
DECchip 21130
PCI Integrated Graphics and
Video Accelerator
Technical Reference Manual
Order Number: EC–QD2QC–TE

Revision/Update Information: This manual supersedes the DECchip 21130
PCI Integrated Graphics and Video
Accelerator Technical Reference Manual
(EC–QD2QB–TE). It describes chip
revision DC7538C.

Digital Equipment Corporation
Maynard, Massachusetts

November 1995

While Digital believes the information included in this publication is correct as of the date of
publication, it is subject to change without notice.

Digital Equipment Corporation makes no representations that the use of its products in the
manner described in this publication will not infringe on existing or future patent rights, nor do
the descriptions contained in this publication imply the granting of licenses to make, use, or sell
equipment or software in accordance with the description.

© Digital Equipment Corporation 1995. All rights reserved.
Printed in U.S.A.

AccuLook, DEC, DECchip, DECsystem, Digital, Digital Semiconductor, OpenVMS, RapiDraw,
VAX, and the DIGITAL logo are trademarks of Digital Equipment Corporation.

Digital Semiconductor is a Digital Equipment Corporation business.

Apple is a registered trademark of Apple Computer, Inc.
Brooktree is a registered trademark and RAMDAC is trademark of Brooktree Corporation.
DDC, VAFC, and VESA are trademarks of the Video Electronics Standards Association.
Hercules is a registered trademark of Hercules Computer Technology, Inc.
Intel and Pentium are registered trademarks of Intel Corporation.
Microsoft, MS, and Win32 are registered trademarks and Windows and Windows NT are
trademarks of Microsoft Corporation.
MIPS is a trademark of MIPS Computer Systems, Inc.
Motorola is a registered trademark of Motorola, Inc.
OpenGL is a registered trademark of Silicon Graphics Inc.
OSF/1 is a registered trademark of Open Software Foundation, Inc.
Philips is a registered trademark of Philips International B.V.
UNIX is a registered trademark in the United States and other countries licensed exclusively
through X/Open Company Limited.

All other trademarks and registered trademarks are the property of their respective holders.

Contents

Preface . xix

1 Introduction

1.1 Features . 1–1
1.2 Minimum System . 1–5
1.3 Basic Programming Model . 1–5
1.3.1 Extensions to the Basic Programming Model 1–6
1.4 Chip Revisions . 1–7

2 Internal Architecture

2.1 PCI Interface . 2–1
2.1.1 PCI Registers . 2–1
2.2 Command FIFO . 2–1
2.3 Command Parser . 2–3
2.3.1 Pixel-Processing Pipeline Coherence 2–3
2.3.2 Frame Buffer Writes . 2–4
2.3.2.1 Fill Mode . 2–4
2.3.2.2 Bresenham Setup Hardware . 2–4
2.4 Pixel Engine . 2–4
2.5 Memory Controller . 2–5
2.5.1 Pixel Merge . 2–5
2.5.2 Write Buffer . 2–6
2.5.3 Frame Buffer and Device Access Requests 2–6
2.6 Core Registers . 2–7
2.7 DMA Read FIFO . 2–7
2.8 Copy Buffer . 2–8
2.9 Frame Buffer and Device Access . 2–8
2.10 Generic Peripheral Port . 2–8
2.11 VGA Subsystem . 2–9
2.12 Frame Buffer Memory . 2–9
2.12.1 Frame Buffer Configurations . 2–10

iii

2.12.2 Hardware Mode Restrictions . 2–10
2.13 Video Back End . 2–11
2.13.1 Monitor Timing . 2–11
2.13.2 Video Refresh . 2–11
2.13.3 Pixel Occlusion Bitmap . 2–11
2.13.4 Cursor Generation . 2–12
2.13.5 VAFC Port . 2–12
2.13.6 Palette and DAC . 2–13
2.14 Clocks and Clock Control . 2–13

3 Pinout

3.1 Signal List . 3–1
3.2 Signal Descriptions . 3–4
3.3 Signals by Function and Direction . 3–11

4 Electrical Specifications

4.1 PCI Electrical Specification Conformance 4–1
4.2 Absolute Maximum Ratings . 4–1
4.3 Normal Operating Conditions . 4–2
4.4 Supply Current and Power Dissipation . 4–2
4.4.1 Test Conditions . 4–2
4.5 dc Specifications . 4–3
4.5.1 Operating Specifications . 4–5
4.6 ac Specifications . 4–6
4.6.1 Parameters for PCI Clock Domain Signals 4–7
4.6.2 PCI Cycle Timing . 4–10
4.6.3 Memory Cycle Timing . 4–16
4.6.4 ROM and GPP Data Cycle Timing . 4–21
4.6.5 Parameters for Pixel Clock and VAFC Clock Domain

Signals . 4–23
4.6.6 VAFC Cycle Timing . 4–26

5 Mechanical Specifications

iv

6 Thermal Specifications

7 Address Space

7.1 Overview . 7–1
7.2 Configuration Space . 7–2
7.3 ROM Space . 7–2
7.4 VGA Memory Space . 7–2
7.5 2DA Memory Space . 7–2
7.5.1 2DA Base Address 0 Memory Space . 7–2
7.5.1.1 Base Address 0 Core Space Organization 7–3
7.5.1.2 Base Address 0 Register Space Organization 7–5
7.5.1.3 Base Address 0 Alternate Control Space Writes 7–9
7.5.2 Base Address 1 Memory Space . 7–10
7.5.2.1 Base Address 1 VGA Alternate Register Space 7–10
7.5.2.2 Base Address 1 Generic Peripheral Port Space 7–11
7.5.2.3 Base Address 1 Interrupt Status Register Space 7–12
7.5.2.4 Base Address 1 Palette and DAC Register Space 7–12
7.5.2.5 Base Address 1 ROM Sparse Space Access 7–13

8 Register Descriptions

8.1 Overview . 8–1
8.2 PCI Configuration Registers . 8–10
8.2.1 PCI Identification Register . 8–11
8.2.2 PCI Command and Status Register . 8–12
8.2.3 PCI Class and Revision Register . 8–16
8.2.4 PCI Latency Timer and Header Type Register 8–17
8.2.5 PCI Device Base Address Registers . 8–18
8.2.5.1 PDBR0 Functions . 8–19
8.2.5.2 PDBR1 Functions . 8–19
8.2.6 PCI Expansion ROM Base Address Register 8–21
8.2.7 PCI Interrupt Line Register . 8–22
8.2.8 PCI Clock Control Register . 8–23
8.3 Miscellaneous Registers . 8–25
8.3.1 Command Status Register . 8–25
8.3.1.1 Write Memory Barrier . 8–26
8.3.2 Interrupt Status Register . 8–27
8.4 Graphics Command Registers . 8–29
8.4.1 Slope Registers . 8–30
8.4.2 Span Width Register . 8–33
8.4.2.1 GSWR Read . 8–33
8.4.2.2 GSWR Write . 8–34

v

8.4.3 Continue Register . 8–35
8.4.3.1 GCTR Write . 8–35
8.4.3.2 GCTR Read . 8–37
8.4.4 Copy-64 Source and Destination Registers 8–38
8.4.5 Copy-64A Source and Destination Registers 8–40
8.4.6 Repeat Begin and End Registers . 8–41
8.5 Graphics Control Registers . 8–42
8.5.1 Mode Register . 8–43
8.5.2 Deep Register . 8–46
8.5.2.1 Gib-Endian Support . 8–47
8.5.3 Slope-No-Go Registers . 8–50
8.5.3.1 GSNR<7:0> Write . 8–50
8.5.3.2 GSNR<7:0> Read . 8–51
8.5.4 Copy Buffer Registers . 8–53
8.5.5 Pixel Shift Register . 8–55
8.5.6 Address Register . 8–56
8.5.7 Data Register . 8–58
8.5.7.1 GDAR Opaque-Fill and Transparent-Fill Modes 8–58
8.5.7.2 GDAR Line Mode . 8–59
8.5.8 Foreground and Background Registers 8–60
8.5.9 Raster Operation Register . 8–63
8.5.10 Pixel Mask Register . 8–66
8.5.10.1 GPXR Stipple Modes . 8–66
8.5.10.2 GPXR Simple Mode . 8–67
8.5.10.3 GPXR Any Mode . 8–67
8.5.11 Bresenham 1 Register . 8–68
8.5.11.1 GB1R Line Mode . 8–68
8.5.11.2 GB1R Scaled-Copy Mode . 8–69
8.5.12 Bresenham 2 Register . 8–70
8.5.13 Bresenham 3 Register . 8–71
8.5.13.1 GB3R Line Mode . 8–71
8.5.13.2 GB3R Scaled-Copy Mode . 8–72
8.5.14 Bresenham Width Register . 8–73
8.5.15 DMA Base Address Register . 8–74
8.5.15.1 GDBR DMA-Read Copy Mode . 8–74
8.5.15.2 GDBR Scaled-Copy Mode . 8–75
8.5.16 Scaled-Copy Control Register . 8–76
8.5.17 Dither Row and Column Registers . 8–81
8.6 Hardware Cursor Registers . 8–82
8.6.1 Cursor Mode Register . 8–82
8.6.2 Cursor Base Address Register . 8–84
8.6.3 Cursor XY Register . 8–85
8.7 Video Control Registers . 8–85

vi

8.7.1 Video Base Address, Line Increment, and Line Width
Registers . 8–86

8.7.2 Video Valid Register . 8–88
8.8 Video Format Registers . 8–90
8.8.1 Video Pixel Format Register . 8–91
8.8.1.1 Pixel Formatting . 8–95
8.8.1.2 Addressing the RAM LUT in 15-bpp and 16-bpp

True-Color Modes . 8–96
8.8.1.3 Pixel Occlusion Bitmap . 8–98
8.8.2 Video Pixel Occlusion Bitmap Base Address Register 8–100
8.8.3 Video Pixel Occlusion Bitmap Current Address Register 8–101
8.8.4 Video Current Refresh Address Register 8–102
8.8.5 Alternate Video Control Register . 8–103
8.9 Palette and DAC Registers . 8–104
8.9.1 Palette and DAC RAM Write and Read Address Registers . . . 8–105
8.9.2 Palette and DAC RAM Color Register 8–106
8.9.3 Palette and DAC Cursor Write and Read Address

Registers . 8–107
8.9.4 Palette and DAC Cursor Color Register 8–108
8.9.5 Palette and DAC Pixel Mask Register 8–109
8.9.6 Palette and DAC Status Register . 8–110
8.9.7 Palette and DAC Command Register 0 8–111
8.9.8 Palette and DAC Command Register 1 8–112
8.9.9 Palette and DAC Signature Analysis Registers 8–114
8.10 VGA Register Overview . 8–115
8.11 VGA External and General Registers . 8–116
8.11.1 VGA Miscellaneous Output Register 8–117
8.11.2 VGA Feature Control Register . 8–119
8.11.3 VGA Input Status 0 Register . 8–120
8.11.4 VGA Input Status 1 Register . 8–121
8.12 VGA Sequencer Registers . 8–122
8.12.1 VGA Sequencer Index Register . 8–122
8.12.2 VGA Sequencer Data Register . 8–123
8.12.3 VGA Sequencer Reset Register . 8–124
8.12.4 VGA Sequencer Clocking Mode Register 8–125
8.12.5 VGA Sequencer Plane Mask Register 8–127
8.12.6 VGA Sequencer Character Map Select Register 8–128
8.12.7 VGA Sequencer Memory Mode Register 8–129
8.13 VGA CRT Controller Registers . 8–130
8.13.1 VGA CRTC Index Register . 8–132
8.13.2 VGA CRTC Data Register . 8–134
8.13.3 VGA CRTC Horizontal Total Register 8–135
8.13.4 VGA CRTC Horizontal Display End Register 8–136

vii

8.13.5 VGA CRTC Start and End Horizontal Blank Registers 8–137
8.13.6 VGA CRTC Start and End Horizontal Sync Registers 8–139
8.13.7 VGA CRTC Vertical Total Register . 8–141
8.13.8 VGA CRTC Overflow Register . 8–142
8.13.9 VGA CRTC Preset Row Register . 8–143
8.13.10 VGA CRTC Maximum Scanline Register 8–144
8.13.11 VGA CRTC Cursor Start and End Registers 8–145
8.13.12 VGA CRTC Start Address High and Low Registers 8–147
8.13.13 VGA CRTC Cursor Location High and Low Registers 8–148
8.13.14 VGA CRTC Start and End Vertical Sync Register 8–149
8.13.15 VGA CRTC End Vertical Display Register 8–151
8.13.16 VGA CRTC Offset Register . 8–152
8.13.17 VGA CRTC Underline Row Scan Register 8–153
8.13.18 VGA CRTC Start and End Vertical Blanking Registers 8–154
8.13.19 VGA CRTC Mode Control Register . 8–155
8.13.20 VGA CRTC Line Compare Register . 8–157
8.14 VGA Extended Registers . 8–157
8.14.1 VGA Extended Paging Control Register 8–158
8.14.2 VGA Extended Host Page Offset A and B Registers 8–160
8.14.3 VGA Extended Split-Screen Start Address High and Low

Byte Register . 8–161
8.14.4 VGA Extended Interlace Control Register 8–162
8.14.5 VGA Extended Equalization Start and End Registers 8–163
8.14.6 VGA Extended Half-Line Register . 8–164
8.14.7 VGA Extended Timing Control A Register 8–165
8.14.8 VGA Extended Timing Control B Register 8–166
8.14.9 VGA Extended Video FIFO Control Register 8–167
8.14.10 VGA Extended Clock Control A and B Registers 8–168
8.14.11 VGA Extended Interface Control Register 8–171
8.15 VGA Graphics Controller Registers . 8–171
8.15.1 VGA Graphics Controller Index Register 8–172
8.15.2 VGA Graphics Controller Data Register 8–173
8.15.3 VGA Graphics Controller Set/Reset Register 8–174
8.15.4 VGA Graphics Controller Enable Set/Reset Register 8–175
8.15.5 VGA Graphics Controller Color Compare Register 8–176
8.15.6 VGA Graphics Controller Data Rotate Register 8–177
8.15.7 VGA Graphics Controller Read Map Select Register 8–178
8.15.8 VGA Graphics Controller Mode Register 8–179
8.15.9 VGA Graphics Controller Miscellaneous Register 8–181
8.15.10 VGA Graphics Controller Color Don’t Care Register 8–182
8.15.11 VGA Graphics Controller Bit Mask Register 8–183
8.16 VGA Attribute Controller Registers . 8–183
8.16.1 VGA Attribute Controller Index/Data Register 8–184

viii

8.16.2 VGA Attribute Controller Palette Registers 8–186
8.16.3 VGA Attribute Controller Mode Register 8–187
8.16.4 VGA Attribute Controller Overscan Register 8–188
8.16.5 VGA Attribute Controller Color Plane Enable Register 8–189
8.16.6 VGA Attribute Controller Pixel Panning Register 8–190
8.16.7 VGA Attribute Controller Color Select Register 8–191
8.17 VGA Color Registers . 8–191
8.17.1 VGA Color Pixel Address Write Mode and Read Mode

Registers . 8–192
8.17.2 VGA Color DAC State Register . 8–193
8.17.3 VGA Color Pixel Data Register . 8–194
8.17.4 VGA Color Pixel Mask Register . 8–195

