example:
DO 1 I =1, N
1X[i] = Y[i] / Z[i)

Since typical modern microprocessors contain a non-pipelined floating-point unit, theiteration time
of the loop isthe latency of the divide which can be tens of clocks.
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6.2.2

6.2.3

1:202

Execution Bandwidth

When sufficient ILP exists and can be exploited, the performance limitation is the availability of
the execution resources — or the execution bandwidth of the machine. Consider the dense matrix
multiply kernel from the BLAS3 library.

DO11=1, N

1 cli,3]1 = cli,3]1 + Ali,k1*Blk,]]

Common techniques of loop interchange, loop unrolling, and unroll-and-jam, can be used to
increase the available ILP in the inner loop. When this is done, the inner loop contains an
abundance of independent floating-point computations with arelatively small number of memory
operations. The performance constraint is then largely the floating-point execution bandwidth of
the machine (assuming sufficient registers are available to hold the accumulators—c [1, 7] and
the intermediate computations).

Memory Latency

While cycle time disparity between the processor and memory creates a general memory latency
problem for most codes, there are afew specia conditionsin floating-point codes that exacerbate
its impact.

One such condition is the use of indirect addressing. Gather/scatter codes in general and sparse
matrix vector multiply code (below) in particular are good examples.
DO 1 ROW = 1, N
R[ROW] = 0.0d0
DO 1 I ROWEND (ROW-1) +1, ROWEND (ROW)
1 RI[ROW] = R[ROW] + A[I] * X[COL[I]]

The memory latency of the accessof COL [I] isexposed, sinceit isused to index into the vector X.
The access of the element of X, the computation of the product, and the summation of the product
on R [ROW] are all dependent on the memory latency of the access of COL [1].

Another common condition in floating-point codes where memory latency impact is exacerbated is
the presence of ambiguous memory dependencies. Consider the incomplete Cholesky conjugate
gradient excerpt kernel, again from the Livermore Fortran Kernel suite.

II =n
IPNTP = 0

222 IPNT = IPNTP
IPNTP = IPNTP + II
II = II/2
I = IPNTP + 1

cdir$ ivdep

DO 2 K = IPNT+2, IPNTP, 2
I = I+1
2 X[I]= X[K] - V[K] * X[K-1] - V[K-1] * X[K+1]
(

IF (II .GT. 1) GO TO 222

Volume 1: Floating-point Applications



The DO-loop involves an update of X at theindex I using X at theindices K, K+1, K-1. Sinceitis
difficult for the compiler to establish whether these indices overlap, theloads of X [K], X [K+1] or
X [K-1] for the next iteration cannot be scheduled until the store of X [T] of the current iteration.
This exposes the memory latency of access of these operands.

6.2.4 Memory Bandwidth

Floating-point loops are often limited by the rate at which the machine can deliver the operands of
the computation. The DAXPY kernel from the BLASL library isatypica example:

DO1I=1, N

1 Y[I] = Y[I] + A * X[I]

The computation requires loading two operands (X [I] and Y [I]) and storing one result (Y [I])
for each floating-point multiply and add operation. If the data arrays (X and Y) are not in cache,
then the performance of this loop on most modern microprocessors would be limited by the
available memory bandwidth on the machine.

6.3 Floating-point Features in the Intel® Itanium®

Architecture

This section highlights architectural features that reduce the impact of the performance limiters
described in Section 6.2 using illustrative examples.

6.3.1 Large and Wide Floating-point Register Set

As machine cycle times are reduced, the latency in cycles of the execution units generally
increases. Aslatency increases, register pressure due to multiple operationsin-flight also increases.
Furthermore as multiple execution units are added, the register pressure increases similarly since
even more instructions can be in-flight at any one time.

The Itanium architecture provides 128 directly addressable floating-point registers to enable data
reuse and to reduce the number of |oad/store operations required due to an insufficient number of
registers. This reduction in the number of loads and stores can increase performance by changing a
computation from being memory operation (MOP) limited to being floating-point operation
(FLOP) limited. Consider the dense matrix multiply code below:

DO 1i=1, N

DO13j =1, P
DO 1k =1, M
1 Cli,j] = Cli,j] + Ali,k]1*Blk,]]

In theinner loop (k), two loads are required for every multiply and add operation. The MOP;FLOP
ratio is therefore 1:1.
Ll:1dfd £5 [r5], 8 // Load A[i, k]

1dfd f6 // Load Blk,jl

fma.d.s0 £7= f5, f6, f7 // *,+ to C[i,73]

br.cloop L1

o
-
(&)}
oo
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Here, three registers are required to hold the operands (£5, £
recognizing thereuse of A [1, k] for different B [k, j] asj

6) and the accumulator (£7). By
isvaried, and thereuse of B [k, j1

for different A[i, k] as i isvaried, the computation can be restructured as:

DO 1i=1, N, 2
DO1j =1, P, 2
DO 1k =1, M

cfi ,3 1 =cii ,3 1
+ A[1 ,k]*Blk,j ]
Cli+1,7 1 = C[i+1,] 1]
+ A[i+1,k]1*B[k,j ]
cfi ,j+1]1 = C[i ,j+1]
+ A[i ,k]*Blk,j+1]
1 Cli+1,j+1] = C[i+1,7j+1]

+ A[i+1,k]*B[k,j+1]

Now, for every 4 loads, 4 multiplies and adds can be performed, thus changing the MOP:FL OP
ratio to 1:2. However, 8 registers are now required: 4 for the accumulators and 4 for the operands.

add r6 = r5, 8
add r8 = r7, 8

L1l:1dfd f5 = [r5], 16 // Load A[i, k]
ldfad f6 = [r6], 16 // Load A[i+1,k]
1dfd £f7 = [r7], 16 // Load B[k, 3]
ldfa f8 = [r8], 16 // Load Blk,j+1]
fma.s0 f9 = f5, f7, f9 // *,+ on C[i,]]
fma.s0 £10 f6, £7, f10 // *,+ on C[i+1,3]

fma.s0 f£11 = f5, f8, f11
fma.s0 f12 = f6, £8, f12
br.cloop L1

// *,+ on Cl[i,]j+1]

// *,+ on C[i+1,j+1]

With 128 available registers, the outer loops of i and j could be unrolled by 8 each so that 64
multiplies and adds can be performed by loading just 16 operands.

The floating-point register file is divided into two regions: a static region (£0-£31) and arotating
region (£32-£127). The register rotation provides the automatic register renaming required to

create compact kernel-only software-pipelined code. Register

rotation also enables scheduling

software pipelined code with aninitiation interval that islessthan the longest latency operation. For

e.g. consider the simple vector add loop shown below:
DO11i=1, N
1A[i] = B[i] + CI[i]

The basic inner loop is:

L1:1d4f f5 = [r5], 8 // Load BI[i]
1df f6 = [r6], 8 // Load CI[i]
fadd £f7 = f5, f6 // Add operands
stf [r7]= £7, 8 // Store A[il]

br.cloop L1

If we suppose the minimum floating-point load latency is 9 clocks, and 2 memory operations can
be issued per clock, the above loop has to be unrolled by at least six if there is no register rotation.

add r8 = r7, 8
L1l:(p18) stf [r7] = £25, 16 // Cycle 17,26...
(pl8) stf [r8] = £26, 16 // Cycle 17,26...
(p17) fadd f25 = f5, f15 // Cycle 8,17,26...
(pl6) 14f f5 = [r5], 8 // Cycle 0,9,18...
(pl6) 1df £15 = [r6], 8 // Cycle 0,9,18...
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(p17) fadd f26 = fe6, fl6;; // Cycle 9,18,27...
(p16) 1df f6 = [r5], 8 // Cycle 1,10,19...
(pl6) 1d4f fi16 = [r6], 8 // Cycle 1,10,19...
(p18) stf [r7] = £27, 16 // Cycle 20,29...
(p18) stf [r8] = f28, 16 // Cycle 20,29...
(p17) fadd £f27 = £7, £17;; // Cycle 11,20...
(pl6) 14f £f7 = [r5], 8 // Cycle 3,12,21...
(p16) 1df £17 = [r6], 8 // Cycle 3,12,21...
(p17) fadd f28 = f8, f18;; // Cycle 12,21...
(pl6) 1df f8 = [r5], 8 // Cycle 4,13,22...
(pl6) 1df f18 = [r6], 8 // Cycle 4,13,22...
(p18)  stf [r7] = £29, 16 // Cycle 23,32...
(p18)  stf [r8] = £30, 16 // Cycle 23,32...
(p16) fadd f29 = f9, f19;; // Cycle 14,23...
(pl6) 1d4f £9 = [r5], 8 // Cycle 6,15,24...
(pl6) 1df f19 = [r6], 8 // Cycle 6,15,24...
(pl6) fadd £f30 = f10, £20;; // Cycle 15,24...
(p16) 14f f10 = [r5], 8 // Cycle 7,16,25...
(p16) 1df f20 = [r6], 8 // Cycle 7,16,25...
br.ctop L1;;

However, with register rotation, the same loop can be scheduled with an initiation interval of just
2 clocks without unrolling (and 1.5 clocks if unrolled by 2):

Ll:(p24) stf [r7] = £57, 8 // Cycle 15,17...
(p21) fadd £f57 = £37, £47 // Cycle 9,11,13...
(p16) 1df £32 = [r5], 8 // Cycle 0,2,4,6...
(p16) 1df f42 = [r6], 8 // Cycle 0,2,4,6...

br.ctop L1;;

It isthus often advantageous to modulo schedule and then unroll (if required). Please see Chapter 5,
“Software Pipelining and Loop Support” for details on how to rewrite loops using this
transformation.

6.3.1.1 Notes on FP Precision

The floating-point registers are 82 bits wide with 17 bits for exponent range, 64 bits for significand
precision and 1 sign bit. During computation, the result range and precision is determined by the
computational model chosen by the user. The computational model isindicated either statically in
the instruction encoding, or dynamically viathe precision control (PC) and widest-range-exponent
(WRE) bitsin the floating-point status register. Using an appropriate computational model, the user
can minimize the error accumulation in the computation. In the above matrix multiply example, if
the multiply and add computations are performed in full register file range and precision, the results
(in accumulators) can hold 64 bits of precision and up to 17 bits of range for inputs that might be
single precision numbers. With the rounding performed at the 64th precision bit (instead of the 24th
for single precision) asmaller error is accumulated with each multiply and add. Furthermore, with
17 bits of range (instead of 8 bits for single precision) large positive and negative products can be
added to the accumulator without overflow or underflow. In addition to providing more accurate
results the extra range and precision can often enhance the performance of iterative computations
that are required to be performed until convergence (as indicated by an error bound) is reached.
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Multiply-Add Instruction

The Itanium architecture defines the fused multiply-add (fma) as the basic floating-point
computation, since it forms the core of many computations (linear algebra, series expansion, etc.)
and itslatency in hardware is typically less than the sum of the latencies of an individual multiply
operation (with rounding) implementation and an individual add operation (with rounding)
implementation.

In computational loops that have aloop carried dependency and whose speed is often determined
by the latency of the floating-point computation rather than the peak computational rate, the
multiply-add operation can often be used advantageously. Consider the Livermore FORTRAN
Kernel 9 — General Linear Recurrence Equations:
DO 191 k= 1,n

B5 (k+KB5I)= SA(k) + STB5 * SB(k)

STBS5= B5(k+KB5I) - STB5S
191CONTINUE

Since there is atrue data dependency between the two statements on variable B5S (k+KB51I) ) and
aloop-carried dependency on variable STB5S, the loop number of clocks per iteration is entirely
determined by the latency of the floating-point operations. In the absence of an £ma type operation,
and assuming that the individual multiply and add latencies are 5 clocks each and the loads are

8 cycles, the loop would be:

Ll:(pl6e) 1df £32 = [r5], 8 // Load SA (k)
(ple6) ldf f42 = [r6], 8 // Load SB(k)
(p17)  fmul £5 = £7, £43;; // tmp,Clk 0,15...
(p17) fadd f6 = £33, f5;; // B5,Clk 5,20...
(pl7) stf [r7] = f6, 8 // Store B5
(p17) fsub f7 = fe, £7 // STB5,Clk 10,25..
br.ctop L1;;

With an fma, the overall latency of the chain of operations decreases and assuming a5 cycle fma,
the loop iteration speed is now 10 clocks (as opposed to 15 clocks above).

Ll:(pl6) 1df £32 = [r5], 8 // Load Sa (k)
(pl6) 1df f42 = [ré6], 8 // Load SB (k)
(p17) fma fe = £7, £43, £33;; // B5,Clk 0,10...
(pl7) stf [r7] = f6, 8 // Store B5
(p17) fsub  £7 = f6, £7 // STB5,Clk 5,15..

br.ctop L1;;

The fused multiply-add operation also offers the advantage of asingle rounding error for the pair of
computations which is valuable when trying to compute small differences of large numbers.

Software Divide/Square Root Sequence

To perform division or square root operations on the Itanium architecture, a software-based
sequence of operations is used. The sequence consists of obtaining an initial guess (using
frepalfrsgrta instruction) and then refining the guess by performing Newton-Raphson
iterations until the error is sufficiently small so that it may not affect the rounding of the resullt.
Examples of double precision divide and square root sequences, optimized for latency and
throughput, are provided bel ow.

Note:  For reduced precision, square and divide sequences can be completed with even fewer
instructions.
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Double Precision — Divide

Divide (Max Throughput)
(10 Instructions, 8 Groups)

Divide (Min Latency)
(13 Instructions, 7 Groups)

Lolio}

frcpa.s0 £8,p6 = £6,£7;;
fnma.sl £f9 = £7,£8,f1 ;;
fma.s1l £8 = f9,f8,f8

Lolio}

frcpa.s0 £8,p6 = £6,£7;;
fma.sl £f9 = £6,£8,f0
fnma.s1 f£f10 = £7,£8,f1 ;;

fma.sl1l £9 = £9,£9,f0 ;;
fma.s1l £f8 = f9 ,f8,f8
fma.sl £9 = £9,£f9,f0 ;;
fma.s1 £8 = £9,£8,f8 ;;
fma.d.sl £f9 = £f6,£8,f0 ;;
fnma.d.sl f6 = £7,£9,£f6 ;;
fma.d.s0 £8 = f6,£f8,£f9

fma.sl £9 = £10,£f9,f9
fma.sl £11 = £10,£f10,£0
fma.sl1l £8 = f£10,£8,£f8 ;;
fma.sl £9 = £11,£f9,f9
fma.sl £10 = f£11,f11,f0
fma.sl £8 = £11,£8,f8 ;;
fma.d.sl £9 = £10,£f9,£f9
fma.sl £8 = £10,£f8,f8 ;;
fnma.d.sl1l f6 = £7,£f9,f6 ;;
fma.d.sO £8 = f6,£8,f9

o]
o]

Holo] o]
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o]
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o] e}
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6.3.3.2 Double Precision — Square Root

Square Root (Max Throughput)? Square Root (Min Latency)b
(14 Instructions, 10 Groups) (17 Instructions, 9 Groups)
frsqgrta.s0 £7,p6=£f6;; frsqgrta.s0 £7,p6=£f6;;
(p6) fma.sl £8=f10,f7,f0 (p6) fma.sl £8=£f9,£f7,f0
(p6) fma.sl £7=f6,£7,£0;; (p6) fma.sl £7=f6,£7,£0;;
(p6) fnma.sl £9=£7,£8,£10;; (p6) fnma.sl £9=£f£7,£8,£f9;;
(p6) fma.sl f8=f9,f8,£f8 (p6) fma.sl f10=£f11,f9,f10
(p6) fma.sl £7=£9,£f7,£7;; (p6) fma.sl £11=£f9,f9,f0
(p6) fnma.sl £9=£7,£8,£10;; (p6) fma.sl £12=£f13,f9,£f12;;
(p6) fma.sl £8=£f9,£f8,£f8 (p6) fma.sl £10=£f11,£f10,£f9
(p6) fma.sl £7=£9,£f7,£7;; (p6) fma.sl f11=£f11,f11,f0
(p6) fnma.sl £9=£7,£8,£10;; (p6) fma.sl £9=£f9,f12,f14;;
(p6) fma.sl £8=f9,f8,f8 (p6) fma.sl £12=£f10,£f7,£7
(p6) fma.d.sl £7=£f9,£f7,£7;; (p6) fma.sl £7=£7,£f11,f0
(p6) fnma.sl £9=£7,£f7,f6;; (p6) fma.sl f10=£f11,f9,£f10;;
(p6) fma.d.s0 £7=£f9,£f8,£f7;; (p6) fma.d.sl £7=£f9,£f7,f12
(p6) fma.sl £8=£f10,f8,f8;;
(p6) fnma.sl £9=£7,£f7,f6;;
(p6) fma.d.s0 £7=£f9,f8,£f7;;

a. The following value is assumed preset: f10=1/2.
b. The following values are assumed preset: f9=1/2, f10=3/2, f11=5/2, f12=63/8, f13=231/16, f14=35/8.

For divide, thefirst instruction (£rcpa) provides an approximation (good to 8 hits) of the
reciprocal of £7 and sets the predicate (p6) to 1, if theratio £6/£7 can be obtained using the
prescribed Newton-Raphson iterations. If, however, theratio £6/£7 is special (finite/0,
finite/infinite, etc) thefinal result of £6/£7 isprovidedin £8 and the predicate (pé) is cleared. For
certain boundary conditions (when the operand values (£6 and £7) are well outside the single
precision, double precision and even double-extended precision ranges) frcpawill cause a software
assist fault and the software handler will produce the ratio £6/£7 and returnitin £8 and clear the
predicate (p6).
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The multiple status fields provided in the FPSR are used in these sequences. SO is the main
(architectural) statusfield and it is written to by the first operation (£rcpa) to signal any faults (V,
Z, D), and by the last operation to signal any traps. The conditions of all intermediate operations are
ignored by writing them to S1. Thus these sequences not only obtain the correct | EEE 754 specified
result (in £8) but the flags are also set (in SO) as per the standard’s requirements. If the divideis
part of a speculative chain of operations that isusing S2 asits status field, then SO should be
replaced with S2 in these sequences. S1 can still be used by the intermediate operations of al the
divide sequences (i.e. those that target SO, S2, or S3) sinceits flags are all discarded.

When divide and square-root operations appear in vectorizable loops, it is often very advantageous
to have these operations be performed in software rather than hardware. In software, these
operations can be pipelined and the overall throughput be improved, whereas in hardware these
operations are typically not pipelineable.

Another significant advantage of the software-based divide/square-root computations is that the
accuracy of the result can be controlled by the user and can be traded off for speed. Thistrade-off is
often used in graphics codes where the divide accuracy of about 14-bits suffices and the sequence
can be shorter than that used for single or double precision.

Computational Models

The Itanium architecture offers complete user control of the computational model. The user can
select the result’s precision and range, the rounding mode, and the | EEE trap response.
Appropriately selecting the computational model can result in code that has greater accuracy,
higher performance, or both.

Theregister file format is uniform for the three memory data types — single, double and
double-extended. Since al the computations are performed on registers (regardless of the datatype
of its content) operands of different types can be easily combined. Also since the conversion from
the memory type to the register file format is done on loads automatically no extra operations are
required to perform the format conversion.

The C syntax semanticsis also easily emulated. Loads convert all input operands into the register
file format automatically. Data operands of different types, now residing in register file format can
be operated upon and al intermediate results coerced to double precision by statically indicating
the result precision in the instruction encoding. The computation leading to the final result can
specify the result precision and range (statically in the instruction encoding for single and double
precision, and dynamically in the status field bits for double-extended precision). Compliance to
the A-32 FP computational style (range=extended, precision=single/double/extended) can also
achieved using the status field bits.

Multiple Status Fields

The FPSR is divided into one main (architectural) status field and three additional identical status
fields. These additional status fields could be used to performance advantage.
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First, divide and square-root sequences (described in Section 6.3.3) contain operations that might
cause intermediate results to overflow/underflow or be inexact even if the final result may not. In
order to maintain correct | EEE flag status the status flags of these computations need to be
discarded. One of these additional statusfields (typically status field 1) can be used to discard these

flags.

