
Intel® Itanium™ Processor
Reference Manual for Software
Development
Revision 2.0

December 2001

Document Number: 245320-003

THIS DOCUMENT IS PROVIDED “AS IS” WITH NO WARRANTIES WHATSOEVER, INCLUDING ANY WARRANTY OF MERCHANTABILITY,
FITNESS FOR ANY PARTICULAR PURPOSE, OR ANY WARRANTY OTHERWISE ARISING OUT OF ANY PROPOSAL, SPECIFICATION OR
SAMPLE.

Information in this document is provided in connection with Intel® products. No license, express or implied, by estoppel or otherwise, to any
intellectual property rights is granted by this document. Except as provided in Intel's Terms and Conditions of Sale for such products, Intel assumes no
liability whatsoever, and Intel disclaims any express or implied warranty, relating to sale and/or use of Intel products including liability or warranties
relating to fitness for a particular purpose, merchantability, or infringement of any patent, copyright or other intellectual property right. Intel products are
not intended for use in medical, life saving, or life sustaining applications.

Intel may make changes to specifications and product descriptions at any time, without notice.

Designers must not rely on the absence or characteristics of any features or instructions marked "reserved" or "undefined." Intel reserves these for
future definition and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to them.

Intel® processors based on the Itanium architecture may contain design defects or errors known as errata which may cause the product to deviate
from published specifications. Current characterized errata are available on request.

Contact your local Intel sales office or your distributor to obtain the latest specifications and before placing your product order.

Copies of documents which have an order number and are referenced in this document, or other Intel literature, may be obtained by calling1-800-548-
4725, or by visiting Intel's website at http://www.intel.com.

Intel, Itanium, Pentium, VTune and MMX are trademarks or registered trademarks of Intel Corporation or its subsidiaries in the United States and other
countries.

Copyright © 2000-2001, Intel Corporation

*Other names and brands may be claimed as the property of others.

Contents

1 About this Manual ... 1

1.1 Overview of the Intel® Itanium™ Processor Reference Manual for
Software Development ... 1

1.2 Terminology.. 1
1.3 Related Documents.. 2
1.4 Revision History ... 3

2 Register Stack Engine Support.. 5

2.1 RSE Modes .. 5
2.2 RSE and Clean Register Stack Partitions .. 5

3 Virtual Memory Management Support... 7

3.1 Page Size Supported ... 7
3.2 Physical and Virtual Addresses.. 7
3.3 Region Register ID ... 7
3.4 Protection Key Register.. 7

4 Processor Specific Write Coalescing (WC) Behavior .. 9

4.1 Write Coalescing .. 9
4.2 WC Buffer Eviction Conditions ... 9
4.3 WC Buffer Flushing Behavior ... 10

5 Model Specific Instruction Implementation .. 11

5.1 ld.bias ... 11
5.2 lfetch Exclusive Hint ... 11
5.3 fwb.. 11
5.4 thash... 12
5.5 ttag ... 12
5.6 ptc.e.. 13
5.7 mf.a .. 13
5.8 Prefetch Behavior ... 13
5.9 Temporal and Non-temporal Hints Support.. 13

6 Processor Performance Monitoring .. 15

6.1 Performance Monitor Programming Models... 15
6.1.1 Workload Characterization .. 16
6.1.2 Profiling ... 19
6.1.3 Event Qualification .. 22

6.2 Performance Monitor State .. 27
6.2.1 Performance Monitor Control and Accessibility... 27
6.2.2 Performance Counter Registers .. 30
6.2.3 Performance Monitor Overflow Status Registers

(PMC[0,1,2,3]) ... 31
Intel® Itanium™ Processor Reference Manual for Software Development iii

6.2.4 Intel® Itanium™ Instruction Address Range Check Register
(PMC[13]) ...32

6.2.5 Intel® Itanium™ Opcode Match Registers (PMC[8,9]).....................................34
6.2.6 Intel® Itanium™ Data Address Range Check (PMC[11]).................................35
6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])36
6.2.8 Intel® Itanium™ Branch Trace Buffer ..42
6.2.9 Processor Reset, PAL Calls, and Low Power State...46
6.2.10 References ...47

7 Performance Monitor Events ..49

7.1 Categorization of Events ...49
7.2 Basic Events..49
7.3 Instruction Execution ...50
7.4 Cycle Accounting Events...52
7.5 Branch Events...54
7.6 Memory Hierarchy ...56

7.6.1 L1 Instruction Cache and Prefetch ...59
7.6.2 L1 Data Cache ...60
7.6.3 L2 Unified Cache..62
7.6.4 L3 Unified Cache..62
7.6.5 Frontside Bus ...63

7.7 System Events ..65
7.8 Performance Monitor Event List ..67

8 Model Specific Behavior for IA-32 Instruction Execution ..113

8.1 Processor Reset and Initialization ...113
8.2 New JMPE Instruction ...113
8.3 System Management Mode (SMM)...114
8.4 CPUID Instruction Return Values for Caches and TLBs of the

Intel® Itanium™ Processor ...114
8.5 Machine Check Abort (MCA)...115
8.6 Model Specific Registers...115
8.7 Cache Modes ..115
8.8 10-byte Floating-point Operand Reads and Writes ...115
8.9 Floating-point Data Segment State ...116
8.10 Writes to Reserved Bits during FXSAVE...116
8.11 Setting the Access/Dirty (A/D) Bit on Accesses that Cross a

Page Boundary..116
8.12 Enhanced Floating-point Instruction Accuracy ..116
8.13 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction Differences117
8.14 Read/Write Access Ordering...117
8.15 Multiple IOAPIC Redirection Table Entries ...117
8.16 Self Modifying Code (SMC)...117
8.17 Raising an Alignment Check (AC) Fault..118
8.18 Maximum Number of Processors Supported in MP System Running

Legacy IA-32 OS (IA-32 System Environment)...118
iv Intel® Itanium™ Processor Reference Manual for Software Development

Figures

6-1 Time-based Sampling ... 16
6-2 Cycle Accounting in the Intel® Itanium™ Architecture.. 18
6-3 Event Histogram by Program Counter .. 20
6-4 Intel® Itanium™ Processor Event Qualification .. 23
6-5 Instruction Tagging Mechanism in the Intel® Itanium™ Processor... 24
6-6 Single Process Monitor ... 26
6-7 Multiple Process Monitor ... 26
6-8 System Wide Monitor .. 27
6-9 Intel® Itanium™ Processor Performance Monitor Register Model.. 28
6-10 Processor Status Register (PSR) Fields for Performance Monitoring....................................... 29
6-11 Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12]) 29
6-12 Intel® Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7]) .. 30
6-13 Intel® Itanium™ Processor Generic PMC Registers (PMC[4,5]) .. 30
6-14 Intel® Itanium™ Processor Generic PMC Registers (PMC[6,7]) .. 30
6-15 Intel® Itanium™ Processor Performance Monitor Overflow Status Registers

(PMC[0,1,2,3]) ... 32
6-16 Intel® Itanium™ Processor Instruction Address Range Check Register

(PMC[13]) .. 32
6-17 Opcode Match Registers (PMC[8,9]) .. 34
6-18 Instruction Event Address Configuration Register (PMC[10]) ... 36
6-19 Instruction Event Address Register Format (PMD[0,1] ... 37
6-20 Data Event Address Configuration Register (PMC[11]) .. 39
6-21 Data Event Address Register Format (PMD[2,3,17]) .. 40
6-22 Intel® Itanium™ Branch Trace Buffer Configuration Register (PMC[12]) 42
6-23 Branch Trace Buffer Register Format (PMD[8-15]) ... 44
6-24 Intel® Itanium™ Branch Trace Buffer Index Register Format (PMD[16]) 46
7-1 Event Monitors in the Intel® Itanium™ Processor Memory Hierarchy 57
7-2 L1 Instruction Cache and Prefetch Monitors ... 59
7-3 L1 Data Cache Monitors.. 60
7-4 Instruction and Data TLB Monitors.. 67
Intel® Itanium™ Processor Reference Manual for Software Development v

Tables

4-1 Intel® Itanium™ Processor WCB Eviction Conditions ..9
6-1 Average Latency per Request and Requests per Cycle Calculation Example........................18
6-2 Intel® Itanium™ Processor EARs and Branch Trace Buffer ...21
6-3 Intel® Itanium™ Processor Event Qualification Modes...24
6-4 Intel® Itanium™ Processor Performance Monitor Register Set ..29
6-5 Intel® Itanium™ Processor Generic PMD Register Fields..30
6-6 Intel® Itanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7])31
6-7 Intel® Itanium™ Processor Performance Monitor Overflow Register

Fields (PMC[0,1,2,3]) ..32
6-8 Intel® Itanium™ Processor Instruction Address Range Check Register Fields

(PMC[13]) ..33
6-9 Intel® Itanium™ Processor Instruction Address Range Check by Instruction Set33
6-10 Opcode Match Register Fields (PMC[8,9])..34
6-11 Instruction Event Address Configuration Register Fields (PMC[10]).......................................37
6-12 Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tlb=0)38
6-13 Instruction EAR (PMD[0,1]) in Cache Mode (PMC[10].tlb=0)..38
6-14 Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tlb=1)38
6-15 Instruction EAR (PMD[0,1]) in TLB Mode (PMC[10].tlb=1) ...39
6-16 Data Event Address Configuration Register Fields (PMC[11])..39
6-17 PMC[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0).................................40
6-18 PMD[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)40
6-19 PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tlb=1) ...41
6-20 PMD[2,3,17] Fields in TLB Miss Mode (PMC[11].tlb=1)..41
6-21 Intel® Itanium™ Branch Trace Buffer Configuration Register Fields (PMC[12]).....................43
6-22 Intel® Itanium™ Branch Trace Buffer Register Fields (PMD[8-15])..45
6-23 Intel® Itanium™ Branch Trace Buffer Index Register Fields (PMD[16])46
6-24 Information Returned by PAL_PERF_MON_INFO for the Intel® Itanium™

Processor ..46
7-1 Intel® Itanium™ and IA-32 Instruction Set Execution and Retirement Monitors.....................50
7-2 Intel® Itanium™ and IA-32 Instruction Set Execution and Retirement

Performance Metrics ...50
7-3 Instruction Issue and Retirement Events...50
7-4 Instruction Issue and Retirement Events (Derived)...50
7-5 Floating-point Execution Monitors ...51
7-6 Floating-point Execution Monitors (Derived) ...51
7-7 Control and Data Speculation Monitors...51
7-8 Control/Data Speculation Performance Metrics ..52
7-9 Memory Events ...52
7-10 Stall Cycle Monitors...53
7-11 Stall Cycle Monitors (Derived)...54
7-12 Branch Monitors ..54
7-13 Branch Monitors (Derived) ..55
7-14 Derived Memory Hierarchy Monitors...58
7-15 Cache Performance Ratios ...58
7-16 L1 Instruction Cache and Instruction Prefetch Monitors..59
7-17 L1 Data Cache Monitors..60
7-18 L2 Cache Monitors ..62
7-19 L3 Cache Monitors ..62
7-20 Bus Events ..63
vi Intel® Itanium™ Processor Reference Manual for Software Development

7-21 Frontside Bus Monitors (Derived)... 64
7-22 Unit Masks for Qualifying Bus Transaction Events by Initiator ... 64
7-23 Conventions for Frontside Bus Transactions.. 64
7-24 Bus Events by Snoop Response .. 65
7-25 Bus Performance Metrics ... 65
7-26 System and TLB Monitors .. 66
7-27 System and TLB Monitors (Derived) .. 66
7-28 TLB Performance Metrics... 67
7-29 Slot unit mask for BRANCH_TAKEN_SLOT .. 83
7-30 Retired Event Selection by Opcode Match.. 96
7-31 Unit Mask Bits {19:16} for L2_FLUSH_DETAILS Event ... 101
7-32 Unit Mask Bits {19:18} for PIPELINE_FLUSH Event.. 109
8-1 Encoding of Cache and TLB Return Values for the Intel® Itanium™ Processor.................. 114
8-2 EAX, EBX, ECX, and EDX Return Values for the Intel® Itanium™ Processor 115
Intel® Itanium™ Processor Reference Manual for Software Development vii

viii Intel® Itanium™ Processor Reference Manual for Software Development

About this Manual 1

The Intel® Itanium™ Processor Reference Manual for Software Development describes
model-specific architectural features incorporated into the Intel® Itanium™ processor, the first
processor based on the Itanium architecture. This document (Document number 245320) has been
re-titled. In previous revisions, it was titled the Intel® Itanium™ Architecture Software Developer’s
Manual, Volume 4: Itanium™ Processor Programmer’s Guide.

1.1 Overview of the Intel® Itanium™ Processor
Reference Manual for Software Development

Chapter 1, “About this Manual” provides an overview of four volumes in the Intel® Itanium
Architecture Software Developer’s Manual.

Chapter 2, “Register Stack Engine Support” summarizes Register Stack Engine (RSE) support
provided by the Itanium processor.

Chapter 3, “Virtual Memory Management Support” details size of physical and virtual address,
region register ID, and protection key register implemented on the Itanium processor.

Chapter 4, “Processor Specific Write Coalescing (WC) Behavior” describes the behavior of write
coalesce (also known as Write Combine) on the Itanium processor.

Chapter 5, “Model Specific Instruction Implementation” describes model specific behavior of
Itanium instructions on the Itanium processor.

Chapter 6, “Processor Performance Monitoring” defines the performance monitoring features
which are specific to the Itanium processor. This chapter outlines the targeted performance monitor
usage models and describes the Itanium processor specific performance monitoring state.

Chapter 7, “Performance Monitor Events” summarizes the Itanium processor events and describes
how to compute commonly used performance metrics for Itanium processor events.

Chapter 8, “Model Specific Behavior for IA-32 Instruction Execution” describes some of the key
differences between an Itanium processor executing IA-32 instructions and the Intel® Pentium® III
processor.

1.2 Terminology

The following definitions are for terms related to the Itanium architecture and will be used
throughout this document:

Instruction Set Architecture (ISA) – Defines application and system level resources. These
resources include instructions and registers.
About this Manual 1

Itanium Architecture – The new ISA with 64-bit instruction capabilities, new performance-
enhancing features, and support for the IA-32 instruction set.

IA-32 Architecture – The 32-bit and 16-bit Intel Architecture as described in the Intel Architecture
Software Developer’s Manual.

Itanium System Environment – The operating system environment that supports the execution of
both IA-32 and Itanium-based code.

IA-32 System Environment – The operating system privileged environment and resources as
defined by the Intel Architecture Software Developer’s Manual. Resources include virtual paging,
control registers, debugging, performance monitoring, machine checks, and the set of privileged
instructions.

Itanium-based Firmware – The Processor Abstraction Layer (PAL) and System Abstraction
Layer (SAL).

Processor Abstraction Layer (PAL) – The firmware layer which abstracts processor features that
are implementation dependent.

System Abstraction Layer (SAL) – The firmware layer which abstracts system features that are
implementation dependent.

1.3 Related Documents

The following documents can be downloaded at the Intel’s Developer Site at http://
developer.intel.com:

• Intel® Itanium™ Processor Reference Manual for Software Development – This document
(Document number 245320) describes model-specific architectural features incorporated into
the Intel® Itanium™ processor, the first processor based on the Itanium architecture. This
document has been re-titled and replaces the Intel® Itanium™ Architecture Software
Developer’s Manual, Volume 4: Itanium™ Processor Programmer’s Guide.

• Intel® Architecture Software Developer’s Manual – This set of manuals describes the Intel
32-bit architecture. They are readily available from the Intel Literature Department by calling
1-800-548-4725 and requesting Document Numbers 243190, 243191and 243192.

• Itanium™ Software Conventions and Runtime Architecture Guide – This document
(Document number 245358) defines general information necessary to compile, link, and
execute a program on an Itanium-based operating system.

• Itanium™ Processor Family System Abstraction Layer Specification – This document
(Document number 245359) specifies requirements to develop platform firmware for
Itanium-based systems.

• Extensible Firmware Interface Specification – This document defines a new model for the
interface between operating systems and platform firmware.
2 About this Manual

1.4 Revision History

Date of
Revision

Revision
Number Description

December 2001 2.0 Initial release of re-titled document. This document (Document number
245320) replaces the former Intel® Itanium™ Architecture Software
Developer’s Manual, Volume 4: Itanium™ Processor Programmer’s Guide.

Performance monitoring changes (Section 7.8).

Revised Chapter 7 Performance Monitoring Events (new Section 7.6.5,
Frontside Bus; added bus monitors to Section 7.8, Event List; misc. changes
and fixes).

Revised IBR and DBR addressing (Section 6.2.4).

IA-32 related changes (Section 8).

Miscellaneous performance monitoring events changes (Chapter 7).

July 2000 1.1 Reformatted the Performance Monitor Events chapter for readability and ease
of use (no changes to any of the events except for renaming of some); events
are listed in alphabetical order (Chapter 7).

January 2000 1.0 Initial release of document.
About this Manual 3

4 About this Manual

Register Stack Engine Support 2

2.1 RSE Modes

The Itanium processor implements the enforced lazy RSE mode. Refer to Chapter 6, “Register
Stack Engine” in Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual for
a description of the RSE modes.

2.2 RSE and Clean Register Stack Partitions

On the Itanium processor, the internal RSE pointer RSE.BSPLoad is always equal to AR.BSPStore,
meaning that the size of the clean register stack partition is always zero. This implies that, on the
Itanium processor, a flushrs instruction will create a dirty region of size zero and an invalid
region of size equal to 96 - CFM.sof. On other implementations that maintain a clean partition,
flushrs behavior may differ by creating a clean register stack partition in addition to an invalid
partition and a zero-sized dirty partition. As a result, the Itanium processor’s RSE may perform
more mandatory fills upon a branch-return (br.ret) or rfi following a flushrs instruction than
an implementation that maintains a clean partition.
Register Stack Engine Support 5

6 Register Stack Engine Support

Virtual Memory Management Support 3

3.1 Page Size Supported

The following page sizes are supported on the Itanium processor: 4K, 8K, 16K, 64K, 256K, 1M,
4M, 16M and 256M bytes.

3.2 Physical and Virtual Addresses

The Itanium architecture requires that a processor implement at least 54 virtual address bits and
32 physical address bits. The Itanium processor implements 54 virtual address bits (51 address bits
plus 3 region index bits) and 44 physical address bits.

3.3 Region Register ID

The Itanium processor implements the minimum region register IDs allowed by the Itanium
architecture. The region register ID contains 18 bits.

3.4 Protection Key Register

The Itanium architecture requires a minimum of 16 protection key registers, each at least as wide as
the region register IDs. The Itanium processor implements 16 protection key registers, each 21 bits
wide.
Virtual Memory Management Support 7

Virtual Memory Management Support 8

Processor Specific Write Coalescing
(WC) Behavior 4

4.1 Write Coalescing

For increased performance of uncacheable references to frame buffers, previous Intel IA-32
processors defined the Write Coalescing (WC) memory type. WC coalesces streams of data writes
into a single larger bus write transaction. Refer to the Intel® Architecture Software Developer’s
Manual for additional information.

On the Itanium processor, WC loads are performed directly from memory and not from coalescing
buffers. It has a separate 2-entry, 64-byte Write Coalesce Buffer (WCB) which is used exclusively
for WC accesses. Each byte in the line has a valid bit. If all the valid bits are true, then the line is
full and will be evicted (or flushed) by the processor.

Note: WC behavior of the Itanium processor in the IA-32 System Environment is similar to the
Pentium III processor. Refer to the Intel® Architecture Software Developer’s Manual for
more information.

4.2 WC Buffer Eviction Conditions

To ensure consistency with memory, the WCB is flushed on the following conditions (both entries
are flushed). These conditions are followed when the processor is operating in the Itanium System
Environment:

Table 4-1. Intel® Itanium™ Processor WCB Eviction Conditions

Eviction Condition Intel® Itanium™ Instructions

Memory Fence (mf) mf

Architectural Conditions for WCB Flush

Memory Release ordering (op.rel) st.rel, cmpxchg.rel, fetchadd.rel, ptc.g

Flush Cache (fc) hit on WCB yes

Flush Write Buffers (fwb) yes

Any UC load no a

a. Itanium architecture doesn’t require the WC buffers to be coherent w.r.t to UC load/store operations.

Any UC store no a

UC load or ifetch hits WCB no a

UC store hits WCB no a

WC load/ifetch hits WCB

WC store hits WCB
Processor Specific Write Coalescing (WC) Behavior 9

4.3 WC Buffer Flushing Behavior

As mentioned previously, the Itanium processor WCB contains two entries. The WC entries are
flushed in the same order as they are allocated. That is, the entries are flushed in written order. This
flushing order applies only to a “well-behaved” stream. A “well-behaved” stream writes one WC
entry at a time and does not write the second WC entry until the first one is full.

In the absence of platform retry or deferral, the flushing rule implies that the WCB entries are
always flushed in a program written order for a “well-behaved” stream, even in the presence of
interrupts. For example, consider the following scenario: if software issues a “well-behaved”
stream, but is interrupted in the middle; one of the WC entries could be partially filled. The WCB
(including the partially filled entry) could be flushed by the OS kernel code or by other processes.
When the interrupted context resumes, it sends out the remaining line and then moves on to fill the
other entry. Note that the resumed context could be interrupted again in the middle of filling up the
other entry, causing both entries to be partially filled when the interrupt occurs.

For streams that do not conform to the above “well-behaved” rule, the order in which the WC buffer
is flushed is random.

WCB eviction is performed for full lines by a single 64-byte bus transaction in a stream of 8-byte
packages. For partially full lines, the WCB is evicted using up to eight 8-byte transactions with the
proper byte enables. When flushing, WC transactions are given the highest priority of all external
bus operations.
10 Processor Specific Write Coalescing (WC) Behavior

Model Specific Instruction
Implementation 5

This section describes how Itanium instructions with processor implementation-specific features,
behave on the Intel Itanium processor.

5.1 ld.bias

If the instruction hits L1D1 or L2 cache and the state of the line is exclusive (E) or modified (M),
the line is returned and remains in cache; no external bus traffic is generated. If the line is shared (S)
or invalid (I) or the instruction misses the L2, it is treated as a store miss by the L3/bus. The line is
returned and stored in E state by the processor in the L2 and L3 cache.

Please refer to page 3:135 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the ld instruction.

5.2 lfetch Exclusive Hint

The exclusive hint in the lfetch instruction allows the cache line to be fetched in an exclusive (E)
state. On the Itanium processor, an lfetch transaction that has a snoop hit will be cached in an
shared (S) state; otherwise, it is cached in an exclusive state.

Please refer to page 3:146 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the lfetch instruction.

5.3 fwb

The Itanium processor implements the flush write-back buffer (fwb) instruction. This instruction
carries a weak memory attribute and causes the coalescing buffer to be flushed. The L1D and L2
store buffers are not flushed.

Please refer to page 3:126 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the fwb instruction.

1. The Itanium processor cache hierarchy consists of the following levels: on-chip L1I, L1D, L2 caches, and off-chip
L3 cache.
Model Specific Instruction Implementation 11

5.4 thash

The Itanium architecture defines a thash instruction for generating the hash address for long
format VHPT. thash is implementation specific. On the Itanium processor, since the hashing
function is performed in the HPW, the HPW will generate the VHPT Entry which corresponds to
the virtual address supplied. The hashing function is given in the following pseudo-code:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ; // treated as a speculative access.

GR[r1].nat = ’1;

}

else {

Mask = (2^PTA.size) - 1;

HPN = VA{50:0} >> RR[VA{63:61}].ps; // Hash Page Number unsigned right shift.

 // mov 2 RR checks for supported ps

if (PTA.vf=32) { // 32B PTE (Long format)

Hash_Index = HPN ^ (zero{63:18} || rid{17:0})

VHPT_Offset = Hash_Index << 5 ;

}

if (PTA.vf=8) { // 8B PTE

Hash_Index = HPN ;

VHPT_Offset = Hash_Index << 3;

}

GR[r1] = (PTA.base{63:61} << 61)

 || ([(PTA.base{60:15} & ~Mask{60:15}) ||

 (VHPT_Offset{60:15} & Mask{60:15})] << 15)

|| VHPT_Offset{14:0} ;

}

}

Please refer to page 3:234 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the thash instruction.

5.5 ttag

The Itanium architecture defines the ttag instruction for generating the tag for a long format
VHPT entry. ttag is implementation specific. The HPW will generate the tag for the long format
VHPT entry which corresponds to the virtual address supplied. The function is:

If (GR[r3].nat = ’1 or unimplemented virtual address bits) then {

GR[r1] = ’0 ;

GR[r1].nat = ’1;

}

else {

GR[r1] =(VA{50:0}>> RR[VA{63:61}].PS) ^

((zero{5:0} || RR[VA{63:61}].RID{17:0}) << 39);

}

}

Please refer to page 3:238 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the ttag instruction.
12 Model Specific Instruction Implementation

5.6 ptc.e

On the Itanium processor, a single ptc.e purges all translation cache (TC) entries in both the
instruction and data TLBs. The caches are not flushed.

Please refer to page 3:202 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the ptc instruction.

5.7 mf.a

In the Itanium architecture, the mf.a instruction is a memory acceptance fence for UC transactions
only. On the Itanium processor, mf.a is implemented as an acceptance fence for both cacheable
and UC data transactions (but not I fetches). The processor stalls until all data buffers in the L2 and
bus are empty. This does not include buffers for instruction and L3 WB buffer in the bus request
queue.

Please refer to page 3:149 in Volume 3 of the Intel® Itanium™ Architecture Software Developer’s
Manual for a detailed description of the mf instruction.

5.8 Prefetch Behavior

The Itanium processor does not initiate prefetches with post-increment loads.

5.9 Temporal and Non-temporal Hints Support

 Itanium architecture provides memory locality hints for data accesses that can be used for
allocation control in the processor cache hierarchy. For more details on this topic, please refer to
Volume 1 of the Intel® Itanium™ Architecture Software Developer’s Manual, Section 4.4.6.
Implementation of locality hints is left as an implementation-specific feature on processors based
on the Itanium architecture.

On the Itanium processor, four types of memory locality hints are implemented: t1, nt1, nt2 and nta.
The Itanium processor does not support a non-temporal buffer; instead, non-temporal accesses are
allocated in L2 cache with biased replacement.
Model Specific Instruction Implementation 13

14 Model Specific Instruction Implementation

Processor Performance Monitoring 6

This chapter defines the performance monitoring features on the Itanium processor. The Itanium
processor provides four 32-bit performance counters, more than 50 monitorable events, and several
advanced monitoring capabilities. This chapter outlines the targeted performance monitor usage
models, defines the software interface and programming model, and lists the set of monitored
events.

Itanium architecture incorporates architected mechanisms that allow software to actively and
directly manage performance critical processor resources such as branch prediction structures,
processor data and instruction caches, virtual memory translation structures, and more. To achieve
the highest performance levels, dynamic processor behavior can be monitored and fed back into the
code generation process to improve observed run-time behavior or to expose higher levels of
instruction level parallelism. One can quantify and measure behavior of real-world Itanium-based
applications, tools and operating systems. These measurements will be critical for compiler
optimizations and the efficient use of several architectural features such as speculation, predication,
and more.

The remainder of this chapter is split into the following two subsections:

• Section 6.1, "Performance Monitor Programming Models" discusses how performance
monitors are used and presents various Itanium processor performance monitoring
programming models.

• Section 6.2, "Performance Monitor State" defines the Itanium processor specific PMC/PMD
performance monitoring registers.

6.1 Performance Monitor Programming Models

This section introduces the Itanium processor performance monitoring features from a
programming model point-of-view and describes how the different event monitoring mechanisms
can be used effectively. The Itanium processor performance monitor architecture focuses on the
following two usage models:

• Workload Characterization: the first step in any performance analysis is to understand the
performance characteristics of the workload under study. Section 6.1.1, "Workload
Characterization" discusses the Itanium processor support for workload characterization.

• Profiling: profiling is used by application developers and profile-guided compilers.
Application developers are interested in identifying performance bottlenecks and relating them
back to their code. Their primary objective is to understand which program location caused
performance degradation at the module, function, and basic block level. For optimization of
data placement and the analysis of critical loops, instruction level granularity is desirable.
Profile-guided compilers that use advanced Itanium architectural features such as predication
and speculation benefit from run-time profile information to optimize instruction schedules.
The Itanium processor supports instruction granular statistical profiling of branch mispredicts
and cache misses. Details of the Itanium processor’s profiling support are described in
Section 6.1.2, "Profiling".
Processor Performance Monitoring 15

Whenever monitoring overhead is irrelevant, but accuracy is the primary objective, system and
processor designers may resort to tracing processor activity at the system or the processor bus
interface. However, trace based performance analysis and hardware tracing of the Itanium
processor are beyond the scope of this documentation.

6.1.1 Workload Characterization

The first step in any performance analysis is to understand the performance characteristics of the
workload under study. There are two fundamental measures of interest: event rates and program
cycle break down.

• Event Rate Monitoring: Event rates of interest include average retired instructions-per-clock
(IPC), data and instruction cache miss rates, or branch mispredict rates measured across the
entire application. Characterization of operating systems or large commercial workloads (e.g.
OLTP analysis) requires a system-level view of performance relevant events such as TLB miss
rates, VHPT walks/second, interrupts/second or bus utilization rates. Section 6.1.1.1, "Event
Rate Monitoring" discusses event rate monitoring.

• Cycle Accounting: The cycle break-down of a workload attributes a reason to every cycle
spent by a program. Apart from a program’s inherent execution latency, extra cycles are usually
due to pipeline stalls and flushes. Section 6.1.1.4, "Cycle Accounting" discusses cycle
accounting.

6.1.1.1 Event Rate Monitoring

Event rate monitoring determines event rates by reading processor event occurrence counters
before and after the workload is run and then computing the desired rates. For instance, two basic
Itanium processor events that count the number of retired Itanium instructions
(IA64_INST_RETIRED) and the number of elapsed clock cycles (CPU_CYCLES) allow a
workload’s instructions per cycle (IPC) to be computed as follows:

IPC = (IA64_INST_RETIREDt1 – IA64_INST_RETIREDt0) / (CPU_CYCLESt1 –
CPU_CYCLESt0)

Time-based sampling is the basis for many performance debugging tools [VTune™, gprof,
Windows NT*]. As shown in Figure 6-1, time-based sampling can be used to plot the event rates
over time, and can provide insights into the different phases the workload moves through.

Figure 6-1. Time-based Sampling

Time
Sample Interval

t1t0

E
ve

nt
 R

at
e

16 Processor Performance Monitoring

On the Itanium processor, many event types (e.g. TLB misses or branch mispredicts) are limited to
a rate of one per clock cycle. These are referred to as “single occurrence” events. However, in the
Itanium processor multiple events of the same type may occur in the same clock. We refer to such
events as “multi-occurrence” events. An example of a multi-occurrence events on the Itanium
processor is data cache misses (up to two per clock). Multi-occurrence events, such as the number
of entries in the memory request queue, can be used to the derive average number and average
latency of memory accesses. The next two sections describe the basic Itanium processor
mechanisms for monitoring single and multi-occurrence events.

6.1.1.2 Single Occurrence Events and Duration Counts

A single occurrence event can be monitored by any of the Itanium processor performance counters.
For all single occurrence events a counter is incremented by up to one per clock cycle. Duration
counters that count the number of clock cycles during which a condition persists are considered
“single occurrence” events. Examples of single occurrence events on the Itanium processor are
TLB misses, branch mispredictions, or cycle-based metrics.

6.1.1.3 Multi-occurrence Events, Thresholding and Averaging

Events that, due to hardware parallelism, may occur at rates greater than one per clock cycle are
termed “multi-occurrence” events. Examples of such events on the Itanium processor are retired
instructions or the number of live entries in the memory request queue. The Itanium processor’s
four performance counters are asymmetrical. While all counters handle single-occurrence and
multi-occurrence events with event rates up to three per cycle, only two counters can handle
multi-occurrence events with event rates up to seven per cycle. For details, see Section 6.2.2,
"Performance Counter Registers".

Thresholding capabilities are available in the Itanium processor’s multi-occurrence counters and
can be used to plot an event distribution histogram. When a non-zero threshold is specified, the
monitor is incremented by one in every cycle in which the observed event count exceeds that
programmed threshold. This allows questions such as “for how many cycles did the memory
request queue contain more than two entries?” or “during how many cycles did the machine retire
more than three instructions?” to be answered. This capability allows micro-architectural buffer
sizing experiments to be supported by real measurements. By running a benchmark with different
threshold values, a histogram can be drawn up that may help to identify the performance “knee” at
a certain buffer size.

For overlapping concurrent events, such as pending memory operations, the average number of
concurrently outstanding requests and the average number of cycles that requests were pending is
of interest. To calculate the average number or latency of multiple outstanding requests in the
memory queue, we need to know the total number of requests (ntotal) and, in each cycle, the number
of live requests per cycle (nlive/cycle). By summing up the live requests (nlive/cycle) using a
multi-occurrence counter Σnlive is directly measured by hardware. We can now calculate the
average number of requests and the average latency as follows:

• Average outstanding requests/cycle = Σnlive/ ∆t

• Average latency per request = Σnlive / ntotal

An example of this calculation is given in Table 6-1, in which the average outstanding
requests/cycle = 15/8 = 1.825, and the average latency per request = 15/5 = 3 cycles.
Processor Performance Monitoring 17

The Itanium processor provides the following capabilities to support event rate monitoring:

• Clock cycle counter

• Retired instruction counter

• Event occurrence and duration counters

• Multi-occurrence counters with thresholding capability

6.1.1.4 Cycle Accounting

While event rate monitoring counts the number of events, it does not tell us whether the observed
events are contributing to a performance problem. A commonly used strategy is to plot multiple
event rates and correlate them with the measured instructions per cycle (IPC) rate. If a low IPC
occurs concurrently with a peak of cache miss activity, chances are that cache misses are causing a
performance problem. To eliminate such guess work, the Itanium processor provides a set of cycle
accounting monitors based on the Itanium architecture, that break-down the number of cycles that
are lost due to various kinds of micro-architectural events. As shown in Figure 6-2, this lets us
account for every cycle spent by a program and therefore provides insight into an application’s
micro-architectural behavior. Note that cycle accounting is different from simple stall or flush
duration counting. Cycle accounting is based on the machine’s actual stall and flush conditions and
accounts for overlapped pipeline delays, while simple stall or flush duration counters do not. Cycle
accounting determines a program’s cycle break-down by stall and flush reasons, while simple
duration counters are useful in determining cumulative stall or flush latencies.

