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About this Manual 1

The Intel® Itanium™ Processor Reference Manual for Software Development describes 
model-specific architectural features incorporated into the Intel® Itanium™ processor, the first 
processor based on the Itanium architecture. This document (Document number 245320) has been 
re-titled. In previous revisions, it was titled the Intel® Itanium™ Architecture Software Developer’s 
Manual, Volume 4: Itanium™ Processor Programmer’s Guide.

1.1 Overview of the Intel® Itanium™ Processor 
Reference Manual for Software Development

Chapter 1, “About this Manual” provides an overview of four volumes in the Intel® Itanium 
Architecture Software Developer’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support 
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Support” details size of physical and virtual address, 
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write 
coalesce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of 
Itanium instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features 
which are specific to the Itanium processor. This chapter outlines the targeted performance monitor 
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events” summarizes the Itanium processor events and describes 
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for IA-32 Instruction Execution” describes some of the key 
differences between an Itanium processor executing IA-32 instructions and the Intel® Pentium® III 
processor.

1.2 Terminology

The following definitions are for terms related to the Itanium architecture and will be used 
throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level resources. These 
resources include instructions and registers.
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Itanium Architecture – The new ISA with 64-bit instruction capabilities, new performance- 
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture 
Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports the execution of 
both IA-32 and Itanium-based code.

IA-32 System Environment – The operating system privileged environment and resources as 
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging, 
control registers, debugging, performance monitoring, machine checks, and the set of privileged 
instructions.

Itanium-based Firmware – The Processor Abstraction Layer (PAL) and System Abstraction 
Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor features that 
are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system features that are 
implementation dependent.

1.3 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at http://
developer.intel.com:

• Intel® Itanium™ Processor Reference Manual for Software Development – This document 
(Document number 245320) describes model-specific architectural features incorporated into 
the Intel® Itanium™ processor, the first processor based on the Itanium architecture. This 
document has been re-titled and replaces the Intel® Itanium™ Architecture Software 
Developer’s Manual, Volume 4: Itanium™ Processor Programmer’s Guide.

• Intel® Architecture Software Developer’s Manual – This set of manuals describes the Intel 
32-bit architecture. They are readily available from the Intel Literature Department by calling 
1-800-548-4725 and requesting Document Numbers 243190, 243191and 243192.

• Itanium™ Software Conventions and Runtime Architecture Guide – This document 
(Document number 245358) defines general information necessary to compile, link, and 
execute a program on an Itanium-based operating system.

• Itanium™ Processor Family System Abstraction Layer Specification – This document 
(Document number 245359) specifies requirements to develop platform firmware for 
Itanium-based systems.

• Extensible Firmware Interface Specification – This document defines a new model for the 
interface between operating systems and platform firmware.
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1.4 Revision History

Date of 
Revision

Revision 
Number Description

December 2001 2.0 Initial release of re-titled document. This document (Document number 
245320) replaces the former Intel® Itanium™ Architecture Software 
Developer’s Manual, Volume 4: Itanium™ Processor Programmer’s Guide.

Performance monitoring changes (Section 7.8).

Revised Chapter 7 Performance Monitoring Events (new Section 7.6.5, 
Frontside Bus; added bus monitors to Section 7.8, Event List; misc. changes 
and fixes).

Revised IBR and DBR addressing (Section 6.2.4).

IA-32 related changes (Section 8).

Miscellaneous performance monitoring events changes (Chapter 7).

July 2000 1.1 Reformatted the Performance Monitor Events chapter for readability and ease 
of use (no changes to any of the events except for renaming of some); events 
are listed in alphabetical order (Chapter 7).

January 2000 1.0 Initial release of document.
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Register Stack Engine Support 2

2.1 RSE Modes

The Itanium processor implements the enforced lazy RSE mode. Refer to Chapter 6, “Register 
Stack Engine” in Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual for 
a description of the RSE modes.

2.2 RSE and Clean Register Stack Partitions

On the Itanium processor, the internal RSE pointer RSE.BSPLoad is always equal to AR.BSPStore, 
meaning that the size of the clean register stack partition is always zero. This implies that, on the 
Itanium processor, a flushrs instruction will create a dirty region of size zero and an invalid 
region of size equal to 96 - CFM.sof. On other implementations that maintain a clean partition, 
flushrs behavior may differ by creating a clean register stack partition in addition to an invalid 
partition and a zero-sized dirty partition. As a result, the Itanium processor’s RSE may perform 
more mandatory fills upon a branch-return (br.ret) or rfi following a flushrs instruction than 
an implementation that maintains a clean partition.
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Virtual Memory Management Support 3

3.1 Page Size Supported

The following page sizes are supported on the Itanium processor: 4K, 8K, 16K, 64K, 256K, 1M, 
4M, 16M and 256M bytes.

3.2 Physical and Virtual Addresses

The Itanium architecture requires that a processor implement at least 54 virtual address bits and 
32 physical address bits. The Itanium processor implements 54 virtual address bits (51 address bits 
plus 3 region index bits) and 44 physical address bits.

3.3 Region Register ID 

The Itanium processor implements the minimum region register IDs allowed by the Itanium 
architecture. The region register ID contains 18 bits.

3.4 Protection Key Register

The Itanium architecture requires a minimum of 16 protection key registers, each at least as wide as 
the region register IDs. The Itanium processor implements 16 protection key registers, each 21 bits 
wide.
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Processor Specific Write Coalescing 
(WC) Behavior 4

4.1 Write Coalescing

For increased performance of uncacheable references to frame buffers, previous Intel IA-32 
processors defined the Write Coalescing (WC) memory type. WC coalesces streams of data writes 
into a single larger bus write transaction. Refer to the Intel® Architecture Software Developer’s 
Manual for additional information.

On the Itanium processor, WC loads are performed directly from memory and not from coalescing 
buffers. It has a separate 2-entry, 64-byte Write Coalesce Buffer (WCB) which is used exclusively 
for WC accesses. Each byte in the line has a valid bit. If all the valid bits are true, then the line is 
full and will be evicted (or flushed) by the processor. 

Note: WC behavior of the Itanium processor in the IA-32 System Environment is similar to the 
Pentium III processor. Refer to the Intel® Architecture Software Developer’s Manual for 
more information.

4.2 WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries 
are flushed). These conditions are followed when the processor is operating in the Itanium System 
Environment:

Table 4-1. Intel® Itanium™ Processor WCB Eviction Conditions

Eviction Condition Intel® Itanium™ Instructions

Memory Fence (mf) mf

Architectural Conditions for WCB Flush

Memory Release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g

Flush Cache (fc) hit on WCB yes

Flush Write Buffers (fwb) yes

Any UC load no a

a. Itanium architecture doesn’t require the WC buffers to be coherent w.r.t to UC load/store operations.

Any UC store no a

UC load or ifetch hits WCB no a

UC store hits WCB no a

WC load/ifetch hits WCB

WC store hits WCB
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4.3 WC Buffer Flushing Behavior

As mentioned previously, the Itanium processor WCB contains two entries. The WC entries are 
flushed in the same order as they are allocated. That is, the entries are flushed in written order. This 
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one WC 
entry at a time and does not write the second WC entry until the first one is full.

In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are 
always flushed in a program written order for a “well-behaved” stream, even in the presence of 
interrupts. For example, consider the following scenario: if software issues a “well-behaved” 
stream, but is interrupted in the middle; one of the WC entries could be partially filled. The WCB 
(including the partially filled entry) could be flushed by the OS kernel code or by other processes. 
When the interrupted context resumes, it sends out the remaining line and then moves on to fill the 
other entry. Note that the resumed context could be interrupted again in the middle of filling up the 
other entry, causing both entries to be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC buffer 
is flushed is random.

WCB eviction is performed for full lines by a single 64-byte bus transaction in a stream of 8-byte 
packages. For partially full lines, the WCB is evicted using up to eight 8-byte transactions with the 
proper byte enables. When flushing, WC transactions are given the highest priority of all external 
bus operations.
10 Processor Specific Write Coalescing (WC) Behavior



Model Specific Instruction 
Implementation 5

This section describes how Itanium instructions with processor implementation-specific features, 
behave on the Intel Itanium processor.

5.1 ld.bias

If the instruction hits L1D1 or L2 cache and the state of the line is exclusive (E) or modified (M), 
the line is returned and remains in cache; no external bus traffic is generated. If the line is shared (S) 
or invalid (I) or the instruction misses the L2, it is treated as a store miss by the L3/bus. The line is 
returned and stored in E state by the processor in the L2 and L3 cache.

Please refer to page 3:135 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the ld instruction.

5.2 lfetch Exclusive Hint

The exclusive hint in the lfetch instruction allows the cache line to be fetched in an exclusive (E) 
state. On the Itanium processor, an lfetch transaction that has a snoop hit will be cached in an 
shared (S) state; otherwise, it is cached in an exclusive state.

Please refer to page 3:146 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the lfetch instruction.

5.3 fwb

The Itanium processor implements the flush write-back buffer (fwb) instruction. This instruction 
carries a weak memory attribute and causes the coalescing buffer to be flushed. The L1D and L2 
store buffers are not flushed.

Please refer to page 3:126 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the fwb instruction.

1. The Itanium processor cache hierarchy consists of the following levels: on-chip L1I, L1D, L2 caches, and off-chip
L3 cache.
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5.4 thash

The Itanium architecture defines a thash instruction for generating the hash address for long 
format VHPT. thash is implementation specific. On the Itanium processor, since the hashing 
function is performed in the HPW, the HPW will generate the VHPT Entry which corresponds to 
the virtual address supplied. The hashing function is given in the following pseudo-code:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ; // treated as a speculative access.

GR[r1].nat = ’1;

}

else {

Mask = (2^PTA.size) - 1;

HPN = VA{50:0} >> RR[VA{63:61}].ps; // Hash Page Number unsigned right shift.

 // mov 2 RR checks for supported ps

if (PTA.vf=32) { // 32B PTE (Long format)

Hash_Index = HPN ^ (zero{63:18} || rid{17:0})

VHPT_Offset = Hash_Index << 5 ;

}

if (PTA.vf=8) { // 8B PTE

Hash_Index = HPN ;

VHPT_Offset = Hash_Index << 3;

} 

GR[r1] =  (PTA.base{63:61} << 61)

 || ([(PTA.base{60:15} & ~Mask{60:15}) ||

 (VHPT_Offset{60:15} & Mask{60:15})] << 15)

|| VHPT_Offset{14:0} ;

}

}

Please refer to page 3:234 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the thash instruction.

5.5 ttag

The Itanium architecture defines the ttag instruction for generating the tag for a long format 
VHPT entry. ttag is implementation specific. The HPW will generate the tag for the long format 
VHPT entry which corresponds to the virtual address supplied. The function is:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ;

GR[r1].nat = ’1;

}

else {

GR[r1] =(VA{50:0}>> RR[VA{63:61}].PS) ^ 

((zero{5:0} || RR[VA{63:61}].RID{17:0}) << 39);

}

}

Please refer to page 3:238 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the ttag instruction.
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5.6 ptc.e

On the Itanium processor, a single ptc.e purges all translation cache (TC) entries in both the 
instruction and data TLBs. The caches are not flushed.

Please refer to page 3:202 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the ptc instruction.

5.7 mf.a

In the Itanium architecture, the mf.a instruction is a memory acceptance fence for UC transactions 
only. On the Itanium processor, mf.a is implemented as an acceptance fence for both cacheable 
and UC data transactions (but not I fetches). The processor stalls until all data buffers in the L2 and 
bus are empty. This does not include buffers for instruction and L3 WB buffer in the bus request 
queue.

Please refer to page 3:149 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s 
Manual for a detailed description of the mf instruction.

5.8 Prefetch Behavior

The Itanium processor does not initiate prefetches with post-increment loads.

5.9 Temporal and Non-temporal Hints Support

 Itanium architecture provides memory locality hints for data accesses that can be used for 
allocation control in the processor cache hierarchy. For more details on this topic, please refer to 
Volume 1 of the Intel® Itanium™ Architecture Software Developer’s Manual, Section 4.4.6. 
Implementation of locality hints is left as an implementation-specific feature on processors based 
on the Itanium architecture.

On the Itanium processor, four types of memory locality hints are implemented: t1, nt1, nt2 and nta. 
The Itanium processor does not support a non-temporal buffer; instead, non-temporal accesses are 
allocated in L2 cache with biased replacement.
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Processor Performance Monitoring 6

This chapter defines the performance monitoring features on the Itanium processor. The Itanium 
processor provides four 32-bit performance counters, more than 50 monitorable events, and several 
advanced monitoring capabilities. This chapter outlines the targeted performance monitor usage 
models, defines the software interface and programming model, and lists the set of monitored 
events.

Itanium architecture incorporates architected mechanisms that allow software to actively and 
directly manage performance critical processor resources such as branch prediction structures, 
processor data and instruction caches, virtual memory translation structures, and more. To achieve 
the highest performance levels, dynamic processor behavior can be monitored and fed back into the 
code generation process to improve observed run-time behavior or to expose higher levels of 
instruction level parallelism. One can quantify and measure behavior of real-world Itanium-based 
applications, tools and operating systems. These measurements will be critical for compiler 
optimizations and the efficient use of several architectural features such as speculation, predication, 
and more.

The remainder of this chapter is split into the following two subsections:

• Section 6.1, "Performance Monitor Programming Models" discusses how performance 
monitors are used and presents various Itanium processor performance monitoring 
programming models.

• Section 6.2, "Performance Monitor State" defines the Itanium processor specific PMC/PMD 
performance monitoring registers.

6.1 Performance Monitor Programming Models

This section introduces the Itanium processor performance monitoring features from a 
programming model point-of-view and describes how the different event monitoring mechanisms 
can be used effectively. The Itanium processor performance monitor architecture focuses on the 
following two usage models:

• Workload Characterization: the first step in any performance analysis is to understand the 
performance characteristics of the workload under study. Section 6.1.1, "Workload 
Characterization" discusses the Itanium processor support for workload characterization.

• Profiling: profiling is used by application developers and profile-guided compilers. 
Application developers are interested in identifying performance bottlenecks and relating them 
back to their code. Their primary objective is to understand which program location caused 
performance degradation at the module, function, and basic block level. For optimization of 
data placement and the analysis of critical loops, instruction level granularity is desirable. 
Profile-guided compilers that use advanced Itanium architectural features such as predication 
and speculation benefit from run-time profile information to optimize instruction schedules. 
The Itanium processor supports instruction granular statistical profiling of branch mispredicts 
and cache misses. Details of the Itanium processor’s profiling support are described in 
Section 6.1.2, "Profiling".
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Whenever monitoring overhead is irrelevant, but accuracy is the primary objective, system and 
processor designers may resort to tracing processor activity at the system or the processor bus 
interface. However, trace based performance analysis and hardware tracing of the Itanium 
processor are beyond the scope of this documentation.

6.1.1 Workload Characterization

The first step in any performance analysis is to understand the performance characteristics of the 
workload under study. There are two fundamental measures of interest: event rates and program 
cycle break down. 

• Event Rate Monitoring: Event rates of interest include average retired instructions-per-clock 
(IPC), data and instruction cache miss rates, or branch mispredict rates measured across the 
entire application. Characterization of operating systems or large commercial workloads (e.g. 
OLTP analysis) requires a system-level view of performance relevant events such as TLB miss 
rates, VHPT walks/second, interrupts/second or bus utilization rates. Section 6.1.1.1, "Event 
Rate Monitoring" discusses event rate monitoring.

• Cycle Accounting: The cycle break-down of a workload attributes a reason to every cycle 
spent by a program. Apart from a program’s inherent execution latency, extra cycles are usually 
due to pipeline stalls and flushes. Section 6.1.1.4, "Cycle Accounting" discusses cycle 
accounting.

6.1.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters 
before and after the workload is run and then computing the desired rates. For instance, two basic 
Itanium processor events that count the number of retired Itanium instructions 
(IA64_INST_RETIRED) and the number of elapsed clock cycles (CPU_CYCLES) allow a 
workload’s instructions per cycle (IPC) to be computed as follows:

IPC = (IA64_INST_RETIREDt1 – IA64_INST_RETIREDt0) / (CPU_CYCLESt1 – 
CPU_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools [VTune™, gprof, 
Windows NT*]. As shown in Figure 6-1, time-based sampling can be used to plot the event rates 
over time, and can provide insights into the different phases the workload moves through. 

Figure 6-1. Time-based Sampling
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On the Itanium processor, many event types (e.g. TLB misses or branch mispredicts) are limited to 
a rate of one per clock cycle. These are referred to as “single occurrence” events. However, in the 
Itanium processor multiple events of the same type may occur in the same clock. We refer to such 
events as “multi-occurrence” events. An example of a multi-occurrence events on the Itanium 
processor is data cache misses (up to two per clock). Multi-occurrence events, such as the number 
of entries in the memory request queue, can be used to the derive average number and average 
latency of memory accesses. The next two sections describe the basic Itanium processor 
mechanisms for monitoring single and multi-occurrence events.

6.1.1.2 Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium processor performance counters. 
For all single occurrence events a counter is incremented by up to one per clock cycle. Duration 
counters that count the number of clock cycles during which a condition persists are considered 
“single occurrence” events. Examples of single occurrence events on the Itanium processor are 
TLB misses, branch mispredictions, or cycle-based metrics.

6.1.1.3 Multi-occurrence Events, Thresholding and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle are 
termed “multi-occurrence” events. Examples of such events on the Itanium processor are retired 
instructions or the number of live entries in the memory request queue. The Itanium processor’s 
four performance counters are asymmetrical. While all counters handle single-occurrence and 
multi-occurrence events with event rates up to three per cycle, only two counters can handle 
multi-occurrence events with event rates up to seven per cycle. For details, see Section 6.2.2, 
"Performance Counter Registers".

Thresholding capabilities are available in the Itanium processor’s multi-occurrence counters and 
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the 
monitor is incremented by one in every cycle in which the observed event count exceeds that 
programmed threshold. This allows questions such as “for how many cycles did the memory 
request queue contain more than two entries?” or “during how many cycles did the machine retire 
more than three instructions?” to be answered. This capability allows micro-architectural buffer 
sizing experiments to be supported by real measurements. By running a benchmark with different 
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at 
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of 
concurrently outstanding requests and the average number of cycles that requests were pending is 
of interest. To calculate the average number or latency of multiple outstanding requests in the 
memory queue, we need to know the total number of requests (ntotal) and, in each cycle, the number 
of live requests per cycle (nlive/cycle). By summing up the live requests (nlive/cycle) using a 
multi-occurrence counter Σnlive is directly measured by hardware. We can now calculate the 
average number of requests and the average latency as follows:

• Average outstanding requests/cycle = Σnlive/ ∆t 

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 6-1, in which the average outstanding 
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles. 
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The Itanium processor provides the following capabilities to support event rate monitoring:

• Clock cycle counter

• Retired instruction counter

• Event occurrence and duration counters

• Multi-occurrence counters with thresholding capability

6.1.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed 
events are contributing to a performance problem. A commonly used strategy is to plot multiple 
event rates and correlate them with the measured instructions per cycle (IPC) rate. If a low IPC 
occurs concurrently with a peak of cache miss activity, chances are that cache misses are causing a 
performance problem. To eliminate such guess work, the Itanium processor provides a set of cycle 
accounting monitors based on the Itanium architecture, that break-down the number of cycles that 
are lost due to various kinds of micro-architectural events. As shown in Figure 6-2, this lets us 
account for every cycle spent by a program and therefore provides insight into an application’s 
micro-architectural behavior. Note that cycle accounting is different from simple stall or flush 
duration counting. Cycle accounting is based on the machine’s actual stall and flush conditions and 
accounts for overlapped pipeline delays, while simple stall or flush duration counters do not. Cycle 
accounting determines a program’s cycle break-down by stall and flush reasons, while simple 
duration counters are useful in determining cumulative stall or flush latencies.

The Itanium processor cycle accounting monitors account for all major single and multi-cycle stall 
and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline order 
(i.e. delays that occur later in the pipe and that overlap with earlier stage delays are reported as 
being caused later in the pipeline). The eight stall and flush reasons are prioritized in the following 
order:

1. Back-end Flush Cycles: cycles lost due to branch mispredictions, ALAT flushes, 
serialization flushes, failed control speculation flushes, MMU-IEU bypasses and other 
exceptions.

Table 6-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

# Requests In 1 1 1 1 1 0 0 0

# Requests Out 0 0 0 1 1 1 1 1

nlive 1 2 3 3 3 2 1 0

Σnlive 1 3 6 9 12 14 15 15

ntotal 1 2 3 4 5 5 5 5

Figure 6-2. Cycle Accounting in the Intel® Itanium™ Architecture
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2. Data Access Cycles: cycles lost when instructions stall waiting for their source operands 
from the memory subsystem, and when memory flushes arise (L1D way mispredictions, 
DTC flushes).

3. Scoreboard Dependency Cycles: cycles lost when instructions stall waiting for their source 
operands from non-load instructions; this includes FP-related flushes.

4. RSE Active Cycles: stalls due to register stack spills to and fills from the backing store in 
memory.

5. Issue Limit Cycles: dispersal breaks due to stops, port over-subscription or asymmetries.

6. Instruction Access Cycles: instruction fetch stalls due to L1I or ITLB misses.

7. Taken Branch Cycles: bubbles incurred on correct taken branch predictions.

Four of the eight categories (1, 2, 3, 6) are directly measurable as Itanium processor events. The 
other four categories (4, 5, 7, 8) are not measured directly. Instead, four combined categories are 
available as the Itanium processor events: pipeline flush cycles (1+7), memory cycles (2+4), 
dependency cycles (3+5), and unstalled back-end cycles (6+8). For details refer to Section 7.4, 
“Cycle Accounting Events” on page 50.

6.1.2 Profiling

Profiling is used by application developers and profile-guided compilers, optimizing linkers and 
run-time systems. Application developers are interested in identifying performance bottlenecks and 
relating them back to their source code. Based on profile feedback developers can make changes to 
the high-level algorithms and data structures of the program. Compilers can use profile feedback to 
optimize instruction schedules by employing advanced Itanium architectural features such as 
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations. 
The following mechanisms are supported directly by the Itanium processor’s performance 
monitors:

• Program Counter Sampling

• Miss Event Address Sampling: Itanium processor Event Address Registers (EARs) provide 
sub-pipeline length event resolution for performance critical events (instruction and data 
caches, branch mispredicts, instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address range, to 
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

6.1.2.1 Program Counter Sampling

Application tuning tools like [VTune, gprof] use time-based or event-based sampling of the 
program counter and other event counters to identify performance critical functions and basic 
blocks. As shown in Figure 6-3, the sampled points can be histogrammed by instruction addresses. 
For application tuning, statistical sampling techniques have been very successful, because the 
programmer can rapidly identify code hot-spots in which the program spends a significant fraction 
of its time or where certain event counts are high.
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Program counter sampling points the performance analysts at code hot-spots, but does not indicate 
what caused the performance problem. Inspection and manual analysis of the hot-spot region along 
with a fair amount of guess work are required to identify the root cause of the performance 
problem. On the Itanium processor, the cycle accounting mechanism (described in Section 6.1.1.4, 
"Cycle Accounting") can be used to directly measure an application’s micro-architectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers) can be used for 
time-based program counter sampling. Event-based program counter sampling is supported by a 
dedicated performance monitor overflow interrupt mechanism described in detail in Volume 2, 
Section 7.2.2, "Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])".

To support program counter sampling, the Itanium processor provides the following mechanisms:

• Timer interrupt for time-based program counter sampling.

• Event count overflow interrupt for event-based program counter sampling.

• Hardware supported cycle accounting.

6.1.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative 
micro-architectural behavior, but they do not provide the application developer with pointers to 
specific program elements (code locations and data structures) that repeatedly cause 
micro-architectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] used 
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various 
benchmarks by making simple changes to the source code. This type of analysis requires 
identification of instruction and data addresses related to micro-architectural “miss events” such as 
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations 
these addresses can be mapped back to critical source code elements. Like Lebeck, most 
performance analysts in the past have had to capture hardware traces and resort to trace driven 
simulation.

Due to the super-scalar issue, deep pipelining, and out-of-order instruction completion of today’s 
microarchitectures, the sampled program counter value may not be related to the instruction 
address that caused a miss event. On a Pentium processor pipeline, the sampled program counter 
may be off by 2 dynamic instructions from the instruction that caused the miss event. On a Pentium 
Pro processor, this distance increases to approximately 32 dynamic instructions. On the Itanium 
processor it is approximately 48 dynamic instructions. If program counter sampling is used for miss 
event address identification on the Itanium processor, a miss event might be associated with an 

Figure 6-3. Event Histogram by Program Counter
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instruction almost five dynamic basic blocks away from where it actually occurred (assuming that 
10% of all instructions are branches). Therefore, it is essential for hardware to precisely identify an 
event’s address.

The Itanium processor provides a set of event address registers (EARs) that record the instruction 
and data addresses of data cache misses for loads, the instruction and data addresses of data TLB 
misses, the instruction addresses of instruction TLB and cache misses. A four deep branch trace 
buffer captures sequences of branch instructions. Table 6-2 summarizes the capabilities offered by 
the EARs and branch trace buffer. Exposing miss event addresses to software allows them to be 
monitored either by sampling or by code instrumentation. This eliminates the need for trace 
generation to identify and solve performance problems and enables performance analysis by a 
much larger audience on unmodified hardware. 

The Itanium processor EARs enable statistical sampling by configuring a performance counter to 
count, for instance, the number of data cache misses or retired instructions. The performance 
counter value is set up to interrupt the processor after a pre-determined number of events have been 
observed. The data cache event address register repeatedly captures the instruction and data 
addresses of actual data cache load misses. Whenever the counter overflows, miss event address 
collection is suspended until the event address register is read by software (this prevents software 
from capturing a miss event that might be caused by the monitoring software itself). When the 
counter overflows an interrupt is delivered to software, the observed event addresses are collected, 
and a new observation interval can be setup by rewriting the performance counter register. For 
time-based (rather than event-based) sampling methods, the event address registers indicate to 
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary 
event resolution by varying the number of events within an observation interval, and by increasing 
the number of observation intervals.

Table 6-2. Intel® Itanium™ Processor EARs and Branch Trace Buffer

Event Address Register Triggers on What is Recorded

Instruction Cache
Instruction fetches that miss 
the L1 instruction cache 
(demand fetches only) 

Instruction Address
Number of cycles fetch was in flight.

Instruction TLB (ITLB) Instruction fetch missed ITLB 
(demand fetches only) 

Instruction Address
Who serviced TLB miss: VHPT or software.

Data Cache Load instructions that miss L1 
data cache

Instruction Address
Data Address
Number of cycles load was in flight.

Data TLB

(DTLB)
Data references that miss
L1 DTLB

Instruction Address
Data Address
Who serviced TLB miss: L2 DTLB, VHPT or 
software.

Branch

Trace 

Buffer

Branch Outcomes

Branch Instruction Address

Branch Target Instruction Address

Mispredict status and reason
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6.1.3 Event Qualification

On the Itanium processor, performance monitoring can be confined to a subset of all events. As 
shown in Figure 6-4, events can be qualified for monitoring based on an instruction address range, 
a particular instruction opcode, a data address range, an event specific “unit-mask”, the privilege 
level and instruction set the event was caused by, and the status of the performance monitoring 
freeze bit (PMC[0].fr).

• Itanium Instruction Address Range Check: The Itanium processor allows event monitoring to 
be constrained to a programmable instruction address range. This enables monitoring of 
dynamically linked libraries (DLL), functions, or loops of interest in the context of a large 
Itanium-based application. The Itanium instruction address range check is applied at the 
instruction fetch stage of the pipeline and the resulting qualification is carried by the 
instruction throughout the pipeline. This enables conditional event counting at a level of 
granularity smaller than dynamic instruction length of the pipeline (approximately 48 
instructions). The Itanium processor’s instruction address range check operates only during 
Itanium-based code execution (i.e. when PSR.is is zero). For details, see Section 6.2.4, "Intel® 
Itanium™ Instruction Address Range Check Register (PMC[13])".