Second, speculating floating-point operations requires maintaining the status flags of the speculated
operations distinct from the architectural status flags until the speculated operations are committed
to architectural state (if they ever are). One of these additional status fields (typically status fields 2
or 3) can be used for this purpose.

Consider the Livermore FORTRAN kernel 16 — Monte Carlo Search
DO 470 k= 1,n

k2= k2+1

j4= j2+k+k

j5= ZONE (j4)

IF( j5-n ) 420,475,450
415IF( j5-n+II ) 430,425,425
420IF( j5-n+LB ) 435,415,415
425IF( PLAN(j5)-R) 445,480,440
430IF( PLAN(J5)-S) 445,480,440
435IF ( PLAN(J5)-T) 445,480,440
440IF ( ZONE(j4-1)) 455,485,470
445IF( ZONE(j4-1)) 470,485,455

450k3= k3+1
IF( D(j5)-(D(35-1)*(T-D(j5-2))**2
+(S-D(j5-3)) **2
, +(R-D(j5-4))**2)) 445,480,440
455m= m+1
IF( m-ZONE (1) ) 465,465,460
460m= 1
465IF( 11-m) 410,480,410
470 CONTINUE
475 CONTINUE
480 CONTINUE
485 CONTINUE

Profiling indicates that the conditional after statement 450 is most frequently executed. It is
therefore advantageous to speculatively execute the computation in the conditional while the
conditionalsin 415...445 are being evaluated. In the event that any of the conditionalsin 415...445
cause the control to be moved on beyond 450 the results (and flags) of the speculatively computed
operations (of the conditional after statement 450) can be discarded.

The availability of multiple additional status fields can allow a user to maintain multiple
computational environments and to dynamically select among them on an operation by operation
basis. One such useisin the implementation of interval arithmetic code where each primitive
operation isrequired to be computed in two different rounding modes to determine the interval of
the result.
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Other Features

The Itanium architecture offers a number of other architectural constructsto enhance the
performance of different computational situations.

Operand Screening Support

Operand screening is often arequired or useful step prior to a computation. The operand may be
screened to ensure that it isin avalid range (e.g. finite positive or zero input to square-root;
non-zero divisor for divide) or it may be screened to take an early out — the result of the
computation is predetermined or could be computed more efficiently in another way. The fclass
instruction can be used to classify the input operand to either be or not be a part of a set of classes.
Consider the following code used for screening invalid operands for square-root computation:

IF (A.EQ. NATVAL OR
A.EQ. SNAN OR A.EQ. QNAN OR
A.EQ. NEG_INF OR A.EQ. POS_INF OR
A.LT. 0.0D0) THEN

WRITE (*, “INVALID INPUT OPERAND”)
ELSE

WRITE (*, “SQUARE-ROOT = “, SQRT(A))
ENDIF

The above conditional can be determined by two fclass instructions as indicated below:

fclass.m pl, p2 = £2, O0x1E3;; // Detect NaTVal, NaN, +Inf or -Inf
(p2) fclass.m pl, p2 = £2, 0x01lA // Detect -Norm or -Unorm

The resultant complimentary predicates (p1 and p2) can be used to control the ELSE and THEN
statements respectively.

Min/Max/AMin/AMax

The Itanium architecture provides direct instruction level support for the FORTRAN intrinsic

MIN (a,b) ortheequivalent Cidiom: a<b? a: b andthe FORTRAN intrinsic MAX (b, a) or
the equivalent C idiom: a<b? b: a. Theseinstructions can enhance performance by avoiding the
function call overhead in FORTRAN, and by reducing the critical path in C. Theinstructions are
designed to mimic the C statement behavior so that they can be generated by the compiler. They are
aso not commutative. By appropriately selecting the input operand order, the user can either ignore
or catch NaNs.

Consider the problem of finding the minimum value in an array (similar to the Livermore
FORTRAN kernel 24):

XMIN = X (1)

DO 24 k= 2,n
24TIF (X (k) .LT. XMIN) XMIN = X (k)

Since NaNs are unordered, comparison with NaNs (including LT) will return false. Hence if the
above code isimplemented as:

1df f5 = [r5], 8;;
L1l:14f f6 = [r5], 8
fmin fs5 = f6, f5

br.cloop L1 ;;
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NaNsin the array (X) will be ignored.

If thevaluein the array X (loaded in £6) isaNaN, the new minimum value (in £5) will remain
unchanged, sincethe NaN will fail the. LT . comparison and fmin will return the second argument
—in this case the old minimum valuein £5.

However, if the code isimplemented as:

14f f5 = [r5], 8;;
L1:14f f6 = [r5], 8
fmin fs = f5, f6

br.cloop L1 ;;

NaNsin the array (X) will reset the minimum value.

Now, if thevalueinthearray X (loaded in £6) isaNaN, the new minimum value (in £5) will be set
to the NaN, since the NaN will fail the. LT . comparison and fmin will return the second argument
—inthiscasethe NaN in f£6. In the next iteration, the new array value (loaded in f6) will become
the new minimum.

famin/famax perform the comparison on the absolute value of the input operands (i.e. they
ignore the sign bit) but otherwise operate in the same (non-commutative) way as the fmin/fmax
instructions.

6.3.6.3 Integer/Floating-point Conversion

Unsigned integers are converted to their equivalently valued floating-point representations by
simply moving the integer to the significand field of the floating-point register using the setf.sig
instruction. The resulting floating-point value would be in its unnormal representation (unless the
unsigned integer was greater than 263).

Conversions from signed integers to floating-point and from floating-point to signed or unsigned
integers are accomplished by fcvt . xf and fcvt . £x/fevt . £xu instructions respectively.
However, since signed integers are converted directly to their canonical floating-point
representations, they do not need to be normalized after conversion.

6.3.6.4 FP Subfield Handling

It is sometimes useful to assemble a floating-point value from its constituent fields. Multiplication
and division of floating-point values by powers of two, for example, can be easily accomplished by
appropriately adjusting the exponent. The Itanium architecture provides instructions that allow
moving floating-point fields between the integer and floating-point register files. Division of a
floating-point number by 2.0 is accomplished as follows:

getf.exp r5 = f5 // Move S+Exp to int
add r5 = r5, -1 // Sub 1 from Exp

setf.exp f6 = r5 // Move S+Exp to FP
fmerge.se f5 = f6, f5 // Merge S+E w/ Mant

Floating-point values can also be constructed from fields from different floating-point registers.
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Memory Access Control

Recognizing the trend of growing memory access latency, and the implementation costs of high
bandwidth, the Itanium architecture incorporates many architectural featuresto help manage the
memory hierarchy and increase performance. As described in Section 6.2, memory latency and
bandwidth are significant performance limiters in floating-point applications. The architecture
offers features to address both these limitations.

In order to enhance the core bandwidth to the floating-point register file, the architecture defines
load-pair instructions. In order to mitigate the memory latency, explicit and implicit data prefetch
instructions are defined. In order to maximize the utilization of caches, the architecture defines
locality attributes as part of memory access instructions to help control the allocation (and
de-allocation) of datain the caches. For instances where the instruction bandwidth may become a
performance limiter, the architecture defines machine hints to trigger relevant instruction
prefetches.

Load-pair Instructions

The floating-point load pair instructions enable loading two contiguous values in memory to two
independent floating-point registers. The target registers are required to be odd and even physical
registers so that the machine can utilize just one access port to accomplish the register update.

Note: Theodd/even pair restriction ison physical register numbers, not logical register numbers.
A programming violation of thisrule will cause anillegal operation fault.

For example, suppose a machine that can issue 2 FP instructions per cycle, provides sufficient
bandwidth from the second level cache (L2) to sustain 2 |oad-pairs every cycle. Then loops that
require up to 2 data elements (of 8 bytes each) per floating-point instruction can run at peak speeds
when the dataisresident in L2. A common example of such a case is asimple double precision dot
product — DDOT:
DO 1 I =1, N
1C = C + A(I) * B(I)

Theinner loop consists of two loads (for 2 and B) and amultiply-add (to accumulate the product on
C). The loop would run at the latency of the fma due to the recurrence on C. In order to break the
recurrence on C, the loop is typically unrolled and multiple partial accumulators are used.

DO1I=1, N, 8
Cl = Cl1 + A[I] * BI[I]
C2 = C2 + A[I+1] * B[I+1]
C3 = C3 + A[I+2] * B[I+2]
C4 = C4 + A[I+3] * B[I+3]
C5 = C5 + A[I+4] * B[I+4]
C6 = C6 + A[I+5] * B[I+5]

C7 = C7 + A[I+6] * B[I+6]
1 C8 = C8 + A[I+7] * B[I+7]
C=Cl+C2+C3 +C4 +C5 +C6 +C7 + C8

If normal (non-double pair) loads are used, the inner loop would consist of 16 loads and 8 fmas. If
we assume the machine has two memory ports, thisloop would be limited by the availability of M
slots and run at a peak rate of 1 clock per iteration. However, if thisloop is rewritten using 8
load-pairs (for A[I],A[I+1] andB[I],B[I+1] andA[I+2],A[I+3] andB[I+2],
B[I+3] andsoon)and 8fmasthisloop could run at apeak rate of 2 iterations per clock (or just
0.5 clocks per iteration) with just two M-units.
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Data Prefetch

1fetch alowsthe advance prefetching of aline (defined as 32 bytes or more) of datainto the
cache from memory. Allocation hints can be used to indicate the nature of the locality of the
subsequent accesses on that data and to indicate which level of cache that data needsto be
promoted to.

While regular loads can also be used to achieve the effect of data prefetching, (if the load target is
never used) Ifetches can more effectively reduce the memory latency without using floating-point

registers as targets of the data being prefetched. Furthermore 1 fetch alows prefetching the data
to different levels of caches.

Allocation Control

Since data accesses have different locality attributes (temporal/non-temporal, spatial/non-spatial),
The Itanium architecture allows annotating the data accesses (loads/stores) to reflect these
attributes. Based on these annotations, the implementation can better manage the storage of the data
in the caches.

Temporal and Non-temporal hints are defined. These attributes are applicable to the various cache
levels. (Only two cache levels are architecturally identified). The non-temporal hint is best used for
data that typically has no reuse with respect to that level of cache. The temporal hint is used for all
other data (that has reuse).

Summary

This chapter describes the limiting factors for many scientific and floating-point applications:
memory latency and bandwidth, functional unit latency, and number of available functional units. It
also describes the important features of floating-point support in the Itanium architecture beyond
the software-pipelining support described in Chapter 5, “ Software Pipelining and Loop Support”
that help to overcome some of these performance limiters. Architectural support for speculation,
rounding, and precision control are also described.

Examplesin the chapter include how to implement floating-point division and square root,
common scientific computations such as reductions, use of features such as the £ma instruction,
and various Livermore kernels.
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Symbols

32-bit virtual addressing 2:67
pointer “swizzling” model 2:67, 2:68
sign-extension model 2:67
zero-extension model 2:67

A

AAA instruction 3:391
AAD instruction 3:392
AAM instruction 3:393
AAS instruction 3:394
abort 2:91, 2:514, 3:399, 3:401, 3:403, 3:405, 3:407,
3:411, 3:412, 3:414, 3:416, 3:425, 3:476,
3:511, 3:544, 3:549, 3:550, 3:554, 3:557,
3:558, 3:561, 3:563, 3:565, 3:567, 3:570,
3:572, 3:575, 3:579, 3:581, 3:582, 3:585,
3:607, 3:617, 3:621, 3:623, 3:626, 3:629,
3:630, 3:642, 3:645, 3:647, 3:650, 3:656,
3:663, 3:664, 3:665, 3:667, 3:669, 3:672,
3:674, 3:677, 3:680, 3:683, 3:686, 3:689,
3:691, 3:694, 3:696, 3:699, 3:704, 3:706,
3:709, 3:714, 3:717, 3:720, 3:722, 3:723,
3:725, 3:727, 3:733, 3:735, 3:747, 3:749,
3:751, 3:755, 3:761, 3:763, 3:765, 3:767,
3:772, 3:773, 3:776, 3:778, 3:781, 3:784,
3:787, 3:789, 3:791, 3:794, 3:797, 3:799,
3:801, 3:803, 3:805, 3:808, 3:811, 3:814,
3:817, 3:820, 3:823, 3:826, 3:829, 3:831,
3:855, 3:856, 3:857, 3:858, 3:860, 3:863,
3:866, 3:867, 3:869, 3:871, 3:872, 3:873,
3:875, 3:876, 3:877, 3:880, 3:884, 3:886,
3:888, 3:890, 3:892, 3:894, 3:896, 3:899,
3:902, 3:905, 3:907, 3:908, 3:909, 3:910,
3:911, 3:913, 3:915, 3:916, 3:918, 3:919,
3:920, 3:921, 3:922, 3:923, 3:925, 3:927,
3:929, 3:930, 3:932, 3:934, 3:935, 3:936,
3:937, 3:938, 3:940, 3:942, 3:943, 3:947,
3:948
interruption priorities 2:104
machine check abort 2:599, 2:601
PAL-based interruptions 2:91, 2:92, 2:93, 2:97,
2:108, 2:514
PSR.mc bitis 0 2:94
reset abort 2:591
abort handling 2:601
Access rights, segment descriptor 3:622
acquire semantics 1:68, 2:79, 2:257, 2:483
ADC instruction 3:395, 3:642
add 1:47, 1:49, 175, 1:149, 1:181, 3:16, 3:281,
3:373, 3:378, 3:395, 3:396, 3:397, 3:398,
3:457, 3:470, 3:471, 3:472, 3:582, 3:642,
3:761, 3:762, 3:780, 3:781, 3:782, 3:783,
3:784, 3:785, 3:786, 3:787, 3:788, 3:799,
3:800, 3:855, 3:856, 3:932
ADD instruction 3:395, 3:397, 3:457, 3:642
addp4 3:17
address space model 2:533, 2:537
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address translation 2:45, 2:58, 2:514, 2:533, 2:537,
2:595
addressable units 1:33
advanced load address table 1:59, 1:64, 2:524
ALAT 1:59, 1:60, 1:61, 1:62, 1:63, 1:64, 1:148, 1:190,
2:82, 2:83, 2:84, 2:141, 2:142, 2:523, 2:524,
2:528, 2:542, 2:595, 3:323, 3:359, 3:367,
3:374
data speculation 1:59, 1:60, 1:64, 1:148, 2:553
related instructions 1:60
alloc 1:16, 1:39, 1:41, 1:44, 1:45, 1:46, 1:50, 1:71,
1:140, 2:65, 2:83, 2:131, 2:133, 2:134, 2:139,
2:140, 2:141, 3:18, 3:326, 3:328, 3:359,
3:360, 3:366, 3:367, 3:368, 3:373, 3:378,
3:379
and 3:20
AND instruction 3:399, 3:642
andcm 3:21
application programming model 1:43
application register
Backing Store Pointer (read-only) (BSP — AR 17)
1:26
Backing Store Pointer for Memory Stores
(BSPSTORE — AR 18) 1:26
Compare and Exchange Compare Value Register
(CCV -AR 32) 1:26, 1:28
Epilog Count Register (EC — AR 66) 1:26, 1:30
Floating-point Status Register (FPSR — AR 40) 1:26,
1:29
IA-32 Code Segment Descriptor / Compare and Store
Data register (CSD — AR 25) 1:26
IA-32 Combined CRO and CR4 register (CFLG — AR
27) 1:26
IA-32 Floating-point Control Register (FCR — AR 21)
1:26
IA-32 Floating-point Data Register (FDR — AR 30)
1:26
IA-32 Floating-point Instruction Register (FIR — AR
29) 1:26
IA-32 Floating-point Status Register (FSR — AR 28)
1:26
IA-32 Stack Segment Descriptor (SSD — AR 26) 1:26
IA-32 time stamp counter (TSC) 1:29, 1:114, 2:32,
2:579
Interval Time Counter (ITC — AR 44) 1:26, 1:29
Kernel Registers 0-7 (KR 0-7 — AR 0-7) 1:26, 1:27
Loop Count Register (LC — AR 65) 1:26, 1:30
Previous Function State (PFS — AR 64) 1:26, 1:29
Register Stack Configuration Register (RSC — AR 16)
1:26, 1:27
RSE backing store pointer (BSP — AR 17) 1:27
RSE NaT Collection Register (RNAT — AR 19) 1:26,
1:28
User NaT Collection Register (UNAT — AR 36) 1:26,
1:28
application register state 1:21
application register model 1:23
ignored fields 1:22
ignored register 1:21, 1:22, 1:31
read-only register 1:22, 1:27, 2:118
reserved fields 1:22, 3:853
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reserved register 1:21, 1:22

reserved value 1:22
application regitser

IA-32 EFLAG register (EFLAG — AR 24) 1:26
Arctangent, FPU operation 3:519
arithmetic instructions 1:47, 3:342, 3:885
ARPL instruction 3:401
atomic operations 2:256
atomicity 2:64, 2:88, 2:257

B

B (default size) flag, segment descriptor 3:681
backing store pointer (BSP) 2:129, 2:133, 2:136, 2:139
backing store 1:26, 1:27, 1:28, 1:46, 2:98, 2:99,
2:129, 2:130, 2:595
backing store pointer application registers 2:136
backing store switches 2:142
BSPSTORE 2:139
backing store pointer application registers 2:137
banked general registers 2:39, 2:40, 2:93, 2:232
barrier synchronization 2:502, 2:503
BCD integers
packed 3:457, 3:458, 3:473, 3:475
unpacked 3:391, 3:392, 3:393, 3:394
be bit 1:33
PSR.be 2:98, 3:364, 3:370
RSC.be 2:135
Biased exponent 3:846
biased exponent 3:845, 3:846, 3:847, 3:848, 3:851
bit field and shift instructions 1:48, 1:49
boot flow 2:14, 2:591
firmware boot flow 2:591
boot sequence 2:13, 2:591
boot flow 2:14, 2:591
bootstrap processor (BSP) 2:591
BOUND instruction 3:403
BOUND range exceeded exception (#BR) 3:403
br 3:22
br.call 1:29, 1:39, 1:44, 1:69, 1:71, 2:133, 2:134,
2:140, 2:141, 2:527, 2:529, 3:336, 3:359,
3:360, 3:364, 3:367, 3:368, 3:373, 3:378
br.cexit 1:39, 1:40, 1:50, 1:69, 1:70, 1:71, 1:181,
3:333, 3:335, 3:374, 3:379
br.ctop 1:39, 1:40, 1:50, 1:69, 1:70, 1:71, 1:181, 1:182,
1:192, 3:333, 3:335, 3:374, 3:379
bria 1:12, 1:107, 1:109, 2:566
br.oret 1:29, 1:39, 1:44, 1:69, 1:71, 2:54, 2:65, 2:98,
2:104, 2:131, 2:133, 2:134, 2:138, 2:139,
2:140, 2:141, 2:142, 2:527, 2:529, 3:334,
3:336, 3:359, 3:360, 3:364, 3:365, 3:367,
3:368, 3:370, 3:373, 3:378
br.wexit 1:39, 1:40, 1:69, 1:70, 1:71, 3:333, 3:335,
3:374, 3:378
br.wtop 1:39, 1:40, 1:69, 1:70, 1:71, 1:185, 1:186,
3:333, 3:335, 3:374, 3:378
branch instructions 1:69, 1:72, 1:141, 3:333, 3:334,
3:350
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branch predict instructions 1:16, 1:17, 1:72, 1:73,
3:337
branch prediction hints 1:72, 1:172
modulo-scheduled loop support 1:70
branching 1:16, 1:24, 1:70, 1:141, 3:480, 3:550
break 3:30
brl 2:557, 3:31
brl.call 1:29, 1:39, 1:44, 1:69, 1:70, 1:71, 2:133, 2:134,
2:140, 2:141, 2:557, 3:359, 3:360, 3:364,
3:367, 3:368, 3:373, 3:378
brp 3:33
BSF instruction 3:405
BSP (bootstrap processor) 2:591
BSP (Backing Store Pointer (read-only)) application
register 1:26
BSPSTORE (Backing Store Pointer for Memory Stores)
application register 1:26
BSR instruction 3:407
bsw 1:50, 2:22, 2:98, 3:35, 3:333, 3:339, 3:364, 3:370,
3:378, 3:379
BSWAP instruction 3:409
BT instruction 3:410
BTC instruction 3:412, 3:642
BTR instruction 3:414, 3:642
BTS instruction 3:416, 3:642
bundles 1:13, 1:33, 1:35, 1:36, 1:136, 1:137, 3:273
byte ordering 1:33