The Itanium processor cycle accounting monitors account for all major single and multi-cycle stall
and flush conditions. Overlapping stall and flush conditions are prioritized in reverse pipeline order
(i.e. delays that occur later in the pipe and that overlap with earlier stage delays are reported as
being caused later in the pipeline). The eight stall and flush reasons are prioritized in the following
order:

1. Back-end Flush Cycles: cycles lost due to branch mispredictions, ALAT flushes,
serialization flushes, failed control speculation flushes, MMU-IEU bypasses and other
exceptions.

Table 6-1. Average Latency per Request and Requests per Cycle Calculation Example

Time [Cycles] 1 2 3 4 5 6 7 8

Requests In 1 1 1 1 1 0 0 0

Requests Out 0 0 0 1 1 1 1 1

nlive 1 2 3 3 3 2 1 0

Σnlive 1 3 6 9 12 14 15 15

ntotal 1 2 3 4 5 5 5 5

Figure 6-2. Cycle Accounting in the Intel® Itanium™ Architecture

Inherent Program Data Access
Cycles

Branch
Mispredicts

I Fetch
StallsExecution Latency

Other
Stalls

30% 20% 15% 10%10%

100% Execution Time
18 Processor Performance Monitoring

2. Data Access Cycles: cycles lost when instructions stall waiting for their source operands
from the memory subsystem, and when memory flushes arise (L1D way mispredictions,
DTC flushes).

3. Scoreboard Dependency Cycles: cycles lost when instructions stall waiting for their source
operands from non-load instructions; this includes FP-related flushes.

4. RSE Active Cycles: stalls due to register stack spills to and fills from the backing store in
memory.

5. Issue Limit Cycles: dispersal breaks due to stops, port over-subscription or asymmetries.

6. Instruction Access Cycles: instruction fetch stalls due to L1I or ITLB misses.

7. Taken Branch Cycles: bubbles incurred on correct taken branch predictions.

Four of the eight categories (1, 2, 3, 6) are directly measurable as Itanium processor events. The
other four categories (4, 5, 7, 8) are not measured directly. Instead, four combined categories are
available as the Itanium processor events: pipeline flush cycles (1+7), memory cycles (2+4),
dependency cycles (3+5), and unstalled back-end cycles (6+8). For details refer to Section 7.4,
“Cycle Accounting Events” on page 50.

6.1.2 Profiling

Profiling is used by application developers and profile-guided compilers, optimizing linkers and
run-time systems. Application developers are interested in identifying performance bottlenecks and
relating them back to their source code. Based on profile feedback developers can make changes to
the high-level algorithms and data structures of the program. Compilers can use profile feedback to
optimize instruction schedules by employing advanced Itanium architectural features such as
predication and speculation.

To support profiling, performance monitor counts have to be associated with program locations.
The following mechanisms are supported directly by the Itanium processor’s performance
monitors:

• Program Counter Sampling

• Miss Event Address Sampling: Itanium processor Event Address Registers (EARs) provide
sub-pipeline length event resolution for performance critical events (instruction and data
caches, branch mispredicts, instruction and data TLBs).

• Event Qualification: constrains event monitoring to a specific instruction address range, to
certain opcodes or privilege levels.

These profiling features are presented in the next three subsections.

6.1.2.1 Program Counter Sampling

Application tuning tools like [VTune, gprof] use time-based or event-based sampling of the
program counter and other event counters to identify performance critical functions and basic
blocks. As shown in Figure 6-3, the sampled points can be histogrammed by instruction addresses.
For application tuning, statistical sampling techniques have been very successful, because the
programmer can rapidly identify code hot-spots in which the program spends a significant fraction
of its time or where certain event counts are high.
Processor Performance Monitoring 19

Program counter sampling points the performance analysts at code hot-spots, but does not indicate
what caused the performance problem. Inspection and manual analysis of the hot-spot region along
with a fair amount of guess work are required to identify the root cause of the performance
problem. On the Itanium processor, the cycle accounting mechanism (described in Section 6.1.1.4,
"Cycle Accounting") can be used to directly measure an application’s micro-architectural behavior.

The Itanium architectural interval timer facilities (ITC and ITM registers) can be used for
time-based program counter sampling. Event-based program counter sampling is supported by a
dedicated performance monitor overflow interrupt mechanism described in detail in Volume 2,
Section 7.2.2, "Performance Monitor Overflow Status Registers (PMC[0]..PMC[3])".

To support program counter sampling, the Itanium processor provides the following mechanisms:

• Timer interrupt for time-based program counter sampling.

• Event count overflow interrupt for event-based program counter sampling.

• Hardware supported cycle accounting.

6.1.2.2 Miss Event Address Sampling

Program counter sampling and cycle accounting provide an accurate picture of cumulative
micro-architectural behavior, but they do not provide the application developer with pointers to
specific program elements (code locations and data structures) that repeatedly cause
micro-architectural “miss events”. In a cache study of the SPEC92 benchmarks, [Lebeck] used
(trace based) cache miss profiling to gain performance improvements of 1.02 to 3.46 on various
benchmarks by making simple changes to the source code. This type of analysis requires
identification of instruction and data addresses related to micro-architectural “miss events” such as
cache misses, branch mispredicts, or TLB misses. Using symbol tables or compiler annotations
these addresses can be mapped back to critical source code elements. Like Lebeck, most
performance analysts in the past have had to capture hardware traces and resort to trace driven
simulation.

Due to the super-scalar issue, deep pipelining, and out-of-order instruction completion of today’s
microarchitectures, the sampled program counter value may not be related to the instruction
address that caused a miss event. On a Pentium processor pipeline, the sampled program counter
may be off by 2 dynamic instructions from the instruction that caused the miss event. On a Pentium
Pro processor, this distance increases to approximately 32 dynamic instructions. On the Itanium
processor it is approximately 48 dynamic instructions. If program counter sampling is used for miss
event address identification on the Itanium processor, a miss event might be associated with an

Figure 6-3. Event Histogram by Program Counter

Address Space

E
ve

nt
 F

re
qu

en
cy
20 Processor Performance Monitoring

instruction almost five dynamic basic blocks away from where it actually occurred (assuming that
10% of all instructions are branches). Therefore, it is essential for hardware to precisely identify an
event’s address.

The Itanium processor provides a set of event address registers (EARs) that record the instruction
and data addresses of data cache misses for loads, the instruction and data addresses of data TLB
misses, the instruction addresses of instruction TLB and cache misses. A four deep branch trace
buffer captures sequences of branch instructions. Table 6-2 summarizes the capabilities offered by
the EARs and branch trace buffer. Exposing miss event addresses to software allows them to be
monitored either by sampling or by code instrumentation. This eliminates the need for trace
generation to identify and solve performance problems and enables performance analysis by a
much larger audience on unmodified hardware.

The Itanium processor EARs enable statistical sampling by configuring a performance counter to
count, for instance, the number of data cache misses or retired instructions. The performance
counter value is set up to interrupt the processor after a pre-determined number of events have been
observed. The data cache event address register repeatedly captures the instruction and data
addresses of actual data cache load misses. Whenever the counter overflows, miss event address
collection is suspended until the event address register is read by software (this prevents software
from capturing a miss event that might be caused by the monitoring software itself). When the
counter overflows an interrupt is delivered to software, the observed event addresses are collected,
and a new observation interval can be setup by rewriting the performance counter register. For
time-based (rather than event-based) sampling methods, the event address registers indicate to
software whether or not a qualified event was captured. Statistical sampling can achieve arbitrary
event resolution by varying the number of events within an observation interval, and by increasing
the number of observation intervals.

Table 6-2. Intel® Itanium™ Processor EARs and Branch Trace Buffer

Event Address Register Triggers on What is Recorded

Instruction Cache
Instruction fetches that miss
the L1 instruction cache
(demand fetches only)

Instruction Address
Number of cycles fetch was in flight.

Instruction TLB (ITLB) Instruction fetch missed ITLB
(demand fetches only)

Instruction Address
Who serviced TLB miss: VHPT or software.

Data Cache Load instructions that miss L1
data cache

Instruction Address
Data Address
Number of cycles load was in flight.

Data TLB

(DTLB)
Data references that miss
L1 DTLB

Instruction Address
Data Address
Who serviced TLB miss: L2 DTLB, VHPT or
software.

Branch

Trace

Buffer

Branch Outcomes

Branch Instruction Address

Branch Target Instruction Address

Mispredict status and reason
Processor Performance Monitoring 21

6.1.3 Event Qualification

On the Itanium processor, performance monitoring can be confined to a subset of all events. As
shown in Figure 6-4, events can be qualified for monitoring based on an instruction address range,
a particular instruction opcode, a data address range, an event specific “unit-mask”, the privilege
level and instruction set the event was caused by, and the status of the performance monitoring
freeze bit (PMC[0].fr).

• Itanium Instruction Address Range Check: The Itanium processor allows event monitoring to
be constrained to a programmable instruction address range. This enables monitoring of
dynamically linked libraries (DLL), functions, or loops of interest in the context of a large
Itanium-based application. The Itanium instruction address range check is applied at the
instruction fetch stage of the pipeline and the resulting qualification is carried by the
instruction throughout the pipeline. This enables conditional event counting at a level of
granularity smaller than dynamic instruction length of the pipeline (approximately 48
instructions). The Itanium processor’s instruction address range check operates only during
Itanium-based code execution (i.e. when PSR.is is zero). For details, see Section 6.2.4, "Intel®
Itanium™ Instruction Address Range Check Register (PMC[13])".

• Itanium Instruction Opcode Match: The Itanium processor provides two independent Itanium
opcode match registers each of which match the currently issued instruction encodings with a
programmable opcode match and mask function. The resulting match events can be selected as
an event type for counting by the performance counters. This allows histogramming of
instruction types, usage of destination and predicate registers as well as basic block profiling
(through insertion of tagged nops). The opcode matcher operates only during Itanium-based
code execution (i.e. when PSR.is is zero). Details are described in Section 6.2.5, "Intel®
Itanium™ Opcode Match Registers (PMC[8,9])".

• Itanium Data Address Range Check: The Itanium processor allows event collection for
memory operations to be constrained to a programmable data address range. This enables
selective monitoring of data cache miss behavior of specific data structures. For details, see
Section 6.2.6, "Intel® Itanium™ Data Address Range Check (PMC[11])".

• Event Specific Unit Masks: Some events allow the specification of “unit masks” to filter out
interesting events directly at the monitored unit. For details, refer to the event pages in
Chapter 7, "Performance Monitor Events".

• Privilege Level: Two bits in the processor status register are provided to enable selective
process-based event monitoring. The Itanium processor supports conditional event counting
based on the current privilege level; this allows performance monitoring software to
break-down event counts into user and operating system contributions. For details on how to
constrain monitoring by privilege level refer to Section 6.2.1, "Performance Monitor Control
and Accessibility".

• Instruction Set: The Itanium processor supports conditional event counting based on the
currently executing instruction set (Itanium architecture or IA-32) by providing two instruction
set mask bits for each event monitor. This allows performance monitoring software to
break-down event counts into Itanium-based and IA-32 contributions. For details, refer to
Section 6.2.1, "Performance Monitor Control and Accessibility".

• Performance Monitor Freeze: Event counter overflows or software can freeze event
monitoring. When frozen, no event monitoring takes place until software clears the monitoring
freeze bit (PMC[0].fr). This ensures that the performance monitoring routines themselves, e.g.
counter overflow interrupt handlers or performance monitoring context switch routines, do not
“pollute” the event counts of the system under observation.
22 Processor Performance Monitoring

6.1.3.1 Combining Opcode Matching, Instruction, and Data Address Range
Check

The Itanium processor allows various event qualification mechanisms to be combined by providing
the instruction tagging mechanism shown in Figure 6-5. Instruction address range check and
opcode matching are available only for Itanium-based code; they are disabled when IA-32 code is
executing.

Figure 6-4. Intel® Itanium™ Processor Event Qualification

000987a

Itanium™ Instruction
Address Range CheckInstruction Address

Itanium™ Instruction
Opcode MatchInstruction Opcode

Is Itanium™ instruction pointer
in IBR range?

Does Itanium™ opcode match?

Itanium™ Data Address
Range Check

(Memory Operations Only)
Data Address Is Itanium™ data address

in DBR range?

Event Spefic "Unit Mask"Event Did event happen and qualify?

Privilege Level Check
Current Privilege

 Level
Executing at monitored
privilege level?

Instruction Set Check
Current Instruction

Set (Itanium™ or IA-32)
Executing in monitored
instruction set?

Event Count Freeze
Performance Monitor
Freeze Bit (PMC0.fr)

Is event monitoring enabled?

YES, all of the above are true;
this event is qualified.
Processor Performance Monitoring 23

During Itanium instruction execution (PSR.is is zero), the instruction address range check is
applied first. The resulting address range check tag (IBRRangeTag) is passed to two opcode
matchers that combine the instruction address range check with the opcode match. Each of the two
combined tags (Tag(PMC[8]) and Tag(PMC[9])) can be counted as a retired instruction count event
(for details refer to event description IA64_TAGGED_INST_RETIRED in Table 7-3 “Instruction
Issue and Retirement Events” on page 48).

One of the combined Itanium address range and opcode match tags, Tag(PMC[8]), qualifies all
down-stream pipeline events. Events in the memory hierarchy (L1 and L2 data cache and data TLB
events) can further be qualified using a data address DBRRangeTag).

As summarized in Table 6-3, data address range checking can be combined with opcode matching
and instruction range checking on the Itanium processor. Additional event qualifications based on
the current privilege level and the current instruction set can be applied to all events and are
discussed in Section 6.1.3.2, "Privilege Level Constraints" and Section 6.1.3.3, "Instruction Set
Constraints".

Figure 6-5. Instruction Tagging Mechanism in the Intel® Itanium™ Processor

000988a

Table 6-3. Intel® Itanium™ Processor Event Qualification Modes

Event Qualification Modes
Instr. Address
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address
Range Check

PMC[11].pt

Unconstrained Monitoring (all events) 1 0xffff_ffff_ffff_ffff 1

Instruction Address Range Check only 0 0xffff_ffff_ffff_ffff 1

Opcode Matching only 1 Desired Opcodes 1

Data Address Range Check only 1 0xffff_ffff_ffff_ffff 0

Instruction Address Range Check and
Opcode Matching

0 Desired Opcodes 1

Itanium™
Instruction
Address
Range
Check
(IBRs,

PMC[13])

Itanium™
Opcode
Matcher
(PMC[8])

Itanium™ Data
Address Range

Check
(DBRs, PMC[11])

Memory
Event i

Event j

Event k

Event l

Tag(PMC[8])

IBRRange Tag

DBRRange Tag

Tag(PMC[9])

Event Select (PMC[i].es)

Privilege
Level &

Instruction Set
Check

Privilege Level Mask
Instruction Set Mask
(PMC[i].plm, PMC[i].ism)

Counter
(PMD[i])

Itanium™
Opcode
Matcher
(PMC[9])
24 Processor Performance Monitoring

6.1.3.2 Privilege Level Constraints

Performance monitoring software cannot always count on context switch support from the
operating system. In general, this has made performance analysis of a single process in a
multi-processing system or a multi-process workload very difficult. To provide hardware support
for this kind of analysis, the Itanium architecture specifies three global bits (PSR.up, PSR.pp,
DCR.pp) and a per-monitor “privilege monitor” bit (PMC[i].pm). To break down the performance
contributions of operating system and user-level application components, each monitor specifies a
4-bit privilege level mask (PMC[i].plm). The mask is compared to the current privilege level in the
processor status register (PSR.cpl), and event counting is enabled if PMC[i].plm[PSR.cpl] is one.
The Itanium processor performance monitors control is discussed in Section 6.2.1, "Performance
Monitor Control and Accessibility".

PMC registers can be configured as user-level monitors (PMC[i].pm is zero) or system-level
monitors (PMC[i].pm is one). A user-level monitor is enabled whenever PSR.up is one. PSR.up can
be controlled by an application using the sum/rum instructions. This allows applications to
enable/disable performance monitoring for specific code sections. A system-level monitor is
enabled whenever PSR.pp is one. PSR.pp can be controlled at privilege level 0 only, which allows
monitor control without interference from user-level processes. The pp field in the default control
register (DCR.pp) is copied into PSR.pp whenever an interruption is delivered. This allows events
generated during interruptions to be broken down separately: if DCR.pp is zero, events during
interruptions are not counted, if DCR.pp is one, they are included in the kernel counts.

As shown in Figure 6-6, Figure 6-7 and Figure 6-8, single process, multi-process, and system level
performance monitoring are possible by specifying the appropriate combination of PSR and DCR
bits. These bits allow performance monitoring to be controlled entirely from a kernel level device
driver, without explicit operating system support. Once the desired monitoring configuration has
been setup in a process’ processor status register (PSR), “regular” unmodified operating context
switch code automatically enables/disables performance monitoring.

With support from the operating system, individual per-process break-down of event counts can be
generated as outlined in Section 7.2, "Performance Monitoring" of Volume 2 of the Intel®
Itanium™ Architecture Software Developer’s Manual.

6.1.3.3 Instruction Set Constraints

On the Itanium processor, monitoring can additionally be constrained based on the currently
executing instruction set as defined by PSR.is. This capability is supported by the four generic
performance counters as well as the instruction and data event address registers. However, the
Itanium instruction address range checking, Itanium opcode matching and the Itanium branch trace
buffer, only support Itanium-based code execution. When these Itanium architecture only features

Instruction and Data Address Range Check 0 0xffff_ffff_ffff_ffff 0

Opcode Matching and Data Address
Range Check

1 Desired Opcodes 0

Table 6-3. Intel® Itanium™ Processor Event Qualification Modes (Continued)

Event Qualification Modes
Instr. Address
Range Check

PMC[13].ta

Opcode Matching

PMC[8]

Data Address
Range Check

PMC[11].pt
Processor Performance Monitoring 25

are used, the corresponding PMC register instruction set mask (PMC[i].ism) should be set to
Itanium architecture only (01) to ensure that events generated by IA-32 code do not corrupt the
Itanium-based event counts.

Figure 6-6. Single Process Monitor

000989

Figure 6-7. Multiple Process Monitor

000990

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

PSR .up = 1, others 0A PSR .up = 1, others 0A PSR .pp = 1, others 0A

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

PSR .up = 1, others 0A/B PSR .pp = 1, others 0A/BPSR .up = 1, others 0A/B
26 Processor Performance Monitoring

6.2 Performance Monitor State

Two sets of performance monitor registers are defined. Performance Monitor Configuration (PMC)
registers are used to configure the monitors. Performance Monitor Data (PMD) registers provide
data values from the monitors. This section describes the Itanium processor performance
monitoring registers which expands on the Itanium architectural definition. As shown in
Figure 6-9, the Itanium processor provides four 32-bit performance counters (PMC/PMD[4,5,6,7]
pairs), and the following model-specific monitoring registers: instruction and data event address
registers (EARs) for monitoring cache and TLB misses, a branch trace buffer, two opcode match
registers and an instruction address range check register.

Table 6-4 defines the PMC/PMD register assignments for each monitoring feature. The interrupt
status registers are mapped to PMC[0,1,2,3]. The four generic performance counter pairs are
assigned to PMC/PMD[4,5,6,7]. The event address registers and the branch trace buffer are
controlled by three configuration registers (PMC[10,11,12]). Captured event addresses and cache
miss latencies are accessible to software through five event address data registers
(PMD[0,1,2,3,17]) and a branch trace buffer (PMD[8-16]). On the Itanium processor, monitoring of
some events can additionally be constrained to a programmable instruction address range by
appropriate setting of the instruction breakpoint registers (IBR) and the instruction address range
check register (PMC[13]). Two opcode match registers (PMC[8,9]) allow monitoring of some
events to be qualified with a programmable opcode. For memory operations, events can be qualified
by a programmable data address range by appropriate setting of the data breakpoint registers (DBR)
and the data address range check bits in PMC[11].

6.2.1 Performance Monitor Control and Accessibility

Event collection is controlled by the Performance Monitor Configuration (PMC) registers and the
processor status register (PSR). Four PSR fields (PSR.up, PSR.pp, PSR.cpl and PSR.sp) and the
performance monitor freeze bit (PMC[0].fr) affect the behavior of all performance monitor
registers.

Figure 6-8. System Wide Monitor

000991

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1000
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 0
PMC.plm = 1001
DCR.pp = 0

Proc A Proc B Proc C

User-level, cpl = 3
(Application)

Kernel-level, cpl = 0
(OS)

Interrupt-level, cpl = 0
(Handlers)

PMC.pm = 1
PMC.plm = 1001
DCR.pp = 1

All PSR.up = 1 All PSR.pp = 1All PSR.up = 1
Processor Performance Monitoring 27

Finer, per monitor, control is provided by three PMC register fields (PMC[i].plm, PMC[i].ism, and
PMC[i].pm). Instruction set masking based on PMC[i].ism is an Itanium processor model-specific
feature. Event collection for a monitor is enabled under the following constraints on the Itanium
processor:
Monitor Enablei =(not PMC[0].fr) and PMC[i].plm[PSR.cpl] and ((not
PMC[i].ism[PSR.is]) or (PMC[i]=12)) and (not (PMC[i].pm) and PSR.up) or
(PMC[i].pm and PSR.pp))

Figure 3-2, “Processor Status Register (PSR)” on page 2:18 in Volume 2 of the Intel® Itanium™
Architecture Software Developer’s Manual defines the PSR control fields that affect performance
monitoring. For a detailed definition of how the PSR bits affect event monitoring and control
accessibility of PMD registers, please refer to Section 3.3.2, "Processor Status Register (PSR)" and
Section 7.2.1, "Generic Performance Counter Registers" in Volume 2 of the Intel® Itanium™
Architecture Software Developer’s Manual.

Figure 6-9. Intel® Itanium™ Processor Performance Monitor Register Model

000992a

pmc0

pmc1

pmc2

pmc3

Performance Counter
Overflow Status Registers

63 0

pmc4

pmc5

pmc6

pmc7

Performance Counter
Configuration Registers

63 0
pmc4

pmc5

pmc6

pmc7

Performance Counter
Data Registers

63 0

pmc8

pmc9

Itanium™ Opcode Match
Registers

63 0

pmc10

pmc11

63 0

pmc12

Branch Trace Buffer
Configuration Register

63 0

pmc13

Itanium™ Instruction Address
Range Check Register

63 0

instr.
data

pmc0

pmc1

pmc2

pmc3

Instruction/Data Event
Address Data Registers

63 0

pmc17

instr.

data

pmc8

pmc9

Branch Trace
Buffer Registers

63 0

pmc15

pmc16

cr73

Performance Monitor
Vector Register

63 0

cr0

Default Control Register

63 0
DCR

PMV

Instruction/Data Event Address
Configuration Registers

Processor Status Register
63 0

PSR

Performance Monitoring Register Set

Itanium™ Architecture
Generic Register Set

Itanium™ Processor
Implementation-
Specific Register Set
28 Processor Performance Monitoring

As defined in Table 6-4, each of these PMC registers controls the behavior of its associated
performance monitor data registers (PMD). Table 6-11 defines per monitor controls that apply to
PMC[4,5,6,7,10,11,12]. The Itanium processor model-specific PMD registers associated with
instruction/data EARs and the branch trace buffer (PMD[0,1,2,3,8-17]) can be read reliably only
when event monitoring is frozen (PMC[0].fr is one).

Table 6-4. Intel® Itanium™ Processor Performance Monitor Register Set

Monitoring
Feature

Configu-
ration

Registers
(PMC)

Data
Registers

(PMD)
Description

Interrupt Status PMC[0,1,2,3] none See Section 6.2.3, "Performance Monitor Overflow Status
Registers (PMC[0,1,2,3])"

Event Counters PMC[4,5,6,7] PMD[4,5,6,7] See Section 6.2.2, "Performance Counter Registers"

Opcode
Matching

PMC[8,9] none See Section 6.2.5, "Intel® Itanium™ Opcode Match
Registers (PMC[8,9])"

Instruction EAR PMC[10] PMD[0,1] See Section 6.2.7.1, "Instruction EAR (PMC[10],
PMD[0,1])"

Data EAR PMC[11] PMD[2,3,17] See Section 6.2.7.4, "Data EAR (PMC[11], PMD[2,3,17])"

Instruction
Address Range
Check

PMC[13] none See Section 6.2.4, "Intel® Itanium™ Instruction Address
Range Check Register (PMC[13])"

Data Address
Range Check

PMC[11] none See Section 6.2.6, "Intel® Itanium™ Data Address
Range Check (PMC[11])"

Figure 6-10. Processor Status Register (PSR) Fields for Performance Monitoring
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

reserved other pp sp other reserved other up oth rv

63 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44 43 42 41 40 39 38 37 36 35 34 33 32

reserved other is cpl

Figure 6-11. Performance Monitor PMC Register Control Fields (PMC[4,5,6,7,10,11,12])

Field Bits Description

plm 3:0 Privilege Level Mask - controls performance monitor operation for a specific privilege level.
Each bit corresponds to one of the 4 privilege levels, with bit 0 corresponding to privilege
level 0, bit 1 with privilege level 1, etc. A bit value of 1 indicates that the monitor is enabled at
that privilege level. Writing zeros to all plm bits effectively disables the monitor. In this state,
the Intel® Itanium™ processor will not preserve the value of the corresponding PMD
register(s).

pm 6 Privileged monitor - When 0, the performance monitor is configured as a user monitor, and
enabled by PSR.up. When PMC.pm is 1, the performance monitor is configured as a
privileged monitor, enabled by PSR.pp, and PMD can only be read by privileged software.

ism 25:24 Instruction Set Mask - controls performance monitor operation based on the current
instruction set.

The instruction set mask applies to PMC[4,5,6,7,10,11] but not to PMC[12].

00: monitoring enabled during Intel® Itanium™ instruction execution and IA-32 instruction
execution (regardless of PSR.is)
10: bit 24 low enables monitoring during Intel® Itanium™ instruction execution (when
PSR.is is zero)
01: bit 25 low enables monitoring during IA-32 instruction execution (when PSR.is is one)
11: disables monitoring
Processor Performance Monitoring 29

6.2.2 Performance Counter Registers

The Itanium processor provides four generic performance counters (PMC/PMD[4,5,6,7] pairs). The
implemented counter width on the Itanium processor is 32 bits. The Itanium processor counters are
not symmetrical (i.e. not all event types can be monitored by all counters). Counters
PMC/PMD[4,5] can track events whose maximum per-cycle event increment is 7. Counters
PMC/PMD[6,7] can track events whose maximum per-cycle event increment is 3.

The Itanium processor extends the generic Itanium counter configuration register (PMC) layout by
adding two fields for specifying a unit mask (umask) and a threshold field. These model-specific
fields are described in Table 6-5. A counter overflow occurs when the counter wraps (i.e. a carry
out from bit 31 is detected). Software can force an external interruption or external notification
after N events, by preloading the monitor with a count value of 232 - N. When accessible, software
can continuously read the performance counter registers PMD[4,5,6,7] without disabling event
collection. The processor guarantees that software will see monotonically increasing counter
values.

Figure 6-12 and Table 6-5 define the layout of the Itanium processor Performance Counter Data
Registers (PMD[4,5,6,7]). Figure 6-13, Figure 6-14 and Table 6-5 define the layout of the Itanium
processor Performance Counter Configuration Registers (PMC[4,5,6,7]).

Figure 6-12. Intel® Itanium™ Processor Generic PMD Registers (PMD[4,5,6,7])
63 32 31 0

PMD[4,5,6,7] sxt32 count
32 32

Table 6-5. Intel® Itanium™ Processor Generic PMD Register Fields

Field Bits Description

sxt32 63:32 Writes are ignored, Reads return the value of bit 31, so count values appear as sign
extended.

count 31:0 Event Count. The counter is defined to overflow when the count field wraps (carry out from
bit 31).

Figure 6-13. Intel® Itanium™ Processor Generic PMC Registers (PMC[4,5])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[4,5] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 3 4 1 7 1 1 1 1 4

Figure 6-14. Intel® Itanium™ Processor Generic PMC Registers (PMC[6,7])
63 26 25 24 23 22 21 20 19 16 15 14 8 7 6 5 4 3 0

PMC[6,7] ignored ism ig thresh-
old

umask ig es ig pm oi ev plm

38 2 2 4 1 7 1 1 1 1 4
30 Processor Performance Monitoring

6.2.3 Performance Monitor Overflow Status Registers
(PMC[0,1,2,3])

The Itanium processor supports four counters. As shown in Figure 6-15 and Table 6-7 only
PMC[0]{7:4} bits are populated. All other overflow bits are ignored, i.e. they read as zero and
ignore writes.

Table 6-6. Intel® Itanium™ Processor Generic PMC Register Fields (PMC[4,5,6,7])

Field Bits Description

plm 3:0 Privilege Level Mask. See Table 6-11, “Performance Monitor PMC Register Control
Fields (PMC[4,5,6,7,10,11,12])”.

ev 4 External visibility - When 1, an external notification (BPM pin strobe) is provided
whenever the counter wraps, i.e a carry out from bit 31 is detected. External notification
occurs regardless of the setting of the oi bit. On the Intel® Itanium™ processor, PMC[4]
external notification strobes the BPM0 pin, PMC[5] external notification strobes the BPM1
pin, PMC[6] external notification strobes the BPM2 pin, and PMC[7] external notification
strobes the BPM3 pin.

oi 5 Overflow interrupt - When 1, a Performance Monitor Interrupt is raised and the
performance monitor freeze bit (PMC[0].fr) is set when the monitor overflows. When 0, no
interrupt is raised and the performance monitor freeze bit (PMC[0].fr) remains
unchanged. Overflow occurs when the counter wraps, i.e. a carry out from bit 31 is
detected. Counter overflows generate only one interrupt.

pm 6 Privilege Monitor. See Table 6-11, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])”.

ig 7 ignored

es 14:8 Event select - selects the performance event to be monitored.
Intel® Itanium™ processor event encodings are defined in Chapter 7, "Performance
Monitor Events".

ig 15 ignored

umask 19:16 Unit Mask - event specific mask bits (see event definition for details)

threshold 22:20
21:20

Threshold -enables thresholding for “multi-occurrence” events.

PMC[4,5] define 3 threshold bits 22:20, while PMC[6,7] define 2 threshold bits 21:20.

When threshold is zero, the counter sums up all observed event values. When the
threshold is non-zero, the counter increments by one in every cycle in which the
observed event value exceeds the threshold.

ism 25:24 Instruction Set Mask. See Table 6-11, “Performance Monitor PMC Register Control Fields
(PMC[4,5,6,7,10,11,12])”.

ignored 63:24 Read zero, Writes ignored.

Figure 6-15. Intel® Itanium™ Processor Performance Monitor Overflow Status Registers
(PMC[0,1,2,3])
63 8 7 6 5 4 3 2 1 0

ignored (PMC[0]) overflow ignored fr
4 3 1

ignored (PMC[1])

ignored (PMC[2])

ignored (PMC[3])
Processor Performance Monitoring 31

6.2.4 Intel® Itanium™ Instruction Address Range Check Register
(PMC[13])

The Itanium processor allows event monitoring to be constrained to a range of instruction
addresses. All four architectural breakpoint registers (IBRs) are used to specify the desired address
range. The Itanium processor instruction address range check register PMC[13] specifies how the
resulting address match is applied to the performance monitors.

Instruction address range checking is controlled by the “tag all” bit (PMC[13].ta). When
PMC[13].ta is one, all instructions are tagged regardless of IBR settings. In this mode, events from
both IA-32 and Itanium-based code execution contribute to the event count. When PMC[13].ta is
zero, the instruction address range check based on the IBR settings is applied to all Itanium-based
code fetches. In this mode, IA-32 instructions are never tagged, and, as a result, events generated by
IA-32 code execution are ignored. Table 6-9 defines the behavior of the instruction address range
checker for different combinations of PSR.is and PMC[13].ta.

Table 6-7. Intel® Itanium™ Processor Performance Monitor Overflow Register
Fields (PMC[0,1,2,3])

Register Field Bits Description

PMC[0] fr 0 Performance Monitor “freeze” bit - when 1, event monitoring is disabled.
When 0, event monitoring is enabled. This bit is set by hardware whenever a
performance monitor overflow occurs and its corresponding overflow
interrupt bit (PMC.oi) is set to one. SW is responsible for clearing it. When
the PMC.oi bit is not set, then counter overflows do not set this bit.

PMC[0] ignored 3:1 Read zero, Writes ignored.

PMC[0] overflow 7:4 Event Counter Overflow - When bit n is one, indicate that the PMDn
overflowed. This is a

bit vector indicating which performance monitor overflowed. These overflow
bits are set on their corresponding counters overflow regardless of the state
of the PMC.oi bit. These bits are sticky and multiple bits may be set.

PMC[0] ignored 63:8 Read zero, Writes ignored.

PMC
[1,2,3]

ignored 63:0 Read zero, Writes ignored.