9 PCI Operations

9.1 Configuration Operations . 9–1
9.2 Memory Reads and Writes . 9–2
9.2.1 Memory Write to Core Space . 9–2
9.2.2 Memory Read of Core Space . 9–3
9.2.2.1 Read Interlock . 9–3
9.3 Target Operations . 9–4
9.3.1 Access Granularity . 9–5
9.3.2 Transaction Termination . 9–5
9.4 Master Operation . 9–9
9.4.1 DMA Read Transfer . 9–10
9.4.2 Transaction Termination . 9–10
9.4.3 Aborted DMA Transaction Termination 9–11
9.5 Parity . 9–11
9.6 Bus Parking . 9–11
9.7 Functions Not Supported . 9–12

10 Graphics Operations

10.1 Overview . 10–1
10.1.1 Frame Buffer Writes . 10–1
10.1.2 Graphics Command Register Writes 10–2
10.1.3 Invoking Graphics Operations . 10–3
10.1.4 Register Load Synchronization . 10–4
10.1.5 Source and Destination Operands . 10–5
10.2 Graphics Modes . 10–6
10.2.1 Simple Mode . 10–7
10.2.2 Opaque-Stipple Mode . 10–9
10.2.2.1 Opaque Bit-Reversed Stipple Mode 10–11

ix

10.2.3 Transparent-Stipple Mode . 10–12
10.2.3.1 Transparent-Stipple with Pixel Mask Modes 10–13
10.2.4 Opaque-Fill Mode . 10–14
10.2.4.1 Opaque Extended-Pattern Fill Mode 10–16
10.2.5 Transparent-Fill Mode . 10–17
10.2.5.1 Transparent Extended-Pattern Fill Mode 10–18
10.2.6 Copy Mode . 10–19
10.2.6.1 Source and Destination Alignment 10–22
10.2.6.2 Backward Copies . 10–25
10.2.6.3 Priming and Flushing the Residue Register 10–26
10.2.6.4 Copy Direction Flag . 10–28
10.2.6.5 64-Byte Unmasked Span Copies 10–29
10.2.6.6 Copy Buffer Operation . 10–29
10.2.6.7 Fast Frame Buffer Access Using the Copy Buffer

Registers . 10–32
10.2.7 DMA-Read Copy Mode . 10–33
10.2.7.1 Priming and Flushing the Residue Register 10–36
10.2.8 Scaled-Copy Mode . 10–39
10.2.8.1 Video Rendering Pixel Flow . 10–42
10.2.8.2 YUV Pixel Formats . 10–44
10.2.8.3 16-bpp and 32-bpp RGB Formats 10–46
10.2.8.4 Rendering Full Frames . 10–46
10.2.8.5 Unoccluded or Trivially Occluded Target Windows 10–46
10.2.8.6 Nontrivially Occluded Windows . 10–48
10.2.8.7 Determining the Command FIFO Entry Availability 10–48
10.2.8.8 Scaling . 10–48
10.2.8.9 Programming the Bresenham Scaler for Unoccluded

Spans . 10–49
10.2.8.10 Scaling of Occluded Spans . 10–50
10.2.8.11 Specifying Span Starting and Trailing Edges 10–51
10.2.8.12 Required Software Interlock . 10–51
10.2.9 Opaque-Line Mode . 10–52
10.2.9.1 Drawing Lines with Frame Buffer Writes 10–52
10.2.9.2 Drawing Lines with the Slope Registers 10–54
10.2.9.3 Extending and Linking 2D Lines 10–57
10.2.10 Transparent-Line Mode . 10–62

x

11 Programming

11.1 PCI Configuration Firmware . 11–1
11.1.1 Device Address Mapping . 11–1
11.1.2 Bus Mastering . 11–2
11.1.3 Interrupt Routing . 11–3
11.1.4 Expansion ROM . 11–3
11.2 Mode Switching . 11–3
11.2.1 VGA-to-2DA Mode Switching . 11–3
11.2.2 2DA-to-VGA Mode Switching . 11–4
11.2.2.1 Expected 2DA Operation During VGA Mode 11–5
11.3 Bit-Block Transfers . 11–5
11.3.1 Screen-to-Screen Copy . 11–5
11.3.2 Host-to-Screen Copy . 11–8
11.3.3 Scaled-Copy . 11–8
11.4 Dither Mathematics . 11–8
11.5 Scaling Filters . 11–9
11.6 Overlays . 11–10
11.6.1 Flicker-Free Monochrome Overlay Support 11–10
11.6.2 True Monochrome Overlay with Pixel Occlusion Bitmap

Hardware . 11–11
11.6.3 True 8-bpp Overlay in 16-bpp or 32-bpp Frame Buffers 11–12
11.7 Fills . 11–13
11.7.1 Solid . 11–13
11.7.2 Stippling or Filling with a Monochrome Brush 11–14
11.7.3 Tiling or Filling with a Non-Monochrome Brush 11–14
11.8 Lines . 11–15
11.8.1 Line Drawing Under X . 11–15
11.8.2 Line Drawing Under Win32 . 11–17
11.9 Text . 11–19
11.10 Repeat Loop Examples . 11–19
11.11 Video Registers . 11–22
11.11.1 Modifying the Contents of the Video Registers 11–22
11.11.2 Video Registers in 64-Bit and 32-Bit Frame Buffer Modes . . . 11–23
11.11.3 Video Refresh Calculations . 11–25
11.12 Programming for Alpha CPUs . 11–26
11.12.1 Programmed I/O Through the CPU Write Buffer 11–27
11.12.2 Address and Continue Register Access 11–28

xi

12 Hardware Interface

12.1 Frame Buffer Interface . 12–1
12.1.1 Hardware Mode Restrictions . 12–1
12.1.2 Frame Buffer Configuration Sensing 12–5
12.2 VGA Subsystem . 12–6
12.2.1 PCI–to–VGA Interface . 12–6
12.2.2 VGA-to-Frame Buffer Memory Interface 12–6
12.2.3 VGA-to-Video Back End Interface . 12–6
12.3 ROM and Generic Peripheral Port Interface 12–8
12.3.1 GPP Read and Write Access . 12–8
12.3.2 GPP Interrupts . 12–9
12.4 Video Port and Display Monitor Interface 12–9
12.4.1 VESA Advanced Feature Connector . 12–9
12.4.1.1 VAFC Operation . 12–10
12.4.1.2 Relationship Between vafc_vclk and vafc_dclk 12–10
12.4.1.3 VAFC Pixel Output Modes . 12–10
12.4.1.4 VAFC Pixel Input Modes . 12–11
12.4.1.5 VAFC Input Windows . 12–12
12.4.1.6 VAFC Blank Enable . 12–12
12.4.1.7 VAFC Output Screen Resolutions 12–12
12.4.1.8 VAFC Input Screen Resolutions . 12–13
12.4.2 Video Port Transceivers . 12–13
12.4.3 Monitor Connection . 12–13
12.4.4 Display Power Management Signaling 12–14
12.4.5 Display Data Channel . 12–14
12.5 Clocks and Clock Control . 12–15
12.5.1 Memory Clock . 12–15
12.5.2 Core Clock . 12–15
12.5.3 Pixel Clock . 12–15
12.5.4 VGA Dot Clock . 12–16
12.5.5 Test Clock . 12–16

A Pin Summary

xii

B Register Summary

C Technical Support, Ordering Information, and Associated
Literature

Index

Figures

1–1 Supported VESA Display Modes . 1–4
1–2 DECchip 21130 in Minimum System Configuration 1–5
1–3 Explanation of 21130 Chip Face Labels 1–8
2–1 DECchip 21130 Block Diagram . 2–2
4–1 Clock Domains . 4–3
4–2 PCI Clock Domain Signal ac Parameter Measurements 4–7
4–3 PCI Write — Cycle Start Timing . 4–10
4–4 PCI Read — Cycle Start Timing . 4–12
4–5 PCI Read or Write — Cycle End Timing 4–13
4–6 PCI Target Disconnect or Abort — pci_stop# Timing 4–14
4–7 PCI Configuration Cycle — pci_idsel Timing 4–15
4–8 PCI Parity — pci_par Timing . 4–16
4–9 Hyperpage Mode Memory Write Cycle Timing 4–17
4–10 Hyperpage Mode Memory Read Cycle Timing 4–18
4–11 Read-Modify-Write Memory Cycle Timing 4–19
4–12 CAS-Before-RAS Memory Refresh Cycle Timing 4–20
4–13 ROM Data Cycle Timing . 4–21
4–14 GPP Data Cycle Timing . 4–22
4–15 Pixel Clock Domain Signal ac Parameter Measurements 4–23
4–16 VAFC Clock Domain Signal ac Parameter Measurements . . . 4–24
4–17 VAFC Request Cycle Timing . 4–26
4–18 VAFC Video Data Transfer Cycle Timing 4–27
5–1 DECchip 21130 208-Pin PQFP Package 5–1
7–1 Memory Space Organization . 7–4
7–2 Core Space Maps . 7–4
7–3 Base Address Register 0 Register Space Organization 7–5
7–4 ROM Sparse Space PCI Read Data Format 7–15
8–1 Slope Registers and Drawing Octants 8–32

xiii

8–2 Gib-Endian Transfers . 8–48
8–3 Copy Buffer Layout . 8–52
8–4 Foreground and Background as a Function of Bitmap

Depth . 8–62
8–5 Cursor Value Bits to Pixels Mapping 8–83
8–6 Variable Pixel Formats . 8–94
8–7 RAM LUT Addressing in 15-bpp and 16-bpp True-Color

Modes . 8–97
8–8 Pixel Occlusion Bitmap Format . 8–98
8–9 Screen Parameters . 8–131
10–1 Simple Mode PCI Write-Data Format 10–7
10–2 Opaque-Stipple Mode PCI Write-Data Format 10–9
10–3 Opaque-Stipple Mode Operation . 10–10
10–4 Transparent-Stipple Mode PCI Write-Data Format 10–12
10–5 Transparent-Stipple Mode Operation 10–13
10–6 Opaque-Fill Mode PCI Write-Data Format 10–14
10–7 Opaque-Fill Mode Operation . 10–15
10–8 Copy Mode PCI Write Data Formats 10–20
10–9 Forward Span Copy . 10–24
10–10 Primed Forward Span Copy . 10–27
10–11 Copy Buffer Layout . 10–31
10–12 DMA-Read Copy-Mode PCI Write-Data Format 10–34
10–13 DMA-Read Copy . 10–38
10–14 Scaled-Copy Mode PCI Write Data Format 10–40
10–15 Scaled-Copy PCI DMA Start Address 10–41
10–16 Host-to-Screen Scaled-Copy and Video Rendering Pixel

Flow . 10–43
10–17 MCSR Format . 10–48
10–18 Opaque-Line Mode PCI Write-Data Format 10–53
10–19 Opaque Line Drawing . 10–58
10–20 Opaque-Line Drawing Sequence . 10–61
11–1 BitBlt Using Copy Mode Example . 11–7
11–2 Overlay Data in 16-bpp and 32-bpp Frame Buffers 11–13
11–3 Drawing Clipped Lines . 11–16
11–4 Frame Buffer Address Space in 64-Bit and 32-Bit Modes . . . 11–24
11–5 Video Address in 64-Bit and 32-Bit Modes 11–25
11–6 Video Scanline Addresses . 11–26

xiv

12–1 VGA Subsystem Interfaces . 12–7
12–2 Clock Generation . 12–17

Tables

1–1 21130 Chip Revision Levels . 1–7
2–1 Mode Restrictions . 2–11
3–1 Signal List . 3–1
3–2 Signal Description . 3–4
3–3 Signals by Function . 3–11
3–4 Signals and Active Levels by Direction 3–15
4–1 Absolute Maximum Ratings . 4–2
4–2 Normal Operating Conditions . 4–2
4–3 Pin Characteristics . 4–4
4–4 dc Parameters . 4–6
4–5 PCI Clock Domain Signal ac Parameters 4–8
4–6 PCI Write — Cycle Start Timing Parameters 4–10
4–7 PCI Read — Cycle Start Timing Parameters 4–12
4–8 PCI Read or Write — Cycle End Timing Parameters 4–13
4–9 PCI Target Disconnect or Abort — pci_stop# Timing

Parameters . 4–14
4–10 PCI Configuration Cycle — pci_idsel Timing Parameters . . . 4–15
4–11 PCI Parity — pci_par Timing Parameters 4–16
4–12 Hyperpage Mode Memory Write Cycle Timing

Parameters . 4–17
4–13 Hyperpage Mode Memory Read Cycle Timing Parameters . . . 4–18
4–14 Read-Modify-Write Memory Cycle Timing Parameters 4–19
4–15 CAS-Before-RAS Memory Refresh Cycle Timing

Parameters . 4–20
4–16 ROM and GPP Data Cycle Timing Parameters 4–21
4–17 Pixel Clock and VAFC Clock Domain Signal ac

Parameters . 4–25
4–18 VAFC Request Cycle Timing Parameters 4–26
4–19 VAFC Video Data Transfer Cycle Timing Parameters 4–27
6–1 Airflow Versus Temperature . 6–1
7–1 Core Space per Frame Buffer Option 7–3
7–2 Registers Supported by Write Alias Spaces 1, 4, 5, 6, and

7 . 7–6

xv

7–3 Base Address Register 0 Register Map 7–7
7–4 Targets for Writes to Alternate Control Space 7–9
7–5 Base Address Register 1 Memory Space Map 7–10
7–6 Base Address Register 1 VGA Register Map 7–11
7–7 Base Address Register 1 Palette and DAC Register Map 7–13
7–8 ROM Sparse Space PCI Read Data Field Description 7–15
8–1 21130 Registers . 8–2
8–2 Palette Snoop Response . 8–14
8–3 Memory Clock Frequency Select . 8–24
8–4 Graphics Modes . 8–45
8–5 Boolean Raster Operations . 8–64
8–6 GSCR Mode Field Description . 8–77
8–7 Typical Scaled-Copy Mode Operations 8–79
8–8 Cursor Pixel Value Bit Description . 8–83
8–9 Video Pixel Formats . 8–92
8–10 Variable Pixel Formats . 8–95
8–11 Pixel Occlusion Bitmap Field Description 8–98
8–12 VGA Register Port Map . 8–115
8–13 VGA External and General Register Port Map 8–116
8–14 Displayed Vertical Size as Function of HSP and VSP 8–118
8–15 VGA CRTC and Extended Register Indices 8–132
8–16 Typical Pixel Clock Frequencies . 8–170
8–17 VGA Graphics Controller Write Modes 8–180
9–1 PCI Transactions to 2DA Memory Space 9–6
9–2 PCI Transactions to Configuration Space and Expansion

ROM Space . 9–7
9–3 PCI Transactions to VGA Memory and I/O Space 9–8
9–4 Snooped DAC Write PCI Transactions to VGA Space 9–9
10–1 Mode-Dependent Frame Buffer Write Operations 10–2
10–2 Graphics Command Register Write Operations 10–3
10–3 Source and Destination Operands According to Mode 10–5
10–4 Simple Mode Parameters . 10–7
10–5 Opaque-Stipple Mode Parameters . 10–9
10–6 Transparent-Stipple Mode Parameters 10–12
10–7 Opaque-Fill Mode Parameters . 10–14
10–8 Transparent-Fill Mode Parameters . 10–17
10–9 Copy Mode Parameters . 10–19

xvi

10–10 Copy Mode Span Limits . 10–21
10–11 Assigning the Pixel Shift Value . 10–25
10–12 DMA-Read Copy-Mode Parameters . 10–33
10–13 Edge Mask Settings in DMA-Read Copy Mode 10–37
10–14 Edge Mask for Short Spans in DMA-Read Copy Mode 10–37
10–15 Scaled-Copy Mode Parameters . 10–39
10–16 Scaled-Copy Mode PCI Write Data Field Description 10–40
10–17 Opaque-Line Mode Parameters . 10–52
10–18 Opaque-Line Mode Parameters Using Slope Registers 10–55
10–19 Transparent-Line Mode Parameters . 10–62
11–1 21130 Base Address and Memory Space Enable Fields 11–1
11–2 PCI Latency Timer and Bus Master Enable Fields 11–3
11–3 Cursor Color Displayed with Monochrome Overlay 11–12
11–4 Fully Shadowed, Pseudo-Shadowed, and Video-Disabled

Registers . 11–22
11–5 Video Address Configuration Registers 11–25
12–1 Pin Usage in VGA Mode . 12–2
12–2 Pin Usage in 32-bit GPP and ROM Modes 12–2
12–3 Pin Usage in 64-bit GPP and ROM Modes 12–3
12–4 Pin Usage in 32-bit GPP and VAFC Modes 12–4
12–5 DPMS States . 12–14
A–1 Signals by Function . A–1
B–1 21130 Register Alphabetical List . B–1
B–2 21130 Register Summary . B–5

xvii

Preface

This manual describes the architecture, internal design, external interface,
and specifications of the DECchip 21130 PCI Integrated Graphics and Video
Accelerator.