C

cache synchronization 2:77
cache write policy attribute 2:74
cacheability and coherency attribute 2:73
Cacheable 2:71, 2:72, 2:73, 2:74
cacheable pages 2:74
uncacheable pages 2:74
Caches, invalidating (flushing) 3:598, 3:757
Call gate 3:616
CALL instruction 3:418
Causality 2:498
obeying causality 2:498
CBW instruction 3:427
CCV (Compare and Exchange Compare Value Register)
application register 1:26
CDQ instruction 3:455
CF (carry) flag, EFLAGS register 3:395, 3:397, 3:410,
3:412, 3:414, 3:416, 3:429, 3:434, 3:459,
3:577, 3:582, 3:667, 3:698, 3:722, 3:732,
3:734, 3:741, 3:749
CFLG 1:26
CFLG (IA-32 Combined CRO and CRA4 register)
application register 1:26
CFM (current frame marker) 1:21, 1:25, 1:39, 1:44,
2:17, 2:133
character strings 1:78
chk 3:36
chk.a 1:37, 1:60, 1:61, 1:62, 1:148, 1:149, 1:150,
1:152, 2:78, 2:100, 2:553, 3:322, 3:327, 3:373
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chk.a.clr 1:62, 1:63, 1:64, 3:322, 3:327, 3:359, 3:367,
3:373
chk.a.nc 1:63, 1:64, 3:322, 3:327, 3:373
chk.s 1:37, 1:57, 1:59, 1:60, 1:139, 1:151, 1:152,
2:100, 2:553, 3:298, 3:300, 3:322, 3:328,
3:373, 3:378
Classify floating-point value, FPU operation 3:563
CLC instruction 3:429
CLD instruction 3:430
CLlI instruction 3:431
clr 1:73, 3:305, 3:306, 3:307, 3:308, 3:309, 3:310,
3:311, 3:312, 3:314, 3:315, 3:316, 3:317,
3:318, 3:322, 3:327, 3:335, 3:373, 3:374
clrrrb 1:39, 1:44, 1:50, 1:62, 1:71, 2:530, 3:38, 3:333,
3:339, 3:360, 3:368, 3:379
clrrrb.pr 1:71, 3:333, 3:339
CLTS instruction 3:433
CMC (corrected machine check) 2:332
CMC instruction 3:434
CMCYV (Corrected Machine Check Vector) control
register 2:29
CMOVcc instructions 3:435
cmp 1:40, 1:50, 1:52, 1:57, 1:139, 1:140, 2:493,
2:502, 3:39, 3:283, 3:284, 3:285, 3:286,
3:373, 3:378, 3:439, 3:440
CMP instruction 3:439
cmp4 1:40, 1:50, 1:52, 1:57, 3:42, 3:283, 3:284,
3:285, 3:286, 3:373, 3:378
CMPS instruction 3:441, 3:707
CMPSB instruction 3:441
CMPSD instruction 3:441
CMPSW instruction 3:441
cmpxchg 1:28, 1:53, 1:55, 1:64, 1:68, 1:69, 2:78,
2:79, 2:82, 2:193, 2:484, 2:501, 2:502, 3:45,
3:373, 3:444, 3:445, 3:446, 3:642
CMPXCHG instruction 3:444, 3:642
CMPXCHGSB instruction 3:446
coalescing attribute 2:74
coalesced pages 2:75
coherency 1:129, 2:73, 2:257, 3:598, 3:757
compare instructions 1:15, 1:16, 1:24, 1:49, 1:50,
1:186, 3:283, 3:343
compare types 1:51, 1:52
normal compare 1:51
parallel compare 1:75, 1:168, 3:345
unconditional compare 1:51
Compatibility
software 3:853
computational models 1:204
Condition code flags, EFLAGS register 3:435
Condition code flags, FPU status word
setting 3:558, 3:560, 3:563
Conditional jump 3:609
Conforming code segment 3:616, 3:622
constant register 2:523
Constants (floating point)
loading 3:509
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context switching 1:45, 2:157, 2:530, 2:532, 2:587
address space switching 2:532
non-local control transfer 2:530
performance monitor 2:157, 2:158
RSE backing store 1:28, 2:142
thread switch within the same address space 2:532
control flow optimization 1:159
control flow optimizations 1:167
multiple values for one variable or register 1:169
multiway branches 1:169
parallel compares 1:167, 1:168, 1:169
control registers
banked general registers 2:20, 2:39, 2:40
Control Register Instructions 2:29
control registers (CR) 2:20
Corrected Machine Check Vector (CMCV — CR74)
2:29
CR (control register) 2:20
Default Control Register (DCR — CR0) 2:28, 2:30
End of External Interrupt (EOI — CR76) 2:29
External Interrupt Control Registers 2:39
External Interrupt Request Register 0 (read only)
(IRRO — CR68) 2:29
External Interrupt Request Register 1 (read only)
(IRR1 - CR69) 2:29
External Interrupt Request Register 2 (read only)
(IRR2 — CR70) 2:29
External Interrupt Request Register 3 (read only)
(IRR3 - CR71) 2:29
External Interrupt Vector Register (read only) (IVR —
CR65) 2:29
Global Control Registers 2:30
Interruption Control Registers 2:33
Interruption Faulting Address (IFA — CR20) 2:29,
2:36
Interruption Function State (IFS — CR23) 2:29, 2:38
Interruption Hash Address (IHA — CR25) 2:29, 2:39
Interruption Immediate Register (IIM — CR24) 2:29,
2:39
Interruption Instruction Bundle Pointer (IIP — CR19)
2:35
Interruption Instruction Pointer (IIP — CR19) 2:29
Interruption Instruction Previous Address (IIPA —
CR22) 2:29, 2:37,2:38
Interruption Processor Status Register (IPSR —
CR16) 2:29, 2:34
Interruption Status Register (ISR — CR17) 2:29, 2:34
interruption status register fields 2:34
Interruption TLB Insertion Register (ITIR — CR21)
2:29, 2:36
Interruption Vector Address (IVA — CR2) 2:28, 2:32
Interval Time Counter (ITC — AR44) 2:31
Interval Timer Match Register (ITM — CR1) 2:28, 2:31
Interval Timer Vector (ITV — CR72) 2:29
ITIR fields 2:36, 2:37
Local Interrupt ID (LID — CR64) 2:29
Local Redirection Register 0 (LRRO — CR80) 2:29
Local Redirection Register 1 (LRR1 — CR81) 2:29
Page Table Address (PTA — CR8) 2:28, 2:33
Performance Monitoring Vector (PMV — CR73) 2:29
Task Priority Register (TPR — CR66) 2:29

Index-3



Index

control registers (CR)
banked general registers 2:93
external interrupt control registers 2:117, 2:232,
2:577
Control registers, moving values to and from 3:658
control speculative 1:14, 2:523, 2:553
corrected machine check 2:121, 2:601
corrected machine check (CMC) 2:332
Cosine, FPU operation 3:488, 3:539
cover 1:39, 1:44, 1:46, 1:50, 1:71, 2:99, 2:133, 2:134,
2:137, 2:138, 2:139, 2:141, 3:47, 3:333,
3:339, 3:359, 3:360, 3:361, 3:365, 3:367,
3:368, 3:373, 3:378, 3:379
CPI (cycles per instructions) 2:587
CPL (Current Privilege Level) 2:17, 3:431, 3:754
CPUID instruction 3:448
CPUID registers 1:31, 1:32
CRO control register 3:640, 3:739
cross-modifying code 2:508
CS register 3:419, 3:587, 3:601, 3:613, 3:654, 3:681
CSD (IA-32 Code Segment Descriptor / Compare and
Store Data register) application register 1:26
current frame marker (CFM) 1:21, 1:25, 1:39, 1:44,
2:17, 2:133
size of frame (sof) 1:44
size of locals (sol) 1:44
Current Privilege Level (CPL) 2:17
CWD instruction 3:455
CWDE instruction 3:427
cycles per instructions (CPI) 2:587
czx 3:48

D

DAA instruction 3:457

DAS instruction 3:458

data access bit 2:64, 2:67, 2:102, 2:103, 3:399, 3:401,
3:403, 3:405, 3:407, 3:411, 3:412, 3:414,
3:416, 3:425, 3:437, 3:439, 3:442, 3:445,
3:446, 3:459, 3:462, 3:465, 3:471, 3:473,
3:476, 3:483, 3:493, 3:496, 3:499, 3:500,
3:505, 3:507, 3:511, 3:513, 3:517, 3:531,
3:533, 3:544, 3:546, 3:549, 3:550, 3:554,
3:557, 3:575, 3:579, 3:581, 3:582, 3:585,
3:607, 3:617, 3:623, 3:626, 3:630, 3:642,
3:645, 3:650, 3:656, 3:663, 3:664, 3:665,
3:667, 3:669, 3:672, 3:674, 3:677, 3:680,
3:683, 3:686, 3:689, 3:691, 3:694, 3:696,
3:699, 3:709, 3:714, 3:720, 3:723, 3:725,
3:727, 3:733, 3:735, 3:747, 3:749, 3:751,
3:755, 3:761, 3:763, 3:765, 3:767, 3:772,
3:773, 3:776, 3:778, 3:781, 3:784, 3:787,
3:789, 3:791, 3:794, 3:797, 3:799, 3:801,
3:803, 3:805, 3:808, 3:811, 3:814, 3:817,
3:820, 3:823, 3:826, 3:829, 3:831, 3:855,
3:856, 3:857, 3:858, 3:860, 3:863, 3:866,
3:867, 3:869, 3:871, 3:872, 3:873, 3:875,
3:876, 3:877, 3:880, 3:884, 3:886, 3:888,
3:890, 3:892, 3:894, 3:896, 3:899, 3:902,
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3:905, 3:907, 3:908, 3:909, 3:910, 3:911,
3:913, 3:915, 3:916, 3:918, 3:919, 3:920,
3:921, 3:922, 3:923, 3:925, 3:927, 3:929,
3:930, 3:932, 3:934, 3:935, 3:936, 3:937,
3:938, 3:940, 3:942, 3:943, 3:947, 3:948
data breakpoint register matching 2:265
DBR.addr 2:265, 2:266
DBR.mask 2:266
trap code B bits 2:266
data breakpoint registers (DBR) 2:145, 2:146
data debug 2:64, 2:102, 2:103
data dependencies 1:59, 1:144, 1:145, 1:146, 2:17,
2:486, 2:491
data dependency 1:15, 1:16, 1:145, 1:146, 2:17, 2:490,
2:491, 2:492
data key miss fault 2:140, 2:161, 3:399, 3:401, 3:403,
3:405, 3:407, 3:411, 3:412, 3:414, 3:416,
3:425, 3:437, 3:439, 3:442, 3:445, 3:446,
3:459, 3:462, 3:465, 3:471, 3:473, 3:476,
3:483, 3:493, 3:496, 3:499, 3:500, 3:505,
3:507, 3:511, 3:513, 3:517, 3:531, 3:533,
3:544, 3:546, 3:549, 3:550, 3:554, 3:557,
3:575, 3:579, 3:581, 3:582, 3:585, 3:607,
3:617, 3:623, 3:626, 3:630, 3:642, 3:645,
3:650, 3:656, 3:663, 3:664, 3:665, 3:667,
3:669, 3:672, 3:674, 3:677, 3:680, 3:683,
3:686, 3:689, 3:691, 3:694, 3:696, 3:699,
3:709, 3:714, 3:720, 3:723, 3:725, 3:727,
3:733, 3:735, 3:747, 3:749, 3:751, 3:755,
3:761, 3:763, 3:765, 3:767, 3:772, 3:773,
3:776, 3:778, 3:781, 3.784, 3:787, 3:789,
3:791, 3:794, 3:797, 3:799, 3:801, 3:803,
3:805, 3:808, 3:811, 3:814, 3:817, 3:820,
3:823, 3:826, 3:829, 3:831, 3:855, 3:856,
3:857, 3:858, 3:860, 3:863, 3:866, 3:867,
3:869, 3:871, 3:872, 3:873, 3:875, 3:876,
3:877, 3:880, 3:884, 3:886, 3:888, 3:890,
3:892, 3:894, 3:896, 3:899, 3:902, 3:905,
3:907, 3:908, 3:909, 3:910, 3:911, 3:913,
3:915, 3:916, 3:918, 3:919, 3:920, 3:921,
3:922, 3:923, 3:925, 3:927, 3:929, 3:930,
3:932, 3:934, 3:935, 3:936, 3:937, 3:938,
3:940, 3:942, 3:943, 3:947, 3:948
data key permission 2:64, 2:67, 2:102, 2:103, 3:399,
3:401, 3:403, 3:405, 3:407, 3:411, 3:412,
3:414, 3:416, 3:425, 3:437, 3:439, 3:442,
3:445, 3:446, 3:459, 3:462, 3:465, 3:471,
3:473, 3:476, 3:483, 3:493, 3:496, 3:499,
3:500, 3:505, 3:507, 3:511, 3:513, 3:517,
3:531, 3:533, 3:544, 3:546, 3:549, 3:550,
3:554, 3:557, 3:575, 3:579, 3:581, 3:582,
3:585, 3:607, 3:617, 3:623, 3:626, 3:630,
3:642, 3:645, 3:650, 3:656, 3:663, 3:664,
3:665, 3:667, 3:669, 3:672, 3:674, 3:677,
3:680, 3:683, 3:686, 3:689, 3:691, 3:694,
3:696, 3:699, 3:709, 3:714, 3:720, 3:723,
3:725, 3:727, 3:733, 3:735, 3:747, 3:749,
3:751, 3:755, 3:761, 3:763, 3:765, 3:767,
3:772, 3:773, 3:776, 3:778, 3:781, 3:784,
3:787, 3:789, 3:791, 3:794, 3:797, 3:799,
3:801, 3:803, 3:805, 3:808, 3:811, 3:814,
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3:817, 3:820, 3:823, 3:826, 3:829, 3:831,
3:855, 3:856, 3:857, 3:858, 3:860, 3:863,
3:866, 3:867, 3:869, 3:871, 3:872, 3:873,
3:875, 3:876, 3:877, 3:880, 3:884, 3:886,
3:888, 3:890, 3:892, 3:894, 3:896, 3:899,
3:902, 3:905, 3:907, 3:908, 3:909, 3:910,
3:911, 3:913, 3:915, 3:916, 3:918, 3:919,
3:920, 3:921, 3:922, 3:923, 3:925, 3:927,
3:929, 3:930, 3:932, 3:934, 3:935, 3:936,
3:937, 3:938, 3:940, 3:942, 3:943, 3:947,
3:948

data NaT page consumption 2:64, 2:67, 2:81, 2:102,
2:103, 3:399, 3:401, 3:403, 3:405, 3:407,
3:411, 3:412, 3:414, 3:416, 3:425, 3:437,
3:439, 3:442, 3:445, 3:446, 3:459, 3:462,
3:465, 3:471, 3:473, 3:476, 3:483, 3:493,
3:496, 3:499, 3:500, 3:505, 3:507, 3:511,
3:513, 3:517, 3:531, 3:533, 3:544, 3:546,
3:549, 3:550, 3:554, 3:557, 3:575, 3:579,
3:581, 3:582, 3:585, 3:607, 3:617, 3:623,
3:626, 3:630, 3:642, 3:645, 3:650, 3:656,
3:663, 3:664, 3:665, 3:667, 3:669, 3:672,
3:674, 3:677, 3:680, 3:683, 3:686, 3:689,
3:691, 3:694, 3:696, 3:699, 3:709, 3:714,
3:720, 3:723, 3:725, 3:727, 3:733, 3:735,
3:747, 3:749, 3:751, 3:755, 3:761, 3:763,
3:765, 3:767, 3:772, 3:773, 3:776, 3:778,
3:781, 3:784, 3:787, 3:789, 3:791, 3:794,
3:797, 3:799, 3:801, 3:803, 3:805, 3:808,
3:811, 3:814, 3:817, 3:820, 3:823, 3:826,
3:829, 3:831, 3:855, 3:856, 3:857, 3:858,
3:860, 3:863, 3:866, 3:867, 3:869, 3:871,
3:872, 3:873, 3:875, 3:876, 3:877, 3:880,
3:884, 3:886, 3:888, 3:890, 3:892, 3:894,
3:896, 3:899, 3:902, 3:905, 3:907, 3:908,
3:909, 3:910, 3:911, 3:913, 3:915, 3:916,
3:918, 3:919, 3:920, 3:921, 3:922, 3:923,
3:925, 3:927, 3:929, 3:930, 3:932, 3:934,
3:935, 3:936, 3:937, 3:938, 3:940, 3:942,
3:943, 3:947, 3:948

data nested TLB faults 2:67, 2:522

data page not present 2:64, 2:67, 2:101, 2:103, 3:399,
3:401, 3:403, 3:405, 3:407, 3:411, 3:412,
3:414, 3:416, 3:425, 3:437, 3:439, 3:442,
3:445, 3:446, 3:459, 3:462, 3:465, 3:471,
3:473, 3:476, 3:483, 3:493, 3:496, 3:499,
3:500, 3:505, 3:507, 3:511, 3:513, 3:517,
3:531, 3:533, 3:544, 3:546, 3:549, 3:550,
3:554, 3:557, 3:575, 3:579, 3:581, 3:582,
3:585, 3:607, 3:617, 3:623, 3:626, 3:630,
3:642, 3:645, 3:650, 3:656, 3:663, 3:664,
3:665, 3:667, 3:669, 3:672, 3:674, 3:677,
3:680, 3:683, 3:686, 3:689, 3:691, 3:694,
3:696, 3:699, 3:709, 3:714, 3:720, 3:723,
3:725, 3:727, 3:733, 3:735, 3:747, 3:749,
3:751, 3:755, 3:761, 3:763, 3:765, 3:767,
3:772, 3:773, 3:776, 3:778, 3:781, 3:784,
3:787, 3:789, 3:791, 3:794, 3:797, 3:799,
3:801, 3:803, 3:805, 3:808, 3:811, 3:814,
3:817, 3:820, 3:823, 3:826, 3:829, 3:831,
3:855, 3:856, 3:857, 3:858, 3:860, 3:863,
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3:866, 3:867, 3:869, 3:871, 3:872, 3:873,
3:875, 3:876, 3:877, 3:880, 3:884, 3:886,
3:888, 3:890, 3:892, 3:894, 3:896, 3:899,
3:902, 3:905, 3:907, 3:908, 3:909, 3:910,
3:911, 3:913, 3:915, 3:916, 3:918, 3:919,
3:920, 3:921, 3:922, 3:923, 3:925, 3:927,
3:929, 3:930, 3:932, 3:934, 3:935, 3:936,
3:937, 3:938, 3:940, 3:942, 3:943, 3:947,
3:948
data prefetch
load instructions 1:54
semaphore instructions 1:55, 3:320
store instructions 1:55, 3:304, 3:318, 3:320, 3:321,
3:946
data serialization 2:18, 2:19, 3:357
data speculative 1:15, 1:59, 1:150, 2:523
data TLB miss faults 2:65, 2:67
DBR (data breakpoint registers) 2:145, 2:146
DCR (Default Control Register) control register 2:28,
2:30
Debug 1:61, 2:191, 3:420, 3:421, 3:422, 3:425, 3:581,
3:585, 3:587, 3:611, 3:615, 3:616, 3:617,
3:619, 3:620, 3:647, 3:660, 3:661, 3:677,
3:680, 3:711, 3:712, 3:714
break instruction fault 2:145, 2:161, 2:177
data debug fault 2:106, 2:140, 2:146, 2:161, 2:191
debug breakpoint registers (DBR/IBR) 2:20
debug instructions 2:147
debug model 2:265
debugging 2:145, 2:570, 3:619
debugging facilities 2:145
instruction breakpoints 2:570
instruction debug fault 2:145, 2:161, 2:191, 2:265
lower privilege transfer trap 2:145, 2:196, 2:265
single step trap 2:96, 2:106, 2:109, 2:145, 2:162,
2:163, 2:199, 2:265, 2:571
taken branch trap 2:96, 2:106, 2:109, 2:145, 2:163,
2:198, 2:265, 2:571, 3:620
Debug registers, moving value to and from 3:660
DEC instruction 3:459, 3:642
Dekker’s algorithm 2:504
Denormalization process 3:848
Denormalized finite number 3:563, 3:847, 3:850
denormalized numbers 3:844, 3:847, 3:848
dep 3:50
Dependencies 1:37, 1:38, 1:39, 1:40, 1:147, 3:355,
3:356
dependency violation 1:38, 1:40, 1:41, 2:556
instruction execution 3:573, 3:598, 3:703, 3:757
instruction group 1:37, 1:38, 1:39, 1:40, 1:41, 1:69
register dependencies 1:37, 1:39, 1:40, 1:41
WAR dependency 1:40, 3:371
DF (direction) flag, EFLAGS register 3:430, 3:441,
3:584, 3:644, 3:662, 3:678, 3:724, 3:742
DIV instruction 3:461
Divide error exception (#DE) 3:461
division operations
double precision — divide 1:203
double precision — square root 1:203
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DMA 1:19, 2:511
edge sensitive interrupt messages 2:127
Double-extended-precision, IEEE floating-point format
3:850
Double-precision, IEEE floating-point format 3:850
Double-real floating-point format 3:850
DS register 3:441, 3:625, 3:644, 3:678