Figure 6-16. Intel® Itanium™ Processor Instruction Address Range Check Register (PMC[13])
63 1 0

ignored (PMC[13]) ta
61 1

Table 6-8. Intel® Itanium™ Processor Instruction Address Range Check Register Fields
(PMC[13])

Field Bits Description

ta 0 Tag All - when 1, all events are counted independent of instruction address and
instruction set. The default value of this PMC[13].ta should be set to one upon
reset.
32 Processor Performance Monitoring

The processor compares every Itanium-based instruction fetch address IP{63:0} with each of the
four architectural instruction breakpoint registers. Regardless of the value of the instruction
break-point fault enable (IBR x-bit), the following expression is evaluated for each of the Itanium
processor’s four IBRs:

IBRmatchi = match(IP,IBR[2*i].addr,IBR[2*i]+1.mask,IBR[2*i]+1.plm

On the Itanium processor, in which only 54 virtual and 44 physical address bits are implemented,
this IBR match is defined as follows:

IBRmatchi = (IBR[2*i]+1.plm[PSR.cpl])

and (ANDb=50..0((IBR[2*i].addr{b} and IBR[2*i]+1.mask{b}) = (IP{b} and IBR[2*i]+1.mask{b})))

and (ANDb=55..51((IBR[2*i].addr{b} and IBR[2*i]+1.mask{b}) = (IP{50} and IBR[2*i]+1.mask{b})))

and (ANDb=60..56(IBR[2*i].addr{b} = IP{50}))

and (ANDb=63..61(IBR[2*i].addr{b} = IP{b}))

The resulting four matches are combined with the PSR.is bit, two instruction address range check
register bits, the IBR x-bits, and PSR.db:

IBRRangeTag = (PMC[13].ta)
or ((not PSR.is)
and ((IBRmatch0 or IBRmatch1 or IBRmatch2 or IBRmatch3)
and (not (PSR.db or IBR1.x or IBR3.x or IBR5.x or IBR7.x))))

The instruction range check tag (IBRRangeTag) considers the IBR address ranges only if
PMC[13].ta is zero, PSR.is is zero, and if none of the IBR x-bits or PSR.db are set. Since the
architectural break-point registers (IBRs) are used to specify the desired performance monitor
address range, it is not possible to constrain monitoring when the IBRs are used in their
architectural break-point capacity, i.e. when PSR.db or an IBR x-bit is set. In other words, it is not
possible to use performance monitor address range checking when a debugger is running, unless
the debugger and the performance monitor software carefully synchronize their use of the IBRs.

The instruction range check tag is computed early in the processor pipeline and therefore includes
speculative, wrong-path as well as predicated off instructions. Furthermore, range check tags are
not accurate in the instruction fetch and out-of-order parts of the pipeline (cache and bus units).
Therefore, software must accept a level of range check inaccuracy for events generated by these
units, especially for non-looping code sequences that are shorter than the Itanium processor
pipeline. As described in Section 6.1.3.1, "Combining Opcode Matching, Instruction, and Data
Address Range Check", the instruction range check result may be combined with the results of the
Itanium opcode match registers described in the next section.

Table 6-9. Intel® Itanium™ Processor Instruction Address Range Check by Instruction Set

PSR.is

PMC13.ta 0 (Intel® Itanium™ Architecture) 1 (IA-32)

0 Tag only Intel® Itanium™ instructions if
they match IBR range DO NOT tag any IA-32 operations.

1 Tag all Intel® Itanium™ instructions and IA-32 instructions.Ignore IBR range.
Processor Performance Monitoring 33

6.2.5 Intel® Itanium™ Opcode Match Registers (PMC[8,9])

The Itanium processor allows event monitoring to be constrained based on the Itanium-based
encoding (opcode) of an instruction. Registers PMC[8,9] allow two independent opcodes matches
to be specified. The Itanium opcode matcher operates only during Itanium-based code execution
(i.e. when PSR.is is zero).

For opcode matching purposes, an Itanium instruction is defined by two items: the instruction type
“itype” (one of M, I, F or B) and the 40-bit encoding “enco{40:0}” defined in Volume 3 of the
Intel® Itanium™ Architecture Software Developer’s Manual. Each instruction is evaluated against
each opcode match register (PMC[8,9]) as follows:

Match(PMC[i]) = (imatch (itype,PMC[i].mifb) and
ematch(enco,PMC[i].match,PMC[i]PMC[i].mask))

Where:

imatch(itype,PMC[i].mifb) = itype=M and PMC[i].m) or (itype=I and PMC[i].i) or (itype=F and
PMC[i].f) or (itype=B and PMC[i].b)

ematch(enco,match,mask) = AND b=40..27 ((enco{b}=match{b-14}) or mask{b-14}) and AND

b=12..0 ((enco{b}=match{b}) or mask{b})

This function matches encoding bits{40:27} (major opcode) and encoding bits{12:0} (destination
and qualifying predicate) only. Bits{26:13} of the instruction encoding are ignored by the opcode
matcher.

This produces two opcode match events that are combined with the PSR.is bit, and the instruction
range check tag (IBRRangeTag, see Section 6.2.4, "Intel® Itanium™ Instruction Address Range
Check Register (PMC[13])") as follows:

Tag(PMC[8]) = Match(PMC[8]) and IBRRangeTag and (not PSR.is)

Tag(PMC[9]) = Match(PMC[9]) and IBRRangeTag and (not PSR.is)

Figure 6-17. Opcode Match Registers (PMC[8,9])
63 62 61 60 59 33 32 31 30 29 3 2 1 0

m i f b match ignored mask ignored

1 1 1 1 27 3 27 3

Table 6-10. Opcode Match Register Fields (PMC[8,9])

Field Bits Width Description

mask 29:3 27 Bits that mask Intel® Itanium™ instruction encoding bits {40:27} and
{12:0}

match 59:33 27 Opcode bits to match Intel® Itanium™ instruction encoding bits {40:27}
and {12:0}

b 60 1 If 1: match if opcode is an B-syllable

f 61 1 If 1: match if opcode is an F-syllable

i 62 1 If 1: match if opcode is an I-syllable

m 63 1 If 1: match if opcode is an M-syllable
34 Processor Performance Monitoring

As shown in Figure 6-5, the two tags, Tag(PMC[8]) and Tag(PMC[9]), are staged down the
processor pipeline until instruction retirement, and can be selected as a retired instruction count
event. In this way, a performance counters (PMC/PMD[4,5,6,7]) can be used to count the number
of retired instructions within the programmed range that match the specified opcodes. All
combinations of the mifb bits are supported. To match A-syllable instructions both m and i bits
should be set to one. To match all instruction types, all mifb and all mask bits should be set to one.
This will count the number of retired instructions within the programmed address range. One of the
combined Itanium address range and opcode match tags, Tag(PMC[8]), qualifies most down-stream
pipeline events. To ensure that all events are counted independent of the Itanium opcode matcher,
all mifb and all mask bits of PMC[8] should be set to one (all opcodes match). Tag(PMC[9]) is not
used to qualify downstream events.

6.2.6 Intel® Itanium™ Data Address Range Check (PMC[11])

For instructions that reference memory, the Itanium processor allows event counting to be
constrained by data address ranges using the architectural data breakpoint registers (DBRs). Data
address range checking capability is controlled enabled by the “pass tags” bit in the Data Event
Address Register (PMC[11].pt). For details on PMC[11], refer to Section 6.2.7.4, "Data EAR
(PMC[11], PMD[2,3,17])".

When enabled (PMC[11].pt is zero), data address range checking is applied to loads (all types),
stores, semaphore operations, and the lfetch instruction whose upstream opcode match
Tag(PMC[8]) was set. When PMC[11].pt is one, RSE operations and VHPT walks are tagged only
if the opcode match Tag(PMC[8]) was set for the operation that caused the RSE or VHPT activity.
When PMC[11].pt is zero, all RSE operations and VHPT walks that hit the programmed data
address range are tagged (regardless of the opcode match Tag(PMC[8])). To capture all VHPT
walks when PMC[11].pt is zero, the minimum DBR mask granularity must be set to the size of a
single VHPT entry.

On the Itanium processor, in which only 54 virtual address bits are implemented, the performance
monitoring DBR match function is defined as follows:

DBRRangeMatchi=

(ANDb=50..0((DBR[2*i].addr{b} and DBR[2*i]+1.mask{b}) = (addr{b} and DBR[2*i]+1.mask{b})))

and (ANDb=55..51((DBR[2*i].addr{b} and DBR[2*i]+1.mask{b}) = (addr{50} and

 DBR[2*i]+1.mask{b})))

and (ANDb=60..56(DBR[2*i].addr{b} = addr{50}))

and (ANDb=63..61(DBR[2*i].addr{b} = addr{b}))

The resulting four matches are combined with PSR.db to form a single DBR match:

DBRRangeMatch = ((DBRRangeMatch0 or DBRRangeMatch1 or DBRRangeMatch2 or
DBRRangeMatch3)
and (not PSR.db))
Processor Performance Monitoring 35

Note: DBR matching for performance monitoring ignores the setting of the DBR r, w and plm
fields. Finally, the DBRRangeMatch is combined with PMC[11].pt and the upstream
opcode match tag Tag(PMC[8]) as follows:

DBRRangeTag = Tag(PMC[8]) and ((PMC[11].pt) or DBRRangeMatch)

DBR based data address range checking combined with opcode matching and instruction range
checking allows the following combinations of event monitoring on the Itanium processor.

6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])

This section defines the register layout for the Itanium processor instruction and data event address
registers (EARs). Sampling of four events is supported on the Itanium processor: instruction cache
and instruction TLB misses, data cache load misses, and data TLB misses. The EARs are
configured through two PMC registers (PMC[10,11]). EAR specific unit masks allow software to
specify event collection parameters to hardware. Instruction and data addresses, operation latencies
and other captured event parameters are provided in five PMD registers (PMD[0,1,2,3,17]). The
instruction and data cache EARs report the latency of captured cache events and allow latency
thresholding to qualify event capture. Event address data registers (PMD[0,1,2,3,17]) contain valid
data only when event collection is frozen (PMC[0].fr is one). Reads of PMD[0,1,2,3,17] while
event collection is enabled return undefined values.

6.2.7.1 Instruction EAR (PMC[10], PMD[0,1])

The instruction event address configuration register (PMC[10]) can be programmed to monitor
either L1 instruction cache or instruction TLB miss events. Figure 6-18 and Table 6-11 detail the
register layout of PMC[10]. Figure 6-19 describes the associated event address data registers
PMD[0,1].

When the tlb-bit (PMC[10].tlb) is set to zero instruction cache misses are monitored, when it is set
to one instruction TLB misses are monitored. The interpretation of the umask field and
performance monitor data registers PMD[0,1] depend on the setting of the tlb bit, and are described
in Section 6.2.7.2, "Instruction EAR Cache Mode (PMC[10].tlb=0)" for instruction cache
monitoring and in Section 6.2.7.3, "Instruction EAR TLB Mode (PMC[10].tlb=1)" for instruction
TLB monitoring.

Figure 6-18. Instruction Event Address Configuration Register (PMC[10])
63 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored ism ignored umask ignored tlb pm ign. plm
38 2 4 4 8 1 1 2 4
36 Processor Performance Monitoring

6.2.7.2 Instruction EAR Cache Mode (PMC[10].tlb=0)

When PMC[10].tlb is zero, the instruction event address register captures instruction addresses and
access latencies for L1 instruction cache misses. Only misses whose latency exceeds a
programmable threshold are captured. The threshold is specified as a four bit umask field in the
configuration register PMC[10]. Possible threshold values are defined in Table 6-12.

As defined in Table 6-13, the address of the instruction cache line missed the L1 instruction cache
is provided in PMD[0]. If no qualified event was captured, the valid bit in PMD[0] is zero. The
latency of the captured instruction cache miss in processor clock cycles is provided in the latency
field of PMD[1]. In cache mode, the TLB miss bit of PMD[0] is undefined.

Table 6-11. Instruction Event Address Configuration Register Fields (PMC[10])

Field Bits Description

plm 3:0 See Table 6-11.

pm 6 See Table 6-11.

tlb 7 Instruction EAR selector: instruction cache/TLB

if tlb=0: monitor L1 instruction cache misses
PMD[0,1] register interpretation see Table 6-13.

if tlb=1:
monitor instruction TLB misses

PMD[0,1] register interpretation see Table 6-15.

umask 19:16 Instruction EAR unit mask

if tlb=0: instruction cache unit mask (definition see Table 6-12)

if tlb=1: instruction TLB unit mask (definition see Table 6-14)

ism 25:24 See Table 6-11.

Figure 6-19. Instruction Event Address Register Format (PMD[0,1]
63 5 4 3 2 1 0

Instruction Cache Line Address (PMD[0]) ignored tlb v
59 3 1 1

63 12 11 0

ignored (PMD[1]) latency
52 12

Table 6-12. Instruction EAR (PMC[10]) umask Field in Cache Mode (PMC[10].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.
Processor Performance Monitoring 37

6.2.7.3 Instruction EAR TLB Mode (PMC[10].tlb=1)

When PMC[10].tlb is one, the instruction event address register captures addresses of instruction
TLB misses. The unit mask allows event address collection to capture specific subsets of
instruction TLB misses. Table 6-14 summarizes the instruction TLB umask settings. All
combinations of the mask bits are supported.

As defined in Table 6-15, the address of the instruction cache line fetch that missed the L1 TLB is
provided in PMD[0]. The tlb bit indicates whether the captured TLB miss hit in the VHPT or
required servicing by software. If no qualified event was captured, the valid bit in PMD[0] reads
zero. In TLB mode, the latency field of PMD[1] is undefined.

Table 6-13. Instruction EAR (PMD[0,1]) in Cache Mode (PMC[10].tlb=0)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

tlb 1 TLB Miss Bit (undefined in cache mode)

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused cache missa

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}.
The instruction and data address bits {60:51} of PMD[0] read as a sign-extension of bit {50}. Writes to bits
{60:51} of PMD[0] are ignored by the processor.

PMD[1] latency 11:0 Latency in processor clocks

Table 6-14. Instruction EAR (PMC[10]) umask Field in TLB Mode (PMC[10].tlb=1)

umask Bit Instruction TLB EAR Unit Mask (Instruction TLB misses)

0

1

2

3

ignored

ignored

if one, capture Instruction TLB misses that hit VHPT

if one, capture Instruction TLB misses handled by software

Table 6-15. Instruction EAR (PMD[0,1]) in TLB Mode (PMC[10].tlb=1)

Register Field Bits Description

PMD[0] v 0 Valid Bit

0: invalid address (EAR did not capture qualified event
1: EAR contains valid event data

tlb 1 TLB Miss Bit:

0: VHPT Hit
1: Instruction TLB Miss handled by software

Instruction Cache
Line Address

63:5 Address of instruction cache line that caused TLB missa

a. The Itanium processor does not implement virtual address bits va{60:51}. The instruction address bits {60:51}
of PMD[0] read as a sign-extension of bit {50}. Writes to bits {60:51} of PMD[0] are ignored by the processor.

PMD[1] latency 11:2 undefined in TLB mode
38 Processor Performance Monitoring

6.2.7.4 Data EAR (PMC[11], PMD[2,3,17])

The data event address configuration register (PMC[11]) can be programmed to monitor either L1
data cache load misses or L1 data TLB misses. Figure 6-20 and Table 6-16 detail the register layout
of PMC[11]. Figure 6-21 describes the associated event address data registers PMD[2,3,17]. The
tlb bit in configuration register PMC[11] selects data cache or data TLB monitoring. The
interpretation of the umask field and registers PMD[2,3,17] depends on the setting of the tlb bit,
and is described in Section 6.2.7.5, "Data Cache Load Miss Monitoring (PMC[11].tlb=0)" for data
cache load miss monitoring and in Section 6.2.7.6, "Data TLB Miss Monitoring (PMC[11].tlb=1)"
for data TLB monitoring. The PMC[11].pt bit controls data address range checking which is
described in Section 6.2.6, "Intel® Itanium™ Data Address Range Check (PMC[11])".

Figure 6-20. Data Event Address Configuration Register (PMC[11])
63 28 27 26 25 24 23 20 19 18 17 16 15 8 7 6 5 4 3 2 1 0

ignored pt ign. ism ignored umask ignored tlb pm ign. plm
35 1 2 2 4 4 8 1 1 2 4

Table 6-16. Data Event Address Configuration Register Fields (PMC[11])

Field Bits Description

plm 3:0 See Table 6-11.

pm 6 See Table 6-11.

tlb 7 Data EAR selector: data cache/TLB

if tlb=0:monitor L1 data cache load misses
PMD[2,3,17] register interpretation see Table 6-18.

if tlb=1: monitor L1 data TLB misses
PMD[2,3,17] register interpretation see Table 6-20.

umask 19:16

Data EAR unit mask

if tlb=0: data cache unit mask (definition see Table 6-17)

if tlb=1: data TLB unit mask (definition see Table 6-19)

ism 25:24 See Table 6-11.

pt 28

Pass Tags. This bit enables/disables data address range checking. See Section 6.2.6,
"Intel® Itanium™ Data Address Range Check (PMC[11])" for details.

if pt=1: then the Tag(PMC[8]) is passed down the pipeline unmodified.

if pt=0: data address range checking is enabled for memory operations.

Figure 6-21. Data Event Address Register Format (PMD[2,3,17])
63 4 3 2 1 0

Instruction Address (PMD[17]) slot ig v
60 2 1 1

63 62 61 12 11 0

level ignored (PMD[3]) latency
2 50 12

63 0

Data Address (PMD[2])

64
Processor Performance Monitoring 39

6.2.7.5 Data Cache Load Miss Monitoring (PMC[11].tlb=0)

If the Data EAR is configured to monitor data cache load misses (PMC[11].tlb=0), the umask is
used as a load latency threshold defined by Table 6-17.

As defined in Table 6-18, the instruction and data addresses as well as the load latency of a
captured data cache load miss is presented to software in three registers PMD[2,3,17]. If no
qualified event was captured, the valid bit in PMD[3] is zero. In data cache load miss mode, the
level field of PMD[3] is undefined.

The detection of data cache load misses requires a load instruction to be tracked during multiple
clock cycles from instruction issue to cache miss occurrence. Since multiple loads may be
outstanding at any point in time and the Itanium processor data cache miss event address register can
only track a single load at a time, not all data cache load misses may be captured. When the
processor hardware captures the address of a load (called the monitored load), it ignores all other
overlapped concurrent loads until it is determined whether the monitored load turns out to be an L1
data cache miss or not. If the monitored load turns out to be a cache miss, its parameters are latched
into PMD[2,3,17]. The processor randomizes the choice of which load instructions are tracked to
prevent the same data cache load miss from always being captured (in a regular sequence of
overlapped data cache load misses). While this mechanism will not always capture all data cache
load misses in a particular sequence of overlapped loads, its accuracy is sufficient to be used by
statistical sampling or code instrumentation.

Table 6-17. PMC[11] Mask Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

umask

Bits 3:0

Latency
Threshold

[CPU cycles]

0000 >= 4 0110 >= 256

0001 >= 8 0111 >= 512

0010 >= 16 1000 >= 1024

0011 >= 32 1001 >= 2048

0100 >= 64 1010 >= 4096

0101 >= 128 1011.. 1111 No events are captured.

Table 6-18. PMD[2,3,17] Fields in Data Cache Load Miss Mode (PMC[11].tlb=0)

Register Fields Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Latency in CPU clocks

level 63:62 Undefined in data cache load miss mode

PMD[17] valid 0 Valid bit

0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction bundle slot of memory instruction. For IA-32 ISA
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instruction.a

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}.
The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes to bits
{60:51} of PMD[2,17] are ignored by the processor.
40 Processor Performance Monitoring

6.2.7.6 Data TLB Miss Monitoring (PMC[11].tlb=1)

If the Data EAR is configured to monitor data TLB misses (PMC[11].tlb=1), the umask defined by
Table 6-19 determine which data TLB misses are captured by the Data EAR. For TLB monitoring,
all combinations of the mask bits are supported.

As defined in Table 6-20, the instruction and data addresses of captured data TLB misses are
presented to software in PMD[2,17]. The level of the TLB hierarchy from which the L1 data TLB
miss was satisfied is recorded in the level field of PMD[3]. If no qualified event was captured, the
valid bit in PMD[17] and the level field in PMD[3] read zero. When programmed for data TLB
monitoring, the contents of the latency field of PMD[3] are undefined.

6.2.8 Intel® Itanium™ Branch Trace Buffer

The branch trace buffer provides information about the outcome of the most recent Itanium branch
instructions and their predictions and outcomes. The Itanium branch trace buffer configuration
register (PMC[12]) defines the conditions under which branch instructions are captured and allows
the trace buffer to capture specific subsets of branch events. The Itanium branch trace buffer
operates only during Itanium-based code execution (i.e. when PSR.is is zero).

In every cycle in which a qualified Itanium branch retires, its source bundle address and slot
number are written to the branch trace buffer. The branches’ target address is written to the next
buffer location. If the target instruction bundle itself contains a qualified Itanium branch, the branch

Table 6-19. PMC[11] Unmask Field in TLB Miss Mode (PMC[11].tlb=1)

umask Bit Data EAR Unit Mask (L1 data TLB misses)

0

1

2

3

reserved

if one, capture L1 TLB misses that hit L2 Data TLB

if one, capture L1 TLB misses that hit VHPT

if one, capture L1 TLB misses that was handled by software

Table 6-20. PMD[2,3,17] Fields in TLB Miss Mode (PMC[11].tlb=1)

Register Field Bit Range Description

PMD[2] Data Address 63:0 64-bit address of data item that caused missa

PMD[3] latency 11:0 Undefined in TLB Miss mode

level 63:62 Data TLB Miss Level

0: invalid address (EAR did not capture qualified event)

1: L2 Data TLB hit
2: VHPT hit
3: Data TLB miss handled by software

PMD[17] valid 0 Valid Bit:
0: invalid address (EAR did not capture qualified event)
1: EAR contains valid event data

slot 3:2 Instruction Bundle Slot of memory instruction. In IA-32 ISA
mode, this field is undefined.

Instruction Address 63:4 Address of bundle that contains memory instructiona

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}.
The data/instruction address bits {60:51} of PMD[2,17] read as a sign-extension of bit {50}. Writes to bits
{60:51} of PMD[2,17] are ignored by the processor.
Processor Performance Monitoring 41

trace buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer
entries: one that records the target instruction as a branch target (b-bit cleared), and another that
records the target instruction as a branch source (b-bit set). As a result, the branch trace buffer may
contain a mixed sequence of the branches and targets.

6.2.8.1 Intel® Itanium™ Trace Buffer Collection Constraining

The Itanium branch trace buffer configuration register (PMC[12]) defines the conditions under
which branch instructions are captured. These conditions are given in Figure 6-22 and Table 6-21,
and refer to conditions associated with the branch prediction and resolution hardware. These
conditions are:

• Which branch prediction hardware structure made the prediction,

• The path of the branch (not taken/taken),

• Whether or not the branch path was mispredicted, and

• Whether or not the target of the branch was mispredicted.

Figure 6-22. Intel® Itanium™ Branch Trace Buffer Configuration Register (PMC[12])
63 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

ignored bac bpt ppm ptm tm tar pm ign. plm
48 1 1 2 2 2 1 1 2 4

Table 6-21. Intel® Itanium™ Branch Trace Buffer Configuration Register Fields (PMC[12])

Field Bits Description

plm 3:0 See Table 6-11.

pm 6 See Table 6-11.

tar 7
Target Address Register:

1: capture TAR predictions
0: No TAR predictions are captured

tm 9:8

Taken Mask:

11: all Intel® Itanium™ branches
10: Taken Intel® Itanium™ branches only
01: Not Taken Intel® Itanium™ branches only
00: No branch is captured

ptm 11:10

Predicted Target Address Mask:

11: capture branch regardless of target prediction outcome
10: branch predicted target address correctly
01: branch mispredicted target address
00: No branch is captured

ppm 13:12

Predicted Predicate Mask:

11: capture branch regardless of predicate prediction outcome
10: branch predicted branch path (taken/not taken) correctly
01: branch mispredicted branch path (taken/not taken)
00: No branch is captured

bpt 14
Branch Prediction Table:

10: No TAC predictions are captured

bac 15
Branch Address Calculator:

1: capture BAC predictions
0: No BAC predictions are captured
42 Processor Performance Monitoring

The Itanium processor uses the following micro-architectural structures for branch prediction: the
Target Address Registers (TAR), and Target Address Cache (TAC). Using the tar and bac fields of
the branch trace buffer configuration register (PMC[12]), collection in the branch trace buffer can
be restricted to only branches predicted by a subset of these prediction structures.

The Target Address Registers (TAR) are a small and fast fully associative buffer that is exclusively
written to by branch predict instructions with the ‘.imp’ extension. A hit in the TAR will cause a
taken prediction and yield the target address of the branch. If the tar field in the branch trace buffer
configuration register (PMC[12]) is set to one, branches predicted by TAR will be included in the
trace buffer.

The Target Address Cache (TAC) is a larger structure that is also written to by branch predict
instructions, or the prediction hardware. The primary function of the TAC is to provide the target
address of a branch.

 If the bpt field in the branch trace buffer configuration register (PMC[12]) is set to one, branches
predicted by the TAC will be included in the trace buffer.

If neither the TAR nor TAC generated a hit, the branch has to be predicted using the static hints
encoded in the branches and the target address has to be calculated. This is done by the branch
address corrector (BAC). If the bac field in the branch trace buffer configuration register (PMC[12])
is set to one, branches predicted by the branch address corrector will be included in the trace buffer.

Furthermore, using the ptm, ppm and tm fields in the branch trace buffer configuration register
(PMC[12]) collection in the branch trace buffer can be restricted based on the correctness of target
and predicate prediction in addition to whether the branch was actually taken or not.

To summarize, an Itanium branch and its target are captured by the trace buffer if the following
equation is true:

(not PSR.is)
and ((tm[1] and branch taken)

or (tm[0] and branch not taken)
)

and ((ptm[1] and hardware predicted target address correctly
 and hardware predicted the branch path correctly
 and branch is taken)

or (ptm[0] and hardware mispredicted target address
 and hardware predicted the branch path correctly
 and branch is taken)

or (ptm[0] and ptm[1])
)

and ((ppm[1] and hardware predicted the branch path correctly)
or (ppm[0] and hardware mispredicted the branch path)

)
and ((bpt and branch was predicted by TAC)

or (bac and branch was predicted by BAC)
or (tar and branch was predicted by TAR)

)

To capture all mispredicted Itanium branches, the branch trace buffer configuration settings in
PMC[12] should be: Tm=11, ptm=01, ppm=01, bpt=1, bac=1, and tar=1.
Processor Performance Monitoring 43

6.2.8.2 Intel® Itanium™ Branch Trace Buffer Reading

The eight branch trace buffer registers PMD[8-15] provide information about the outcome of a
captured branch sequence. The branch trace buffer registers (PMD[8-15]) contain valid data only
when event collection is frozen (PMC[0].fr is one). While event collection is enabled, reads of
PMD[8-15] return undefined values. The registers follow the layout defined in Figure 6-23, and
contain the address of either a captured branch instruction (b-bit=1) or branch target (b-bit=0). For
branch instructions, the mp-bit indicates a branch misprediction. A branch trace register with a zero
b-bit and a zero mp-bit indicates an invalid branch trace buffer entry. The slot field captures the slot
number of the first taken Itanium branch instruction in the captured instruction bundle. A slot
number of 3 indicates a not-taken branch. The target address bundle of a branch to IA-32 (br.ia)
is recorded. An IA-32 JMPE branch instruction and its Itanium-based target are not recorded.

In every cycle in which a qualified Itanium branch retires1, its source bundle address and slot
number are written to the branch trace buffer. The branches’ target address is written to the next
buffer location. If the target instruction bundle itself contains a qualified Itanium branch, the branch
trace buffer either records a single trace buffer entry (with the b-bit set) or makes two trace buffer

Figure 6-23. Branch Trace Buffer Register Format (PMD[8-15])
63 4 3 2 1 0

Address slot mp b

60 2 1 1

Table 6-22. Intel® Itanium™ Branch Trace Buffer Register Fields (PMD[8-15])

Field Bit Range Description

b 0 Branch Bit
1: contents of register is a branch instruction

0: contents of register is a branch target

mp 1 Mispredict Bit
if b=1 and mp=1: mispredicted branch (due to target or predicate misprediction)

if b=1 and mp=0: correctly predicted branch

if b=0 and mp=0: invalid branch trace buffer register

if b=0 and mp=1: valid target address

slot 3:2 if b=0: 00

if b=1: Slot index of first taken branch instruction in bundle

00: Itanium™-based Slot 0 branch/target

01: Itanium™-based Slot 1 branch/target

10: Itanium™-based Slot 2 branch/target

11: this was a not taken branch

Address 63:4 if b=1: 60-bit bundle address of Intel® Itanium™ branch instructiona

if b=0: 60-bit target bundle address of Intel® Itanium™ branch instructiona

a. The Itanium processor does not implement virtual address bits va{60:51} and physical address bits pa{62:44}.
When the processor captures an instruction address, bits {60:51} of PMD[8-15] are written by the processor
with a sign-extension of bit {50} of the captured address. When PMD[8-15] are written by software bits {60:51}
of PMD[8-15] can be written with any value (not necessarily a sign-extension of bit {50}).

1. In some cases, the Itanium processor branch trace buffer will capture the source (but not the target) address of an
excepting branch instruction. This occurs on trapping branch instructions as well as faulting br.ia, break.b and
multiway branches.
44 Processor Performance Monitoring

entries: one that records the target instruction as a branch target (b-bit cleared), and another that
records the target instruction as a branch source (b-bit set). As a result, the branch trace buffer may
contain a mixed sequence of the branches and targets.

The Itanium branch trace buffer is a circular buffer containing the last four to eight qualified
Itanium branches. The Branch Trace Buffer Index Register (PMD[16]) defined in Figure 6-24
identifies the most recently recorded branch or target. In every cycle in which a qualified branch
(branch or target) is recorded, the branch buffer index (bbi) is post-incremented. After 8 entries
have been recorded, the branch index wraps around, and the next qualified branch will overwrite
the first trace buffer entry. The wrap condition itself is recorded in the full bit of PMD[16]. The bbi
field of PMD[16] defines the next branch buffer index that is about to be written.The following
formula computes the last written branch trace buffer PMD index from the contents of PMD[16]:

last-written-PMD-index = 8+ ([(8*PMD[16].full) + (PMC[16].bbi - 1)] % 8)

If both the full bit and the bbi field of PMD[16] are zero, no qualified branch has been captured by
the branch trace buffer. The full bit gets set the every time the branch trace buffer wraps from
PMD[15] to PMD[8]. Once set, the full bit remains set until explicitly cleared by software, i.e. it is
a sticky bit. Software can reset the bbi index and the full bit by writing to PMD[16].

6.2.9 Processor Reset, PAL Calls, and Low Power State

Processor Reset: On processor hardware reset bits oi, ev of all PMC registers are zero, and PMV.m
is set to one. This ensures that no interrupts are generated, and events are not externally visible. On
reset, PAL firmware ensures that the instruction address range check, the opcode matcher and the
data address range check are initialized as follows:

• PMC[13].ta=1,

• PMC[8,9].mifb=1111, PMC[8,9].mask{29:3}= “all 1s”, PMC[8,9].match{59:33}= “all 0s”,
and

• PMC[11].pt is 1.

All other performance monitoring related state is undefined.

Figure 6-24. Intel® Itanium™ Branch Trace Buffer Index Register Format (PMD[16])
63 4 3 2 1 0

ignored full bbi

60 1 3

Table 6-23. Intel® Itanium™ Branch Trace Buffer Index Register Fields (PMD[16])

Field Bit Range Description

bbi 2:0 Branch Buffer Index [Range 0..7 - Index 0 indicates PMD[8]]
Pointer to the next branch trace buffer entry to be written.
if full=1: points to the oldest recorded branch/target

if full=0: points to the next location to be written

full 3 Full Bit (sticky)
if full=1: branch trace buffer has wrapped

if full=0: branch trace buffer has not wrapped
Processor Performance Monitoring 45

PAL Call: As defined in Chapter 11, “Processor Abstraction Layer”in Volume 2 of the Intel®
Itanium™ Architecture Software Developer’s Manual, the PAL call PAL_PERF_MON_INFO
provides software with information about the implemented performance monitors. The Itanium
processor specific values are summarized in Table 6-24.

Low Power State: To ensure that monitor counts are preserved when the processor enters low
power state, PAL_LIGHT_HALT freezes event monitoring prior to powering down the processor.
PAL_LIGHT_HALT preserves the original value of the PMC[0] register.

6.2.10 References

• [gprof] S.L. Graham S.L., P.B. Kessler and M.K. McKusick, “gprof: A Call Graph Execution
Profiler”, Proceedings SIGPLAN’82 Symposium on Compiler Construction; SIGPLAN
Notices; Vol. 17, No. 6, pp. 120-126, June 1982.

• [Lebeck] Alvin R. Lebeck and David A. Wood, “Cache Profiling and the SPEC benchmarks: A
Case Study”, Tech Report 1164, Computer Science Dept., University of Wisconsin - Madison,
July 1993.

• [VTune] Mark Atkins and Ramesh Subramaniam, “PC Software Performance Tuning”, IEEE
Computer, Vol. 29, No. 8, pp. 47-54, August 1996.

• [WinNT] Russ Blake, “Optimizing Windows NT™”, Volume 4 of the Microsoft “Windows NT
Resource Kit for Windows NT Version 3.51”, Microsoft Press, 1995.

Table 6-24. Information Returned by PAL_PERF_MON_INFO for the Intel® Itanium™
Processor

PAL_PERF_MON_INFO
Return Value Description

Intel®
Itanium™

Processor-
specific

Value

PAL_RETIRED 8-bit unsigned event type for counting the number of
untagged retired Intel® Itanium™ instructions.

0x08

PAL_CYCLES 8-bit unsigned event type for counting the number of
running CPU cycles.

0x12

PAL_WIDTH 8-bit unsigned number of implemented counter bits. 32

PAL_GENERIC_PM_PAIRS 8-bit unsigned number of generic PMC/PMD pairs. 4

PAL_PMCmask 256-bit mask defining which PMC registers are populated. 0x3FFF

PAL_PMDmask 256-bit mask defining which PMD registers are populated. 0x3FFFF

PAL_CYCLES_MASK 256-bit mask defining which PMC/PMD counters can count
running CPU cycles (event defined by PAL_CYCLES)

0xF0

PAL_RETIRED_MASK
256-bit mask defining which PMC/PMD counters can count
untagged retired Intel® Itanium™ instructions (event defined
by PAL_RETIRED)

0x10
46 Processor Performance Monitoring

Performance Monitor Events 7

This chapter describes the architectural and microarchitectural events on the Itanium processor
whose occurrences are countable through the performance monitoring mechanisms described
earlier in Chapter 6. The earlier sections of this chapter aim to provide a high-level view of the
event list, grouping logically related events together. Computation (either directly by a counter in
hardware, or indirectly as a “derived” event) of common performance metrics is also discussed.
Each directly measurable event is then described in greater detail in the alphabetized list of all
processor events in Section 7.8, “Performance Monitor Event List”.