• Itanium Instruction Opcode Match: The Itanium processor provides two independent Itanium 
opcode match registers each of which match the currently issued instruction encodings with a 
programmable opcode match and mask function. The resulting match events can be selected as 
an event type for counting by the performance counters. This allows histogramming of 
instruction types, usage of destination and predicate registers as well as basic block profiling 
(through insertion of tagged nops). The opcode matcher operates only during Itanium-based 
code execution (i.e. when PSR.is is zero). Details are described in Section 6.2.5, "Intel® 
Itanium™ Opcode Match Registers (PMC[8,9])". 

• Itanium Data Address Range Check: The Itanium processor allows event collection for 
memory operations to be constrained to a programmable data address range. This enables 
selective monitoring of data cache miss behavior of specific data structures. For details, see 
Section 6.2.6, "Intel® Itanium™ Data Address Range Check (PMC[11])". 

• Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter out 
interesting events directly at the monitored unit. For details, refer to the event pages in 
Chapter 7, "Performance Monitor Events". 

• Privilege Level: Two bits in the processor status register are provided to enable selective 
process-based event monitoring. The Itanium processor supports conditional event counting 
based on the current privilege level; this allows performance monitoring software to 
break-down event counts into user and operating system contributions. For details on how to 
constrain monitoring by privilege level refer to Section 6.2.1, "Performance Monitor Control 
and Accessibility".

• Instruction Set: The Itanium processor supports conditional event counting based on the 
currently executing instruction set (Itanium architecture or IA-32) by providing two instruction 
set mask bits for each event monitor. This allows performance monitoring software to 
break-down event counts into Itanium-based and IA-32 contributions. For details, refer to 
Section 6.2.1, "Performance Monitor Control and Accessibility". 

• Performance Monitor Freeze: Event counter overflows or software can freeze event 
monitoring. When frozen, no event monitoring takes place until software clears the monitoring 
freeze bit (PMC[0].fr). This ensures that the performance monitoring routines themselves, e.g. 
counter overflow interrupt handlers or performance monitoring context switch routines, do not 
“pollute” the event counts of the system under observation.
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6.1.3.1 Combining Opcode Matching, Instruction, and Data Address Range 
Check

The Itanium processor allows various event qualification mechanisms to be combined by providing 
the instruction tagging mechanism shown in Figure 6-5. Instruction address range check and 
opcode matching are available only for Itanium-based code; they are disabled when IA-32 code is 
executing.

Figure 6-4. Intel® Itanium™ Processor Event Qualification
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During Itanium instruction execution (PSR.is is zero), the instruction address range check is 
applied first. The resulting address range check tag (IBRRangeTag) is passed to two opcode 
matchers that combine the instruction address range check with the opcode match. Each of the two 
combined tags (Tag(PMC[8]) and Tag(PMC[9])) can be counted as a retired instruction count event 
(for details refer to event description IA64_TAGGED_INST_RETIRED in Table 7-3 “Instruction 
Issue and Retirement Events” on page 48).

One of the combined Itanium address range and opcode match tags, Tag(PMC[8]), qualifies all 
down-stream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and data TLB 
events) can further be qualified using a data address DBRRangeTag). 

As summarized in Table 6-3, data address range checking can be combined with opcode matching 
and instruction range checking on the Itanium processor. Additional event qualifications based on 
the current privilege level and the current instruction set can be applied to all events and are 
discussed in Section 6.1.3.2, "Privilege Level Constraints" and Section 6.1.3.3, "Instruction Set 
Constraints".

Figure 6-5. Instruction Tagging Mechanism in the Intel® Itanium™ Processor
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Table 6-3. Intel® Itanium™ Processor Event Qualification Modes

Event Qualification Modes
Instr. Address 
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address 
Range Check

PMC[11].pt

Unconstrained Monitoring (all events) 1 0xffff_ffff_ffff_ffff 1

Instruction Address Range Check only 0 0xffff_ffff_ffff_ffff 1

Opcode Matching only 1 Desired Opcodes 1

Data Address Range Check only 1 0xffff_ffff_ffff_ffff 0

Instruction Address Range Check and 
Opcode Matching

0 Desired Opcodes 1
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6.1.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the 
operating system. In general, this has made performance analysis of a single process in a 
multi-processing system or a multi-process workload very difficult. To provide hardware support 
for this kind of analysis, the Itanium architecture specifies three global bits (PSR.up, PSR.pp, 
DCR.pp) and a per-monitor “privilege monitor” bit (PMC[i].pm). To break down the performance 
contributions of operating system and user-level application components, each monitor specifies a 
4-bit privilege level mask (PMC[i].plm). The mask is compared to the current privilege level in the 
processor status register (PSR.cpl), and event counting is enabled if PMC[i].plm[PSR.cpl] is one. 
The Itanium processor performance monitors control is discussed in Section 6.2.1, "Performance 
Monitor Control and Accessibility". 

PMC registers can be configured as user-level monitors (PMC[i].pm is zero) or system-level 
monitors (PMC[i].pm is one). A user-level monitor is enabled whenever PSR.up is one. PSR.up can 
be controlled by an application using the sum/rum instructions. This allows applications to 
enable/disable performance monitoring for specific code sections. A system-level monitor is 
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which allows 
monitor control without interference from user-level processes. The pp field in the default control 
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events 
generated during interruptions to be broken down separately: if DCR.pp is zero, events during 
interruptions are not counted, if DCR.pp is one, they are included in the kernel counts.

As shown in Figure 6-6, Figure 6-7 and Figure 6-8, single process, multi-process, and system level 
performance monitoring are possible by specifying the appropriate combination of PSR and DCR 
bits. These bits allow performance monitoring to be controlled entirely from a kernel level device 
driver, without explicit operating system support. Once the desired monitoring configuration has 
been setup in a process’ processor status register (PSR), “regular” unmodified operating context 
switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process break-down of event counts can be 
generated as outlined in Section 7.2, "Performance Monitoring" of Volume 2 of the Intel® 
Itanium™ Architecture Software Developer’s Manual.

6.1.3.3 Instruction Set Constraints

On the Itanium processor, monitoring can additionally be constrained based on the currently 
executing instruction set as defined by PSR.is. This capability is supported by the four generic 
performance counters as well as the instruction and data event address registers. However, the 
Itanium instruction address range checking, Itanium opcode matching and the Itanium branch trace 
buffer, only support Itanium-based code execution. When these Itanium architecture only features 

Instruction and Data Address Range Check 0 0xffff_ffff_ffff_ffff 0

Opcode Matching and Data Address 
Range Check

1 Desired Opcodes 0

Table 6-3. Intel® Itanium™ Processor Event Qualification Modes (Continued)

Event Qualification Modes
Instr. Address 
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address 
Range Check

PMC[11].pt
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are used, the corresponding PMC register instruction set mask (PMC[i].ism) should be set to 
Itanium architecture only (01) to ensure that events generated by IA-32 code do not corrupt the 
Itanium-based event counts.

Figure 6-6. Single Process Monitor
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Figure 6-7. Multiple Process Monitor
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6.2 Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC) 
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide 
data values from the monitors. This section describes the Itanium processor performance 
monitoring registers which expands on the Itanium architectural definition. As shown in 
Figure 6-9, the Itanium processor provides four 32-bit performance counters (PMC/PMD[4,5,6,7] 
pairs), and the following model-specific monitoring registers: instruction and data event address 
registers (EARs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match 
registers and an instruction address range check register.

Table 6-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt 
status registers are mapped to PMC[0,1,2,3]. The four generic performance counter pairs are 
assigned to PMC/PMD[4,5,6,7]. The event address registers and the branch trace buffer are 
controlled by three configuration registers (PMC[10,11,12]). Captured event addresses and cache 
miss latencies are accessible to software through five event address data registers 
(PMD[0,1,2,3,17]) and a branch trace buffer (PMD[8-16]). On the Itanium processor, monitoring of 
some events can additionally be constrained to a programmable instruction address range by 
appropriate setting of the instruction breakpoint registers (IBR) and the instruction address range 
check register (PMC[13]). Two opcode match registers (PMC[8,9]) allow monitoring of some 
events to be qualified with a programmable opcode. For memory operations, events can be qualified 
by a programmable data address range by appropriate setting of the data breakpoint registers (DBR) 
and the data address range check bits in PMC[11].

6.2.1 Performance Monitor Control and Accessibility

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the 
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the 
performance monitor freeze bit (PMC[0].fr) affect the behavior of all performance monitor 
registers. 

Figure 6-8. System Wide Monitor
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Finer, per monitor, control is provided by three PMC register fields (PMC[i].plm, PMC[i].ism, and 
PMC[i].pm). Instruction set masking based on PMC[i].ism is an Itanium processor model-specific 
feature. Event collection for a monitor is enabled under the following constraints on the Itanium 
processor:
Monitor Enablei =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and ((not 
PMC[i].ism[PSR.is]) or (PMC[i]=12)) and (not (PMC[i].pm) and PSR.up) or 
(PMC[i].pm and PSR.pp))

Figure 3-2, “Processor Status Register (PSR)” on page 2:18 in Volume 2 of the Intel® Itanium™ 
Architecture Software Developer’s Manual defines the PSR control fields that affect performance 
monitoring. For a detailed definition of how the PSR bits affect event monitoring and control 
accessibility of PMD registers, please refer to Section 3.3.2, "Processor Status Register (PSR)" and 
Section 7.2.1, "Generic Performance Counter Registers" in Volume 2 of the Intel® Itanium™ 
Architecture Software Developer’s Manual.

Figure 6-9. Intel® Itanium™ Processor Performance Monitor Register Model
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As defined in Table 6-4, each of these PMC registers controls the behavior of its associated 
performance monitor data registers (PMD). Table 6-11 defines per monitor controls that apply to 
PMC[4,5,6,7,10,11,12]. The Itanium processor model-specific PMD registers associated with 
instruction/data EARs and the branch trace buffer (PMD[0,1,2,3,8-17]) can be read reliably only 
when event monitoring is frozen (PMC[0].fr is one). 

Table 6-4. Intel® Itanium™ Processor Performance Monitor Register Set

Monitoring
Feature

Configu-
ration

Registers 
(PMC)

Data
Registers 

(PMD)
Description

Interrupt Status PMC[0,1,2,3] none See Section 6.2.3, "Performance Monitor Overflow Status 
Registers (PMC[0,1,2,3])"

Event Counters PMC[4,5,6,7] PMD[4,5,6,7] See Section 6.2.2, "Performance Counter Registers"

Opcode 
Matching

PMC[8,9] none See Section 6.2.5, "Intel® Itanium™ Opcode Match 
Registers (PMC[8,9])"

Instruction EAR PMC[10] PMD[0,1] See Section 6.2.7.1, "Instruction EAR (PMC[10], 
PMD[0,1])"

Data EAR PMC[11] PMD[2,3,17] See Section 6.2.7.4, "Data EAR (PMC[11], PMD[2,3,17])"

Instruction 
Address Range 
Check

PMC[13] none See Section 6.2.4, "Intel® Itanium™ Instruction Address 
Range Check Register (PMC[13])"

Data Address 
Range Check

PMC[11] none See Section 6.2.6, "Intel® Itanium™ Data Address 
Range Check (PMC[11])"

Figure 6-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved other pp sp other reserved other up oth rv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved other is cpl

Figure 6-11. Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12])

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level. 
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege 
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at 
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state, 
the Intel® Itanium™ processor will not preserve the value of the corresponding PMD 
register(s).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor, and 
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a 
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.

ism 25:24 Instruction Set Mask - controls performance monitor operation based on the current 
instruction set.

The instruction set mask applies to PMC[4,5,6,7,10,11] but not to PMC[12].

00: monitoring enabled during Intel® Itanium™ instruction execution and IA-32 instruction 
execution (regardless of PSR.is)
10: bit 24 low enables monitoring during Intel® Itanium™ instruction execution (when 
PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)
11: disables monitoring
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6.2.2 Performance Counter Registers

The Itanium processor provides four generic performance counters (PMC/PMD[4,5,6,7] pairs). The 
implemented counter width on the Itanium processor is 32 bits. The Itanium processor counters are 
not symmetrical (i.e. not all event types can be monitored by all counters). Counters 
PMC/PMD[4,5] can track events whose maximum per-cycle event increment is 7. Counters 
PMC/PMD[6,7] can track events whose maximum per-cycle event increment is 3.

The Itanium processor extends the generic Itanium counter configuration register (PMC) layout by 
adding two fields for specifying a unit mask (umask) and a threshold field. These model-specific 
fields are described in Table 6-5. A counter overflow occurs when the counter wraps (i.e. a carry 
out from bit 31 is detected). Software can force an external interruption or external notification 
after N events, by preloading the monitor with a count value of 232 - N. When accessible, software 
can continuously read the performance counter registers PMD[4,5,6,7] without disabling event 
collection. The processor guarantees that software will see monotonically increasing counter 
values.

Figure 6-12 and Table 6-5 define the layout of the Itanium processor Performance Counter Data 
Registers (PMD[4,5,6,7]). Figure 6-13, Figure 6-14 and Table 6-5 define the layout of the Itanium 
processor Performance Counter Configuration Registers (PMC[4,5,6,7]).

Figure 6-12. Intel® Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7])
63 32 31 0

PMD[4,5,6,7] sxt32 count
32 32

Table 6-5. Intel® Itanium™ Processor Generic PMD Register Fields

Field Bits Description

sxt32 63:32 Writes are ignored, Reads return the value of bit 31, so count values appear as sign 
extended.

count 31:0 Event Count. The counter is defined to overflow when the count field wraps (carry out from 
bit 31).

Figure 6-13. Intel® Itanium™ Processor Generic PMC Registers (PMC[4,5])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[4,5] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 3 4 1 7 1 1 1 1 4

Figure 6-14. Intel® Itanium™ Processor Generic PMC Registers (PMC[6,7])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[6,7] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 2 4 1 7 1 1 1 1 4
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6.2.3 Performance Monitor Overflow Status Registers 
(PMC[0,1,2,3])

The Itanium processor supports four counters. As shown in Figure 6-15 and Table 6-7 only 
PMC[0]{7:4} bits are populated. All other overflow bits are ignored, i.e. they read as zero and 
ignore writes.

Table 6-6. Intel® Itanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7])

Field Bits Description

plm 3:0 Privilege Level Mask. See Table 6-11, “Performance Monitor PMC Register Control 
Fields (PMC[4,5,6,7,10,11,12])”.

ev 4 External visibility - When 1, an external notification (BPM pin strobe) is provided 
whenever the counter wraps, i.e a carry out from bit 31 is detected. External notification 
occurs regardless of the setting of the oi bit. On the Intel® Itanium™ processor, PMC[4] 
external notification strobes the BPM0 pin, PMC[5] external notification strobes the BPM1 
pin, PMC[6] external notification strobes the BPM2 pin, and PMC[7] external notification 
strobes the BPM3 pin.

oi 5 Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the 
performance monitor freeze bit (PMC[0].fr) is set when the monitor overflows. When 0, no 
interrupt is raised and the performance monitor freeze bit (PMC[0].fr) remains 
unchanged. Overflow occurs when the counter wraps, i.e. a carry out from bit 31 is 
detected. Counter overflows generate only one interrupt.

pm 6 Privilege Monitor. See Table 6-11, “Performance Monitor PMC Register Control Fields 
(PMC[4,5,6,7,10,11,12])”.

ig 7 ignored

es 14:8 Event select - selects the performance event to be monitored. 
Intel® Itanium™ processor event encodings are defined in Chapter 7, "Performance 
Monitor Events". 

ig 15 ignored

umask 19:16 Unit Mask - event specific mask bits (see event definition for details)

threshold 22:20
21:20

Threshold -enables thresholding for “multi-occurrence” events. 

PMC[4,5] define 3 threshold bits 22:20, while PMC[6,7] define 2 threshold bits 21:20.

When threshold is zero, the counter sums up all observed event values. When the 
threshold is non-zero, the counter increments by one in every cycle in which the 
observed event value exceeds the threshold. 

ism 25:24 Instruction Set Mask. See Table 6-11, “Performance Monitor PMC Register Control Fields 
(PMC[4,5,6,7,10,11,12])”.

ignored 63:24 Read zero, Writes ignored.

Figure 6-15. Intel® Itanium™ Processor Performance Monitor Overflow Status Registers 
(PMC[0,1,2,3])
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ignored (PMC[0]) overflow ignored fr
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ignored (PMC[2])

ignored (PMC[3])
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6.2.4 Intel® Itanium™ Instruction Address Range Check Register 
(PMC[13])

The Itanium processor allows event monitoring to be constrained to a range of instruction 
addresses. All four architectural breakpoint registers (IBRs) are used to specify the desired address 
range. The Itanium processor instruction address range check register PMC[13] specifies how the 
resulting address match is applied to the performance monitors.

Instruction address range checking is controlled by the “tag all” bit (PMC[13].ta). When 
PMC[13].ta is one, all instructions are tagged regardless of IBR settings. In this mode, events from 
both IA-32 and Itanium-based code execution contribute to the event count. When PMC[13].ta is 
zero, the instruction address range check based on the IBR settings is applied to all Itanium-based 
code fetches. In this mode, IA-32 instructions are never tagged, and, as a result, events generated by 
IA-32 code execution are ignored. Table 6-9 defines the behavior of the instruction address range 
checker for different combinations of PSR.is and PMC[13].ta.

Table 6-7. Intel® Itanium™ Processor Performance Monitor Overflow Register
Fields (PMC[0,1,2,3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit - when 1, event monitoring is disabled. 
When 0, event monitoring is enabled. This bit is set by hardware whenever a 
performance monitor overflow occurs and its corresponding overflow 
interrupt bit (PMC.oi) is set to one. SW is responsible for clearing it. When 
the PMC.oi bit is not set, then counter overflows do not set this bit.

PMC[0] ignored 3:1 Read zero, Writes ignored.

PMC[0] overflow 7:4 Event Counter Overflow - When bit n is one, indicate that the PMDn 
overflowed. This is a 

bit vector indicating which performance monitor overflowed. These overflow 
bits are set on their corresponding counters overflow regardless of the state 
of the PMC.oi bit. These bits are sticky and multiple bits may be set.

PMC[0] ignored 63:8 Read zero, Writes ignored.

PMC
[1,2,3]

ignored 63:0 Read zero, Writes ignored.

Figure 6-16. Intel® Itanium™ Processor Instruction Address Range Check Register (PMC[13])
63    1 0

ignored (PMC[13]) ta
61 1

Table 6-8. Intel® Itanium™ Processor Instruction Address Range Check Register Fields 
(PMC[13])

Field Bits Description

ta 0 Tag All - when 1, all events are counted independent of instruction address and 
instruction set. The default value of this PMC[13].ta should be set to one upon 
reset.
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The processor compares every Itanium-based instruction fetch address IP{63:0} with each of the 
four architectural instruction breakpoint registers. Regardless of the value of the instruction 
break-point fault enable (IBR x-bit), the following expression is evaluated for each of the Itanium 
processor’s four IBRs:

IBRmatchi = match(IP,IBR[2*i].addr,IBR[2*i]+1.mask,IBR[2*i]+1.plm

On the Itanium processor, in which only 54 virtual and 44 physical address bits are implemented, 
this IBR match is defined as follows:

IBRmatchi = (IBR[2*i]+1.plm[PSR.cpl])

and (ANDb=50..0((IBR[2*i].addr{b} and IBR[2*i]+1.mask{b}) = (IP{b} and IBR[2*i]+1.mask{b})))

and (ANDb=55..51((IBR[2*i].addr{b} and IBR[2*i]+1.mask{b}) = (IP{50} and IBR[2*i]+1.mask{b})))

and (ANDb=60..56(IBR[2*i].addr{b} = IP{50})) 

and (ANDb=63..61(IBR[2*i].addr{b} = IP{b})) 

The resulting four matches are combined with the PSR.is bit, two instruction address range check 
register bits, the IBR x-bits, and PSR.db:

IBRRangeTag = (PMC[13].ta)
or ((not PSR.is) 
and ((IBRmatch0 or IBRmatch1 or IBRmatch2 or IBRmatch3)
and (not (PSR.db or IBR1.x or IBR3.x or IBR5.x or IBR7.x))))

The instruction range check tag (IBRRangeTag) considers the IBR address ranges only if 
PMC[13].ta is zero, PSR.is is zero, and if none of the IBR x-bits or PSR.db are set. Since the 
architectural break-point registers (IBRs) are used to specify the desired performance monitor 
address range, it is not possible to constrain monitoring when the IBRs are used in their 
architectural break-point capacity, i.e. when PSR.db or an IBR x-bit is set. In other words, it is not 
possible to use performance monitor address range checking when a debugger is running, unless 
the debugger and the performance monitor software carefully synchronize their use of the IBRs.

The instruction range check tag is computed early in the processor pipeline and therefore includes 
speculative, wrong-path as well as predicated off instructions. Furthermore, range check tags are 
not accurate in the instruction fetch and out-of-order parts of the pipeline (cache and bus units). 
Therefore, software must accept a level of range check inaccuracy for events generated by these 
units, especially for non-looping code sequences that are shorter than the Itanium processor 
pipeline. As described in Section 6.1.3.1, "Combining Opcode Matching, Instruction, and Data 
Address Range Check", the instruction range check result may be combined with the results of the 
Itanium opcode match registers described in the next section.

Table 6-9. Intel® Itanium™ Processor Instruction Address Range Check by Instruction Set

PSR.is

PMC13.ta 0 (Intel® Itanium™ Architecture) 1 (IA-32)

0 Tag only Intel® Itanium™ instructions if 
they match IBR range DO NOT tag any IA-32 operations.

1 Tag all Intel® Itanium™ instructions and IA-32 instructions.Ignore IBR range. 
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6.2.5 Intel® Itanium™ Opcode Match Registers (PMC[8,9])

The Itanium processor allows event monitoring to be constrained based on the Itanium-based 
encoding (opcode) of an instruction. Registers PMC[8,9] allow two independent opcodes matches 
to be specified. The Itanium opcode matcher operates only during Itanium-based code execution 
(i.e. when PSR.is is zero).

For opcode matching purposes, an Itanium instruction is defined by two items: the instruction type 
“itype” (one of M, I, F or B) and the 40-bit encoding “enco{40:0}” defined in Volume 3 of the 
Intel® Itanium™ Architecture Software Developer’s Manual. Each instruction is evaluated against 
each opcode match register (PMC[8,9]) as follows:

Match(PMC[i]) = (imatch (itype,PMC[i].mifb) and 
ematch(enco,PMC[i].match,PMC[i]PMC[i].mask))

Where:

imatch(itype,PMC[i].mifb) = itype=M and PMC[i].m) or (itype=I and PMC[i].i) or (itype=F and 
PMC[i].f) or (itype=B and PMC[i].b)

ematch(enco,match,mask) = AND b=40..27 ((enco{b}=match{b-14}) or mask{b-14}) and AND 

b=12..0 ((enco{b}=match{b}) or mask{b})

This function matches encoding bits{40:27} (major opcode) and encoding bits{12:0} (destination 
and qualifying predicate) only. Bits{26:13} of the instruction encoding are ignored by the opcode 
matcher.

This produces two opcode match events that are combined with the PSR.is bit, and the instruction 
range check tag (IBRRangeTag, see Section 6.2.4, "Intel® Itanium™ Instruction Address Range 
Check Register (PMC[13])") as follows:

Tag(PMC[8]) = Match(PMC[8]) and IBRRangeTag and (not PSR.is)

Tag(PMC[9]) = Match(PMC[9]) and IBRRangeTag and (not PSR.is)

Figure 6-17. Opcode Match Registers (PMC[8,9])
63 62 61 60  59  33 32 31 30 29 3 2 1 0

m i f b match ignored mask ignored

1 1 1 1 27 3 27 3

Table 6-10. Opcode Match Register Fields (PMC[8,9])

Field Bits Width Description

mask 29:3 27 Bits that mask Intel® Itanium™ instruction encoding bits {40:27} and 
{12:0}

match 59:33 27 Opcode bits to match Intel® Itanium™ instruction encoding bits {40:27} 
and {12:0}

b 60 1 If 1: match if opcode is an B-syllable

f 61 1 If 1: match if opcode is an F-syllable

i 62 1 If 1: match if opcode is an I-syllable

m 63 1 If 1: match if opcode is an M-syllable
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As shown in Figure 6-5, the two tags, Tag(PMC[8]) and Tag(PMC[9]), are staged down the 
processor pipeline until instruction retirement, and can be selected as a retired instruction count 
event. In this way, a performance counters (PMC/PMD[4,5,6,7]) can be used to count the number 
of retired instructions within the programmed range that match the specified opcodes. All 
combinations of the mifb bits are supported. To match A-syllable instructions both m and i bits 
should be set to one. To match all instruction types, all mifb and all mask bits should be set to one. 
This will count the number of retired instructions within the programmed address range. One of the 
combined Itanium address range and opcode match tags, Tag(PMC[8]), qualifies most down-stream 
pipeline events. To ensure that all events are counted independent of the Itanium opcode matcher, 
all mifb and all mask bits of PMC[8] should be set to one (all opcodes match). Tag(PMC[9]) is not 
used to qualify downstream events.

6.2.6 Intel® Itanium™ Data Address Range Check (PMC[11])

For instructions that reference memory, the Itanium processor allows event counting to be 
constrained by data address ranges using the architectural data breakpoint registers (DBRs). Data 
address range checking capability is controlled enabled by the “pass tags” bit in the Data Event 
Address Register (PMC[11].pt). For details on PMC[11], refer to Section 6.2.7.4, "Data EAR 
(PMC[11], PMD[2,3,17])". 

When enabled (PMC[11].pt is zero), data address range checking is applied to loads (all types), 
stores, semaphore operations, and the lfetch instruction whose upstream opcode match 
Tag(PMC[8]) was set. When PMC[11].pt is one, RSE operations and VHPT walks are tagged only 
if the opcode match Tag(PMC[8]) was set for the operation that caused the RSE or VHPT activity. 
When PMC[11].pt is zero, all RSE operations and VHPT walks that hit the programmed data 
address range are tagged (regardless of the opcode match Tag(PMC[8])). To capture all VHPT 
walks when PMC[11].pt is zero, the minimum DBR mask granularity must be set to the size of a 
single VHPT entry.

On the Itanium processor, in which only 54 virtual address bits are implemented, the performance 
monitoring DBR match function is defined as follows:

DBRRangeMatchi= 

(ANDb=50..0((DBR[2*i].addr{b} and DBR[2*i]+1.mask{b}) = (addr{b} and DBR[2*i]+1.mask{b}))) 

and (ANDb=55..51((DBR[2*i].addr{b} and DBR[2*i]+1.mask{b}) = (addr{50} and

 DBR[2*i]+1.mask{b}))) 

and (ANDb=60..56(DBR[2*i].addr{b} = addr{50})) 

and (ANDb=63..61(DBR[2*i].addr{b} = addr{b})) 

The resulting four matches are combined with PSR.db to form a single DBR match:

DBRRangeMatch = ((DBRRangeMatch0 or DBRRangeMatch1 or DBRRangeMatch2 or 
DBRRangeMatch3) 
and (not PSR.db))
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Note: DBR matching for performance monitoring ignores the setting of the DBR r, w and plm 
fields. Finally, the DBRRangeMatch is combined with PMC[11].pt and the upstream 
opcode match tag Tag(PMC[8]) as follows:

DBRRangeTag = Tag(PMC[8]) and ((PMC[11].pt) or DBRRangeMatch)

DBR based data address range checking combined with opcode matching and instruction range 
checking allows the following combinations of event monitoring on the Itanium processor.