E

EC (Epilog Count Register) application register 1:26
Edge- and Level-sensitive Interrupts 2:127
EDI register 3:662, 3:724, 3:742, 3:746
Effective address 3:628
EFI (extensible firmware interface) 2:559, 2:591, 2:592,
2:593, 2:596, 2:598, 2:599
boot services 2:593, 2:598
EFI boot manager 2:593
EFI procedure calls 2:598
EFI system partition 2:592, 2:593
runtime services 2:598, 2:599
EFLAG (IA-32 EFLAG register) application register 1:26
EFLAGS register
condition codes 3:436, 3:480, 3:485
flags affected by instructions 3:388
loading 3:621
popping 3:687
popping on return from interrupt 3:601
pushing 3:695
pushing on interrupts 3:587
saving 3:717
status flags 3:439, 3:610, 3:726, 3:751
EIP register 3:418, 3:587, 3:601, 3:613
ENTER instruction 3:464
EOI (End of External Interrupt) control register 2:29
epc 3:52
ES register 3:441, 3:584, 3:625, 3:678, 3:724, 3:746
ESI register 3:644, 3:662, 3:678, 3:742
ESP register 3:418, 3:682, 3:690
exception deferral 1:58, 2:52, 2:102, 2:103
combined hardware/software deferral 2:551, 2:552
exception deferral of control speculative loads 2:551
hardware-only deferral 2:551, 2:552
software-only deferral 2:551, 2:552
exception indicator 2:81
exception qualification 2:101
Exceptions
BOUND range exceeded (#BR) 3:403
overflow exception (#OF) 3:587
returning from 3:601
execution unit type 1:26, 1:34, 1:35, 3:273
Exponent
extracting from floating-point number 3:567
floating-point number 3:845
extended instructions 1:36, 3:273
Extended real
floating-point format 3:850
extensible firmware interface 2:559, 2:591
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extensible firmware interface (EFI) 2:271
External Controller Interrupts (ExtINT) 2:92
external interrupt (INT) 2:104, 2:114
control register usage examples 2:577
external (1/0O) devices 2:111
external interrupt (INT)
external interrupt architecture 2:573
external interrupt delivery 2:93, 2:114, 2:116, 2:117,
2:118, 2:575
external interrupt masking 2:115, 2:574
external interrupt sampling 2:116
external interrupt states 2:113
inactive 2:575
in-service/none pending 2:576
in-service/one pending 2:576
internal processor interrupts 2:111
interrupt acknowledge (INTA) cycle 2:127
interrupt enabling 2:115
interrupt masking 2:115
interrupt priorities 2:114, 2:573
interrupt registers 2:20
interrupt sources 2:111, 2:117, 2:127, 2:574
interrupt vectors 2:114, 2:115, 2:117, 2:573, 3:587
locally connected devices 2:111
pending 2:94, 2:111, 2:112, 2:115, 2:575, 3:479,
3:503, 3:511, 3:532, 3:546, 3:548, 3:550,
3:619, 3:620, 3:708, 3:744, 3:756, 3:770,
3:772, 3:774, 3:776, 3:777, 3:779, 3:782,
3:784, 3:785, 3:787, 3:788, 3:790, 3:792,
3:794, 3:795, 3:798, 3:800, 3:802, 3:804,
3:806, 3:808, 3:809, 3:811, 3:812, 3:814,
3:815, 3:818, 3:820, 3:821, 3:823, 3:824,
3:826, 3:827, 3:829, 3:830, 3:832, 3:867,
3:868, 3:869, 3:870, 3:873, 3:874, 3:879,
3:881, 3:884, 3:903, 3:932, 3:933, 3:934,
3:935, 3:936, 3:937, 3:938, 3:939, 3:940,
3:941, 3:943, 3:945, 3:946, 3:948
external interrupt control registers 2:39, 2:117, 2:232,
2:574, 2:577
Local ID (LID — CR64) 2:117
external task priority (XTP) 2:123, 2:127
XTP cycle 2:127
XTP register 2:575
ExtINT (External Controller Interrupts) 2:92
extr 3:53
Extract exponent and significand, FPU operation 3:567

F

F2XM1 instruction 3:467, 3:567
fabs 3:54

FABS instruction 3:469

fadd 3:55

FADD instruction 3:470
FADDP instruction 3:470
famax 3:56

famin 3:57

fand 3:58

fandcm 3:59

Far call
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CALL instruction 3:418
Far pointer
loading 3:625
Far return
RET instruction 3:710
fault 1:99, 2:30, 2:93, 2:94, 2:97, 2:98, 2:105, 2:106,
2:107, 2:108, 2:140, 2:513, 2:557, 3:273,
3:374, 3:378, 3:399, 3:400, 3:401, 3:402,
3:403, 3:404, 3:405, 3:406, 3:407, 3:408,
3:411, 3:412, 3:413, 3:414, 3:415, 3:416,
3:417, 3:425, 3:426, 3:433, 3:437, 3:438,
3:439, 3:440, 3:442, 3:443, 3:445, 3:446,
3:447, 3:459, 3:460, 3:462, 3:463, 3:465,
3:466, 3:467, 3:469, 3:471, 3:472, 3:473,
3:474, 3:476, 3:477, 3:478, 3:479, 3:480,
3:483, 3:484, 3:486, 3:489, 3:490, 3:493,
3:496, 3:497, 3:499, 3:500, 3:501, 3:502,
3:503, 3:505, 3:506, 3:507, 3:508, 3:509,
3:511, 3:512, 3:513, 3:514, 3:516, 3:517,
3:518, 3:519, 3:522, 3:525, 3:528, 3:529,
3:531, 3:533, 3:534, 3:536, 3:538, 3:540,
3:542, 3:544, 3:545, 3:546, 3:547, 3:549,
3:550, 3:551, 3:553, 3:554, 3:556, 3:557,
3:558, 3:561, 3:563, 3:565, 3:567, 3:570,
3:572, 3:575, 3:576, 3:579, 3:581, 3:582,
3:583, 3:585, 3:586, 3:590, 3:596, 3:597,
3:598, 3:607, 3:608, 3:617, 3:618, 3:619,
3:620, 3:623, 3:624, 3:626, 3:627, 3:630,
3:635, 3:638, 3:640, 3:641, 3:642, 3:645,
3:650, 3:653, 3:656, 3:657, 3:663, 3:664,
3:665, 3:666, 3:667, 3:668, 3:669, 3:670,
3:672, 3:673, 3:674, 3:675, 3:677, 3:680,
3:681, 3:683, 3:684, 3:686, 3:689, 3:691,
3:692, 3:694, 3:696, 3:699, 3:700, 3:708,
3:709, 3:714, 3:720, 3:721, 3:723, 3:725,
3:727, 3:728, 3:730, 3:733, 3:735, 3:737,
3:739, 3:740, 3:747, 3:748, 3:749, 3:750,
3:751, 3:752, 3:755, 3:761, 3:762, 3:763,
3:764, 3:765, 3:766, 3.767, 3:768, 3:770,
3:772, 3:773, 3:774, 3:776, 3:777, 3:778,
3:779, 3:781, 3:782, 3:784, 3:785, 3:787,
3:788, 3:789, 3:790, 3:791, 3:792, 3:794,
3:795, 3:797, 3:798, 3:799, 3:800, 3:801,
3:802, 3:803, 3:804, 3:805, 3:806, 3:808,
3:809, 3:811, 3:812, 3:814, 3:815, 3:817,
3:818, 3:820, 3:821, 3:823, 3:824, 3:826,
3:827, 3:829, 3:830, 3:831, 3:832, 3:855,
3:856, 3:857, 3:858, 3:859, 3:860, 3:862,
3:863, 3:865, 3:866, 3:867, 3:868, 3:869,
3:870, 3:871, 3:872, 3:873, 3:874, 3:875,
3:876, 3:877, 3:879, 3:880, 3:883, 3:884,
3:886, 3:887, 3:888, 3:889, 3:890, 3:891,
3:892, 3:893, 3:894, 3:896, 3:897, 3:898,
3:899, 3:900, 3:901, 3:902, 3:903, 3:905,
3:907, 3:908, 3:909, 3:910, 3:911, 3:913,
3:915, 3:916, 3:918, 3:919, 3:920, 3:921,
3:922, 3:923, 3:924, 3:925, 3:926, 3:927,
3:928, 3:929, 3:930, 3:932, 3:933, 3:934,
3:935, 3:936, 3:937, 3:938, 3:939, 3:940,
3:941, 3:942, 3:943, 3:945, 3:946, 3:947,
3:948
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fault suppression 2:100
FBLD instruction 3:473
FBSTP instruction 3:475
fc 3:60
fchkf 3:61
FCHS instruction 3:478
fclass 1:40, 1:50, 1:52, 1:57, 1:96, 1:206, 3:62, 3:343,
3:344, 3:373, 3:378
FCLEX/FNCLEX instructions 3:479
fclrf 3:64
FCMOVcc instructions 3:480
femp 1:40, 1:50, 1:52, 1:57, 1:95, 3:65, 3:343, 3:344,
3:359, 3:373, 3:378
FCOM instruction 3:482
FCOMI instruction 3:485
FCOMIP instruction 3:485
FCOMP instruction 3:482
FCOMPP instruction 3:482
FCOS instruction 3:488
FCR (IA-32 Floating-point Control Register) application
register 1:26
fevt.fx 3:68
fevt.xf 3:70
fevt.xuf 3:71
FDECSTP instruction 3:490
FDIV instruction 3:491
FDIVP instruction 3:491
FDIVR instruction 3:494
FDIVRP instruction 3:494
FDR (IA-32 Floating-point Data Register) application
register 1:26
Feature information, processor 3:448
Fence 1:68, 2:78, 2:79, 3:452, 3:454, 3:581, 3:585,
3:601, 3:619, 3:677, 3:679, 3:950
operations 1:68, 2:78, 2:79, 3:430, 3:441, 3:480,
3:494, 3:555, 3:567, 3:580, 3:584, 3:589,
3:644, 3:662, 3:676, 3:678, 3:708,
3:724, 3:742, 3:746, 3:757, 3:890, 3:894
semantics 1:68, 2:78, 2:79, 2:257, 2:258, 3:945
fetchadd 1:53, 1:55, 1:64, 1:68, 1:69, 2:78, 2:79, 2:82,
2:193, 2:484, 2:485, 2:502, 2:503, 3:72,
3:373
FFREE instruction 3:497
FIADD instruction 3:470
FICOM instruction 3:498
FICOMP instruction 3:498
FIDIV instruction 3:491
FIDIVR instruction 3:494
FILD instruction 3:500
FIMUL instruction 3:515
FINCSTP instruction 3:502
FINIT/FNINIT instructions 3:503, 3:532
FIR (1A-32 Floating-point Instruction Register)
application register 1:26
firmware address space 2:276
firmware entrypoint 2:332
firmware entrypoints 2:275
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firmware interface table (FIT) 2:280
firmware model 2:592
firmware procedure 2:333
FIST instruction 3:504
FISTP instruction 3:504
FISUB instruction 3:552
FISUBR instruction 3:555
FIT (firmware interface table) 2:280
FLD instruction 3:507
FLD1 instruction 3:509
FLDCW instruction 3:511
FLDENV instruction 3:513
FLDLZ2E instruction 3:509
FLDL2T instruction 3:509
FLDLG?2 instruction 3:509
FLDLN2 instruction 3:509
FLDPI instruction 3:509
FLDZ instruction 3:509
floating-point applications 1:197
execution bandwidth 1:198
execution latency 1:197
memory bandwidth 1:199
memory latency 1:198
performance limiters 1:197
floating-point architecture 1:13, 1:17, 1:81
Floating-point format
biased exponent 3:846
exponent 3:845
fraction 3:845
real number system 3:844
sign 3:845
significand 3:845
floating-point format 3:844, 3:845, 3:846, 3:848
floating-point instructions 1:29, 1:40, 1:87, 3:339,
3:341, 3:388, 3:511, 3:513, 3:532, 3:548,
3:565, 3:770
arithmetic instructions 1:94, 3:342, 3:885
integer multiply and add instructions 1:97, 1:98
memory access instructions 1:87
non-arithmetic instructions 1:96
register to/from general register transfer instructions
1:93
floating-point programming model 1:81
data types and formats 1:81
floating-point register encodings 1:82, 1:83
floating-point register format 1:81, 1:82
floating-point status register 1:26, 1:29, 1:84, 1:85,
1:97
real types 1:81
floating-point register (FR)
high FP reg fault 3:382
low FP reg fault 3:381
floating-point register set 1:199
floating-point software assistance (FP SWA) 2:559
SWA faults 2:559, 2:560, 2:562
SWA traps 2:559, 2:560, 2:561
floating-point status register (FPSR) 1:29, 1:40, 1:84,
1:97, 2:559
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floating-point system software
floating-point exception handling 2:559, 2:561
Flushing
caches 3:598, 3:757
TLB entry 3:600
flushrs 1:39, 1:46, 1:50, 2:65, 2:131, 2:133, 2:134,
2:137, 2:138, 2:139, 2:140, 2:141, 2:142,
3:74, 3:323, 3:328, 3:359, 3:360, 3:366,
3:367, 3:368, 3:378, 3:379
fma 3:75
fmax 3:76
fmerge 3:77
fmin 3:79
fmix 3:80
fmpy 3:82
fms 3:83
FMUL instruction 3:515
FMULP instruction 3:515
fneg 3:84
fnegabs 3:85
fnrma 3:86
fnmpy 3:87
FNOP instruction 3:518
fnorm 3:88
FNSTENYV instruction 3:513
for 3:89
FP precision 1:201
FP subfield handling 1:207
fpabs 3:90
fpack 3:91
fpamax 3:92
fpamin 3:94
FPATAN instruction 3:519
fpecmp 3:96
fpevt.fx 3:98
fpma 3:100
fpmax 3:102
fpmerge 3:103
fpmin 3:105
fpmpy 3:106
fpms 3:107
fpneg 3:109
fpnegabs 3:110
fpnma 3:111
fpnmpy 3:113
fprcpa 3:114
FPREM instruction 3:521
FPREML1 instruction 3:524
fprsqrta 3:116
FPSR (Floating-point Status Register) application
register 1:26
FPTAN instruction 3:527
FPU
checking for pending FPU exceptions 3:756
constants 3:509
floating-point format 3:844, 3:845
initialization 3:503
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FPU control word
loading 3:511, 3:513
RC field 3:504, 3:509, 3:543
restoring 3:530
saving 3:532, 3:548
storing 3:546
FPU data pointer 3:513, 3:530, 3:532, 3:548
FPU instruction pointer 3:513, 3:530, 3:532, 3:548
FPU last opcode 3:513, 3:530, 3:532, 3:548
FPU status word
condition code flags 3:482, 3:498, 3:558, 3:560,
3:563
FPU flags affected by instructions 3:388
loading 3:513
restoring 3:530
saving 3:532, 3:548, 3:550
TOP field 3:502
FPU tag word 3:513, 3:530, 3:532, 3:548
FPSR (Floating-point Status Register) 1:26, 1:29
FR (floating-point register) 3:381, 3:382
Fraction, floating-point number 3:845
frcpa 1:40, 1:50, 1:51, 1:52, 1:57, 1:95, 1:202, 1:203,
1:204, 2:562, 3:118, 3:341, 3:344, 3:373,
3:378
FRNDINT instruction 3:529
frsqrta 1:40, 1:50, 1:51, 1:52, 1:57, 1:95, 1:202,
1:203, 2:562, 3:121, 3:341, 3:345, 3:373,
3:378
FRSTOR instruction 3:530
FS register 3:625
FSAVE/FNSAVE instructions 3:530, 3:532
FSCALE instruction 3:535
fselect 3:123
fsetc 3:124
FSIN instruction 3:537
FSINCOS instruction 3:539
FSQRT instruction 3:541
FSR (IA-32 Floating-point Status Register) application
register 1:26
FST instruction 3:543
FSTCW/FNSTCW instructions 3:546
FSTENV/FENSTENYV instructions 3:548
FSTP instruction 3:543
FSTSW/FNSTSW instructions 3:550
fsub 3:125
FSUB instruction 3:552
FSUBP instruction 3:552
FSUBR instruction 3:555
FSUBRP instruction 3:555
fswap 3:126
fsxt 3:128
FTST instruction 3:558
FUCOM instruction 3:560
FUCOMI instruction 3:485
FUCOMIP instruction 3:485
FUCOMP instruction 3:560
FUCOMPP instruction 3:560
fwb 3:130
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FXAM instruction 3:563

FXCH instruction 3:565

fxor 3:131

FXTRACT instruction 3:535, 3:567
FYL2X instruction 3:569

FYL2XP1 instruction 3:571

G

gate interception 2:231
GDT (global descriptor table) 3:634, 3:637
GDTR (global descriptor table register) 3:634, 3:729
general register (GR)
NaT bit 1:23, 1:138, 1:150, 1:151
General-purpose registers
moving value to and from 3:654
popping all 3:685
pushing all 3:693
getf 3:132
global TLB purge operations 2:77, 2:78
GS register 3:625