7.1 Categorization of Events

Performance related events are grouped into the following categories:

• Basic Events: clock cycles, retired instructions (Section 7.2)

• Instruction Execution: instruction decode, issue and execution, data and control speculation,
and memory operations (Section 7.3)

• Cycle Accounting Events: stall and execution cycle breakdowns (Section 7.4)

• Branch Events: branch prediction (Section 7.5)

• Memory Hierarchy: instruction and data caches (Section 7.6)

• System Events: operating system monitors, instruction and data TLBs (Section 7.7)

Each section listed above includes a table of all events (both directly measured and derived) in that
category. Directly measurable events often use the PMC.umask field (See Table 6-7 in Chapter 6)
to measure a certain variant of the event in question. Symbolic event names for such events (e.g.
ALAT_REPLACEMENT.ALL) include a period to indicate use of the umask, specified by 4 bits in
the detailed event description (x’s are for don’t-cares). Derived events are computable from directly
measured events and include a “.d” suffix in their symbolic event names. Formulas to compute
relevant derived events also appear in each section. Derived events are not, however, discussed in
the systematic event listing in Section 7.8.

The tables in the subsequent sections define events by specifying three attributes: symbolic event
name, a brief event title and a reference to the detailed event description page. Derived events are
not listed in the detailed event description pages and hence lack the appropriate reference.

7.2 Basic Events

Table 7-1 summarizes four basic execution monitors. The CPU_CYCLES event can be used to
break out separate or combined Itanium or IA-32 cycle counts (by constraining the PMC/PMD
based on the currently executing instruction set). The Itanium retired instruction count
(IA64_INST_RETIRED) includes predicated true and false instructions, and nops, but excludes
RSE operations.
Performance Monitor Events 47

Table 7-2 defines IPC and average instructions/cycles per ISA transition metrics.

7.3 Instruction Execution

This section describes events related to instruction issue and retirement (Table 7-3, Table 7-4)
multi-media and FP (Table 7-5), data and control speculation (Table 7-7), as well as memory
monitors (Table 7-9).

Instruction cache lines are delivered to the execution core and are dispersed to the Itanium
processor functional units. The number of dispersed instructions (INST_DISPERSED) on every
cycle depends on the stops in the instruction stream (EXPL_STOPS_DISPERSED) as well as

Table 7-1. Intel® Itanium™ and IA-32 Instruction Set Execution and Retirement Monitors

Execution Monitors Title

CPU_CYCLES CPU Cycles on page 88.

IA64_INST_RETIRED Retired Itanium Instructions on page 92.

IA32_INST_RETIRED Retired IA-32 Instructions on page 92.

ISA_TRANSITIONS Itanium ISA to IA-32 ISA Transitions on page 94.

Table 7-2. Intel® Itanium™ and IA-32 Instruction Set Execution and Retirement Performance
Metrics

Performance Metric Performance Monitor Equation

Intel® Itanium™ Instruction per Cycle IA64_INST_RETIRED / CPU_CYCLES [Intel® Itanium™ only]

IA-32 Instruction per Cycle IA32_INST_RETIRED / CPU_CYCLES [IA-32 only]

Average Intel® Itanium™
Instructions/Transition

IA64_INST_RETIRED/ (ISA_TRANSITIONS*2)

Average IA-32 Instructions/Transition IA32_INST_RETIRED/ (ISA_TRANSITIONS*2)

Average Intel® Itanium™ Cycles/Transition CPU_CYCLES[IA64]/ (ISA_TRANSITIONS*2)

Average IA-32 Cycles/Transition CPU_CYCLES[IA32]/ (ISA_TRANSITIONS*2)

Table 7-3. Instruction Issue and Retirement Events

Decode, Issue, Retirement Monitors Description

INST_DISPERSED Instructions Dispersed on page 93.

EXPL_STOPS_DISPERSED Explicit Stops Dispersed on page 91.

ALL_STOPS_DISPERSED Implicit and Explicit Stops Dispersed on page 67.

IA64_TAGGED_INST_RETIRED Retired Tagged Itanium Instructions on page 92.

NOPS_RETIRED Retired Nop Instructions on page 105.

PREDICATE_SQUASHED_RETIRED Instructions Squashed Due to Predicate Off on page 106.

RSE_REFERENCES_RETIRED RSE Accesses on page 107.

RSE_LOADS_RETIRED RSE Load Accesses on page 106.

Table 7-4. Instruction Issue and Retirement Events (Derived)

Decode, Issue, Retirement
Monitors

Description Performance Monitor Equation

RSE_STORES_RETIRED.d RSE Store Accesses RSE_REFERENCES_RETIRED -
RSE_LOADS_RETIRED
48 Performance Monitor Events

functional unit availability. Resource limitations and branch bundles (regardless of prediction) force
a break in the instruction dispersal. Therefore, they are known as implicit stops, and can be
computed as ALL_STOPS_DISPERSED - EXPL_STOPS_DISPERSED.

Retired instruction counts (IA64_TAGGED_INST_RETIRED, NOPS_RETIRED) are based on tag
information specified by the address range check and opcode match facilities. The tagged retired
instruction counts include predicated off instructions. A separate event
(PREDICATE_SQUASHED_RETIRED) is provided to count predicated off instructions.
RSE_REFERENCES_RETIRED counts the number of retired RSE operations.

There are two ways to count the total number of retired Itanium instructions. Either the untagged
IA64_INST_RETIRED event can be used or the IA64_TAGGED_INST_RETIRED event can be
used by setting up the PMC8 opcode match register to its don’t care setting.

The FP monitors listed in Table 7-5 (FP_SIR_FLUSH, FP_FLUSH_TO_ZERO) capture dynamic
information about pipeline flushes and flush-to-zero occurrences due to floating-point operations.
FP_OPS_RETIRED.d is a derived event that counts the number of retired FP operations.

As Table 7-7 describes, monitors for control and data speculation capture dynamic run-time
information: the number of failed chk.s instructions (INST_FAILED_CHKS_RETIRED.ALL), the
number of advanced load checks and check loads (ALAT_INST_CHKA_LDC.ALL) and failed
advanced load checks and check loads (ALAT_INST_FAILED_CHKA_LDC.ALL) as seen by the
ALAT. The number of retired chk.s instructions is monitored by the
IA64_TAGGED_INST_RETIRED event with the appropriate opcode mask. Since the Itanium
processor ALAT is updated by operations on mispredicted branch paths the number of advanced
load checks and check loads needs an explicit event (ALAT_INST_CHKA_LDC.ALL). Finally, the
ALAT_REPLACEMENT.ALL event can be used to monitor ALAT overflows.

Using an instruction type unit mask the four control and data speculation events can be constrained
to monitor integer, FP or all speculative instructions. With the Itanium processor speculation
monitors, the performance metrics described in Table 7-8 can be computed.

Table 7-5. Floating-point Execution Monitors

Floating-point Monitors Description

FP_FLUSH_TO_ZERO FP Result Flushed to Zero on page 91.

FP_SIR_FLUSH FP SIR Flushes on page 92.

Table 7-6. Floating-point Execution Monitors (Derived)

Floating-Point Monitors Description Performance Monitor Equation

FP_OPS_RETIRED.d FP Operations
Retired

(4 * FP_OPS_RETIRED_HI) +
FP_OPS_RETIRED_LO

Table 7-7. Control and Data Speculation Monitors

Control and Data Speculation
Monitors

Description

INST_FAILED_CHKS_RETIRED.ALL Failed Speculative Check Loads on page 93.

ALAT_INST_CHKA_LDC.ALL Advanced Load Checks and Check Loads on page 65.

ALAT_INST_FAILED_CHKA_LDC.ALL Failed Advanced Load Checks and Check Loads on page 66.

ALAT_REPLACEMENT.ALL ALAT Entries Replaced by Any Instruction on page 64.
Performance Monitor Events 49

The equations described in Table 7-8 for Control Speculation Miss Ratio and ALAT Capacity Miss
Ratio involve subtracting PREDICATE_SQUASHED_RETIRED[some inst] from
IA64_TAGGED_INST_RETIRED[some inst]. This is done because
IA64_TAGGED_INST_RETIRED includes predicated off instructions in its count, which do not
update architectural state and hence need to be discounted in computing any performance metric.
Using the opcode matcher in PMC8 with PREDICATE_SQUASHED_RETIRED (along with
IA64_TAGGED_INST_RETIRED) allows us to count the number of predicated off instances of
that instruction as well. Note that computing the ALAT Capacity Miss Ratio will require multiple
runs in order to obtain all the terms in the equation. This is done to the limitations imposed by the
opcode matcher.

Finally, Table 7-9 defines six memory instruction retirement events to count retired loads and
stores. These counts include RSE operations. The load counts include failed check load
instructions.

7.4 Cycle Accounting Events

As described in Section 6.1.1.4, “Cycle Accounting”, the Itanium processor provides eight directly
measured stall cycle monitors. Table 7-10 lists the cycle accounting events.

The Itanium processor classifies every clock cycle into one of 4 cycle counters, namely
DEPENDENCY_ALL_CYCLE, MEMORY_CYCLE, UNSTALLED_BACKEND_CYCLE, and
PIPELINE_ALL_FLUSH_CYCLE. The values of these 4 counters should add up to
CPU_CYCLES.

DEPENDENCY_ALL_CYCLE counts the number of cycles lost to instruction dispersal breaks
(including both explicit and implicit stops), FP-related flushes and scoreboard stalls on GR or FR
dependencies on non-load instructions. That is, the monitor does not count stalls that occur when an

Table 7-8. Control/Data Speculation Performance Metrics

Performance Metric Performance Monitor Equation

Control Speculation Miss Ratio INST_FAILED_CHKS_RETIRED.ALL /
(IA64_TAGGED_INST_RETIRED[chk.s]-PREDICATE_SQUASHED_
RETIRED[chk.s])

Data Speculation Miss Ratio ALAT_INST_FAILED_CHKA_LDC.ALL /
ALAT_INST_CHKA_LDC.ALL

ALAT Capacity Miss Ratio ALAT_REPLACEMENT.ALL/
IA64_TAGGED_INST_RETIRED[ld.a,ld.sa,ld.c.nc, ldf.a, ldf.sa,
ldf.c.nc]-PREDICATE_SQUASHED_RETIRED[ld.a, ld.sa, ld.c.nc,
ldf.a, ldf.sa, ldf.c.nc])

Table 7-9. Memory Events

Memory Monitors Description

LOADS_RETIRED Retired Loads on page 104.

STORES_RETIRED Retired Stores on page 107.

UC_LOADS_RETIRED Retired Uncacheable Loads on page 107.

UC_STORES_RETIRED Retired Uncacheable Stores on page 107.

MISALIGNED_LOADS_RETIRED Retired Unaligned Load Instructions on page 104.

MISALIGNED_STORES_RETIRED Retired Unaligned Store Instructions on page 105.
50 Performance Monitor Events

instruction is waiting for source operands from the memory subsystem. Also note that this monitor
does not count the number of cycles when the machine is executing instructions without stalls or
flushes. The DEPENDENCY_SCOREBOARD_CYCLE monitor operates similarly, but does not
include instruction dispersal breaks.

MEMORY_CYCLE counts the number of cycles that the pipeline is stalled when instructions are
waiting for source operands from the memory subsystem, and for pipeline flushes related to
memory-access (L1D way mispredictions, DTC flushes). It also counts the number of clocks that
the pipeline stalls for the Register Stack Engine to spill or fill registers to/from memory. The
DATA_ACCESS_CYCLE monitor operates similarly, but excludes RSE activity.

UNSTALLED_BACKEND_CYCLE counts the number of cycles that the back-end is processing
instructions without delay and the decoupling buffer between the front-end and back-end is empty.
In this situation, any effect on the front-end will appear at the back-end of the pipeline. Thus, this
monitor reflects the number of cycles where there are no back-end stalls or flushes, and the
decoupling buffer is empty, regardless of whether the L1I and ITLB are being hit or missed. The
INST_ACCESS_CYCLE monitor includes those cycles where there are no back-end stalls or
flushes, the decoupling buffer is empty, and the front-end is stalled waiting on an L1I or ITLB miss.

PIPELINE_ALL_FLUSH_CYCLE counts the number of cycles lost to branch related resteers.
Resteers can be classified as branch prediction resteers (which occur when the front-end correctly
predicts a taken branch) or as branch misprediction resteers (which occur when the back-end
determines that the front-end incorrectly predicted a taken or not-taken branch). Note that taken
branches incorrectly predicted by the front-end will not be counted twice. The branch misprediction
flush that occurs in the back-end will override the front-end bubble. The monitor also counts ALAT
flushes, serialization flushes, MMU-IEU bypass flushes, failed control speculation flushes and
other exception flushes. The monitor PIPELINE_BACKEND_FLUSH_CYCLE operates similarly,
but excludes front-end resteers to correctly predicted branches (commonly known as “branch
bubbles”).

Table 7-11 defines derived stall cycle accounting monitors in terms of directly measured monitors.

Table 7-10. Stall Cycle Monitors

Stall Accounting
Monitors

Description

PIPELINE_BACKEND_FLUSH_CYCLE Combination of Pipeline Flush Cycles caused by either a
Branch Misprediction or an ExceptionCategory: Stall on
page 105.

DATA_ACCESS_CYCLE Data Access Stall Cycles on page 89.

DEPENDENCY_SCOREBOARD_CYCLE Scoreboard Dependency Cycles on page 90.

INST_ACCESS_CYCLE Instruction Access Cycles on page 93.

PIPELINE_ALL_FLUSH_CYCLE Combination of Pipeline Flush Cycles caused by either a
front-end or a back-end source on page 105.

MEMORY_CYCLE Combined Memory Stall Cycles on page 104.

DEPENDENCY_ALL_CYCLE Scoreboard Dependency and Dispersal Break Cycles on
page 89.

UNSTALLED_BACKEND_CYCLE Unstalled Back-end Cycles on page 108.
Performance Monitor Events 51

7.5 Branch Events

The five measured Itanium processor branch events listed in Table 7-12 expand into over fifty
measurable branch metrics by using the unit masks described on the event pages. BRANCH_PATH
provides insight into the accuracy of taken/not-taken predicate predictions; unit masks allow
classification by prediction, outcome and predictor type. BRANCH_PREDICTOR classifies how
branches are predicted by different predictors as they move down the branch prediction pipeline;
unit masks provide finer resolution and break down events into correct predictions, incorrect
predicate predictions, and incorrect target predictions. BRANCH_MULTIWAY collects events
exclusively for predictions on multiway branch bundles, from which their single-way counterparts
can be derived. BRANCH_TAKEN_SLOT gives information regarding the position within a bundle
that actually-taken branches occupy. BRANCH_EVENT counts the number of events captured in
the branch trace buffer.

Table 7-13 defines derived branch monitors in terms of directly measure monitors.

.

Table 7-11. Stall Cycle Monitors (Derived)

Stall Cycle Monitors (Derived) Description Performance Monitor Equation

RSE_ACTIVE_CYCLE.d RSE Active Cycles MEMORY_CYCLE - DATA_ACCESS_CYCLE

ISSUE_LIMIT_CYCLE.d Issue Limit Cycles DEPENDENCY_ALL_CYCLE -
DEPENDENCY_SCOREBOARD_CYCLE

TAKEN_BRANCH_CYCLE.d Taken Branch
Cycles

PIPELINE_ALL_FLUSH_CYCLE -
PIPELINE_BACKEND_FLUSH_CYCLE

UNSTALLED_PIPELINE_CYCLE.d Unstalled Pipeline
Cycles

UNSTALLED_BACKEND_CYCLE -
INST_ACCESS_CYCLE

Table 7-12. Branch Monitors

Branch Events Description

BRANCH_PATH Accuracy of predicate (taken/not-taken) predictions.

BRANCH_PREDICTOR Classification of how the branches are predicted in the pipeline.

BRANCH_MULTIWAY Details on multiway branch bundle predictions (details on single-way
branch bundle predictions can be derived from this event).

BRANCH_TAKEN_SLOT Location of taken branches (if any) in a bundle.

BRANCH_EVENT Branch Event Captured.
52 Performance Monitor Events

All branch events can be qualified by instruction address range and opcode matching as described
in Section 6.1.3, “Event Qualification”. Since the instruction address range check is bundle
granular, qualification of multiway branches by address range is straightforward. However, for
opcode matching purposes, multiway branches (MBB or BBB bundle templates) are qualified up to
and including the first taken branch as follows:

((address range and opcode match on instruction slot 0)
and (branch in slot 0 is taken))

or ((address range and opcode match on instruction slot 1)
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is taken))

or ((address range and opcode match on instruction slot 0 or 1 or 2)
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken))

Table 7-13. Branch Monitors (Derived)

Branch Events Description Performance Monitor Equation

BRANCH_MISPREDICTIONS.d Branch Bundles
Mispredicted

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS -
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS)
or (BRANCH_PREDICTOR.ALL.WRONG_PATH +
BRANCH_PREDICTOR.ALL.WRONG_TARGET)

BRANCH_1ST_STAGE_PREDICTIONS.d

Branch Bundles
(Correctly or
Incorrectly)
Predicted in the
1st Pipeline
Stage

BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS

BRANCH_1ST_STAGE_MISPREDICTIONS.d

Branch Bundles
Incorrectly
Predicted in the
1st Pipeline
Stage

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS -
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS)
or (BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH +
BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET)

BRANCH_2ND_STAGE_PREDICTIONS.d

Branch Bundles
(Correctly or
Incorrectly)
Predicted in the
2nd Pipeline
Stage

BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS

BRANCH_2ND_STAGE_MISPREDICTIONS.d

Branch Bundles
Incorrectly
Predicted in the
2nd Pipeline
Stage

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS -
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS)
or (BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH +
BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET)

BRANCH_3RD_STAGE_PREDICTIONS.d

Branch Bundles
(Correctly or
Incorrectly)
Predicted in the
3rd Pipeline
Stage

BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS

BRANCH_3RD_STAGE_MISPREDICTIONS.d

Branch Bundles
Incorrectly
Predicted in the
3rd Pipeline
Stage

(BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS -
BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS)
or (BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH +
BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET)

BRANCH_MULTIWAY_COMPONENT.d

Multiway Branch
Bundle
Predictions
Relative to All
Prediction

BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS /
BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS
Performance Monitor Events 53

7.6 Memory Hierarchy

This section summarizes events related to the Itanium processor’s memory hierarchy. The memory
hierarchy events are grouped as follows:

• L1 Instruction Cache and Prefetch (Section 7.6.1)

• L1 Data Cache (Section 7.6.2)

• L2 Unified Cache (Section 7.6.3)

• L3 Unified Cache (Section 7.6.4)

An overview of the Itanium processor’s three-level memory hierarchy and its event monitors is
shown in Figure 7-1. The instruction and the data stream work through separate L1 caches. The L1
data cache is a write-through cache. A unified L2 cache serves both the L1 instruction and data
caches, and is backed by a large unified L3 cache. Events for individual levels of the cache
hierarchy are described in the following three sections. They can be used to compute the most
common cache performance ratios summarized in Table 7-15.

For common performance metrics not directly measured by hardware, the equations listed in
Table 7-14 can be used.
54 Performance Monitor Events

Figure 7-1. Event Monitors in the Intel® Itanium™ Processor Memory Hierarchy

L3_READS.DATA_READS.ALL

L3_WRITES.L2_WRITEBACK.ALL

L3_WRITES.ALL_WRITES.ALL

DATA_REFERENCES_RETIRE

L2_INST_PREFETCH_READ

L3_WRITES.DATA_WRITE

L3_READS.INST_READS.AL

L3_READS.ALL_READS.ALL

(Write-Through)

L1D_READ_MISSES_RETIRE

L3_REFERENCES

L2_MISSES

L2_REFERENCES

L2_INST_REFERENCES.

L3_MISSES

L1D
L1I

L2

L3

BUS

L2_INST_DEMAND_READ

L1D_READS_RETIRE

L2_DATA_REFERENCES.AL

L1I_DEMAND_READ L1I_PREFETCH_READS
Performance Monitor Events 55

Because Itanium performance monitors for the L2 cache contain secondary misses from L1, and
performance monitors for L3 do not, one cannot directly compare L2 and L3 performance monitors.
In the performance metrics that follow in Table 7-15 where possible only events from an L2 view or
an L3 view are used in computing the metric. However, several useful metrics cannot be calculated
accurately this way. For those metrics we compute a correction ratio to scale L3 events to
approximate a value that contains secondary misses. Table 7-14 contains the definition of this
correction ratio.

Table 7-14. Derived Memory Hierarchy Monitors

Memory Hierarchy Monitors
(Derived)

Description
Performance

Monitor Equation

L1I_REFERENCES.d L1 Instruction Cache
References

L1I_PREFETCH_READS +
L1I_DEMAND_READS

L2_INST_REFERENCES.d L2 Instruction
References

L2_INST_DEMAND_READS +
L2_INST_PREFETCH_READS

L3_DATA_REFERENCES.d L3 Data References L3_WRITES.DATA_WRITES.ALL+
L3_READS.DATA_READS.ALL

L3_CORRECTION_RATIO.d L3 Correction Ratio L2_MISSES/(L3_REFERENCES-L3_WRITES.L2_
WRITEBACK.ALL)

Table 7-15. Cache Performance Ratios

Performance Metric Performance Monitor Equation

L1I Miss Ratio L2_INST_REFERENCES.d/L1I_REFERENCES.d

L1I Demand Miss Ratio L2_INST_DEMAND_READS / L1I_DEMAND_READS

L1I Prefetch Miss Ratio L2_INST_PREFETCH_READS/ L1I_PREFETCH_READS

L1D Read Miss Ratio L1D_READ_MISSES_RETIRED / L1D_READS_RETIRED

L2 Miss Ratio L2_MISSES / L2_REFERENCES

Approximate L2 Data Miss Ratio (L3_DATA_REFERENCES.d /
L2_DATA_REFERENCES.ALL)*L3_CORRECTION_RATIO.d

Approximate L2 Instruction Miss
Ratio
(includes prefetches)

(L3_READS.INST_READS.ALL /
L2_INST_REFERENCES.d)*L3_CORRECTION_RATIO.d

Approximate L2 Data Read Miss
Ratio

(L3_READS.DATA_READS.ALL / L2_DATA_REFERENCES.READS) *
L3_CORRECTION_RATIO.d

Approximate L2 Data Write Miss
Ratio

(L3_WRITES.DATA_WRITES.ALL /
L2_DATA_REFERENCES.WRITES)*L3_CORRECTION_RATIO.d

L2 Instruction Ratio L2_INST_REFERENCES.d/ L2_REFERENCES

L2 Data Ratio L2_DATA_REFERENCES.ALL / L2_REFERENCES

L3 Miss Ratio L3_MISSES /(L3_REFERENCES-L3_WRITES.L2_WRITEBACK.ALL)

L3 Data Miss Ratio (L3_READS.DATA_READS.MISS + L3_WRITES.DATA_WRITES.MISS) /
L3_DATA_REFERENCES.d

L3 Instruction Miss Ratio L3_READS.INST_READS.MISS / L3_READS.INST_READS.ALL

L3 Data Read Ratio L3_READS.DATA_READS.ALL / L3_DATA_REFERENCES.d

L3 Data Ratio L3_DATA_REFERENCES.d / L3_REFERENCES

L3 Instruction Ratio L3_READS.INST_READS.ALL / L3_REFERENCES
56 Performance Monitor Events

7.6.1 L1 Instruction Cache and Prefetch

Table 7-16 and Figure 7-2 describes and summarizes the events that the Itanium processor provides
to monitor the L1 instruction cache demand fetch and prefetch activity. Table 7-14 lists pertinent
derived events. The instruction fetch monitors distinguish between demand fetch
(L1I_DEMAND_READS, L2_INST_DEMAND_READS) and prefetch activity
(L1I_PREFETCH_READS, L2_INST_PREFETCH_READS). The amount of data returned from
the L2 into the L1 instruction cache and the Instruction Streaming Buffer is monitored by two
events (L1I_FILLS, ISB_LINES_IN). The INSTRUCTION_EAR_EVENTS monitor (not shown in
Figure 7-2) counts how many instruction cache or ITLB misses are captured by the instruction
event address register.

The L1 instruction cache and prefetch events can be qualified by the instruction address range
check, but not by the opcode matcher. Since instruction cache and prefetch events occur early in the
processor pipeline, they include events caused by speculative, wrong-path as well as predicated off
instructions. Since the address range check is not based on actually retired, but speculative
instruction addresses, event counts may be inaccurate when the range checker is confined to address
ranges smaller than the length of the processor pipeline (see Section 6.2.4, “Intel® Itanium™
Instruction Address Range Check Register (PMC[13])” for details).

Table 7-16. L1 Instruction Cache and Instruction Prefetch Monitors

L1I and I-Prefetch Monitors Description

L1I_DEMAND_READS L1I and ISB Instruction Demand Lookups on page 96.

L1I_FILLS L1 Instruction Cache Fills on page 96.

L2_INST_DEMAND_READS L2 Instruction Demand Fetch Requests on page 98.

INSTRUCTION_EAR_EVENTS Instruction EAR Events on page 94.

L1I_PREFETCH_READS L1I and ISB Instruction Prefetch Lookups on page 97.

L2_INST_PREFETCH_READS L2 Instruction Prefetch Requests on page 99.

ISB_LINES_IN Instruction Streaming Buffer Lines In on page 95.

Figure 7-2. L1 Instruction Cache and Prefetch Monitors

ISB_LINES_IN

L1I_FILLS

L2_INST_PREFETCH_READS

L1I_DEMAND_READS
L2_INST_DEMAND_READS

L1I

ISB L2

L1I_PREFETCH_READS
Performance Monitor Events 57

7.6.2 L1 Data Cache

Table 7-17 lists the Itanium processor’s seven L1 data cache monitors. As shown in Figure 7-3, the
write-through L1 data cache services cacheable loads, Integer and RSE stores, FP memory
operations, VHPT references, semaphores, check loads and hinted L2 memory references.
DATA_REFERENCES_RETIRED is the number of issued data memory references. L1 data cache
reads (L1D_READS_RETIRED) and L1 data cache misses (L1D_READ_MISSES_RETIRED)
monitor the read hit/miss rate for the L1 data cache. The number of L2 data references
(L2_DATA_REFERENCES.ALL) is the number of data requests prior to cache line merging. Unit
mask selections allow breaking down into reads and writes. The DATA_EAR_EVENTS monitor
(not shown in Figure 7-3) counts how many data cache or DTLB misses are captured by the data
event address register. RSE operations are included in all data cache monitors, but are not broken
down explicitly.

Table 7-17. L1 Data Cache Monitors

L1D Monitors Description

DATA_REFERENCES_RETIRED Retired Data Memory References on page 89.

L1D_READS_RETIRED L1 Data Cache Reads on page 96.

L1D_READ_MISSES_RETIRED L1 Data Cache Read Misses on page 96.

PIPELINE_FLUSH.L1D_WAY_MISPREDICT Pipeline Flush on page 106.

L1D_READ_FORCED_MISSES_RETIRED L1 Data Cache Forced Load Misses on page 95.

L2_DATA_REFERENCES.ALL L2 Data Read and Write References on page 97.

DATA_EAR_EVENTS L1 Data Cache EAR Events on page 89.

Figure 7-3. L1 Data Cache Monitors

L1D_READ_MISSES_RETIRED

L1D_READ_FORCED_MISSES_RETIRED

L2_DATA_REFERENCES.ALL
[Reads/Writes]DATA_REFERENCES_RETIRED

L1D_READS_RETIRED

int/RSE st, FP ld/st, VHPT, semaphores, failed ld.c, hinted L1 op

L2 Cache

L1D Cache

(write-through)

L1D Store Buffer
58 Performance Monitor Events

7.6.3 L2 Unified Cache

Table 7-18 summarizes the directly-measured events that monitor the Itanium processor L2 cache.
Table 7-14 lists pertinent derived events. Refer to Figure 7-1 for a graphical view of the L2 cache
monitors.

L2_REFERENCES, L2_INST_DEMAND_READS, L2_INST_PREFETCH_READS,
L2_DATA_REFERENCES.ALL, and L2_MISSES are all counted in terms of number of requests
seen by the L2. L2_FLUSHES and L2_FLUSH_DETAILS count and break-down the number of L2
flushes due to address conflicts, store buffer conflicts, bus rejects, and other reasons.
L1D_READ_FORCED_MISSES_RETIRED counts the number of loads that were bypassed from
an earlier store.

7.6.4 L3 Unified Cache

Table 7-19 summarizes the directly-measured L3 cache events. Table 7-14 lists pertinent derived
events. Refer to Figure 7-1 for a graphical view of the L3 cache monitors.

Table 7-18. L2 Cache Monitors

L1 Monitors Description

L2_REFERENCES L2 References on page 99.

L2_INST_PREFETCH_READS L2 Instruction Prefetch Requests on page 99.

L2_INST_DEMAND_READS L2 Instruction Demand Fetch Requests on page 98.

L2_DATA_REFERENCES.ALL L2 Data Read and Write References on page 97.

L2_DATA_REFERENCES.READS L2 Data Read References on page 97.

L2_DATA_REFERENCES.WRITES L2 Data Write References on page 97.

L2_MISSES L2 Misses on page 99.

L2_FLUSHES L2 Flushes on page 98.

L2_FLUSH_DETAILS L2 Flush Details on page 98.

Table 7-19. L3 Cache Monitors

L2 Monitors Description

L3_REFERENCES L3 References on page 102.

L3_MISSES L3 Misses on page 100.

L3_LINES_REPLACED L3 Cache Lines Replaced on page 99.

L3_READS.ALL_READS.ALL Instruction and Data L3 Reads on page 100.

L3_READS.ALL_READS.HIT Instruction and Data L3 Read Hits on page 100.

L3_READS.ALL_READS.MISS Instruction and Data L3 Read Misses on page 100.

L3_READS.DATA_READS.ALL Data L3 Reads on page 100.

L3_READS.DATA_READS.HIT Data L3 Read Hits on page 101.

L3_READS.DATA_READS.MISS Data L3 Read Misses on page 101.

L3_READS.INST_READS.ALL Instruction L3 Reads on page 101.

L3_READS.INST_READS.HIT Instruction L3 Read Hits on page 101.

L3_READS.INST_READS.MISS Instruction L3 Read Misses on page 101.

L3_WRITES.ALL_WRITES.ALL L3 Writes on page 102.

L3_WRITES.ALL_WRITES.HIT L3 Write Hits on page 102.
Performance Monitor Events 59

7.6.5 Frontside Bus

Table 7-20 lists the frontside bus or system bus transaction monitors.

L3_WRITES.ALL_WRITES.MISS L3 Write Misses on page 102.

L3_WRITES.L2_WRITEBACK.ALL L3 Writebacks on page 103.

L3_WRITES.L2_WRITEBACK.HIT L3 Writeback Hits on page 103.

L3_WRITES.L2_WRITEBACK.MISS L3 Writeback Misses on page 103.

L3_WRITES.DATA_WRITES.ALL L3 Data Writes on page 103.

L3_WRITES.DATA_WRITES.HIT L3 Data Write Hits on page 103.

L3_WRITES.DATA_WRITES.MISS L3 Data Write Misses on page 104.

Table 7-20. Bus Events

L2 Monitors Description

BUS_ALL Bus Transactions on page 80.

BUS_PARTIAL Bus Partial Transactions on page 84.

BUS_BURST Bus Burst Transactions on page 82.

BUS_MEMORY Bus Memory Transactions on page 84.

BUS_RD_ALL Bus Read Transactions on page 84.

BUS_RD_DATA Bus Read Data Transactions on page 84.

BUS_RD_PRTL Bus Read Partial Transactions on page 86.

BUS_RD_HIT
Bus Read Hit Clean Non-local Cache Transactions on
page 85.

BUS_RD_HITM
Bus Read Hit Modified Non-local Cache Transactions on
page 85.

BUS_RD_INVAL Bus Read Invalidated Line on page 85.

BUS_RD_INVAL_HITM Bus BIL Transaction Results in HITM on page 86.

BUS_RD_INVAL_BST Bus BRIL Burst Transactions on page 85.

BUS_RD_INVAL_BST_HITM Bus BRIL Burst Transaction Results in HITM on page 86.

BUS_HITM Bus Hit Modified Line Transactions on page 82.

BUS_WR_WB Bus Write Back Transactions on page 88.

BUS_SNOOPS_HITM Bus Snoops Hit Modified Cache Line on page 87.

BUS_SNOOPS Bus Snoops Total on page 87.

BUS_SNOOP_STALL_CYCLES Bus Snoop Stall Cycles on page 87.

BUS_SNOOPQ_REQ
Bus Snoop Queue Requests, Category: Frontside Bus on
page 88.

BUS_BRQ_READ_REQ_INSERTED BRQ Requests Inserted on page 81.

BUS_IO IA-32 Compatible I/O Bus Transactions on page 82.

BUS_RD_IO IA-32 Compatible I/O Read Transactions on page 86.

BUS_LOCK IA-32 Compatible Bus Lock Transactions on page 83.

BUS_LOCK_CYCLES IA-32 Compatible Bus Lock Cycles on page 83.

Table 7-19. L3 Cache Monitors (Continued)

L2 Monitors Description
60 Performance Monitor Events

Table 7-21 lists the derived frontside bus transaction monitors.

Most of the bus events in Section 7.6.5 can be qualified by the bus transaction initiator using the
three way unit mask as described in Table 7-22.

Table 7-23 defines the conventions that will be used when describing the Itanium processor
frontside bus transaction monitors in Section 7.6.5.

Other transactions besides those listed in Table 7-23 include Deferred Reply, Special Transactions,
Interrupt, Interrupt Acknowledge, and Purge TC. For the bus performance monitors in
Section 7.6.5, note that the monitors will count if any transaction gets a retry response from the
priority agent.