6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])

This section defines the register layout for the Itanium processor instruction and data event address 
registers (EARs). Sampling of four events is supported on the Itanium processor: instruction cache 
and instruction TLB misses, data cache load misses, and data TLB misses. The EARs are 
configured through two PMC registers (PMC[10,11]). EAR specific unit masks allow software to 
specify event collection parameters to hardware. Instruction and data addresses, operation latencies 
and other captured event parameters are provided in five PMD registers (PMD[0,1,2,3,17]). The 
instruction and data cache EARs report the latency of captured cache events and allow latency 
thresholding to qualify event capture. Event address data registers (PMD[0,1,2,3,17]) contain valid 
data only when event collection is frozen (PMC[0].fr is one). Reads of PMD[0,1,2,3,17] while 
event collection is enabled return undefined values.

6.2.7.1 Instruction EAR (PMC[10], PMD[0,1])

The instruction event address configuration register (PMC[10]) can be programmed to monitor 
either L1 instruction cache or instruction TLB miss events. Figure 6-18 and Table 6-11 detail the 
register layout of PMC[10]. Figure 6-19 describes the associated event address data registers 
PMD[0,1].

When the tlb-bit (PMC[10].tlb) is set to zero instruction cache misses are monitored, when it is set 
to one instruction TLB misses are monitored. The interpretation of the umask field and 
performance monitor data registers PMD[0,1] depend on the setting of the tlb bit, and are described 
in Section 6.2.7.2, "Instruction EAR Cache Mode (PMC[10].tlb=0)" for instruction cache 
monitoring and in Section 6.2.7.3, "Instruction EAR TLB Mode (PMC[10].tlb=1)" for instruction 
TLB monitoring. 

Figure 6-18. Instruction Event Address Configuration Register (PMC[10])
63    26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored ism ignored umask ignored tlb pm ign. plm
38 2 4 4 8 1 1 2 4
36 Processor Performance Monitoring



6.2.7.2 Instruction EAR Cache Mode (PMC[10].tlb=0)

When PMC[10].tlb is zero, the instruction event address register captures instruction addresses and 
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a 
programmable threshold are captured. The threshold is specified as a four bit umask field in the 
configuration register PMC[10]. Possible threshold values are defined in Table 6-12. 

As defined in Table 6-13, the address of the instruction cache line missed the L1 instruction cache 
is provided in PMD[0]. If no qualified event was captured, the valid bit in PMD[0] is zero. The 
latency of the captured instruction cache miss in processor clock cycles is provided in the latency 
field of PMD[1]. In cache mode, the TLB miss bit of PMD[0] is undefined.

Table 6-11. Instruction Event Address Configuration Register Fields (PMC[10])

Field Bits Description

plm 3:0 See Table 6-11.

pm 6 See Table 6-11.

tlb 7 Instruction EAR selector: instruction cache/TLB

if tlb=0: monitor L1 instruction cache misses
PMD[0,1] register interpretation see Table 6-13.

if tlb=1:
monitor instruction TLB misses

PMD[0,1] register interpretation see Table 6-15.

umask 19:16 Instruction EAR unit mask 

if tlb=0: instruction cache unit mask (definition see Table 6-12) 

if tlb=1: instruction TLB unit mask (definition see Table 6-14)

ism 25:24 See Table 6-11.

Figure 6-19. Instruction Event Address Register Format (PMD[0,1]
63 5 4 3 2 1 0

Instruction Cache Line Address (PMD[0]) ignored tlb v
59 3 1 1

63 12 11 0

ignored (PMD[1]) latency
52 12

Table 6-12. Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.
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6.2.7.3 Instruction EAR TLB Mode (PMC[10].tlb=1)

When PMC[10].tlb is one, the instruction event address register captures addresses of instruction 
TLB misses. The unit mask allows event address collection to capture specific subsets of 
instruction TLB misses. Table 6-14 summarizes the instruction TLB umask settings. All 
combinations of the mask bits are supported.

As defined in Table 6-15, the address of the instruction cache line fetch that missed the L1 TLB is 
provided in PMD[0]. The tlb bit indicates whether the captured TLB miss hit in the VHPT or 
required servicing by software. If no qualified event was captured, the valid bit in PMD[0] reads 
zero. In TLB mode, the latency field of PMD[1] is undefined.

Table 6-13. Instruction EAR (PMD[0,1]) in Cache Mode (PMC[10].tlb=0)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

tlb 1 TLB Miss Bit (undefined in cache mode)

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused cache missa

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}. 
The instruction and data address bits {60:51} of PMD[0] read as a sign-extension of bit {50}. Writes to bits 
{60:51} of PMD[0] are ignored by the processor.

PMD[1] latency 11:0 Latency in processor clocks

Table 6-14. Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tlb=1)

umask Bit Instruction TLB EAR Unit Mask (Instruction TLB misses)

0

1

2

3

ignored

ignored

if one, capture Instruction TLB misses that hit VHPT

if one, capture Instruction TLB misses handled by software

Table 6-15. Instruction EAR (PMD[0,1]) in TLB Mode (PMC[10].tlb=1)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event
1: EAR contains valid event data

tlb 1 TLB Miss Bit:

0: VHPT Hit
1: Instruction TLB Miss handled by software

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused TLB missa

a. The Itanium processor does not implement virtual address bits va{60:51}. The instruction address bits {60:51} 
of PMD[0] read as a sign-extension of bit {50}. Writes to bits {60:51} of PMD[0] are ignored by the processor.

PMD[1] latency 11:2 undefined in TLB mode
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6.2.7.4 Data EAR (PMC[11], PMD[2,3,17])

The data event address configuration register (PMC[11]) can be programmed to monitor either L1 
data cache load misses or L1 data TLB misses. Figure 6-20 and Table 6-16 detail the register layout 
of PMC[11]. Figure 6-21 describes the associated event address data registers PMD[2,3,17]. The 
tlb bit in configuration register PMC[11] selects data cache or data TLB monitoring. The 
interpretation of the umask field and registers PMD[2,3,17] depends on the setting of the tlb bit, 
and is described in Section 6.2.7.5, "Data Cache Load Miss Monitoring (PMC[11].tlb=0)" for data 
cache load miss monitoring and in Section 6.2.7.6, "Data TLB Miss Monitoring (PMC[11].tlb=1)" 
for data TLB monitoring. The PMC[11].pt bit controls data address range checking which is 
described in Section 6.2.6, "Intel® Itanium™ Data Address Range Check (PMC[11])".

Figure 6-20. Data Event Address Configuration Register (PMC[11])
63    28 27 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored pt ign. ism ignored umask ignored tlb pm ign. plm
35 1 2 2 4 4 8 1 1 2 4

Table 6-16. Data Event Address Configuration Register Fields (PMC[11])

Field Bits Description

plm 3:0 See Table 6-11.

pm 6 See Table 6-11.

tlb 7 Data EAR selector: data cache/TLB

if tlb=0:monitor L1 data cache load misses
PMD[2,3,17] register interpretation see Table 6-18.

if tlb=1: monitor L1 data TLB misses
PMD[2,3,17] register interpretation see Table 6-20.

umask 19:16

Data EAR unit mask 

if tlb=0: data cache unit mask (definition see Table 6-17) 

if tlb=1: data TLB unit mask (definition see Table 6-19)

ism 25:24 See Table 6-11.

pt 28

Pass Tags. This bit enables/disables data address range checking. See Section 6.2.6, 
"Intel® Itanium™ Data Address Range Check (PMC[11])" for details.

if pt=1: then the Tag(PMC[8]) is passed down the pipeline unmodified.

if pt=0: data address range checking is enabled for memory operations. 

Figure 6-21. Data Event Address Register Format (PMD[2,3,17])
63 4 3 2 1 0

Instruction Address (PMD[17]) slot ig v
60 2 1 1

63 62 61 12 11 0

level ignored (PMD[3]) latency
2 50 12

63 0

Data Address (PMD[2])

64
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6.2.7.5 Data Cache Load Miss Monitoring (PMC[11].tlb=0)

If the Data EAR is configured to monitor data cache load misses (PMC[11].tlb=0), the umask is 
used as a load latency threshold defined by Table 6-17.

As defined in Table 6-18, the instruction and data addresses as well as the load latency of a 
captured data cache load miss is presented to software in three registers PMD[2,3,17]. If no 
qualified event was captured, the valid bit in PMD[3] is zero. In data cache load miss mode, the 
level field of PMD[3] is undefined. 

The detection of data cache load misses requires a load instruction to be tracked during multiple 
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be 
outstanding at any point in time and the Itanium processor data cache miss event address register can 
only track a single load at a time, not all data cache load misses may be captured. When the 
processor hardware captures the address of a load (called the monitored load), it ignores all other 
overlapped concurrent loads until it is determined whether the monitored load turns out to be an L1 
data cache miss or not. If the monitored load turns out to be a cache miss, its parameters are latched 
into PMD[2,3,17]. The processor randomizes the choice of which load instructions are tracked to 
prevent the same data cache load miss from always being captured (in a regular sequence of 
overlapped data cache load misses). While this mechanism will not always capture all data cache 
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by 
statistical sampling or code instrumentation.

Table 6-17. PMC[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.

Table 6-18. PMD[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

Register Fields Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Latency in CPU clocks

level 63:62 Undefined in data cache load miss mode

PMD[17] valid 0 Valid bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction bundle slot of memory instruction. For IA-32 ISA 
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instruction.a

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}. 
The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes to bits 
{60:51} of PMD[2,17] are ignored by the processor.
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6.2.7.6 Data TLB Miss Monitoring (PMC[11].tlb=1)

If the Data EAR is configured to monitor data TLB misses (PMC[11].tlb=1), the umask defined by 
Table 6-19 determine which data TLB misses are captured by the Data EAR. For TLB monitoring, 
all combinations of the mask bits are supported. 

As defined in Table 6-20, the instruction and data addresses of captured data TLB misses are 
presented to software in PMD[2,17]. The level of the TLB hierarchy from which the L1 data TLB 
miss was satisfied is recorded in the level field of PMD[3]. If no qualified event was captured, the 
valid bit in PMD[17] and the level field in PMD[3] read zero. When programmed for data TLB 
monitoring, the contents of the latency field of PMD[3] are undefined. 

6.2.8 Intel® Itanium™ Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent Itanium branch 
instructions and their predictions and outcomes. The Itanium branch trace buffer configuration 
register (PMC[12]) defines the conditions under which branch instructions are captured and allows 
the trace buffer to capture specific subsets of branch events. The Itanium branch trace buffer 
operates only during Itanium-based code execution (i.e. when PSR.is is zero). 

In every cycle in which a qualified Itanium branch retires, its source bundle address and slot 
number are written to the branch trace buffer. The branches’ target address is written to the next 
buffer location. If the target instruction bundle itself contains a qualified Itanium branch, the branch 

Table 6-19. PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tlb=1)

umask Bit Data EAR Unit Mask (L1 data TLB misses)

0

1

2

3

reserved

if one, capture L1 TLB misses that hit L2 Data TLB

if one, capture L1 TLB misses that hit VHPT

if one, capture L1 TLB misses that was handled by software

Table 6-20. PMD[2,3,17] Fields in TLB Miss Mode (PMC[11].tlb=1)

Register Field Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Undefined in TLB Miss mode

level 63:62 Data TLB Miss Level

0: invalid address (EAR did not capture qualified event)

1: L2 Data TLB hit
2: VHPT hit
3: Data TLB miss handled by software

PMD[17] valid 0 Valid Bit:
0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction Bundle Slot of memory instruction. In IA-32 ISA 
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instructiona

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}. 
The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes to bits 
{60:51} of PMD[2,17] are ignored by the processor.
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trace buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer 
entries: one that records the target instruction as a branch target (b-bit cleared), and another that 
records the target instruction as a branch source (b-bit set). As a result, the branch trace buffer may 
contain a mixed sequence of the branches and targets.

6.2.8.1 Intel® Itanium™ Trace Buffer Collection Constraining

The Itanium branch trace buffer configuration register (PMC[12]) defines the conditions under 
which branch instructions are captured. These conditions are given in Figure 6-22 and Table 6-21, 
and refer to conditions associated with the branch prediction and resolution hardware. These 
conditions are:

• Which branch prediction hardware structure made the prediction,

• The path of the branch (not taken/taken), 

• Whether or not the branch path was mispredicted, and

• Whether or not the target of the branch was mispredicted.

Figure 6-22. Intel® Itanium™ Branch Trace Buffer Configuration Register (PMC[12])
63    16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ignored bac bpt ppm ptm tm tar pm ign. plm
48 1 1 2 2 2 1 1 2 4

Table 6-21. Intel® Itanium™ Branch Trace Buffer Configuration Register Fields (PMC[12])

Field Bits Description

plm 3:0 See Table 6-11.

pm 6 See Table 6-11.

tar 7
Target Address Register:

1: capture TAR predictions
0: No TAR predictions are captured

tm 9:8

Taken Mask:

11: all Intel® Itanium™ branches
10: Taken Intel® Itanium™ branches only
01: Not Taken Intel® Itanium™ branches only
00: No branch is captured

ptm 11:10

Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch predicted target address correctly
01: branch mispredicted target address
00: No branch is captured 

ppm 13:12

Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

bpt 14
Branch Prediction Table:

10: No TAC predictions are captured

bac 15
Branch Address Calculator:

1: capture BAC predictions
0: No BAC predictions are captured
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The Itanium processor uses the following micro-architectural structures for branch prediction: the 
Target Address Registers (TAR), and Target Address Cache (TAC). Using the tar and bac fields of 
the branch trace buffer configuration register (PMC[12]), collection in the branch trace buffer can 
be restricted to only branches predicted by a subset of these prediction structures.

The Target Address Registers (TAR) are a small and fast fully associative buffer that is exclusively 
written to by branch predict instructions with the ‘.imp’ extension. A hit in the TAR will cause a 
taken prediction and yield the target address of the branch. If the tar field in the branch trace buffer 
configuration register (PMC[12]) is set to one, branches predicted by TAR will be included in the 
trace buffer.

The Target Address Cache (TAC) is a larger structure that is also written to by branch predict 
instructions, or the prediction hardware. The primary function of the TAC is to provide the target 
address of a branch. 

 If the bpt field in the branch trace buffer configuration register (PMC[12]) is set to one, branches 
predicted by the TAC will be included in the trace buffer.

If neither the TAR nor TAC generated a hit, the branch has to be predicted using the static hints 
encoded in the branches and the target address has to be calculated. This is done by the branch 
address corrector (BAC). If the bac field in the branch trace buffer configuration register (PMC[12]) 
is set to one, branches predicted by the branch address corrector will be included in the trace buffer.

Furthermore, using the ptm, ppm and tm fields in the branch trace buffer configuration register 
(PMC[12]) collection in the branch trace buffer can be restricted based on the correctness of target 
and predicate prediction in addition to whether the branch was actually taken or not.

To summarize, an Itanium branch and its target are captured by the trace buffer if the following 
equation is true:

(not PSR.is) 
and ( (tm[1] and branch taken)

or (tm[0] and branch not taken)
)

and ( (ptm[1] and hardware predicted target address correctly
 and hardware predicted the branch path correctly
 and branch is taken) 

or (ptm[0] and hardware mispredicted target address
 and hardware predicted the branch path correctly
 and branch is taken)

or (ptm[0] and ptm[1])
)

and ( (ppm[1] and hardware predicted the branch path correctly) 
or (ppm[0] and hardware mispredicted the branch path)

)
and ( (bpt and branch was predicted by TAC) 

or (bac and branch was predicted by BAC) 
or (tar and branch was predicted by TAR)

)

To capture all mispredicted Itanium branches, the branch trace buffer configuration settings in 
PMC[12] should be: Tm=11, ptm=01, ppm=01, bpt=1, bac=1, and tar=1. 
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6.2.8.2 Intel® Itanium™ Branch Trace Buffer Reading

 

The eight branch trace buffer registers PMD[8-15] provide information about the outcome of a 
captured branch sequence. The branch trace buffer registers (PMD[8-15]) contain valid data only 
when event collection is frozen (PMC[0].fr is one). While event collection is enabled, reads of 
PMD[8-15] return undefined values. The registers follow the layout defined in Figure 6-23, and 
contain the address of either a captured branch instruction (b-bit=1) or branch target (b-bit=0). For 
branch instructions, the mp-bit indicates a branch misprediction. A branch trace register with a zero 
b-bit and a zero mp-bit indicates an invalid branch trace buffer entry. The slot field captures the slot 
number of the first taken Itanium branch instruction in the captured instruction bundle. A slot 
number of 3 indicates a not-taken branch. The target address bundle of a branch to IA-32 (br.ia) 
is recorded. An IA-32 JMPE branch instruction and its Itanium-based target are not recorded.

In every cycle in which a qualified Itanium branch retires1, its source bundle address and slot 
number are written to the branch trace buffer. The branches’ target address is written to the next 
buffer location. If the target instruction bundle itself contains a qualified Itanium branch, the branch 
trace buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer 

Figure 6-23. Branch Trace Buffer Register Format (PMD[8-15])
63 4 3 2 1 0

Address slot mp b

60 2 1 1

Table 6-22. Intel® Itanium™ Branch Trace Buffer Register Fields (PMD[8-15])

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction

0: contents of register is a branch target

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)

if b=1 and mp=0: correctly predicted branch

if b=0 and mp=0: invalid branch trace buffer register

if b=0 and mp=1: valid target address

slot 3:2 if b=0: 00

if b=1: Slot index of first taken branch instruction in bundle

00: Itanium™-based Slot 0 branch/target

01: Itanium™-based Slot 1 branch/target

10: Itanium™-based Slot 2 branch/target

11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of Intel® Itanium™ branch instructiona

if b=0: 60-bit target bundle address of Intel® Itanium™ branch instructiona

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}. 
When the processor captures an instruction address, bits {60:51} of PMD[8-15] are written by the processor 
with a sign-extension of bit {50} of the captured address. When PMD[8-15] are written by software bits {60:51} 
of PMD[8-15] can be written with any value (not necessarily a sign-extension of bit {50}).

1. In some cases, the Itanium processor branch trace buffer will capture the source (but not the target) address of an
excepting branch instruction. This occurs on trapping branch instructions as well as faulting br.ia, break.b and
multiway branches.
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entries: one that records the target instruction as a branch target (b-bit cleared), and another that 
records the target instruction as a branch source (b-bit set). As a result, the branch trace buffer may 
contain a mixed sequence of the branches and targets.

The Itanium branch trace buffer is a circular buffer containing the last four to eight qualified 
Itanium branches. The Branch Trace Buffer Index Register (PMD[16]) defined in Figure 6-24 
identifies the most recently recorded branch or target. In every cycle in which a qualified branch 
(branch or target) is recorded, the branch buffer index (bbi) is post-incremented. After 8 entries 
have been recorded, the branch index wraps around, and the next qualified branch will overwrite 
the first trace buffer entry. The wrap condition itself is recorded in the full bit of PMD[16]. The bbi 
field of PMD[16] defines the next branch buffer index that is about to be written.The following 
formula computes the last written branch trace buffer PMD index from the contents of PMD[16]:

last-written-PMD-index = 8+ ([ (8*PMD[16].full) + (PMC[16].bbi - 1)] % 8)

If both the full bit and the bbi field of PMD[16] are zero, no qualified branch has been captured by 
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from 
PMD[15] to PMD[8]. Once set, the full bit remains set until explicitly cleared by software, i.e. it is 
a sticky bit. Software can reset the bbi index and the full bit by writing to PMD[16].

6.2.9 Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bits oi, ev of all PMC registers are zero, and PMV.m 
is set to one. This ensures that no interrupts are generated, and events are not externally visible. On 
reset, PAL firmware ensures that the instruction address range check, the opcode matcher and the 
data address range check are initialized as follows:

• PMC[13].ta=1, 

• PMC[8,9].mifb=1111, PMC[8,9].mask{29:3}= “all 1s”, PMC[8,9].match{59:33}= “all 0s”, 
and

• PMC[11].pt is 1. 

All other performance monitoring related state is undefined. 

Figure 6-24. Intel® Itanium™ Branch Trace Buffer Index Register Format (PMD[16])
63 4 3 2 1 0

ignored full bbi

60 1 3

Table 6-23. Intel® Itanium™ Branch Trace Buffer Index Register Fields (PMD[16])

Field Bit Range Description

bbi 2:0 Branch Buffer Index [Range 0..7 - Index 0 indicates PMD[8]]
Pointer to the next branch trace buffer entry to be written. 
if full=1: points to the oldest recorded branch/target

if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped

if full=0: branch trace buffer has not wrapped
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PAL Call: As defined in Chapter 11, “Processor Abstraction Layer”in Volume 2 of the Intel® 
Itanium™ Architecture Software Developer’s Manual, the PAL call PAL_PERF_MON_INFO 
provides software with information about the implemented performance monitors. The Itanium 
processor specific values are summarized in Table 6-24.

Low Power State: To ensure that monitor counts are preserved when the processor enters low 
power state, PAL_LIGHT_HALT freezes event monitoring prior to powering down the processor. 
PAL_LIGHT_HALT preserves the original value of the PMC[0] register.
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Table 6-24. Information Returned by PAL_PERF_MON_INFO for the Intel® Itanium™ 
Processor

PAL_PERF_MON_INFO
Return Value Description

Intel® 
Itanium™ 

Processor-
specific 

Value

PAL_RETIRED 8-bit unsigned event type for counting the number of 
untagged retired Intel® Itanium™ instructions.

0x08

PAL_CYCLES 8-bit unsigned event type for counting the number of 
running CPU cycles.

0x12

PAL_WIDTH 8-bit unsigned number of implemented counter bits. 32

PAL_GENERIC_PM_PAIRS 8-bit unsigned number of generic PMC/PMD pairs. 4

PAL_PMCmask 256-bit mask defining which PMC registers are populated. 0x3FFF

PAL_PMDmask 256-bit mask defining which PMD registers are populated. 0x3FFFF

PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can count 
running CPU cycles (event defined by PAL_CYCLES)

0xF0

PAL_RETIRED_MASK
256-bit mask defining which PMC/PMD counters can count 
untagged retired Intel® Itanium™ instructions (event defined 
by PAL_RETIRED)

0x10
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Performance Monitor Events 7

This chapter describes the architectural and microarchitectural events on the Itanium processor 
whose occurrences are countable through the performance monitoring mechanisms described 
earlier in Chapter 6. The earlier sections of this chapter aim to provide a high-level view of the 
event list, grouping logically related events together. Computation (either directly by a counter in 
hardware, or indirectly as a “derived” event) of common performance metrics is also discussed. 
Each directly measurable event is then described in greater detail in the alphabetized list of all 
processor events in Section 7.8, “Performance Monitor Event List”. 

7.1 Categorization of Events

Performance related events are grouped into the following categories:

• Basic Events: clock cycles, retired instructions (Section 7.2)

• Instruction Execution: instruction decode, issue and execution, data and control speculation, 
and memory operations (Section 7.3)

• Cycle Accounting Events: stall and execution cycle breakdowns (Section 7.4)

• Branch Events: branch prediction (Section 7.5)

• Memory Hierarchy: instruction and data caches (Section 7.6)

• System Events: operating system monitors, instruction and data TLBs (Section 7.7)

Each section listed above includes a table of all events (both directly measured and derived) in that 
category. Directly measurable events often use the PMC.umask field (See Table 6-7 in Chapter 6) 
to measure a certain variant of the event in question. Symbolic event names for such events (e.g. 
ALAT_REPLACEMENT.ALL) include a period to indicate use of the umask, specified by 4 bits in 
the detailed event description (x’s are for don’t-cares). Derived events are computable from directly 
measured events and include a “.d” suffix in their symbolic event names. Formulas to compute 
relevant derived events also appear in each section. Derived events are not, however, discussed in 
the systematic event listing in Section 7.8.

The tables in the subsequent sections define events by specifying three attributes: symbolic event 
name, a brief event title and a reference to the detailed event description page. Derived events are 
not listed in the detailed event description pages and hence lack the appropriate reference.

7.2 Basic Events

Table 7-1 summarizes four basic execution monitors. The CPU_CYCLES event can be used to 
break out separate or combined Itanium or IA-32 cycle counts (by constraining the PMC/PMD 
based on the currently executing instruction set). The Itanium retired instruction count 
(IA64_INST_RETIRED) includes predicated true and false instructions, and nops, but excludes 
RSE operations.
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Table 7-2 defines IPC and average instructions/cycles per ISA transition metrics.

7.3 Instruction Execution

This section describes events related to instruction issue and retirement (Table 7-3, Table 7-4) 
multi-media and FP (Table 7-5), data and control speculation (Table 7-7), as well as memory 
monitors (Table 7-9).

Instruction cache lines are delivered to the execution core and are dispersed to the Itanium 
processor functional units. The number of dispersed instructions (INST_DISPERSED) on every 
cycle depends on the stops in the instruction stream (EXPL_STOPS_DISPERSED) as well as 

Table 7-1. Intel® Itanium™ and IA-32 Instruction Set Execution and Retirement Monitors

Execution Monitors Title

CPU_CYCLES CPU Cycles on page 88.

IA64_INST_RETIRED Retired Itanium Instructions on page 92.

IA32_INST_RETIRED Retired IA-32 Instructions on page 92.

ISA_TRANSITIONS Itanium ISA to IA-32 ISA Transitions on page 94.

Table 7-2. Intel® Itanium™ and IA-32 Instruction Set Execution and Retirement Performance 
Metrics

Performance Metric Performance Monitor Equation

Intel® Itanium™ Instruction per Cycle IA64_INST_RETIRED / CPU_CYCLES [Intel® Itanium™ only]

IA-32 Instruction per Cycle IA32_INST_RETIRED / CPU_CYCLES [IA-32 only]

Average Intel® Itanium™ 
Instructions/Transition

IA64_INST_RETIRED/ (ISA_TRANSITIONS*2)

Average IA-32 Instructions/Transition IA32_INST_RETIRED/ (ISA_TRANSITIONS*2)

Average Intel® Itanium™ Cycles/Transition CPU_CYCLES[IA64]/ (ISA_TRANSITIONS*2)

Average IA-32 Cycles/Transition CPU_CYCLES[IA32]/ (ISA_TRANSITIONS*2)

Table 7-3. Instruction Issue and Retirement Events

Decode, Issue, Retirement Monitors Description

INST_DISPERSED Instructions Dispersed on page 93.

EXPL_STOPS_DISPERSED Explicit Stops Dispersed on page 91.

ALL_STOPS_DISPERSED Implicit and Explicit Stops Dispersed on page 67.

IA64_TAGGED_INST_RETIRED Retired Tagged Itanium Instructions on page 92.

NOPS_RETIRED Retired Nop Instructions on page 105.

PREDICATE_SQUASHED_RETIRED Instructions Squashed Due to Predicate Off on page 106.

RSE_REFERENCES_RETIRED RSE Accesses on page 107.

RSE_LOADS_RETIRED RSE Load Accesses on page 106.

Table 7-4. Instruction Issue and Retirement Events (Derived)

Decode, Issue, Retirement 
Monitors

Description Performance Monitor Equation

RSE_STORES_RETIRED.d RSE Store Accesses RSE_REFERENCES_RETIRED - 
RSE_LOADS_RETIRED
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functional unit availability. Resource limitations and branch bundles (regardless of prediction) force 
a break in the instruction dispersal. Therefore, they are known as implicit stops, and can be 
computed as ALL_STOPS_DISPERSED - EXPL_STOPS_DISPERSED.

Retired instruction counts (IA64_TAGGED_INST_RETIRED, NOPS_RETIRED) are based on tag 
information specified by the address range check and opcode match facilities. The tagged retired 
instruction counts include predicated off instructions. A separate event 
(PREDICATE_SQUASHED_RETIRED) is provided to count predicated off instructions. 
RSE_REFERENCES_RETIRED counts the number of retired RSE operations. 

There are two ways to count the total number of retired Itanium instructions. Either the untagged 
IA64_INST_RETIRED event can be used or the IA64_TAGGED_INST_RETIRED event can be 
used by setting up the PMC8 opcode match register to its don’t care setting.

The FP monitors listed in Table 7-5 (FP_SIR_FLUSH, FP_FLUSH_TO_ZERO) capture dynamic 
information about pipeline flushes and flush-to-zero occurrences due to floating-point operations. 
FP_OPS_RETIRED.d is a derived event that counts the number of retired FP operations.