Audience
This manual is for system designers, software developers, and hardware
engineers who use the DECchip 21130.

Manual Organization
This manual includes the following chapters and appendices and an index.

Chapter 1 Introduction
Chapter 2 Internal Architecture
Chapter 3 Pinout
Chapter 4 Electrical Specifications
Chapter 5 Mechanical Specifications
Chapter 6 Thermal Specifications
Chapter 7 Address Space
Chapter 8 Register Descriptions
Chapter 9 PCI Operations
Chapter 10 Graphics Operations
Chapter 11 Programming
Chapter 12 Hardware Interface
Appendix A Pin Summary
Appendix B Register Summary
Appendix C Technical Support, Ordering, and Associated Literature
Index

xix

Conventions
The following conventions are used throughout this manual.

Abbreviations

• bpp

The terms ‘‘bits per pixel’’ and ‘‘bits/pixel’’ are abbreviated as bpp.

• Binary Multiples

When representing binary multiples, the abbreviations K, M, and G (kilo,
mega, and giga) have the following values.

K = 210 (1024)
M = 220 (1,048,576)
G = 230 (1,073,741,824)

For example:

2KB = 2 kilobytes = 2 � 210 bytes
4MB = 4 megabytes = 4 � 220 bytes
8GB = 8 gigabytes = 8 � 230 bytes
2K pixels = 2 kilopixels = 2 � 210 pixels
4M pixels = 4 megapixels = 4 � 220 pixels

• Register Access

The abbreviations used to indicate the type of access to register fields and
bits have the following definitions:

IGN — Ignore

Bits and fields specified as IGN are ignored when written.

MBZ — Must Be Zero

Software must never place a nonzero value in bits and fields specified
as MBZ. Reads return unpredictable values. Such fields are reserved
for future use.

RAZ — Read As Zero

Bits and fields specified as RAZ are ignored on writes and return a zero
when read.

RC — Read Clears

Bits and fields specified as RC are cleared when read. Unless otherwise
specified, such fields cannot be written.

xx

RES — Reserved

Bits and fields specified as RES are reserved by Digital and should not
be used; however, zeros can be written to reserved fields that cannot be
masked.

RO — Read Only

Bits and fields specified as RO can be read and are ignored (not written)
on writes.

RW — Read/Write

Bits and fields specified as RW can be read and written.

R/W1C — Read/Write One to Clear

Bits and fields specified as R/W1C can be read. Writing a one clears
these bits for the duration of the write; writing a zero has no effect.

WO — Write Only

Bits and fields specified as WO can be written but not read.

Addresses
Unless otherwise noted, all addresses and offsets are hexadecimal.

Aligned and Unaligned
The terms aligned and naturally aligned are interchangeable and refer to data
objects that are powers of two in size. An aligned datum of size 2� is stored
in memory at a byte address that is a multiple of 2�; that is, one that has n
low-order zeros. For example, an aligned 64-byte stack frame has a memory
address that is a multiple of 64.

A datum of size 2� is unaligned if it is stored in a byte address that is not a
multiple of 2�.

Bit Notation
Multiple-bit fields can include contiguous and noncontiguous bits contained
in angle brackets (<>). Multiple contiguous bits are indicated by a pair of
numbers separated by a colon (:). For example, <9:7,5,2:0> specifies bits
9,8,7,5,2,1, and 0. Similarly, single bits are frequently indicated with angle
brackets. For example, <27> specifies bit 27.

Caution
Cautions indicate potential damage to equipment or loss of data.

xxi

Data Units
The following data unit terminology is used throughout this manual.

Term Words Bytes Bits Other

Byte ½ 1 8 —

Word 1 2 16 —

Dword 2 4 32 Longword

Quadword 4 8 64 2 Dwords

Hexaword 16 32 256 8 Dwords

External
Unless otherwise stated, throughout this manual the term external means not
contained in the DECchip 21130.

Note
Notes emphasize particularly important information.

Numbering
All numbers are decimal or hexadecimal unless otherwise indicated. In
cases of ambiguity, a subscript indicates the radix of nondecimal numbers.
For example, 19 is decimal, but 1916 and 19A are hexadecimal. (Also see
Addresses.)

Ranges and Extents
Ranges are specified by a pair of numbers separated by two periods (..) and
are inclusive. For example, a range of integers 0..4 includes the integers 0, 1,
2, 3, and 4.

Extents are specified by a pair of numbers in angle brackets (<>) separated by
a colon (:) and are inclusive. Bit fields and register sets are often specified as
extents. For example, bits <7:3> specifies bits 7, 6, 5, 4, and 3, and GSLR<7:0>
specifies a set of eight graphics slope registers.

xxii

Register Figures
The following figure defines the conventions used in register format figures.

31 28 27 26 25 24 23 22 21 20 19 418 314 13 12 11 0

Unused bits and fields (RAZ, RES, IGN) are shaded

RESRAZ Field NameField
Name

Field Name
or Mnemonic

B
N
O
M

B
N
O
M

B
N
O
M

B
N
O
M

B
N
O
M

B
N
O
M

B
N
O
M

B
N
O
M

B
N
O
M

Field or bit name or mnemonic

Bit numbers

Signal Names
Signal names are printed in lowercase, boldface type. Low-asserted signals
are indicated by the number sign (#) suffix. For example, pll_clk_in is a
high-asserted signal, and pll_clk_in# is a low-asserted signal.

xxiii

1
Introduction

The DECchip 21130 is a DRAM-based, 2D graphics accelerator for desktop
systems running Microsoft Windows 3.1, Windows 95, and Windows NT. The
21130 integrates a peripheral component interconnect (PCI) interface, graphics
accelerator, RAMDAC, phase-locked loop (PLL) timing generators, VGA
controller, and video windowing hardware to merge graphics and video data.

The 21130 continues to refine Digital’s proven graphics architecture.
It incorporates most of the 2D graphics features introduced with the
DECchip 21030 and adds many new features in a smaller package at lower
cost.

1.1 Features
The following is a summary of the 21130 hardware features.

PCI Interface
The 21130 provides a glueless PCI interface with separate access to the
VGA controller, 2D accelerator, and external BIOS ROM. It includes the PCI
registers and supports PCI master and target transactions and direct memory
access (DMA) read capability. The interface is fully electrically compliant
with the PCI Local Bus Specification, Revision 2.0. The 21130 and connected
external devices present only one PCI load.

Integrated Multimedia Real-Time Video Display Acceleration
Includes:

• YUV-to-RGB index color space conversion

• Image scaling for arbitrary source and destination bitmap sizes

• Support for the Microsoft display control interface (DCI) for video
acceleration (Video for Windows)

• Support for industry-standard codecs (Indeo, Cinepak, Video1, MPEG1,
JPEG, Px64)

Introduction 1–1

1.1 Features

• VESA advanced feature connector (VAFC)

Faster and Simpler Line Drawing
In many systems, software is responsible for all of the cumbersome line setup
calculations, including generating the Bresenham error and address increments
for the major and minor axis steps as well as the initial error term.

In the 21130’s streamlined interface, software needs to write only the absolute
dx and absolute dy values of the line segment to one of eight slope registers,
implicitly specifying the drawing octant. The 21130 then automatically
generates all of the Bresenham terms, initializes the Bresenham registers,
and draws up to 16 pixels. Lines can be extended beyond 16 pixels simply by
using the continue register.

Graphics and Multimedia Video Pipeline
The pipeline includes the command FIFO and parser, pixel engine, DMA read
FIFO, and graphics registers. It provides real-time scale, dither, and YUV-
to-RGB index conversion for video display in a window or full-screen video
display.

DMA Engine for Image Data
The 21130 has the DMA-read copy mode for fast host-to-screen bit-block
transfers (BitBlts) and the scaled-copy mode for host-to-screen stretchBlt
transfers. These modes allow large, contiguous regions to be directly
transferred from main memory to the frame buffer. The onchip PCI interface
allows main memory, other PCI graphics devices, or PCI video devices to be the
external source.

Proprietary Dithering
The 21130 implements Digital’s AccuLook dithering algorithm (patent-pending)
to support rendering to 8-bpp and 16-bpp bitmaps. The quality of dithered
8-bpp pseudo-color images surpasses standard 16-bpp, direct-color image
quality. The quality of the dithered 16-bpp, direct-color images is comparable
to 24-bpp, true-color image quality.

64-Byte Copy Buffer
The copy buffer supports high-bandwidth local frame buffer BitBlts.

Bresenham Line Drawing Engine and Setup Hardware
The onchip Bresenham line drawing engine and setup hardware performs
Bresenham per-pixel line stepping and most of the Bresenham-term setup.

Color Expansion
The 21130 expands monochrome bitmaps to various pixel depths for drawing
text or filling regions with solid or bitonal brushes.

1–2 Introduction

1.1 Features

32-Bit or 64-Bit DRAM Display Memory Controller
The memory controller provides a 64-bit data path to the frame buffer. When
the VAFC port is active, the memory controller is in 32-bit frame buffer mode,
and the upper half of the data path is available for full-time video I/O. The
memory controller supports hyperpage mode (extended data out—EDO)
DRAMs, and linear frame-buffer addressing in 1, 2, or 4MB frame buffer
configurations.

VGA Controller
The VGA controller supports VGA modes through 1316. It includes the video
timing function and VGA registers.

Palette and DAC
The 21130’s palette and DAC includes a 24-bit, true-color DAC; a 256-color
RAM look-up table (LUT) for graphics; and a 256-color ROM LUT for video.

VAFC Port
The VAFC port passes bidirectional RGB or indexed 8- or 16-bit video on the
upper 32 bits of the DRAM data path.

Generic Peripheral Port
The generic peripheral port (GPP) provides access to 8-bit devices such as
video processing circuits, audio chips, or I2C controllers. The 8-bit GPP is
multiplexed on the DRAM data path.

64 � 64 � 2 Onchip Cursor
The 21130 incorporates onchip cursor control. It retains a cursor image in its
off-screen frame buffer memory and passes its control to the palette and DAC.

High-Performance CRT Controller
The 21130 CRTC supports the following VESA-standard, 75-Hz, noninterlaced
resolutions (Figure 1–1):

1280 � 1024 8-bpp
1024 � 768 8- and 16-bpp
800 � 600 8-, 16-, and 24-bpp
640 � 480 8-, 16-, and 24-bpp

Note

For resolutions with 1024 or more vertical scanlines, the vertical front
porch must be a minimum of two scanlines.

Introduction 1–3

1.1 Features

Figure 1–1 shows the supported VESA modes. The figure does not show lower-
resolution, VGA-compatible display formats for VGA text and graphics (VGA
modes 0 through 1316).

Figure 1–1 Supported VESA Display Modes

*Packed pixels, not accelerated

VESA Int10 mode (hexadecimal)101

198.00

115

31.50

49.50

78.75

135.00

63.00

99.00

157.50

94.50

148.50

126.00

101

103

104

107

111

114

117

112

115

112

8−bpp 16−bpp 24−bpp* 32−bpp

640 X 480

800 X 600

1024 X 768

1280 X 1024

31.50

The peak memory bandwidth is the product of the pixel rate and pixel depth.

Legend:

Peak memory bandwidth (MB/s) 1MB frame buffer
2MB frame buffer

Display Power-Management Signaling
The 21130 also supports the VESA display power-management signaling
(DPMS) for EPA Energy Star (Green PC) requirements. (See the VESA
Monitor Timing Proposed Standard for 640X480, 800X600, and 1280X1024
at 75 Hz, VDMT 75HZ Rev 1.2P and the VESA Display Power Management
Signaling (DPMS) Proposal, Version 1.0p, Revision 0.7p for more information.)

Functions Not Supported
The 21130 does not support the complete Windows set of 256 Boolean raster
operations. The Windows manager and most applications typically use only
three or four of the 256 Boolean raster operations (raster ops or ROPs). The
most commonly used ROPs are included in the 16 functions supported by the
21130 hardware. For the infrequent cases when either the Windows NT
display driver or Windows 95 display driver encounters an unsupported

1–4 Introduction

1.1 Features

ROP, it defaults to the graphics device interface (GDI). This does not affect
performance for Windows or the majority of applications (including Windows
benchmarks) and has only a negligible effect on the performance of the
remaining minority of applications.

1.2 Minimum System
The DECchip 21130 plays with a multiplicity of processors and operating
systems and graphical user interfaces (GUIs). Its high level of integration
facilitates the lowest cost graphics and multimedia subsystem implementation
with the minimum real-estate requirements on the motherboard or as a
plug-and-play option.

The 21130 allows simple, glueless, multimedia subsystem implementations.
Figure 1–2 shows the simplest configuration, requiring only four chips.

Figure 1–2 DECchip 21130 in Minimum System Configuration

PCI
Bus

R

G

B

Sync

Blank
32

Frame Buffer256K X 16
EDO DRAM

32

BIOS
ROM

8

DECchip
21130

1.3 Basic Programming Model
In the basic 21130 programming model, the processor writes directly to
addresses within the 21130’s frame buffer address space. The data is
interpreted according to the current graphics mode to perform the desired
operation. Exceptions to this paradigm are described next.

There are four primary 21130 operating modes: simple, stipple, line, and
copy. Each primary mode of operation has an associated byte mask, Boolean
raster operation, and bitmap depth. The byte mask determines which bits in
a pixel can be modified during a write. The raster operation provides one of
sixteen 2-operand Boolean functions of source (or pattern) and destination, and

Introduction 1–5

1.3 Basic Programming Model

automatically performs a read-modify-write cycle when necessary. The bitmap
depth specifies how pixel data maps to frame buffer Dwords.

Simple Mode
In simple mode, writes to the frame buffer are similar to writes to main
memory, except for the optional effects of the byte mask, pixel mask, raster
operation, and bitmap depth. In this mode, the byte mask and the pixel mask
determine which pixels are written.

Stipple Mode
In stipple mode (color expansion mode), data written to the frame buffer is
interpreted as a monochrome pattern, in which the following occurs:

• Ones are expanded into foreground pixels.

• Zeros are either expanded into background pixels (opaque stipple mode) or
not expanded (transparent stipple mode).

In the opaque and transparent stipple modes, the pixel mask can be
programmed to write fewer than 32 pixels.

Line Mode
In line mode, the processor sets up registers for the Bresenham engine and
then writes into the frame buffer at the starting address of the line. The data
written by the processor is interpreted as a monochrome pattern, in which the
following occurs:

• Ones are expanded into foreground pixels.

• Zeros are either expanded into background pixels (opaque line mode) or
have no effect (transparent line mode).