Table 7-21. Frontside Bus Monitors (Derived)

Bus Monitors (Derived) Description Performance Monitor Equation

BUS_RD_INSTRUCTIONS.d Bus Read Instructions BUS_RD_ALL - BUS_RD_DATA

BUS_RD_INVAL_MEMORY.d Bus BIL Transaction
Satisfied from Memory

BUS_RD_INVAL -
BUS_RD_INVAL_HITM

BUS_RD_INVAL_BST_MEMORY.d Bus BRIL Burst Transaction
Satisfied from Memory

BUS_RD_INVAL_BST -
BUS_RD_INVAL_BST_HITM

BUS_ADDR_BPRI.d Bus Used by I/O Agent BUS_MEMORY.IOAGENT

BUS_IOQ_LIVE_REQ.d In-order Bus Queue
Requests

BUS_IOQ_LIVE_REQ_HI * 4 +
BUS_IOQ_LIVE_REQ_LO

BUS_BRQ_LIVE_REQ.d BRQ Live Requests BUS_BRQ_LIVE_REQ_HI * 4 +
BUS_BRQ_LIVE_REQ_LO

Table 7-22. Unit Masks for Qualifying Bus Transaction Events by Initiator

Selection PMC.umask[19:16] Description

ANY x001 Counts all bus transactions (initiated by any processor or
non-processor bus masters)

SELF x010 Counts bus transactions initiated by the local processor only

IO x100 Counts bus transactions from IO agents, i.e. non-processor bus
masters

Table 7-23. Conventions for Frontside Bus Transactions

Name Description

BRL Memory Read (64 byte bursts). Includes code fetches and data loads from WB memory.

BRIL Memory Read & Invalidate (64 byte bursts). Also known as read for ownership (RFO).

BIL Memory Read & Invalidate (0 byte sized transaction). Caused by flush cache (fc) instruction only.

BWL Memory Write (64 byte bursts). Explicit writebacks/coalesced writes.

BRP Partial Memory Reads (<64 byte transactions). Typically, uncacheable reads.

BWP Partial Memory Write (<64 byte transactions). Typically, uncacheable writes.

IORD Partial IO Read (<64 byte transactions). Uncacheable read to IO port space.

IOWR Partial IO Write (<64 byte transactions). Uncacheable write to IO port space.
Performance Monitor Events 61

To support the analysis of snoop traffic in a multiprocessor system, the Itanium processor provides
local processor and remote response monitors. The local processor snoop events
(BUS_SNOOPS_HITM, BUS_SNOOPS, BUS_SNOOPQ_REQ) monitor inbound snoop traffic.
The remote response events (BUS_RD_HIT, BUS_RD_HITM, BUS_RD_INVAL_HITM,
BUS_RD_INVAL_BST_HITM) monitor the snoop responses of other processors to bus
transactions that the monitoring processor originated. Table 7-24 summarizes the remote snoop
events by bus transaction.

With the Itanium processor frontside bus monitors, the performance metrics described in Table 7-25
can be computed.

Table 7-24. Bus Events by Snoop Response

Remote Processor
Response BRL BIL BRIL

HIT BUS_RD_HIT NA NA

HITM BUS_RD_HITM BUS_RD_INVAL_HITM BUS_RD_INVAL_BST_HITM

ALL BUS_RD_ALL BUS_RD_INVAL BUS_RD_INVAL

Table 7-25. Bus Performance Metrics

Performance Metric Performance Monitor Equation

Cacheable Data Fetch Bus Transaction Ratio BUS_RD_DATA/BUS_ALL or
BUS_RD_DATA/BUS_MEMORY

Partial Access Ratio BUS_PARTIAL/BUS_MEMORY

Read Partial Access Ratio BUS_RD_PRTL/BUS_MEMORY

Read Hit To Shared Line Ratio BUS_RD_HIT/BUS_RD_ALL or BUS_MEMORY

Read Hit to Modified Line Ratio BUS_RD_HITM/BUS_RD_ALL or
BUS_RD_HITM/BUS_MEMORY

BIL Ratio BUS_RD_HIT/BUS_MEMORY

BIL Hit to Modified Line Ratio BUS_RD_INVAL_HITM/BUS_MEMORY or
BUS_RD_INVAL_HITM/BUS_RD_INVAL

BRIL Hit to Modified Line Ratio BUS_RD_INVAL_BST_HITM/BUS_MEMORY or
BUS_RD_INVAL_BST_HITM/BUS_RD_INVAL

Bus Modified Line Hit Ratio BUS_RD_HITM/BUS_MEMORY or
BUS_RD_HITM/BUS_BURST

Writeback Ratio BUS_WR_WB/BUS_MEMORY or
BUS_WR_WB/BUS_BURST

Cacheable Read Ratio (BUS_RD_ALL + BUS_RD_INVAL_BST)/BUS_MEMORY

I/O Cycle Ratio BUS_IO/BUS_ALL

I/O Read BUS_RD_IO/BUS_ALL
62 Performance Monitor Events

7.7 System Events

Table 7-26 lists the directly measurable system and TLB events. Table 7-27 lists pertinent derived
events. The debug register match events count how often the address in any instruction or data
break-point register (IBR or DBR) matches the current retired instruction pointer
(CODE_DEBUG_REGISTER_MATCHES.d) or the current data memory address
(DATA_DEBUG_REGISTER_MATCHES.d). PIPELINE_FLUSH counts the number of times the
Itanium processor pipeline is flushed due to a data translation cache miss, L1 data cache way
mispredict, an exception flush or an instruction serialization event. CPU_CPL_CHANGES counts
the number of privilege level transitions due to interruptions, system calls (epc) and returns
(demoting branch), and rfi instructions. CPU_CYCLES counts the number of cycles the CPU is
not powered down or in light HALT state.

Table 7-27 defines derived system and TLB events that are computed from events directly measured
by hardware.

The Itanium processor instruction and data TLBs and the virtual hash page table walker are
monitored by the events described in Table 7-26 and Table 7-27. Figure 7-4 gives a graphical
summary. Table 7-28 lists the TLB performance metrics that can be computed using these events.

ITLB_REFERENCES.d and DTLB_REFERENCES.d are derived from the respective
instruction/data cache access events. Note that ITLB_REFERENCES.d does not include prefetch
requests made to the L1I cache (L1I_PREFETCH_READS). This is because prefetches are
cancelled when they miss in the ITLB and thus do not trigger VHPT walks or software TLB miss
handling. ITLB_MISSES_FETCH and DTLB_MISSES count TLB misses.

Table 7-26. System and TLB Monitors

System and Processor TLB Monitors Description

PIPELINE_FLUSH Pipeline Flush on page 106.

CPU_CPL_CHANGES Privilege level changes on page 88.

CPU_CYCLES CPU Cycles on page 88.

ITLB_MISSES_FETCH ITLB Demand Misses on page 95.

ITLB_INSERTS_HPW Hardware Page Walker Inserts into the ITLB on page 95.

DTC_MISSES DTC Misses on page 90.

DTLB_MISSES DTLB Misses on page 90.

DTLB_INSERTS_HPW Hardware Page Walker Inserts into the DTLB on page 90.

Table 7-27. System and TLB Monitors (Derived)

Derived Memory Hierarchy Monitors Description Performance Monitor Equation

CODE_DEBUG_REGISTER_MATCHES.d Code Debug Register
Matches

IA64_TAGGED_INST_RETIRED

DATA_DEBUG_REGISTER_MATCHES.d Data Debug Register
Matches

LOADS_RETIRED +
STORES_RETIRED

ITLB_REFERENCES.d ITLB References L1I_DEMAND_READS

ITLB_EAR_EVENT.d ITLB EAR Event INSTRUCTION_EAR_EVENTS

DTLB_REFERENCES.d DTLB References DATA_REFERENCES_RETIRED

DTLB_EAR_EVENT.d DTLB EAR Event DATA_EAR_EVENTS
Performance Monitor Events 63

ITLB_INSERTS_HPW and DTLB_INSERTS_HPW count the number of instruction/data TLB
inserts performed by the virtual hash page table walker. The Itanium processor data TLB is a two
level TLB; DTC_MISSES counts the number of first level data TLB misses.

7.8 Performance Monitor Event List

This section enumerates Itanium processor performance monitoring events.

ALAT_REPLACEMENT.ALL

• Title: ALAT Entries Replaced by Any Instruction, Category: Execution

• Definition: ALAT_REPLACEMENT.ALL counts the number of times an advanced load
(ld.a or ld.as or ldfp.a or ldfp.as) or a no-clear check load (ld.c.nc and
variants of ldf.c.nc) displaced a valid entry in the ALAT

• Event Code: 0x38, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

Table 7-28. TLB Performance Metrics

Performance Metric Performance Monitor Equation

ITLB Miss Ratio ITLB_MISSES_FETCH / ITLB_REFERENCES.d

DTLB Miss Ratio DTLB_MISSES / DTLB_REFERENCES.d

DTC Miss Ratio DTC_MISSES / DTLB_REFERENCES.d

Figure 7-4. Instruction and Data TLB Monitors

ITLB_MISSES_FETCITLB_REFERENCE

ITLB_INSERTS_HP

ITLB

DTLB_MISSE

DTLB_INSERTS_HP

DTC_MISSE

DATA_REFERENCES_RETI

VHPT Walker

DTLBDTC
64 Performance Monitor Events

ALAT_REPLACEMENT.FP

• Title: ALAT Entries Replaced by FP Instructions, Category: Execution

• Definition: ALAT_REPLACEMENT.FP counts the number of times a FP advanced load
(ldfp.a or ldfp.as) or a no-clear FP check load (variants of ldf.c.nc) displaced
a valid entry in the ALAT

• Event Code: 0x38, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

ALAT_REPLACEMENT.INTEGER

• Title: ALAT Entries Replaced by Integer Instructions, Category: Execution

• Definition: ALAT_REPLACEMENT.INTEGER counts the number of times an integer
advanced load (ld.a or ld.as) or a no-clear integer check load (ld.c.nc) displaced
a valid entry in the ALAT

• Event Code: 0x38, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

ALAT_INST_CHKA_LDC.ALL

• Title: Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.ALL counts the number of all advanced load
checks (chk.a) and check loads in both clear and no-clear forms (ld.c.clr or
ld.c.nc, including FP variants) as seen by the ALAT

• Event Code: 0x36, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_CHKA_LDC.FP

• Title: FP Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.FP counts all FP advanced load checks (chk.a)
and all FP check loads in both clear and no-clear forms (ld.c.clr or ld.c.nc, FP
variants only) as seen by the ALAT

• Event Code: 0x36, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c
Performance Monitor Events 65

ALAT_INST_CHKA_LDC.INTEGER

• Title: Integer Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_CHKA_LDC.INTEGER counts all integer advanced load
checks (chk.a) and all integer check loads in both clear and no-clear forms
(ld.c.clr or ld.c.nc, excluding FP variants) as seen by the ALAT

• Event Code: 0x36, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.ALL

• Title: Failed Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.ALL counts failed advanced load
checks (chk.a) and failed check loads in both clear and no-clear forms (ld.c.clr or
ld.c.nc, including FP variants) as seen by the ALAT

• Event Code: 0x37, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.FP

• Title: Failed FP Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.FP counts failed FP advanced load
checks (chk.a) and failed FP check loads in both clear and no-clear forms (ld.c.clr
or ld.c.nc, FP variants only) as seen by the ALAT

• Event Code: 0x37, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c

ALAT_INST_FAILED_CHKA_LDC.INTEGER

• Title: Failed Integer Advanced Load Checks and Check Loads, Category: Execution

• Definition: ALAT_INST_FAILED_CHKA_LDC.INTEGER counts the number of failed
integer advanced load checks (chk.a) and failed integer check loads in both clear and
no-clear forms (ld.c.clr or ld.c.nc, excluding FP variants) as seen by the ALAT

• Event Code: 0x37, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no for chk.a, and yes for ld.c
66 Performance Monitor Events

ALL_STOPS_DISPERSED

• Title: Implicit and Explicit Stops Dispersed, Category: Instruction Issue

• Definition: ALL_STOPS_DISPERSED counts the sum of explicit programmer-speci-
fied stops (EXPL_STOPS_DISPERSED) and dispersal breaks due to resource limita-
tions and branch instructions (independent of their predicate prediction).The sum
includes stops encountered during hardware speculative wrong-path execution (i.e., in
the shadow of a flush)

• Event Code: 0x2F, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

BRANCH_EVENT

• Title: Branch Event Captured, Category: Branch

• Definition: BRANCH_EVENT counts the number of branch events, including multiway
branches captured by the Branch Trace Buffer.

• Event Code: 0x11, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS

• Title: All Branch Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS counts all
branch predictions made on multiway branch bundles

• Event Code: 0x0E, Umask: 0000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS counts
all branch predictions on multiway branch bundles that do not necessitate a back-end
branch misprediction flush

• Event Code: 0x0E, Umask: 0001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 67

BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH

• Title: Incorrect Predicate Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH counts the number
of multiway branch bundles whose combined predicate is incorrectly predicted. This
includes bundles where all branch instructions are predicted not-taken and any one
instruction is actually taken, and those bundles where a branch instruction was predicted
taken and either a prior branch instruction in the bundle was actually taken or the pre-
dicted instruction was not taken. In any event, the processor resteers the front-end to the
correct target, i.e., a given multiway bundle can only be mispredicted once

• Event Code: 0x0E, Umask: 0010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET

• Title: Incorrect Target Predictions on Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET counts the num-
ber of multiway branch bundles where a branch instruction is correctly predicted taken,
but its target is incorrect

• Event Code: 0x0E, Umask: 0011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS

• Title: All Branch Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.ALL_PREDICTIONS is analogous
to BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS, except it applies only
to multiway branch bundles where all branch instructions are actually not taken

• Event Code: 0x0E, Umask: 1000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.CORRECT_PREDICTIONS is
analogous to BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS,
except it applies only to multiway branch bundles where all branch instructions are actu-
ally not taken

• Event Code: 0x0E, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
68 Performance Monitor Events

BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH

• Title: Incorrect Predicate Predictions on Not-Taken Multiway Bundles, Category:
Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_PATH is analogous to
BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH, except it applies only to multi-
way branch bundles where all branch instructions are actually not taken

• Event Code: 0x0E, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET

• Title: Incorrect Target Predictions on Not-Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.NOT_TAKEN.WRONG_TARGET should always
count zero, as not-taken branches do not specify a branch target

• Event Code: 0x0E, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS

• Title: All Branch Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.ALL_PREDICTIONS is analogous to
BRANCH_MULTIWAY.ALL_PATHS.ALL_PREDICTIONS, except it applies only to
multiway branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.CORRECT_PREDICTIONS is analogous
to BRANCH_MULTIWAY.ALL_PATHS.CORRECT_PREDICTIONS, except it applies
only to multiway branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 69

BRANCH_MULTIWAY.TAKEN.WRONG_PATH

• Title: Incorrect Predicate Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_PATH is analogous to
BRANCH_MULTIWAY.ALL_PATHS.WRONG_PATH, except it applies only to multi-
way branch bundles where at least one branch instruction is taken

• Event Code: 0x0E, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_MULTIWAY.TAKEN.WRONG_TARGET

• Title: Incorrect Target Predictions on Taken Multiway Bundles, Category: Branch

• Definition: BRANCH_MULTIWAY.TAKEN.WRONG_TARGET should equal
BRANCH_MULTIWAY.ALL_PATHS.WRONG_TARGET, since only multiway branch
bundles where at least one branch instruction is taken actually specify a target

• Event Code: 0x0E, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_CORRECTLY_PREDICTED
counts the number of correct not-taken predicate predictions on not-taken branches,
independent of predictor

• Event Code: 0x0F, Umask: 0010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_CORRECTLY_PREDICTED
counts the number of correct taken predicate predictions on taken branches, independent
of predictor. Only the predicate must be correct; resteers to incorrect targets are also
counted by this monitor as long as the branch is actually taken

• Event Code: 0x0F, Umask: 0011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
70 Performance Monitor Events

BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.NT_OUTCOMES_INCORRECTLY_PREDICTED
counts the number of incorrect taken predicate predictions on not-taken branches, inde-
pendent of predictor

• Event Code: 0x0F, Umask: 0000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions, Category: Branch

• Definition: BRANCH_PATH.ALL.TK_OUTCOMES_INCORRECTLY_PREDICTED
counts the number of incorrect not-taken predicate predictions on taken branches, inde-
pendent of predictor

• Event Code: 0x0F, Umask: 0001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions made in the first pipeline stage,

Category: Branch

• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_CORRECTLY_PREDIC
TED should always count zero, as the TAR is the only predictor in the first stage of the
core pipeline and it only makes taken predictions

• Event Code: 0x0F, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the first pipeline stage, Category:

Branch

• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_CORRECTLY_PREDIC
TED counts the number of correct taken predicate predictions on taken branches made
by the TAR in the first stage of the core pipeline. Only the predicate must be correct;
resteers to incorrect targets are also counted by this monitor as long as the branch is actu-
ally taken. There are 0 bubbles between the branch and its predicted target

• Event Code: 0x0F, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 71

BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the first pipeline stage, Category:
Branch

• Definition: BRANCH_PATH.1ST_STAGE.NT_OUTCOMES_INCORRECTLY_PRED
ICTED counts the number of incorrect taken predicate predictions on not-taken
branches, made by the TAR in the first stage of the core pipeline

• Event Code: 0x0F, Umask: 0100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the first pipeline stage, Category:
Branch

• Definition: BRANCH_PATH.1ST_STAGE.TK_OUTCOMES_INCORRECTLY_PRED
ICTED should always count zero, as the TAR is the only predictor in the first stage of
the core pipeline and it only makes taken predictions

• Event Code: 0x0F, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the second pipeline stage, Category:
Branch

• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct not-taken predicate predictions on not-taken
branches made by the BPT/MBPT in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the second pipeline stage, Category:
Branch

• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches by the
BPT/MBPT or the TAC in the second stage of the core pipeline. Only the predicate must
be correct; resteers to incorrect targets are also counted by this monitor as long as the
branch is actually taken. There is 1 bubble between the branch and its predicted target

• Event Code: 0x0F, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
72 Performance Monitor Events

BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the second pipeline stage
Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken
branches made by the BPT/MBPT or the TAC in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions made in the second pipeline stage,
Category: Branch

• Definition: BRANCH_PATH.2ND_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect not-taken predicate predictions on taken
branches made by the BPT/MBPT in the second stage of the core pipeline

• Event Code: 0x0F, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Not-Taken Predicate Predictions made in the third pipeline stage,
Category: Branch

• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct not-taken predicate predictions on not-taken
branches made by the BAC in the third stage of the core pipeline, including overrides of
TAR taken predictions (made in the first stage) on the last instances of loop-closing
branches

• Event Code: 0x0F, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 73

BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDICTED

• Title: Correct Taken Predicate Predictions made in the third pipeline stage, Category:
Branch

• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_CORRECTLY_PREDI
CTED counts the number of correct taken predicate predictions on taken branches made
by the BAC in the third stage of the core pipeline. Only the predicate must be correct;
resteers to incorrect targets are also counted by this monitor as long as the branch is actu-
ally taken. There are 2 bubbles between the branch and its predicted target (or 3, if the
target must be computed for a branch syllable in slot 0 or 1)

• Event Code: 0x0F, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Taken Predicate Predictions made in the third pipeline stage, Category:
Branch

• Definition: BRANCH_PATH.3RD_STAGE.NT_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect taken predicate predictions on not-taken
branches made by the BAC in the third stage of the core pipeline

• Event Code: 0x0F, Umask: 1100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PREDICTED

• Title: Incorrect Not-Taken Predicate Predictions made in the third pipeline stage,
Category: Branch

• Definition: BRANCH_PATH.3RD_STAGE.TK_OUTCOMES_INCORRECTLY_PRE
DICTED counts the number of incorrect not-taken predicate predictions on taken
branches made by the BAC in the third stage of the core pipeline, including overrides of
TAR taken predictions (made in the first stage) on the last instances of loop-closing
branches

• Event Code: 0x0F, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
74 Performance Monitor Events

BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS

• Title: All Branch Predictions, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.ALL_PREDICTIONS counts all branch pre-
dictions, which take place in the front-end of the processor. Note that this number does
not necessarily equal the total number of branch instructions in the code, as branch pre-
dictions are made on a bundle basis (i.e., there is only one prediction per multiway
branch bundle)

• Event Code: 0x10, Umask: 0000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.CORRECT_PREDICTIONS counts all
branch predictions that do not necessitate a back-end branch misprediction flush, inde-
pendent of predictor. A mismatch between the predicted and actual values of the branch
predicate or target results in a branch misprediction. Return branches must additionally
predict privilege level and previous function state

• Event Code: 0x10, Umask: 0001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.ALL.WRONG_PATH

• Title: Incorrect Predicate Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.WRONG_PATH counts branch mispredic-
tions that result from a mismatch of the predicted and actual values of the branch predi-
cate, independent of predictor

• Event Code: 0x10, Umask: 0010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.ALL.WRONG_TARGET

• Title: Incorrect Target Predictions by All Predictors, Category: Branch

• Definition: BRANCH_PREDICTOR.ALL.WRONG_TARGET counts branch mispre-
dictions that result from a mismatch of the predicted and actual values of the branch tar-
get, independent of predictor

• Event Code: 0x10, Umask: 0011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 75

BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.ALL_PREDICTIONS counts the
number of branch predictions made in the first stage of the core pipeline by the TAR.
The TAR is the only predictor operating in that stage of the pipeline and it only makes
taken predictions. The PLP in the third stage may override a TAR predicate prediction
on a loop-closing branch. The prediction flow is as follows:

if (TAR Hit)
monitor++
Read Target from TAR

• Event Code: 0x10, Umask: 0100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.CORRECT_PREDICTIONS counts
the number of branches correctly predicted taken by the TAR, both in predicate and tar-
get

• Event Code: 0x10, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_PATH counts the number
of actually not-taken branches predicted by the TAR (excluding overrides by the PLP)

• Event Code: 0x10, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the first pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.1ST_STAGE.WRONG_TARGET counts the num-
ber of taken branches that were resteered to an incorrect target by the TAR

• Event Code: 0x10, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
76 Performance Monitor Events

BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.ALL_PREDICTIONS counts the
number of branch predictions made in the second stage of the core pipeline. The follow-
ing structures operate in that stage: BPT and MBPT (for predicates), TAC and RSB (for
targets). Predictions are made in the second stage only if no predictions were made dur-
ing the first stage. Any prediction made in this stage will be counted, except when a
taken predicate prediction is made by the BPT/MBPT on a non-return branch and no tar-
get is available from the TAC. The branch prediction structures interact in the following
manner:

if ((BPT Hit) or (MBPT Hit))
if (Predicted Taken)

if (Predicted Return Branch)
monitor++
Read Target from RSB

else
if (TAC Hit)

monitor++
Read Target from TAC

else
Get Target from BAC in the 3rd Stage

else
monitor++
Follow Sequential Path

else

if (TAC Hit)
monitor++
Read Target from TAC

else
Follow Sequential Path

• Event Code: 0x10, Umask: 1000, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.CORRECT_PREDICTIONS counts
the number of correct predicate predictions made by the BPT/MBPT or the TAC in the
second stage of the core pipeline. If the predicate prediction is taken, the correct target
must be provided during that stage by the RSB or the TAC. Correct taken predicate pre-
dictions made by the BPT/MBPT on non-return branches that miss the TAC require the
BAC to provide a target in the third stage and are not counted by this monitor

• Event Code: 0x10, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 77

BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the second pipeline stage, Category:
Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_PATH counts the number
of incorrect not-taken predicate predictions made in the second stage of the core pipe-
line, and the number of incorrect taken predicate predictions made in that stage if a target
was also provided

• Event Code: 0x10, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the second pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.2ND_STAGE.WRONG_TARGET counts the
number of branches that were correctly predicted taken by the BPT/MBPT or TAC, but
were resteered to an incorrect target by the RSB or the TAC

• Event Code: 0x10, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS

• Title: All Branch Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.ALL_PREDICTIONS counts the
number of branch predictions made in the third stage of the core pipeline by the BAC.
The BAC can make both predicate predictions (based on the whether hint field of the
branch) and target predictions, in the following manner:

if (TAR Hit)
if (Predicted Last Instance of Loop-Closing Branch)

monitor++
PLP Override of TAR Taken Prediction
Resteer Frontend to Sequential Address

else
if ((BPT Hit) or (MBPT Hit))

if (Predicted Taken)
if (not (TAC Hit))

if (not (Predicted Return Branch))
monitor++
Compute Target

else
if (not (TAC Hit))

monitor++
Read Whether Hint Field for Predicate Prediction
if (Predicted Taken)

Read BType Field for Type Information
if (Indirect Branch)

Read Target from RSB
else

Compute Target
else

Follow Sequential Path
78 Performance Monitor Events

• Event Code: 0x10, Umask: 1100, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS

• Title: Correct Branch Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.CORRECT_PREDICTIONS counts
the number of correct branch predictions made by the BAC, including target predictions
of branches whose predicate was supplied by a different predictor. For predicted-taken
branches, both predicate and target must be correct

• Event Code: 0x10, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH

• Title: Incorrect Predicate Predictions made in the third pipeline stage, Category:
Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_PATH counts branches
whose predicate was incorrectly predicted by the BAC (based on the whether hint field
of the branch), and not-taken branches whose taken predicate prediction by another pre-
dictor caused the BAC to supply a target

• Event Code: 0x10, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET

• Title: Incorrect Target Predictions made in the third pipeline stage, Category: Branch

• Definition: BRANCH_PREDICTOR.3RD_STAGE.WRONG_TARGET counts taken
branches that were correctly predicted taken by any predictor, but whose target was
incorrectly supplied by the BAC

• Event Code: 0x10, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no
Performance Monitor Events 79

BRANCH_TAKEN_SLOT

• Title: Taken Branch Detail, Category: Branch

• Definition: BRANCH_TAKEN_SLOT monitors which slot number in a branch bundle
(single-way or multiway) a taken branch occupies, or records that there were no taken
branches in the given branch bundle. Use this monitor behind the downstream opcode
matcher, rather than IA64_TAGGED_INST_RETIRED, to count dynamic br.calls and
br.rets.

• Event Code: 0x0D, Umask: See below, PMC/PMD: 4,5,6,7 Max. Increment/Cycle:
1

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

The SLOT_MASK unit mask defined by Table 7-29 allows profiling of taken branches
based on their instruction slot number. If multiple bits are set in the SLOT_MASK, all
the set cases are included in the event count. The processor uses the following equation
to determine the event outcome in each cycle:

(PMC.umask{16}
and (branch in slot 0 is taken))

or (PMC.umask{17}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is taken))

or (PMC.umask{18}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken)
and (branch in slot 2 is taken))

or (PMC.umask{19}
and (branch in slot 0 is NOT taken)
and (branch in slot 1 is NOT taken)
and (branch in slot 2 is NOT taken))

BUS_ALL

• Title: Bus Transactions Category: Frontside Bus

• Definition: BUS_ALL counts all transactions issued on the bus. These include BRL,
BRIL, BIL, BWL, BRP, BWP, IORD, IOWR, and the other transactions.

• Event Code: 0x47, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Table 7-29. Slot unit mask for BRANCH_TAKEN_SLOT

SLOT_MASK
PMC.umask

{19:16}
Description

Instruction Slot 0 xxx1 Count if branch in slot 0 is first taken branch

Instruction Slot 1 xx1x Count if branch in slot 1 is first taken branch

Instruction Slot 2 x1xx Count if branch in slot 2 is first taken branch

No taken branch 1xxx Count if NO branch was taken
80 Performance Monitor Events

BUS_BRQ_LIVE_REQ_LO and BUS_BRQ_LIVE_REQ_HI

• Title: BRQ Live Requests, Category: Frontside Bus

• Definition: BUS_BRQ_LIVE_REQ counts the number of live entries in the bus request
queue (BRQ). These events include L3 cache reads, BRL, BRIL, BRP, and IORD
memory transactions. The count excludes cache line write backs, partial writes (BWP
and IOWR) and write coalescing read for ownership transactions, since these have their
own write queue. This performance monitor increments its count each core clock (not
bus clock).

• Event Code: 0x5c (HI), 0x5b (LO), Umask: Ignored, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 2 (each)

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Two hardware events are needed to count this:

BUS_BRQ_LIVE_REQ_HI - counts the two most significant bit of the 4-bit outstanding
BRQ request count

BUS_BRQ_LIVE_REQ_LO - counts the two least significant bit of the 4-bit
outstanding BRQ request count

BUS_BRQ_READ_REQ_INSERTED

• Title: BRQ Requests Inserted Category: Frontside Bus

• Definition: BUS_BRQ_READ_REQ_INSERTED counts the number of reads (BRL)
and read for ownership (BRIL) requests that are inserted into the BRQ. The count
excludes cache line write backs, partial and coalescing writes, since these have their own
write queue.

• Event Code: 0x5d, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BRQ inserts can be used to directly measure combined far cache/BUS latencies as
follows:

 avg_brq_req_outstanding_per_cycle = (BUS_BRQ_LIVE_REQ/delta(cycles))

 avg_brq_latency = (BUS_BRQ_LIVE_REQ / BUS_BRQ_READ_REQ_INSERTED)

The only caveat is that the tracked BRQ inserts holds read and read for ownership, but
not write coalescing write backs.
Performance Monitor Events 81

BUS_BURST

• Title: Bus Burst Transactions Category: Frontside Bus

• Definition: BUS_BURST counts the number of full cache line (burst mode) bus memory
transactions. These include BRL, BRIL, and BWL transactions.

• Event Code: 0x49, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_HITM

• Title: Bus Hit Modified Line Transactions Category: Frontside Bus

• Definition: BUS_HITM counts the number of memory transactions which caused HITM
to be asserted. The following memory transactions are included in the performance
monitor: BRL, BWL, BRIL, and BIL. Only events originated by this processor are
counted.

• Event Code: 0x44, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_IO

• Title: IA-32 Compatible I/O Bus Transactions Category: Frontside Bus

• Definition: BUS_IO counts the number of I/O transactions. These include either IORD
or IOWR transactions.

• Event Code: 0x50, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: only the “Any” and “Self” unit masks are supported.
82 Performance Monitor Events

BUS_IOQ_LIVE_REQ_LO and BUS_IOQ_LIVE_REQ_HI

• Title: In-Order Bus Queue Results, Category: Frontside Bus

• Definition: BUS_IOQ_LIVE_REQ counts the number of live bus requests in the in order
bus queue. This performance monitor increments its count each core clock (not bus
clock).

• Event Code: 0x58 (HI), 0x57 (LO), Umask: Ignored, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 3 (each)

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_IOQ_LIVE_REQ can then be computed as BUS_IOQ_LIVE_REQ_HI*4 +
BUS_IOQ_LIVE_REQ_LO

Two hardware events are needed to count this:

BUS_IOQ_LIVE_REQ_HI - counts the two most significant bit write backs of the 4-bit
outstanding IOQ request count

BUS_IOQ_LIVE_REQ_LO - counts the two least significant bits of the 4-bit
outstanding IOQ request count

BUS_LOCK

• Title: IA-32 Compatible Bus Lock Transactions Category: Frontside Bus

• Definition: BUS_LOCK counts the number of IA-32 compatible bus lock transactions.

• Event Code: 0x53, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: Only the “Any” unit mask is supported.

BUS_LOCK_CYCLES

• Title: IA-32 Compatible Bus Lock Cycles Category: Frontside Bus

• Definition: BUS_LOCK_CYCLES counts the number of bus clocks that the bus is
locked due to IA-32 compatible bus lock transactions.

• Event Code: 0x54, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: Only the “Any” unit mask is supported.
Performance Monitor Events 83

BUS_MEMORY

• Title: Bus Memory Transactions Category: Frontside Bus

• Definition: BUS_MEMORY counts the number of bus memory transactions. These
include BRL, BRIL, BIL, BWL, BRP, and BWP transactions.

• Event Code: 0x4a, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_PARTIAL

• Title: Bus Partial Transactions Category: Frontside Bus

• Definition: BUS_PARTIAL counts the number of partial bus memory transactions.
These include BRP and BWP transactions.

• Event Code: 0x48, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_ALL

• Title: Bus Read Transactions Category: Frontside Bus

• Definition: BUS_RD_ALL counts the number of BRL memory transactions. These
include both code and data BRL transactions.

• Event Code: 0x4b, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_DATA

• Title: Bus Read Data Transactions Category: Frontside Bus

• Definition: BUS_RD_DATA counts the number of BRL data transactions.

• Event Code: 0x4c, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no
84 Performance Monitor Events

BUS_RD_HIT

• Title: Bus Read Hit Clean Non-local Cache Transactions Category: Frontside Bus

• Definition: BUS_RD_HIT counts the number of BRL memory transactions which
caused HIT to be asserted. Only events originated by this processor are counted.

• Event Code: 0x40, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_HITM

• Title: Bus Read Hit Modified Non-local Cache Transactions Category: Frontside Bus

• Definition: BUS_RD_HITM counts the number of BRL memory transactions which
caused HITM to be asserted. Only events originated by this processor are counted.

• Event Code: 0x41, Umask: Ignored, PMC/PMD:4, 5, 6, 7Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_INVAL

• Title: Bus Read Invalidated Line Category: Frontside Bus

• Definition: BUS_RD_INVAL counts the number of BIL memory transactions. On
Itanium processors, these transactions are only generated from flush cache instructions.

• Event Code: 0x4e, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_INVAL_BST

• Title: Bus BRIL Burst Transactions Category: Frontside Bus

• Definition: BUS_RD_INVAL counts the number of BRIL memory transactions. These
transactions are typically generated from memory stores, RFO (read for ownership)
events.

• Event Code: 0x4f, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no
Performance Monitor Events 85

BUS_RD_INVAL_HITM

• Title: Bus BIL Transaction Results in HITMCategory: Frontside Bus

• Definition: BUS_RD_INVAL_HITM counts the number of BIL transactions which
caused HITM to be asserted.Only events originated by this processor are counted.

• Event Code: 0x42, Umask: Ignored, PMC/PMD:4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_INVAL_BST_HITM

• Title: Bus BRIL Burst Transaction Results in HITM Category: Frontside Bus

• Definition: BUS_RD_INVAL_BST_HITM counts the number of BRIL transactions
which caused HITM to be asserted. Only events originated by this processor are counted.