H

hardware debugger 2:148
hint 3:134
HLT instruction 3:573

I
i bit
PSR.i 2:94, 2:114, 2:116, 2:117, 2:118, 2:235,
2:515, 2:518, 2:574, 3:365, 3:370, 3:431,
3:743
I/O port space 2:260, 2:261, 2:262, 2:583, 2:584,
2:585, 3:580, 3:584, 3:676, 3:679
I/O port space model 2:260
physical I/O port addressing 2:262
virtual I/0 port addressing 2:261
IA-32 application execution model 1:107
IA-32 instruction set execution 1:24, 1:25, 1:43,
1:61, 1:108, 2:258
IA-32 operating mode transitions 1:110
instruction set execution in the Itanium architecture
1:108
instruction set modes 1:107
instruction set transitions 1:109, 2:231, 2:259
IA-32 application register state model 1:111
IA-32 application EFLAG register 1:120
IA-32 floating-point registers 1:122
IA-32 general purpose registers 1:111, 1:112, 1:114
IA-32 instruction pointer 1:115
IA-32 MMX technology registers 1:126
IA-32 segment registers 1:115
IA-32 streaming SIMD extension registers 1:113,
1:127
IA-32 application support 2:269
procedure calls between Itanium and I1A-32
instruction sets 2:567
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transitioning between Itanium and 1A-32 instruction
sets 2:566
I1A-32 architecture 1:5, 1:19, 2:5, 3:5, 3:381
IA-32 architecture handlers 2:568
IA-32 vectors that need Itanium-based OS support
2:569
shared Itanium/IA-32 exception vectors 2:569
unique IA-32 exception vectors 2:569
unique Itanium exception vectors 2:569
1A-32 compatible bus transactions 2:270
IA-32 current privilege level 2:234
IA-32 fault and trap handling 2:231
IA-32 faults 3:381
I1A-32 floating-point exceptions 2:564
IA-32 GPFault 3:381
IA-32 1/O instructions 2:263
|A-32 instruction behavior 2:231, 2:246
IA-32 instruction format 3:382
IA-32 instruction summary 2:246
IA-32 interruption 2:107, 2:267
IA-32 interruption priorities and classes 2:107
IA-32 interruption vector 2:205, 2:267
1A-32 memory ordering 2:257, 2:500
1A-32 MMX technology instructions 1:127, 3:769
1A-32 numeric exception model 2:269
IA-32 physical memory references 2:254
IA-32 privileged system resources 2:231
IA-32 processes during a context switch 2:244
entering 1A-32 processes 2:245
exiting 1A-32 processes 2:245
IA-32 segmentation 1:128, 2:252
IA-32 streaming SIMD extension instructions 1:127,
3:833
1A-32 system and control register behavior 2:231
IA-32 system EFLAG register 2:235
IA-32 system environment 1:5, 1:11, 1:12, 1:19, 2:5,
2:13, 3:5, 3:619, 3:620, 3:655, 3:681, 3:703,
3:704, 3:705, 3:706, 3:743
IA-32 system register mapping 2:232
IA-32 system registers 2:238
1A-32 control registers 2:238
IA-32 debug registers 2:243
IA-32 machine check registers 2:244
1A-32 memory type range registers (MTRRS) 2:244
1A-32 model specific and test registers 2:244
1A-32 performance monitor registers 2:244
1A-32 system segment registers 2:233
IA-32 TLB forward progress requirements 2:253
IA-32 trap code 2:205
IA-32 usage of Itanium registers 1:130
ALAT 1:130
NaT/NaTVal response for IA-32 instructions 1:130
register stack engine 1:130, 3:619
1A-32 virtual memory references 2:253
protection keys 2:253
region identifiers 2:253
TLB access bit 2:253
TLB dirty bit 2:253
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IA-32 virtual memory support 2:231
ic bit
PSR.ic 2:94, 2:97, 2:98, 2:100, 2:101, 2:102, 2:103,
2:114, 2:116, 2:138, 2:160, 2:515, 2:538,
2:539, 3:365, 3:370
IDIV instruction 3:574
IDT (interrupt descriptor table) 3:587, 3:634
IDTR (interrupt descriptor table register) 3:634, 3:729
IEEE considerations 1:98
additions beyond the IEEE standard 1:104
arithmetic operations 1:104, 3:848
floating-point interruptions 1:98
inexact 1:101, 1:103, 2:561, 2:564, 3:467, 3:471,
3:476, 3:489, 3:492, 3:495, 3:505, 3:509,
3:516, 3:519, 3:521, 3:524, 3:528, 3:529,
3:536, 3:538, 3:540, 3:541, 3:544, 3:553,
3:556, 3:569, 3:572, 3:867, 3:869, 3:871,
3:872, 3:873, 3:875
integer invalid operations 1:104
mandated operations deferred to software 1:104
NaNs 1:83, 1:104, 3:475, 3:519, 3:521, 3:524,
3:553, 3:556, 3:569, 3:571, 3:844, 3:846,
3:847, 3:848, 3:849, 3:851
overflow 1:101, 1:102, 2:560, 2:563, 3:436, 3:461,
3:467, 3:470, 3:473, 3:488, 3:491, 3:494,
3:500, 3:507, 3:509, 3:515, 3:528, 3:535,
3:540, 3:541, 3:543, 3:552, 3:555, 3:567,
3:569, 3:574, 3:587, 3:609, 3:610, 3:720,
3:726, 3:727, 3:770, 3:781, 3:817, 3:848,
3:855, 3:856, 3:876, 3:877, 3:908, 3:909,
3:922, 3:923
tininess 1:103
underflow 1:101, 1:103, 2:560, 2:564, 3:467, 3:469,
3:470, 3:471, 3:476, 3:478, 3:480, 3:491,
3:494, 3:515, 3:516, 3:529, 3:535, 3:538,
3:540, 3:541, 3:543, 3:552, 3:561, 3:565,
3:567, 3:569, 3:570, 3:571, 3:572, 3:847,
3:848, 3:855, 3:856, 3:876, 3:877, 3:885,
3:886, 3:908, 3:909, 3:922, 3:923
IEEE floating-point exception filter 2:559, 2:562
denormal/unnormal operand exception (fault) 2:563
divide by zero exception (fault) 2:563
inexact exception (trap) 2:564
invalid operation exception (fault) 2:563
overflow exception (trap) 2:563
underflow exception (trap) 2:564
IEEE-754 2:559, 2:562, 2:564, 3:843
ANSI/IEEE-754 standard compliant 1:197
IF (interrupt enable) flag, EFLAGS register 3:431, 3:743
IFA (Interruption Faulting Address) control register 2:29
if-conversion 1:161
IFS (Interruption Function State) control register 2:29
IHA (Interruption Hash Address) control register 2:29
IIM (Interruption Immediate register) control register 2:29
IIP (Interruption Instruction Bundle Pointer) control
register 2:35
IIP (Interruption Instruction Pointer) control register 2:29
IIPA (Interruption Instruction Previous Address) control
register 2:29
illegal dependency fault 1:41, 2:162, 2:556
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illegal operation fault 1:21, 1:22, 1:41, 2:162,
ILP (Instruction Level Parallelism) 1:13
implicit serialization 2:17
IMUL instruction 3:577
IN instruction 3:580
INC instruction 3:582, 3:642
Indefinite
description of 3:849
real 3:851
Index_Non 2.1 3:381
Infinity, floating-point format 3:848
in-flight resources 2:19
INIT flows 2:602
initialization event (INIT) 2:599
initialization interrupts 2:92, 2:110, 2:514
PALE_INIT 2:92, 2:104
Initialization FPU 3:503
INS instruction 3:584, 3:707
INSB instruction 3:584
INSD instruction 3:584
inserting/purging of translations 2:533
instruction breakpoint register matching 2:266
IBR.addr 2:266
IBR.mask 2:266
instruction breakpoint registers (IBR) 2:145, 2:146
instruction classes 3:356, 3:371, 3:373
instruction dependencies 1:144
control dependencies 1:68, 1:144, 2:492
data dependencies 1:59, 1:145, 1:146, 1:147, 2:17
instruction encoding 1:34
bundles 1:13, 1:33, 1:35, 1:36, 1:136, 1:137, 3:273
instruction slots 1:35, 3:273
template 1:35, 1:36, 1:137, 3:273, 3:274
instruction field names 3:275, 3:278
instruction format 1:136, 3:276
instruction interception 2:231
Instruction Level Parallelism (ILP) 1:13
instruction pointer (IP) 1:21, 1:24, 2:516, 2:589
instruction serialization 2:18, 2:19, 2:518, 3:357,
3:452, 3:601
Instruction set
string instructions 3:441, 3:584, 3:644, 3:662,
3:678, 3:746
instruction set architecture (ISA) 1:5, 2:5, 3:5
instruction set features 1:13
instruction set transition model overview 1:12
instruction set transitions 2:38, 2:231, 2:259
instruction slots 1:35, 3:273
instruction slot mapping 1:35, 3:274
instruction stream 1:171, 3:518, 3:532, 3:548, 3:613,
3:671
instruction stream alignment 1:171
instruction stream fetching 1:171
instruction type 1:34, 3:273, 3:719
ALU (A) 3:274
branch (B) 3:274
floating-point (F) 3:274

3:273
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integer (I) 1:137, 3:274
memory (M) 1:137, 3:274
instruction/data TLB miss 2:64, 2:65, 2:66
INSW instruction 3:584
INTA (Interrupt Acknowledge) 2:123
INT3 instruction 3:587
integer computation instructions 1:46
32-bit addresses and integers 1:48
arithmetic instructions 1:47, 3:342, 3:885
bit field and shift instructions 1:48, 1:49
large constants 1:49
logical instructions 1:47
Integer, FPU data type
storing 3:504
integer/floating-point conversion 1:207
Inter-privilege level call
CALL instruction 3:418
Inter-privilege level return
RET instruction 3:710
inter-processor interrupt (IP1) 2:110, 2:111, 2:123,
2:581
inter-processor interrupt message 2:124, 2:602
data fields 2:124, 2:126
Interrupt 2:79, 2:92, 2:93, 2:104, 2:109, 2:110, 2:111,
2:112, 2:113, 2:114, 2:115, 2:116, 2:117,
2:118, 2:119, 2:513, 2:514, 2:573, 2:574,
2:601, 3:431, 3:432, 3:573, 3:587, 3:588,
3:589, 3:590, 3:591, 3:592, 3:593, 3:594,
3:595, 3:596, 3:597, 3:601, 3:602, 3:603,
3:604, 3:605, 3:606, 3:607, 3:608, 3:623,
3:634, 3:635, 3:639, 3:649, 3:655, 3:681,
3:682, 3:687, 3:695, 3:708, 3:716, 3:729,
3:730, 3:736, 3:743, 3:744, 3:745, 3:855,
3:856, 3:857, 3:858, 3:860, 3:863, 3:865,
3:867, 3:869, 3:871, 3:872, 3:873, 3:875,
3:876, 3:877, 3:879, 3:884, 3:886, 3:888,
3:889, 3:892, 3:893, 3:896, 3:898, 3:901,
3:905, 3:907, 3:908, 3:909, 3:910, 3:911,
3:913, 3:915, 3:916, 3:918, 3:919, 3:920,
3:921, 3:922, 3:923, 3:924, 3:926, 3:928,
3:930, 3:932, 3:933, 3:934, 3:935, 3:936,
3:937, 3:938, 3:939, 3:940, 3:941, 3:943,
3:946, 3:947, 3:948
Interrupt Acknowledge (INTA) 2:123
Interruption 2:91, 2:92, 2:93, 2:94, 2:95, 2:96, 2:97,
2:98, 2:99, 2:104, 2:107, 2:108, 2:116, 2:141,
2:513, 2:514, 2:515
execution environment 2:515
heavyweight interruptions 2:519, 2:521
interruption handler 2:98, 2:99, 2:513, 2:514, 2:515,
2:518
interruption handling 2:91, 2:94, 2:97, 2:98, 2:518
interruption register state 2:516
lightweight interruptions 2:518, 2:519
nested interruptions 2:521, 2:522
resource serialization 2:517, 2:518
interruption model 2:94, 2:266
interruption priorities 2:104, 2:107
interruption registers 2:232, 2:514, 2:516
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interruption vector address (IVA) 2:514
interruption vector table (IVT) 2:91, 2:108, 2:514
interruption vectors 2:97, 2:108, 2:159, 2:164, 2:514
Alternate Data TLB vector (0x1000) 2:170
Alternate Instruction TLB vector (0x0c00) 2:169
Break Instruction vector (0x2c00) 2:177
Data Access Rights vector (0x5300) 2:183
Data Access-Bit vector (0x2800) 2:176
Data Key Miss vector (0x1c00) 2:173
Data Nested TLB vector (0x1400) 2:171
Data TLB vector (0x0800) 2:168
Debug vector (0x5900) 2:191
Dirty-Bit vector (0x2000) 2:174
Disabled FP-Register vector (0x5500) 2:186
External Interrupt vector (0x3000) 2:178
Floating-point Fault vector (0x5c00) 2:194
Floating-point Trap vector (0x5d00) 2:195
General Exception vector (0x5400) 2:184
1A-32 Exception vector (0x6900) 2:201
1A-32 Intercept vector (0x6a00) 2:202
1A-32 Interrupt vector (0x6b00) 2:203
Instruction Access Rights vector (0x5200) 2:182
Instruction Access-Bit vector (0x2400) 2:175
Instruction Key Miss vector (0x1800) 2:172
Instruction TLB vector (0x0400) 2:167
interruption vector definition 2:160
Key Permission vector (0x5100) 2:181
Lower-Privilege Transfer Trap vector (0x5e00) 2:196
NaT Consumption vector (0x5600) 2:187
Page Not Present vector (0x5000) 2:180
Single Step Trap vector (0x6000) 2:199
Speculation vector (0x5700) 2:189
Taken Branch Trap vector (Ox5f00) 2:198
Unaligned Reference vector (0x5a00) 2:192
Unsupported Data Reference vector (Ox5b00) 2:193
VHPT Translation vector (0x0000) 2:165
Virtual External Interrupt vector (0x3400) 2:179
Virtualization vector (0x6100) 2:200
Interruptions 2:91, 2:92, 2:93, 2:94, 2:97, 2:98, 2:99,
2:104, 2:107, 2:108, 2:139, 2:140, 2:513,
2:514
aborts 2:91, 2:101, 2:104, 2:514
faults 2:91, 2:92, 2:97, 2:101, 2:104, 2:105, 2:106,
2:107, 2:108, 2:513, 3:401, 3:403, 3:405,
3:407, 3:409, 3:411, 3:412, 3:414, 3:416,
3:425, 3:427, 3:436, 3:437, 3:439, 3:442,
3:445, 3:446, 3:454, 3:455, 3:457, 3:458,
3:459, 3:462, 3:465, 3:467, 3:469, 3:471,
3:473, 3:476, 3:478, 3:479, 3:480, 3:483,
3:486, 3:489, 3:490, 3:493, 3:496, 3:497,
3:499, 3:500, 3:502, 3:503, 3:505, 3:507,
3:509, 3:511, 3:513, 3:517, 3:518, 3:519,
3:522, 3:525, 3:528, 3:529, 3:531, 3:533,
3:536, 3:538, 3:540, 3:542, 3:544, 3:546,
3:549, 3:550, 3:554, 3:557, 3:558, 3:561,
3:563, 3:565, 3:567, 3:570, 3:572, 3:575,
3:579, 3:581, 3:582, 3:585, 3:593, 3:607,
3:617, 3:619, 3:620, 3:621, 3:623, 3:626,
3:629, 3:630, 3:642, 3:645, 3:647, 3:650,
3:656, 3:663, 3:664, 3:665, 3:667, 3:669,
3:671, 3:672, 3:674, 3:677, 3:680, 3:683,
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3:686, 3:689, 3:691, 3:694, 3:696, 3:699,
3:704, 3:706, 3:709, 3:714, 3:717, 3:720,
3:722, 3:723, 3:725, 3:727, 3:733, 3:735,
3:747, 3:749, 3:751, 3:755, 3:761, 3:763,
3:765, 3:767, 3:770, 3:772, 3:773, 3:776,
3:778, 3:781, 3:784, 3:787, 3:789, 3:791,
3:794, 3:797, 3:799, 3:801, 3:803, 3:805,
3:808, 3:811, 3:814, 3:817, 3:820, 3:823,
3:826, 3:829, 3:831, 3:855, 3:856, 3:857,
3:858, 3:860, 3:863, 3:866, 3:867, 3:869,
3:871, 3:872, 3:873, 3:875, 3:876, 3:877,
3:880, 3:884, 3:886, 3:888, 3:890, 3:892,
3:894, 3:896, 3:897, 3:899, 3:900, 3:902,
3:903, 3:905, 3:907, 3:908, 3:909, 3:910,
3:911, 3:913, 3:915, 3:916, 3:918, 3:919,
3:920, 3:921, 3:922, 3:923, 3:925, 3:927,
3:929, 3:930, 3:932, 3:933, 3:934, 3:935,
3:936, 3:937, 3:938, 3:939, 3:940, 3:942,
3:943, 3:945, 3:946, 3:947, 3:948
interruption handling during instruction execution 2:94
interruption programming model 2:93
interrupts 2:91, 2:92, 2:94, 2:97, 2:101, 2:104,
2:107, 2:110, 2:111, 2:112, 2:114, 2:115,
2:116, 2:117, 2:118, 2:119, 2:235, 2:513,
2:514, 3:431, 3:550, 3:587, 3:588, 3:655,
3:681, 3:703, 3:708, 3:743
IVA-based interruption 2:97, 2:108, 2:514
PAL-based interruption 2:97, 2:513
traps 1:101, 2:91, 2:92, 2:96, 2:97, 2:98, 2:104,
2:106, 2:107, 2:108, 2:513, 3:581, 3:585,
3:655, 3:677, 3:680, 3:681
Interrupts
interrupt vector 4 3:587
returning from 3:601
software 3:587
interval timer 1:114, 2:20, 2:31, 2:32, 2:111, 2:120,
2:121, 2:579, 2:580
INTn instruction 3:587
INTO instruction 3:587
invala 1:62, 1:64, 2:141, 2:528, 2:595, 3:135, 3:323,
3:324, 3:328, 3:373
invala.e 1:62, 1:64, 2:523, 2:524, 2:525, 2:528, 3:323,
3:324, 3:328, 3:359, 3:373
INVD instruction 3:598
INVLPG instruction 3:600
IOPL (/O privilege level) field, EFLAGS register 3:431,
3:695, 3:743
IPI (inter-processor interrupt) 2:110, 2:111, 2:123, 2:581
IPI ordering 2:126
IPSR (Interruption Processor Status Register) control
register 2:29, 2:34
IRET instruction 3:601
IRETD instruction 3:601
IRRO (External Interrupt Request Register 0 (read only))
control register 2:29
IRR1 (External Interrupt Request Register 1 (read only))
control register 2:29
IRR2 (External Interrupt Request Register 2 (read only))
control register 2:29
IRR3 (External Interrupt Request Register 3 (read only))
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control register 2:29
ISR (Interruption Status Register) control register 2:29
ISR setting 2:159
Iltanium architecture 1:1, 1:5, 1:11, 1:13, 1:14, 1:108,
1:110, 1:135, 1:143, 1:150, 2:1, 2:5, 3:1, 3.5,
3:452, 3:580, 3:584, 3:619, 3:620, 3:676,
3:679
Itanium data mem faults 3:382
[tanium instruction 1:111, 3:273, 3:355, 3:452, 3:619,
3:620
expressing parallelism 1:137
format 3:486, 3:561
Itanium instruction set 1:19, 3:452, 3:619, 3:620
syntax 1:136, 3:356
Itanium instruction mem faults 3:382
[tanium system environment 1:5, 1:11, 1:12, 1:19, 2:5,
2:13, 2:14, 2:15, 3:5, 3:381, 3:401, 3:403,
3:405, 3:407, 3:409, 3:411, 3:412, 3:414,
3:416, 3:418, 3:419, 3:420, 3:421, 3:422,
3:424, 3:425, 3:427, 3:431, 3:432, 3:433,
3:437, 3:439, 3:442, 3:444, 3:445, 3:446,
3:454, 3:455, 3:457, 3:458, 3:459, 3:462,
3:465, 3:467, 3:469, 3:471, 3:473, 3:476,
3:478, 3:479, 3:480, 3:483, 3:486, 3:489,
3:490, 3:493, 3:496, 3:497, 3:499, 3:500,
3:502, 3:503, 3:505, 3:507, 3:509, 3:511,
3:513, 3:517, 3:518, 3:519, 3:522, 3:525,
3:528, 3:529, 3:531, 3:533, 3:536, 3:538,
3:540, 3:542, 3:544, 3:546, 3:549, 3:550,
3:554, 3:557, 3:558, 3:561, 3:563, 3:565,
3:567, 3:570, 3:572, 3:573, 3:575, 3:579,
3:580, 3:581, 3:582, 3:584, 3:585, 3:589,
3:595, 3:598, 3:600, 3:601, 3:602, 3:607,
3:611, 3:613, 3:614, 3:615, 3:616, 3:617,
3:619, 3:620, 3:621, 3:623, 3:626, 3:629,
3:630, 3:634, 3:635, 3:637, 3:640, 3:642,
3:645, 3:647, 3:650, 3:652, 3:655, 3:656,
3:658, 3:659, 3:660, 3:663, 3:664, 3:665,
3:667, 3:669, 3:672, 3:674, 3:676, 3:677,
3:679, 3:680, 3:681, 3:683, 3:686, 3:689,
3:691, 3:694, 3:696, 3:699, 3:701, 3:703,
3:704, 3:705, 3:706, 3:709, 3:711, 3:712,
3:714, 3:716, 3:717, 3:720, 3:722, 3:725,
3:727, 3:729, 3:733, 3:735, 3:737, 3:739,
3:743, 3:744, 3:747, 3:748, 3:749, 3:751,
3:753, 3:755, 3:757, 3:759, 3:761, 3:763,
3:765, 3:767, 3:770, 3:772, 3:773, 3:776,
3:778, 3:781, 3:784, 3:787, 3:789, 3:791,
3:794, 3:797, 3:799, 3:801, 3:803, 3:805,
3:808, 3:811, 3:814, 3:817, 3:820, 3:823,
3:826, 3:829, 3:831, 3:855, 3:856, 3:857,
3:858, 3:860, 3:863, 3:866, 3:867, 3:869,
3:871, 3:872, 3:873, 3:875, 3:876, 3:877,
3:880, 3:884, 3:886, 3:888, 3:890, 3:892,
3:894, 3:896, 3:897, 3:899, 3:900, 3:902,
3:903, 3:905, 3:907, 3:908, 3:909, 3:910,
3:911, 3:913, 3:915, 3:916, 3:918, 3:919,
3:920, 3:921, 3:922, 3:923, 3:925, 3:927,
3:929, 3:930, 3:932, 3:933, 3:934, 3:935,
3:936, 3:937, 3:938, 3:939, 3:940, 3:942,
3:943, 3:946, 3:947, 3:948, 3:949, 3:950
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Itanium-based firmware 1:5, 1:19, 2:5, 3:5

itc 1:29, 2:31, 2:32, 2:50, 2:55, 2:57, 2:537, 2:539,
2:579, 2:580, 3:136, 3:329, 3:330, 3:359,
3:360, 3:361, 3:362, 3:365, 3:366, 3:367,
3:369, 3:373, 3:375, 3:376, 3:378