Copy Mode
In copy mode, the processor writes alternately to the source and destination
address within the frame buffer. The data written by the processor is
interpreted as a bit mask that specifies which pixels are to be read (source)
or written (destination).

1.3.1 Extensions to the Basic Programming Model
Several extensions to the basic programming model are available.

Stipple-Fill Mode
In stipple-fill mode, each write causes the 21130 to fill as many as 2K pixels on
a scanline, using the 32-bit data as a 32-bit monochrome pattern.

1–6 Introduction

1.3 Basic Programming Model

Line Mode
In line mode, the eight slope registers (one per octant) allow the processor to
offload some of the traditional line setup computations. The processor writes
the absolute values of the line rise and run to one of the slope registers,
implicitly specifying a drawing octant, and causes the 21130 to generate the
Bresenham address and error terms and draw up to 16 pixels at one time.
Consequently, the processor can specify a short, connected line with one 32-bit
write. Lines can be extended beyond 16 pixels simply by writing the continue
register.

Copy Mode
In copy mode, the copy-64 source and copy-64 destination registers allow the
processor to read 64 unmasked bytes from the source and write 64 unmasked
bytes to the destination with one write to each register. This makes full use of
the 64-byte copy buffer for large area copies of 8-bit pixels.

In the DMA copy modes, the processor can specify the addresses of the source
in PCI memory space. One write to the frame buffer then causes the 21130 to
begin reading from the PCI and writing to the frame buffer.

1.4 Chip Revisions
There are 21130 chips with different revision levels. As a result, you need to
check for the chip revision number printed on the face of the chip. Table 1–1
describes the revision levels and Figure 1–3 shows where to locate the printed
revision level on the chip. This information is also available in the PCI class
and revision register (PCRR, see Section 8.2.3).

This manual describes revision C (DC7538C).

Table 1–1 21130 Chip Revision Levels

Revision Level Chip Revision Number

A DC7538A

B DC7538B

C DC7538C

Introduction 1–7

1.4 Chip Revisions

Figure 1–3 Explanation of 21130 Chip Face Labels

130239_C

YYYYYYYVendor Number

DC7538CDigital Number

XXXX XXXXXXDate Code

DECchip 21130Part Number

1–8 Introduction

2
Internal Architecture

This chapter describes the DECchip 21130 microarchitecture. Figure 2–1 is a
block diagram of the chip showing its major functional areas.

2.1 PCI Interface
The PCI interface connects the 21130 core to the PCI bus. The primary
function of the PCI interface is to keep the command FIFO filled with writes
and commands issued over the PCI to the 21130 registers and frame buffer.

The PCI interface supports most of the PCI bus commands as a target. It
also allows the 21130 to be a PCI master for direct memory access (DMA)
operations, transferring pixel data between memory that can be accessed from
the PCI and the 21130 frame buffer. DMA read data is taken from the PCI
and passed to the DMA read FIFO. As a target or master, the PCI interface
initiates and responds to different types of termination sequences. The PCI
interface controls all access to the PCI configuration registers.

2.1.1 PCI Registers
The PCI registers reside in the 21130 PCI configuration space and include the
device-independent registers required for all PCI devices as well as the PCI
device-specific registers in the 21130.

2.2 Command FIFO
The command FIFO contains 64 Dword entries. It buffers writes to the frame
buffer and core registers for processing by the 21130 core. The PCI interface
loads the command FIFO with an address followed by an arbitrary number of
data entries. The command parser unloads the entries and initiates processing.

Internal Architecture 2–1

2.2 Command FIFO

Figure 2–1 DECchip 21130 Block Diagram

Frame Buffer
Data Path
Frame Buffer
Address
Frame Buffer
Control

64
Video

Refresh
FIFO

Video Sync
Video Blank

Stencil
FIFO

R

VAFC and

G

VGA I/O

B

M
U
X

8

Video
Data
Path

Video

Graphics

LUT

LUT
(RAM)

(ROM)

PCI Interface

Clock PLLs
and Logic

FB and
Device
Access and GPP

PCI

BIOS ROM

Timing
Video

Cursor
Control

Copy
Buffer/
DMA
Write
FIFO

Core
Registers

Command
FIFO

Command
Parser

DMA
Read
FIFO

Reference
Clock

64

32

32

3232

32

32

24

32

16

8

32

32

DACs

64

Pixel
Engine

and
Multimedia

Pipeline

64

32

VGA
Controller

VGA
Registers

Address
Generator

Sequencer

Memory
Controller

Data Path and
Raster OpsPixel Merge

and
Write Buffer

64

PCI−VGA
Interface

32

32

32

16 16

Registers

PCI
Configuration

2–2 Internal Architecture

2.2 Command FIFO

The command FIFO contains only core-space write data, such as writes to the
21130 core registers, alternate control space, and frame buffer space. Because
the PCI interface accepts burst memory writes to base address 0 as a PCI
target, the command FIFO can independently store an address or data in each
of its 64 entries. In other words, the command FIFO can hold any combination
of addresses and data, from one address and 63 entries of burst data to 32
pairs of address and data entries. If the command parser detects a sequence
of one address and multiple data entries, it generates and matches the correct
address to each data entry when it unloads the command FIFO.

The command FIFO is a boundary between chip clocking domains (see
Figure 4–1). The input runs at the PCI clock rate and the output runs at the
21130 core clock rate.

2.3 Command Parser
The command parser processes graphics commands and register write accesses.
It unloads graphics commands (in the form of address and data) from the
command FIFO and performs initial processing before passing commands to
the pixel engine. If the command parser detects a sequence of one address and
multiple data entries, it generates an address for each data entry.

The command parser runs at the 21130 core clock rate.

2.3.1 Pixel-Processing Pipeline Coherence
The pixel-processing pipeline consists of the pixel engine, pixel-merge function,
write buffer, and memory controller. The command parser imposes hardware
register interlocks to ensure coherent processing through the pipeline. The
interlocks allow the pipeline to operate concurrently with register updates; that
is, updates to graphics operation parameters.

Most of the parameter registers are double-buffered. The command parser
schedules buffered-register loading and swapping, and, in certain cases, delays
command processing to maintain parameter coherence through the pipeline.
In the case of writes to the command status register, raster operation register,
mode register, and scaled-copy control register, the interlock mechanism waits
until the pipeline has been flushed before it resumes processing.

Note

The deep register is not managed by hardware interlock and requires
software scheduling.

Internal Architecture 2–3

2.3 Command Parser

2.3.2 Frame Buffer Writes
The command parser detects all writes to the frame buffer and begins
processing the graphics command specified by the current graphics mode.
The command parser does not perform any pixel address or data calculations,
but forwards predigested commands to the pixel engine for processing.

2.3.2.1 Fill Mode
For all fill mode drawing, the command parser breaks large-span fill commands
into 32-pixel span commands which the pixel engine can accept and process.
The pixel engine can process individual pixels, 16-pixel lines, and 32-pixel
spans.

2.3.2.2 Bresenham Setup Hardware
The command parser incorporates the Bresenham setup hardware (the
Bresenham engine is in the pixel engine). When the command parser receives
a write to the slope registers, span width register, or slope-no-go registers, it
calculates the Bresenham terms: length, initial error, error increments 1 and
2, and address increments 1 and 2. When the write is to a slope register or the
span width register, the command parser also forwards the line command to
the pixel engine. The command parser forwards all other line, span, and pixel
mode drawing commands directly to the pixel engine.

2.4 Pixel Engine
The pixel engine does all of the pixel address and value calculations. It receives
single-pixel, 16-pixel line, and 32-pixel span commands from the command
parser and reduces them into individual 16-bit-aligned or 64-bit-aligned frame
buffer address and data pairs destined for the memory controller. The pixel
engine contains the following pixel processing hardware to generate pixel
addresses and data.

• Stipple logic

The stipple logic expands a monochrome bitmap (and optional bitmap
mask) into foreground or background color (or neither), on a per-pixel basis
over a 16-pixel line or 32-pixel span.

2–4 Internal Architecture

2.4 Pixel Engine

• Bresenham engine

The Bresenham engine steps through the pixels of a line (up to 16 pixels at
a time), generating a pixel address for each step.

• Dither logic

The dither logic implements Digital’s AccuLook dithering algorithm. The
algorithm maps 8 bits per channel (24-bpp) YUV or RGB color to various
combinations of 8-, 16-, or 32-bpp YUV or RGB. The source of the 24-bpp
RGB is the scaled-copy, 24-bit pixel stream.

After the pixel engine reduces spans into pixels and calculates the mode-
dependent pixel data, it translates pixel addresses into frame buffer addresses
as a function of the frame buffer depth and target bitmap. The pixel engine
forwards each memory access to the pixel-merge function.

The pixel engine receives data directly from the memory controller for
copy operations. In copy mode, the pixel engine first forwards a series of
read requests, tagged with the source address, to the pixel-merge function.
Eventually, the memory controller returns source pixel data (64 bits at a time)
to the copy buffer. Then, when instructed by the command parser, the pixel
engine unloads the copy buffer and forwards that data back to the pixel-merge
function as a write tagged with the destination address.

The pixel engine runs at the core clock rate.

2.5 Memory Controller
The memory controller provides the interface to the frame buffer and responds
to requests from two sources: the pixel engine and the frame buffer and device
access function. It responds to requests from the pixel engine (through the
pixel-merge function and write buffer) for accelerated drawing operations in
the frame buffer.

2.5.1 Pixel Merge
To improve drawing performance, the pixel merge function merges pixel
writes to eliminate consecutive writes to different bytes at the same quadword
address. (Such write sequences occur frequently during line drawing and
multimedia operations.) The pixel merge function:

• Receives requests for frame buffer writes from the pixel engine

• Temporarily stores the requests

• Determines if the writes are to different bytes in the same quadword

• Merges consecutive writes to the same quadword

Internal Architecture 2–5

2.5 Memory Controller

Consecutive writes are not merged if they do not use the same raster operation
or if consecutive operations are writing to the same byte. The pixel merge
buffer is flushed when the write buffer is empty.

The pixel merge function runs at the core clock rate.

2.5.2 Write Buffer
The DRAM sequencer often processes write commands faster than the graphics
engine generates them, and the write buffer helps to optimize DRAM use
between drawing operations and screen refresh. The write buffer is a 16-entry
FIFO that buffers merged writes from the pixel engine. The memory controller
unloads the buffer when the DRAM is available for drawing.

The write buffer is written at the core clock rate and read at the memory clock
rate (twice the core clock rate).

As long as the write buffer contains valid entries, the memory controller
continues to unload addresses and data. The memory controller performs
a Boolean ROP function on each write, as specified by the raster operation
register. If the ROP is a function of the destination, the memory controller
automatically performs the necessary read-modify-write operation.

The memory controller returns requested read data to the pixel engine through
the copy buffer.

2.5.3 Frame Buffer and Device Access Requests
The memory controller responds to occasional asynchronous requests from the
frame buffer and device access function for the following:

• Direct host reads of the frame buffer

• External EEPROM reads and writes

• GPP reads and writes

Note

The 21130 supports one external (E)(E)PROM. It and its associated
functions are referred to as the BIOS ROM, EEPROM, flash ROM, PCI
expansion ROM (space), and ROM ((sparse) space).

To conserve 21130 pins, the GPP address, data, and control lines are tied to
a subset of the memory controller address and data lines. Therefore, to read
or write the external EEPROM or a generic peripheral, the memory controller

2–6 Internal Architecture

2.5 Memory Controller

must interrupt processing of write buffer address and data. (See Section 2.12.2
for more information about mode restrictions due to shared pins.)

When the memory controller receives a request from the frame buffer and
device access function, it suspends write-buffer entry processing within a
maximum latency and services the request. The frame buffer and device access
function specifies the type of access and passes address and data as required.
The memory controller performs the following cycles:

• GPP or EEPROM access—the memory controller drives an address and
either drives (write) or latches (read) a byte of data.

• Cursor data fetch—the memory controller performs a frame buffer read at
the specified address and returns two successive quadwords to the frame
buffer and device access function.

After an asynchronous access has been serviced, the memory controller
resumes processing addresses and data from the write buffer.

The memory controller also issues CAS-before-RAS refresh cycles frequently
enough to keep the dynamic memory refreshed.

The memory controller runs at twice the core clock rate, and can perform CAS
page-mode cycles at the core clock rate.

2.6 Core Registers
The core registers are all the registers physically implemented in the base
address 0 register space core (Section 7.5.1). Many of the core registers are
double-buffered to allow pipelined graphics processing to overlap register
updates. The command parser controls the core register read access, write
access, and double-buffering.

2.7 DMA Read FIFO
The DMA read FIFO contains 32 Dword entries. It is loaded by the PCI
interface during a DMA-read copy operation and unloaded by the pixel engine.
The DMA read FIFO contains only pixel data.

The DMA read FIFO is a boundary between chip clocking domains (see
Figure 4–1). The input runs at the PCI clock rate and the output runs at the
21130 core clock rate.

Internal Architecture 2–7

2.8 Copy Buffer

2.8 Copy Buffer
The copy buffer contains 8 quadword (64-bit) entries. It is used when
transferring data from a frame buffer source to a destination in the frame
buffer.

The memory controller returns source data to the copy buffer. In copy mode,
the pixel engine forwards the data, tagged with a destination address, down
the pixel processing pipeline to the memory controller.

2.9 Frame Buffer and Device Access
The frame buffer and device access (FBDA) function collects requests for access
to the frame buffer and external devices (GPP and EEPROM) from several
sources. It prioritizes and forwards the requests to the memory controller.
The memory controller processes the requests as interrupts to write-buffer
processing. The following requests are routed to the FBDA function:

• Direct frame buffer read—from the host through the PCI interface.

• External EEPROM read and write—PCI expansion ROM space read
requests detected and routed by the PCI interface.

The FBDA function provides the signals required to write one 8-bit EEPROM
and a generic peripheral.

2.10 Generic Peripheral Port
The generic peripheral port (GPP) consists of an 8-bit data bus and several
control signals. It can connect, with little or no glue logic, to many types
of devices including audio chips, DSPs, and a variety of video processing
components.

To conserve 21130 pins, the GPP address, data, and control lines are tied to a
subset of the memory controller address and data lines. Therefore, to read or
write a generic peripheral (or the external EEPROM), the memory controller
must interrupt processing of write buffer address and data. (See Section 2.12.2
for more information about mode restrictions due to shared pins.)

Note

The GPP should be accessed only during vertical blank.

2–8 Internal Architecture

2.10 Generic Peripheral Port

The GPP will also connect to an I2C controller, which in turn can control
multiple devices through the I2C serial bus. The target devices that were
the basis for GPP definition include the Philips PCD8584 (I2C controller),
SAA7110, SAA7191B, and SAA7199, and the Brooktree Bt812, Bt819, and
Bt855. The GPP also connects to an ICS2595.

2.11 VGA Subsystem
The 21130 powers up with VGA active and the 2DA inactive (at reset, the VGA
enable bit in the deep register (GDER <22>, Section 8.5.2) is set). When the
21130 is operating in VGA mode, the PCI address decoders are disabled, and
addresses propagate through to the PCI-to-VGA interface, which contains its
own address decoders.

Because the VGA controller has ISA characteristics on its system interface, the
PCI-to-VGA interface translates PCI protocols, data formats, and addresses
into their ISA-like equivalents. The PCI-to-VGA interface is a layer of logic
and state machines between the back of the PCI interface and the ISA front
end of the VGA controller.

In VGA mode, two RAS signals independently control a 16-bit-wide memory
bank. In 2DA mode, the two RAS signals are tied internally and have identical
timing to drive 32 or 64 bits of frame buffer DRAMs. (A third RAS signal
is active in 2DA mode, if there is a second bank of frame buffer memory.)
The VGA controller uses only 32 bits of frame buffer, regardless of the actual
memory width.