• Event Code: 0x43, Umask: Ignored, PMC/PMD:4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_RD_IO

• Title: IA-32 Compatible I/O Read Transactions Category: Frontside Bus

• Definition: BUS_RD_IO counts the number of IORD transactions.

• Event Code: 0x51, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: Only the “Any” and “Self” unit masks are supported.

BUS_RD_PRTL

• Title: Bus Read Partial Transactions Category: Frontside Bus

• Definition: BUS_RD_PRTL counts the number of partial read memory transactions.
These include BRP transactions.

• Event Code: 0x4d, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no
86 Performance Monitor Events

BUS_SNOOPS

• Title: Bus Snoops Total Category: Frontside Bus

• Definition: BUS_SNOOPS counts the number of internal snoops generated from bus
memory transactions.

• Event Code: 0x46, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: Only the “Any” unit mask is supported. “Any” counts the number of internal snoops gener-
ated from all bus transactions.

BUS_SNOOPS_HITM

• Title: Bus Snoops Hit Modified Cache Line Category: Frontside Bus

• Definition: BUS_SNOOPS_HITM counts the number of internal snoops (generated
from bus memory transactions) which hit a modified line in the local processor.

• Event Code: 0x45, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: Only the “Any” mask is supported. “Any” counts the number of internal snoops, generated
from all transactions, which hit a modified line.

BUS_SNOOP_STALL_CYCLES

• Title: Bus Snoop Stall Cycles Category: Frontside Bus

• Definition: BUS_SNOOP_STALL_CYCLES counts the number of bus clocks that the
bus is stalled due to snoop stalls.

• Event Code: 0x55, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

Note: Only “Self” and “Any” unit masks are supported. “Self” counts the number of snoop stalls
generated due to memory transactions initiated by the local processor. “Any” counts all
snoop stalls (those generated due to memory transactions initiated by the local processor,
other processors, and the priority agent).
Performance Monitor Events 87

BUS_SNOOPQ_REQ

• Title: Bus Snoop Queue Requests, Category: Frontside Bus

• Definition: BUS_SNOOPQ_REQ counts the number of outstanding memory
transactions that have not completed the snoop phase. This performance monitor
increments its count each core clock (not bus clock). BUS_SNOOPQ_REQ is not
equivalent to the number of valid entries in the snoop queue. This is due to the fact that
entries can stay in the snoop queue beyond the snoop phase (e.g. for implicit write
backs).

• Event Code: 0x56, Umask: Ignored, PMC/PMD:4, 5, Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

BUS_WR_WB

• Title: Bus Write Back Transactions Category: Frontside Bus

• Definition: BUS_WR_WB counts the number of BWL memory transactions. These
transactions are generated from either explicit write backs or coalescing writes.
Currently, these will count BWL (if snoops are disabled).

• Event Code: 0x52, Umask: See Section 7.6.5, PMC/PMD:4, 5, 6, 7

Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

CPU_CPL_CHANGES

• Title: Privilege level changes, Category: System

• Definition: CPU_CPL_CHANGES counts the number of privilege level changes

• Event Code: 0x34, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

CPU_CYCLES

• Title: CPU Cycles, Category: System

• Definition: CPU_CYCLES counts elapsed processor cycles

• Event Code: 0x12, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
88 Performance Monitor Events

DATA_ACCESS_CYCLE

• Title: Data Access Stall Cycles, Category: Stall

• Definition: DATA_ACCESS_CYCLE counts the number of cycles that the pipeline is
stalled or flushed due to instructions waiting for data on cache misses, L1D way mispre-
dictions, and DTC misses.

• Event Code: 0x03, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

DATA_EAR_EVENTS

• Title: L1 Data Cache EAR Events, Category: L1 Data Cache

• Definition: DATA_EAR_EVENTS counts the number of data cache or DTLB events
captured by the Data Cache Unit Event Address Register

• Event Code: 0x67, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

DATA_REFERENCES_RETIRED

• Title: Retired Data Memory References, Category: L1 Data Cache

• Definition: DATA_REFERENCES_RETIRED counts the number of data memory refer-
ences retired by the processor memory pipeline. The count includes check loads,
uncacheable accesses, RSE operations, VHPT memory references, semaphores, and FP
memory references. Predicated off operations are excluded

• Event Code: 0x63, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

DEPENDENCY_ALL_CYCLE

• Title: Scoreboard Dependency and Dispersal Break Cycles, Category: Stall

• Definition: DEPENDENCY_ALL_CYCLE counts the number of cycles attributable to
data (scoreboard) dependency on integer or FP operations (not counting cache/memory
access), or issue-limit stalls (e.g., implicit and explicit stops). Floating-point flushes and
delays due to control and application register reads and writes are factored in as well.

• Event Code: 0x06, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 89

DEPENDENCY_SCOREBOARD_CYCLE

• Title: Scoreboard Dependency Cycles, Category: Stall

• Definition: DEPENDENCY_SCOREBOARD_CYCLE counts the number of cycles
attributable to data (scoreboard) dependency on integer or FP operations (not counting
cache/memory access). Floating-point flushes and delays due to control and application
register reads and writes are factored in as well.

• Event Code: 0x02, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

DTC_MISSES

• Title: DTC Misses, Category: System

• Definition: DTC_MISSES counts the number of DTC misses for data requests

• Event Code: 0x60, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

DTLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts into the DTLB, Category: System

• Definition: DTLB_INSERTS_HPW counts the number of DTLB inserts completed by
the hardware page table walker

• Event Code: 0x62, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

DTLB_MISSES

• Title: DTLB Misses, Category: System

• Definition: DTLB_MISSES counts the number of DTLB misses for demand requests

• Event Code: 0x61, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no
90 Performance Monitor Events

EXPL_STOPS_DISPERSED

• Title: Explicit Stops Dispersed, Category: Instruction Issue

• Definition: EXPL_STOPS_DISPERSED counts the number of explicit program-
mer-specified stops, including those encountered during hardware speculative
wrong-path execution

• Event Code: 0x2E, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

FP_OPS_RETIRED_HI

• Title: FP Operations Retired (High), Category: Execution

• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the
derived event FP_OPS_RETIRED.d which is the weighted sum of retired FP operations

• Event Code: 0x0A, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

FP_OPS_RETIRED.d, a derived value, is computed as FP_OPS_RETIRED_HI * 4 +
FP_OPS_RETIRED_LO. Weights for individual FP ops: fnorm=1, fadd=1, fmpy=1,
fma=2, fms=2, fsub=1, fpma=4, fpmpy=4, fpms=4, fnma=2, frcpa=1,
frsqrta=1, fpnma=4, fprcpa=2, fprsqrta=2, xma=0

Note: Integer multiply instructions (xma) are not counted as floating-point operations (even
though they are executed in the floating-point multiplier).

FP_OPS_RETIRED_LO

• Title: FP Operations Retired (Low), Category: Execution

• Definition: FP_OPS_RETIRED_HI and FP_OPS_RETIRED_LO together compute the
derived event FP_OPS_RETIRED.d which is the weighted sum of retired FP operations

• Event Code: 0x09, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 3

• Qualification: See FP_OPS_RETIRED_HI on page 91

FP_FLUSH_TO_ZERO

• Title: FP Result Flushed to Zero, Category: Execution

• Definition: FP_FLUSH_TO_ZERO counts the number of times a near zero result is
flushed to zero in FTZ mode. Parallel FP operations which cause one or both results to
flush to zero will increment the event count only by one (i.e. even if both results are
flushed to zero)

• Event Code: 0x0B, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no
Performance Monitor Events 91

FP_SIR_FLUSH

• Title: FP SIR Flushes, Category: Execution

• Definition: FP_SIR_FLUSH counts the number of times a Safe Instruction Recognition
(SIR) flush occurs

• Event Code: 0x0C, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

IA32_INST_RETIRED

• Title: Retired IA-32 Instructions, Category: System

• Definition: IA32_INST_RETIRED counts the number of IA-32 instructions retired

• Event Code: 0x15, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

IA64_INST_RETIRED

• Title: Retired Itanium Instructions, Category: Execution

• Definition: IA64_INST_RETIRED counts all retired Itanium instructions. The count
includes predicated on and off instructions, NOPs, but excludes hardware-inserted RSE
operations. This event is equal to IA64_TAGGED_INST_RETIRED with a zero unit
mask

• Event Code: 0x08, Umask: 0000, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

IA64_TAGGED_INST_RETIRED

• Title: Retired Tagged Itanium InstructionsCategory: Execution

• Definition: IA64_TAGGED_INST_RETIRED is analogous to IA64_INST_RETIRED,
except that it further qualifies event selection with the instruction address range and
opcode match settings in the IBR and PMC registers

• Event Code: 0x08Umask:See belowPMC/PMD:4, 5Max. Increment/Cycle:6

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

The TAG_SELECT unit mask defined in Table 7-30 always qualifies the event count of
IA64_TAGGED_INST_RETIRED with either the opcode match register PMC8 or
PMC9. Note that the setting of PMC8 qualifies all down-stream event monitors. To
ensure that other monitored events are counted independent of the opcode matcher, all
mifb and all mask bits of PMC8 should be set to one (all opcodes match). The settings of
PMC9 do not affect other event monitors.
92 Performance Monitor Events

Also, note that umask 0011 is distinct in that it also counts, in addition to instructions
matched by the appropriate opode matcher, architecturally invisible RSE fills and spills
when the parent instruction (such as an alloc or br.ret) causing them is matched by the
combination in PMC8. Thus, the difference in counts obtained between using PMC8 and
PMC9 as opcode matchers is the amount of RSE activity.

INST_ACCESS_CYCLE

• Title: Instruction Access Cycles, Category: Stall

• Definition: INST_ACCESS_CYCLE counts the number of cycles where there are no
back-end stalls or flushes, the decoupling buffer is empty, and the front-end is stalled
waiting on an L1I or ITLB miss.

• Event Code: 0x01, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

INST_DISPERSED

• Title: Instructions Dispersed, Category: Instruction Issue

• Definition: INST_DISPERSED counts the number of instructions dispersed (including
nops) from the front-end to the back-end of the machine. The count includes instruction
dispersal on the wrong execution path; i.e., in the shadow of a branch misprediction
flush or other back-end flush

• Event Code: 0x2D, Umask: Ignored, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

INST_FAILED_CHKS_RETIRED.ALL

• Title: Failed Speculative Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.ALL counts the number of failed specu-
lative check load instructions (chk.s). The count excludes predicated off chk.s
instructions and includes both integer and FP variants

• Event Code: 0x35, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

Table 7-30. Retired Event Selection by Opcode Match

TAG_SELECT PMC.umask {19:16} Description

PMC8 tag 0011 Instruction tagged by opcode matcher PMC8

PMC9 tag 0010 Instruction tagged by opcode matcher PMC9

All 0000 All retired instructions (regardless of whether they were
tagged or not)

Undefined All other umask settings Undefined event count
Performance Monitor Events 93

INST_FAILED_CHKS_RETIRED.FP

• Title: Failed Speculative FP Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.FP counts the number of failed specula-
tive check load instructions (chk.s). The count excludes predicated off chk.s instruc-
tions and includes only FP variants

• Event Code: 0x35, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

INST_FAILED_CHKS_RETIRED.INTEGER

• Title: Failed Speculative Integer Check Loads, Category: Execution

• Definition: INST_FAILED_CHKS_RETIRED.INTEGER counts the number of failed
speculative check load instructions (chk.s). The count excludes predicated off chk.s
instructions and includes only integer variants

• Event Code: 0x35, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: no

• Qualification:

INSTRUCTION_EAR_EVENTS

• Title: Instruction EAR Events, Category: Instruction Cache

• Definition: INSTRUCTION_EAR_EVENTS counts the number of EAR captures for
L1I and ITLB events

• Event Code: 0x23, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

ISA_TRANSITIONS

• Title: Itanium ISA to IA-32 ISA Transitions, Category: System

• Definition: ISA_TRANSITIONS counts the number of instruction set transitions from
Itanium ISA to IA-32. This is the number of times the PSR.is bit toggles from 0 to 1 due
to br.ia or rfi to IA-32 code

• Event Code: 0x14, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
94 Performance Monitor Events

ISB_LINES_IN

• Title: Instruction Streaming Buffer Lines In, Category: Instruction Cache

• Definition: ISB_LINES_IN counts the number of 32-byte L1I cache lines written from
L2 (and beyond) into the Instruction Streaming Buffer as a consequence of instruction
demand miss and instruction prefetch requests

• Event Code: 0x26, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

ITLB_INSERTS_HPW

• Title: Hardware Page Walker Inserts into the ITLB, Category: System

• Definition: ITLB_INSERTS_HPW counts the number of ITLB inserts done by the hard-
ware page table walker

• Event Code: 0x28, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

ITLB_MISSES_FETCH

• Title: ITLB Demand Misses, Category: System

• Definition: ITLB_MISSES_FETCH counts the number of demand ITLB misses

• Event Code: 0x27, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L1D_READ_FORCED_MISSES_RETIRED

• Title: L1 Data Cache Forced Load Misses, Category: L1 Data Cache

• Definition: L1D_READ_FORCED_MISSES_RETIRED counts the number of loads
that were forced to miss the L1 data cache due to memory ordering constraints, predicted
L1 data cache misses, Store Buffer hits, or simultaneous L2 data returns to the register
file

• Event Code: 0x6B, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes
Performance Monitor Events 95

L1D_READ_MISSES_RETIRED

• Title: L1 Data Cache Read Misses, Category: L1 Data Cache

• Definition: L1D_READ_MISSES_RETIRED counts the number of committed L1 data
cache read misses. The count includes any read reference that could have been serviced
by the L1 data cache (see L1D_READS_RETIRED event for a detailed list) but missed
the cache. False misses are included in the event count. Since the L1 data cache is
write-through, write misses are NOT counted

• Event Code: 0x66, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L1D_READS_RETIRED

• Title: L1 Data Cache Reads, Category: L1 Data Cache

• Definition: L1D_READS_RETIRED counts the number of committed L1 data cache
reads (integer and RSE references). Excluded from the count are VHPT loads, check
loads, L1 hinted loads, semaphores, uncacheable and FP loads. Predicated-off loads are
also excluded, but wrong-path operations are included in the count

• Event Code: 0x64, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L1I_DEMAND_READS

• Title: L1I and ISB Instruction Demand Lookups, Category: Instruction Cache

• Definition: L1I_DEMAND_READS counts the number of 32-byte instruction demand
L1I/ISB lookups, independent of the hit/miss outcome

• Event Code: 0x20, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

Qualifications based on instruction address range may be inaccurate

L1I_FILLS

• Title: L1 Instruction Cache Fills, Category: Instruction Cache

• Definition: L1I_FILLS counts the number of 32-byte lines moved from the Instruction
Streaming Buffer into the L1 instruction cache

• Event Code: 0x21, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
96 Performance Monitor Events

L1I_PREFETCH_READS

• Title: L1I and ISB Instruction Prefetch Lookups, Category: Instruction Cache

• Definition: L1I_PREFETCH_READS counts the number of 64-byte instruction prefetch
L1I/ISB lookups, independent of the hit/miss outcome.

• Event Code: 0x24, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L2_DATA_REFERENCES.ALL

• Title: L2 Data Read and Write References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.ALL counts all L2 data read and write
accesses.The reported count is the number of requests prior to cache line merging.
Semaphore operations are counted as one read and one write

• Event Code: 0x69, Umask: xx11, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L2_DATA_REFERENCES.READS

• Title: L2 Data Read References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.READS counts all L2 data read accesses. The
reported count is the number of requests prior to cache line merging. Semaphore opera-
tions are counted as one read

• Event Code: 0x69, Umask: xx01, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes

L2_DATA_REFERENCES.WRITES

• Title: L2 Data Write References, Category: L2 Cache

• Definition: L2_DATA_REFERENCES.WRITES counts all L2 data write accesses. The
reported count is the number of requests prior to cache line merging. Semaphore opera-
tions are counted as one write

• Event Code: 0x69, Umask: xx10, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: yes, Data Address
Range: yes
Performance Monitor Events 97

L2_FLUSH_DETAILS

• Title: L2 Flush Details, Category: L2 Cache

• Definition: L2_FLUSH_DETAILS allows a detailed breakdown of L2 pipeline flushes
by cause. This event counts the number of L2 pipeline flushes constrained by the condi-
tions specified in the 4-bit unit mask defined by Table 7-31 on page 98. All combinations
of the four unit mask bits are supported

• Event Code: 0x77, Umask:See below, PMC/PMD: 4, 5, 6, 7,
Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L2_FLUSHES

• Title: L2 Flushes, Category: L2 Cache

• Definition: L2_FLUSHES counts the number of L2 pipeline flushes due to Store Buffer
conflicts, address conflicts, full L3 and bus queues, and other such reasons

• Event Code: 0x76, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L2_INST_DEMAND_READS

• Title: L2 Instruction Demand Fetch Requests, Category: Instruction Cache

• Definition: L2_INST_DEMAND_READS counts the number of L2 instruction requests
due to L1I demand fetch misses. The monitor counts the number of demand fetch look-
ups that miss in both the L1I and the ISB, regardless of whether they hit or miss in the
Request Address Buffer (RAB); i.e., the count includes misses to a line that has already
been requested (secondary misses)

• Event Code: 0x22, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

Table 7-31. Unit Mask Bits {19:16} for L2_FLUSH_DETAILS Event

L2 Flush Reason
PMC.umask

{19:16}
Description

L2_ST_BUFFER_FLUSH xxx1 L2 store to store conflict due to
(a) Same store buffer entry
(b) Back to back stores

L2_ADDR_CONFLICT xx1x L2 flushed due to MESI update on load follows store

L2_BUS_REJECT x1xx L2 flushed due to bus constraints

L2_FULL_FLUSH 1xxx L2 flushed due to one of:
(a) Store buffer full
(b) Load miss buffer full
98 Performance Monitor Events

L2_INST_PREFETCH_READS

• Title: L2 Instruction Prefetch Requests, Category: Instruction Cache

• Definition: L2_INST_PREFETCH_READS counts all instruction prefetch requests
issued to the unified L2 cache

• Event Code: 0x25, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L2_MISSES

• Title: L2 Misses, Category: L2 Cache

• Definition: L2_MISSES counts the number of L2 cache misses (requests to uncacheable
pages are excluded). The count includes misses caused by instruction fetch and prefetch,
and data read and write operations. Secondary misses to the same L2 cache line will be
counted as individual misses

• Event Code: 0x6A, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L2_REFERENCES

• Title: L2 References, Category: L2 Cache

• Definition: L2_REFERENCES counts the number of L2 cache references (requests to
uncacheable pages are excluded). The count includes references by instruction fetch and
prefetch, and data reads and writes. The maximum per-cycle increment is three: one
instruction fetch and two data references

• Event Code: 0x68, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 3

• Qualification: Instruction Address Range: yes, Opcode matching: no, Data Address
Range: no

L3_LINES_REPLACED

• Title: L3 Cache Lines Replaced, Category: L3 Cache

• Definition: L3_LINES_REPLACED counts the number of valid L3 lines that have been
victimized

• Event Code: 0x7F, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 99

L3_MISSES

• Title: L3 Misses, Category: L3 Cache

• Definition: L3_MISSES counts the number of L3 misses. The number includes misses
caused by both instruction and data requests and L2 line writebacks

• Event Code: 0x7C, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.ALL_READS.ALL

• Title: Instruction and Data L3 Reads, Category: L3 Cache

• Definition: L3_READS.ALL_READS.ALL counts the number of all L3 read accesses,
independent of the stream source (instruction or data) and the hit/miss outcome

• Event Code: 0x7D, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.ALL_READS.HIT

• Title: Instruction and Data L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.ALL_READS.HIT counts the number of all L3 read hits, inde-
pendent of the stream source (instruction or data)

• Event Code: 0x7D, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.ALL_READS.MISS

• Title: Instruction and Data L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.ALL_READS.MISS counts the number of all L3 read misses,
independent of the stream source (instruction or data)

• Event Code: 0x7D, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.DATA_READS.ALL

• Title: Data L3 Reads, Category: L3 Cache

• Definition: L3_READS.DATA_READS.ALL counts the number of data L3 read
accesses, independent of the hit/miss outcome

• Event Code: 0x7D, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
100 Performance Monitor Events

L3_READS.DATA_READS.HIT

• Title: Data L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.DATA_READS.HIT counts the number of data L3 read hits

• Event Code: 0x7D, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.DATA_READS.MISS

• Title: Data L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.DATA_READS.MISS counts the number of data L3 read misses

• Event Code: 0x7D, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.INST_READS.ALL

• Title: Instruction L3 Reads, Category: L3 Cache

• Definition: L3_READS.INST_READS.ALL counts the number of instruction L3 read
accesses, independent of the hit/miss outcome

• Event Code: 0x7D, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.INST_READS.HIT

• Title: Instruction L3 Read Hits, Category: L3 Cache

• Definition: L3_READS.INST_READS.HIT counts the number of instruction L3 read
hits

• Event Code: 0x7D, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_READS.INST_READS.MISS

• Title: Instruction L3 Read Misses, Category: L3 Cache

• Definition: L3_READS.INST_READS.MISS counts the number of instruction L3 read
misses

• Event Code: 0x7D, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 101

L3_REFERENCES

• Title: L3 References, Category: L3 Cache

• Definition: L3_REFERENCES counts the number of L3 cache references (requests to
uncacheable pages are excluded). The count includes references by instruction fetch and
prefetch, data reads and writes, and L2 cache line most significant bit writebacks.

• Event Code: 0x7B, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.ALL_WRITES.ALL

• Title: L3 Writes, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.ALL counts the number of L3 write accesses
independent of the hit/miss outcome. The count includes both data writes and L2 write-
back accesses (including L3 read for ownership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.ALL_WRITES.HIT

• Title: L3 Write Hits, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.HIT counts the number of L3 write hits. The
count includes both data writes and L2 writeback accesses (including L3 read for owner-
ship requests that satisfy stores)

• Event Code: 0x7E, Umask: 1101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.ALL_WRITES.MISS

• Title: L3 Write Misses, Category: L3 Cache

• Definition: L3_WRITES.ALL_WRITES.MISS counts the number of L3 write misses.
The count includes both data writes and L2 writeback accesses (including L3 read for
ownership requests that satisfy stores)

• Event Code: 0x7E, Umask: 1110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
102 Performance Monitor Events

L3_WRITES.L2_WRITEBACK.ALL

• Title: L3 Writebacks, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.ALL counts the number of L3 write
accesses that result from L2 writebacks, independent of hit/miss outcome

• Event Code: 0x7E, Umask: 1011, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.L2_WRITEBACK.HIT

• Title: L3 Writeback Hits, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.HIT counts the number of L3 write hits that
result from L2 writebacks

• Event Code: 0x7E, Umask: 1001, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.L2_WRITEBACK.MISS

• Title: L3 Writeback Misses, Category: L3 Cache

• Definition: L3_WRITES.L2_WRITEBACK.MISS counts the number of L3 write
misses that result from L2 writebacks

• Event Code: 0x7E, Umask: 1010, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.DATA_WRITES.ALL

• Title: L3 Data Writes, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.ALL counts the number of L3 data write
accesses independent of the hit/miss outcome

• Event Code: 0x7E, Umask: 0111, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

L3_WRITES.DATA_WRITES.HIT

• Title: L3 Data Write Hits, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.HIT counts the number of L3 data write hits

• Event Code: 0x7E, Umask: 0101, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no
Performance Monitor Events 103

L3_WRITES.DATA_WRITES.MISS

• Title: L3 Data Write Misses, Category: L3 Cache

• Definition: L3_WRITES.DATA_WRITES.MISS counts the number of L3 data write
misses

• Event Code: 0x7E, Umask: 0110, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode matching: no, Data Address
Range: no

LOADS_RETIRED

• Title: Retired Loads, Category: Memory

• Definition: LOADS_RETIRED counts the number of retired loads. The count includes
integer, FP, RSE, VHPT, uncacheable loads and failed check loads (ld.c). Check loads
that hit in the ALAT are not counted. Predicated-off operations are not counted

• Event Code: 0x6C, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

MEMORY_CYCLE

• Title: Combined Memory Stall Cycles, Category: Stall

• Definition: MEMORY_CYCLE counts the number of cycles that the pipeline is stalled
or flushed due to instructions waiting for data on cache misses, L1D way mispredictions,
DTC misses, and RSE traffic.

• Event Code: 0x07, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

MISALIGNED_LOADS_RETIRED

• Title: Retired Unaligned Load Instructions, Category: Memory

• Definition: MISALIGNED_LOADS_RETIRED counts the number of retired unaligned
loads that the hardware handled. The count includes integer, FP, and failed check loads
(ld.c). Check loads that hit in the ALAT are not counted. Predicated-off operations are
not counted

• Event Code: 0x70, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes
104 Performance Monitor Events

MISALIGNED_STORES_RETIRED

• Title: Retired Unaligned Store Instructions, Category: Memory

• Definition: MISALIGNED_STORES_RETIRED counts the number of retired
unaligned store instructions that the hardware handled. The count includes integer, FP,
and uncacheable stores. Predicated-off operations are not counted

• Event Code: 0x71, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

NOPS_RETIRED

• Title: Retired Nop Instructions, Category: Execution

• Definition: NOPS_RETIRED counts the number of retired nop.i, nop.m or nop.b
instructions. The count excludes predicated off nop instructions

• Event Code: 0x30, Umask: Ignored, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

PIPELINE_ALL_FLUSH_CYCLE

• Title: Combination of Pipeline Flush Cycles caused by either a front-end or a back-end
source, Category: Stall

• Definition: PIPELINE_ALL_FLUSH_CYCLE, for a given cycle, either counts the num-
ber of cycles spent during a front-end resteer of the pipeline (due to a correctly predicted
taken branch), or counts the number of cycles spent during certain back-end resteers
(due to a branch misprediction, ALAT flush or exception/serialization flush). This moni-
tor does not count DTC flushes, way mispredictions, or floating-point flushes.

• Event Code: 0x04, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

PIPELINE_BACKEND_FLUSH_CYCLE

• Title: Combination of Pipeline Flush Cycles caused by either a Branch Misprediction or
an ExceptionCategory: Stall

• Definition: PIPELINE_BACKEND_FLUSH_CYCLE counts the number of cycles
spent during back-end resteers of the pipeline (due to a branch misprediction, ALAT
flush or exception/serialization flush). This monitor does not count DTC flushes, way
mispredictions, or floating-point flushes.

• Event Code: 0x00, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no
Performance Monitor Events 105

PIPELINE_FLUSH

• Title: Pipeline Flush, Category: System

• Definition: PIPELINE_FLUSH counts how often the Itanium processor pipeline is
flushed due to IEU bypass conflict (caused by non-unit latency MMX operations such as
variable shifts), data translation cache miss, L1 data cache way mispredict or other rea-
sons such as an exception flush or an instruction serialization. Combinations of different
flush reasons may be chosen by appropriately setting the umask. The monitor does not
include branch misprediction flushes

• Event Code: 0x33, Umask: See below, PMC/PMD: 4, 5, 6, 7
Max. Increment/Cycle: 1

• Qualification: Instruction Address Range: no, Opcode Matching: no, Data Address
Range: no

PREDICATE_SQUASHED_RETIRED

• Title: Instructions Squashed Due to Predicate Off, Category: Execution

• Definition: PREDICATE_SQUASHED_RETIRED counts the number of instructions
squashed due to a false qualifying predicate. The count includes all predicated off nops
except nop.b’s. Predicated off B-syllables (including nop.b) are not counted

• Event Code: 0x31, Umask: Ignored, PMC/PMD: 4, 5 Max. Increment/Cycle: 6

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: no

RSE_LOADS_RETIRED

• Title: RSE Load Accesses, Category: Execution

• Definition: RSE_LOADS_RETIRED counts the number of retired RSE loads

• Event Code: 0x72, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Refer to RSE_REFERENCES_RETIRED on page 107

Table 7-32. Unit Mask Bits {19:18} for PIPELINE_FLUSH Event

FLUSH_TYPE
PMC.umask

{19:16}
Description

IEU_FLUSH 1xxx IEU bypass flush

DTC_FLUSH x1xx Data Translation Cache Miss flush

L1D_WAYMP_FLUSH xx1x L1 Way Misprediction flush

OTHER_FLUSH xxx1 Other flush reason: exception flush or an instruction
serialization.
106 Performance Monitor Events

RSE_REFERENCES_RETIRED

• Title: RSE Accesses, Category: Execution

• Definition: RSE_REFERENCES_RETIRED counts the number of retired RSE loads
and stores

• Event Code: 0x65, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

RSE loads and stores are considered tagged if the alloc, loadrs, flushrs or
branch return or rfi that caused the RSE references was tagged by the instruction
address range or the opcode matcher. For data address range checking, the RSE refer-
ence is tagged only if its hits the programmed DBR range

STORES_RETIRED

• Title: Retired Stores, Category: Memory

• Definition: STORES_RETIRED counts the number of retired stores. The count includes
integer, FP, RSE, and uncacheable stores. Predicated-off operations are not counted

• Event Code: 0x6D, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

UC_LOADS_RETIRED

• Title: Retired Uncacheable Loads, Category: Memory

• Definition: UC_LOADS_RETIRED counts the number of retired uncacheable or write
coalescing loads. The count includes integer, FP, RSE, and VHPT loads and failed check
loads (ld.c). Check loads that hit in the ALAT are NOT counted. Predicated-off opera-
tions are not counted

• Event Code: 0x6E, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes

UC_STORES_RETIRED

• Title: Retired Uncacheable Stores, Category: Memory

• Definition: UC_STORES_RETIRED counts the number of retired uncacheable or write
coalescing stores.The count includes integer, FP, RSE, and uncacheable stores. Predi-
cated-off operations are not counted

• Event Code: 0x6F, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 2

• Qualification: Instruction Address Range: yes, Opcode Matching: yes, Data Address
Range: yes
Performance Monitor Events 107

UNSTALLED_BACKEND_CYCLE

• Title: Unstalled Back-end CyclesCategory: Stall

• Definition: UNSTALLED_BACKEND_CYCLE counts the number of cycles that the
back-end is processing instructions without delay and the decoupling buffer between the
front-end and back-end is empty, so that any effect on the front-end will be propagated to
the back-end of the pipeline. This monitor thus reflects the number of cycles where there
are no back-end stalls or flushes, and the decoupling buffer is empty, regardless of
whether the L1I and ITLB are being hit or missed.

• Event Code: 0x05, Umask: Ignored, PMC/PMD: 4, 5, 6, 7 Max. Increment/Cycle: 1

Instruction Address Range: no, Opcode matching: no, Data Address Range: no
108 Performance Monitor Events

Model Specific Behavior for IA-32
Instruction Execution 8

The Itanium processor is capable of executing IA-32 instructions in the IA-32 system environment
(legacy lA-32 operating systems) provided the required platform and firmware support exists in the
system. The Itanium processor is also capable of executing IA-32 instructions in the Itanium
system environment (Itanium-based operating system). Itanium-based operating system support for
the capability of running IA-32 applications is defined by the respective operating system vendor.
For more details on IA-32 instruction execution on Itanium-based OS, please refer to Volume 1,
Chapter 6 and Volume 2, Chapter 10 of the Intel® Itanium™ Architecture Software Developer’s
Manual.

Note that while Itanium processor supports execution of IA-32 applications, best performance and
capabilities will be realized by using 64-bit optimized OSes and applications.

In general, the behavior of IA-32 instructions on the Itanium processor is similar to that of the
Pentium III processor except where noted. The following sections describe some of the key
differences in behavior between IA-32 instruction execution on an Itanium processor and on the
Pentium III processor. These differences do not prevent IA-32 legacy operating systems or IA-32
applications from operating correctly.

8.1 Processor Reset and Initialization

When RESET# is asserted, all processors based on the Itanium architecture boot at a different reset
location than IA-32 processors and start executing Itanium-based 64-bit code instead of IA-32
16-bit Real Mode code. Unlike IA-32 processors, processors based on the Itanium architecture
execute PAL firmware to test and initialize the processor and then continue execution in the Itanium
instruction set to boot the system. SAL firmware code can switch to the IA-32 instruction set as
needed to execute IA-32 BIOS code. For more details on processor reset, please refer to Chapter 11
and Chapter 13 of Volume 2 of the Intel® Itanium™ Architecture Software Developer’s Manual.

8.2 New JMPE Instruction

A new IA-32 instruction JMPE has been defined for processors based on the Itanium architecture.
This instruction comes in two forms with an opcode for each. These opcodes will cause an Invalid
Opcode fault on all IA-32 processors. For more details, refer to Chapter 1 of Volume 3 of the Intel®
Itanium™ Architecture Software Developer’s Manual.
Model Specific Behavior for IA-32 Instruction Execution 109

8.3 System Management Mode (SMM)

SMM is superseded by the Itanium-based Platform Management definition. This mechanism is
designed to provide platform level interrupt support for both IA-32 and Itanium-based operating
systems. Please refer to Chapter 11 of Volume 2 of the Intel® Itanium™ Architecture Software
Developer’s Manual for more details on PMI.

The IA-32 SMM and I/O Port Restart feature is not supported on the Itanium processor.
Dynamically, powering off/on I/O devices on an I/O Port reference via system logic is not possible
for IA-32 Operating Systems or Itanium-based Operating Systems using the IA-32 SMM I/O
Restart mechanism. I/O Restart has not been extended on processors based on the Itanium
architecture to intercept I/O Port references from the Itanium instruction set via normal loads and
stores on processors based on the Itanium architecture.

Execution of the IA-32 RSM (Resume from SMM) instruction results an Invalid Opcode fault on
all processors based on the Itanium architecture.

8.4 CPUID Instruction Return Values for Caches and
TLBs of the Intel® Itanium™ Processor

The following table provides information on how to decode return values of the CPUID instruction
for the Itanium processor’s internal caches and TLBs.

When the input value in register EAX is 2, the Itanium processor returns information about the
processor’s internal caches and TLBs in the EAX, EBX, ECX, and EDX registers. The following
table describes the values returned.