ITC (Interval Time Counter) application register 1:26

ITC (Interval Time Counter) control register 2:31

ITIR (Interruption TLB Insertion Register) control
register 2:29, 2:36

ITM (Interval Timer Match Register) control register
2:28, 2:31

ITM (Interval Timer Match register) control register 2:28

itr 2:46, 2:50, 2:55, 2:57, 2:537, 2:538, 2:595, 2:598,
2:599, 3:138, 3:329, 3:330, 3:360, 3:361,
3:362, 3:365, 3:366, 3:369, 3:373, 3:378

ITV (Interval Timer Vector) control register 2:29

IVA (Interruption Vector Address) control register 2:28

IVA-based interruptions 2:91, 2:92, 2:93, 2:97, 2:513,
2:514

IVR (External Interrupt Vector Register (read only))
control register 2:29

IVT (interruption vector table) 2:91, 2:108, 2:514

J

J-bit 3:845

Jcc instructions 3:609
JMP instruction 3:613
jmpe 1:12, 1:107, 1:109
Jump operation 3:613

K

KR 0-7 (Kernel Registers 0-7) application register 1:26

L

LAHF instruction 3:619, 3:621

Lamport’s algorithm 2:505, 2:506

LAR instruction 3:622

LC (Loop Count Register) application register 1:26

ld 3:140

Id.a 1:53, 1:59, 1:63, 1:64, 1:148, 1:150, 1:157, 2:76,
2:78, 2:83, 2:484, 2:551, 2:552, 2:553

Id.acq 1:53, 1:62, 1:68, 2:78, 2:79, 2:484, 2:489,
2:491, 2:493, 2:495, 2:497, 2:498

Id.c 1:59, 1:60, 1:61, 1:62, 1:148, 1:149, 1:150, 1:157,
2:78, 2:552, 2:553

Id.c.clr 1:53, 1:62, 1:63, 1:64, 2:82, 2:83

Id.c.clr.acq 1:53, 1:62, 1:63, 1:64, 1:68, 2:78, 2:79,
2:82, 2:83

Id.c.nc 1:53, 1:63, 1:64, 2:82, 2:83

Id.s 1:53, 1:56, 1:59, 1:152, 2:76, 2:78, 2:484, 2:551,
2:552, 2:553

Id.sa 1:53, 1:63, 1:64, 1:152, 2:76, 2:78, 2:83, 2:484,
2:524, 2:551, 2:552, 2:553

[d16 3:310
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1d8.fill 1:28, 1:39, 1:54, 1:58, 1:59, 1:151, 2:523, 2:524,

3:305, 3:306, 3:310, 3:311, 3:312, 3:358,

3:360, 3:373
Idf 3:145
Idf.a 1:53, 1:59, 1:63, 1:64
Idf.c 1:59

Idf.c.clr 1:53, 1:63, 1:64, 2:82
Idf.c.nc 1:53, 1:63, 1:64, 2:82

ldf.fill 1:53, 1:54, 1:58, 1:59, 1:87, 1:151, 2:78, 2:523,

2:525, 3:307, 3:308, 3:314, 3:315, 3:316,
3:374

Idf.s 1:53, 1:56, 1:59, 2:78

Idf.sa 1:53, 1:63, 1:64, 2:78

ldfp 3:149

Idfp.a 1:53, 1:59, 1:61, 1:63, 1:64

ldfp.c 1:59

Idfp.c.clr 1:53, 1:63, 1:64

Idfp.c.nc 1:53, 1:63, 1:64

ldfp.s 1:53, 1:56, 1:59, 2:78

Idfp.sa 1:53, 1:63, 1:64, 2:78

LDS instruction 3:625

LDT (local descriptor table) 3:637

LDTR (local descriptor table register) 3:637, 3:737

LEA instruction 3:628

LEAVE instruction 3:630

LES instruction 3:625

level sensitive external interrupts 2:127

Ifetch 3:152

LFS instruction 3:625

LGDT instruction 3:634

LGS instruction 3:625

LID (Local Interrupt ID) control register 2:29

LIDT instruction 3:634

LINT 2:111, 2:122, 2:123, 2:126, 2:127

LINTO 2:122

LINTO (Local Interrupt 0) 2:122

LINT1 2:122

LINT1 (Local Interrupt 1) 2:122

LLDT instruction 3:637

LMSW instruction 3:640

Load effective address operation 3:628

load instruction 1:163, 2:484, 3:895, 3:898, 3:901,
3:904, 3:906

loadrs 1:27, 1:39, 1:46, 1:50, 2:65, 2:104, 2:131,
2:133, 2:134, 2:135, 2:137, 2:138, 2:139,
2:140, 2:141, 2:142, 2:526, 2:527, 2:595,
3:155, 3:323, 3:328, 3:359, 3:360, 3:366,
3:367, 3:368, 3:373, 3:378, 3:379

loadrs field 1:46, 2:134, 2:137

RSC.loadrs 1:46, 2:137, 2:138, 2:139, 2:595

Local Interrupt O (LINTO) 2:122

Local Interrupt 1 (LINT1) 2:122

LOCK prefix 3:444, 3:446, 3:642, 3:761, 3:763

Locking operation 3:642

LODS instruction 3:644, 3:707

LODSB instruction 3:644

LODSD instruction 3:644
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LODSW instruction 3:644
Log (base 2), FPU operation 3:571
Log epsilon, FPU operation 3:569
logical instructions 1:47
long branch handler 2:555
LOOP instructions 3:646
loop support 1:70, 1:175, 1:178
capacity limitations 1:189
conflicts in the ALAT 1:190
counted loop 1:71, 1:72, 1:175, 1:180, 1:181
counted loop branches 1:180
epilog 1:70, 1:177, 1:178, 1:183
epilog count register (EC) 1:29, 1:30
explicit prolog and epilog 1:194
implementing reductions 1:193
induction variable 1:176
initiation interval (II) 1:177
kernel 1:70, 1:177, 1:178, 1:183
kernel iteration 1:178
kernel loop 1:178
loop count application register (LC) 1:71, 1:175
loop unrolling 1:141, 1:176, 1:191
loop unrolling prior to software pipelining 1:191
loops with predicated instructions 1:186
multiple-exit loops 1:187
prolog 1:70, 1:177, 1:178, 1:183
redundant load elimination in loops 1:196
register rotation 1:17, 1:178, 1:179
software pipelining and advanced loads 1:189
software pipelining considerations 1:189
software-pipelined loop branches 1:179, 1:180,
1:181
source iteration 1:178
source loop 1:178
while loop 1:72, 1:182, 1:184, 3:708, 3:709
LOOPcc instructions 3:646

LRRO (Local Redirection Register 0) control register 2:29
LRR1 (Local Redirection Register 1) control register 2:29

LSL instruction 3:648
LSS instruction 3:625
LTR instruction 3:652

M

machine check 2:91, 2:104, 2:242, 2:244, 2:514, 2:600,

2:601, 2:602, 3:701, 3:759
machine check abort
PALE_CHECK 2:91, 2:104
machine check abort flows
machine check abort handling in OS 2:601
machine check handling in PAL 2:601
machine check handling in SAL 2:601
machine check aborts 2:591
machine checks 2:288
Machine status word, CRO register 3:640, 3:739
major opcode 1:36, 3:273, 3:274, 3:275
master boot record 2:593
mc bit
PSR.mc 2:94, 2:97, 2:98, 2:114, 2:516, 3:365,
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3:370
MC (machine check) 2:332
MCA 2:591
memory acceptance fence 2:583
memory access control 1:208
allocation control 1:65, 1:209
data prefetch 1:209
load-pair instructions 1:208
memory access instructions 1:53, 1:64, 2:483
memory access ordering 1:68, 2:79
memory ordering instructions 1:68
memory ordering rules 1:68
memory addressing model 1:33, 1:128
memory alignment 2:255
memory attribute 2:52, 2:71, 2:72, 2:82, 2:83, 2:84
effects of memory attributes on advanced/check
loads 2:82
effects of memory attributes on memory reference
instructions 2:81
memory attribute transition 2:83
physical addressing memory attribute 2:72
virtual addressing memory attribute 2:71, 2:83
memory dependency 1:37, 2:77
read-after-write 1:37, 1:40, 1:41,
write-after-read 1:37, 1:40, 1:41,
write-after-write 1:37, 1:40, 1:41,
memory endianess 1:128
memory fence 1:68, 2:500
memory fences 2:126, 2:486
memory hierarchy 1:65
hierarchy control and hints 1:64
memory consistency 1:67, 3:946, 3:947, 3:948
memory mapped I/O model 2:260, 2:584
memory model 1:127, 2:252
memory ordering 1:68, 2:77, 2:78, 2:142, 2:483,
2:484, 2:486, 2:491, 2:492, 2:493, 2:532,
3:950
acquire semantics 1:68, 2:79, 2:257, 2:483
memory ordering executions 2:486
memory ordering interactions 1:129
memory ordering model 2:257, 2:486, 2:500
memory ordering semantics 1:68, 2:486
release semantics 1:68, 2:257, 2:258, 2:483
Memory ordering fence 1:69
memory reference 1:143, 1:144, 2:44, 3:400, 3:402,
3:404, 3:406, 3:408, 3:411, 3:413, 3:415,
3:417, 3:437, 3:438, 3:440, 3:442, 3:443,
3:445, 3:447, 3:459, 3:460, 3:462, 3:463,
3:472, 3:473, 3:474, 3:476, 3:477, 3:484,
3:493, 3:496, 3:499, 3:500, 3:501, 3:505,
3:506, 3:508, 3:511, 3:512, 3:514, 3:517,
3:531, 3:533, 3:534, 3:544, 3:545, 3:546,
3:547, 3:549, 3:551, 3:554, 3:557, 3:575,
3:576, 3:579, 3:582, 3:583, 3:586, 3:607,
3:608, 3:618, 3:624, 3:625, 3:627, 3:645,
3:650, 3:655, 3:657, 3:663, 3:664, 3:665,
3:666, 3:668, 3:669, 3:670, 3:672, 3:673,
3:675, 3:680, 3:681, 3:684, 3:691, 3:692,
3:700, 3:721, 3:723, 3:725, 3:727, 3:728,

1:68, 2:77
1:68, 2:77
1:68, 2:77
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3:733, 3:735, 3:737, 3:739, 3:740, 3:747,
3:748, 3:750, 3:752, 3:755, 3:761, 3:762,
3:764, 3:765, 3:766, 3:768, 3:772, 3:774,
3:776, 3:777, 3:779, 3:782, 3:784, 3:785,
3:787, 3:788, 3:790, 3:792, 3:795, 3:798,
3:800, 3:802, 3:804, 3:806, 3:808, 3:809,
3:811, 3:812, 3:814, 3:815, 3:818, 3:820,
3:821, 3:823, 3:824, 3:826, 3:827, 3:829,
3:830, 3:832, 3:856, 3:863, 3:865, 3:867,
3:869, 3:871, 3:872, 3:873, 3:875, 3:877,
3:879, 3:880, 3:883, 3:884, 3:886, 3:889,
3:893, 3:898, 3:901, 3:905, 3:907, 3:909,
3:913, 3:916, 3:920, 3:921, 3:923, 3:924,
3:932, 3:934, 3:935, 3:936, 3:937, 3:938,
3:939, 3:940, 3:941, 3:943, 3:945, 3:946,
3:948

memory synchronization 2:500

mf 1:69, 2:126, 2:486, 3:156

mf.a 2:78, 2:126, 2:583, 2:584, 2:585, 2:586, 3:323,
3:328

Min/Max/AMin/AMax 1:206

mix 3:157

MMX technology 1:17,

1:108, 1:111, 1:113, 1:126,

1:127,
3:775,
3:791,
3:805,
3:822,
3:841,
3:881,
3:946

2:139,
3:301,
3:328,
3:375,
3:655,
3:661,

3:381,
3:778,
3:793,
3:807,
3:825,
3:842,
3:882,

mov 1:31, 1:39, 1:40,

2:147,
3:302,
3:329,
3:376,
3:656,
3:681,

3:769,
3:780,
3:796,
3:810,
3:828,
3:868,
3:930,

3:770, 3:771,
3:783, 3:786,
3:799, 3:801,
3:813, 3:816,
3:831, 3:839,
3:870, 3:874,
3:932, 3:941,

3:773,
3:789,
3:803,
3:819,
3:840,
3:878,
3:945,

1:49, 1:52, 1:70, 1:76, 1:77,
1:78, 2:17, 2:22, 2:23, 2:55, 2:57, 2:136,

2:153,
3:303,
3:330,
3:377,
3:657,
3:682,

2:587, 3:298,
3:324, 3:325,
3:331, 3:337,
3:410, 3:640,
3:658, 3:659,
3:739

3:299,
3:326,
3:374,
3:654,
3:660,

mov ar 3:160

mov cr 3:163

mov fr 3:165

mov gr 3:166

mov imm 3:166

mov indirect 3:168

MOV instruction 3:654

MOV instruction (control registers) 3:658
MOV instruction (debug registers) 3:660
mov ip 3:171

mov pr 3:172

mov psr 3:173

mov um 3:174

movl 3:175

MOVS instruction 3:662, 3:707
MOVSB instruction 3:662

MOVSD instruction 3:662

MOVSW instruction 3:662

MOVSX instruction 3:664

MOVZX instruction 3:665
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MP (multiprocessor)
multiprocessor instruction cache coherency 2:257
multiprocessor TLB coherency 2:254
MSRs (model specific registers)
reading 3:701
writing 3:759
MUL instruction 3:393, 3:667
multimedia instructions 1:13, 1:17, 1:43, 1:74
data arrangement 1:76
parallel arithmetic 1:74, 1:75
parallel shifts 1:75
multimedia support 1:17
multiple address space (MAS) 1:18, 2:43, 2:533, 2:534
multiple status fields 1:204
multiply-add instruction 1:202
multiprocessor (MP)
multiprocessor instruction cache coherency 2:257
multiprocessor TLB coherency 2:254
mux 3:176

N

NaN
description of 3:846, 3:848
encoding of 3:847, 3:851
operating on 3:849
SNaNs vs. QNaNs 3:848
testing for 3:558
NaNs 1:83, 1:104, 1:206, 3:475, 3:519, 3:521, 3:524,
3:553, 3:556, 3:569, 3:571, 3:844, 3:846,
3:847, 3:848, 3:849, 3:851
NaT (not a thing) 1:135
NaT page consumption fault 2:81
NaTPage attribute 2:81
NaTVal (not a thing value) 1:24
Near call
CALL instruction 3:418
Near return
RET instruction 3:710
NEG instruction 3:642, 3:669
NMI (Non-Maskable Interrupts) 2:92
non-access instructions 2:99
non-cacheable memory 2:77
Nonconforming code segment 3:616
Non-Maskable Interrupts (NMI) 2:92
Non-number encodings, FPU 3:846
non-programmer-visible state 2:486
non-speculative 1:56, 1:57, 2:75, 2:76, 2:83, 2:553
non-speculative memory references 1:143, 2:70
data prefetch hint 1:144
loads from memory 1:143
stores to memory 1:143
non-temporal hint 1:209
nop 3:179
NOP instruction 3:671
no-recovery model 2:100, 2:101
Normalized finite number 3:845, 3:847
normalized numbers 1:83, 3:844, 3:845, 3:847
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not a thing attribute (NaTPage) 2:81
NOT instruction 3:642, 3:672
Notation
reserved bits 3:853
NT (nested task) flag, EFLAGS register 3:601

O

OF (carry) flag, EFLAGS register 3:577
OF (overflow) flag, EFLAGS register 3:395, 3:397,
3:587, 3:667, 3:722, 3:732, 3:734, 3:749
OLR 2:332
operand screening support 1:206
operating environments 1:11, 1:12
Optimization of Memory References
Using Post-increment Loads and Stores 1:155
optimization of memory references 1:152
data interference 1:153, 1:154
loop optimization 1:156
minimizing check code 1:156
optimizing code size 1:154
or 3:180
OR instruction 3:642, 3:674
orderable instruction 2:484, 2:488
ordered cacheable operations 2:497
ordering semantics 1:68, 2:78, 2:79, 2:488
acquire 1:68, 2:78, 2:79, 2:257, 2:258, 2:483, 2:488,
2:489
fence 1:68, 1:69, 2:78, 2:79, 2:258, 2:483, 2:488,
3:452, 3:454, 3:581, 3:585, 3:601, 3:619,
3:677, 3:679, 3:950
release 1:68, 2:78, 2:79, 2:257, 2:258, 2:483, 2:488,
2:489, 3:710
unordered 1:68, 2:78, 2:79, 2:258, 2:483, 2:488,
3:480, 3:482, 3:485, 3:498, 3:558, 3:560,
3:561, 3:860, 3:863, 3:865, 3:924, 3:925
OS boot flow sample code 2:607
OS kernel 2:593, 2:594, 2:595
OS loader 2:593
OUT instruction 3:676
OUTS instruction 3:678, 3:707
OUTSB instruction 3:678
OUTSD instruction 3:678
OUTSW instruction 3:678
overflow 1:16, 1:101, 1:102, 2:560, 2:563, 3:436,
3:461, 3:467, 3:473, 3:500, 3:507, 3:509,
3:535, 3:540, 3:555, 3:567, 3:569, 3:574,
3:587, 3:609, 3:610, 3:720, 3:726, 3:727,
3:770, 3:781, 3:817, 3:848, 3:855, 3:856,
3:876, 3:877, 3:908, 3:909, 3:922, 3:923
Overflow exception (#OF) 3:587