The VGA memory control, address, and data signals are multiplexed with
their equivalents from the 2DA memory controller immediately before the pins.
In VGA mode, the VGA controller has complete control of the frame buffer,
including display refresh and DRAM refresh functions.

See Section 2.12.2 for more information about mode restrictions due to shared
pins.

The 21130 uses the VGA CRT controller (CRTC) for the VGA and 2DA modes
of operation. It generates timing for graphics resolutions up to 1280� 1024.

2.12 Frame Buffer Memory
The 21130 uses one size of memory device, the 256K � 16 DRAM with
extended data out (EDO) capability. This high-bandwidth feature is also known
as hyperpage mode.

Internal Architecture 2–9

2.12 Frame Buffer Memory

2.12.1 Frame Buffer Configurations
Frame buffer memory is organized as one or two banks of 32-bit or 64-bit
memory. The minimum configuration uses two DRAMs comprising a frame
buffer 32 bits wide and 256K (one bank) deep. The minimum high-performance
configuration uses four DRAMs in parallel for a 64-bit data path, 256K deep.
The maximum configuration adds a second bank of 4 DRAMs (8 DRAMs total)
for a frame buffer configuration 64 bits wide and 512K deep.

Software can deliberately set frame buffer width to 32 bits when a 64-bit frame
buffer is present, but should not set width to 64 bits if only a 32-bit frame
buffer is present. In the VGA mode of operation, or when the VAFC port is in
active use, the frame buffer operates in 32-bit mode, regardless of the actual
amount of memory attached to the frame buffer interface. At power-up, the
21130 memory controller is in the 32-bit mode; the CPU must intervene to set
it to the 64-bit mode of operation.

2.12.2 Hardware Mode Restrictions
In normal operation, the 86 memory data bus signals represent data and
control signals for frame buffer memory cycles. However, the physical pins are
shared with other subsystems on the 21130 chip that access the graphics BIOS
ROM, optional peripheral chips, and the VAFC.

After the PCI reset signal is asserted, the 21130 is operating with VGA
enabled. In VGA mode:

• The VGA feature connector (not VAFC) output can be used.

• ROM can be accessed.

• The lower half of the 64-bit data bus can be used for VGA frame buffer
accesses.

• Sixteen-bit VAFC and GPP cycles are not available.

When the 2DA mode with the 64-bit data bus is selected, ROM and GPP cycles
are available, and neither 8-bit (feature connector) nor 16-bit VAFC mode is
available.

If a 32-bit data bus mode is selected while operating in 2DA mode, either GPP
and VAFC modes or ROM and GPP modes are available. (VAFC and ROM
are not available simultaneously because they use the same pins.) Table 2–1
summarizes these restrictions and limitations.

2–10 Internal Architecture

2.12 Frame Buffer Memory

Table 2–1 Mode Restrictions

Functions

Mode Available Not Available Limitations

VGA ROM and feature
connector (FC)

VAFC, GPP During VGA mode, only standard FC
(not VAFC) output is available and
GPP operations are not allowed.

32-bit VAFC ROM, GPP During VAFC mode, ROM reads
return undefined data.

32-bit GPP and VAFC or
GPP and ROM

FC ROM and VAFC are not available
simultaneously.

64-bit GPP and ROM VAFC, FC —

2.13 Video Back End
The video timing and cursor control functions provide monitor timing, schedule
screen refresh, and provide a 2-bpp cursor during refresh.

2.13.1 Monitor Timing
The video timing function (which is part of the VGA subsystem) provides
the timing for the horizontal sync, vertical sync, and blank signals to drive a
noninterlaced monitor. The signal edges are specified by the parameters in
the video control registers and the VGA CRTC registers. The sync and blank
signal output is controlled by the palette and DAC function.

2.13.2 Video Refresh
The video base address is loaded into the refresh address generator at top-
of-frame. The refresh address is incremented until the end of the scanline
is reached (specified by the scanline width). At the end of the scanline, the
scanline increment value is added to the refresh address to determine the
starting address of the next scanline. This address is then used with the
scanline width to determine the end of the next scanline, and so on.

2.13.3 Pixel Occlusion Bitmap
The 21130’s screen refresh logic contains a 256 � 24 ROM used as a dedicated
video palette color LUT and a 256 � 24 RAM used as a standard graphics
palette color LUT. The refresh logic chooses between the graphics and video
LUTs on a pixel-by-pixel basis. The selection data is provided by the pixel
occlusion bitmap (a 1-bpp choice map) stored in the frame buffer. During
horizontal retrace, a scanline’s worth of choice information is loaded from the

Internal Architecture 2–11

2.13 Video Back End

choice map. The choice bits control the palette selection for the pixels on the
scanline.

To reduce the amount of off-screen memory required to store the choice map
(and also the memory bandwidth required to read the map), the map data
for consecutive scanlines are run-length encoded. A field that indicates the
number of consecutive scanlines to which the map information is to be applied
is stored with each scanline of map information. Therefore, the memory
required to store the choice map is scaled according to the complexity of the
video window geometry rather than screen size.

2.13.4 Cursor Generation
The video back end monitors which scanline is currently being refreshed.
During the horizontal blank time preceding a scanline that intersects the
cursor, the video back-end cursor logic generates a request to the memory
controller to read a scanline’s worth of 2-bpp cursor. Then, at the proper
position during the horizontal scan, the video back-end cursor logic drives
up to 64 consecutive 2-bit cursor values to the palette and DAC function,
synchronously with the video stream and monitor timing.

2.13.5 VAFC Port
The 21130 incorporates an industry-standard VESA advanced feature
connector (VAFC) interface, which is an extension of the original VGA feature
connector. The original feature connector enables multiple graphics cards to
share a common DAC and monitor. The VAFC acts as a local multimedia port
for sending or receiving video from another chip or card.

The VAFC port shares pins with the upper half of the frame buffer data bus.
Consequently, when moving video data in either direction over this port, the
21130 operates in 32-bit frame buffer mode. Theoretically this reduces frame
buffer bandwidth and size, so some display modes that are normally available
may not operate while moving video through this port. This is not a problem
for applications such as NTSC output, and there is no impact on multimedia
video incoming on the PCI. (See Section 2.12.2 for more information about
mode restrictions due to shared pins.)

Video arriving through the VAFC port is not stored in the frame buffer, but
merges into the video stream before the DAC’s video LUT. The video must be
in a standard RGB format (rather than YUV).

The VAFC port is controlled by the alternate video control register.

2–12 Internal Architecture

2.13 Video Back End

2.13.6 Palette and DAC
The palette and DAC function implements a high-performance, 24-bit, true
color RAMDAC with the added capability to select the following as DAC input:

• 24-bit RAM LUT (graphics)

• 24-bit ROM LUT (video)

• 24-bit pixel data (RAM and ROM LUTs are bypassed)

In addition, the palette and DAC function controls the composite blank output;
determines whether sync output is separate horizontal sync and vertical sync
or composite sync on the green output; and controls cursor output as follows:

• Cursor disabled

• 3-color cursor

• 2-color highlight cursor (Microsoft Windows or XGA cursor)

• 2-color cursor (X Windows cursor)

2.14 Clocks and Clock Control
In addition to the externally supplied PCI clock, the 21130 has two internally
generated primary clocks: the memory clock and the pixel clock.

The memory clock is a 66-MHz (nominal) clock to the accelerator section,
VGA controller, and memory controller. It is generated by a PLL-based clock
generator circuit. The memory clock frequency is programmable and is selected
in the PCI clock control register.

The core clock is also used by the accelerator section. It is generated by the
memory clock PLL and is one-half the frequency of the memory clock.

The pixel clock is generated by a programmable source, which is based on a
second PLL circuit. It can generate pixel clock rates between 8 and 135 MHz.
The frequency is selected in the clock control A and B registers (VXCKAR and
VXCKBR, Section 8.14.10). Both the memory clock and the pixel clock are
derived from the same reference clock, provided by a low-cost 14.31818-MHz
crystal.

The pixel clock for video generation can be sourced from an internal PLL
circuit or an external ICS2595 device. The pixel clock is driven either by the
PLL directly or the VGA controller. The PLL drives the VGA dot clock to the
VGA controller where it is divided or not, depending on the specific VGA mode,
and returned to the clock generation function as the VGA pixel clock.

Internal Architecture 2–13

2.14 Clocks and Clock Control

The clock register determines whether the VGA dot clock frequency is
controlled by the VGA miscellaneous output register or directly by the clock
register.

In test mode, either of the two internally generated clocks can be selected as
the test clock output. The PCI clock control register (PCCR, Section 8.2.8)
selects the pixel clock or memory clock as the test clock source.

2–14 Internal Architecture

3
Pinout

Sections 3.1 through 3.3 list the DECchip 21130 external signals and their
associated pins, describe the external signals, and list the signals according to
function.

Note

By convention, low-asserted signals carry the suffix #. High-asserted
signals have no suffix.

3.1 Signal List
Table 3–1 lists the external signals and their associated pins.

Table 3–1 Signal List

Pin Signal Pin Signal Pin Signal

Pins 1 through 29

— — 10 memdata<06> 20 vsync
1 memdata<13> 11 memdata<05> 21 hsync
2 memdata<12> 12 memdata<04> 22 blank#
3 memdata<11> 13 memdata<03> 23 vafc_vclk
4 memdata<10> 14 memdata<02> 24 grdy
5 Vss (video) 15 memdata<01> 25 vafc_dclk
6 Vdd (video) 16 memdata<00> 26 Vdd (core0)
7 memdata<09> 17 Vss (ac0) 27 Vss (core0)
8 memdata<08> 18 vafc_en# 28 pixclk
9 memdata<07> 19 evideo# 29 pll_test

(continued on next page)

Pinout 3–1

3.1 Signal List

Table 3–1 (Cont.) Signal List

Pin Signal Pin Signal Pin Signal

Pins 30 through 59

30 ddc_data 40 ref 50 dac_Vss
31 test_in 41 opamp_Vdd 51 Vss (pci0)
32 pll_Vss 42 dac_Vdd 52 Vdd (pci0)
33 filter 43 comp 53 pci_inta#
34 pll_Vdd 44 opamp_Vss 54 pci_rst#
35 pll_Vss 45 blue 55 pci_gnt#
36 xtal2 46 dac_Vss 56 pci_req#
37 xtal1 47 green 57 pci_ad<31>
38 pll_Vss 48 dac_Vss 58 pci_ad<30>
39 fsadjust 49 red 59 pci_ad<29>

Pins 60 through 89

60 pci_ad<28> 70 Vdd (pci2) 80 Vss (pci3)
61 Vss (pci1) 71 Vss (pci2) 81 pci_clk
62 Vdd (pci1) 72 pci_ad<22> 82 Vss (pci4)
63 pci_ad<27> 73 pci_ad<21> 83 pci_cbe<2>#
64 pci_ad<26> 74 pci_ad<20> 84 pci_frame#
65 pci_ad<25> 75 pci_ad<19> 85 pci_irdy#
66 pci_ad<24> 76 pci_ad<18> 86 pci_trdy#
67 pci_cbe<3># 77 pci_ad<17> 87 pci_devsel#
68 pci_idsel 78 pci_ad<16> 88 pci_stop#
69 pci_ad<23> 79 Vdd (pci3) 89 pci_perr

Pins 90 through 119

90 pci_serr 100 pci_ad<10> 110 pci_ad<03>
91 pci_par 101 pci_ad<09> 111 pci_ad<02>
92 Vdd (pci4) 102 pci_ad<08> 112 pci_ad<01>
93 Vss (pci5) 103 Vdd (pci5) 113 pci_ad<00>
94 pci_cbe<1># 104 Vss (pci6) 114 Vdd (pci6)
95 pci_ad<15> 105 pci_cbe<0># 115 Vss (pci7)
96 pci_ad<14> 106 pci_ad<07> 116 gp_cs#
97 pci_ad<13> 107 pci_ad<06> 117 gp_reset#
98 pci_ad<12> 108 pci_ad<05> 118 gp_int
99 pci_ad<11> 109 pci_ad<04> 119 gp_stb#

(continued on next page)

3–2 Pinout

3.1 Signal List

Table 3–1 (Cont.) Signal List

Pin Signal Pin Signal Pin Signal

Pins 120 through 149

120 rom_ce# 130 memdata<58> 140 memdata<49>
121 vafc_data<0> 131 memdata<57> 141 memdata<48>
122 vafc_data<1> 132 memdata<56> 142 Vss (dc0)
123 vafc_data<2> 133 Vss (ac1) 143 Vdd (dc0)
124 Vdd (ac0) 134 memdata<55> 144 memdata<47>
125 memdata<63> 135 memdata<54> 145 memdata<46>
126 memdata<62> 136 memdata<53> 146 memdata<45>
127 memdata<61> 137 memdata<52> 147 memdata<44>
128 memdata<60> 138 memdata<51> 148 memdata<43>
129 memdata<59> 139 memdata<50> 149 memdata<42>

Pins 150 through 179

150 memdata<41> 160 memdata<32> 170 memaddr<1>
151 memdata<40> 161 Vdd (dc1) 171 memaddr<0>
152 memdata<39> 162 Vss (dc1) 172 Vss (ac2)
153 Vdd (ac1) 163 memaddr<8> 173 oeb#
154 memdata<38> 164 memaddr<7> 174 cas<7>#
155 memdata<37> 165 memaddr<6> 175 cas<6>#
156 memdata<36> 166 memaddr<5> 176 cas<5>#
157 memdata<35> 167 memaddr<4> 177 cas<4>#
158 memdata<34> 168 memaddr<3> 178 cas<3>#
159 memdata<33> 169 memaddr<2> 179 Vdd (core1)

Pins 180 through 208

180 Vss (core1) 190 memdata<30> 200 memdata<21>
181 cas<2># 191 memdata<29> 201 memdata<20>
182 cas<1># 192 memdata<28> 202 memdata<19>
183 cas<0># 193 memdata<27> 203 Vss (ac4)
184 ras<2># 194 memdata<26> 204 memdata<18>
185 ras<1># 195 Vdd (ac2) 205 memdata<17>
186 ras<0># 196 memdata<25> 206 memdata<16>
187 Vss (ac3) 197 memdata<24> 207 memdata<15>
188 wrb# 198 memdata<23> 208 memdata<14>
189 memdata<31> 199 memdata<22> — —

Pinout 3–3

3.2 Signal Descriptions

3.2 Signal Descriptions
Table 3–2 describes the function of each external signal in alphabetical order.
The following signal type abbreviations are used in Table 3–2:

I
I/O
O
P

input
bidirectional
output
power

Table 3–2 Signal Description

Signal Type Description

blank# O Blank — when asserted, this output signal indicates that the 21130
monitor timing is in the inactive (blanked) period of the monitor video
signal. This signal is generated by the 21130 VGA CRTC.

blue O The blue signal to the monitor. Drives a doubly terminated 75-� cable.

cas<7:0># O Column address strobe — these eight output signals latch the DRAM
column addresses into frame buffer memory. They are also used as
byte-access controls.

comp I Compensation — DAC external compensation. A 0.1-µF ceramic
capacitor must be used to bypass this pin to dac_Vdd. Place the
capacitor as close as possible to the 21130.

dac_Vdd P Analog +5-V supply pin, for the DAC analog circuitry.

dac_Vss P Three analog ground pins, for the DAC analog circuitry.

ddc_data I/O Display data channel data — this is a bidirectional signal to the
display monitor. The display data channel (DDC) and other VESA
standards specify signal protocols and file formats for transferring
information on monitor capabilities to the graphics controller. See the
VESA Display Data Channel Standard, Version 1.0, Revision 0 for
more information about the DDC.

evideo# I Enable external video data — an external video chip or card asserts
this input signal to indicate that the video source is driving the
vafc_p<0:15> signals into the 21130. The 21130 tristates (disables)
the shared vafc_p<15:00> data path pins in order to receive video
data. When evideo# is pulled high (passive, external or internal
pullup resistor), the 21130 can drive graphics output data to the video
system on the vafc_p<15:00> pins. The evideo# signal also controls
the direction of external transceiver buffers.