As Table 7-7 describes, monitors for control and data speculation capture dynamic run-time 
information: the number of failed chk.s instructions (INST_FAILED_CHKS_RETIRED.ALL), the 
number of advanced load checks and check loads (ALAT_INST_CHKA_LDC.ALL) and failed 
advanced load checks and check loads (ALAT_INST_FAILED_CHKA_LDC.ALL) as seen by the 
ALAT. The number of retired chk.s instructions is monitored by the 
IA64_TAGGED_INST_RETIRED event with the appropriate opcode mask. Since the Itanium 
processor ALAT is updated by operations on mispredicted branch paths the number of advanced 
load checks and check loads needs an explicit event (ALAT_INST_CHKA_LDC.ALL). Finally, the 
ALAT_REPLACEMENT.ALL event can be used to monitor ALAT overflows.

Using an instruction type unit mask the four control and data speculation events can be constrained 
to monitor integer, FP or all speculative instructions. With the Itanium processor speculation 
monitors, the performance metrics described in Table 7-8 can be computed.

Table 7-5. Floating-point Execution Monitors

Floating-point Monitors Description

FP_FLUSH_TO_ZERO FP Result Flushed to Zero on page 91.

FP_SIR_FLUSH FP SIR Flushes on page 92.

Table 7-6. Floating-point Execution Monitors (Derived)

Floating-Point Monitors Description Performance Monitor Equation

FP_OPS_RETIRED.d FP Operations 
Retired

(4 * FP_OPS_RETIRED_HI) + 
FP_OPS_RETIRED_LO

Table 7-7. Control and Data Speculation Monitors

Control and Data Speculation
Monitors

Description

INST_FAILED_CHKS_RETIRED.ALL Failed Speculative Check Loads on page 93.

ALAT_INST_CHKA_LDC.ALL Advanced Load Checks and Check Loads on page 65.

ALAT_INST_FAILED_CHKA_LDC.ALL Failed Advanced Load Checks and Check Loads on page 66.

ALAT_REPLACEMENT.ALL ALAT Entries Replaced by Any Instruction on page 64.
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The equations described in Table 7-8 for Control Speculation Miss Ratio and ALAT Capacity Miss 
Ratio involve subtracting PREDICATE_SQUASHED_RETIRED[some inst] from 
IA64_TAGGED_INST_RETIRED[some inst]. This is done because 
IA64_TAGGED_INST_RETIRED includes predicated off instructions in its count, which do not 
update architectural state and hence need to be discounted in computing any performance metric. 
Using the opcode matcher in PMC8 with PREDICATE_SQUASHED_RETIRED (along with 
IA64_TAGGED_INST_RETIRED) allows us to count the number of predicated off instances of 
that instruction as well. Note that computing the ALAT Capacity Miss Ratio will require multiple 
runs in order to obtain all the terms in the equation. This is done to the limitations imposed by the 
opcode matcher.

Finally, Table 7-9 defines six memory instruction retirement events to count retired loads and 
stores. These counts include RSE operations. The load counts include failed check load 
instructions.

7.4 Cycle Accounting Events

As described in Section 6.1.1.4, “Cycle Accounting”, the Itanium processor provides eight directly 
measured stall cycle monitors. Table 7-10 lists the cycle accounting events.

The Itanium processor classifies every clock cycle into one of 4 cycle counters, namely 
DEPENDENCY_ALL_CYCLE, MEMORY_CYCLE, UNSTALLED_BACKEND_CYCLE, and 
PIPELINE_ALL_FLUSH_CYCLE. The values of these 4 counters should add up to 
CPU_CYCLES.

DEPENDENCY_ALL_CYCLE counts the number of cycles lost to instruction dispersal breaks 
(including both explicit and implicit stops), FP-related flushes and scoreboard stalls on GR or FR 
dependencies on non-load instructions. That is, the monitor does not count stalls that occur when an 

Table 7-8. Control/Data Speculation Performance Metrics

Performance Metric Performance Monitor Equation

Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED.ALL / 
(IA64_TAGGED_INST_RETIRED[chk.s]-PREDICATE_SQUASHED_
RETIRED[chk.s])

Data Speculation Miss Ratio ALAT_INST_FAILED_CHKA_LDC.ALL / 
ALAT_INST_CHKA_LDC.ALL

ALAT Capacity Miss Ratio ALAT_REPLACEMENT.ALL/ 
IA64_TAGGED_INST_RETIRED[ld.a,ld.sa,ld.c.nc, ldf.a, ldf.sa, 
ldf.c.nc]-PREDICATE_SQUASHED_RETIRED[ld.a, ld.sa, ld.c.nc, 
ldf.a, ldf.sa, ldf.c.nc])

Table 7-9. Memory Events

Memory Monitors Description

LOADS_RETIRED Retired Loads on page 104.

STORES_RETIRED Retired Stores on page 107.

UC_LOADS_RETIRED Retired Uncacheable Loads on page 107.

UC_STORES_RETIRED Retired Uncacheable Stores on page 107.

MISALIGNED_LOADS_RETIRED Retired Unaligned Load Instructions on page 104.

MISALIGNED_STORES_RETIRED Retired Unaligned Store Instructions on page 105.
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instruction is waiting for source operands from the memory subsystem. Also note that this monitor 
does not count the number of cycles when the machine is executing instructions without stalls or 
flushes. The DEPENDENCY_SCOREBOARD_CYCLE monitor operates similarly, but does not 
include instruction dispersal breaks.

MEMORY_CYCLE counts the number of cycles that the pipeline is stalled when instructions are 
waiting for source operands from the memory subsystem, and for pipeline flushes related to 
memory-access (L1D way mispredictions, DTC flushes). It also counts the number of clocks that 
the pipeline stalls for the Register Stack Engine to spill or fill registers to/from memory. The 
DATA_ACCESS_CYCLE monitor operates similarly, but excludes RSE activity.

UNSTALLED_BACKEND_CYCLE counts the number of cycles that the back-end is processing 
instructions without delay and the decoupling buffer between the front-end and back-end is empty. 
In this situation, any effect on the front-end will appear at the back-end of the pipeline. Thus, this 
monitor reflects the number of cycles where there are no back-end stalls or flushes, and the 
decoupling buffer is empty, regardless of whether the L1I and ITLB are being hit or missed. The 
INST_ACCESS_CYCLE monitor includes those cycles where there are no back-end stalls or 
flushes, the decoupling buffer is empty, and the front-end is stalled waiting on an L1I or ITLB miss.

PIPELINE_ALL_FLUSH_CYCLE counts the number of cycles lost to branch related resteers. 
Resteers can be classified as branch prediction resteers (which occur when the front-end correctly 
predicts a taken branch) or as branch misprediction resteers (which occur when the back-end 
determines that the front-end incorrectly predicted a taken or not-taken branch). Note that taken 
branches incorrectly predicted by the front-end will not be counted twice. The branch misprediction 
flush that occurs in the back-end will override the front-end bubble. The monitor also counts ALAT 
flushes, serialization flushes, MMU-IEU bypass flushes, failed control speculation flushes and 
other exception flushes. The monitor PIPELINE_BACKEND_FLUSH_CYCLE operates similarly, 
but excludes front-end resteers to correctly predicted branches (commonly known as “branch 
bubbles”).

Table 7-11 defines derived stall cycle accounting monitors in terms of directly measured monitors.

Table 7-10. Stall Cycle Monitors

Stall Accounting
Monitors

Description

PIPELINE_BACKEND_FLUSH_CYCLE Combination of Pipeline Flush Cycles caused by either a 
Branch Misprediction or an ExceptionCategory: Stall on 
page 105.

DATA_ACCESS_CYCLE Data Access Stall Cycles on page 89.

DEPENDENCY_SCOREBOARD_CYCLE Scoreboard Dependency Cycles on page 90.

INST_ACCESS_CYCLE Instruction Access Cycles on page 93.

PIPELINE_ALL_FLUSH_CYCLE Combination of Pipeline Flush Cycles caused by either a 
front-end or a back-end source on page 105.

MEMORY_CYCLE Combined Memory Stall Cycles on page 104.

DEPENDENCY_ALL_CYCLE Scoreboard Dependency and Dispersal Break Cycles on 
page 89.

UNSTALLED_BACKEND_CYCLE Unstalled Back-end Cycles on page 108.
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7.5 Branch Events

The five measured Itanium processor branch events listed in Table 7-12 expand into over fifty 
measurable branch metrics by using the unit masks described on the event pages. BRANCH_PATH 
provides insight into the accuracy of taken/not-taken predicate predictions; unit masks allow 
classification by prediction, outcome and predictor type. BRANCH_PREDICTOR classifies how 
branches are predicted by different predictors as they move down the branch prediction pipeline; 
unit masks provide finer resolution and break down events into correct predictions, incorrect 
predicate predictions, and incorrect target predictions. BRANCH_MULTIWAY collects events 
exclusively for predictions on multiway branch bundles, from which their single-way counterparts 
can be derived. BRANCH_TAKEN_SLOT gives information regarding the position within a bundle 
that actually-taken branches occupy. BRANCH_EVENT counts the number of events captured in 
the branch trace buffer.

Table 7-13 defines derived branch monitors in terms of directly measure monitors.

.

Table 7-11. Stall Cycle Monitors (Derived)

Stall Cycle Monitors (Derived) Description  Performance Monitor Equation

RSE_ACTIVE_CYCLE.d RSE Active Cycles MEMORY_CYCLE - DATA_ACCESS_CYCLE

ISSUE_LIMIT_CYCLE.d Issue Limit Cycles DEPENDENCY_ALL_CYCLE - 
DEPENDENCY_SCOREBOARD_CYCLE

TAKEN_BRANCH_CYCLE.d Taken Branch 
Cycles

PIPELINE_ALL_FLUSH_CYCLE - 
PIPELINE_BACKEND_FLUSH_CYCLE

UNSTALLED_PIPELINE_CYCLE.d Unstalled Pipeline 
Cycles

UNSTALLED_BACKEND_CYCLE - 
INST_ACCESS_CYCLE

Table 7-12. Branch Monitors

Branch Events Description

BRANCH_PATH Accuracy of predicate (taken/not-taken) predictions.

BRANCH_PREDICTOR Classification of how the branches are predicted in the pipeline.

BRANCH_MULTIWAY Details on multiway branch bundle predictions (details on single-way 
branch bundle predictions can be derived from this event).

BRANCH_TAKEN_SLOT Location of taken branches (if any) in a bundle.

BRANCH_EVENT Branch Event Captured.
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All branch events can be qualified by instruction address range and opcode matching as described 
in Section 6.1.3, “Event Qualification”. Since the instruction address range check is bundle 
granular, qualification of multiway branches by address range is straightforward. However, for 
opcode matching purposes, multiway branches (MBB or BBB bundle templates) are qualified up to 
and including the first taken branch as follows: 

((address range and opcode match on instruction slot 0) 
and (branch in slot 0 is taken))

or ((address range and opcode match on instruction slot 1) 
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is taken))

or ((address range and opcode match on instruction slot 0 or 1 or 2)
and (branch in slot 0 is NOT taken) 
and (branch in slot 1 is NOT taken))

Table 7-13. Branch Monitors (Derived)

Branch Events Description Performance Monitor Equation

BRANCH_MISPREDICTIONS.d Branch Bundles 
Mispredicted

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS - 
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS) 
or (BRANCH_PREDICTOR.ALL.WRONG_PATH + 
BRANCH_PREDICTOR.ALL.WRONG_TARGET) 

BRANCH_1ST_STAGE_PREDICTIONS.d

Branch Bundles 
(Correctly or 
Incorrectly) 
Predicted in the 
1st Pipeline 
Stage

BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS

BRANCH_1ST_STAGE_MISPREDICTIONS.d

Branch Bundles 
Incorrectly 
Predicted in the 
1st Pipeline 
Stage

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS - 
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS) 
or (BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH + 
BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET)

BRANCH_2ND_STAGE_PREDICTIONS.d

Branch Bundles 
(Correctly or 
Incorrectly) 
Predicted in the 
2nd Pipeline 
Stage

BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS

BRANCH_2ND_STAGE_MISPREDICTIONS.d

Branch Bundles 
Incorrectly 
Predicted in the 
2nd Pipeline 
Stage

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS - 
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS) 
or (BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH + 
BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET) 

BRANCH_3RD_STAGE_PREDICTIONS.d

Branch Bundles 
(Correctly or 
Incorrectly) 
Predicted in the 
3rd Pipeline 
Stage

BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS 

BRANCH_3RD_STAGE_MISPREDICTIONS.d

Branch Bundles 
Incorrectly 
Predicted in the 
3rd Pipeline 
Stage

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS - 
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS) 
or (BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH + 
BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET) 

BRANCH_MULTIWAY_COMPONENT.d

Multiway Branch 
Bundle 
Predictions 
Relative to All 
Prediction

BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS / 
BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS
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7.6 Memory Hierarchy

This section summarizes events related to the Itanium processor’s memory hierarchy. The memory 
hierarchy events are grouped as follows:

• L1 Instruction Cache and Prefetch (Section 7.6.1)

• L1 Data Cache (Section 7.6.2)

• L2 Unified Cache (Section 7.6.3)

• L3 Unified Cache (Section 7.6.4)

An overview of the Itanium processor’s three-level memory hierarchy and its event monitors is 
shown in Figure 7-1. The instruction and the data stream work through separate L1 caches. The L1 
data cache is a write-through cache. A unified L2 cache serves both the L1 instruction and data 
caches, and is backed by a large unified L3 cache. Events for individual levels of the cache 
hierarchy are described in the following three sections. They can be used to compute the most 
common cache performance ratios summarized in Table 7-15.

For common performance metrics not directly measured by hardware, the equations listed in 
Table 7-14 can be used.
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Figure 7-1. Event Monitors in the Intel® Itanium™ Processor Memory Hierarchy
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Because Itanium performance monitors for the L2 cache contain secondary misses from L1, and 
performance monitors for L3 do not, one cannot directly compare L2 and L3 performance monitors. 
In the performance metrics that follow in Table 7-15 where possible only events from an L2 view or 
an L3 view are used in computing the metric. However, several useful metrics cannot be calculated 
accurately this way. For those metrics we compute a correction ratio to scale L3 events to 
approximate a value that contains secondary misses. Table 7-14 contains the definition of this 
correction ratio.

Table 7-14. Derived Memory Hierarchy Monitors

Memory Hierarchy Monitors 
(Derived)

Description
Performance

Monitor Equation

L1I_REFERENCES.d L1 Instruction Cache 
References

L1I_PREFETCH_READS + 
L1I_DEMAND_READS

L2_INST_REFERENCES.d L2 Instruction 
References

L2_INST_DEMAND_READS + 
L2_INST_PREFETCH_READS

L3_DATA_REFERENCES.d L3 Data References L3_WRITES.DATA_WRITES.ALL+
L3_READS.DATA_READS.ALL

L3_CORRECTION_RATIO.d L3 Correction Ratio L2_MISSES/(L3_REFERENCES-L3_WRITES.L2_
WRITEBACK.ALL)

Table 7-15. Cache Performance Ratios

Performance Metric  Performance Monitor Equation

L1I Miss Ratio L2_INST_REFERENCES.d/L1I_REFERENCES.d

L1I Demand Miss Ratio L2_INST_DEMAND_READS / L1I_DEMAND_READS

L1I Prefetch Miss Ratio L2_INST_PREFETCH_READS/ L1I_PREFETCH_READS

L1D Read Miss Ratio L1D_READ_MISSES_RETIRED / L1D_READS_RETIRED

L2 Miss Ratio L2_MISSES / L2_REFERENCES

Approximate L2 Data Miss Ratio (L3_DATA_REFERENCES.d / 
L2_DATA_REFERENCES.ALL)*L3_CORRECTION_RATIO.d

Approximate L2 Instruction Miss 
Ratio
(includes prefetches)

(L3_READS.INST_READS.ALL / 
L2_INST_REFERENCES.d)*L3_CORRECTION_RATIO.d

Approximate L2 Data Read Miss 
Ratio

(L3_READS.DATA_READS.ALL / L2_DATA_REFERENCES.READS) * 
L3_CORRECTION_RATIO.d

Approximate L2 Data Write Miss 
Ratio

(L3_WRITES.DATA_WRITES.ALL / 
L2_DATA_REFERENCES.WRITES)*L3_CORRECTION_RATIO.d

L2 Instruction Ratio L2_INST_REFERENCES.d/ L2_REFERENCES

L2 Data Ratio L2_DATA_REFERENCES.ALL / L2_REFERENCES

L3 Miss Ratio L3_MISSES /(L3_REFERENCES-L3_WRITES.L2_WRITEBACK.ALL)

L3 Data Miss Ratio (L3_READS.DATA_READS.MISS + L3_WRITES.DATA_WRITES.MISS) / 
L3_DATA_REFERENCES.d

L3 Instruction Miss Ratio L3_READS.INST_READS.MISS / L3_READS.INST_READS.ALL

L3 Data Read Ratio L3_READS.DATA_READS.ALL / L3_DATA_REFERENCES.d

L3 Data Ratio L3_DATA_REFERENCES.d / L3_REFERENCES

L3 Instruction Ratio L3_READS.INST_READS.ALL / L3_REFERENCES
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7.6.1 L1 Instruction Cache and Prefetch

Table 7-16 and Figure 7-2 describes and summarizes the events that the Itanium processor provides 
to monitor the L1 instruction cache demand fetch and prefetch activity. Table 7-14 lists pertinent 
derived events. The instruction fetch monitors distinguish between demand fetch 
(L1I_DEMAND_READS, L2_INST_DEMAND_READS) and prefetch activity 
(L1I_PREFETCH_READS, L2_INST_PREFETCH_READS). The amount of data returned from 
the L2 into the L1 instruction cache and the Instruction Streaming Buffer is monitored by two 
events (L1I_FILLS, ISB_LINES_IN). The INSTRUCTION_EAR_EVENTS monitor (not shown in 
Figure 7-2) counts how many instruction cache or ITLB misses are captured by the instruction 
event address register. 

The L1 instruction cache and prefetch events can be qualified by the instruction address range 
check, but not by the opcode matcher. Since instruction cache and prefetch events occur early in the 
processor pipeline, they include events caused by speculative, wrong-path as well as predicated off 
instructions. Since the address range check is not based on actually retired, but speculative 
instruction addresses, event counts may be inaccurate when the range checker is confined to address 
ranges smaller than the length of the processor pipeline (see Section 6.2.4, “Intel® Itanium™ 
Instruction Address Range Check Register (PMC[13])” for details).

Table 7-16. L1 Instruction Cache and Instruction Prefetch Monitors

L1I and I-Prefetch Monitors Description

L1I_DEMAND_READS L1I and ISB Instruction Demand Lookups on page 96.

L1I_FILLS L1 Instruction Cache Fills on page 96.

L2_INST_DEMAND_READS L2 Instruction Demand Fetch Requests on page 98.

INSTRUCTION_EAR_EVENTS Instruction EAR Events on page 94.

L1I_PREFETCH_READS L1I and ISB Instruction Prefetch Lookups on page 97.

L2_INST_PREFETCH_READS L2 Instruction Prefetch Requests on page 99.

ISB_LINES_IN Instruction Streaming Buffer Lines In on page 95.

Figure 7-2. L1 Instruction Cache and Prefetch Monitors
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7.6.2 L1 Data Cache

Table 7-17 lists the Itanium processor’s seven L1 data cache monitors. As shown in Figure 7-3, the 
write-through L1 data cache services cacheable loads, Integer and RSE stores, FP memory 
operations, VHPT references, semaphores, check loads and hinted L2 memory references. 
DATA_REFERENCES_RETIRED is the number of issued data memory references. L1 data cache 
reads (L1D_READS_RETIRED) and L1 data cache misses (L1D_READ_MISSES_RETIRED) 
monitor the read hit/miss rate for the L1 data cache. The number of L2 data references 
(L2_DATA_REFERENCES.ALL) is the number of data requests prior to cache line merging. Unit 
mask selections allow breaking down into reads and writes. The DATA_EAR_EVENTS monitor 
(not shown in Figure 7-3) counts how many data cache or DTLB misses are captured by the data 
event address register. RSE operations are included in all data cache monitors, but are not broken 
down explicitly.

Table 7-17. L1 Data Cache Monitors

L1D Monitors Description

DATA_REFERENCES_RETIRED Retired Data Memory References on page 89.

L1D_READS_RETIRED L1 Data Cache Reads on page 96.

L1D_READ_MISSES_RETIRED L1 Data Cache Read Misses on page 96.

PIPELINE_FLUSH.L1D_WAY_MISPREDICT Pipeline Flush on page 106.

L1D_READ_FORCED_MISSES_RETIRED L1 Data Cache Forced Load Misses on page 95.

L2_DATA_REFERENCES.ALL L2 Data Read and Write References on page 97.

DATA_EAR_EVENTS L1 Data Cache EAR Events on page 89.

Figure 7-3. L1 Data Cache Monitors
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7.6.3 L2 Unified Cache

Table 7-18 summarizes the directly-measured events that monitor the Itanium processor L2 cache. 
Table 7-14 lists pertinent derived events. Refer to Figure 7-1 for a graphical view of the L2 cache 
monitors.

L2_REFERENCES, L2_INST_DEMAND_READS, L2_INST_PREFETCH_READS, 
L2_DATA_REFERENCES.ALL, and L2_MISSES are all counted in terms of number of requests 
seen by the L2. L2_FLUSHES and L2_FLUSH_DETAILS count and break-down the number of L2 
flushes due to address conflicts, store buffer conflicts, bus rejects, and other reasons. 
L1D_READ_FORCED_MISSES_RETIRED counts the number of loads that were bypassed from 
an earlier store. 

7.6.4 L3 Unified Cache

Table 7-19 summarizes the directly-measured L3 cache events. Table 7-14 lists pertinent derived 
events. Refer to Figure 7-1 for a graphical view of the L3 cache monitors.

Table 7-18. L2 Cache Monitors

L1 Monitors Description

L2_REFERENCES L2 References on page 99.

L2_INST_PREFETCH_READS L2 Instruction Prefetch Requests on page 99.

L2_INST_DEMAND_READS L2 Instruction Demand Fetch Requests on page 98.

L2_DATA_REFERENCES.ALL L2 Data Read and Write References on page 97.

L2_DATA_REFERENCES.READS L2 Data Read References on page 97.

L2_DATA_REFERENCES.WRITES L2 Data Write References on page 97.

L2_MISSES L2 Misses on page 99.

L2_FLUSHES L2 Flushes on page 98.

L2_FLUSH_DETAILS L2 Flush Details on page 98.

Table 7-19. L3 Cache Monitors

L2 Monitors Description

L3_REFERENCES L3 References on page 102.

L3_MISSES L3 Misses on page 100.

L3_LINES_REPLACED L3 Cache Lines Replaced on page 99.

L3_READS.ALL_READS.ALL Instruction and Data L3 Reads on page 100.

L3_READS.ALL_READS.HIT Instruction and Data L3 Read Hits on page 100.

L3_READS.ALL_READS.MISS Instruction and Data L3 Read Misses on page 100.

L3_READS.DATA_READS.ALL Data L3 Reads on page 100.

L3_READS.DATA_READS.HIT Data L3 Read Hits on page 101.

L3_READS.DATA_READS.MISS Data L3 Read Misses on page 101.

L3_READS.INST_READS.ALL Instruction L3 Reads on page 101.

L3_READS.INST_READS.HIT Instruction L3 Read Hits on page 101.

L3_READS.INST_READS.MISS Instruction L3 Read Misses on page 101.

L3_WRITES.ALL_WRITES.ALL L3 Writes on page 102.

L3_WRITES.ALL_WRITES.HIT L3 Write Hits on page 102.
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7.6.5 Frontside Bus

Table 7-20 lists the frontside bus or system bus transaction monitors.

L3_WRITES.ALL_WRITES.MISS L3 Write Misses on page 102.

L3_WRITES.L2_WRITEBACK.ALL L3 Writebacks on page 103.

L3_WRITES.L2_WRITEBACK.HIT L3 Writeback Hits on page 103.

L3_WRITES.L2_WRITEBACK.MISS L3 Writeback Misses on page 103.

L3_WRITES.DATA_WRITES.ALL L3 Data Writes on page 103.

L3_WRITES.DATA_WRITES.HIT L3 Data Write Hits on page 103.

L3_WRITES.DATA_WRITES.MISS L3 Data Write Misses on page 104.

Table 7-20. Bus Events

L2 Monitors Description

BUS_ALL Bus Transactions on page 80.

BUS_PARTIAL Bus Partial Transactions on page 84.

BUS_BURST Bus Burst Transactions on page 82.

BUS_MEMORY Bus Memory Transactions on page 84.

BUS_RD_ALL Bus Read Transactions on page 84.

BUS_RD_DATA Bus Read Data Transactions on page 84.

BUS_RD_PRTL Bus Read Partial Transactions on page 86.

BUS_RD_HIT
Bus Read Hit Clean Non-local Cache Transactions on 
page 85.

BUS_RD_HITM
Bus Read Hit Modified Non-local Cache Transactions on 
page 85.

BUS_RD_INVAL Bus Read Invalidated Line on page 85.

BUS_RD_INVAL_HITM Bus BIL Transaction Results in HITM on page 86.

BUS_RD_INVAL_BST Bus BRIL Burst Transactions on page 85.

BUS_RD_INVAL_BST_HITM Bus BRIL Burst Transaction Results in HITM on page 86.

BUS_HITM Bus Hit Modified Line Transactions on page 82.

BUS_WR_WB Bus Write Back Transactions on page 88.

BUS_SNOOPS_HITM Bus Snoops Hit Modified Cache Line on page 87.

BUS_SNOOPS Bus Snoops Total on page 87.

BUS_SNOOP_STALL_CYCLES Bus Snoop Stall Cycles on page 87.

BUS_SNOOPQ_REQ
Bus Snoop Queue Requests, Category: Frontside Bus on 
page 88.

BUS_BRQ_READ_REQ_INSERTED BRQ Requests Inserted on page 81.

BUS_IO IA-32 Compatible I/O Bus Transactions on page 82.

BUS_RD_IO IA-32 Compatible I/O Read Transactions on page 86.

BUS_LOCK IA-32 Compatible Bus Lock Transactions on page 83.

BUS_LOCK_CYCLES IA-32 Compatible Bus Lock Cycles on page 83.

Table 7-19. L3 Cache Monitors (Continued)

L2 Monitors Description
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Table 7-21 lists the derived frontside bus transaction monitors.

Most of the bus events in Section 7.6.5 can be qualified by the bus transaction initiator using the 
three way unit mask as described in Table 7-22.

Table 7-23 defines the conventions that will be used when describing the Itanium processor 
frontside bus transaction monitors in Section 7.6.5.

Other transactions besides those listed in Table 7-23 include Deferred Reply, Special Transactions, 
Interrupt, Interrupt Acknowledge, and Purge TC. For the bus performance monitors in 
Section 7.6.5, note that the monitors will count if any transaction gets a retry response from the 
priority agent.

Table 7-21. Frontside Bus Monitors (Derived)

Bus Monitors (Derived) Description  Performance Monitor Equation

BUS_RD_INSTRUCTIONS.d Bus Read Instructions BUS_RD_ALL - BUS_RD_DATA

BUS_RD_INVAL_MEMORY.d Bus BIL Transaction 
Satisfied from Memory

BUS_RD_INVAL - 
BUS_RD_INVAL_HITM

BUS_RD_INVAL_BST_MEMORY.d Bus BRIL Burst Transaction 
Satisfied from Memory

BUS_RD_INVAL_BST - 
BUS_RD_INVAL_BST_HITM

BUS_ADDR_BPRI.d Bus Used by I/O Agent BUS_MEMORY.IOAGENT

BUS_IOQ_LIVE_REQ.d In-order Bus Queue 
Requests

BUS_IOQ_LIVE_REQ_HI * 4 + 
BUS_IOQ_LIVE_REQ_LO

BUS_BRQ_LIVE_REQ.d BRQ Live Requests BUS_BRQ_LIVE_REQ_HI * 4 + 
BUS_BRQ_LIVE_REQ_LO

Table 7-22. Unit Masks for Qualifying Bus Transaction Events by Initiator

Selection PMC.umask[19:16] Description

ANY x001 Counts all bus transactions (initiated by any processor or 
non-processor bus masters)

SELF x010 Counts bus transactions initiated by the local processor only

IO x100 Counts bus transactions from IO agents, i.e. non-processor bus 
masters

Table 7-23. Conventions for Frontside Bus Transactions

Name Description

BRL  Memory Read (64 byte bursts). Includes code fetches and data loads from WB memory.