P

pack 3:181

PACKSSDW instruction 3:775
PACKSSWB instruction 3:775
PACKUSWSB instruction 3:778
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padd 3:183
PADDB instruction 3:780
PADDD instruction 3:780
padding restrictions 2:255
PADDSB instruction 3:783
PADDSW instruction 3:783
PADDUSB instruction 3:786
PADDUSW instruction 3:786
PADDW instruction 3:780
Page Table Address (PTA) 2:59
PAL 1:5, 2:5, 2:374, 2:591, 2:593, 2:596, 2:597,
2:598, 2:599, 2:601, 35
entrypoints 2:274
procedures 2:274
PAL power on/reset 2:281
PALE_RESET 2:91
PAL procedure calling conventions 2:339
PAL procedure calls 2:596
PAL procedures 2:334, 2:592, 2:596, 2:598, 2:599
stacked PAL call 2:597
stacked registers 1:140, 2:596, 2:597
static PAL call 2:596
PAL self-test control word 2:287
PAL_BUS GET FEATURES 2:348
PAL_BUS SET _FEATURES 2:350
PAL_CACHE_FLUSH 2:351
PAL_CACHE_INFO 2:355
PAL_CACHE_INIT 2:358
PAL_CACHE_LINE_INIT 2:359
PAL_CACHE_PROT_INFO 2:360
PAL_CACHE_READ 2:362
PAL_CACHE_SHARED_INFO 2:364
PAL_CACHE_SUMMARY 2:366
PAL_CACHE_WRITE 2:367
PAL_COPY_INFO 2:370
PAL_COPY_PAL 2:371
PAL_DEBUG_INFO 2:372
PAL_ENTER_IA_32_ENV 2:373
PAL_FIXED_ADDR 2:380
PAL_FREQ_BASE 2:381
PAL_FREQ_RATIOS 2:382
PAL_HALT 2:387
PAL_HALT INFO 2:390
PAL_HALT_LIGHT 2:392
PAL_LOGICAL_TO_PHYSICAL 2:393
PAL_MC_CLEAR_LOG 2:396
PAL_MC_DRAIN 2:397
PAL_MC_DYNAMIC_STATE 2:398
PAL_MC_EXPECTED 2:419
PAL_MC_RESUME 2:297
PAL_MEM_ATTRIB 2:422
PAL_MEMORY_BUFFER 2:423
PAL_PERF_MON_INFO 2:425
PAL_PLATFORM_ADDR 2:427
PAL_PMI_ENTRYPOINT 2:428
PAL_PREFETCH_VISIBILITY 2:429
PAL_PROC_GET_FEATURES 2:431
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PAL_PROC_SET_FEATURES 2:435
PAL_PTCE_INFO 2:438
PAL_REGISTER_INFO 2:439
PAL_RSE_INFO 2:440
PAL_TEST_INFO 2:445
PAL_TEST_PROC 2:446
PAL_VERSION 2:449
PAL_VM_INFO 2:450
PAL_VM_PAGE_SIZE 2:451
PAL_VM_SUMMARY 2:452
PAL_VM_TR_READ 2:454
PAL-based interrupt states 2:113
PAL-based interruptions 2:91, 2:92, 2:93, 2:97, 2:108,
2:513, 2:514
PALE_CHECK 2:288
PALE_INIT 2:298
PALE_RESET 2:281
PAND instruction 3:789
PANDN instruction 3:791
pavg 3:186
pavgsub 3:189
pcmp 3:191
PCMPEQB instruction 3:793
PCMPEQD instruction 3:793
PCMPEQW instruction 3:793
PCMPGTB instruction 3:796
PCMPGTD instruction 3:796
PCMPGTW instruction 3:796
PE (protection enable) flag, CRO register 3:640
performance counters 1:30, 2:149, 2:150, 2:243,
2:587, 3:703
Performance Monitor Events 2:155
performance monitors 1:30, 1:31, 2:149, 2:152, 2:233,
2:587, 2:588, 2:589
performance monitor code sequences 2:156
performance monitor configuration (PMC) 2:149,
2:152
performance monitor data (PMD) 2:149, 2:587
performance monitor data registers (PMD) 1:21,
1:30
performance monitor interrupt service routine 2:156,
2:157
performance monitor registers 2:149, 2:152, 2:588
performance monitoring mechanisms 2:587
Performance-monitoring counters
reading 3:703
PFS (Previous Function State) application register 1:26
physical addressing 2:68, 2:69, 2:72, 2:85, 2:598,
2:599, 3:659
Physical Memory Attribute (PMA) 2:69
Physical Page Number (PPN) 2:44
Pi
loading 3:509
pk bit 2:536
PSR.pk 2:95, 2:98, 2:536, 3:366, 3:371
PKR (protection key registers) 2:20, 2:56
platform management interrupt (PMI) 2:104, 2:302,
2:513, 2:591, 2:599, 2:603
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PMA (Physical Memory Attribute) 2:69
PMADDWD instruction 3:799
pmax 3:193
PMC (performance monitor configuration) 2:149, 2:152
PMD (performance monitor data) 2:149, 2:587
PMD (performance monitor data registers) 1:21, 1:30
PMI Flows 2:603
pmin 3:194
pmpy 3:195
pmpyshr 3:196
PMULHW instruction 3:801
PMULLW instruction 3:803
PMV (Performance Monitoring Vector) control register
2:29
POP instruction 3:681
POPA instruction 3:685
POPAD instruction 3:685
popcnt 3:198
POPF instruction 3:687
POPFD instruction 3:687
population count 1:78, 3:295
POR instruction 3:805
power management 2:92, 2:305, 2:603
NORMAL 1:168, 3:563, 3:927, 3:929
PPN (Physical Page Number) 2:44
PR (predicate register)
predicate register transfers 1:52
predicate register (PR)
predicate register transfers 1:52
Predication 1:13, 1:15, 1:49, 1:50, 1:139, 1:142, 1:159,
1:160, 1:161, 1:162, 1:163, 1:164
cache pollution reduction 1:164
downward code motion 1:163, 1:164
guidelines for removing branches 1:166
instruction prefetch hints 1:172
instruction scheduling 1:144, 1:146, 1:160
off-path predication 1:162
optimizing program performance using predication
1:161
performance costs of branches 1:159
predication considerations 1:164
predication in the itanium architecture 1:160
prediction resources 1:73, 1:159, 1:160
upward code motion 1:163
Prefixes
LOCK 3:642
REP/REPE/REPZ/REPNE/REPNZ 3:707
preservation of floating-point state in the OS 2:527
preserved 2:333
preserved registers 2:523, 2:528
preserving ALAT coherency 2:528
privilege levels 1:24, 2:17, 3:619, 3:620, 3:710
current privilege level (CPL) 2:17, 3:754
privilege level transfer 1:78
processor status register (PSR) 2:17, 2:20, 2:22
processor status register fields 2:23
processor status register instructions 2:22
privileged operation fault 2:162
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probe 2:54, 2:57, 2:70, 2:99, 3:199, 3:329, 3:330,
3:378
Procedure 1:43, 1:44, 1:45, 3:401, 3:418, 3:419, 3:420,
3:421, 3:422, 3:423, 3:424, 3:425, 3:426,
3:431, 3:432, 3:454, 3:464, 3:465, 3:466,
3:532, 3:548, 3:573, 3:587, 3:588, 3:589,
3:590, 3:591, 3:592, 3:593, 3:594, 3:595,
3:596, 3:597, 3:598, 3:600, 3:601, 3:604,
3:614, 3:630, 3:631, 3:681, 3:685, 3:690,
3:693, 3:695, 3:703, 3:710, 3:711, 3:712,
3:713, 3:714, 3:716, 3:743, 3:744, 3:745,
3:757, 3:882
procedure calls 1:43, 1:140, 2:523, 2:567, 2:596, 2:598
br.call 1:29, 1:39, 1:44, 1:69, 1:71, 3:336
br.ret 1:29, 1:39, 1:44, 1:69, 1:71, 2:54, 2:65, 2:98,
2:104, 3:334, 3:336
branch instructions 1:72, 1:141, 3:333, 3:334, 3:350
branches and hints 1:140
loops and software pipelining 1:141
register stack engine 1:43, 1:140, 2:98, 2:129, 3:619
rotating registers 1:25, 1:141, 1:142
stacked register 1:44, 2:596, 2:598
Procedure stack
popping values from 3:681
pushing values on 3:690
Processor 2:271
processor abstraction layer 1:5, 1:19, 2:5, 2:591, 3:5
processor abstraction layer (PAL) 2:271, 2:274, 2:333
processor caches 2:84, 2:486
processor identifiers (CPUID) 1:21
processor identification registers 1:31
processor interrupt block 2:123, 2:124, 2:125, 2:581
processor min-state save area 2:294
processor ordered 2:257
Processor Reset (RESET) 2:91
processor state 2:340
system state 2:17, 2:19, 2:20
processor state parameter 2:291
processor status register (PSR) 2:17, 2:20, 2:22, 2:152,
2:516
programmed 1/O 2:509, 2:510
Protected Bootblock 2:279
protected mode 1:12, 1:108, 1:110, 1:117, 1:118,
1:119, 2:242, 2:566, 3:389, 3:396, 3:398,
3:399, 3:402, 3:404, 3:406, 3:408, 3:411,
3:413, 3:415, 3:417, 3:418, 3:419, 3:421,
3:425, 3:431, 3:432, 3:433, 3:437, 3:440,
3:442, 3:445, 3:447, 3:459, 3:462, 3:466,
3:468, 3:469, 3:472, 3:473, 3:476, 3:478,
3:479, 3:481, 3:484, 3:487, 3:489, 3:490,
3:493, 3:496, 3:497, 3:499, 3:500, 3:502,
3:503, 3:505, 3:508, 3:509, 3:511, 3:514,
3:517, 3:518, 3:520, 3:523, 3:526, 3:528,
3:529, 3:531, 3:533, 3:536, 3:538, 3:540,
3:542, 3:544, 3:546, 3:549, 3:551, 3:554,
3:557, 3:558, 3:561, 3:564, 3:565, 3:568,
3:570, 3:572, 3:573, 3:575, 3:579, 3:580,
3:581, 3:582, 3:585, 3:586, 3:587, 3:588,
3:593, 3:594, 3:595, 3:598, 3:600, 3:601,
3:607, 3:611, 3:613, 3:614, 3:615, 3:617,
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3:622,
3:634,
3:647,
3:660,
3:672,
3:681,
3:691,
3:706,
3:723,
3:737,
3:750,
3:761,
3:774,
3:790,
3:804,
3:820,
3:941

protection key registers (PKR) 2:20, 2:56

protection keys 1:18, 2:20, 2:56, 2:57, 2:533, 2:535,
2:536, 2:537, 2:543

psad 3:201

pseudo-code functions 3:261

pshl 3:202

pshladd 3:203

pshr 3:204

pshradd 3:206

PSLLD instruction 3:807

PSLLQ instruction 3:807

PSLLW instruction 3:807

PSRAD instruction 3:810

PSRAW instruction 3:810

PSR (processor status register) 2:17, 2:20, 2:22,
2:152, 2:516

PSRLD instruction 3:813

PSRLQ instruction 3:813

PSRLW instruction 3:813

psub 3:207

PSUBB instruction 3:816

PSUBD instruction 3:816

PSUBSB instruction 3:819

PSUBSW instruction 3:819

PSUBUSB instruction 3:822

PSUBUSW instruction 3:822

PSUBW instruction 3:816

PTA (Page Table Address) 2:59

PTA (Page Table Address) control register 2:28

ptc.e 2:47, 2:58, 2:64, 2:534, 2:540, 2:541, 2:542,
3:210, 3:329, 3:332, 3:362, 3:369, 3:373,
3:378

ptc.g 2:47, 2:54, 2:55, 2:57, 2:64, 2:71, 2:77, 2:78,
2:541, 2:542, 3:329, 3:331, 3:362, 3:366,
3:369, 3:373, 3:378

ptc.g, ptc.ga 3:211

ptc.ga 1:62, 2:47, 2:54, 2:55, 2:58, 2:64, 2:71, 2:77,
2:78, 2:534, 2:541, 2:542, 3:329, 3:331,
3:362, 3:366, 3:369, 3:373, 3:378

ptc.l 3:213

ptr 2:46, 2:54, 2:58, 2:64, 2:537, 2:539, 2:595, 3:214,
3:329, 3:331, 3:362, 3:366, 3:369, 3:373,

3:624,
3:635,
3:650,
3:663,
3:675,
3:682,
3:694,
3:710,
3:725,
3:739,
3:752,
3:764,
3:776,
3:792,
3:806,
3:823,

3:625,
3:637,
3:652,
3:664,
3:676,
3:683,
3:696,
3:711,
3:727,
3:743,
3:755,
3:765,
3:779,
3:794,
3:808,
3:826,

3:626,
3:640,
3:655,
3:665,
3:677,
3:686,
3:700,
3:714,
3:730,
3:744,
3:756,
3:768,
3:782,
3:798,
3:811,
3:829,

3:629,
3:642,
3:656,
3:668,
3:679,
3:687,
3:701,
3:716,
3:733,
3:747,
3:757,
3:770,
3:784,
3:800,
3:814,
3:832,

3:630,
3:645,
3:659,
3:669,
3:680,
3:689,
3:704,
3:721,
3:735,
3:748,
3:759,
3:772,
3:787,
3:802,
3:818,
3:940,
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3:378, 3:593
PUNPCKHBW instruction 3:825
PUNPCKHDQ instruction 3:825
PUNPCKHWD instruction 3:825
PUNPCKLBW instruction 3:828
PUNPCKLDQ instruction 3:828
PUNPCKLWD instruction 3:828
PUSH instruction 3:690
PUSHA instruction 3:693
PUSHAD instruction 3:693
PUSHF instruction 3:695
PUSHFD instruction 3:695
PXOR instruction 3:831

Q

QNaN
description of 3:848
operating on 3:849
qualified exception deferral 2:103

R

RAR (read-after-read) dependency 3:355
RAW (read-after-write) dependency 3:355
RC (rounding control) field, FPU control word 3:504,
3:509, 3:543
RCL instruction 3:697
RCR instruction 3:697
RDMSR instruction 3:701, 3:705
RDPMC instruction 3:703
RDTSC instruction 3:705
reader of a resource 3:355
real mode 1:12, 1:108, 1:110, 1:117, 1:119, 2:566,
3:513, 3:530, 3:532, 3:548, 3:601, 3:687
real number 3:469, 3:471, 3:475, 3:478, 3:488, 3:492,
3:495, 3:504, 3:516, 3:519, 3:521, 3:524,
3:527, 3:535, 3:537, 3:539, 3:541, 3:553,
3:556, 3:567, 3:569, 3:571, 3:844, 3:845,
3:846, 3:847, 3:848, 3:851
Real numbers
encoding 3:846, 3:847, 3:851
indefinite 3:851
notation 3:845
system 3:844
recovery model 2:100, 2:101
region identifier (RID) 2:44, 2:55, 2:533
region register (RR) 2:55, 2:533
register dependency 1:37, 1:39
read-after-write (RAW) 1:37
write-after-read (WAR) 1:37
write-after-write (WAW) 1:37
register file transfers 1:76
register preservation 2:523
preservation at different points in the OS 2:526
preservation of stacked registers in the OS 2:526
preserving floating-point registers 2:525
preserving general registers 2:524

Index-19



Index

register rotation 1:17, 1:25, 1:178, 1:179
initializing rotating predicates 1:52, 1:179
register stack 1:16, 1:25, 1:26, 1:43, 1:44, 1:45, 1:46,
2:99, 2:129, 2:131, 2:132, 2:133, 2:595,
3:470, 3:475, 3:482, 3:485, 3:491, 3:494,
3:498, 3:500, 3:503, 3:504, 3:507, 3:509,
3:515, 3:519, 3:527, 3:530, 3:532, 3:539,
3:543, 3:552, 3:555, 3:560, 3:565, 3:567,
3:569, 3:571, 3:619, 3:770
clean partition 2:132, 2:139
current frame 1:25, 1:44, 2:98, 2:99, 2:129, 2:132,
2:595, 3:464
dirty partition 2:132, 2:139
invalid partition 2:132, 2:139
register stack instructions 1:45
register stack operation 1:43
register stack configuration 1:26, 1:27, 1:46, 2:131,
2:134, 2:135, 2:595
RSC 1:27, 1:46, 2:131, 2:134, 2:135, 2:139, 2:595,
3:375, 3:376
register stack engine 1:27, 1:43, 2:98, 2:129
release semantics 1:68, 2:257, 2:258, 2:483
release stores 2:484, 2:486, 2:497, 2:498
Remainder, FPU operation 3:521, 3:524
REP/REPE/REPZ/REPNE/REPNZ prefixes 3:441,
3:584, 3:678, 3:707
reserved 1:21, 1:22, 2:109, 2:333, 3:273, 3:453, 3:454,
3:587, 3:621, 3:623, 3:649, 3:658, 3:659,
3:687, 3:688, 3:689, 3:701, 3:716, 3:717,
3:753, 3:759, 3:853, 3:857, 3:858, 3:859,
3:861, 3:862, 3:864, 3:866, 3:878, 3:879,
3:880, 3:881, 3:882, 3:884, 3:885, 3:886,
3:896, 3:897, 3:899, 3:900, 3:902, 3:903,
3:907, 3:910, 3:918, 3:921, 3:925, 3:927,
3:929, 3:930, 3:945, 3:947, 3:949, 3:950
Reserved bits 3:853
RESET (Processor Reset) 2:91
RET instruction 3:710
rfi 1:12, 1:37, 1:39, 1:41, 1:50, 1:71, 1:107, 2:22, 2:23,
2:65, 2:91, 2:93, 2:96, 2:98, 2:99, 2:100,
2:104, 2:131, 2:133, 2:134, 2:139, 2:140,
2:141, 2:142, 2:196, 2:198, 2:199, 2:514,
2:518, 2:528, 2:529, 2:595, 3:216, 3:333,
3:339, 3:359, 3:360, 3:361, 3:364, 3:365,
3:366, 3:367, 3:368, 3:370, 3:371, 3:373,
3:378, 3:379
RNAT (RSE NaT Collection Register) application register
1:26
ROL instruction 3:697
ROR instruction 3:697
Rotate operation 3:697
Rounding
round to integer, FPU operation 3:529
RPL field 3:401
RSC (Register Stack Configuration Register) application
register 1:26
RSE 1:27, 1:28, 1:43, 1:140, 2:98, 2:129, 2:130, 2:131,
2:133, 2:134, 2:135, 2:137, 2:138, 2:139,
2:140, 2:141, 2:142, 2:143, 2:595, 3:366,
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3:371, 3:372, 3:378
RSE byte order 2:135
RSE control instructions 2:137, 2:138
RSE initialization 2:144
RSE internal state 2:131
RSE interruptions 2:139
RSE mode 1:27, 2:134
RSE operation instructions and state modification
2:134
RSE privilege level 1:27, 2:135
rsm 2:22, 2:23, 2:38, 2:116, 2:117, 2:152, 2:251,
2:518, 2:574, 2:587, 3:219, 3:328, 3:331,
3:378, 3:379, 3:716
RSM instruction 3:716
rum 1:77, 2:17, 2:22, 2:152, 2:587, 3:221, 3:328,
3:331, 3:358, 3:366, 3:379