Table 8-1. Encoding of Cache and TLB Return Values for the Intel® Itanium™ Processor

Return Value Cache or TLB Description

0x10 L0D: 16K 4-way set associative 32 bytes line

0x15 L0I: 16K 4-way set associative 32 bytes line

0x1A L1: 96K on die 6-way set associative 64 byte line

0x88 L2: 2M 4-way set associative 64 bytes line

0x89 L2: 4M 4-way set associative 64 bytes line

0x8A L2: 8M 4-way set associative 64 bytes line

0x90 ITLB: 4K to 256M pages, fully associative, 64 entries

0x96 DTLB0: 4K to 256M pages, fully associative, 32 entries

0x9B DTLB1: 4K to 256M pages, fully associative, 96 entries
110 Model Specific Behavior for IA-32 Instruction Execution

8.5 Machine Check Abort (MCA)

The Itanium processor supports Pentium processor level machine checks in the IA-32 System
Environment.

8.6 Model Specific Registers

The complete set of Model Specific Registers (MSRs) found on the Pentium III processor is not
supported on the Itanium processor. For example, Model Specific Debug registers, Model Specific
Test registers, Machine Check registers, and Model Specific Configuration registers are not
supported.

Model Specific registers that are common to the Itanium processor and Pentium III processor use
the Pentium III processor’s bit definition and register assignment. The ITC, APIC_Base, MTRR and
MAP registers are supported on the Itanium processor.

8.7 Cache Modes

Pentium processor and Pentium III processor SRAM Cache Mode is not supported on the Itanium
processor.

SRAM is typically used on IA-32 processors to provide scratch RAM areas while running IA-32
boot and machine check code before memory is available. Both of these functions are now provided
by Itanium-based firmware while running IA-32 and Itanium-based operating systems.

8.8 10-byte Floating-point Operand Reads and Writes

Many IA-32 FP instructions read and write 10 bytes to memory. Consider the case of 16-bit
segment, where the read or write starts at offset 0xFFF8. Pentium III processor reads or writes
8 bytes then re-evaluates the linear address before reading or writing the final 2 bytes. Eight bytes
are accessed at 0xfff8, and 2 bytes are accessed at 0x0000.

The Itanium processor evaluates the address once, then accesses all 10 bytes. Therefore, bytes
0xfff8 to 0x10001 will be accessed.

Table 8-2. EAX, EBX, ECX, and EDX Return Values for the Intel® Itanium™ Processor

Register Return Value (from MSB to LSB)

EAX 0x00, 0x15, 0x10, 0x01

EBX 0x00, 0x00, <L2>, 0x1A (<L2> is either 0x88, 0x89)

ECX 0x00, 0x9B, 0x96, 0x90

EDX 0x80, 0x00, 0x00, 0x00
Model Specific Behavior for IA-32 Instruction Execution 111

On a 10-byte operand read or write access, potential page faults and GP faults will return slightly
different faulting addresses (linear addresses may wrap differently).

8.9 Floating-point Data Segment State

The Itanium processor reports a different value of the floating-point data segment state (FDS) after
the execution of “FNOP” instruction (or any FP instruction that does not perform a memory
reference). The contents of the data register are undefined if the prior non-control instruction did
not have a memory operand. The Pentium III processor behaves as follows:

1. A FP non-transparent instruction which references memory will put the selector of the data
segment used in the memory reference into FDS.

2. A FP non-transparent instruction which doesn’t reference memory will put the selector of SS
into FDS and 0 into FEA.

If a segment override prefix is present on an instruction of the type specified in case 2, the
overriding segment selector will be put into FDS instead of the selector of SS.

The Itanium processor behavior covers only case #1 described above. Note that this difference does
not affect the running of IA-32 applications.

8.10 Writes to Reserved Bits during FXSAVE

During FXSAVE, the Itanium processor does not write any reserved bits, while the Pentium III
processor may write reserved bits. The Itanium processor does one 10 byte access to save each FP
register, whereas the Pentium III processor will do two 8 byte accesses causing writes to upper
reserved bits.

8.11 Setting the Access/Dirty (A/D) Bit on Accesses that
Cross a Page Boundary

In the IA-32 system environment, the Itanium processor sets a page's A/D bit even if a memory
reference crosses a page boundary and the other page has a fault. This behavior is different from
Pentium III processors which do not modify the A/D bit under the above conditions.

The above difference does not come into play in the Itanium system environment.

8.12 Enhanced Floating-point Instruction Accuracy

On the Itanium processor, FP transcendental instructions will return more accurate (hence slightly
different) answers than Pentium III processor. This behavior falls into 3 categories:

• F2XM1, FYL2X, FYL2XP1, FPATAN Instructions
More accurate algorithms will result in answers which may differ from Pentium III processor
112 Model Specific Behavior for IA-32 Instruction Execution

by 1 unit in the last place (ulp). Also, for FYL2X and FYL2XP1, when x or x+1 respectively is
a power of two, the Precision exception is not signaled (since log(2^k) where, k is integral, is
exact).

• FPTAN, FSIN, FCOS, FSINCOS Instructions
New algorithms on Itanium processor include a more accurate argument reduction scheme.
Although more accurate, the algorithms implemented on Itanium processor can produce
answers which are different from those returned on Pentium III processor.

• FPREM, FPREM1 Instructions
No change.

8.13 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction
Differences

These four instructions are single and parallel approximations of divide and square root operations.
The Itanium processor will calculate these functions to a higher accuracy than previous
implementations. resulting in different answers. The Pentium III processor implementation of one
of these functions can have a maximum relative error of 1.5 * 2-12. The Itanium processor, however,
will calculate RCPPS/RCPSS functions with a maximum relative error of 2-17.75288~=1.1868*2-18
and the RSQRTPS/RSQRTSS functions with a maximum relative error of 2-17.06412
~=1.9130*2-18.

8.14 Read/Write Access Ordering

In general, the order of reads/writes within any complex IA-32 instruction is model specific even
among IA-32 processors. Different Intel processors have different access ordering behavior; for
example, internal operation ordering varies between the 80486, Pentium, Pentium III and Itanium
processors.

8.15 Multiple IOAPIC Redirection Table Entries

If multiple IOAPIC Redirection Table Entries (RTE) share the same vector, and at least one RTE is
programmed as logical delivery mode in which the selected local APIC destinations overlap with
the other RTEs with the same vector, some of the selected local APICs might not receive the
interrupt when the pins that correspond to these RTEs are asserted.

8.16 Self Modifying Code (SMC)

The Itanium processor provides the same SMC support as the Pentium processor. Also, a branch
instruction is required between the store that modifies instruction(s) and the modified code.
Model Specific Behavior for IA-32 Instruction Execution 113

8.17 Raising an Alignment Check (AC) Fault

The Pentium III processor checks and raises AC fault before a page fault. The Itanium processor
checks and raise a page fault before an AC fault.

8.18 Maximum Number of Processors Supported in MP
System Running Legacy IA-32 OS (IA-32 System
Environment)

Similar to the case of IA-32 processors in an MP system, the maximum number of processors based
on the Itanium architecture supported in a MP system running legacy IA-32 OS (IA-32 system
environment) is 16. However, in MP systems with IA-32 processors, the number of IA-32
processors can be extended beyond 16 with additional platform enhancements while the limit for
the number of processors based on the Itanium architecture running IA-32 OS in a MP system is
limited to 16.
114 Model Specific Behavior for IA-32 Instruction Execution

Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0 Index-1

Index

Numerics
32-bit virtual addressing 2:59, 2:60

pointer “swizzling” model 2:60
sign-extension model 2:60
zero-extension model 2:59, 2:60

A
abort 2:79, 2:406

interruption priorities 2:92
machine check abort 2:44, 2:489-2:491
PAL-based interruptions 2:79, 2:80, 2:81, 2:85,

2:96, 2:406
PSR.mc bit is 0 2:82
reset abort 2:481

abort handling 2:491
access rights, segment descriptor 3:600
acquire semantics 1:66, 2:70, 2:238, 2:375
add instruction 1:45, 1:47, 1:73, 1:145, 1:177, 3:265,

3:352, 3:356, 3:373-3:376, 3:435, 3:448-3:450,
3:560, 3:620

address space model 2:425, 2:429
address translation 2:39, 2:51, 2:406, 2:425, 2:429,

2:485
addressable units 1:30
advanced load address table (See ALAT) 1:57, 1:62,

1:144, 2:416
ALAT 1:57-1:62, 1:144, 1:186, 2:73-2:75, 2:129, 2:130,

2:415, 2:416, 2:420, 2:434, 2:484, 3:306,
3:339, 3:346, 3:353

data speculation 1:57, 1:58, 1:62, 1:144, 2:445
related instructions 1:58

alloc instruction 1:14, 1:36, 1:39, 1:42-1:44, 1:48, 1:68,
1:136, 2:57, 2:74, 2:119, 2:121, 2:122, 2:127-
2:129, 3:309, 3:311, 3:339, 3:340, 3:345-3:347,
3:351, 3:352, 3:357

application programming model 1:41
application register

compare and exchange value register (CCV – AR
32) 1:26

epilog count register (EC – AR 66) 1:27
floating-point status register (FPSR – AR 40) 1:26
IA-32 time stamp counter (TSC) 1:26, 1:110, 2:27,

2:469
interval time counter (ITC – AR 44) 1:26
kernel registers (KR 0-7 – AR 0-7) 1:25
loop count register (LC – AR 65) 1:27
previous function state (PFS – AR 64) 1:27
register stack configuration register (RSC – AR 16)

1:25
RSE backing store pointer (BSP – AR 17) 1:25
RSE NaT collection register (RNAT – AR 19) 1:26

user NaT collection register (UNAT – AR 36) 1:26
application register state 1:19

application register model 1:21
ignored fields 1:20
ignored register 1:19, 1:20, 1:29
read-only register 1:20, 1:25, 2:106
reserved fields 1:20, 3:831
reserved register 1:19, 1:20
reserved value 1:20

arithmetic instructions 1:45, 3:324, 3:863
atomic operations 2:237
atomicity 2:57, 2:77, 2:238

B
backing store pointer (BSP) 2:117, 2:121, 2:124, 2:127

backing store 1:24-1:26, 1:44, 2:86, 2:87, 2:117,
2:118, 2:485

backing store pointer application registers 2:124
backing store switches 2:130
BSPSTORE 2:127

backing store pointer application registers 2:125
banked general registers 2:16, 2:34, 2:35, 2:81, 2:216
barrier synchronization 2:394, 2:395
be bit 1:31

PSR.be 2:86, 3:343, 3:349
RSC.be 2:123

biased exponent 3:823-3:826, 3:829
bit field and shift instructions 1:46, 1:47
boot flow 2:10, 2:481

firmware boot flow 2:481
boot sequence 2:9, 2:481

boot flow 2:10, 2:481
bootstrap processor (BSP) 2:481
br.call instruction 1:67, 1:69, 2:121, 2:122, 2:128, 2:129,

2:419, 2:421, 3:318, 3:319, 3:339, 3:340,
3:343, 3:346, 3:347, 3:351, 3:352, 3:356, 3:357

br.cexit instruction 1:67, 1:69, 1:177, 3:315, 3:318,
3:353, 3:357

br.ctop instruction 1:67, 1:69, 1:177, 1:178, 1:188,
3:315, 3:318, 3:353, 3:357

br.ia instruction 1:10, 1:103, 1:105, 2:458
br.ret instruction 1:67, 1:69, 2:47, 2:57, 2:86, 2:92,

2:119, 2:121, 2:122, 2:126-2:130, 2:419, 2:421,
3:317, 3:319, 3:339, 3:340, 3:343, 3:345-3:347,
3:349, 3:351, 3:352, 3:356, 3:357

br.wexit instruction 1:67, 1:69, 3:315, 3:318, 3:353,
3:356

br.wtop instruction 1:67, 1:69, 1:181, 1:182, 3:315,
3:318, 3:353, 3:356

Entries in this index are described by the volume number and page or range of pages where the entries can be
found. The volume number appears to the left of the colon. The page or range of pages appears to the right of the
colon. A range of pages is separated by a hyphen.

Index-2 Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0

Index

branch instructions 1:67, 1:70, 1:136, 1:137, 3:315,
3:316, 3:332

branch predict instructions 1:15, 1:70, 1:71, 3:320
branch prediction hints 1:70, 1:168
modulo-scheduled loop support 1:68

branching 1:14, 1:22, 1:68, 1:136, 3:458, 3:528
brl instruction 2:449
brl.call instruction 1:67, 1:69, 2:121, 2:122, 2:128, 2:129,

2:449, 3:339, 3:340, 3:343, 3:346, 3:347, 3:351,
3:352, 3:356, 3:357

bsw instruction 1:48, 2:18, 2:86, 3:316, 3:321, 3:343,
3:349, 3:356, 3:357

bundles 1:11, 1:31, 1:32, 1:34, 1:132, 1:133, 3:257
byte ordering 1:30, 1:31

C
cache synchronization 2:69
cache write policy attribute 2:66
cacheability and coherency attribute 2:65
cacheable 2:63, 2:64, 2:65, 2:66

cacheable pages 2:66
uncacheable pages 2:66

causality 2:390
obeying causality 2:390

character strings 1:76
chk.a instruction 1:34, 1:58-1:60, 1:144-1:146, 1:148,

2:69, 2:88, 2:445, 3:305, 3:310, 3:351
chk.a.clr instruction 1:60-1:62, 3:305, 3:310, 3:339,

3:346, 3:351
chk.a.nc instruction 1:61, 1:62, 3:305, 3:310, 3:351
chk.s instruction 1:34, 1:54, 1:56, 1:58, 1:134, 1:147,

1:148, 2:88, 2:445, 3:282, 3:283, 3:305, 3:311,
3:352, 3:356

clr instruction 1:71, 3:288-3:295, 3:297-3:301, 3:305,
3:310, 3:318, 3:351-3:353

clrrrb instruction 1:36, 1:42, 1:48, 1:60, 1:68, 1:69, 2:422,
3:316, 3:321, 3:340, 3:347, 3:357

clrrrb.pr instruction 1:68, 1:69, 3:316, 3:321
cmp instruction 1:37, 1:48, 1:50, 1:55, 1:135, 2:385,

2:394, 3:267-3:270, 3:352, 3:356, 3:418, 3:419
cmp4 instruction 1:37, 1:48, 1:50, 1:55, 3:26-3:270,

3:352, 3:356
cmpxchg instruction 1:26, 1:51, 1:53, 1:62, 1:66, 2:69,

2:70, 2:73, 2:179, 2:376, 2:393, 2:394, 3:351,
3:423-3:425, 3:620

coalescing attribute 2:66
coalesced pages 2:67

coherency 1:125, 2:65, 2:238, 3:576, 3:735
compare instructions 1:14, 1:22, 1:47, 1:48, 1:182, 3:267,

3:325, 3:429
compare types 1:49, 1:50
normal compare 1:49
parallel compare 1:73, 1:164, 1:165, 3:327
unconditional compare 1:49

computational models 1:200
constant register 2:415
context switching 1:43, 2:144, 2:422, 2:424, 2:477

address space switching 2:424
non-local control transfer 2:422
performance monitor 2:144, 2:145
RSE backing store 1:26, 2:130
thread switch within the same address space 2:424

control flow optimization 1:155
control flow optimizations 1:163

multiple values for one variable or register 1:165
multiway branches 1:165
parallel compares 1:163-1:165

control registers (CR) 2:16
banked general registers 2:34, 2:35, 2:81
control register instructions 2:25
default control register (DCR – CR0) 2:25, 2:26
external interrupt control registers 2:34, 2:104,

2:105, 2:216, 2:467
global control registers 2:25
interruption control registers 2:29
interruption faulting address (IFA – CR20) 2:31
interruption function state (IFS – CR23) 2:33
interruption hash address (IHA – CR25) 2:34
interruption immediate (IIM – CR24) 2:34
interruption instruction bundle pointer (IIP – CR19)

2:30
interruption instruction previous address (IIPA –

CR22) 2:32, 2:33
interruption processor status register (IPSR – CR16)

2:29
interruption status register (ISR – CR17) 2:29
interruption status register fields 2:29
interruption TLB insertion register (ITIR – CR21) 2:32
interruption vector address (IVA – CR2) 2:28
interval time counter (ITC – AR44) 2:27
interval timer match register (ITM – CR1) 2:27
ITIR fields 2:32
page table address (PTA – CR8) 2:28

control registers, moving values to and from 3:636
control speculative 1:12, 2:415, 2:445
corrected machine check (CMC) 2:109, 2:283, 2:489,

2:490
corrected machine check interrupt (CMCI) 2:489
cover instruction 1:36, 1:42, 1:44, 1:48, 1:69, 2:87, 2:121,

2:122, 2:125-2:127, 2:129, 3:316, 3:321, 3:339,
3:340, 3:344, 3:346, 3:347, 3:351, 3:357

CPUID registers 1:29
cross-modifying code 2:400
current frame marker (CFM) 1:19, 1:23, 1:36, 1:42, 2:13,

2:121
size of frame (sof) 1:42
size of locals (sol) 1:42

cycles per instructions (CPI) 2:477

D
data access bit 2:57, 2:59, 2:90, 2:91
data breakpoint register matching 2:246

DBR.addr 2:246
DBR.mask 2:247
trap code B bits 2:247

data breakpoint registers (DBR) 2:133, 2:134

Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0 Index-3

Index

data debug 2:57, 2:90, 2:91
data dependencies 1:57, 1:140-1:142, 2:13, 2:378,

2:383
data dependency 1:14, 1:141, 1:142, 2:13, 2:382-2:384
data key miss fault 2:128, 2:149
data key permission 2:57, 2:59, 2:90, 2:91
data NaT page consumption 2:57, 2:59, 2:72, 2:89-2:91
data nested TLB faults 2:59, 2:413
data page not present 2:57, 2:59, 2:89, 2:91
data prefetch

load instructions 1:52
semaphore instructions 1:53, 3:303
store instructions 1:52, 3:287, 3:301, 3:303, 3:304,

3:924
data serialization 2:14, 2:15, 3:337
data speculative 1:13, 1:57, 1:146, 2:415
data TLB miss faults 2:57, 2:59
debug 1:59, 2:177

break instruction fault 2:133, 2:149, 2:165
data debug fault 2:94, 2:128, 2:134, 2:149, 2:177
debug breakpoint registers (DBR/IBR) 2:16
debug instructions 2:135
debug model 2:246
debugging 2:133, 2:462, 3:597
debugging facilities 2:133
instruction breakpoints 2:462
instruction debug fault 2:133, 2:149, 2:177, 2:246
lower privilege transfer trap 2:133, 2:182, 2:246
single step trap 2:84, 2:94, 2:97, 2:133, 2:150,

2:151, 2:184, 2:246, 2:462
taken branch trap 2:84, 2:94, 2:97, 2:133, 2:150,

2:151, 2:183, 2:246, 2:462, 3:598
Dekker’s algorithm 2:396
dependencies 1:35-1:38, 1:143, 3:335, 3:336

dependency violation 1:36, 1:38, 2:448
instruction execution 3:427, 3:551, 3:576, 3:681,

3:735
instruction group 1:35-1:39, 1:67
register dependencies 1:35-1:39
WAR dependency 1:38, 3:350

division operations
double precision – divide 1:199
double precision – square root 1:199

DMA 1:17, 2:403
edge sensitive interrupt messages 2:114

E
edge- and level-sensitive interrupts 2:114
EFI 2:253, 2:451, 2:481-2:483, 2:485, 2:488

boot services 2:483, 2:488
EFI boot manager 2:482
EFI procedure calls 2:488
EFI system partition 2:482, 2:483
runtime services 2:488

EFLAGS register
condition codes 3:415, 3:458, 3:463
flags affected by instructions 3:366
loading 3:599

popping 3:665
popping on return from interrupt 3:579
pushing 3:673
pushing on interrupts 3:565
saving 3:695
status flags 3:418, 3:588, 3:704, 3:729

exception deferral 1:55, 2:45, 2:90, 2:91
combined hardware/software deferral 2:443, 2:444
exception deferral of control speculative loads

2:443
hardware-only deferral 2:443, 2:444
software-only deferral 2:443, 2:444

exception indicator 2:72
exception qualification 2:89
execution unit type 1:24, 1:32, 1:33, 3:257
extended instructions 1:34, 3:257
extensible firmware interface (See EFI) 2:451, 2:481
external interrupt (INT) 2:92, 2:101

control register usage examples 2:467
external (I/O) devices 2:98
external interrupt (INT)

external interrupt architecture 2:463
external interrupt delivery 2:81, 2:102-2:104, 2:106,

2:465
external interrupt masking 2:103, 2:464
external interrupt sampling 2:104
external interrupt states 2:101
inactive 2:465
in-service/none pending 2:466
in-service/one pending 2:466
internal processor interrupts 2:99
interrupt acknowledge (INTA) cycle 2:114
interrupt enabling 2:102
interrupt masking 2:103
interrupt priorities 2:102, 2:463
interrupt registers 2:16
interrupt sources 2:98, 2:104, 2:114, 2:464
interrupt vectors 2:101-2:104, 2:464, 3:565
locally connected devices 2:98
pending 2:82, 2:99, 2:102, 2:103, 2:465, 2:466

external interrupt control registers 2:34, 2:104, 2:105,
2:216, 2:464, 2:467

Local ID (LID – CR64) 2:105
external task priority (XTP) 2:110, 2:114

XTP cycle 2:114
XTP register 2:465

F
fault 1:95, 2:26, 2:81, 2:82, 2:85, 2:86, 2:92-2:96, 2:128,

2:405, 2:449
fault suppression 2:88
fclass instruction 1:37, 1:48, 1:50, 1:55, 1:92, 1:202,

3:325, 3:326, 3:352, 3:356
fcmp instruction 1:37, 1:48, 1:50, 1:55, 1:91, 3:325,

3:326, 3:339, 3:351, 3:356
fence 1:66, 2:69, 2:70

operations 1:66, 2:69, 2:70
semantics 1:66, 2:69, 2:70, 2:238, 2:239

Index-4 Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0

Index

fetchadd instruction 1:51, 1:53, 1:62, 1:66, 2:69, 2:70,
2:73, 2:179, 2:376, 2:377, 2:394, 2:395, 3:351

firmware address space 2:258
firmware entrypoint 2:283
firmware entrypoints 2:257
firmware interface table (FIT) 2:261
firmware model 2:482
firmware procedure 2:283
floating-point applications 1:193

execution bandwidth 1:194
execution latency 1:193
memory bandwidth 1:195
memory latency 1:194
performance limiters 1:193

floating-point architecture 1:11, 1:15, 1:77
floating-point instructions 1:26, 1:37, 1:83, 3:322, 3:323,

3:366, 3:489, 3:491, 3:510, 3:526, 3:543, 3:748
arithmetic instructions 1:90, 3:324, 3:863
integer multiply and add instructions 1:93, 1:94
memory access instructions 1:83
non-arithmetic instructions 1:92
register to/from general register transfer instructions

1:89
floating-point programming model 1:77

data types and formats 1:77
floating-point register encodings 1:78
floating-point register format 1:77, 1:78
floating-point status register 1:24, 1:26, 1:80, 1:81,

1:93
real types 1:77

floating-point status register (FPSR) 1:26, 1:37, 1:80,
1:93, 2:451

floating-point system software
floating-point exception handling 2:451, 2:453

flushrs instruction 1:36, 1:44, 1:48, 2:57, 2:119, 2:121,
2:122, 2:125-2:130, 3:306, 3:311, 3:339, 3:340,
3:345, 3:346, 3:357

FP precision 1:197
FP subfield handling 1:203
FPU

checking for pending FPU exceptions 3:734
constants 3:487
existence of 3:428
floating-point format 3:822, 3:823
initialization 3:481

floating-point register (FR)
high FP reg fault 3:360
low FP reg fault 3:359

floating-point register set 1:195
floating-point software assistance (FP SWA) 2:451

SWA faults 2:451, 2:452, 2:454
SWA traps 2:451, 2:452, 2:453

FPU control word
loading 3:489, 3:491
RC field 3:482, 3:487, 3:521
restoring 3:508

saving 3:510, 3:526
storing 3:524

FPU data pointer 3:491, 3:508, 3:510, 3:526
FPU flag, CPUID instruction 3:428
FPU instruction pointer 3:491, 3:508, 3:510, 3:526
FPU last opcode 3:491, 3:508, 3:510, 3:526
FPU status word

condition code flags 3:460, 3:476, 3:536, 3:538,
3:541

FPU flags affected by instructions 3:366
loading 3:491
restoring 3:508
saving 3:510, 3:526, 3:528
TOP field 3:480

FPU tag word 3:491, 3:508, 3:510, 3:526
frcpa instruction 1:37, 1:48-1:50, 1:55, 1:91, 1:198-1:200,

2:454, 3:323, 3:326, 3:352, 3:356
frsqrta instruction 1:37, 1:48-1:50, 1:55, 1:91, 1:198,

1:199, 2:454, 3:323, 3:327, 3:352, 3:356

G
gate interception 2:215
general register (GR)

NaT bit 1:21, 1:134, 1:146, 1:147
global TLB purge operations 2:69

H
hardware debugger 2:136

I
i bit

PSR.i 2:82, 2:102-2:104, 2:106, 2:219, 2:407, 2:410,
2:464, 2:465, 3:344, 3:349, 3:410, 3:721

I/O port space 2:240-2:243, 2:473, 2:474, 3:558, 3:562,
3:654, 3:657

I/O port space model 2:240, 2:241
physical I/O port addressing 2:243
virtual I/O port addressing 2:241

IA-32 application execution model 1:103
IA-32 instruction set execution 1:22, 1:23, 1:41, 1:59,

1:104, 2:239
IA-32 operating mode transitions 1:106
instruction set execution in the Itanium architecture

1:104
instruction set modes 1:103
instruction set transitions 1:105, 2:215, 2:240

IA-32 application register state model 1:107
IA-32 application EFLAG register 1:116
IA-32 floating-point registers 1:117, 1:118
IA-32 general purpose registers 1:107, 1:108, 1:110
IA-32 instruction pointer 1:111
IA-32 MMX technology registers 1:122
IA-32 segment registers 1:111

Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0 Index-5

Index

IA-32 streaming SIMD extension registers 1:109,
1:122

IA-32 application support 2:250
procedure calls between Itanium and IA-32 instruc-

tion sets 2:459
transitioning between Itanium and IA-32 instruction

sets 2:457
IA-32 architecture 1:5, 1:17, 2:5, 3:5, 3:359
IA-32 architecture handlers 2:460

IA-32 vectors that need Itanium-based OS support
2:461

shared Itanium/IA-32 exception vectors 2:460
unique IA-32 exception vectors 2:460
unique Itanium exception vectors 2:460

IA-32 compatible bus transactions 2:251
IA-32 current privilege level 2:218
IA-32 fault and trap handling 2:215
IA-32 faults 3:359
IA-32 floating-point exceptions 2:456
IA-32 GPFault 3:359
IA-32 I/O instructions 2:244
IA-32 instruction behavior 2:215, 2:227
IA-32 instruction format 3:360
IA-32 instruction summary 2:228
IA-32 interruption 2:94, 2:95, 2:248
IA-32 interruption priorities and classes 2:95
IA-32 interruption vector 2:189, 2:248
IA-32 memory ordering 2:238, 2:392
IA-32 MMX technology instructions 1:122, 3:747
IA-32 numeric exception model 2:250
IA-32 physical memory references 2:235
IA-32 privileged system resources 2:215
IA-32 processes during a context switch 2:226

entering IA-32 processes 2:226
exiting IA-32 processes 2:227

IA-32 segmentation 1:124, 2:233
IA-32 streaming SIMD extension instructions 1:123,

3:811
IA-32 system and control register behavior 2:215
IA-32 system EFLAG register 2:219
IA-32 system environment 1:5, 1:9, 1:10, 1:17, 2:5, 2:9,

3:5
IA-32 system register mapping 2:216
IA-32 system registers 2:222

IA-32 control registers 2:222
IA-32 debug registers 2:225
IA-32 machine check registers 2:226
IA-32 memory type range registers (MTRRs) 2:225
IA-32 model specific and test registers 2:225
IA-32 performance monitor registers 2:226

IA-32 system segment registers 2:217
IA-32 TLB forward progress requirements 2:234
IA-32 trap code 2:189
IA-32 usage of Itanium registers 1:126

ALAT 1:126
NaT/NaTVal response for IA-32 instructions 1:126
register stack engine 1:126, 3:597

IA-32 virtual memory references 2:234

protection keys 2:234
region identifiers 2:234
TLB access bit 2:234
TLB dirty bit 2:234

IA-32 virtual memory support 2:215
ic bit

PSR.ic 2:82, 2:85, 2:86, 2:88-2:91, 2:102, 2:104,
2:126, 2:148, 2:407, 2:430, 2:431, 3:344,
3:349

IEEE considerations 1:94
additions beyond the IEEE standard 1:100
arithmetic operations 1:100, 3:826
floating-point interruptions 1:94
inexact 1:97, 1:99, 2:453, 2:456
integer invalid operations 1:100
mandated operations deferred to software 1:100
NaNs 1:78, 1:100
overflow 1:97, 1:98, 2:452, 2:455
tininess 1:99
underflow 1:97, 1:99, 2:452, 2:456

IEEE floating-point exception filter 2:451, 2:454
denormal/unnormal operand exception (fault) 2:455
divide by zero exception (fault) 2:455
inexact exception (trap) 2:456
invalid operation exception (fault) 2:455
overflow exception (trap) 2:455
underflow exception (trap) 2:456

IEEE-754 2:451, 2:454, 2:456, 3:821
ANSI/IEEE-754 standard compliant 1:193

if-conversion 1:157
illegal dependency fault 1:38, 2:149, 2:448
illegal operation fault 1:19, 1:20, 1:39, 2:149, 3:257
implicit serialization 2:13
indefinite

description of 3:827
real 3:829

infinity, floating-point format 3:826
in-flight resources 2:15
INIT flows 2:491
initialization event (INIT) 2:489

initialization interrupts 2:80, 2:98, 2:406
PALE_INIT 2:80, 2:92

inserting/purging of translations 2:425
instruction breakpoint register matching 2:247

IBR.addr 2:247
IBR.mask 2:247

instruction breakpoint registers (IBR) 2:133, 2:134
instruction classes 3:336, 3:350, 3:351
instruction dependencies 1:140

control dependencies 1:65, 1:140, 2:384
data dependencies 1:57, 1:141-1:143, 2:13

instruction encoding 1:32
bundles 1:11, 1:31, 1:32, 1:34, 1:132, 1:133, 3:257
instruction slots 1:32, 1:33, 3:257
template 1:32-1:34, 1:133, 3:257, 3:258

instruction field names 3:259, 3:262
instruction format 1:132, 3:260
instruction interception 2:215
instruction pointer (IP) 1:19, 1:22, 2:84, 2:408, 2:479

Index-6 Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0

Index

instruction serialization 2:14, 2:15, 2:410, 3:337, 3:431,
3:579

instruction set
string instructions 3:420, 3:562, 3:622, 3:640, 3:656,

3:724
instruction set architecture (ISA) 1:5, 2:5, 3:5
instruction set features 1:11
instruction set transition model overview 1:10
instruction set transitions 2:33, 2:215, 2:240
instruction slots 1:32, 1:33, 3:257

instruction slot mapping 1:33, 3:258
instruction stream 1:167, 3:496, 3:510, 3:526, 3:591,

3:649
instruction stream alignment 1:167
instruction stream fetching 1:167

instruction type 1:32, 3:257, 3:697
ALU (A) 3:258
branch (B) 3:258
floating-point (F) 3:258
integer (I) 1:133, 3:258
memory (M) 1:133, 3:258

instruction/data TLB miss 2:57-2:59
integer computation instructions 1:44

32-bit addresses and integers 1:46
arithmetic instructions 1:45, 3:324, 3:863
bit field and shift instructions 1:46, 1:47
large constants 1:47
logical instructions 1:45

integer/floating-point conversion 1:203
inter-processor interrupt (IPI) 2:97, 2:99, 2:110, 2:471
inter-processor interrupt message 2:111, 2:491

data fields 2:111, 2:113
interrupt 2:70, 2:80, 2:81, 2:92, 2:96-2:106, 2:405, 2:406,

2:463, 2:464, 2:491
interrupt acknowledge (INTA) 2:110
interruption 2:79, 2:80-2:87, 2:92, 2:94-2:96, 2:103,

2:104, 2:129, 2:405-2:407
execution environment 2:407
heavyweight interruptions 2:411, 2:413
interruption handler 2:86, 2:87, 2:405-2:407, 2:410
interruption handling 2:79, 2:82, 2:85, 2:86, 2:410
interruption register state 2:408
lightweight interruptions 2:410
nested interruptions 2:413
resource serialization 2:409, 2:410

interruption model 2:82, 2:247
interruption priorities 2:92, 2:95
interruption registers 2:216, 2:406, 2:408
interruption vector address (IVA) 2:406
interruption vector table (IVT) 2:79, 2:96, 2:406
interruption vectors 2:85, 2:96, 2:147, 2:151, 2:406

interruption vector definition 2:148
interruptions 2:79-2:82, 2:85-2:87, 2:92, 2:95, 2:96,

2:127, 2:128, 2:405, 2:406
aborts 2:79, 2:89, 2:92, 2:406
faults 2:79, 2:80, 2:85, 2:89, 2:92-2:96, 2:405
interruption handling during instruction execution

2:82

interruption programming model 2:81
interrupts 2:79, 2:80, 2:82, 2:85, 2:89, 2:92, 2:95,

2:97-2:106, 2:219, 2:405, 2:406
IVA-based interruption 2:85, 2:96, 2:406
PAL-based interruption 2:85, 2:405
traps 1:97, 2:79, 2:80, 2:84-2:86, 2:92, 2:94-2:96,

2:405
interval timer 1:110, 2:16, 2:27, 2:28, 2:99, 2:108, 2:469,

2:470
invala instruction 1:60, 1:62, 2:129, 2:420, 2:484, 3:306,

3:307, 3:311, 3:351, 3:352
invala.e instruction 1:60, 1:62, 2:415-2:417, 2:420, 3:306,