BRIL Memory Read & Invalidate (64 byte bursts). Also known as read for ownership (RFO).

BIL  Memory Read & Invalidate (0 byte sized transaction). Caused by flush cache (fc) instruction only. 

BWL Memory Write (64 byte bursts). Explicit writebacks/coalesced writes.

BRP Partial Memory Reads (<64 byte transactions). Typically, uncacheable reads.

BWP Partial Memory Write (<64 byte transactions). Typically, uncacheable writes.

IORD Partial IO Read (<64 byte transactions). Uncacheable read to IO port space.

IOWR Partial  IO Write (<64 byte transactions). Uncacheable write to IO port space.
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To support the analysis of snoop traffic in a multiprocessor system, the Itanium processor provides 
local processor and remote response monitors. The local processor snoop events 
(BUS_SNOOPS_HITM, BUS_SNOOPS, BUS_SNOOPQ_REQ) monitor inbound snoop traffic. 
The remote response events (BUS_RD_HIT, BUS_RD_HITM, BUS_RD_INVAL_HITM, 
BUS_RD_INVAL_BST_HITM) monitor the snoop responses of other processors to bus 
transactions that the monitoring processor originated. Table 7-24 summarizes the remote snoop 
events by bus transaction.

With the Itanium processor frontside bus monitors, the performance metrics described in Table 7-25 
can be computed.

Table 7-24. Bus Events by Snoop Response

Remote Processor 
Response BRL BIL BRIL

HIT BUS_RD_HIT NA NA

HITM BUS_RD_HITM BUS_RD_INVAL_HITM BUS_RD_INVAL_BST_HITM

ALL BUS_RD_ALL BUS_RD_INVAL BUS_RD_INVAL

Table 7-25. Bus Performance Metrics

Performance Metric Performance Monitor Equation

Cacheable Data Fetch Bus Transaction Ratio BUS_RD_DATA/BUS_ALL or 
BUS_RD_DATA/BUS_MEMORY

Partial Access Ratio BUS_PARTIAL/BUS_MEMORY

Read Partial Access Ratio BUS_RD_PRTL/BUS_MEMORY

Read Hit To Shared Line Ratio BUS_RD_HIT/BUS_RD_ALL or BUS_MEMORY

Read Hit to Modified Line Ratio BUS_RD_HITM/BUS_RD_ALL or 
BUS_RD_HITM/BUS_MEMORY

BIL Ratio BUS_RD_HIT/BUS_MEMORY

BIL Hit to Modified Line Ratio BUS_RD_INVAL_HITM/BUS_MEMORY or 
BUS_RD_INVAL_HITM/BUS_RD_INVAL

BRIL Hit to Modified Line Ratio BUS_RD_INVAL_BST_HITM/BUS_MEMORY or 
BUS_RD_INVAL_BST_HITM/BUS_RD_INVAL

Bus Modified Line Hit Ratio BUS_RD_HITM/BUS_MEMORY or 
BUS_RD_HITM/BUS_BURST

Writeback Ratio BUS_WR_WB/BUS_MEMORY or 
BUS_WR_WB/BUS_BURST

Cacheable Read Ratio  (BUS_RD_ALL + BUS_RD_INVAL_BST)/BUS_MEMORY

I/O Cycle Ratio BUS_IO/BUS_ALL

I/O Read BUS_RD_IO/BUS_ALL
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7.7 System Events

Table 7-26 lists the directly measurable system and TLB events. Table 7-27 lists pertinent derived 
events. The debug register match events count how often the address in any instruction or data 
break-point register (IBR or DBR) matches the current retired instruction pointer 
(CODE_DEBUG_REGISTER_MATCHES.d) or the current data memory address 
(DATA_DEBUG_REGISTER_MATCHES.d). PIPELINE_FLUSH counts the number of times the 
Itanium processor pipeline is flushed due to a data translation cache miss, L1 data cache way 
mispredict, an exception flush or an instruction serialization event. CPU_CPL_CHANGES counts 
the number of privilege level transitions due to interruptions, system calls (epc) and returns 
(demoting branch), and rfi instructions. CPU_CYCLES counts the number of cycles the CPU is 
not powered down or in light HALT state.

Table 7-27 defines derived system and TLB events that are computed from events directly measured 
by hardware. 

The Itanium processor instruction and data TLBs and the virtual hash page table walker are 
monitored by the events described in Table 7-26 and Table 7-27. Figure 7-4 gives a graphical 
summary. Table 7-28 lists the TLB performance metrics that can be computed using these events. 

ITLB_REFERENCES.d and DTLB_REFERENCES.d are derived from the respective 
instruction/data cache access events. Note that ITLB_REFERENCES.d does not include prefetch 
requests made to the L1I cache (L1I_PREFETCH_READS). This is because prefetches are 
cancelled when they miss in the ITLB and thus do not trigger VHPT walks or software TLB miss 
handling. ITLB_MISSES_FETCH and DTLB_MISSES count TLB misses. 

Table 7-26. System and TLB Monitors

System and Processor TLB Monitors Description

PIPELINE_FLUSH Pipeline Flush on page 106.

CPU_CPL_CHANGES Privilege level changes on page 88.

CPU_CYCLES CPU Cycles on page 88.

ITLB_MISSES_FETCH ITLB Demand Misses on page 95.

ITLB_INSERTS_HPW Hardware Page Walker Inserts into the ITLB on page 95.

DTC_MISSES DTC Misses on page 90.

DTLB_MISSES DTLB Misses on page 90.

DTLB_INSERTS_HPW Hardware Page Walker Inserts into the DTLB on page 90.

Table 7-27. System and TLB Monitors (Derived)

Derived Memory Hierarchy Monitors Description Performance Monitor Equation

CODE_DEBUG_REGISTER_MATCHES.d Code Debug Register 
Matches

IA64_TAGGED_INST_RETIRED

DATA_DEBUG_REGISTER_MATCHES.d Data Debug Register 
Matches

LOADS_RETIRED + 
STORES_RETIRED

ITLB_REFERENCES.d ITLB References L1I_DEMAND_READS

ITLB_EAR_EVENT.d ITLB EAR Event INSTRUCTION_EAR_EVENTS

DTLB_REFERENCES.d DTLB References DATA_REFERENCES_RETIRED

DTLB_EAR_EVENT.d DTLB EAR Event DATA_EAR_EVENTS
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ITLB_INSERTS_HPW and DTLB_INSERTS_HPW count the number of instruction/data TLB 
inserts performed by the virtual hash page table walker. The Itanium processor data TLB is a two 
level TLB; DTC_MISSES counts the number of first level data TLB misses.

7.8 Performance Monitor Event List

This section enumerates Itanium processor performance monitoring events.

ALAT_REPLACEMENT.ALL

• Title: ALAT Entries Replaced by Any Instruction, Category: Execution

• Definition: ALAT_REPLACEMENT.ALL counts the number of times an advanced load 
(ld.a or ld.as or ldfp.a or ldfp.as) or a no-clear check load (ld.c.nc and 
variants of ldf.c.nc) displaced a valid entry in the ALAT

• Event Code: 0x38, Umask: xx11, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

Table 7-28. TLB Performance Metrics

Performance Metric Performance Monitor Equation

ITLB Miss Ratio ITLB_MISSES_FETCH / ITLB_REFERENCES.d

DTLB Miss Ratio DTLB_MISSES / DTLB_REFERENCES.d

DTC Miss Ratio DTC_MISSES / DTLB_REFERENCES.d

Figure 7-4. Instruction and Data TLB Monitors
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ALAT_REPLACEMENT.FP

• Title: ALAT Entries Replaced by FP Instructions, Category: Execution

• Definition: ALAT_REPLACEMENT.FP counts the number of times a FP advanced load 
(ldfp.a or ldfp.as) or a no-clear FP check load (variants of ldf.c.nc) displaced 
a valid entry in the ALAT

• Event Code: 0x38, Umask: xx10, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

ALAT_REPLACEMENT.INTEGER

• Title: ALAT Entries Replaced by Integer Instructions, Category: Execution

• Definition: ALAT_REPLACEMENT.INTEGER counts the number of times an integer 
advanced load (ld.a or ld.as) or a no-clear integer check load (ld.c.nc) displaced 
a valid entry in the ALAT

• Event Code: 0x38, Umask: xx01, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

ALAT_INST_CHKA_LDC.ALL

• Title: Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.ALL counts the number of all advanced load 
checks (chk.a) and check loads in both clear and no-clear forms (ld.c.clr or 
ld.c.nc, including FP variants) as seen by the ALAT

• Event Code: 0x36, Umask: xx11, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no for chk.a, and yes for ld.c

ALAT_INST_CHKA_LDC.FP

• Title: FP Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.FP counts all FP advanced load checks (chk.a) 
and all FP check loads in both clear and no-clear forms (ld.c.clr or ld.c.nc, FP 
variants only) as seen by the ALAT

• Event Code: 0x36, Umask: xx10, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no for chk.a, and yes for ld.c
Performance Monitor Events 65



ALAT_INST_CHKA_LDC.INTEGER

• Title: Integer Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.INTEGER counts all integer advanced load 
checks (chk.a) and all integer check loads in both clear and no-clear forms 
(ld.c.clr or ld.c.nc, excluding FP variants) as seen by the ALAT

• Event Code: 0x36, Umask: xx01, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.ALL

• Title: Failed Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.ALL counts failed advanced load 
checks (chk.a) and failed check loads in both clear and no-clear forms (ld.c.clr or 
ld.c.nc, including FP variants) as seen by the ALAT

• Event Code: 0x37, Umask: xx11, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.FP

• Title: Failed FP Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.FP counts failed FP advanced load 
checks (chk.a) and failed FP check loads in both clear and no-clear forms (ld.c.clr 
or ld.c.nc, FP variants only) as seen by the ALAT

• Event Code: 0x37, Umask: xx10, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.INTEGER

• Title: Failed Integer Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.INTEGER counts the number of failed 
integer advanced load checks (chk.a) and failed integer check loads in both clear and 
no-clear forms (ld.c.clr or ld.c.nc, excluding FP variants) as seen by the ALAT

• Event Code: 0x37, Umask: xx01, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no for chk.a, and yes for ld.c
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ALL_STOPS_DISPERSED

• Title: Implicit and Explicit Stops Dispersed, Category: Instruction Issue

• Definition: ALL_STOPS_DISPERSED counts the sum of explicit programmer-speci-
fied stops (EXPL_STOPS_DISPERSED) and dispersal breaks due to resource limita-
tions and branch instructions (independent of their predicate prediction).The sum 
includes stops encountered during hardware speculative wrong-path execution (i.e., in 
the shadow of a flush)

• Event Code: 0x2F, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

BRANCH_EVENT

• Title: Branch Event Captured, Category: Branch

• Definition: BRANCH_EVENT counts the number of branch events, including multiway 
branches captured by the Branch Trace Buffer.

• Event Code: 0x11, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS

• Title: All Branch Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS counts all 
branch predictions made on multiway branch bundles

• Event Code:  0x0E, Umask: 0000, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS counts 
all branch predictions on multiway branch bundles that do not necessitate a back-end 
branch misprediction flush

• Event Code: 0x0E, Umask: 0001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH

• Title: Incorrect Predicate Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH counts the number 
of multiway branch bundles whose combined predicate is incorrectly predicted. This 
includes bundles where all branch instructions are predicted not-taken and any one 
instruction is actually taken, and those bundles where a branch instruction was predicted 
taken and either a prior branch instruction in the bundle was actually taken or the pre-
dicted instruction was not taken. In any event, the processor resteers the front-end to the 
correct target, i.e., a given multiway bundle can only be mispredicted once

• Event Code: 0x0E, Umask: 0010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET

• Title: Incorrect Target Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET counts the num-
ber of multiway branch bundles where a branch instruction is correctly predicted taken, 
but its target is incorrect

• Event Code:  0x0E, Umask: 0011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS

• Title: All Branch Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS is analogous 
to BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS, except it applies only 
to multiway branch bundles where all branch instructions are actually not taken

• Event Code:  0x0E, Umask: 1000, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS is 
analogous to BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS, 
except it applies only to multiway branch bundles where all branch instructions are actu-
ally not taken

• Event Code: 0x0E, Umask: 1001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH

• Title: Incorrect Predicate Predictions on Not-Taken Multiway Bundles, Category: 
Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH is analogous to 
BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH, except it applies only to multi-
way branch bundles where all branch instructions are actually not taken

• Event Code: 0x0E, Umask: 1010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET

• Title: Incorrect Target Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET should always 
count zero, as not-taken branches do not specify a branch target

• Event Code: 0x0E, Umask: 1011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS

• Title: All Branch Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS is analogous to 
BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS, except it applies only to 
multiway branch bundles where at least one branch instruction is taken

• Event Code:  0x0E, Umask: 1100, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS is analogous 
to BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS, except it applies 
only to multiway branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_MULTIWAY.TAKEN.WRONG_PATH

• Title: Incorrect Predicate Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_PATH is analogous to 
BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH, except it applies only to multi-
way branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_MULTIWAY.TAKEN.WRONG_TARGET

• Title: Incorrect Target Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_TARGET should equal 
BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET, since only multiway branch 
bundles where at least one branch instruction is taken actually specify a target

• Event Code: 0x0E, Umask: 1111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED 
counts the number of correct not-taken predicate predictions on not-taken branches, 
independent of predictor

• Event Code: 0x0F, Umask: 0010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED 
counts the number of correct taken predicate predictions on taken branches, independent 
of predictor. Only the predicate must be correct; resteers to incorrect targets are also 
counted by this monitor as long as the branch is actually taken

• Event Code: 0x0F, Umask: 0011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED 
counts the number of incorrect taken predicate predictions on not-taken branches, inde-
pendent of predictor

• Event Code: 0x0F, Umask: 0000, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED 
counts the number of incorrect not-taken predicate predictions on taken branches, inde-
pendent of predictor

• Event Code: 0x0F, Umask: 0001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions made in the first pipeline stage, 

Category: Branch

• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDIC
TED should always count zero, as the TAR is the only predictor in the first stage of the 
core pipeline and it only makes taken predictions

• Event Code: 0x0F, Umask: 0110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the first pipeline stage, Category: 

Branch

• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDIC
TED counts the number of correct taken predicate predictions on taken branches made 
by the TAR in the first stage of the core pipeline. Only the predicate must be correct; 
resteers to incorrect targets are also counted by this monitor as long as the branch is actu-
ally taken. There are 0 bubbles between the branch and its predicted target

• Event Code: 0x0F, Umask: 0111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the first pipeline stage, Category: 
Branch

• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PRED
ICTED counts the number of incorrect taken predicate predictions on not-taken 
branches, made by the TAR in the first stage of the core pipeline

• Event Code: 0x0F, Umask: 0100, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no 

BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the first pipeline stage, Category: 
Branch

• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PRED
ICTED should always count zero, as the TAR is the only predictor in the first stage of 
the core pipeline and it only makes taken predictions

• Event Code: 0x0F, Umask: 0101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the second pipeline stage, Category: 
Branch

• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct not-taken predicate predictions on not-taken 
branches made by the BPT/MBPT in the second stage of the core pipeline

• Event Code:  0x0F, Umask: 1010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the second pipeline stage, Category: 
Branch

• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches by the 
BPT/MBPT or the TAC in the second stage of the core pipeline. Only the predicate must 
be correct; resteers to incorrect targets are also counted by this monitor as long as the 
branch is actually taken. There is 1 bubble between the branch and its predicted target

• Event Code: 0x0F, Umask: 1011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the second pipeline stage
Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken 
branches made by the BPT/MBPT or the TAC in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1000, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions made in the second pipeline stage, 
Category:  Branch

• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect not-taken predicate predictions on taken 
branches made by the BPT/MBPT in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions made in the third pipeline stage, 
Category:  Branch

• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct not-taken predicate predictions on not-taken 
branches made by the BAC in the third stage of the core pipeline, including overrides of 
TAR taken predictions (made in the first stage) on the last instances of loop-closing 
branches

• Event Code: 0x0F, Umask: 1110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the third pipeline stage, Category: 
Branch

• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches made 
by the BAC in the third stage of the core pipeline. Only the predicate must be correct; 
resteers to incorrect targets are also counted by this monitor as long as the branch is actu-
ally taken. There are 2 bubbles between the branch and its predicted target (or 3, if the 
target must be computed for a branch syllable in slot 0 or 1)

• Event Code:  0x0F, Umask: 1111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the third pipeline stage, Category: 
Branch

• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken 
branches made by the BAC in the third stage of the core pipeline

• Event Code: 0x0F, Umask: 1100, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions made in the third pipeline stage, 
Category:  Branch

• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect not-taken predicate predictions on taken 
branches made by the BAC in the third stage of the core pipeline, including overrides of 
TAR taken predictions (made in the first stage) on the last instances of loop-closing 
branches

• Event Code: 0x0F, Umask: 1101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS

• Title: All Branch Predictions, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS counts all branch pre-
dictions, which take place in the front-end of the processor. Note that this number does 
not necessarily equal the total number of branch instructions in the code, as branch pre-
dictions are made on a bundle basis (i.e., there is only one prediction per multiway 
branch bundle)

• Event Code: 0x10, Umask: 0000, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS counts all 
branch predictions that do not necessitate a back-end branch misprediction flush, inde-
pendent of predictor. A mismatch between the predicted and actual values of the branch 
predicate or target results in a branch misprediction. Return branches must additionally 
predict privilege level and previous function state

• Event Code: 0x10, Umask: 0001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.ALL.WRONG_PATH

• Title: Incorrect Predicate Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.WRONG_PATH counts branch mispredic-
tions that result from a mismatch of the predicted and actual values of the branch predi-
cate, independent of predictor

• Event Code: 0x10, Umask: 0010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.ALL.WRONG_TARGET

• Title: Incorrect Target Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.WRONG_TARGET counts branch mispre-
dictions that result from a mismatch of the predicted and actual values of the branch tar-
get, independent of predictor

• Event Code: 0x10, Umask: 0011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS counts the 
number of branch predictions made in the first stage of the core pipeline by the TAR. 
The TAR is the only predictor operating in that stage of the pipeline and it only makes 
taken predictions. The PLP in the third stage may override a TAR predicate prediction 
on a loop-closing branch. The prediction flow is as follows:

if (TAR Hit)
monitor++
Read Target from TAR

• Event Code: 0x10, Umask: 0100, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS counts 
the number of branches correctly predicted taken by the TAR, both in predicate and tar-
get

• Event Code: 0x10, Umask: 0101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH counts the number 
of actually not-taken branches predicted by the TAR (excluding overrides by the PLP)

• Event Code: 0x10, Umask: 0110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET counts the num-
ber of taken branches that were resteered to an incorrect target by the TAR

• Event Code: 0x10, Umask: 0111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS counts the 
number of branch predictions made in the second stage of the core pipeline. The follow-
ing structures operate in that stage: BPT and MBPT (for predicates), TAC and RSB (for 
targets). Predictions are made in the second stage only if no predictions were made dur-
ing the first stage. Any prediction made in this stage will be counted, except when a 
taken predicate prediction is made by the BPT/MBPT on a non-return branch and no tar-
get is available from the TAC. The branch prediction structures interact in the following 
manner:

if ((BPT Hit) or (MBPT Hit))
if (Predicted Taken) 

if (Predicted Return Branch)
monitor++
Read Target from RSB

else
if (TAC Hit)

monitor++
Read Target from TAC

else
Get Target from BAC in the 3rd Stage

else
monitor++
Follow Sequential Path

else

if (TAC Hit)
monitor++
Read Target from TAC

else
Follow Sequential Path

• Event Code: 0x10, Umask: 1000, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS counts 
the number of correct predicate predictions made by the BPT/MBPT or the TAC in the 
second stage of the core pipeline. If the predicate prediction is taken, the correct target 
must be provided during that stage by the RSB or the TAC. Correct taken predicate pre-
dictions made by the BPT/MBPT on non-return branches that miss the TAC require the 
BAC to provide a target in the third stage and are not counted by this monitor

• Event Code: 0x10, Umask: 1001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the second pipeline stage, Category: 
Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH counts the number 
of incorrect not-taken predicate predictions made in the second stage of the core pipe-
line, and the number of incorrect taken predicate predictions made in that stage if a target 
was also provided

• Event Code: 0x10, Umask: 1010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET counts the 
number of branches that were correctly predicted taken by the BPT/MBPT or TAC, but 
were resteered to an incorrect target by the RSB or the TAC

• Event Code: 0x10, Umask: 1011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS counts the 
number of branch predictions made in the third stage of the core pipeline by the BAC. 
The BAC can make both predicate predictions (based on the whether hint field of the 
branch) and target predictions, in the following manner:

if (TAR Hit)
if (Predicted Last Instance of Loop-Closing Branch)

monitor++
PLP Override of TAR Taken Prediction
Resteer Frontend to Sequential Address

else 
if ((BPT Hit) or (MBPT Hit))

if (Predicted Taken)
if (not (TAC Hit))

if (not (Predicted Return Branch))
monitor++
Compute Target

else
if (not (TAC Hit))

monitor++
Read Whether Hint Field for Predicate Prediction
if (Predicted Taken)

Read BType Field for Type Information
if (Indirect Branch)

Read Target from RSB
else

Compute Target
else

Follow Sequential Path
78 Performance Monitor Events



• Event Code: 0x10, Umask: 1100, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS counts 
the number of correct branch predictions made by the BAC, including target predictions 
of branches whose predicate was supplied by a different predictor. For predicted-taken 
branches, both predicate and target must be correct

• Event Code: 0x10, Umask: 1101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the third pipeline stage, Category: 
Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH counts branches 
whose predicate was incorrectly predicted by the BAC (based on the whether hint field 
of the branch), and not-taken branches whose taken predicate prediction by another pre-
dictor caused the BAC to supply a target

• Event Code: 0x10, Umask: 1110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET counts taken 
branches that were correctly predicted taken by any predictor, but whose target was 
incorrectly supplied by the BAC

• Event Code: 0x10, Umask: 1111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no
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BRANCH_TAKEN_SLOT

• Title: Taken Branch Detail, Category: Branch

• Definition: BRANCH_TAKEN_SLOT monitors which slot number in a branch bundle 
(single-way or multiway) a taken branch occupies, or records that there were no taken 
branches in the given branch bundle. Use this monitor behind the downstream opcode 
matcher, rather than IA64_TAGGED_INST_RETIRED, to count dynamic br.calls and 
br.rets.

• Event Code: 0x0D, Umask: See below, PMC/PMD: 4,5,6,7  Max. Increment/Cycle: 
1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

The SLOT_MASK unit mask defined by Table 7-29 allows profiling of taken branches 
based on their instruction slot number. If multiple bits are set in the SLOT_MASK, all 
the set cases are included in the event count. The processor uses the following equation 
to determine the event outcome in each cycle:

(PMC.umask{16} 
and (branch in slot 0 is taken))

or (PMC.umask{17}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is taken))

or (PMC.umask{18}
and (branch in slot 0 is NOT taken) 
and (branch in slot 1 is NOT taken)
and (branch in slot 2 is taken))

or (PMC.umask{19}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken)
and (branch in slot 2 is NOT taken))

BUS_ALL

• Title: Bus Transactions Category:  Frontside Bus

• Definition: BUS_ALL counts all transactions issued on the bus.  These include BRL, 
BRIL, BIL, BWL, BRP, BWP, IORD, IOWR, and the other transactions.

• Event Code: 0x47, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Table 7-29. Slot unit mask for BRANCH_TAKEN_SLOT

SLOT_MASK
PMC.umask 

{19:16}
Description

Instruction Slot 0 xxx1 Count if branch in slot 0 is first taken branch

Instruction Slot 1 xx1x Count if branch in slot 1 is first taken branch

Instruction Slot 2 x1xx Count if branch in slot 2 is first taken branch

No taken branch 1xxx Count if NO branch was taken
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BUS_BRQ_LIVE_REQ_LO and BUS_BRQ_LIVE_REQ_HI

• Title: BRQ Live Requests, Category: Frontside Bus 

• Definition: BUS_BRQ_LIVE_REQ counts the number of live entries in the bus request 
queue (BRQ). These events include L3 cache reads, BRL, BRIL, BRP, and IORD 
memory transactions. The count excludes cache line write backs, partial writes (BWP 
and IOWR) and write coalescing read for ownership transactions, since these have their 
own write queue. This performance monitor increments its count each core clock (not 
bus clock).

• Event Code: 0x5c (HI), 0x5b (LO), Umask: Ignored, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 2 (each)

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Two hardware events are needed to count this:

BUS_BRQ_LIVE_REQ_HI - counts the two most significant bit of the 4-bit outstanding 
BRQ request count

BUS_BRQ_LIVE_REQ_LO - counts the two least significant bit of the 4-bit 
outstanding BRQ request count

BUS_BRQ_READ_REQ_INSERTED

• Title: BRQ Requests Inserted Category: Frontside Bus 

• Definition: BUS_BRQ_READ_REQ_INSERTED counts the number of reads (BRL) 
and read for ownership (BRIL) requests that are inserted into the BRQ. The count 
excludes cache line write backs, partial and coalescing writes, since these have their own 
write queue.

• Event Code: 0x5d, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BRQ inserts can be used to directly measure combined far cache/BUS latencies as 
follows: 

   avg_brq_req_outstanding_per_cycle = (BUS_BRQ_LIVE_REQ/delta(cycles))

   avg_brq_latency = (BUS_BRQ_LIVE_REQ / BUS_BRQ_READ_REQ_INSERTED) 

The only caveat is that the tracked BRQ inserts holds read and read for ownership, but 
not write coalescing write backs.
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BUS_BURST

• Title: Bus Burst Transactions Category: Frontside Bus 

• Definition: BUS_BURST counts the number of full cache line (burst mode) bus memory 
transactions.  These include BRL, BRIL, and BWL transactions.

• Event Code: 0x49, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_HITM

• Title: Bus Hit Modified Line Transactions Category: Frontside Bus 

• Definition: BUS_HITM counts the number of memory transactions which caused HITM 
to be asserted. The following memory transactions are included in the performance 
monitor: BRL, BWL, BRIL, and BIL. Only events originated by this processor are 
counted.

• Event Code: 0x44, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_IO

• Title: IA-32 Compatible I/O Bus Transactions Category: Frontside Bus

• Definition: BUS_IO counts the number of I/O transactions.  These include either IORD 
or IOWR transactions.

• Event Code: 0x50, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: only the “Any” and “Self” unit masks are supported.
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BUS_IOQ_LIVE_REQ_LO and BUS_IOQ_LIVE_REQ_HI

• Title: In-Order Bus Queue Results, Category: Frontside Bus 

• Definition: BUS_IOQ_LIVE_REQ counts the number of live bus requests in the in order 
bus queue.  This performance monitor increments its count each core clock (not bus 
clock).

• Event Code: 0x58 (HI), 0x57 (LO), Umask: Ignored, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 3 (each)

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_IOQ_LIVE_REQ can then be computed as BUS_IOQ_LIVE_REQ_HI*4 + 
BUS_IOQ_LIVE_REQ_LO

Two hardware events are needed to count this:

BUS_IOQ_LIVE_REQ_HI - counts the two most significant bit write backs of the 4-bit 
outstanding IOQ request count

BUS_IOQ_LIVE_REQ_LO - counts the two least significant bits of the 4-bit 
outstanding IOQ request count

BUS_LOCK

• Title: IA-32 Compatible Bus Lock Transactions Category: Frontside Bus 

• Definition: BUS_LOCK counts the number of IA-32 compatible bus lock transactions.