S

SAL 1.5, 1:19, 2:5, 2:566, 2:591, 2:592, 2:593, 2:596,
2:597, 2:598, 2:599, 2:600, 2:601, 2:602, 3:5,
3:718, 3:719, 3:720, 3:721, 3:731
SAL procedure calls 2:598
SAL instruction 3:718, 3:750
SALE_ENTRY 2:284
SAR instruction 3:718, 3:750
SAS (single address space) 1:18, 2:43, 2:533, 2:535,
2:537
SBB instruction 3:642, 3:722
SC (sequential consistency)
SC system 2:500
Scale, FPU operation 3:535
SCAS instruction 3:707, 3:724
SCASB instruction 3:724
SCASD instruction 3:724
SCASW instruction 3:724
scratch 2:333
scratch registers 2:93, 2:523, 2:528
Segment descriptor
segment limit 3:648
Segment limit 3:648
Segment registers
moving values to and from 3:654
Segment selector
RPL field 3:401
self test state parameter 2:286
self-modifying code 2:507
Semaphore 3:320
semaphore instructions 1:38, 1:55, 2:484, 3:320
semaphore operations 1:55, 2:256, 2:486, 2:496
Semaphores
behavior of uncacheable and misaligned semaphores
2:485
sequential consistency (SC)
SC system 2:500
sequential semantics 2:79
inter-processor interrupt messages 2:79, 2:124,
2:125, 2:126
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sequential pages 2:79
serialization 2:17, 2:18, 2:19, 2:518, 3:355, 3:356,
3:357, 3:452, 3:601, 3:619
SETcc instructions 3:726
setf 3:222
SF (sign) flag, EFLAGS register 3:395, 3:397
SGDT instruction 3:729
SHAF instruction 3:717
shl 3:224
SHL instruction 3:718, 3:750
shladd 3:225
shladdp4 3:226
SHLD instruction 3:732
shr 3:227
SHR instruction 3:718, 3:750
SHRD instruction 3:734
shrp 3:228
SIDT instruction 3:729
Sign, floating-point number 3:845
signed infinities 3:843, 3:846, 3:848
Signed infinity 3:848
Signed zero 3:846
signed zeros 3:843, 3:844, 3:846
Significand
extracting from floating-point number 3:567
of floating-point number 3:845
SIMD (single instruction multiple data) 3:834
Sine, FPU operation 3:537, 3:539
single address space (SAS) 1:18, 2:43, 2:533, 2:535,
:537

single instruction multiple data (SIMD) 3:834
single stepping 2:100
Single-precision, IEEE floating-point format 3:850
Single-real floating-point format 3:850
SLDT instruction 3:737
SMSW instruction 3:739
SNaN
description of 3:848
operating on 3:849
typical uses of 3:849

sof field
CFM.sof 2:96, 2:132, 2:133, 2:134, 2:138, 2:139,
2:141
software pipelining 1:13, 1:17, 1:141, 1:177, 1:189,
1:191
sol field

CFM.sol 2:134, 2:139, 2:141
special instruction notations 3:279
special use registers 2:523
Speculation 1:13, 1:14, 1:138, 1:143, 1:147, 1:153,
2:75, 2:76, 2:551, 2:553
advanced load 1:53, 1:59, 1:60, 1:61, 1:63, 1:148,
1:149, 1:150, 1:157, 2:76, 2:82, 2:83
advanced load check 1:60, 1:61, 1:150, 3:322
advanced load example 1:149
always-defer model 2:100
check load 1:53, 1:59, 1:60, 1:61, 1:62, 1:63, 1:64,
1:149, 1:150, 2:82, 2:83

Intel® Itanium® Architecture Software Developer's Manual

Index

combining data and control speculation 1:152
control speculation 1:14, 1:56, 1:57, 1:58, 1:59,
1:63, 1:138, 1:147, 1:150, 1:151, 2:553
control speculation example 1:151
control speculative load 1:14, 1:150, 1:151, 1:152
data speculation 1:14, 1:15, 1:59, 1:60, 1:63, 1:64,
1:139, 1:147, 1:148, 2:553
recovery code 1:14, 1:15, 1:60, 1:149, 1:150,
1:151, 1:152, 2:552, 2:553
recovery code example 1:149
speculation attributes 2:75
speculation check 1:57, 1:60, 1:152, 3:300, 3:322
speculation considerations 1:153
speculation model in the itanium architecture 1:147,
1:148
speculation recovery code 2:553
speculation related exception handlers 2:553
speculative 1:14, 1:15, 1:56, 1:57, 1:59, 2:75, 2:76,
2:83, 2:553
speculative load exceptions 2:101
unaligned handler 2:553
speculative advanced load 1:152
spill/fill 1:58, 1:87, 1:93, 2:98, 2:129, 2:130, 2:133
spin lock 2:501, 2:502
square root operations 1:202
Square root, FPU operation 3:541
srlz 3:229
SSregister 3:625, 3:655, 3:682
SSD (IA-32 Stack Segment Descriptor) application
register 1:26
ssm 2:22, 2:23, 2:38, 2:116, 2:152, 2:153, 2:518,
2:587, 3:230, 3:328, 3:331, 3:361, 3:378,
3:379, 3:716
st 1:15, 1:53, 1:64, 2:78, 2:488, 2:489, 2:490, 2:491,
2:492, 2:493, 2:495, 2:498, 2:499, 3:378,
3:467, 3:469, 3:470, 3:473, 3:475, 3:478,
3:480, 3:482, 3:483, 3:485, 3:486, 3:488,
3:491, 3:494, 3:497, 3:498, 3:500, 3:504,
3:505, 3:507, 3:509, 3:515, 3:519, 3:520,
3:521, 3:522, 3:524, 3:525, 3:527, 3:529,
3:530, 3:532, 3:535, 3:536, 3:537, 3:539,
3:541, 3:543, 3:552, 3:555, 3:558, 3:560,
3:561, 3:563, 3:565, 3:567, 3:569, 3:570,
3:571
strel 1:53, 1:64, 1:68, 2:78, 2:126, 2:484, 2:489,
2:491, 2:492, 2:493, 2:496, 2:497, 2:498,
2:499
st.spill 1:53, 1:64, 2:78
stl 1:62, 3:305, 3:306, 3:313, 3:378, 3:878, 3:881,
3:882
st16 3:313
st8.spill 1:28, 1:39, 1:40, 1:55, 1:58, 1:59, 1:151,
2:523, 2:524, 3:305, 3:306, 3:313, 3:358,
3:360, 3:368, 3:378
stack frame 1:16, 1:25, 1:27, 1:39, 1:43, 1:44, 1:45,
1:46, 2:129, 2:131, 3:464, 3:465, 3:466
Stack pointer (ESP register) 3:690
stacked calling convention 2:333
stacked registers 1:23, 1:44, 1:140, 2:129, 2:130,
2:132, 2:523, 2:526, 2:595
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deallocated 2:141
stacked general registers 1:23, 2:129, 2:524
state mappings 3:381
static calling convention 2:333
static general registers 1:23, 2:129, 2:524
Status flags, EFLAGS register 3:436, 3:439, 3:480,
3:485, 3:610, 3:726, 3:751
STC instruction 3:741
STD instruction 3:742
stf 1:53, 1:64, 2:78, 3:233, 3:307, 3:308, 3:316, 3:317,
3:378
stf.spill 1:53, 1:55, 1:58, 1:59, 1:64, 1:87, 1:151, 2:78,
2:523, 2:525, 3:307, 3:308, 3:316, 3:317,
3:378
STl instruction 3:743
store buffers 2:486, 2:493, 2:495
store instruction 2:484, 3:895, 3:898, 3:901, 3:904,
3:906, 3:947, 3:948, 3:950
STOS instruction 3:707, 3:746
STOSB instruction 3:746
STOSD instruction 3:746
STOSW instruction 3:746
STR instruction 3:748
streaming SIMD extension technology 1:108, 3:381
String operations 3:441, 3:584, 3:644, 3:662, 3:678,
3:746
sub 3:235
SUB instruction 3:394, 3:458, 3:642, 3:749
subpaging 2:549
sum 1:77, 2:17, 2:22, 2:152, 2:153, 2:587, 3:236,
3:328, 3:331, 3:358, 3:366, 3:378, 3:379,
3:457, 3:470, 3:761, 3:932, 3:941, 3:942
supervisor accesses 2:255
sxt 3:237
sync 3:238
system abstraction layer 1:5, 1:19, 2:5, 2:591, 3:5
system abstraction layer (SAL) 2:271, 2:333
system architecture features 1:18, 2:15
support for multiple address space operating systems
1:18
support for single address space operating systems
1:18
system performance and scalability 1:18
system security and supportability 1:19
system calls 2:528, 2:529, 2:530
system descriptors 2:233
system flag interception 2:231
system memory model 2:252
system register model 2:21, 2:231
IA-32 state 1:112, 2:231, 2:232
shared 1:112, 2:232, 2:233, 3:642
undefined 1:112, 2:232, 3:405, 3:407, 3:409, 3:410,
3:412, 3:414, 3:416, 3:454, 3:457, 3:458,
3:462, 3:467, 3:469, 3:471, 3:473, 3:476,
3:478, 3:479, 3:480, 3:487, 3:489, 3:490,
3:492, 3:495, 3:497, 3:498, 3:500, 3:502,
3:505, 3:507, 3:509, 3:511, 3:516, 3:518,
3:519, 3:529, 3:536, 3:538, 3:540, 3:541,
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3:544, 3:546, 3:548, 3:550, 3:553, 3:556,
3:558, 3:565, 3:567, 3:569, 3:571, 3:572,
3:575, 3:579, 3:642, 3:658, 3:660, 3:667,
3:674, 3:698, 3:699, 3:701, 3:707, 3:720,
3:732, 3:733, 3:734, 3:735, 3:737, 3:739,
3:751, 3:753, 3:756, 3:759, 3:767
unmodified 1:112, 1:113, 2:232, 3:604
system register resources 2:17, 2:19, 2:20

T

tak 2:57, 2:58, 2:70, 2:99, 2:536, 3:239, 3:329, 3:332,
3:373, 3:378
Tangent, FPU operation 3:527
Task gate 3:617
Task register
loading 3:652
storing 3:748
Task switch
CALL instruction 3:418
return from nested task, IRET instruction 3:601
tbit 1:40, 1:50, 1:52, 1:57, 1:139, 3:240, 3:297, 3:373,
3:378
TCs (translation caches) 2:539
template 1:35, 1:36, 1:137, 3:273, 3:274
temporal hint 1:209, 3:949
TEST instruction 3:751
tf 3:304
thash 2:58, 2:61, 2:62, 2:64, 2:546, 2:547, 3:244,
3:329, 3:332, 3:361, 3:366, 3:373, 3:378
Time-stamp counter, reading 3:705
Tiny number 3:847
TLB 1:61, 2:21, 2:33, 2:36, 2:37, 2:43, 2:44, 2:45,
2:46, 2:47, 2:48, 2:49, 2:50, 2:51, 2:52, 2:53,
2:54, 2:55, 2:57, 2:58, 2:59, 2:60, 2:61, 2:62,
2:63, 2:64, 2:65, 2:66, 2:67, 2:108, 2:109,
2:253, 2:254, 2:595, 3:399, 3:401, 3:403,
3:405, 3:407, 3:411, 3:412, 3:414, 3:416,
3:425, 3:437, 3:439, 3:442, 3:445, 3:446,
3:459, 3:462, 3:465, 3:471, 3:473, 3:476,
3:483, 3:493, 3:496, 3:499, 3:500, 3:505,
3:507, 3:511, 3:513, 3:517, 3:531, 3:533,
3:544, 3:546, 3:549, 3:550, 3:554, 3:557,
3:575, 3:579, 3:580, 3:581, 3:582, 3:585,
3:600, 3:607, 3:617, 3:623, 3:626, 3:630,
3:642, 3:645, 3:650, 3:656, 3:658, 3:663,
3:664, 3:665, 3:667, 3:669, 3:672, 3:674,
3:677, 3:680, 3:683, 3:686, 3:689, 3:691,
3:694, 3:696, 3:699, 3:709, 3:714, 3:720,
3:723, 3:725, 3:727, 3:733, 3:735, 3:747,
3:749, 3:751, 3:755, 3:761, 3:763, 3:765,
3:767, 3:772, 3:773, 3:776, 3:778, 3:781,
3:784, 3:787, 3:789, 3:791, 3:794, 3:797,
3:799, 3:801, 3:803, 3:805, 3:808, 3:811,
3:814, 3:817, 3:820, 3:823, 3:826, 3:829,
3:831, 3:855, 3:856, 3:857, 3:858, 3:860,
3:863, 3:866, 3:867, 3:869, 3:871, 3:872,
3:873, 3:875, 3:876, 3:877, 3:880, 3:884,
3:886, 3:888, 3:890, 3:892, 3:894, 3:896,
3:899, 3:902, 3:905, 3:907, 3:908, 3:909,
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3:910, 3:911, 3:913, 3:915, 3:916, 3:918, 3:469, 3:470, 3:471, 3:472, 3:476, 3:478,
3:919, 3:920, 3:921, 3:922, 3:923, 3:925, 3:480, 3:483, 3:486, 3:487, 3:488, 3:489,
3:927, 3:929, 3:930, 3:932, 3:934, 3:935, 3:491, 3:492, 3:493, 3:494, 3:495, 3:496,
3:936, 3:937, 3:938, 3:940, 3:942, 3:943, 3:498, 3:499, 3:505, 3:515, 3:516, 3:519,
3:947, 3:948 3:520, 3:521, 3:522, 3:523, 3:524, 3:525,
page not present vector 2:109, 2:164, 2:548 3:526, 3:527, 3:528, 3:529, 3:535, 3:536,
TLB miss 2:49, 2:58, 2:59, 2:62, 2:64, 2:65, 2:66, 3:537, 3:538, 3:539, 3:540, 3:541, 3:543,
2:67, 2:545 3:544, 3:552, 3:553, 3:555, 3:556, 3:557,
TLB miss handlers 2:66, 2:545, 2:548 3:558, 3:561, 3:565, 3:567, 3:569, 3:570,
TLB purges 2:46, 2:48 3:571, 3:572, 3:847, 3:848, 3:855, 3:856,
translation insertion format 2:53 3:876, 3:877, 3:885, 3:886, 3:908, 3:909,
VHPT translation vector 2:108, 2:164, 2:546 3:922, 3:923
TLB entry, invalidating (flushing) 3:600 Underflow, numeric 3:847
tnat 1:40, 1:50, 1:52, 1:57, 1:59, 3:245, 3:297, 3:298, unimplemented addresses 2:70
3:373, 3:378 unimplemented physical address bits 2:69
tpa 2:58, 2:70, 2:99, 3:247, 3:329, 3:332, 3:373, unimplemented virtual address bits 2:70
3:378 unnormalized numbers 1:83
TPR (Task Priority Register) control register 2:29 unordered semantics 2:483
TRs (translation registers) 2:537 Unordered values 3:482, 3:485, 3:558, 3:560
translation caches (TCs) 2:539 unpack 3:249
TC insertion 2:539 unsupported data reference handler 2:555, 2:556
TC purge 2:537, 2:540 user mask (UM) 1:21, 1:30
translation lookaside buffer (TLB) 2:21, 2:43, 2:45,
3:600 V
translation registers (TRs) 2:537
TR insertion 2:538 vector numbers 2:92, 2:114, 2:573, 3:389, 3:595
TR purge 2:537, 2:538, 2:539 VERR instruction 3:754
trap 1:101, 1:102, 2:96, 2:97, 2:106, 2:108, 2:513, Version information, processor 3:448
3:432, 3:587, 3:588, 3:589, 3:590, 3:591, VERW instruction 3:754
3:595, 3:596, 3:597, 3:603, 3:607, 3:619, VHPT (virtual hash page table) 2:33, 2:39, 2:43, 2:58
3620, 3:623, 3:649, 3:655, 3:656, 3:681, VHPT 2:33, 2:39, 2:43, 2:44, 2:45, 2:47, 2:48, 2:54,
3:683, 3:689, 3:696, 3:743, 3:744 2:55, 2:58, 2:59, 2:60, 2:61, 2:62, 2:63, 2:64,
TS (task switched) flag, CRO register 3:433 2:65, 2:66, 2:67, 2:108, 2:542, 2:543, 2:544,
TSC (IA-32 time stamp counter ) 1:29, 1:114, 2:32, 2:595, 3:399, 3:401, 3:403, 3:405, 3:407,
2:579 3:411, 3:412, 3:414, 3:416, 3:425, 3:437,
TSD flag, CR4 register 3:705 3:439, 3:442, 3:445, 3:446, 3:459, 3:462,
TSS 3:465, 3:471, 3:473, 3:476, 3:483, 3:493,
re|at|onsh|p to task register 3:748 3496, 3499, 3500, 3505, 3507, 3511,
ttag 2:58, 2:61, 2:62, 2:64, 2:546, 3:248, 3:329, 3:513, 3:517, 3:531, 3:533, 3:544, 3:546,
3:332, 3:366, 3:373, 3:378 3:549, 3:550, 3:554, 3:557, 3:575, 3:579,

3:581, 3:582, 3:585, 3:607, 3:617, 3:623,
3:626, 3:630, 3:642, 3:645, 3:650, 3:656,
U 3:663, 3:664, 3:665, 3:667, 3:669, 3:672,
UC memory attribute 2:262 3:674, 3:677, 3:680, 3:683, 3:686, 3:689,
UD2 instruction 3:753 3:691, 3:694, 3:696, 3:699, 3:709, 3:714,
3:720, 3:723, 3:725, 3:727, 3:733, 3:735,

UM (user mask) 1:21, 1:30 3:747, 3:749, 3:751, 3:755, 3:761, 3:763,
unaligned reference handler 2:553, 2:554, 2:555 3:765, 3:767, 3:772, 3:773, 3:776, 3:778,
UNAT (User NaT Collection Register) application 3:781, 3:784, 3:787, 3:789, 3:791, 3:794,
register 1:26 3:797, 3:799, 3:801, 3:803, 3:805, 3:808,
Uncacheable 2:71, 2:72, 2:73, 3:949 3:811, 3:814, 3:817, 3:820, 3:823, 3:826,
uncacheable pages 2:74 3:829, 3:831, 3:855, 3:856, 3:857, 3:858,
unchanged 2:23, 2:171, 2:334, 3:488, 3:503, 3:527, 3:860, 3:863, 3:866, 3:867, 3:869, 3:871,
3:535, 3:537, 3:539, 3:688, 3:710, 3:887, 3:872, 3:873, 3:875, 3:876, 3:877, 3:880,

3:889, 3:891, 3:893, 3:897, 3:898, 3:900, 3:884, 3:886, 3:888, 3:890, 3:892, 3:894,

3:901 3:896, 3:899, 3:902, 3:905, 3:907, 3:908,
Undefined 3:909, 3:910, 3:911, 3:913, 3:915, 3:916,
format opcodes 3:558 3:918, 3:919, 3:920, 3:921, 3:922, 3:923,

3:925, 3:927, 3:929, 3:930, 3:932, 3:934,

undefined behavior 1:41 3:935, 3:936, 3:937, 3:938, 3:940, 3:942,

underflow 1:16, 1:101, 1:103, 2:560, 2:564, 3:467,
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3:943, 3:947, 3:948
TLB and VHPT search faults 2:66
TLB/VHPT search 2:65, 2:66
translation searching 2:65
VHPT configuration 2:59
VHPT searching 2:59
VHPT short format 2:60
VHPT short-format index 2:62
VHPT updates 2:544
VHPT walker 2:45, 2:48, 2:55, 2:58, 2:59, 2:60,
2:61, 2:62, 2:63, 2:64, 2:65, 2:66, 2:542,
2:543, 2:544, 2:545
virtual addressing 2:43, 2:44, 2:71, 2:83, 2:595, 2:598,
2:599
virtual aliasing 2:68
virtual hash page table (VHPT) 2:33, 2:39, 2:43, 2:58
Virtual Page Number (VPN) 2:44
virtual region number (VRN) 2:44, 2:70, 2:533
virtualized interrupt flag 2:235
visible 1:68, 2:78, 2:79, 2:484, 2:490, 3:622, 3:648,
3:950
VM (virtual 8086 mode) flag, EFLAGS register 3:601
VM86 1:12, 1:108, 1:110, 1:117, 1:118, 2:237, 2:242,
2:566, 3:593, 3:594
VME extensions 2:235, 2:242
vmsw 3:252
VPN (Virtual Page Number) 2:44
VRN (virtual region number) 2:44, 2:70, 2:533

Index-24

W

WAIT/FWAIT instructions 3:756

WAR (write-after-read) dependency 3:355
WAW (write-after-write) dependency 3:355
WBINVD instruction 3:757

Write BSPSTORE 2:143

Write-back and invalidate caches 3:757
writer of a resource 3:355

WRMSR instruction 3:759

X

XADD instruction 3:642, 3:761

xchg 1:53, 1:55, 1:64, 1:68, 1:69, 2:78, 2:79, 2:82,
2:193, 2:484, 2:496, 3:253, 3:379, 3:409,
3:642, 3:763, 3:764

XCHG instruction 3:642, 3:763

XLAT/XLATB instruction 3:765

xma 3:255

xmpy 3:257

xor 3:258

XOR instruction 3:642, 3:767

Z

Zero, floating-point format 3:846

ZF (zero) flag, EFLAGS register 3:444, 3:446, 3:622,
3:646, 3:648, 3:707, 3:754

zxt 3:259
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