(continued on next page)

3–4 Pinout

3.2 Signal Descriptions

Table 3–2 (Cont.) Signal Description

Signal Type Description

fsadjust I Full-scale adjust — DAC external resistor connection. For doubly
terminated 75-� loads (RS-343A), a value of 147 � connected to
dac_Vss is recommended.

gp_adr<16:0> O GPP address — these 17 peripheral address output signals share the
memdata<16:0> pins.

gp_cs# O GPP chip select — this output signal enables external devices.

The gp_cs# signal also determines what signal is present on the
gp_stb# pin. If gp_cs# is asserted, the gp_stb# signal is on the
gp_stb# pin. If gp_cs# is not asserted, the rom_oe# signal is on the
gp_stb# pin.

gp_data<7:0> I/O GPP data — these eight bidirectional data path signals are
multiplexed on the memdata<25:18> pins.

gp_int# I GPP interrupt — peripherals that require service from the CPU can
asynchronously assert this interrupt input signal.

gp_rdsel# O GPP read select — this output signal is asserted low to specify a read
cycle. It shares the memdata<26> pin.

gp_reset# O GPP reset — this output signal is a buffered version of the PCI reset
signal (pci_rst#), to allow external device reset.

gp_stb# O GPP strobe — this output signal is asserted low. It indicates 21130
write data to the GPP is valid or the 21130 is ready to accept GPP
read data.

The rom_oe# signal shares the gp_stb# pin. The gp_cs# signal
determines what signal is present on the gp_stb# pin. If gp_cs# is
asserted, the gp_stb# signal is on the gp_stb# pin. If gp_cs# is not
asserted, the rom_oe# signal is on the gp_stb# pin.

gp_wrsel# O GPP write select — this output signal is asserted low to specify a write
cycle. It shares the memdata<27> pin.

green O The green signal to the monitor. Drives a doubly terminated 75-�
cable.

grdy O Graphics ready — this output signal indicates to the external video
source that the 21130 is ready to latch the data on the vafc_p<0:15>
pins.

hsync O Horizontal sync — this output signal is sent to an external video chip
or card as the horizontal display framing reference signal. This signal
is generated by the 21130 VGA CRTC.

(continued on next page)

Pinout 3–5

3.2 Signal Descriptions

Table 3–2 (Cont.) Signal Description

Signal Type Description

memaddr<8:0> O Memory address — these output signals comprise the multiplexed
9-bit row and 9-bit column memory address.

memdata<63:0> I/O Memory data — these signals comprise the bidirectional, 64-bit frame
buffer data path.

oeb# O Output enable — this output signal is asserted low on a read cycle to
enable the DRAM data path outputs.

opamp_Vdd P Analog +5-V supply pin, for the DAC op amp circuitry.

opamp_Vss P Analog ground pin, for the DAC op amp circuitry.

pci_ad<31:0> I/O PCI address and data — these bidirectional signals are multiplexed on
the same 32 pins of the PCI bus. A PCI bus transaction consists
of an address phase followed by one or more data phases. The
pci_cbe<3:0># signals identify the transaction type (for example,
read or write) during the address phase. The 21130 supports and fully
decodes 32-bit addresses.

pci_cbe<3:0># I/O PCI cycle command and byte enable — these tristate signals are
multiplexed on the same four pins of the PCI bus. They define the
bus command during the address phase of a transaction, and specify
the byte enables during the data phase. The byte enables are valid
for all cycles of a data phase, and determine which byte lanes carry
meaningful data.

pci_clk I PCI clock — the system supplies this 33-MHz (nominal) clock input
to PCI peripherals for timing all PCI transactions. All PCI signals,
except pci_rst# and pci_inta#, are sampled on the rising edge of the
pci_clk signal.

pci_devsel# I/O PCI device select — the target of a PCI transaction asserts this signal
when it detects an address matching its programmed address space.

pci_frame# I/O PCI cycle frame — the PCI master drives this tristate signal to
indicate the beginning and duration of an access. The pci_frame#
signal is asserted to indicate the start of a bus transaction; remains
asserted while data transfers continue; and is deasserted to signal the
final data phase.

pci_gnt# I PCI bus grant — the 21130 monitors this input signal to determine
when it has been granted the bus for DMA transfers. The pci_gnt#
signal is a unique signal between a PCI agent and the central PCI
arbiter.

(continued on next page)

3–6 Pinout

3.2 Signal Descriptions

Table 3–2 (Cont.) Signal Description

Signal Type Description

pci_idsel I PCI initialization device select — this input signal is asserted when
the 21130 has been selected for a configuration transaction. This
unique chip select signal is used during PCI configuration read and
write transactions. Typically, the pci_idsel signal for each PCI agent
is attached (through a load-limiting resistor) to a different address
and data line (pci_ad<31:00>). For configuration transactions, only
one address signal is asserted at a 1 level during the address phase,
effectively providing a unique chip select signal for each PCI agent.

pci_inta# O PCI interrupt request — the 21130 asserts this output signal to
request service from the CPU. Because it is open drain, the pci_inta#
signal can be shared with other devices on the same module or
elsewhere in the system. An external pullup resistor is required to
maintain the signal’s deasserted state when it is not being driven low.

Two 21130 interrupt sources are ORed together internally to generate
the pci_inta# signal: the video timing generator (end-of-frame
interrupt) and the external interrupt signal on the generic peripheral
port (gp_int#). An interrupt service can identify the interrupt source
by reading the 21130 interrupt status register.

pci_irdy# I/O PCI initiator ready — this tristate signal indicates the transaction
initiator’s ability to complete the current data phase of a transaction.
The successful transfer of data in any data cycle is indicated when the
pci_irdy# and pci_trdy# signals are asserted together.

During a write, the pci_irdy# signal indicates valid data is present
on the pci_ad<31:00> pins; during a read, it indicates the master
is ready to accept data. The bus stalls (inserts wait cycles) until
pci_irdy# and pci_trdy# are asserted together. During DMA read
cycles, the 21130 is the bus master and controls the pci_irdy# signal.

pci_par I/O PCI even parity bit — this PCI signal is the even parity bit used
across the 36 bits of pci_ad<31:00> and pci_cbe<3:0>#. For address
parity, the tristate pci_par signal is asserted one PCI clock after the
address phase; for data phases, the pci_par signal is stable and valid
one PCI clock after either the pci_trdy# signal is asserted on a read
or the pci_irdy# signal is asserted on a write. The master (initiator)
drives the pci_par signal for address and write data phases, and the
target drives the pci_par signal for read data phases.

pci_perr# I/O PCI parity error — the 21130 asserts this tristate signal when it
detects a parity error while it is receiving data. The pci_perr# signal
is asserted two PCI clocks after the data with the detected error was
on the bus.

(continued on next page)

Pinout 3–7

3.2 Signal Descriptions

Table 3–2 (Cont.) Signal Description

Signal Type Description

pci_req# O PCI request — the 21130 asserts this tristate signal when it requires
the PCI bus for a DMA transfer. The pci_req# signal is a unique
signal between a PCI agent and the central PCI arbiter.

pci_rst# I PCI reset — when asserted, this input signal brings the 21130 to a
known initialized state. The pci_rst# signal resets the PCI interface,
2D accelerator, and internal VGA controller. The pci_rst# signal is
also passed through the 21130 to the generic peripheral port.

pci_serr# O PCI system error — the 21130 asserts this output signal when
it detects a parity error during the command/address phase of
a transaction. Multiple devices can assert the pci_serr# signal
on detection of this class of error. An external pullup resistor (to
be provided on the system motherboard) is required to return the
pci_serr# signal to its deasserted state.

pci_stop# I/O PCI stop — the target of the current PCI transaction asserts this
tristate signal to request that the master stop the transaction.

pci_trdy# I/O PCI target ready — this tristate signal indicates the target’s ability
to complete the current data phase of a transaction. The successful
transfer of data in any data cycle is indicated when the pci_irdy# and
pci_trdy# signals are asserted together.

The 21130 controls the pci_trdy# signal when it is the target of a
PCI bus transaction. The 21130 asserts the pci_trdy# signal during
a write to indicate it is taking the data and during a read when valid
read data is present on the bus.

pixclk I Backup pixel clock — this input signal is the optional external pixel
clock from an ICS2595 device, if a backup pixel clock is used.

pll_filter I This pin connects to two external capacitors which are connected to
analog Vdd (pll_Vdd).

pll_test O This clock-test output signal allows external access to PLL clock
circuit signals. In test mode, the PCI clock control register determines
whether the pll_test pin is connected to the memory clock or the pixel
clock. This pin can also be used for the ddc_clk (see VIVVR bit <10>,
Section 8.7.2).

pll_Vdd P Analog +5 V for the PLL circuits.

pll_Vss P Three analog ground pins for the PLL circuits.

ras<2:0># O Row address strobe — these three output signals latch the DRAM row
addresses into frame buffer memory. They are also used as bank-select
controls.

(continued on next page)

3–8 Pinout

3.2 Signal Descriptions

Table 3–2 (Cont.) Signal Description

Signal Type Description

red O The red signal to the monitor. Drives a doubly terminated 75-� cable.

ref I Reference — external voltage reference. This pin must be supplied
with a 1.2-V (nominal) source. Decouple this pin to dac_Vss with a
0.1-µF capacitor located as close as possible to the 21130.

rom_adr<17:0> O ROM address — these 18 output signals share the memdata<49:32>
pins. These pins are also shared with any peripheral chips attached to
the GPP that need an address when accessed.

rom_ce# O ROM chip enable — this output signal enables ROM read or write
accesses (write accesses are feasible only with a flash ROM).

rom_d<7:0> I/O ROM data path — these eight bidirectional signals share the
memdata<57:50> pins.

rom_oe# O ROM output enable — this output signal is asserted on ROM read
cycles.

The rom_oe# signal shares the gp_stb# pin. The gp_cs# signal
determines what signal is present on the gp_stb# pin. If gp_cs# is
asserted, the gp_stb# signal is on the gp_stb# pin. If gp_cs# is not
asserted, the rom_oe# signal is on the gp_stb# pin.

rom_we# O ROM write enable — this output signal is asserted during ROM write
cycles to change the contents of a location in the ROM. It shares the
memdata<58> pin.

test_in I This input signal places the 21130 in test mode. The test result data
is output on the pll_test pin.

vafc_dclk O VAFC dot clock — this continuous master clock output signal is driven
from the 21130 to an external video chip or card. Its frequency is
determined by the alternate video control register and is the same as,
or a submultiple of, the pixel clock frequency.

vafc_en# O VAFC enable — this output signal is asserted low to enable external
16-bit transceivers to drive data from the 21130 to the VAFC connector.

vafc_p<0:15> I/O VAFC port — 16-bit, bidirectional, tristate pixel data bus. The
vafc_p<0:2> pins are not shared. The vafc_p<3:15> pins share the
memdata<63:51> pins (the VAFC pin-number order is deliberately
reversed).

vafc_vclk I VAFC video clock — this continuous master clock input signal is
driven from an external video chip or card to the 21130. This is a
delayed version of the vafc_dclk signal and is used as a reference for
video data and associated handshake signals.

(continued on next page)

Pinout 3–9

3.2 Signal Descriptions

Table 3–2 (Cont.) Signal Description

Signal Type Description

Vdd P In addition to dac_Vdd and pll_Vdd, eight Vdd pins supply +5 V to
the core logic and I/O pad drivers, as follows:

Vdd (video) Video clock 5-V supply

Vdd (ac<2:0>) I/O 5-V ac supply

Vdd (dc<1:0>) I/O 5-V dc supply

Vdd (core<1:0>) Core logic 5-V supply

Vss P In addition to dac_Vss and pll_Vss, ten Vss pins supply ground to the
core logic and I/O pad drivers, as follows:

Vss (video) Video clock ground

Vss (ac<4:0>) I/O ac ground

Vss (dc<1:0>) I/O dc ground

Vss (core<1:0>) Core logic ground

vsync O Vertical sync — this output signal is sent to an external video chip or
card as the vertical display framing reference signal. This signal is
generated by the 21130 VGA CRTC.

wrb# O Write enable — this output signal is asserted low to perform a DRAM
write cycle.

xtal1 I Crystal 1 — this input signal is one of two 14.31818 MHz crystal
inputs. It is the reference frequency for the memory clock PLL circuit,
and also for the internal video clock PLL circuit that generates the
programmable pixel clock and subsequent video timing.

xtal2 I Crystal 2 — this input signal is one of two 14.31818 MHz crystal
inputs. It serves as an input pin for an optional backup memory clock
generator. In backup mode, it accepts normal 5-V CMOS signals.

3–10 Pinout

3.3 Signals by Function and Direction

3.3 Signals by Function and Direction
Table 3–3 provides a quick reference to the external signals, which are grouped
by function. The following value at reset abbreviations are used in Table 3–3:

NA
TS
OD
DH
DL
DI
SH

Not applicable
Tristate
Open drain
Driven, high
Driven, low
Driven, indeterminate
Shared

Table 3–3 Signals by Function

Signal Qty Type Function Value at Reset

PCI Interface

pci_idsel 1 I PCI initialization device select NA

pci_gnt# 1 I PCI DMA grant NA

pci_rst# 1 I PCI reset NA

pci_clk 1 I PCI clock NA

pci_ad<31:0> 32 I/O PCI address or data TS

pci_cbe<3:0># 4 I/O PCI command and byte enable TS

pci_frame# 1 I/O PCI frame TS

pci_irdy# 1 I/O PCI initiator ready TS

pci_trdy# 1 I/O PCI target ready TS

pci_devsel# 1 I/O PCI device select TS

pci_stop# 1 I/O PCI stop transaction TS

pci_perr# 1 I/O PCI parity error TS

pci_par 1 I/O PCI parity TS

pci_req# 1 O PCI DMA request TS

pci_inta# 1 O PCI interrupt OD

pci_serr# 1 O PCI system error OD

Vdd (pci<6:0>) 7 P PCI I/O 5-V supply NA

(continued on next page)

Pinout 3–11

3.3 Signals by Function and Direction

Table 3–3 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

PCI Interface

Vss (pci<7:0>) 8 P PCI I/O ground NA

Frame Buffer Interface

memdata<63:0> 64 I/O Memory data DI

memaddr<8:0> 9 O Memory address DI

cas<7:0># 8 O Column address strobe DH

ras<2:0># 3 O Row address strobe DH

oeb# 1 O Output enable DH

wrb# 1 O Write enable DL

GPP and ROM Interface

gp_int# 1 I Generic peripheral interrupt NA

gp_data<7:0>1 (8) I/O Generic peripheral data SH

gp_adr<16:0>2 (17) O Generic peripheral address SH

gp_rdsel#3 (1) O Generic peripheral read select SH

gp_wrsel#4 (1) O Generic peripheral write select SH

gp_cs# 1 O Generic peripheral chip select TS5

gp_reset# 1 O Generic peripheral reset DL

gp_stb# 1 O Generic peripheral strobe TS5

rom_d<7:0>6 (8) I/O ROM data path SH

rom_adr<17:0>7 (18) O ROM address SH

rom_ce# 1 O ROM chip enable DH

1The gp_data<7:0> signals share the memdata<25:18> pins.
2The gp_adr<16:0> signals share the memdata<16:0> pins.
3The gp_rdsel# signal shares the memdata<26> pin.
4The gp_wrsel# signal shares the memdata<27> pin.
5At reset, the gp_cs# and gp_stb# signals are inputs and are sampled.
6The rom_d<7:0> signals share the memdata<57:50> pins.
7The rom_adr<17:0> signals share the memdata<49:32> pins.