• Event Code: 0x53, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: Only the “Any” unit mask is supported.

BUS_LOCK_CYCLES

• Title: IA-32 Compatible Bus Lock Cycles Category: Frontside Bus 

• Definition: BUS_LOCK_CYCLES counts the number of bus clocks that the bus is 
locked due to IA-32 compatible bus lock transactions.

• Event Code: 0x54, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: Only the “Any” unit mask is supported.  
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BUS_MEMORY

• Title: Bus Memory Transactions Category: Frontside Bus 

• Definition: BUS_MEMORY counts the number of bus memory transactions.  These 
include BRL, BRIL, BIL, BWL, BRP, and BWP transactions.

• Event Code: 0x4a, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_PARTIAL

• Title: Bus Partial Transactions Category: Frontside Bus 

• Definition: BUS_PARTIAL counts the number of partial bus memory transactions. 
These include BRP and BWP transactions.

• Event Code: 0x48, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7 

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_ALL

• Title: Bus Read Transactions Category: Frontside Bus 

• Definition: BUS_RD_ALL counts the number of BRL memory transactions.  These 
include both code and data BRL transactions.

• Event Code: 0x4b, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_DATA

• Title: Bus Read Data Transactions Category: Frontside Bus 

• Definition: BUS_RD_DATA counts the number of BRL data transactions. 

• Event Code: 0x4c, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no
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BUS_RD_HIT

• Title: Bus Read Hit Clean Non-local Cache Transactions Category: Frontside Bus 

• Definition: BUS_RD_HIT counts the number of BRL memory transactions which 
caused HIT to be asserted. Only events originated by this processor are counted.

• Event Code: 0x40, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_HITM

• Title: Bus Read Hit Modified Non-local Cache Transactions Category: Frontside Bus 

• Definition: BUS_RD_HITM counts the number of BRL memory transactions which 
caused HITM to be asserted. Only events originated by this processor are counted.

• Event Code: 0x41, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_INVAL

• Title: Bus Read Invalidated Line Category: Frontside Bus 

• Definition: BUS_RD_INVAL counts the number of BIL memory transactions. On 
Itanium processors, these transactions are only generated from flush cache instructions.

• Event Code: 0x4e, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_INVAL_BST

• Title: Bus BRIL Burst Transactions Category: Frontside Bus 

• Definition: BUS_RD_INVAL counts the number of BRIL memory transactions.  These 
transactions are typically generated from memory stores, RFO (read for ownership) 
events.

• Event Code: 0x4f, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no
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BUS_RD_INVAL_HITM

• Title: Bus BIL Transaction Results in HITMCategory: Frontside Bus 

• Definition: BUS_RD_INVAL_HITM counts the number of BIL transactions which 
caused HITM to be asserted.Only events originated by this processor are counted.

• Event Code: 0x42, Umask: Ignored, PMC/PMD:4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_INVAL_BST_HITM

• Title: Bus BRIL Burst Transaction Results in HITM Category: Frontside Bus 

• Definition: BUS_RD_INVAL_BST_HITM counts the number of BRIL transactions 
which caused HITM to be asserted. Only events originated by this processor are counted.

• Event Code: 0x43, Umask: Ignored, PMC/PMD:4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_RD_IO

• Title: IA-32 Compatible I/O Read Transactions Category: Frontside Bus 

• Definition: BUS_RD_IO counts the number of IORD transactions.

• Event Code: 0x51, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: Only the “Any” and “Self” unit masks are supported.

BUS_RD_PRTL

• Title: Bus Read Partial Transactions Category: Frontside Bus 

• Definition: BUS_RD_PRTL counts the number of partial read memory transactions. 
These include BRP transactions.

• Event Code: 0x4d, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no
86 Performance Monitor Events



BUS_SNOOPS

• Title: Bus Snoops Total Category: Frontside Bus 

• Definition: BUS_SNOOPS counts the number of internal snoops generated from bus 
memory transactions.

• Event Code: 0x46, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: Only the “Any” unit mask is supported. “Any” counts the number of internal snoops gener-
ated from all bus transactions.

BUS_SNOOPS_HITM

• Title: Bus Snoops Hit Modified Cache Line Category: Frontside Bus 

• Definition: BUS_SNOOPS_HITM counts the number of internal snoops (generated 
from bus memory transactions) which hit a modified line in the local processor.

• Event Code: 0x45, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: Only the “Any” mask is supported. “Any” counts the number of internal snoops, generated 
from all transactions, which hit a modified line.

BUS_SNOOP_STALL_CYCLES

• Title: Bus Snoop Stall Cycles Category: Frontside Bus 

• Definition: BUS_SNOOP_STALL_CYCLES counts the number of bus clocks that the 
bus is stalled due to snoop stalls.

• Event Code: 0x55, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

Note: Only “Self” and “Any” unit masks are supported. “Self” counts the number of snoop stalls 
generated due to memory transactions initiated by the local processor. “Any” counts all 
snoop stalls (those generated due to memory transactions initiated by the local processor, 
other processors, and the priority agent).
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BUS_SNOOPQ_REQ

• Title: Bus Snoop Queue Requests, Category: Frontside Bus 

• Definition: BUS_SNOOPQ_REQ counts the number of outstanding memory 
transactions that have not completed the snoop phase. This performance monitor 
increments its count each core clock (not bus clock). BUS_SNOOPQ_REQ is not 
equivalent to the number of valid entries in the snoop queue. This is due to the fact that 
entries can stay in the snoop queue beyond the snoop phase (e.g. for implicit write 
backs).

• Event Code: 0x56, Umask: Ignored, PMC/PMD:4, 5, Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

BUS_WR_WB

• Title: Bus Write Back Transactions Category: Frontside Bus 

• Definition: BUS_WR_WB counts the number of BWL memory transactions. These 
transactions are generated from either explicit write backs or coalescing writes. 
Currently, these will count BWL (if snoops are disabled).

• Event Code: 0x52, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

CPU_CPL_CHANGES

• Title: Privilege level changes, Category: System

• Definition: CPU_CPL_CHANGES counts the number of privilege level changes

• Event Code: 0x34, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

CPU_CYCLES

• Title: CPU Cycles, Category: System

• Definition: CPU_CYCLES counts elapsed processor cycles

• Event Code: 0x12, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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DATA_ACCESS_CYCLE

• Title: Data Access Stall Cycles, Category: Stall

• Definition: DATA_ACCESS_CYCLE counts the number of cycles that the pipeline is 
stalled or flushed due to instructions waiting for data on cache misses, L1D way mispre-
dictions, and DTC misses.

• Event Code: 0x03, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

DATA_EAR_EVENTS

• Title: L1 Data Cache EAR Events, Category: L1 Data Cache

• Definition: DATA_EAR_EVENTS counts the number of data cache or DTLB events 
captured by the Data Cache Unit Event Address Register

• Event Code: 0x67, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

DATA_REFERENCES_RETIRED

• Title: Retired Data Memory References, Category: L1 Data Cache

• Definition: DATA_REFERENCES_RETIRED counts the number of data memory refer-
ences retired by the processor memory pipeline. The count includes check loads, 
uncacheable accesses, RSE operations, VHPT memory references, semaphores, and FP 
memory references. Predicated off operations are excluded

• Event Code: 0x63, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes

DEPENDENCY_ALL_CYCLE

• Title: Scoreboard Dependency and Dispersal Break Cycles, Category:  Stall

• Definition: DEPENDENCY_ALL_CYCLE counts the number of cycles attributable to 
data (scoreboard) dependency on integer or FP operations (not counting cache/memory 
access), or issue-limit stalls (e.g., implicit and explicit stops). Floating-point flushes and 
delays due to control and application register reads and writes are factored in as well.

• Event Code: 0x06, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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DEPENDENCY_SCOREBOARD_CYCLE

• Title: Scoreboard Dependency Cycles, Category:  Stall

• Definition: DEPENDENCY_SCOREBOARD_CYCLE counts the number of cycles 
attributable to data (scoreboard) dependency on integer or FP operations (not counting 
cache/memory access). Floating-point flushes and delays due to control and application 
register reads and writes are factored in as well.

• Event Code: 0x02, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

DTC_MISSES

• Title: DTC Misses, Category: System

• Definition: DTC_MISSES counts the number of DTC misses for data requests

• Event Code: 0x60, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

DTLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts into the DTLB, Category: System

• Definition: DTLB_INSERTS_HPW counts the number of DTLB inserts completed by 
the hardware page table walker

• Event Code: 0x62, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

DTLB_MISSES

• Title: DTLB Misses, Category: System

• Definition: DTLB_MISSES counts the number of DTLB misses for demand requests

• Event Code: 0x61, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no
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EXPL_STOPS_DISPERSED

• Title: Explicit Stops Dispersed, Category: Instruction Issue

• Definition: EXPL_STOPS_DISPERSED counts the number of explicit program-
mer-specified stops, including those encountered during hardware speculative 
wrong-path execution

• Event Code: 0x2E, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

FP_OPS_RETIRED_HI

• Title: FP Operations Retired (High), Category: Execution

• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the 
derived event FP_OPS_RETIRED.d which is the weighted sum of retired FP operations

• Event Code: 0x0A, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

FP_OPS_RETIRED.d, a derived value, is computed as FP_OPS_RETIRED_HI * 4 + 
FP_OPS_RETIRED_LO. Weights for individual FP ops: fnorm=1, fadd=1, fmpy=1, 
fma=2, fms=2, fsub=1, fpma=4, fpmpy=4, fpms=4, fnma=2, frcpa=1, 
frsqrta=1, fpnma=4, fprcpa=2, fprsqrta=2, xma=0

Note: Integer multiply instructions (xma) are not counted as floating-point operations (even 
though they are executed in the floating-point multiplier).

FP_OPS_RETIRED_LO

• Title: FP Operations Retired (Low), Category: Execution

• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the 
derived event FP_OPS_RETIRED.d which is the weighted sum of retired FP operations

• Event Code: 0x09, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 3

• Qualification: See FP_OPS_RETIRED_HI on page 91

FP_FLUSH_TO_ZERO

• Title: FP Result Flushed to Zero, Category: Execution

• Definition: FP_FLUSH_TO_ZERO counts the number of times a near zero result is 
flushed to zero in FTZ mode. Parallel FP operations which cause one or both results to 
flush to zero will increment the event count only by one (i.e. even if both results are 
flushed to zero)

• Event Code: 0x0B, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no
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FP_SIR_FLUSH

• Title: FP SIR Flushes, Category: Execution

• Definition: FP_SIR_FLUSH counts the number of times a Safe Instruction Recognition 
(SIR) flush occurs

• Event Code: 0x0C, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

IA32_INST_RETIRED

• Title: Retired IA-32 Instructions, Category: System

• Definition: IA32_INST_RETIRED counts the number of IA-32 instructions retired

• Event Code: 0x15, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

IA64_INST_RETIRED

• Title: Retired Itanium Instructions, Category: Execution

• Definition: IA64_INST_RETIRED counts all retired Itanium instructions. The count 
includes predicated on and off instructions, NOPs, but excludes hardware-inserted RSE 
operations. This event is equal to IA64_TAGGED_INST_RETIRED with a zero unit 
mask

• Event Code: 0x08, Umask: 0000, PMC/PMD: 4, 5  Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

IA64_TAGGED_INST_RETIRED

• Title: Retired Tagged Itanium InstructionsCategory: Execution

• Definition: IA64_TAGGED_INST_RETIRED is analogous to IA64_INST_RETIRED, 
except that it further qualifies event selection with the instruction address range and 
opcode match settings in the IBR and PMC registers

• Event Code: 0x08Umask:See belowPMC/PMD:4, 5Max. Increment/Cycle:6

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

The TAG_SELECT unit mask defined in Table 7-30 always qualifies the event count of 
IA64_TAGGED_INST_RETIRED with either the opcode match register PMC8 or 
PMC9. Note that the setting of PMC8 qualifies all down-stream event monitors. To 
ensure that other monitored events are counted independent of the opcode matcher, all 
mifb and all mask bits of PMC8 should be set to one (all opcodes match). The settings of 
PMC9 do not affect other event monitors.
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Also, note that umask 0011 is distinct in that it also counts, in addition to instructions 
matched by the appropriate opode matcher, architecturally invisible RSE fills and spills 
when the parent instruction (such as an alloc or br.ret) causing them is matched by the 
combination in PMC8. Thus, the difference in counts obtained between using PMC8 and 
PMC9 as opcode matchers is the amount of RSE activity.

INST_ACCESS_CYCLE

• Title: Instruction Access Cycles, Category: Stall

• Definition: INST_ACCESS_CYCLE counts the number of cycles where there are no 
back-end stalls or flushes, the decoupling buffer is empty, and the front-end is stalled 
waiting on an L1I or ITLB miss.

• Event Code: 0x01, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

INST_DISPERSED

• Title: Instructions Dispersed, Category: Instruction Issue

• Definition: INST_DISPERSED counts the number of instructions dispersed (including 
nops) from the front-end to the back-end of the machine. The count includes instruction 
dispersal on the wrong execution path; i.e., in the shadow of a branch misprediction 
flush or other back-end flush

• Event Code: 0x2D, Umask: Ignored, PMC/PMD: 4, 5  Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

INST_FAILED_CHKS_RETIRED.ALL

• Title: Failed Speculative Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.ALL counts the number of failed specu-
lative check load instructions (chk.s). The count excludes predicated off chk.s 
instructions and includes both integer and FP variants

• Event Code: 0x35, Umask: xx11, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

Table 7-30.  Retired Event Selection by Opcode Match

TAG_SELECT PMC.umask {19:16} Description

PMC8 tag 0011 Instruction tagged by opcode matcher PMC8 

PMC9 tag 0010 Instruction tagged by opcode matcher PMC9 

All 0000 All retired instructions (regardless of whether they were 
tagged or not)

Undefined All other umask settings Undefined event count
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INST_FAILED_CHKS_RETIRED.FP

• Title: Failed Speculative FP Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.FP counts the number of failed specula-
tive check load instructions (chk.s). The count excludes predicated off chk.s instruc-
tions and includes only FP variants

• Event Code: 0x35, Umask: xx10, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

INST_FAILED_CHKS_RETIRED.INTEGER

• Title: Failed Speculative Integer Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.INTEGER counts the number of failed 
speculative check load instructions (chk.s). The count excludes predicated off chk.s 
instructions and includes only integer variants

• Event Code: 0x35, Umask: xx01, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: no

• Qualification: 

INSTRUCTION_EAR_EVENTS

• Title: Instruction EAR Events, Category: Instruction Cache

• Definition: INSTRUCTION_EAR_EVENTS counts the number of EAR captures for 
L1I and ITLB events

• Event Code: 0x23, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

ISA_TRANSITIONS

• Title: Itanium ISA to IA-32 ISA Transitions, Category: System

• Definition: ISA_TRANSITIONS counts the number of instruction set transitions from 
Itanium ISA to IA-32. This is the number of times the PSR.is bit toggles from 0 to 1 due 
to br.ia or rfi to IA-32 code

• Event Code: 0x14, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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ISB_LINES_IN

• Title: Instruction Streaming Buffer Lines In, Category: Instruction Cache

• Definition: ISB_LINES_IN counts the number of 32-byte L1I cache lines written from 
L2 (and beyond) into the Instruction Streaming Buffer as a consequence of instruction 
demand miss and instruction prefetch requests

• Event Code: 0x26, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

ITLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts into the ITLB, Category: System

• Definition: ITLB_INSERTS_HPW counts the number of ITLB inserts done by the hard-
ware page table walker

• Event Code: 0x28, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

ITLB_MISSES_FETCH

• Title: ITLB Demand Misses, Category: System

• Definition: ITLB_MISSES_FETCH counts the number of demand ITLB misses

• Event Code: 0x27, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

L1D_READ_FORCED_MISSES_RETIRED

• Title: L1 Data Cache Forced Load Misses, Category: L1 Data Cache

• Definition: L1D_READ_FORCED_MISSES_RETIRED counts the number of loads 
that were forced to miss the L1 data cache due to memory ordering constraints, predicted 
L1 data cache misses, Store Buffer hits, or simultaneous L2 data returns to the register 
file

• Event Code: 0x6B, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes
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L1D_READ_MISSES_RETIRED

• Title: L1 Data Cache Read Misses, Category: L1 Data Cache

• Definition: L1D_READ_MISSES_RETIRED counts the number of committed L1 data 
cache read misses. The count includes any read reference that could have been serviced 
by the L1 data cache (see L1D_READS_RETIRED event for a detailed list) but missed 
the cache. False misses are included in the event count. Since the L1 data cache is 
write-through, write misses are NOT counted

• Event Code: 0x66, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes

L1D_READS_RETIRED

• Title: L1 Data Cache Reads, Category: L1 Data Cache

• Definition: L1D_READS_RETIRED counts the number of committed L1 data cache 
reads (integer and RSE references). Excluded from the count are VHPT loads, check 
loads, L1 hinted loads, semaphores, uncacheable and FP loads. Predicated-off loads are 
also excluded, but wrong-path operations are included in the count

• Event Code: 0x64, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes

L1I_DEMAND_READS

• Title: L1I and ISB Instruction Demand Lookups, Category: Instruction Cache

• Definition: L1I_DEMAND_READS counts the number of 32-byte instruction demand 
L1I/ISB lookups, independent of the hit/miss outcome

• Event Code: 0x20, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

Qualifications based on instruction address range may be inaccurate

L1I_FILLS

• Title: L1 Instruction Cache Fills, Category: Instruction Cache

• Definition: L1I_FILLS counts the number of 32-byte lines moved from the Instruction 
Streaming Buffer into the L1 instruction cache

• Event Code: 0x21, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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L1I_PREFETCH_READS

• Title: L1I and ISB Instruction Prefetch Lookups, Category: Instruction Cache

• Definition: L1I_PREFETCH_READS counts the number of 64-byte instruction prefetch 
L1I/ISB lookups, independent of the hit/miss outcome. 

• Event Code: 0x24, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

L2_DATA_REFERENCES.ALL

• Title: L2 Data Read and Write References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.ALL counts all L2 data read and write 
accesses.The reported count is the number of requests prior to cache line merging. 
Semaphore operations are counted as one read and one write

• Event Code: 0x69, Umask: xx11, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes

L2_DATA_REFERENCES.READS

• Title: L2 Data Read References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.READS counts all L2 data read accesses. The 
reported count is the number of requests prior to cache line merging. Semaphore opera-
tions are counted as one read

• Event Code: 0x69, Umask: xx01, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes

L2_DATA_REFERENCES.WRITES

• Title: L2 Data Write References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.WRITES counts all L2 data write accesses. The 
reported count is the number of requests prior to cache line merging. Semaphore opera-
tions are counted as one write

• Event Code: 0x69, Umask: xx10, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address 
Range: yes
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L2_FLUSH_DETAILS

• Title: L2 Flush Details, Category: L2 Cache

• Definition: L2_FLUSH_DETAILS allows a detailed breakdown of L2 pipeline flushes 
by cause. This event counts the number of L2 pipeline flushes constrained by the condi-
tions specified in the 4-bit unit mask defined by Table 7-31 on page 98. All combinations 
of the four unit mask bits are supported

• Event Code: 0x77, Umask:See below, PMC/PMD: 4, 5, 6, 7, 
Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L2_FLUSHES

• Title: L2 Flushes, Category: L2 Cache

• Definition: L2_FLUSHES counts the number of L2 pipeline flushes due to Store Buffer 
conflicts, address conflicts, full L3 and bus queues, and other such reasons

• Event Code: 0x76, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

L2_INST_DEMAND_READS

• Title: L2 Instruction Demand Fetch Requests, Category: Instruction Cache

• Definition: L2_INST_DEMAND_READS counts the number of L2 instruction requests 
due to L1I demand fetch misses. The monitor counts the number of demand fetch look-
ups that miss in both the L1I and the ISB, regardless of whether they hit or miss in the 
Request Address Buffer (RAB); i.e., the count includes misses to a line that has already 
been requested (secondary misses)

• Event Code: 0x22, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

Table 7-31. Unit Mask Bits {19:16} for L2_FLUSH_DETAILS Event

L2 Flush Reason
PMC.umask 

{19:16}
Description

L2_ST_BUFFER_FLUSH xxx1 L2 store to store conflict due to
(a) Same store buffer entry
(b) Back to back stores

L2_ADDR_CONFLICT xx1x L2 flushed due to MESI update on load follows store

L2_BUS_REJECT x1xx L2 flushed due to bus constraints

L2_FULL_FLUSH 1xxx L2 flushed due to one of:
(a) Store buffer full
(b) Load miss buffer full
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L2_INST_PREFETCH_READS

• Title: L2 Instruction Prefetch Requests, Category: Instruction Cache

• Definition: L2_INST_PREFETCH_READS counts all instruction prefetch requests 
issued to the unified L2 cache

• Event Code:  0x25, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

L2_MISSES

• Title: L2 Misses, Category: L2 Cache

• Definition: L2_MISSES counts the number of L2 cache misses (requests to uncacheable 
pages are excluded). The count includes misses caused by instruction fetch and prefetch, 
and data read and write operations. Secondary misses to the same L2 cache line will be 
counted as individual misses

• Event Code: 0x6A, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

L2_REFERENCES

• Title: L2 References, Category: L2 Cache

• Definition: L2_REFERENCES counts the number of L2 cache references (requests to 
uncacheable pages are excluded). The count includes references by instruction fetch and 
prefetch, and data reads and writes. The maximum per-cycle increment is three: one 
instruction fetch and two data references

• Event Code: 0x68, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address 
Range: no

L3_LINES_REPLACED

• Title: L3 Cache Lines Replaced, Category: L3 Cache

• Definition: L3_LINES_REPLACED counts the number of valid L3 lines that have been 
victimized

• Event Code: 0x7F, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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L3_MISSES

• Title: L3 Misses, Category: L3 Cache

• Definition: L3_MISSES counts the number of L3 misses. The number includes misses 
caused by both instruction and data requests and L2 line writebacks

• Event Code: 0x7C, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.ALL_READS.ALL

• Title: Instruction and Data L3 Reads, Category: L3 Cache

• Definition: L3_READS.ALL_READS.ALL counts the number of all L3 read accesses, 
independent of the stream source (instruction or data) and the hit/miss outcome

• Event Code: 0x7D, Umask: 1111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.ALL_READS.HIT

• Title: Instruction and Data L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.ALL_READS.HIT counts the number of all L3 read hits, inde-
pendent of the stream source (instruction or data) 

• Event Code: 0x7D, Umask: 1101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.ALL_READS.MISS

• Title: Instruction and Data L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.ALL_READS.MISS counts the number of all L3 read misses, 
independent of the stream source (instruction or data)

• Event Code: 0x7D, Umask: 1110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.DATA_READS.ALL

• Title: Data L3 Reads, Category: L3 Cache

• Definition: L3_READS.DATA_READS.ALL counts the number of data L3 read 
accesses, independent of the hit/miss outcome

• Event Code: 0x7D, Umask: 1011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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L3_READS.DATA_READS.HIT

• Title: Data L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.DATA_READS.HIT counts the number of data L3 read hits

• Event Code: 0x7D, Umask: 1001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.DATA_READS.MISS

• Title: Data L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.DATA_READS.MISS counts the number of data L3 read misses

• Event Code: 0x7D, Umask: 1010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.INST_READS.ALL

• Title: Instruction L3 Reads, Category: L3 Cache

• Definition: L3_READS.INST_READS.ALL counts the number of instruction L3 read 
accesses, independent of the hit/miss outcome

• Event Code: 0x7D, Umask: 0111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.INST_READS.HIT

• Title: Instruction L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.INST_READS.HIT counts the number of instruction L3 read 
hits

• Event Code: 0x7D, Umask: 0101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_READS.INST_READS.MISS

• Title: Instruction L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.INST_READS.MISS counts the number of instruction L3 read 
misses

• Event Code: 0x7D, Umask: 0110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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L3_REFERENCES

• Title: L3 References, Category: L3 Cache

• Definition: L3_REFERENCES counts the number of L3 cache references (requests to 
uncacheable pages are excluded). The count includes references by instruction fetch and 
prefetch, data reads and writes, and L2 cache line most significant bit writebacks.

• Event Code: 0x7B, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.ALL_WRITES.ALL

• Title: L3 Writes, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.ALL counts the number of L3 write accesses 
independent of the hit/miss outcome. The count includes both data writes and L2 write-
back accesses (including L3 read for ownership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.ALL_WRITES.HIT

• Title: L3 Write Hits, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.HIT counts the number of L3 write hits. The 
count includes both data writes and L2 writeback accesses (including L3 read for owner-
ship requests that satisfy stores)

• Event Code: 0x7E, Umask: 1101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.ALL_WRITES.MISS

• Title: L3 Write Misses, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.MISS counts the number of L3 write misses. 
The count includes both data writes and L2 writeback accesses (including L3 read for 
ownership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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L3_WRITES.L2_WRITEBACK.ALL

• Title: L3 Writebacks, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.ALL counts the number of L3 write 
accesses that result from L2 writebacks, independent of hit/miss outcome

• Event Code: 0x7E, Umask: 1011, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.L2_WRITEBACK.HIT

• Title: L3 Writeback Hits, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.HIT counts the number of L3 write hits that 
result from L2 writebacks

• Event Code: 0x7E, Umask: 1001, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.L2_WRITEBACK.MISS

• Title: L3 Writeback Misses, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.MISS counts the number of L3 write 
misses that result from L2 writebacks

• Event Code: 0x7E, Umask: 1010, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.DATA_WRITES.ALL

• Title: L3 Data Writes, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.ALL counts the number of L3 data write 
accesses independent of the hit/miss outcome

• Event Code: 0x7E, Umask: 0111, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

L3_WRITES.DATA_WRITES.HIT

• Title: L3 Data Write Hits, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.HIT counts the number of L3 data write hits

• Event Code: 0x7E, Umask: 0101, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no
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L3_WRITES.DATA_WRITES.MISS

• Title: L3 Data Write Misses, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.MISS counts the number of L3 data write 
misses

• Event Code: 0x7E, Umask: 0110, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address 
Range: no

LOADS_RETIRED

• Title: Retired Loads, Category: Memory

• Definition: LOADS_RETIRED counts the number of retired loads. The count includes 
integer, FP, RSE, VHPT, uncacheable loads and failed check loads (ld.c). Check loads 
that hit in the ALAT are not counted. Predicated-off operations are not counted

• Event Code: 0x6C, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

MEMORY_CYCLE

• Title: Combined Memory Stall Cycles, Category: Stall

• Definition: MEMORY_CYCLE counts the number of cycles that the pipeline is stalled 
or flushed due to instructions waiting for data on cache misses, L1D way mispredictions, 
DTC misses, and RSE traffic.

• Event Code: 0x07, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

MISALIGNED_LOADS_RETIRED

• Title: Retired Unaligned Load Instructions, Category:  Memory

• Definition: MISALIGNED_LOADS_RETIRED counts the number of retired unaligned 
loads that the hardware handled. The count includes integer, FP, and failed check loads 
(ld.c). Check loads that hit in the ALAT are not counted. Predicated-off operations are 
not counted

• Event Code: 0x70, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes
104 Performance Monitor Events



MISALIGNED_STORES_RETIRED

• Title: Retired Unaligned Store Instructions, Category:  Memory

• Definition: MISALIGNED_STORES_RETIRED counts the number of retired 
unaligned store instructions that the hardware handled. The count includes integer, FP, 
and uncacheable stores. Predicated-off operations are not counted

• Event Code: 0x71, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

NOPS_RETIRED

• Title: Retired Nop Instructions, Category: Execution

• Definition: NOPS_RETIRED counts the number of retired nop.i, nop.m or nop.b 
instructions. The count excludes predicated off nop instructions

• Event Code: 0x30, Umask: Ignored, PMC/PMD: 4, 5  Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

PIPELINE_ALL_FLUSH_CYCLE

• Title: Combination of Pipeline Flush Cycles caused by either a front-end or a back-end 
source, Category: Stall

• Definition: PIPELINE_ALL_FLUSH_CYCLE, for a given cycle, either counts the num-
ber of cycles spent during a front-end resteer of the pipeline (due to a correctly predicted 
taken branch), or counts the number of cycles spent during certain back-end resteers 
(due to a branch misprediction, ALAT flush or exception/serialization flush). This moni-
tor does not count DTC flushes, way mispredictions, or floating-point flushes.