3:307, 3:311, 3:339, 3:351, 3:352
IPI ordering 2:113
ISR setting 2:147
Itanium architecture 1:1, 1:5, 1:9
Itanium data mem faults 3:360
Itanium instruction 1:107, 3:257, 3:335, 3:430, 3:597,

3:598
expressing parallelism 1:132
format 3:464, 3:539
Itanium instruction set 1:17, 3:430, 3:597, 3:598
syntax 1:132, 3:336

Itanium instruction mem faults 3:360
Itanium system environment 1:5, 1:9, 1:10, 1:17, 2:5, 2:9,

2:10, 2:11
Itanium-based firmware 1:5, 1:17, 2:5, 3:5
itc instruction 1:24, 1:26, 1:27, 2:27, 2:43, 2:44, 2:47,

2:50, 2:58, 2:429, 2:431, 2:469, 2:470, 3:312,
3:313, 3:339-3:342, 3:344-3:346, 3:348, 3:352-
3:354, 3:356

itr instruction 2:40, 2:43, 2:44, 2:47, 2:50, 2:429, 2:430,
2:485, 2:488, 3:312, 3:313, 3:340-3:342, 3:344,
3:345, 3:348, 3:352, 3:356

IVA-based interruptions 2:79-2:81, 2:85, 2:405, 2:406

J
jmpe instruction 1:10, 1:103, 1:105

L
Lamport’s algorithm 2:397, 2:398
ld.a instruction 1:51, 1:57, 1:61, 1:62, 1:144, 1:146,

1:153, 2:68, 2:69, 2:74, 2:376, 2:443-2:445
ld.acq instruction 1:51, 1:60, 1:66, 2:69, 2:70, 2:376,

2:381, 2:383, 2:385, 2:387, 2:389, 2:390
ld.c instruction 1:57-1:60, 1:144-1:146, 1:153, 2:69,

2:444, 2:445
ld.c.clr instruction 1:51, 1:60-1:62, 2:73, 2:74
ld.c.clr.acq instruction 1:51, 1:60-1:62, 1:66, 2:69, 2:70,

2:73, 2:74
ld.c.nc instruction 1:51, 1:61, 1:62, 2:73, 2:74
ld.s instruction 1:51, 1:54, 1:56, 1:148, 2:68, 2:69, 2:376,

2:443-2:445
ld.sa instruction 1:51, 1:61, 1:62, 1:148, 2:68, 2:69, 2:74,

2:376, 2:416, 2:443-2:445

Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0 Index-7

Index

ld8.fill instruction 1:26, 1:36, 1:37, 1:52, 1:55, 1:56,
1:147, 2:415, 2:416, 3:288, 3:289, 3:293-3:295,
3:338, 3:340, 3:352

ldf.a instruction 1:51, 1:57, 1:61, 1:62
ldf.c instruction 1:57
ldf.c.clr instruction 1:51, 1:61, 1:62, 2:73
ldf.c.nc instruction 1:51, 1:61, 1:62, 2:73
ldf.fill instruction 1:51, 1:52, 1:56, 1:83, 1:147, 2:69,

2:415, 2:416, 3:290, 3:291, 3:297-3:299, 3:352
ldf.s instruction 1:51, 1:54, 1:56, 2:69
ldf.sa instruction 1:51, 1:61, 1:62, 2:69
ldfp.a instruction 1:51, 1:57, 1:59, 1:61, 1:62
ldfp.c instruction 1:57
ldfp.c.clr instruction 1:51, 1:61, 1:62
ldfp.c.nc instruction 1:51, 1:61, 1:62
ldfp.s instruction 1:51, 1:54, 1:56, 2:69
ldfp.sa instruction 1:51, 1:61, 1:62, 2:69
level sensitive external interrupts 2:114
load instruction 1:159, 2:376, 3:873, 3:876, 3:879, 3:882,

3:884
loadrs instruction 1:25, 1:36, 1:44, 1:48, 2:57, 2:92,

2:119, 2:121-2:123, 2:125-2:130, 2:418, 2:419,
2:485, 3:306, 3:311, 3:339, 3:340, 3:345,
3:346, 3:351, 3:357

loadrs field 1:44, 2:122, 2:125
RSC.loadrs 1:44, 2:125-2:127, 2:485

logical instructions 1:45
long branch handler 2:447
loop support 1:68, 1:171, 1:174

capacity limitations 1:185
conflicts in the ALAT 1:186
counted loop 1:69, 1:171, 1:176, 1:177
counted loop branches 1:176
epilog 1:68, 1:174, 1:179
epilog count register (EC) 1:27
explicit prolog and epilog 1:190
implementing reductions 1:189
induction variable 1:172
initiation interval (II) 1:173
kernel 1:68, 1:174, 1:175, 1:179
kernel iteration 1:174
kernel loop 1:174
loop count application register (LC) 1:69, 1:171
loop unrolling 1:137, 1:172, 1:187
loop unrolling prior to software pipelining 1:187
loops with predicated instructions 1:182
multiple-exit loops 1:183
prolog 1:68, 1:174, 1:179
redundant load elimination in loops 1:192
register rotation 1:15, 1:174, 1:175
software pipelining and advanced loads 1:185
software pipelining considerations 1:185
software-pipelined loop branches 1:176, 1:177
source iteration 1:174
source loop 1:174
while loop 1:70, 1:178, 1:180, 3:686, 3:687

M
machine check 2:43, 2:44, 2:79, 2:92, 2:224, 2:226,

2:283, 2:406, 2:489-2:491, 3:429, 3:679, 3:737
machine check abort (See MCA)
machine check abort flows

machine check abort handling in OS 2:491
machine check handling in PAL 2:490
machine check handling in SAL 2:490

machine check aborts 2:481
machine checks 2:268
major opcode 1:34, 3:257-3:259
master boot record 2:483
mc bit

PSR.mc 2:82, 2:85, 2:86, 2:102, 2:408, 3:345,
3:349

MCA 2:481
PALE_CHECK 2:79, 2:92

memory acceptance fence 2:473
memory access control 1:204

allocation control 1:63, 1:205
data prefetch 1:205
load-pair instructions 1:204

memory access instructions 1:51, 1:62, 2:375
memory access ordering 1:65, 2:70

memory ordering instructions 1:66
memory ordering rules 1:66

memory addressing model 1:30, 1:123
memory alignment 2:236
memory attribute 2:45, 2:63, 2:64, 2:73-2:75, 3:429

effects of memory attributes on advanced/check
loads 2:73

effects of memory attributes on memory reference
instructions 2:72

memory attribute transition 2:74
physical addressing memory attribute 2:64
virtual addressing memory attribute 2:63, 2:74

memory dependency 1:35, 2:69
read-after-write 1:35, 1:38, 1:65, 2:69
write-after-read 1:35, 1:38, 1:65, 2:69
write-after-write 1:35, 1:38, 1:65, 2:69

memory endianess 1:124
memory fence 1:66, 2:392
memory fences 2:113, 2:378
memory hierarchy 1:63

hierarchy control and hints 1:62
memory consistency 1:65, 3:924-3:926

memory mapped I/O model 2:241, 2:474
memory model 1:123, 2:233
memory ordering 1:66, 2:69, 2:130, 2:375, 2:376, 2:378,

2:379, 2:383-2:385, 2:424, 3:928
acquire semantics 1:66, 2:70, 2:238, 2:375
memory ordering executions 2:379
memory ordering interactions 1:125
memory ordering model 2:238, 2:378, 2:392
memory ordering semantics 1:66, 2:378, 2:424
release semantics 1:66, 2:69, 2:238, 2:239, 2:375

memory ordering fence 1:66
memory reference 1:139, 1:140, 2:38

Index-8 Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0

Index

memory synchronization 2:392
mf instruction 1:66, 2:113, 2:378
mf.a instruction 2:69, 2:113, 2:473, 2:474, 2:475, 3:306,

3:311
Min/Max/AMin/AMax 1:202
MMX technology 1:16, 1:104, 1:107, 1:109, 1:122, 3:359,

3:429, 3:747-3:749
mov instruction 1:29, 1:37, 1:38, 1:47, 1:50, 1:68, 1:74,

1:75, 2:13, 2:18, 2:19, 2:47, 2:50, 2:124, 2:127,
2:135, 2:140, 2:141, 2:477, 3:282-3:286, 3:307-
3:309, 3:311-3:314, 3:320, 3:353-3:355, 3:388,
3:618, 3:632-3:639, 3:659, 3:660, 3:717

multimedia instructions 1:11, 1:16, 1:41, 1:72
data arrangement 1:74
parallel arithmetic 1:72, 1:73
parallel shifts 1:73

multimedia support 1:16
multiple address space (MAS) 1:16, 2:37, 2:425, 2:426
multiple status fields 1:200
multiply-add instruction 1:198
multiprocessor (MP)

multiprocessor instruction cache coherency 2:238
multiprocessor TLB coherency 2:235

N
NaN

description of 3:824, 3:826
encoding of 3:825, 3:829
operating on 3:827
SNaNs vs. QNaNs 3:826
testing for 3:536

NaNs 1:78, 1:100, 1:202, 3:453, 3:497, 3:499, 3:502,
3:531, 3:534, 3:547, 3:549, 3:822, 3:824-3:827,
3:829

NaT (not a thing) 1:131
NaT page consumption fault 2:72
NaTPage attribute 2:72
NaTVal (not a thing value) 1:22
non-access instructions 2:87
non-cacheable memory 2:69
non-programmer-visible state 2:378
non-speculative 1:54, 2:67, 2:68, 2:74, 2:445
non-speculative memory references 1:139, 2:62

data prefetch hint 1:140
loads from memory 1:139
stores to memory 1:139

non-temporal hint 1:205
NOP instruction 3:649
no-recovery model 2:88, 2:89
normalized finite number 3:823, 3:825
normalized numbers 1:79, 3:822, 3:823, 3:825
not a thing attribute (NaTPage) 2:72

O
OLR 2:283
operand screening support 1:202

operating environments 1:9, 1:10
optimization of memory references 1:148

data interference 1:149, 1:150
loop optimization 1:152
minimizing check code 1:152
optimizing code size 1:150
using post-increment loads and stores 1:151

orderable instruction 2:376, 2:380
ordered cacheable operations 2:389
ordering semantics 1:66, 2:69, 2:70, 2:380

acquire 1:66, 2:69, 2:70, 2:238, 2:239, 2:375, 2:380,
2:381

fence 1:66, 2:69, 2:70, 2:239, 2:375, 2:380
release 1:66, 2:69, 2:70, 2:238, 2:239, 2:375, 2:380,

2:381
unordered 1:66, 2:69, 2:70, 2:239, 2:375, 2:380

OS boot flow sample code 2:495
OS kernel 2:483, 2:485
OS loader 2:482, 2:483
overflow 1:14, 1:97, 1:98, 2:452, 2:455

P
PAL 1:5, 1:17, 2:5, 2:253, 2:256, 2:283, 2:481, 2:483,

2:485-2:490, 3:5
entrypoints 2:256
procedures 2:256

PAL power on/reset 2:263
PALE_RESET 2:79

PAL procedure calling conventions 2:288
PAL procedure calls 2:486
PAL procedures 2:285, 2:481, 2:486-2:488

stacked PAL call 2:487
stacked registers 1:136, 2:486, 2:487
static PAL call 2:486

PAL self-test control word 2:267
PAL_MC_RESUME 2:276
PAL_PREFETCH_VISIBILITY 2:354
PAL_PROC_GET_FEATURES 2:355
PAL-based interrupt states 2:100
PAL-based interruptions 2:79-2:81, 2:85, 2:96, 2:405,

2:406
PALE_CHECK 2:268
PALE_INIT 2:277
PALE_RESET 2:263
performance counters 1:28, 2:137, 2:138, 2:225, 2:477,

3:681
performance monitor events 2:142
performance monitors 1:28, 2:137, 2:139, 2:217, 2:477,

2:478
performance monitor code sequences 2:143
performance monitor configuration (PMC) 2:137,

2:139
performance monitor data (PMD) 2:137, 2:477
performance monitor data registers (PMD) 1:19,

1:28
performance monitor interrupt service routine 2:143
performance monitor overflow registers 2:141

Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0 Index-9

Index

performance monitor registers 2:137, 2:139, 2:477
performance monitoring mechanisms 2:477

physical addressing 2:61, 2:64, 2:76, 2:488, 3:429,
3:637

pk bit 2:427
PSR.pk 2:83, 2:86, 2:427, 2:428, 3:345, 3:349

platform management interrupt (PMI) 2:92, 2:279,
2:405, 2:481, 2:489, 2:492

PMI flows 2:492
population count 1:76, 3:279
power management 2:80, 2:281, 2:492

NORMAL 1:164, 3:541, 3:905, 3:907
predicate register (PR)

predicate register transfers 1:50
predication 1:11, 1:13, 1:47, 1:48, 1:135, 1:138, 1:155-

1:160
cache pollution reduction 1:160
downward code motion 1:159, 1:160
guidelines for removing branches 1:162
instruction prefetch hints 1:168
instruction scheduling 1:140, 1:142, 1:156
off-path predication 1:158
optimizing program performance using predication

1:157
performance costs of branches 1:155
predication considerations 1:160
predication in the itanium architecture 1:156
prediction resources 1:71, 1:155, 1:156
upward code motion 1:159

preservation of floating-point state in the OS 2:419
preserved 2:283
preserved registers 2:415, 2:420
preserving ALAT coherency 2:420
privilege levels 1:22, 2:13, 3:597, 3:598, 3:688

current privilege level (CPL) 2:13, 3:732
privilege level transfer 1:76
processor status register (PSR) 2:13, 2:16, 2:18
processor status register fields 2:19
processor status register instructions 2:18

privileged operation fault 2:149
probe instruction 2:47, 2:50, 2:62, 2:63, 2:87, 3:312,

3:313, 3:356
procedure 1:41-1:43
procedure calls 1:41, 1:136, 2:415, 2:459, 2:485-2:488

br.call 1:67, 1:69, 3:318, 3:319
br.ret 1:67, 1:69, 2:47, 2:57, 2:86, 2:92, 3:317,

3:319
branch instructions 1:70, 1:136, 1:137, 3:315,

3:316, 3:332
branches and hints 1:136
loops and software pipelining 1:137
register stack engine 1:41, 1:136, 2:86, 2:117,

3:597
rotating registers 1:23, 1:137
stacked register 1:42, 2:486, 2:487

processor abstraction layer (See PAL)
processor caches 2:75, 2:378
processor identifiers (CPUID) 1:19

processor identification registers 1:29

processor interrupt block 2:110-2:112, 2:471
processor min-state save area 2:274
processor ordered 2:238
processor state 2:289

system state 2:13, 2:15, 2:16
processor state parameter 2:271
processor status register (PSR) 2:13, 2:16, 2:18, 2:139,

2:408
programmed I/O 2:401, 2:402
protected mode 1:10, 1:104, 1:106, 1:113-1:115, 2:224,

2:458
protection key registers (PKR) 2:16, 2:48
protection keys 1:16, 2:16, 2:48, 2:49, 2:425, 2:427-

2:429, 2:435
pseudo-code functions 3:249
ptc.e instruction 2:41, 2:43, 2:50, 2:57, 2:426, 2:432-

2:434, 3:307, 3:312, 3:341, 3:342, 3:348,
3:352, 3:356

ptc.g instruction 2:41, 2:43, 2:44, 2:47, 2:50, 2:57, 2:63,
2:69, 2:433, 2:434, 3:312, 3:314, 3:341, 3:342,
3:345, 3:348, 3:352, 3:356

ptc.ga instruction 1:60, 2:41, 2:43, 2:44, 2:47, 2:50, 2:57,
2:63, 2:69, 2:426, 2:433, 2:434, 3:312, 3:314,
3:341, 3:342, 3:345, 3:348, 3:352, 3:356

ptr instruction 2:40, 2:43, 2:47, 2:50, 2:57, 2:429, 2:431,
2:485, 3:312, 3:314, 3:341, 3:342, 3:345,
3:348, 3:352, 3:356, 3:571

Q
QNaN

description of 3:826
operating on 3:827

qualified exception deferral 2:91

R
RAR (read-after-read) dependency 3:335
RAW (read-after-write) dependency 3:335
reader of a resource 3:335
real mode 1:10, 1:104, 1:106, 1:113-1:115, 2:458, 3:491,

3:508, 3:510, 3:526, 3:579, 3:665
recovery model 2:88, 2:89
region identifier (RID) 2:38, 2:48, 2:425
region register (RR) 2:48, 2:425
register dependency 1:35, 1:37

read-after-write (RAW) 1:35
write-after-read (WAR) 1:35
write-after-write (WAW) 1:35

register file transfers 1:74
register preservation 2:415

preservation at different points in the OS 2:418
preservation of stacked registers in the OS 2:418
preserving floating-point registers 2:416
preserving general registers 2:416

register rotation 1:15, 1:23, 1:174, 1:175
initializing rotating predicates 1:50, 1:176

Index-10 Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0

Index

register stack 1:14, 1:23, 1:24, 1:41-1:44, 2:87, 2:117,
2:119-2:121, 2:485

clean partition 2:120, 2:127
current frame 1:23, 1:42, 2:86, 2:87, 2:117, 2:120,

2:485
dirty partition 2:120, 2:127
invalid partition 2:120, 2:127
register stack instructions 1:43
register stack operation 1:41

register stack configuration 1:24, 1:25, 1:44, 2:119,
2:122, 2:123, 2:485

RSC 1:24, 1:25, 1:44, 2:119, 2:122, 2:123, 2:127,
2:485, 3:353, 3:355

register stack engine (See RSE)
release semantics 1:66, 2:69, 2:238, 2:239, 2:375
release stores 2:376, 2:378, 2:389, 2:390
reserved 1:19, 1:20, 2:97, 2:284
rfi instruction 1:11, 1:34, 1:36, 1:38, 1:48, 1:69, 1:103,

2:18, 2:19, 2:57, 2:63, 2:79, 2:81, 2:84, 2:86-
2:88, 2:92, 2:119, 2:121, 2:122, 2:127-2:130,
2:182-2:184, 2:406, 2:410, 2:420, 2:421, 2:485,
3:316, 3:321, 3:339-3:341, 3:343-3:347, 3:349-
3:351, 3:356, 3:357

RSE 1:25, 1:26, 1:41, 1:136, 2:86, 2:117-2:119, 2:121-
2:123, 2:125-2:131, 2:485, 3:345, 3:350, 3:351,
3:357

RSE byte order 2:123
RSE control instructions 2:125, 2:126
RSE initialization 2:132
RSE internal state 2:119
RSE interruptions 2:127
RSE mode 1:25, 2:122
RSE operation instructions and state modification

2:122
RSE privilege level 1:25, 2:123

rsm instruction 2:18, 2:19, 2:33, 2:104, 2:140, 2:232,
2:410, 2:464, 2:477, 3:311, 3:314, 3:341, 3:356,
3:357, 3:694

rum instruction 1:75, 2:13, 2:18, 2:140, 2:477, 3:311,
3:314, 3:338, 3:345, 3:357

S
SAL 1:5, 1:17, 2:5, 2:253, 2:284, 2:458, 2:481-2:483,

2:485-2:491, 3:5, 3:696, 3:697, 3:698, 3:699,
3:709

SAL procedure calls 2:487
SALE_ENTRY 2:265
scratch 2:284
scratch registers 2:81, 2:415, 2:420
self test state parameter 2:266
self-modifying code 2:399
semaphore 3:303

behavior of uncacheable and misaligned sema-
phores 2:377

semaphore instructions 1:35, 1:53, 2:376, 3:303
semaphore operations 1:53, 2:237, 2:378, 2:388

sequential consistency (SC)
SC system 2:392

sequential semantics 2:70
inter-processor interrupt messages 2:70, 2:111-

2:113
sequential pages 2:70

serialization 2:13-2:15, 2:409, 2:410, 3:335-3:337, 3:431,
3:579, 3:597

single address space (SAS) 1:16, 2:37, 2:425, 2:427,
2:429

single instruction multiple data (SIMD) 3:812
single stepping 2:88
sof field

CFM.sof 2:84, 2:120-2:122, 2:126, 2:127, 2:129
software pipelining 1:11, 1:15, 1:137, 1:173, 1:185, 1:187
sol field

CFM.sol 2:122, 2:127, 2:129
special instruction notations 3:263
special use registers 2:415
speculation 1:11, 1:12, 1:133, 1:134, 1:139, 1:143, 1:149,

2:67, 2:68, 2:443, 2:445
advanced load 1:51, 1:57-1:59, 1:61, 1:144-1:146,

1:153, 2:68, 2:73, 2:74
advanced load check 1:58, 1:59, 1:146, 3:305
advanced load example 1:145
always-defer model 2:88
check load 1:51, 1:57, 1:59-1:61, 1:145, 1:146, 2:73,

2:74
combining data and control speculation 1:148
control speculation 1:12, 1:13, 1:53-1:56, 1:61,

1:134, 1:143, 1:146, 1:147, 2:445
control speculation example 1:147
control speculative load 1:12, 1:146-1:148
data speculation 1:12, 1:13, 1:57, 1:58, 1:61, 1:62,

1:134, 1:143, 1:144, 2:445
recovery code 1:13, 1:58, 1:145, 1:146-1:148, 2:444,

2:445
recovery code example 1:145
speculation attributes 2:67
speculation check 1:54, 1:58, 1:148, 3:283, 3:305
speculation considerations 1:149
speculation model in the itanium architecture 1:143,

1:144
speculation recovery code 2:445
speculation related exception handlers 2:445
speculative 1:12, 1:13, 1:54, 1:57, 2:67, 2:68, 2:74,

2:445
speculative load exceptions 2:89
speculatively accessible 2:68
speculatively inaccessible 2:68
unaligned handler 2:445

speculative advanced load 1:148
spill/fill 1:56, 1:83, 1:89, 2:86, 2:117, 2:118, 2:121
spin lock 2:393, 2:394
square root operations 1:198
ssm instruction 2:18, 2:19, 2:33, 2:103, 2:104, 2:140,

2:410, 2:477, 3:311, 3:314, 3:341, 3:356, 3:357,
3:694

Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0 Index-11

Index

st instruction 1:13, 1:51, 1:62, 2:69, 2:380-2:385, 2:387,
2:390, 2:391, 3:357, 3:445, 3:447, 3:448,
3:451, 3:453, 3:456, 3:458, 3:460, 3:461,
3:463, 3:464, 3:466, 3:469, 3:472, 3:475,
3:476, 3:478, 3:482, 3:483, 3:485, 3:487,
3:493, 3:497-3:500, 3:502, 3:503, 3:505, 3:507,
3:508, 3:510, 3:513-3:515, 3:517, 3:519, 3:521,
3:530, 3:533, 3:536, 3:538, 3:539, 3:541,
3:543, 3:545, 3:547-3:549

st.rel instruction 1:51, 1:62, 1:66, 2:69, 2:113, 2:376,
2:381, 2:383-2:385, 2:388-2:391

st.spill instruction 1:51, 1:62, 2:69
st1 instruction 1:60, 3:288, 3:289, 3:296, 3:357, 3:856,

3:859, 3:860
st8.spill instruction 1:26, 1:36-1:38, 1:53, 1:55, 1:56,

1:147, 2:415, 2:416, 3:288, 3:289, 3:296,
3:338, 3:340, 3:347, 3:357

stack frame 1:14, 1:23, 1:25, 1:36, 1:41-1:44, 2:117,
2:119, 3:442-3:444

stacked calling convention 2:284
stacked registers 1:21, 1:42, 1:136, 2:117, 2:118, 2:120,

2:415, 2:418, 2:485
deallocated 2:129
stacked general registers 1:21, 2:117, 2:416

state mappings 3:359
static calling convention 2:284
static general registers 1:21, 2:117, 2:416
stf instruction 1:51, 1:62, 2:69, 3:290, 3:291, 3:299,

3:300, 3:357
stf.spill instruction 1:51, 1:53, 1:56, 1:62, 1:83, 1:147,

2:69, 2:415, 2:416, 3:290, 3:291, 3:299, 3:300,
3:357

store buffers 2:378, 2:385, 2:387
store instruction 2:376, 3:873, 3:876, 3:879, 3:882,

3:884, 3:925, 3:926, 3:928
streaming SIMD extension technology 1:104, 3:359,

3:430
subpaging 2:440, 2:441
sum instruction 1:75, 2:13, 2:18, 2:140, 2:477, 3:311,

3:314, 3:338, 3:345, 3:356, 3:357, 3:435,
3:448, 3:739, 3:910, 3:919, 3:920

supervisor accesses 2:236
system abstraction layer (See SAL)
system architecture features 1:16, 2:11

support for multiple address space operating sys-
tems 1:16

support for single address space operating systems
1:16

system performance and scalability 1:17
system security and supportability 1:17

system calls 2:420, 2:421, 2:422
system descriptors 2:217
system flag interception 2:215
system memory model 2:233
system register model 2:17, 2:215

IA-32 state 1:108, 2:215, 2:216
shared 1:108, 2:216, 2:217, 3:620
undefined 1:108, 2:216
unmodified 1:108, 1:109, 2:216, 3:582

system register resources 2:13, 2:15, 2:16

T
tak instruction 2:49, 2:50, 2:63, 2:87, 2:428, 3:312,

3:315, 3:341, 3:345, 3:352, 3:356
tbit instruction 1:37, 1:48, 1:50, 1:55, 1:135, 3:281,

3:352, 3:356
template 1:32, 1:33, 1:34, 1:133, 3:257, 3:258
temporal hint 1:205, 3:927
thash instruction 2:50, 2:54-2:56, 2:438, 2:439, 3:312,

3:315, 3:340, 3:341, 3:345, 3:352, 3:356
TLB 1:59, 2:17, 2:28, 2:32, 2:37-2:59, 2:96, 2:234,

2:235, 2:485
page not present vector 2:97, 2:152, 2:440
TLB miss 2:42, 2:51, 2:52, 2:55-2:59, 2:436
TLB miss handlers 2:59, 2:436, 2:439
TLB purges 2:40, 2:42, 2:44
translation insertion format 2:45
VHPT translation vector 2:96, 2:152, 2:438

TLB entry, invalidating (flushing) 3:578
tnat instruction 1:37, 1:48, 1:50, 1:55, 1:56, 3:281, 3:282,

3:352, 3:356
tpa instruction 2:50, 2:62, 2:87, 3:312, 3:315, 3:341,

3:345, 3:352, 3:356
translation caches (TCs) 2:431

TC insertion 2:431
TC purge 2:429, 2:432

translation lookaside buffer (See TLB)
translation registers (TRs) 2:429

TR insertion 2:430
TR purge 2:429, 2:430, 2:431

trap instruction 1:97, 1:98, 2:84, 2:85, 2:94, 2:96, 2:405,
3:411, 3:565-3:569, 3:573-3:575, 3:581, 3:585,
3:597, 3:598, 3:601, 3:627, 3:633, 3:634,
3:659, 3:661, 3:667, 3:674, 3:721, 3:722

ttag instruction 2:50, 2:53-2:56, 2:437, 3:312, 3:315,
3:345, 3:352, 3:356

U
UC memory attribute 2:242
unaligned reference handler 2:445-2:447
uncacheable 2:63-2:65, 3:927

uncacheable pages 2:66
unchanged 2:19, 2:159, 2:284, 3:466, 3:481, 3:505,

3:513, 3:515, 3:517, 3:666, 3:688, 3:865,
3:867, 3:869, 3:871, 3:875, 3:876, 3:878, 3:879

undefined behavior 1:39
underflow 1:14, 1:97, 1:99, 2:452, 2:456
unimplemented addresses 2:62, 2:63

unimplemented physical address bits 2:61, 2:62
unimplemented virtual address bits 2:62

unnormalized numbers 1:79
unordered semantics 2:375
unsupported data reference handler 2:447, 2:448
user mask (UM) 1:19, 1:28

Index-12 Intel® Itanium™ Architecture Software Developer’s Manual, Rev 2.0

Index

V
vector numbers 2:80, 2:101, 2:463, 3:367, 3:573
VHPT 2:28, 2:34, 2:37-2:39, 2:41, 2:47, 2:48, 2:50-2:59,

2:96, 2:434-2:436, 2:485
TLB and VHPT search faults 2:59
TLB/VHPT search 2:58
translation searching 2:57
VHPT configuration 2:51
VHPT searching 2:52
VHPT short format 2:52
VHPT short-format index 2:54, 2:55
VHPT updates 2:436
VHPT walker 2:39, 2:41, 2:48, 2:51-2:59, 2:434-

2:437
virtual addressing 2:37, 2:38, 2:63, 2:74, 2:485, 2:488
virtual aliasing 2:60
virtual hash page table (See VHPT)
virtual region number (VRN) 2:38, 2:62, 2:425
virtualized interrupt flag 2:219
visible 1:66, 2:69, 2:70, 2:376, 2:382, 3:600, 3:626, 3:928
VM86 1:10, 1:104, 1:106, 1:113, 1:114, 2:221, 2:224,

2:458, 3:571, 3:572

VME extensions 2:219, 2:224

W
WAR (write-after-read) dependency 3:335
WAW (write-after-write) dependency 3:335
write BSPSTORE 2:131
write-back and invalidate caches 3:735
writer of a resource 3:335

X
xchg instruction 1:51, 1:53, 1:62, 1:66, 2:69, 2:70, 2:73,

2:179, 2:376, 2:388, 3:357, 3:387, 3:620, 3:741,
3:742

Z
zero, floating-point format 3:824

	1 About this Manual
	1.1 Overview of the Intel® Itanium™ Processor Reference Manual for Software Development
	1.2 Terminology
	1.3 Related Documents
	1.4 Revision History

	2 Register Stack Engine Support
	2.1 RSE Modes
	2.2 RSE and Clean Register Stack Partitions

	3 Virtual Memory Management Support
	3.1 Page Size Supported
	3.2 Physical and Virtual Addresses
	3.3 Region Register ID
	3.4 Protection Key Register

	4 Processor Specific Write Coalescing (WC) Behavior
	4.1 Write Coalescing
	4.2 WC Buffer Eviction Conditions
	4.3 WC Buffer Flushing Behavior

	5 Model Specific Instruction Implementation
	5.1 ld.bias
	5.2 lfetch Exclusive Hint
	5.3 fwb
	5.4 thash
	5.5 ttag
	5.6 ptc.e
	5.7 mf.a
	5.8 Prefetch Behavior
	5.9 Temporal and Non-temporal Hints Support

	6 Processor Performance Monitoring
	6.1 Performance Monitor Programming Models
	6.1.1 Workload Characterization
	6.1.1.1 Event Rate Monitoring
	6.1.1.2 Single Occurrence Events and Duration Counts
	6.1.1.3 Multi-occurrence Events, Thresholding and Averaging
	6.1.1.4 Cycle Accounting

	6.1.2 Profiling
	6.1.2.1 Program Counter Sampling
	6.1.2.2 Miss Event Address Sampling

	6.1.3 Event Qualification
	6.1.3.1 Combining Opcode Matching, Instruction, and Data Address Range Check
	6.1.3.2 Privilege Level Constraints
	6.1.3.3 Instruction Set Constraints

	6.2 Performance Monitor State
	6.2.1 Performance Monitor Control and Accessibility
	6.2.2 Performance Counter Registers
	6.2.3 Performance Monitor Overflow Status Registers (PMC[0,1,2,3])
	6.2.4 Intel® Itanium™ Instruction Address Range Check Register (PMC[13])
	6.2.5 Intel® Itanium™ Opcode Match Registers (PMC[8,9])
	6.2.6 Intel® Itanium™ Data Address Range Check (PMC[11])
	6.2.7 Event Address Registers (PMC[10,11]/PMD[0,1,2,3,17])
	6.2.7.1 Instruction EAR (PMC[10], PMD[0,1])
	6.2.7.2 Instruction EAR Cache Mode (PMC[10].tlb=0)
	6.2.7.3 Instruction EAR TLB Mode (PMC[10].tlb=1)
	6.2.7.4 Data EAR (PMC[11], PMD[2,3,17])
	6.2.7.5 Data Cache Load Miss Monitoring (PMC[11].tlb=0)
	6.2.7.6 Data TLB Miss Monitoring (PMC[11].tlb=1)

	6.2.8 Intel® Itanium™ Branch Trace Buffer
	6.2.8.1 Intel® Itanium™ Trace Buffer Collection Constraining
	6.2.8.2 Intel® Itanium™ Branch Trace Buffer Reading

	6.2.9 Processor Reset, PAL Calls, and Low Power State
	6.2.10 References

	7 Performance Monitor Events
	7.1 Categorization of Events
	7.2 Basic Events
	7.3 Instruction Execution
	7.4 Cycle Accounting Events
	7.5 Branch Events
	7.6 Memory Hierarchy
	7.6.1 L1 Instruction Cache and Prefetch
	7.6.2 L1 Data Cache
	7.6.3 L2 Unified Cache
	7.6.4 L3 Unified Cache
	7.6.5 Frontside Bus

	7.7 System Events
	7.8 Performance Monitor Event List

	8 Model Specific Behavior for IA-32 Instruction Execution
	8.1 Processor Reset and Initialization
	8.2 New JMPE Instruction
	8.3 System Management Mode (SMM)
	8.4 CPUID Instruction Return Values for Caches and TLBs of the Intel® Itanium™ Processor
	8.5 Machine Check Abort (MCA)
	8.6 Model Specific Registers
	8.7 Cache Modes
	8.8 10-byte Floating-point Operand Reads and Writes
	8.9 Floating-point Data Segment State
	8.10 Writes to Reserved Bits during FXSAVE
	8.11 Setting the Access/Dirty (A/D) Bit on Accesses that Cross a Page Boundary
	8.12 Enhanced Floating-point Instruction Accuracy
	8.13 RCPSS, RCPPS, RSQRTSS, RSQRTPS Instruction Differences
	8.14 Read/Write Access Ordering
	8.15 Multiple IOAPIC Redirection Table Entries
	8.16 Self Modifying Code (SMC)
	8.17 Raising an Alignment Check (AC) Fault
	8.18 Maximum Number of Processors Supported in MP System Running Legacy IA-32 OS (IA-32 System En...