(continued on next page)

3–12 Pinout

3.3 Signals by Function and Direction

Table 3–3 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

GPP and ROM Interface

rom_oe#8 (1) O ROM output enable SH

rom_we#9 (1) O ROM write enable SH

VGA and VAFC Video Port Interface

ddc_data 1 I/O Display data channel TS

evideo# 1 I Enable external video data NA

vafc_vclk 1 I VAFC video clock NA

vafc_p<0:15>10 (16) I/O Port AH

vafc_en# 1 O VAFC data enable DL

vafc_dclk 1 O VAFC dot clock Pixel clock

grdy 1 O Graphics device ready DL

blank# 1 O Composite video blank DI

RGB-to-Monitor Interface

hsync 1 O Horizontal video sync DI

vsync 1 O Vertical video sync DH

red 1 O Red analog output DI

green 1 O Green analog output DI

blue 1 O Blue analog output DI

DAC Interface

comp 1 I DAC external compensation NA

fsadjust 1 I DAC external resistor NA

ref 1 I DAC external voltage reference NA

dac_Vdd 1 P DAC 5-V supply NA

dac_Vss 3 P DAC ground NA

8The rom_oe# signal shares the gp_stb# pin.
9The rom_we# signal shares the memdata<58> pin.
10The vafc_p<3:15> signals share the memdata<63:51> pins.

(continued on next page)

Pinout 3–13

3.3 Signals by Function and Direction

Table 3–3 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

DAC Interface

opamp_Vdd 1 P DAC op amp 5-V supply NA

opamp_Vss 1 P DAC op amp ground NA

Clock Interface

xtal1 1 I Crystal input Reference clock

xtal2 1 I Crystal input/memory clock NA

pixclk 1 I Backup pixel clock NA

pll_filter 1 I External filter capacitors NA

pll_test 1 O Clock test output DL

pll_Vdd 1 P PLL 5-V supply NA

pll_Vss 3 P PLL ground NA

Miscellaneous Test Pins

test_in 1 I Test input NA

Miscellaneous Power Pins

Vdd (video) 1 P Video clock 5-V supply NA

Vss (video) 1 P Video clock ground NA

Vdd (ac<2:0>) 3 P I/O 5-V ac supply NA

Vss (ac<4:0>) 5 P I/O ac ground NA

Vdd (dc<1:0>) 2 P I/O 5-V dc supply NA

Vss (dc<1:0>) 2 P I/O dc ground NA

Vdd (core<1:0>) 2 P Core logic 5-V supply NA

Vss (core<1:0>) 2 P Core logic ground NA

Table 3–4 lists external signals and their active levels, which are grouped by direction.

3–14 Pinout

3.3 Signals by Function and Direction

Table 3–4 Signals and Active Levels by Direction

Signal
Active
Level Signal

Active
Level Signal

Active
Level

Input Signals

comp High pci_rst# Low test_in High
evideo# Low pixclk High vafc_vclk High
gp_int# Low pll_filter High xtal1 High
pci_clk High ref High xtal2 High
pci_idsel High fsadjust High

Input/Output Signals

ddc_data High pci_devsel# Low pci_stop# Low
gp_data<7:0> High pci_frame# Low pci_trdy# Low
memdata<63:0> High pci_irdy# Low rom_d<7:0> High
pci_ad<31:0> High pci_par High vafc_p<0:15> High
pci_cbe<3:0># Low pci_perr# Low

Output Signals

blank# Low grdy High red High
blue High hsync High rom_adr<17:0> High
cas<7:0># Low memaddr<8:0> High rom_ce# Low
gp_adr<16:0> High oeb# Low rom_oe# Low
gp_cs# Low pci_inta# Low rom_we# Low
gp_rdsel# Low pci_req# Low vafc_dclk High
gp_reset# Low pci_serr# Low vafc_en# Low
gp_stb# Low pll_test High vsync High
gp_wrsel# Low ras<2:0># Low wrb# Low
green High

Pinout 3–15

4
Electrical Specifications

Sections 4.1 through 4.6 specify the following:

• PCI electrical conformance

• Absolute maximum ratings

• Normal operating conditions

• Supply current and power dissipation

• The dc and ac specifications

4.1 PCI Electrical Specification Conformance
The DECchip 21130 PCI pins conform to the basic set of PCI electrical
specifications in the PCI Local Bus Specification, Revision 2.0, including:

• Standard signaling

Logic levels follow standard TTL thresholds to accommodate PCI drivers
and receivers implemented with existing CMOS and TTL devices and
processes.

• 33-10 support

The 21130 supports a 33-MHz interconnection of up to ten PCI devices.

See the PCI Local Bus Specification, Revision 2.0 for a complete description of
the PCI I/O protocol and pin ac specifications.

4.2 Absolute Maximum Ratings
Table 4–1 lists the absolute maximum ratings for the 21130. These are stress
ratings only; extended exposure to the maximum ratings may affect the
reliability of the device.

Electrical Specifications 4–1

4.2 Absolute Maximum Ratings

Table 4–1 Absolute Maximum Ratings

Parameter Minimum Maximum

Storage temperature range –55°C +150°C

Supply voltage Vdd –1.0 V +7.0 V

dc voltage on any pin –1.0 V Vdd + 1.0 V

4.3 Normal Operating Conditions
Table 4–2 lists the normal operating conditions for the 21130.

Table 4–2 Normal Operating Conditions

Parameter Minimum Maximum

Supply voltage Vdd 4.5 V 5.5 V

Power dissipation — 2.5 W�

�Airflow is required when power dissipation exceeds 2.5 W.

4.4 Supply Current and Power Dissipation
The supply current and power dissipation are as follows:

Idd
Power

500 mA (maximum)
2.5 W (maximum with no airflow)

4.4.1 Test Conditions
The supply current and power dissipation test conditions are as follows:

Vdd 5.0 V
Memory clock frequency 80 MHz (55°C ambient rating with no airflow)
Pixel clock frequency 135 MHz (55°C ambient rating with no airflow)

4–2 Electrical Specifications

4.5 dc Specifications

4.5 dc Specifications
Table 4–3 lists the pin characteristics. The pin output drivers are specified
to produce TTL signaling levels; however, they are implemented as CMOS
drivers and, as a result, actually drive the pins through the full voltage range
(rail-to-rail).

Figure 4–1 shows the various clock domains.

Figure 4–1 Clock Domains

PCI Interface

Memory Controller

2DA and
MM Video
Pipeline

PCI

Frame Buffer
Data Path

Frame Buffer
Address and
Control

and GPP

64

R

G

B

VAFC and
VGA I/O

Video
Data Path

and
Color
LUTs

32

Video Sync
Video Blank
Reference Clock

8
BIOS ROMVGA

Controller
FBDA

Clock PLL
Pixel Video

Timing

Cursor
Control

Memory
Clock PLL

PCI clock domain
Memory clock domain
Pixel clock domain

Electrical Specifications 4–3

4.5 dc Specifications

Table 4–3 Pin Characteristics

Signals
Clock
Domain Type

Signal
Level Notes

gp_int#
test_in
evideo#
vafc_en#

Async
Async
Async
Async

I
I
I
O

TTL
TTL
TTL
TTL

—
—
—
—

pci_rst#
pci_inta#

Async PCI
Async PCI

I
O

TTL
TTL

—
1

pci_gnt#
pci_idsel
pci_clk
pci_ad<31:0>
pci_cbe<3:0>#
pci_devsel#
pci_frame#
pci_irdy#
pci_par
pci_stop#
pci_trdy#
pci_req#

pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk
pci_clk

I
I
I
I/O
I/O
I/O
I/O
I/O
I/O
I/O
I/O
O

TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL

—
—
—
—
—
—
—
—
—
—
—
—

xtal1
xtal2
memdata<63:0>
gp_data<7:0>
memaddr<8:0>
cas<7:0>#
gp_adr<16:0>
gp_rdsel#
gp_wrsel#
gp_cs#
gp_reset#
gp_stb#
grdy
oeb#
ras<2:0>#
rom_ce#
rom_oe#
rom_we#
wrb#

mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk
mem_clk

I
I
I/O
I/O
O
O
O
O
O
O
O
O
O
O
O
O
O
O
O

CMOS
CMOS
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL
TTL

—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—
—

(continued on next page)

4–4 Electrical Specifications

4.5 dc Specifications

Table 4–3 (Cont.) Pin Characteristics

Signals
Clock
Domain Type

Signal
Level Notes

pix_clk
pll_test
vafc_vclk
ddc_data
vafc_p<0:15>
vafc_dclk
blank#
hsync
vsync
red
green
blue

pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk
pix_clk

I
O
I
I/O
I/O
O
O
O
O
O
O
O

CMOS
TTL
TTL
CMOS
TTL
TTL
TTL
TTL
TTL
—
—
—

—
—
—
—
—
—
—
—
—
2
2
2

Notes

1 Pins are driven by an open-drain output driver.

2 Pins are driven by analog outputs.

4.5.1 Operating Specifications
Table 4–4 lists the functional operating dc parameters for the 21130 under
normal operating conditions. The normal operating conditions are specified in
Table 4–2.

Note

In Table 4–4, currents into the chip (chip sinking) are denoted as
positive (+) current. Currents from the chip (chip sourcing) are
denoted as negative (�) current.

Electrical Specifications 4–5

4.5 dc Specifications

Table 4–4 dc Parameters

Symbol Parameter Minimum Maximum Unit Notes

Vilc Low-level input voltage for CMOS-level
inputs

–0.5 0.3 � Vdd V —

Vihc High-level input voltage for CMOS-level
inputs

0.7 � Vdd Vdd + 0.5 V V —

Vilt Low-level input voltage for TTL-level
inputs

–0.5 0.8 V —

Viht High-level input voltage for TTL-level
inputs

2.0 Vdd + 0.5 V V —

Vol Low-level output voltage — 0.4 V 1

Voh High-level output voltage 2.4 — V 2

Ioz Tristate leakage current –10 +10 µA —

Cin Input capacitance — 6 pF 3

Co I/O or output-only pin capacitance — 7 pF 3

Notes

1 Iol = PCI Local Bus Specification, Revision 2.1 for pci_clk domain outputs.
Iol = +8 mA for memaddr<8:0>, oeb#, wrb#, and vafc_dclk.
Iol = +4 mA for all other.

2 Ioh = PCI Local Bus Specification, Revision 2.1 for pci_clk domain outputs.
Ioh = –8 mA for memaddr<8:0>, oeb#, wrb#, and vafc_dclk.
Ioh = –4 mA for all other outputs.

3 Cin = PCI Local Bus Specification, Revision 2.1 for PCI pins.
Co = PCI Local Bus Specification, Revision 2.1 for PCI pins.

4.6 ac Specifications
The ac specifications consist of input requirements and output responses.
The input requirements include setup and hold times, pulse widths, and
high and low times. Output responses are delays from clock to signal. The
ac specifications are defined separately for each clock domain within the
21130. (See Table 4–3 for a list of signals and their respective clock domains.)
All ac specifications apply to the 21130 under normal operating conditions
(Table 4–2).

4–6 Electrical Specifications

4.6 ac Specifications

4.6.1 Parameters for PCI Clock Domain Signals
Figure 4–2 shows the ac parameter measurements for signals in the PCI clock
domain, and Table 4–5 specifies the parameter values.

Figure 4–2 PCI Clock Domain Signal ac Parameter Measurements

Delay Time

Setup and Hold Time

pciclk

1.5 V 1.5 V

Valid
Signal

 Tsetup Thold

1.5 V

Valid
Signal

 Tdelay

Actively
Driven

 Ton

 Toff

Actively
Driven

On Time

Off Time

High Z

High Z

Tcycle

Vilt
1.5 V

Vilt
1.5 V

Vilt

 Thigh TfallTrise Tlow

Viht Viht

Electrical Specifications 4–7

4.6 ac Specifications

Table 4–5 PCI Clock Domain Signal ac Parameters

Symbol Parameter Signals Minimum Maximum Unit

Tcycle Clock cycle time pci_clk 30 — ns

Thigh Clock high time pci_clk 12 — ns

Tlow Clock low time pci_clk 12 — ns

Trise Clock rise time pci_clk — 2 ns

Tfall Clock fall time pci_clk — 2 ns

Trst Reset low pulse width� pci_rst# 1 — ms

Trstclk Clock active time to end of reset pci_rst# 100 — µs

Tdelay Clock to signal valid delay† pci_ad<31:0>
pci_cbe<3:0>#
pci_frame#
pci_trdy#
pci_irdy#
pci_stop#
pci_par
pci_devsel#
pci_req#

2
2
2
2
2
2
2
2
2

11
11
11
11
11
11
11
11
12

ns
ns
ns
ns
ns
ns
ns
ns
ns

Ton High-Z to active delay pci_ad<31:0>
pci_cbe<3:0>#
pci_frame#
pci_trdy#
pci_irdy#
pci_stop#
pci_par
pci_devsel#
pci_req#

2
2
2
2
2
2
2
2

—
—
—
—
—
—
—
—
—

ns
ns
ns
ns
ns
ns
ns
ns
ns

Toff Active to high-Z delay pci_ad<31:0>
pci_cbe<3:0>#
pci_frame#
pci_trdy#
pci_irdy#
pci_stop#
pci_par
pci_devsel#
pci_req#

—
—
—
—
—
—
—
—
—

28
28
28
28
28
28
28
28
28

ns
ns
ns
ns
ns
ns
ns
ns
ns

�< 0.8 V
†Minimum delay times are specified with unloaded outputs. Maximum delay times are specified with a 50-pF
external pin load.

(continued on next page)

4–8 Electrical Specifications

4.6 ac Specifications

Table 4–5 (Cont.) PCI Clock Domain Signal ac Parameters

Symbol Parameter Signals Minimum Maximum Unit

Tsetup Setup time to clock pci_ad<31:0>
pci_cbe<3:0>#
pci_frame#
pci_trdy#
pci_irdy#
pci_stop#
pci_par
pci_devsel#
pci_idsel
pci_gnt#

7
7
7
7
7
7
7
7
7

10

—
—
—
—
—
—
—
—
—
—

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Thold Hold time pci_ad<31:0>
pci_cbe<3:0>#
pci_frame#
pci_trdy#
pci_irdy#
pci_stop#
pci_par
pci_devsel#
pci_gnt#
pci_idsel

0
0
0
0
0
0
0
0
0
0

—
—
—
—
—
—
—
—
—
—

ns
ns
ns
ns
ns
ns
ns
ns
ns
ns

Trstoff Reset asserted to high-Z delay pci_ad<31:0>
pci_cbe<3:0>#
pci_frame#
pci_trdy#
pci_irdy#
pci_stop#
pci_par
pci_devsel#
pci_req#

—
—
—
—
—
—
—
—
—

40
40
40
40
40
40
40
40
40

ns
ns
ns
ns
ns
ns
ns
ns
ns

Electrical Specifications 4–9

4.6 ac Specifications

4.6.2 PCI Cycle Timing
Figures 4–3 through 4–8 and Tables 4–6 through 4–11 describe the typical
timing for selected PCI cycles with the 21130 as a target.