• Event Code: 0x04, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

PIPELINE_BACKEND_FLUSH_CYCLE

• Title: Combination of Pipeline Flush Cycles caused by either a Branch Misprediction or 
an ExceptionCategory: Stall

• Definition: PIPELINE_BACKEND_FLUSH_CYCLE counts the number of cycles 
spent during back-end resteers of the pipeline (due to a branch misprediction, ALAT 
flush or exception/serialization flush). This monitor does not count DTC flushes, way 
mispredictions, or floating-point flushes.

• Event Code: 0x00, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no
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PIPELINE_FLUSH

• Title: Pipeline Flush, Category: System

• Definition: PIPELINE_FLUSH counts how often the Itanium processor pipeline is 
flushed due to IEU bypass conflict (caused by non-unit latency MMX operations such as 
variable shifts), data translation cache miss, L1 data cache way mispredict or other rea-
sons such as an exception flush or an instruction serialization. Combinations of different 
flush reasons may be chosen by appropriately setting the umask. The monitor does not 
include branch misprediction flushes

• Event Code: 0x33, Umask: See below, PMC/PMD: 4, 5, 6, 7  
Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address 
Range: no

PREDICATE_SQUASHED_RETIRED

• Title: Instructions Squashed Due to Predicate Off, Category: Execution

• Definition: PREDICATE_SQUASHED_RETIRED counts the number of instructions 
squashed due to a false qualifying predicate. The count includes all predicated off nops 
except nop.b’s. Predicated off B-syllables (including nop.b) are not counted

• Event Code: 0x31, Umask: Ignored, PMC/PMD: 4, 5  Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: no

RSE_LOADS_RETIRED

• Title: RSE Load Accesses, Category: Execution

• Definition: RSE_LOADS_RETIRED counts the number of retired RSE loads

• Event Code: 0x72, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Refer to RSE_REFERENCES_RETIRED on page 107

Table 7-32. Unit Mask Bits {19:18} for PIPELINE_FLUSH Event

FLUSH_TYPE
PMC.umask 

{19:16}
Description

IEU_FLUSH 1xxx IEU bypass flush

DTC_FLUSH x1xx Data Translation Cache Miss flush

L1D_WAYMP_FLUSH xx1x L1 Way Misprediction flush

OTHER_FLUSH xxx1 Other flush reason: exception flush or an instruction 
serialization.
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RSE_REFERENCES_RETIRED

• Title: RSE Accesses, Category: Execution

• Definition: RSE_REFERENCES_RETIRED counts the number of retired RSE loads 
and stores

• Event Code: 0x65, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

RSE loads and stores are considered tagged if the alloc, loadrs, flushrs or 
branch return or rfi that caused the RSE references was tagged by the instruction 
address range or the opcode matcher. For data address range checking, the RSE refer-
ence is tagged only if its hits the programmed DBR range

STORES_RETIRED

• Title: Retired Stores, Category: Memory

• Definition: STORES_RETIRED counts the number of retired stores. The count includes 
integer, FP, RSE, and uncacheable stores. Predicated-off operations are not counted

• Event Code: 0x6D, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

UC_LOADS_RETIRED

• Title: Retired Uncacheable Loads, Category: Memory

• Definition: UC_LOADS_RETIRED counts the number of retired uncacheable or write 
coalescing loads. The count includes integer, FP, RSE, and VHPT loads and failed check 
loads (ld.c). Check loads that hit in the ALAT are NOT counted. Predicated-off opera-
tions are not counted

• Event Code: 0x6E, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes

UC_STORES_RETIRED

• Title: Retired Uncacheable Stores, Category: Memory

• Definition: UC_STORES_RETIRED counts the number of retired uncacheable or write 
coalescing stores.The count includes integer, FP, RSE, and uncacheable stores. Predi-
cated-off operations are not counted

• Event Code: 0x6F, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address 
Range: yes
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UNSTALLED_BACKEND_CYCLE

• Title: Unstalled Back-end CyclesCategory: Stall

• Definition: UNSTALLED_BACKEND_CYCLE counts the number of cycles that the 
back-end is processing instructions without delay and the decoupling buffer between the 
front-end and back-end is empty, so that any effect on the front-end will be propagated to 
the back-end of the pipeline. This monitor thus reflects the number of cycles where there 
are no back-end stalls or flushes, and the decoupling buffer is empty, regardless of 
whether the L1I and ITLB are being hit or missed.

• Event Code: 0x05, Umask: Ignored, PMC/PMD: 4, 5, 6, 7  Max. Increment/Cycle: 1

Instruction Address Range: no, Opcode matching: no, Data Address Range: no
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Model Specific Behavior for IA-32 
Instruction Execution 8

The Itanium processor is capable of executing IA-32 instructions in the IA-32 system environment 
(legacy lA-32 operating systems) provided the required platform and firmware support exists in the 
system. The Itanium processor is also capable of executing IA-32 instructions in the Itanium 
system environment (Itanium-based operating system). Itanium-based operating system support for 
the capability of running IA-32 applications is defined by the respective operating system vendor. 
For more details on IA-32 instruction execution on Itanium-based OS, please refer to Volume 1, 
Chapter 6 and Volume 2, Chapter 10 of the Intel® Itanium™ Architecture Software Developer’s 
Manual. 

Note that while Itanium processor supports execution of IA-32 applications, best performance and 
capabilities will be realized by using 64-bit optimized OSes and applications.

In general, the behavior of IA-32 instructions on the Itanium processor is similar to that of the 
Pentium III processor except where noted. The following sections describe some of the key 
differences in behavior between IA-32 instruction execution on an Itanium processor and on the 
Pentium III processor. These differences do not prevent IA-32 legacy operating systems or IA-32 
applications from operating correctly.

8.1 Processor Reset and Initialization

When RESET# is asserted, all processors based on the Itanium architecture boot at a different reset 
location than IA-32 processors and start executing Itanium-based 64-bit code instead of IA-32 
16-bit Real Mode code. Unlike IA-32 processors, processors based on the Itanium architecture 
execute PAL firmware to test and initialize the processor and then continue execution in the Itanium 
instruction set to boot the system. SAL firmware code can switch to the IA-32 instruction set as 
needed to execute IA-32 BIOS code. For more details on processor reset, please refer to Chapter 11 
and Chapter 13 of Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual.

8.2 New JMPE Instruction

A new IA-32 instruction JMPE has been defined for processors based on the Itanium architecture. 
This instruction comes in two forms with an opcode for each. These opcodes will cause an Invalid 
Opcode fault on all IA-32 processors. For more details, refer to Chapter 1 of Volume 3 of the Intel® 
Itanium™ Architecture Software Developer’s Manual.
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8.3 System Management Mode (SMM)

SMM is superseded by the Itanium-based Platform Management definition. This mechanism is 
designed to provide platform level interrupt support for both IA-32 and Itanium-based operating 
systems. Please refer to Chapter 11 of Volume 2 of the Intel® Itanium™ Architecture Software 
Developer’s Manual for more details on PMI.

The IA-32 SMM and I/O Port Restart feature is not supported on the Itanium processor. 
Dynamically, powering off/on I/O devices on an I/O Port reference via system logic is not possible 
for IA-32 Operating Systems or Itanium-based Operating Systems using the IA-32 SMM I/O 
Restart mechanism. I/O Restart has not been extended on processors based on the Itanium 
architecture to intercept I/O Port references from the Itanium instruction set via normal loads and 
stores on processors based on the Itanium architecture. 

Execution of the IA-32 RSM (Resume from SMM) instruction results an Invalid Opcode fault on 
all processors based on the Itanium architecture.

8.4 CPUID Instruction Return Values for Caches and 
TLBs of the Intel® Itanium™ Processor

The following table provides information on how to decode return values of the CPUID instruction 
for the Itanium processor’s internal caches and TLBs.

 

When the input value in register EAX is 2, the Itanium processor returns information about the 
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The following 
table describes the values returned.

Table 8-1. Encoding of Cache and TLB Return Values for the Intel® Itanium™ Processor

Return Value Cache or TLB Description

0x10 L0D: 16K 4-way set associative 32 bytes line

0x15 L0I: 16K 4-way set associative 32 bytes line

0x1A L1: 96K on die 6-way set associative 64 byte line

0x88 L2: 2M 4-way set associative 64 bytes line

0x89 L2: 4M 4-way set associative 64 bytes line

0x8A L2: 8M 4-way set associative 64 bytes line

0x90 ITLB: 4K to 256M pages, fully associative, 64 entries

0x96 DTLB0: 4K to 256M pages, fully associative, 32 entries

0x9B DTLB1: 4K to 256M pages, fully associative, 96 entries
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8.5 Machine Check Abort (MCA)

The Itanium processor supports Pentium processor level machine checks in the IA-32 System 
Environment. 

8.6 Model Specific Registers

The complete set of Model Specific Registers (MSRs) found on the Pentium III processor is not 
supported on the Itanium processor. For example, Model Specific Debug registers, Model Specific 
Test registers, Machine Check registers, and Model Specific Configuration registers are not 
supported.

Model Specific registers that are common to the Itanium processor and Pentium III processor use 
the Pentium III processor’s bit definition and register assignment. The ITC, APIC_Base, MTRR and 
MAP registers are supported on the Itanium processor.

8.7 Cache Modes

Pentium processor and Pentium III processor SRAM Cache Mode is not supported on the Itanium 
processor.

SRAM is typically used on IA-32 processors to provide scratch RAM areas while running IA-32 
boot and machine check code before memory is available. Both of these functions are now provided 
by Itanium-based firmware while running IA-32 and Itanium-based operating systems.

8.8 10-byte Floating-point Operand Reads and Writes

Many IA-32 FP instructions read and write 10 bytes to memory. Consider the case of 16-bit 
segment, where the read or write starts at offset 0xFFF8. Pentium III processor reads or writes 
8 bytes then re-evaluates the linear address before reading or writing the final 2 bytes. Eight bytes 
are accessed at 0xfff8, and 2 bytes are accessed at 0x0000. 

The Itanium processor evaluates the address once, then accesses all 10 bytes. Therefore, bytes 
0xfff8 to 0x10001 will be accessed.

Table 8-2. EAX, EBX, ECX, and EDX Return Values for the Intel® Itanium™ Processor

Register Return Value (from MSB to LSB)

EAX 0x00, 0x15, 0x10, 0x01

EBX 0x00, 0x00, <L2>, 0x1A (<L2> is either 0x88, 0x89)

ECX 0x00, 0x9B, 0x96, 0x90

EDX 0x80, 0x00, 0x00, 0x00
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On a 10-byte operand read or write access, potential page faults and GP faults will return slightly 
different faulting addresses (linear addresses may wrap differently).

8.9 Floating-point Data Segment State

The Itanium processor reports a different value of the floating-point data segment state (FDS) after 
the execution of “FNOP” instruction (or any FP instruction that does not perform a memory 
reference). The contents of the data register are undefined if the prior non-control instruction did 
not have a memory operand. The Pentium III processor behaves as follows:

1.  A FP non-transparent instruction which references memory will put the selector of the data 
segment used in the memory reference into FDS.

2. A FP non-transparent instruction which doesn’t reference memory will put the selector of SS 
into FDS and 0 into FEA.

If a segment override prefix is present on an instruction of the type specified in case 2, the 
overriding segment selector will be put into FDS instead of the selector of SS.

The Itanium processor behavior covers only case #1 described above. Note that this difference does 
not affect the running of IA-32 applications. 

8.10 Writes to Reserved Bits during FXSAVE

During FXSAVE, the Itanium processor does not write any reserved bits, while the Pentium III 
processor may write reserved bits. The Itanium processor does one 10 byte access to save each FP 
register, whereas the Pentium III processor will do two 8 byte accesses causing writes to upper 
reserved bits.

8.11 Setting the Access/Dirty (A/D) Bit on Accesses that 
Cross a Page Boundary

In the IA-32 system environment, the Itanium processor sets a page's A/D bit even if a memory 
reference crosses a page boundary and the other page has a fault. This behavior is different from 
Pentium III processors which do not modify the A/D bit under the above conditions. 

The above difference does not come into play in the Itanium system environment.

8.12 Enhanced Floating-point Instruction Accuracy

On the Itanium processor, FP transcendental instructions will return more accurate (hence slightly 
different) answers than Pentium III processor. This behavior falls into 3 categories:

• F2XM1, FYL2X, FYL2XP1, FPATAN Instructions
More accurate algorithms will result in answers which may differ from Pentium III processor 
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by 1 unit in the last place (ulp). Also, for FYL2X and FYL2XP1, when x or x+1 respectively is 
a power of two, the Precision exception is not signaled (since log(2^k) where, k is integral, is 
exact).

• FPTAN, FSIN, FCOS, FSINCOS Instructions
New algorithms on Itanium processor include a more accurate argument reduction scheme. 
Although more accurate, the algorithms implemented on Itanium processor can produce 
answers which are different from those returned on Pentium III processor.

• FPREM, FPREM1 Instructions
No change.

8.13 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction 
Differences

These four instructions are single and parallel approximations of divide and square root operations. 
The Itanium processor will calculate these functions to a higher accuracy than previous 
implementations. resulting in different answers. The Pentium III processor implementation of one 
of these functions can have a maximum relative error of 1.5 * 2-12. The Itanium processor, however, 
will calculate RCPPS/RCPSS functions with a maximum relative error of 2-17.75288~=1.1868*2-18 
and the RSQRTPS/RSQRTSS functions with a maximum relative error of 2-17.06412 
~=1.9130*2-18.

8.14 Read/Write Access Ordering

In general, the order of reads/writes within any complex IA-32 instruction is model specific even 
among IA-32 processors. Different Intel processors have different access ordering behavior; for 
example, internal operation ordering varies between the 80486, Pentium, Pentium III and Itanium 
processors.

8.15 Multiple IOAPIC Redirection Table Entries

If multiple IOAPIC Redirection Table Entries (RTE) share the same vector, and at least one RTE is 
programmed as logical delivery mode in which the selected local APIC destinations overlap with 
the other RTEs with the same vector, some of the selected local APICs might not receive the 
interrupt when the pins that correspond to these RTEs are asserted.

8.16 Self Modifying Code (SMC)

The Itanium processor provides the same SMC support as the Pentium processor. Also, a branch 
instruction is required between the store that modifies instruction(s) and the modified code.
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8.17 Raising an Alignment Check (AC) Fault

The Pentium III processor checks and raises AC fault before a page fault. The Itanium processor 
checks and raise a page fault before an AC fault.

8.18 Maximum Number of Processors Supported in MP 
System Running Legacy IA-32 OS (IA-32 System 
Environment)

Similar to the case of IA-32 processors in an MP system, the maximum number of processors based 
on the Itanium architecture supported in a MP system running legacy IA-32 OS (IA-32 system 
environment) is 16. However, in MP systems with IA-32 processors, the number of IA-32 
processors can be extended beyond 16 with additional platform enhancements while the limit for 
the number of processors based on the Itanium architecture running IA-32 OS in a MP system is 
limited to 16.
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floating-point status register 1:24, 1:26, 1:80, 1:81,

1:93
real types 1:77

floating-point status register (FPSR) 1:26, 1:37, 1:80,
1:93, 2:451

floating-point system software
floating-point exception handling 2:451, 2:453

flushrs instruction 1:36, 1:44, 1:48, 2:57, 2:119, 2:121,
2:122, 2:125-2:130, 3:306, 3:311, 3:339, 3:340,
3:345, 3:346, 3:357

FP precision 1:197
FP subfield handling 1:203
FPU

checking for pending FPU exceptions 3:734
constants 3:487
existence of 3:428
floating-point format 3:822, 3:823
initialization 3:481

floating-point register (FR)
high FP reg fault 3:360
low FP reg fault 3:359

floating-point register set 1:195
floating-point software assistance (FP SWA) 2:451

SWA faults 2:451, 2:452, 2:454
SWA traps 2:451, 2:452, 2:453

FPU control word
loading 3:489, 3:491
RC field 3:482, 3:487, 3:521
restoring 3:508

saving 3:510, 3:526
storing 3:524

FPU data pointer 3:491, 3:508, 3:510, 3:526
FPU flag, CPUID instruction 3:428
FPU instruction pointer 3:491, 3:508, 3:510, 3:526
FPU last opcode 3:491, 3:508, 3:510, 3:526
FPU status word

condition code flags 3:460, 3:476, 3:536, 3:538,
3:541

FPU flags affected by instructions 3:366
loading 3:491
restoring 3:508
saving 3:510, 3:526, 3:528
TOP field 3:480

FPU tag word 3:491, 3:508, 3:510, 3:526
frcpa instruction 1:37, 1:48-1:50, 1:55, 1:91, 1:198-1:200,

2:454, 3:323, 3:326, 3:352, 3:356
frsqrta instruction 1:37, 1:48-1:50, 1:55, 1:91, 1:198,

1:199, 2:454, 3:323, 3:327, 3:352, 3:356

G
gate interception 2:215
general register (GR)

NaT bit 1:21, 1:134, 1:146, 1:147
global TLB purge operations 2:69

H
hardware debugger 2:136

I
i bit

PSR.i 2:82, 2:102-2:104, 2:106, 2:219, 2:407, 2:410,
2:464, 2:465, 3:344, 3:349, 3:410, 3:721

I/O port space 2:240-2:243, 2:473, 2:474, 3:558, 3:562,
3:654, 3:657

I/O port space model 2:240, 2:241
physical I/O port addressing 2:243
virtual I/O port addressing 2:241

IA-32 application execution model 1:103
IA-32 instruction set execution 1:22, 1:23, 1:41, 1:59,

1:104, 2:239
IA-32 operating mode transitions 1:106
instruction set execution in the Itanium architecture

1:104
instruction set modes 1:103
instruction set transitions 1:105, 2:215, 2:240

IA-32 application register state model 1:107
IA-32 application EFLAG register 1:116
IA-32 floating-point registers 1:117, 1:118
IA-32 general purpose registers 1:107, 1:108, 1:110
IA-32 instruction pointer 1:111
IA-32 MMX technology registers 1:122
IA-32 segment registers 1:111
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IA-32 streaming SIMD extension registers 1:109,
1:122

IA-32 application support 2:250
procedure calls between Itanium and IA-32 instruc-

tion sets 2:459
transitioning between Itanium and IA-32 instruction

sets 2:457
IA-32 architecture 1:5, 1:17, 2:5, 3:5, 3:359
IA-32 architecture handlers 2:460

IA-32 vectors that need Itanium-based OS support
2:461

shared Itanium/IA-32 exception vectors 2:460
unique IA-32 exception vectors 2:460
unique Itanium exception vectors 2:460

IA-32 compatible bus transactions 2:251
IA-32 current privilege level 2:218
IA-32 fault and trap handling 2:215
IA-32 faults 3:359
IA-32 floating-point exceptions 2:456
IA-32 GPFault 3:359
IA-32 I/O instructions 2:244
IA-32 instruction behavior 2:215, 2:227
IA-32 instruction format 3:360
IA-32 instruction summary 2:228
IA-32 interruption 2:94, 2:95, 2:248
IA-32 interruption priorities and classes 2:95
IA-32 interruption vector 2:189, 2:248
IA-32 memory ordering 2:238, 2:392
IA-32 MMX technology instructions 1:122, 3:747
IA-32 numeric exception model 2:250
IA-32 physical memory references 2:235
IA-32 privileged system resources 2:215
IA-32 processes during a context switch 2:226

entering IA-32 processes 2:226
exiting IA-32 processes 2:227

IA-32 segmentation 1:124, 2:233
IA-32 streaming SIMD extension instructions 1:123,

3:811
IA-32 system and control register behavior 2:215
IA-32 system EFLAG register 2:219
IA-32 system environment 1:5, 1:9, 1:10, 1:17, 2:5, 2:9,

3:5
IA-32 system register mapping 2:216
IA-32 system registers 2:222

IA-32 control registers 2:222
IA-32 debug registers 2:225
IA-32 machine check registers 2:226
IA-32 memory type range registers (MTRRs) 2:225
IA-32 model specific and test registers 2:225
IA-32 performance monitor registers 2:226

IA-32 system segment registers 2:217
IA-32 TLB forward progress requirements 2:234
IA-32 trap code 2:189
IA-32 usage of Itanium registers 1:126

ALAT 1:126
NaT/NaTVal response for IA-32 instructions 1:126
register stack engine 1:126, 3:597

IA-32 virtual memory references 2:234

protection keys 2:234
region identifiers 2:234
TLB access bit 2:234
TLB dirty bit 2:234

IA-32 virtual memory support 2:215
ic bit

PSR.ic 2:82, 2:85, 2:86, 2:88-2:91, 2:102, 2:104,
2:126, 2:148, 2:407, 2:430, 2:431, 3:344,
3:349

IEEE considerations 1:94
additions beyond the IEEE standard 1:100
arithmetic operations 1:100, 3:826
floating-point interruptions 1:94
inexact 1:97, 1:99, 2:453, 2:456
integer invalid operations 1:100
mandated operations deferred to software 1:100
NaNs 1:78, 1:100
overflow 1:97, 1:98, 2:452, 2:455
tininess 1:99
underflow 1:97, 1:99, 2:452, 2:456

IEEE floating-point exception filter 2:451, 2:454
denormal/unnormal operand exception (fault) 2:455
divide by zero exception (fault) 2:455
inexact exception (trap) 2:456
invalid operation exception (fault) 2:455
overflow exception (trap) 2:455
underflow exception (trap) 2:456

IEEE-754 2:451, 2:454, 2:456, 3:821
ANSI/IEEE-754 standard compliant 1:193

if-conversion 1:157
illegal dependency fault 1:38, 2:149, 2:448
illegal operation fault 1:19, 1:20, 1:39, 2:149, 3:257
implicit serialization 2:13
indefinite

description of 3:827
real 3:829

infinity, floating-point format 3:826
in-flight resources 2:15
INIT flows 2:491
initialization event (INIT) 2:489

initialization interrupts 2:80, 2:98, 2:406
PALE_INIT 2:80, 2:92

inserting/purging of translations 2:425
instruction breakpoint register matching 2:247

IBR.addr 2:247
IBR.mask 2:247

instruction breakpoint registers (IBR) 2:133, 2:134
instruction classes 3:336, 3:350, 3:351
instruction dependencies 1:140

control dependencies 1:65, 1:140, 2:384
data dependencies 1:57, 1:141-1:143, 2:13

instruction encoding 1:32
bundles 1:11, 1:31, 1:32, 1:34, 1:132, 1:133, 3:257
instruction slots 1:32, 1:33, 3:257
template 1:32-1:34, 1:133, 3:257, 3:258

instruction field names 3:259, 3:262
instruction format 1:132, 3:260
instruction interception 2:215
instruction pointer (IP) 1:19, 1:22, 2:84, 2:408, 2:479
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instruction serialization 2:14, 2:15, 2:410, 3:337, 3:431,
3:579

instruction set
string instructions 3:420, 3:562, 3:622, 3:640, 3:656,

3:724
instruction set architecture (ISA) 1:5, 2:5, 3:5
instruction set features 1:11
instruction set transition model overview 1:10
instruction set transitions 2:33, 2:215, 2:240
instruction slots 1:32, 1:33, 3:257

instruction slot mapping 1:33, 3:258
instruction stream 1:167, 3:496, 3:510, 3:526, 3:591,

3:649
instruction stream alignment 1:167
instruction stream fetching 1:167

instruction type 1:32, 3:257, 3:697
ALU (A) 3:258
branch (B) 3:258
floating-point (F) 3:258
integer (I) 1:133, 3:258
memory (M) 1:133, 3:258

instruction/data TLB miss 2:57-2:59
integer computation instructions 1:44

32-bit addresses and integers 1:46
arithmetic instructions 1:45, 3:324, 3:863
bit field and shift instructions 1:46, 1:47
large constants 1:47
logical instructions 1:45

integer/floating-point conversion 1:203
inter-processor interrupt (IPI) 2:97, 2:99, 2:110, 2:471
inter-processor interrupt message 2:111, 2:491

data fields 2:111, 2:113
interrupt 2:70, 2:80, 2:81, 2:92, 2:96-2:106, 2:405, 2:406,

2:463, 2:464, 2:491
interrupt acknowledge (INTA) 2:110
interruption 2:79, 2:80-2:87, 2:92, 2:94-2:96, 2:103,

2:104, 2:129, 2:405-2:407
execution environment 2:407
heavyweight interruptions 2:411, 2:413
interruption handler 2:86, 2:87, 2:405-2:407, 2:410
interruption handling 2:79, 2:82, 2:85, 2:86, 2:410
interruption register state 2:408
lightweight interruptions 2:410
nested interruptions 2:413
resource serialization 2:409, 2:410

interruption model 2:82, 2:247
interruption priorities 2:92, 2:95
interruption registers 2:216, 2:406, 2:408
interruption vector address (IVA) 2:406
interruption vector table (IVT) 2:79, 2:96, 2:406
interruption vectors 2:85, 2:96, 2:147, 2:151, 2:406

interruption vector definition 2:148
interruptions 2:79-2:82, 2:85-2:87, 2:92, 2:95, 2:96,

2:127, 2:128, 2:405, 2:406
aborts 2:79, 2:89, 2:92, 2:406
faults 2:79, 2:80, 2:85, 2:89, 2:92-2:96, 2:405
interruption handling during instruction execution

2:82

interruption programming model 2:81
interrupts 2:79, 2:80, 2:82, 2:85, 2:89, 2:92, 2:95,

2:97-2:106, 2:219, 2:405, 2:406
IVA-based interruption 2:85, 2:96, 2:406
PAL-based interruption 2:85, 2:405
traps 1:97, 2:79, 2:80, 2:84-2:86, 2:92, 2:94-2:96,

2:405
interval timer 1:110, 2:16, 2:27, 2:28, 2:99, 2:108, 2:469,

2:470
invala instruction 1:60, 1:62, 2:129, 2:420, 2:484, 3:306,

3:307, 3:311, 3:351, 3:352
invala.e instruction 1:60, 1:62, 2:415-2:417, 2:420, 3:306,

3:307, 3:311, 3:339, 3:351, 3:352
IPI ordering 2:113
ISR setting 2:147
Itanium architecture 1:1, 1:5, 1:9
Itanium data mem faults 3:360
Itanium instruction 1:107, 3:257, 3:335, 3:430, 3:597,

3:598
expressing parallelism 1:132
format 3:464, 3:539
Itanium instruction set 1:17, 3:430, 3:597, 3:598
syntax 1:132, 3:336

Itanium instruction mem faults 3:360
Itanium system environment 1:5, 1:9, 1:10, 1:17, 2:5, 2:9,

2:10, 2:11
Itanium-based firmware 1:5, 1:17, 2:5, 3:5
itc instruction 1:24, 1:26, 1:27, 2:27, 2:43, 2:44, 2:47,

2:50, 2:58, 2:429, 2:431, 2:469, 2:470, 3:312,
3:313, 3:339-3:342, 3:344-3:346, 3:348, 3:352-
3:354, 3:356

itr instruction 2:40, 2:43, 2:44, 2:47, 2:50, 2:429, 2:430,
2:485, 2:488, 3:312, 3:313, 3:340-3:342, 3:344,
3:345, 3:348, 3:352, 3:356

IVA-based interruptions 2:79-2:81, 2:85, 2:405, 2:406

J
jmpe instruction 1:10, 1:103, 1:105

L
Lamport’s algorithm 2:397, 2:398
ld.a instruction 1:51, 1:57, 1:61, 1:62, 1:144, 1:146,

1:153, 2:68, 2:69, 2:74, 2:376, 2:443-2:445
ld.acq instruction 1:51, 1:60, 1:66, 2:69, 2:70, 2:376,

2:381, 2:383, 2:385, 2:387, 2:389, 2:390
ld.c instruction 1:57-1:60, 1:144-1:146, 1:153, 2:69,

2:444, 2:445
ld.c.clr instruction 1:51, 1:60-1:62, 2:73, 2:74
ld.c.clr.acq instruction 1:51, 1:60-1:62, 1:66, 2:69, 2:70,

2:73, 2:74
ld.c.nc instruction 1:51, 1:61, 1:62, 2:73, 2:74
ld.s instruction 1:51, 1:54, 1:56, 1:148, 2:68, 2:69, 2:376,

2:443-2:445
ld.sa instruction 1:51, 1:61, 1:62, 1:148, 2:68, 2:69, 2:74,

2:376, 2:416, 2:443-2:445
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ld8.fill instruction 1:26, 1:36, 1:37, 1:52, 1:55, 1:56,
1:147, 2:415, 2:416, 3:288, 3:289, 3:293-3:295,
3:338, 3:340, 3:352

ldf.a instruction 1:51, 1:57, 1:61, 1:62
ldf.c instruction 1:57
ldf.c.clr instruction 1:51, 1:61, 1:62, 2:73
ldf.c.nc instruction 1:51, 1:61, 1:62, 2:73
ldf.fill instruction 1:51, 1:52, 1:56, 1:83, 1:147, 2:69,

2:415, 2:416, 3:290, 3:291, 3:297-3:299, 3:352
ldf.s instruction 1:51, 1:54, 1:56, 2:69
ldf.sa instruction 1:51, 1:61, 1:62, 2:69
ldfp.a instruction 1:51, 1:57, 1:59, 1:61, 1:62
ldfp.c instruction 1:57
ldfp.c.clr instruction 1:51, 1:61, 1:62
ldfp.c.nc instruction 1:51, 1:61, 1:62
ldfp.s instruction 1:51, 1:54, 1:56, 2:69
ldfp.sa instruction 1:51, 1:61, 1:62, 2:69
level sensitive external interrupts 2:114
load instruction 1:159, 2:376, 3:873, 3:876, 3:879, 3:882,

3:884
loadrs instruction 1:25, 1:36, 1:44, 1:48, 2:57, 2:92,

2:119, 2:121-2:123, 2:125-2:130, 2:418, 2:419,
2:485, 3:306, 3:311, 3:339, 3:340, 3:345,
3:346, 3:351, 3:357

loadrs field 1:44, 2:122, 2:125
RSC.loadrs 1:44, 2:125-2:127, 2:485

logical instructions 1:45
long branch handler 2:447
loop support 1:68, 1:171, 1:174

capacity limitations 1:185
conflicts in the ALAT 1:186
counted loop 1:69, 1:171, 1:176, 1:177
counted loop branches 1:176
epilog 1:68, 1:174, 1:179
epilog count register (EC) 1:27
explicit prolog and epilog 1:190
implementing reductions 1:189
induction variable 1:172
initiation interval (II) 1:173
kernel 1:68, 1:174, 1:175, 1:179
kernel iteration 1:174
kernel loop 1:174
loop count application register (LC) 1:69, 1:171
loop unrolling 1:137, 1:172, 1:187
loop unrolling prior to software pipelining 1:187
loops with predicated instructions 1:182
multiple-exit loops 1:183
prolog 1:68, 1:174, 1:179
redundant load elimination in loops 1:192
register rotation 1:15, 1:174, 1:175
software pipelining and advanced loads 1:185
software pipelining considerations 1:185
software-pipelined loop branches 1:176, 1:177
source iteration 1:174
source loop 1:174
while loop 1:70, 1:178, 1:180, 3:686, 3:687

M
machine check 2:43, 2:44, 2:79, 2:92, 2:224, 2:226,

2:283, 2:406, 2:489-2:491, 3:429, 3:679, 3:737
machine check abort (See MCA)
machine check abort flows

machine check abort handling in OS 2:491
machine check handling in PAL 2:490
machine check handling in SAL 2:490

machine check aborts 2:481
machine checks 2:268
major opcode 1:34, 3:257-3:259
master boot record 2:483
mc bit

PSR.mc 2:82, 2:85, 2:86, 2:102, 2:408, 3:345,
3:349

MCA 2:481
PALE_CHECK 2:79, 2:92

memory acceptance fence 2:473
memory access control 1:204

allocation control 1:63, 1:205
data prefetch 1:205
load-pair instructions 1:204

memory access instructions 1:51, 1:62, 2:375
memory access ordering 1:65, 2:70

memory ordering instructions 1:66
memory ordering rules 1:66

memory addressing model 1:30, 1:123
memory alignment 2:236
memory attribute 2:45, 2:63, 2:64, 2:73-2:75, 3:429

effects of memory attributes on advanced/check
loads 2:73

effects of memory attributes on memory reference
instructions 2:72

memory attribute transition 2:74
physical addressing memory attribute 2:64
virtual addressing memory attribute 2:63, 2:74

memory dependency 1:35, 2:69
read-after-write 1:35, 1:38, 1:65, 2:69
write-after-read 1:35, 1:38, 1:65, 2:69
write-after-write 1:35, 1:38, 1:65, 2:69

memory endianess 1:124
memory fence 1:66, 2:392
memory fences 2:113, 2:378
memory hierarchy 1:63

hierarchy control and hints 1:62
memory consistency 1:65, 3:924-3:926

memory mapped I/O model 2:241, 2:474
memory model 1:123, 2:233
memory ordering 1:66, 2:69, 2:130, 2:375, 2:376, 2:378,

2:379, 2:383-2:385, 2:424, 3:928
acquire semantics 1:66, 2:70, 2:238, 2:375
memory ordering executions 2:379
memory ordering interactions 1:125
memory ordering model 2:238, 2:378, 2:392
memory ordering semantics 1:66, 2:378, 2:424
release semantics 1:66, 2:69, 2:238, 2:239, 2:375

memory ordering fence 1:66
memory reference 1:139, 1:140, 2:38
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memory synchronization 2:392
mf instruction 1:66, 2:113, 2:378
mf.a instruction 2:69, 2:113, 2:473, 2:474, 2:475, 3:306,

3:311
Min/Max/AMin/AMax 1:202
MMX technology 1:16, 1:104, 1:107, 1:109, 1:122, 3:359,

3:429, 3:747-3:749
mov instruction 1:29, 1:37, 1:38, 1:47, 1:50, 1:68, 1:74,

1:75, 2:13, 2:18, 2:19, 2:47, 2:50, 2:124, 2:127,
2:135, 2:140, 2:141, 2:477, 3:282-3:286, 3:307-
3:309, 3:311-3:314, 3:320, 3:353-3:355, 3:388,
3:618, 3:632-3:639, 3:659, 3:660, 3:717

multimedia instructions 1:11, 1:16, 1:41, 1:72
data arrangement 1:74
parallel arithmetic 1:72, 1:73
parallel shifts 1:73

multimedia support 1:16
multiple address space (MAS) 1:16, 2:37, 2:425, 2:426
multiple status fields 1:200
multiply-add instruction 1:198
multiprocessor (MP)

multiprocessor instruction cache coherency 2:238
multiprocessor TLB coherency 2:235

N
NaN

description of 3:824, 3:826
encoding of 3:825, 3:829
operating on 3:827
SNaNs vs. QNaNs 3:826
testing for 3:536

NaNs 1:78, 1:100, 1:202, 3:453, 3:497, 3:499, 3:502,
3:531, 3:534, 3:547, 3:549, 3:822, 3:824-3:827,
3:829

NaT (not a thing) 1:131
NaT page consumption fault 2:72
NaTPage attribute 2:72
NaTVal (not a thing value) 1:22
non-access instructions 2:87
non-cacheable memory 2:69
non-programmer-visible state 2:378
non-speculative 1:54, 2:67, 2:68, 2:74, 2:445
non-speculative memory references 1:139, 2:62

data prefetch hint 1:140
loads from memory 1:139
stores to memory 1:139

non-temporal hint 1:205
NOP instruction 3:649
no-recovery model 2:88, 2:89
normalized finite number 3:823, 3:825
normalized numbers 1:79, 3:822, 3:823, 3:825
not a thing attribute (NaTPage) 2:72

O
OLR 2:283
operand screening support 1:202

operating environments 1:9, 1:10
optimization of memory references 1:148

data interference 1:149, 1:150
loop optimization 1:152
minimizing check code 1:152
optimizing code size 1:150
using post-increment loads and stores 1:151

orderable instruction 2:376, 2:380
ordered cacheable operations 2:389
ordering semantics 1:66, 2:69, 2:70, 2:380

acquire 1:66, 2:69, 2:70, 2:238, 2:239, 2:375, 2:380,
2:381

fence 1:66, 2:69, 2:70, 2:239, 2:375, 2:380
release 1:66, 2:69, 2:70, 2:238, 2:239, 2:375, 2:380,

2:381
unordered 1:66, 2:69, 2:70, 2:239, 2:375, 2:380

OS boot flow sample code 2:495
OS kernel 2:483, 2:485
OS loader 2:482, 2:483
overflow 1:14, 1:97, 1:98, 2:452, 2:455

P
PAL 1:5, 1:17, 2:5, 2:253, 2:256, 2:283, 2:481, 2:483,

2:485-2:490, 3:5
entrypoints 2:256
procedures 2:256

PAL power on/reset 2:263
PALE_RESET 2:79

PAL procedure calling conventions 2:288
PAL procedure calls 2:486
PAL procedures 2:285, 2:481, 2:486-2:488

stacked PAL call 2:487
stacked registers 1:136, 2:486, 2:487
static PAL call 2:486

PAL self-test control word 2:267
PAL_MC_RESUME 2:276
PAL_PREFETCH_VISIBILITY 2:354
PAL_PROC_GET_FEATURES 2:355
PAL-based interrupt states 2:100
PAL-based interruptions 2:79-2:81, 2:85, 2:96, 2:405,

2:406
PALE_CHECK 2:268
PALE_INIT 2:277
PALE_RESET 2:263
performance counters 1:28, 2:137, 2:138, 2:225, 2:477,

3:681
performance monitor events 2:142
performance monitors 1:28, 2:137, 2:139, 2:217, 2:477,

2:478
performance monitor code sequences 2:143
performance monitor configuration (PMC) 2:137,

2:139
performance monitor data (PMD) 2:137, 2:477
performance monitor data registers (PMD) 1:19,

1:28
performance monitor interrupt service routine 2:143
performance monitor overflow registers 2:141
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performance monitor registers 2:137, 2:139, 2:477
performance monitoring mechanisms 2:477

physical addressing 2:61, 2:64, 2:76, 2:488, 3:429,
3:637

pk bit 2:427
PSR.pk 2:83, 2:86, 2:427, 2:428, 3:345, 3:349

platform management interrupt (PMI) 2:92, 2:279,
2:405, 2:481, 2:489, 2:492

PMI flows 2:492
population count 1:76, 3:279
power management 2:80, 2:281, 2:492

NORMAL 1:164, 3:541, 3:905, 3:907
predicate register (PR)

predicate register transfers 1:50
predication 1:11, 1:13, 1:47, 1:48, 1:135, 1:138, 1:155-

1:160
cache pollution reduction 1:160
downward code motion 1:159, 1:160
guidelines for removing branches 1:162
instruction prefetch hints 1:168
instruction scheduling 1:140, 1:142, 1:156
off-path predication 1:158
optimizing program performance using predication

1:157
performance costs of branches 1:155
predication considerations 1:160
predication in the itanium architecture 1:156
prediction resources 1:71, 1:155, 1:156
upward code motion 1:159

preservation of floating-point state in the OS 2:419
preserved 2:283
preserved registers 2:415, 2:420
preserving ALAT coherency 2:420
privilege levels 1:22, 2:13, 3:597, 3:598, 3:688

current privilege level (CPL) 2:13, 3:732
privilege level transfer 1:76
processor status register (PSR) 2:13, 2:16, 2:18
processor status register fields 2:19
processor status register instructions 2:18

privileged operation fault 2:149
probe instruction 2:47, 2:50, 2:62, 2:63, 2:87, 3:312,

3:313, 3:356
procedure 1:41-1:43
procedure calls 1:41, 1:136, 2:415, 2:459, 2:485-2:488

br.call 1:67, 1:69, 3:318, 3:319
br.ret 1:67, 1:69, 2:47, 2:57, 2:86, 2:92, 3:317,

3:319
branch instructions 1:70, 1:136, 1:137, 3:315,

3:316, 3:332
branches and hints 1:136
loops and software pipelining 1:137
register stack engine 1:41, 1:136, 2:86, 2:117,

3:597
rotating registers 1:23, 1:137
stacked register 1:42, 2:486, 2:487

processor abstraction layer (See PAL)
processor caches 2:75, 2:378
processor identifiers (CPUID) 1:19

processor identification registers 1:29

processor interrupt block 2:110-2:112, 2:471
processor min-state save area 2:274
processor ordered 2:238
processor state 2:289

system state 2:13, 2:15, 2:16
processor state parameter 2:271
processor status register (PSR) 2:13, 2:16, 2:18, 2:139,

2:408
programmed I/O 2:401, 2:402
protected mode 1:10, 1:104, 1:106, 1:113-1:115, 2:224,

2:458
protection key registers (PKR) 2:16, 2:48
protection keys 1:16, 2:16, 2:48, 2:49, 2:425, 2:427-

2:429, 2:435
pseudo-code functions 3:249
ptc.e instruction 2:41, 2:43, 2:50, 2:57, 2:426, 2:432-

2:434, 3:307, 3:312, 3:341, 3:342, 3:348,
3:352, 3:356

ptc.g instruction 2:41, 2:43, 2:44, 2:47, 2:50, 2:57, 2:63,
2:69, 2:433, 2:434, 3:312, 3:314, 3:341, 3:342,
3:345, 3:348, 3:352, 3:356

ptc.ga instruction 1:60, 2:41, 2:43, 2:44, 2:47, 2:50, 2:57,
2:63, 2:69, 2:426, 2:433, 2:434, 3:312, 3:314,
3:341, 3:342, 3:345, 3:348, 3:352, 3:356

ptr instruction 2:40, 2:43, 2:47, 2:50, 2:57, 2:429, 2:431,
2:485, 3:312, 3:314, 3:341, 3:342, 3:345,
3:348, 3:352, 3:356, 3:571

Q
QNaN

description of 3:826
operating on 3:827

qualified exception deferral 2:91

R
RAR (read-after-read) dependency 3:335
RAW (read-after-write) dependency 3:335
reader of a resource 3:335
real mode 1:10, 1:104, 1:106, 1:113-1:115, 2:458, 3:491,

3:508, 3:510, 3:526, 3:579, 3:665
recovery model 2:88, 2:89
region identifier (RID) 2:38, 2:48, 2:425
region register (RR) 2:48, 2:425
register dependency 1:35, 1:37

read-after-write (RAW) 1:35
write-after-read (WAR) 1:35
write-after-write (WAW) 1:35

register file transfers 1:74
register preservation 2:415

preservation at different points in the OS 2:418
preservation of stacked registers in the OS 2:418
preserving floating-point registers 2:416
preserving general registers 2:416

register rotation 1:15, 1:23, 1:174, 1:175
initializing rotating predicates 1:50, 1:176
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register stack 1:14, 1:23, 1:24, 1:41-1:44, 2:87, 2:117,
2:119-2:121, 2:485

clean partition 2:120, 2:127
current frame 1:23, 1:42, 2:86, 2:87, 2:117, 2:120,

2:485
dirty partition 2:120, 2:127
invalid partition 2:120, 2:127
register stack instructions 1:43
register stack operation 1:41

register stack configuration 1:24, 1:25, 1:44, 2:119,
2:122, 2:123, 2:485

RSC 1:24, 1:25, 1:44, 2:119, 2:122, 2:123, 2:127,
2:485, 3:353, 3:355

register stack engine (See RSE)
release semantics 1:66, 2:69, 2:238, 2:239, 2:375
release stores 2:376, 2:378, 2:389, 2:390
reserved 1:19, 1:20, 2:97, 2:284
rfi instruction 1:11, 1:34, 1:36, 1:38, 1:48, 1:69, 1:103,

2:18, 2:19, 2:57, 2:63, 2:79, 2:81, 2:84, 2:86-
2:88, 2:92, 2:119, 2:121, 2:122, 2:127-2:130,
2:182-2:184, 2:406, 2:410, 2:420, 2:421, 2:485,
3:316, 3:321, 3:339-3:341, 3:343-3:347, 3:349-
3:351, 3:356, 3:357

RSE 1:25, 1:26, 1:41, 1:136, 2:86, 2:117-2:119, 2:121-
2:123, 2:125-2:131, 2:485, 3:345, 3:350, 3:351,
3:357

RSE byte order 2:123
RSE control instructions 2:125, 2:126
RSE initialization 2:132
RSE internal state 2:119
RSE interruptions 2:127
RSE mode 1:25, 2:122
RSE operation instructions and state modification

2:122
RSE privilege level 1:25, 2:123

rsm instruction 2:18, 2:19, 2:33, 2:104, 2:140, 2:232,
2:410, 2:464, 2:477, 3:311, 3:314, 3:341, 3:356,
3:357, 3:694

rum instruction 1:75, 2:13, 2:18, 2:140, 2:477, 3:311,
3:314, 3:338, 3:345, 3:357

S
SAL 1:5, 1:17, 2:5, 2:253, 2:284, 2:458, 2:481-2:483,

2:485-2:491, 3:5, 3:696, 3:697, 3:698, 3:699,
3:709

SAL procedure calls 2:487
SALE_ENTRY 2:265
scratch 2:284
scratch registers 2:81, 2:415, 2:420
self test state parameter 2:266
self-modifying code 2:399
semaphore 3:303

behavior of uncacheable and misaligned sema-
phores 2:377

semaphore instructions 1:35, 1:53, 2:376, 3:303
semaphore operations 1:53, 2:237, 2:378, 2:388

sequential consistency (SC)
SC system 2:392

sequential semantics 2:70
inter-processor interrupt messages 2:70, 2:111-

2:113
sequential pages 2:70

serialization 2:13-2:15, 2:409, 2:410, 3:335-3:337, 3:431,
3:579, 3:597

single address space (SAS) 1:16, 2:37, 2:425, 2:427,
2:429

single instruction multiple data (SIMD) 3:812
single stepping 2:88
sof field

CFM.sof 2:84, 2:120-2:122, 2:126, 2:127, 2:129
software pipelining 1:11, 1:15, 1:137, 1:173, 1:185, 1:187
sol field

CFM.sol 2:122, 2:127, 2:129
special instruction notations 3:263
special use registers 2:415
speculation 1:11, 1:12, 1:133, 1:134, 1:139, 1:143, 1:149,

2:67, 2:68, 2:443, 2:445
advanced load 1:51, 1:57-1:59, 1:61, 1:144-1:146,

1:153, 2:68, 2:73, 2:74
advanced load check 1:58, 1:59, 1:146, 3:305
advanced load example 1:145
always-defer model 2:88
check load 1:51, 1:57, 1:59-1:61, 1:145, 1:146, 2:73,

2:74
combining data and control speculation 1:148
control speculation 1:12, 1:13, 1:53-1:56, 1:61,

1:134, 1:143, 1:146, 1:147, 2:445
control speculation example 1:147
control speculative load 1:12, 1:146-1:148
data speculation 1:12, 1:13, 1:57, 1:58, 1:61, 1:62,

1:134, 1:143, 1:144, 2:445
recovery code 1:13, 1:58, 1:145, 1:146-1:148, 2:444,

2:445
recovery code example 1:145
speculation attributes 2:67
speculation check 1:54, 1:58, 1:148, 3:283, 3:305
speculation considerations 1:149
speculation model in the itanium architecture 1:143,

1:144
speculation recovery code 2:445
speculation related exception handlers 2:445
speculative 1:12, 1:13, 1:54, 1:57, 2:67, 2:68, 2:74,

2:445
speculative load exceptions 2:89
speculatively accessible 2:68
speculatively inaccessible 2:68
unaligned handler 2:445

speculative advanced load 1:148
spill/fill 1:56, 1:83, 1:89, 2:86, 2:117, 2:118, 2:121
spin lock 2:393, 2:394
square root operations 1:198
ssm instruction 2:18, 2:19, 2:33, 2:103, 2:104, 2:140,

2:410, 2:477, 3:311, 3:314, 3:341, 3:356, 3:357,
3:694
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st instruction 1:13, 1:51, 1:62, 2:69, 2:380-2:385, 2:387,
2:390, 2:391, 3:357, 3:445, 3:447, 3:448,
3:451, 3:453, 3:456, 3:458, 3:460, 3:461,
3:463, 3:464, 3:466, 3:469, 3:472, 3:475,
3:476, 3:478, 3:482, 3:483, 3:485, 3:487,
3:493, 3:497-3:500, 3:502, 3:503, 3:505, 3:507,
3:508, 3:510, 3:513-3:515, 3:517, 3:519, 3:521,
3:530, 3:533, 3:536, 3:538, 3:539, 3:541,
3:543, 3:545, 3:547-3:549

st.rel instruction 1:51, 1:62, 1:66, 2:69, 2:113, 2:376,
2:381, 2:383-2:385, 2:388-2:391

st.spill instruction 1:51, 1:62, 2:69
st1 instruction 1:60, 3:288, 3:289, 3:296, 3:357, 3:856,

3:859, 3:860
st8.spill instruction 1:26, 1:36-1:38, 1:53, 1:55, 1:56,

1:147, 2:415, 2:416, 3:288, 3:289, 3:296,
3:338, 3:340, 3:347, 3:357

stack frame 1:14, 1:23, 1:25, 1:36, 1:41-1:44, 2:117,
2:119, 3:442-3:444

stacked calling convention 2:284
stacked registers 1:21, 1:42, 1:136, 2:117, 2:118, 2:120,

2:415, 2:418, 2:485
deallocated 2:129
stacked general registers 1:21, 2:117, 2:416

state mappings 3:359
static calling convention 2:284
static general registers 1:21, 2:117, 2:416
stf instruction 1:51, 1:62, 2:69, 3:290, 3:291, 3:299,

3:300, 3:357
stf.spill instruction 1:51, 1:53, 1:56, 1:62, 1:83, 1:147,

2:69, 2:415, 2:416, 3:290, 3:291, 3:299, 3:300,
3:357

store buffers 2:378, 2:385, 2:387
store instruction 2:376, 3:873, 3:876, 3:879, 3:882,

3:884, 3:925, 3:926, 3:928
streaming SIMD extension technology 1:104, 3:359,

3:430
subpaging 2:440, 2:441
sum instruction 1:75, 2:13, 2:18, 2:140, 2:477, 3:311,

3:314, 3:338, 3:345, 3:356, 3:357, 3:435,
3:448, 3:739, 3:910, 3:919, 3:920

supervisor accesses 2:236
system abstraction layer (See SAL)
system architecture features 1:16, 2:11

support for multiple address space operating sys-
tems 1:16

support for single address space operating systems
1:16

system performance and scalability 1:17
system security and supportability 1:17

system calls 2:420, 2:421, 2:422
system descriptors 2:217
system flag interception 2:215
system memory model 2:233
system register model 2:17, 2:215

IA-32 state 1:108, 2:215, 2:216
shared 1:108, 2:216, 2:217, 3:620
undefined 1:108, 2:216
unmodified 1:108, 1:109, 2:216, 3:582

system register resources 2:13, 2:15, 2:16

T
tak instruction 2:49, 2:50, 2:63, 2:87, 2:428, 3:312,

3:315, 3:341, 3:345, 3:352, 3:356
tbit instruction 1:37, 1:48, 1:50, 1:55, 1:135, 3:281,

3:352, 3:356
template 1:32, 1:33, 1:34, 1:133, 3:257, 3:258
temporal hint 1:205, 3:927
thash instruction 2:50, 2:54-2:56, 2:438, 2:439, 3:312,

3:315, 3:340, 3:341, 3:345, 3:352, 3:356
TLB 1:59, 2:17, 2:28, 2:32, 2:37-2:59, 2:96, 2:234,

2:235, 2:485
page not present vector 2:97, 2:152, 2:440
TLB miss 2:42, 2:51, 2:52, 2:55-2:59, 2:436
TLB miss handlers 2:59, 2:436, 2:439
TLB purges 2:40, 2:42, 2:44
translation insertion format 2:45
VHPT translation vector 2:96, 2:152, 2:438

TLB entry, invalidating (flushing) 3:578
tnat instruction 1:37, 1:48, 1:50, 1:55, 1:56, 3:281, 3:282,

3:352, 3:356
tpa instruction 2:50, 2:62, 2:87, 3:312, 3:315, 3:341,

3:345, 3:352, 3:356
translation caches (TCs) 2:431

TC insertion 2:431
TC purge 2:429, 2:432

translation lookaside buffer (See TLB)
translation registers (TRs) 2:429

TR insertion 2:430
TR purge 2:429, 2:430, 2:431

trap instruction 1:97, 1:98, 2:84, 2:85, 2:94, 2:96, 2:405,
3:411, 3:565-3:569, 3:573-3:575, 3:581, 3:585,
3:597, 3:598, 3:601, 3:627, 3:633, 3:634,
3:659, 3:661, 3:667, 3:674, 3:721, 3:722

ttag instruction 2:50, 2:53-2:56, 2:437, 3:312, 3:315,
3:345, 3:352, 3:356

U
UC memory attribute 2:242
unaligned reference handler 2:445-2:447
uncacheable 2:63-2:65, 3:927

uncacheable pages 2:66
unchanged 2:19, 2:159, 2:284, 3:466, 3:481, 3:505,

3:513, 3:515, 3:517, 3:666, 3:688, 3:865,
3:867, 3:869, 3:871, 3:875, 3:876, 3:878, 3:879

undefined behavior 1:39
underflow 1:14, 1:97, 1:99, 2:452, 2:456
unimplemented addresses 2:62, 2:63

unimplemented physical address bits 2:61, 2:62
unimplemented virtual address bits 2:62

unnormalized numbers 1:79
unordered semantics 2:375
unsupported data reference handler 2:447, 2:448
user mask (UM) 1:19, 1:28
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V
vector numbers 2:80, 2:101, 2:463, 3:367, 3:573
VHPT 2:28, 2:34, 2:37-2:39, 2:41, 2:47, 2:48, 2:50-2:59,

2:96, 2:434-2:436, 2:485
TLB and VHPT search faults 2:59
TLB/VHPT search 2:58
translation searching 2:57
VHPT configuration 2:51
VHPT searching 2:52
VHPT short format 2:52
VHPT short-format index 2:54, 2:55
VHPT updates 2:436
VHPT walker 2:39, 2:41, 2:48, 2:51-2:59, 2:434-

2:437
virtual addressing 2:37, 2:38, 2:63, 2:74, 2:485, 2:488
virtual aliasing 2:60
virtual hash page table (See VHPT)
virtual region number (VRN) 2:38, 2:62, 2:425
virtualized interrupt flag 2:219
visible 1:66, 2:69, 2:70, 2:376, 2:382, 3:600, 3:626, 3:928
VM86 1:10, 1:104, 1:106, 1:113, 1:114, 2:221, 2:224,

2:458, 3:571, 3:572

VME extensions 2:219, 2:224

W
WAR (write-after-read) dependency 3:335
WAW (write-after-write) dependency 3:335
write BSPSTORE 2:131
write-back and invalidate caches 3:735
writer of a resource 3:335

X
xchg instruction 1:51, 1:53, 1:62, 1:66, 2:69, 2:70, 2:73,

2:179, 2:376, 2:388, 3:357, 3:387, 3:620, 3:741,
3:742

Z
zero, floating-point format 3:824
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