Figure 4–3 PCI Write — Cycle Start Timing

pci_frame#

pci_ad<31:0>

pci_devsel#

pci_trdy#

*

*

*
* High Z − shown as intermediate level for clarity; actually pulled up to logic high by bus resistor.

pci_clk

pci_irdy# *

 Tfs

 Tch Tcs

 Tas Tah Tds

 Tbs

 Tdh

 Tbh

 Tih

 Tth Ttd Tta

 Tis

 Tdsd

Write Data

Byte Enables

Address

Commandpci_cbe<3:0>#

Table 4–6 PCI Write — Cycle Start Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tfs pci_frame# setup to clock 7 —

Tas Address setup to clock 7 —

Tah Address hold from clock 0 —

Tds Write data setup to clock 7 —

Tdh Write data hold from clock 0 —

(continued on next page)

4–10 Electrical Specifications

4.6 ac Specifications

Table 4–6 (Cont.) PCI Write — Cycle Start Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tcs Command setup to clock 7 —

Tch Command hold from clock 0 —

Tbs Byte enables setup to clock 7 —

Tbh Byte enables hold from clock 0 —

Tdsd pci_devsel# clock to signal delay 2 11

Tis pci_irdy# setup to clock 7 —

Tih pci_irdy# hold from clock 0 —

Tta pci_trdy# high Z to active delay 2 —

Ttd pci_trdy# clock to signal delay 2 11

Tth pci_trdy# hold from clock 0 —

Electrical Specifications 4–11

4.6 ac Specifications

Figure 4–4 PCI Read — Cycle Start Timing

pci_frame#

pci_ad<31:0>

pci_devsel#

pci_trdy#

*

*

*
* High Z − shown as intermediate level for clarity; actually pulled up to logic high by bus resistor.

pci_cbe<3:0>#

pci_clk

pci_irdy# *
 Tth

Read Data

Byte Enables

Address

Command

 Tts

 Tdh

 Tdd

 Ttd

Table 4–7 PCI Read — Cycle Start Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tdd Read data clock to signal delay 2 11

Tdh Read data hold from clock 0 —

Ttd pci_trdy# clock to signal delay 2 11

Tts pci_trdy# setup to clock 7 —

Tth pci_trdy# hold from clock 0 —

4–12 Electrical Specifications

4.6 ac Specifications

Figure 4–5 PCI Read or Write — Cycle End Timing

* High Z − shown as intermediate level for clarity; actually pulled up to logic high by bus resistor.

*

*

*

*

pci_frame#

pci_irdy#

pci_trdy#

pci_devsel#

pci_clk

 Tfs

 Tdsd

 Tz

 Tdsz

Table 4–8 PCI Read or Write — Cycle End Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tfs pci_frame# setup to clock 7 —

Ttz pci_trdy# active to high-Z delay — 28

Tdsd pci_devsel# clock to signal delay 2 11

Tdsz pci_devsel# active to high-Z delay — 28

Electrical Specifications 4–13

4.6 ac Specifications

Figure 4–6 PCI Target Disconnect or Abort — pci_stop# Timing

*

* High Z − shown as intermediate level for clarity; actually pulled up to logic high by bus resistor.

pci_stop#

pci_clk

 Tsz Tsh Tsd

Table 4–9 PCI Target Disconnect or Abort — pci_stop# Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tsd pci_stop# clock to signal delay 2 11

Tsh pci_stop# hold from clock 0 —

Tc pci_stop# active to high-Z delay — 28

4–14 Electrical Specifications

4.6 ac Specifications

Figure 4–7 PCI Configuration Cycle — pci_idsel Timing

*

* High Z − shown as intermediate level for clarity; actually pulled up to high by bus resistor.

Byte Enables

pci_ad<10:0>

pci_frame#

pci_clk

pci_idsel

Configuration
Address

Configuration
Command

 Tids Tidh

pci_cbe<3:0>#

*

*

Table 4–10 PCI Configuration Cycle — pci_idsel Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tids pci_idsel setup to clock 7 —

Tidh pci_idsel hold from clock 0 —

Electrical Specifications 4–15

4.6 ac Specifications

Figure 4–8 and Table 4–11 describe typical parity timing for the 21130 as a
target. As a master, the timing is identical, but the 21130 drives address,
command, and write data parity, and receives read data parity.

Figure 4–8 PCI Parity — pci_par Timing

Address

Command

pci_ad<31:0>

pci_par

pci_clk

pci_frame#

Read Data

Drive read data andReceive address and
byte enable paritycommand parity

pci_cbe<3:0># Byte Enables

 Tps Tph Tph Tpd

Table 4–11 PCI Parity — pci_par Timing Parameters

Parameter Description
Minimum

ns
Maximum

ns

Tps pci_par setup to clock 7 —

Tph pci_par hold from clock 0 —

Tpd pci_par clock to signal delay 2 11

4.6.3 Memory Cycle Timing
Figures 4–9 through 4–12 and Tables 4–12 through 4–15 describe typical
memory timing cycles.

4–16 Electrical Specifications

4.6 ac Specifications

Figure 4–9 Hyperpage Mode Memory Write Cycle Timing

ras#

memaddr

memdata

wrb#

oeb#

cas#

mem_clk

 tCLK

 tASR tASC

 tDH

Column 1 Column 2 Column 3Row

Data 1 Data 2 Data 3

 tCC

Table 4–12 Hyperpage Mode Memory Write Cycle Timing Parameters

Parameter Description
21130
Value DRAM Specification

tCC Cycle Time 2tCLK —

tASR Row address setup time — Usually 0

tASC Column address setup time — Usually 0

tDH Data hold time — Must be <(tCLK�2) ns

Electrical Specifications 4–17

4.6 ac Specifications

Figure 4–10 Hyperpage Mode Memory Read Cycle Timing

ras#

memaddr

memdata

wrb#

oeb#

cas#

mem_clk

 tCLK

 tCC

 tAC

Column 1 Column 3

Data latched internally

Column 2

 tACP

 tHC

 tAA
 tAR

 tAOE

Data 1 Data 2 Data 3

Row

Table 4–13 Hyperpage Mode Memory Read Cycle Timing Parameters

Parameter Description
21130
Value DRAM Specification

tCC Cycle Time 2tCLK —

tAR RAS access time — <(5tCLK�13) ns

tAA Address access time — <(3tCLK�13.75) ns

tAC CAS access time — <(2tCLK�12.75) ns

tACP Access time from CAS
precharge

— <(3tCLK�10.25) ns

tHC Data hold time — �0

tAOE Output enable access time — �(2tCLK�13.75) ns

4–18 Electrical Specifications

4.6 ac Specifications

Figure 4–11 Read-Modify-Write Memory Cycle Timing

ras#

memaddr

memdata

wrb#

oeb#

cas#

mem_clk

 tCLK

Column 1 Column 2Row

Read 1 Read 2

 tAA

 tASR tASC

 tAR

 tAC

 tWCS

 tZ

Write 1

Table 4–14 Read-Modify-Write Memory Cycle Timing Parameters

Parameter Description
21130
Value DRAM Specification

tAR RAS access time — <(5tCLK�13) ns

tAA Address access time — <(3tCLK�13.75) ns

tASR Row address setup time — Usually 0

tASC Column address setup time — Usually 0

tAC CAS access time — <(2tCLK�12.75) ns

tZ Bus turnaround time = tCLK —

tWCS Write enable to CAS setup
time

— �(tCLK�2) ns

Electrical Specifications 4–19

4.6 ac Specifications

Figure 4–12 CAS-Before-RAS Memory Refresh Cycle Timing

cas#

ras#

mem_clk

 tCLK

 tCSR tCHR

 tRAS

Table 4–15 CAS-Before-RAS Memory Refresh Cycle Timing Parameters

Parameter Description 21130 Value

tCSR CAS setup time before RAS 2tCLK

tCHR CAS hold time 3tCLK

tRAS RAS assertion time 5tCLK

4–20 Electrical Specifications

4.6 ac Specifications

4.6.4 ROM and GPP Data Cycle Timing
Figure 4–13, Figure 4–14, and Table 4–16 describe typical timing for ROM and
GPP data transfer cycles.

Figure 4–13 ROM Data Cycle Timing

rom_d<7:0>

core_clk

 Tclk

rom_ce#

 Tce

rom_adr<17:0>

rom_d<7:0>

rom_oe#

(Write)

(Read)

(Write)

(Read)

rom_oe#

Table 4–16 ROM and GPP Data Cycle Timing Parameters

Parameter Description Value

Tclk Clock cycle time (33 MHz) 30 ns

Tce Chip enable assertion time 7Tclk

Tcsu Chip select setup time 1Tclk

Tcsa Chip select assertion time 12Tclk

Tst Chip strobe assertion time 11Tclk

Electrical Specifications 4–21

4.6 ac Specifications

Figure 4–14 GPP Data Cycle Timing

core_clk

 Tclk

gp_data<7:0>

gp_cs#

gp_stb#

 Tcsa

 Tcsu Tst

gp_rdsel#
gp_wrsel#

gp_adr<16:0>

gp_data<7:0>
(Write)

(Read)

4–22 Electrical Specifications

4.6 ac Specifications

4.6.5 Parameters for Pixel Clock and VAFC Clock Domain Signals
Figure 4–15 shows the ac parameter measurements for signals in the
pixel clock (pix_clk) domain, and Figure 4–16 shows the ac parameter
measurements for signals in the VAFC clock domain (the VAFC clock domain is
a subset of the pixel clock domain). Table 4–17 specifies the parameter values.

Figure 4–15 Pixel Clock Domain Signal ac Parameter Measurements

pix_clk

Tcycle

Vilt
1.5 V

Vilt
1.5 V

Vilt

 Thigh TfallTrise Tlow

Viht Viht

Delay Time
1.5 V

Valid
Signal

 Tdelay

Electrical Specifications 4–23

4.6 ac Specifications

Figure 4–16 VAFC Clock Domain Signal ac Parameter Measurements

vafc_dclk

 Tcd

 Tcycle

 Tos Toh

vafc_vclk

Inputs

 Tih

blank#
hsync
vsync

grdy

 Tos Toh

 Tis

4–24 Electrical Specifications

4.6 ac Specifications

Table 4–17 Pixel Clock and VAFC Clock Domain Signal ac Parameters

Symbol Parameter Signals
Minimum

ns
Maximum

ns Notes

Tcycle Clock cycle time (62.5 MHz)
Clock cycle time (37.5 MHz)
Clock cycle time (37.5 MHz)

pix_clk
vafc_dclk
vafc_vclk

16.0
26.6
26.6

—
—
—

1
2
2

Thigh Clock high time pix_clk
vafc_dclk
vafc_vclk

6.5
10.0
10.0

—
—
—

—
—
—

Tlow Clock low time pix_clk
vafc_dclk
vafc_vclk

6.5
10.0
10.0

—
—
—

—
—
—

Trise Clock rise time
Rise time
Rise time

pix_clk
vafc_en#
evideo#

—
—
—

3.0
3.0
3.0

—
—
—

Tfall Clock fall time
Fall time
Fall time

pix_clk
vafc_en#
evideo#

—
—
—

3.0
3.0
3.0

—
—
—

Tcd vafc_dclk to vafc_vclk
delay

vafc_dclk
vafc_vclk

5.0 20.0 3

Tos Output setup time blank#
hsync
vsync
grdy
vafc_p<0:15>

10.0
10.0
10.0
10.0
10.0

—
—
—
—
—

—
—
—
—
—

Toh Output hold time blank#
hsync
vsync
grdy
vafc_p<0:15>

2.0
2.0
2.0
2.0
2.0

—
—
—
—
—

—
—
—
—
—

Tis Input setup time vafc_p<0:15> 10.0 — —

Tih Input hold time vafc_p<0:15> 2.0 — —

(continued on next page)

Electrical Specifications 4–25

4.6 ac Specifications

Table 4–17 (Cont.) Pixel Clock and VAFC Clock Domain Signal ac Parameters

Notes

1 The frequency for pix_clk is 62.5 MHz.

2 The maximum frequency for vafc_dclk and vafc_vclk is 37.5 MHz (75 MHz� 2, based
on 75 MHz for a standard VESA 1024 � 768 70-Hz mode). Operation of graphics or video
controllers at higher frequencies is outside of VESA compatibility and correct operation is not
guaranteed.

3 For synchronous transfers, vafc_vclk must meet this parameter.

4.6.6 VAFC Cycle Timing
Figures 4–17 and 4–18 and Tables 4–18 and 4–19 describe typical VAFC timing
cycles. The measurements are extracted from the VESA Advanced Feature
Connector (VAFC) Proposal, Version 1.0p, Revision 0.4.

Figure 4–17 VAFC Request Cycle Timing

REQ n

Data n

grdy

vafc_p<15:0>

vafc_vclk

REQ n+1 REQ n+2

Data n+1 Data n+2 Data n+3

 Tcycle Tis Tih

Table 4–18 VAFC Request Cycle Timing Parameters

Parameter Description Value

Tcycle vafc_vclk cycle time �26.6 ns

Tis vafc_p<0:15> setup time �10.0 ns

Tih vafc_p<0:15> hold time �2.0 ns

4–26 Electrical Specifications

4.6 ac Specifications

Figure 4–18 VAFC Video Data Transfer Cycle Timing

Valid Data

vafc_dclk

vafc_p<15:0>

blank#
hsync
vsync

Invalid Data

n+1 n

 Tcycle

 Toh Tos Tos

Table 4–19 VAFC Video Data Transfer Cycle Timing Parameters

Parameter Description Value

Tcycle vafc_dclk cycle time �26.6 ns

Tos Output setup time �10.0 ns

Toh Output hold time �2.0 ns

Notes:

• vafc_dclk is driven from the graphics source and is typically a submultiple of the
pixel clock.

• blank# defines the display area.

• During invalid data time, the DAC can send any data.

• grdy is not used in output modes.

Electrical Specifications 4–27

5
Mechanical Specifications

Figure 5–1 shows the DECchip 21130 208-pin plastic quad flat pack (PQFP)
package.

Figure 5–1 DECchip 21130 208-Pin PQFP Package

 ±0.15

 ±0.05

 Typ

Max
4.10

±0.20
3.40

Shown approximately 2.65 × full size.

 0.60

 1.30

 0.50

Dimensions are in millimeters.

 0.22

 25.50
 28.00 ±0.10
 30.60

 ±0.10
 28.00

 30.60

 25.50

 Min
 0.25

 ±0.04
 0.18

Mechanical Specifications 5–1

6
Thermal Specifications

The DECchip 21130 operates reliably in a standard desktop or tower enclosure
at enclosure internal ambient temperatures up to 55°C. To remove heat from
the device at ambient temperatures greater than 55°C, internal airflow over
the 21130 package must be provided.

Table 6–1 shows the airflow, in linear feet/minute (lfm), required for reliable
21130 operation at ambient temperatures (Ta) of 55°C and greater, where the
memory clock frequency equals 80 MHz and the pixel clock frequency equals
135 MHz.

Table 6–1 Airflow Versus Temperature

Airflow Ta

0 lfm 55.0°C

50 lfm 58.0°C

100 lfm 62.5°C

150 lfm 65.0°C

200 lfm 67.5°C

The supported maximum frequencies for the two onchip clocks are 80 MHz
for the memory clock and 135 MHz for the pixel clock. When both clocks are
at their maximum frequency, and certain worst case patterns are displayed
from frame buffer memory, the 21130 approaches its maximum rated power
dissipation of 2.5 W.

Lower memory and pixel clock frequencies reduce power dissipation.
Lowering the memory clock frequency reduces power dissipation at the rate of
5.1 mW/MHz. For example, slowing the memory clock 10 MHz, from 80 MHz
to 70 MHz, reduces power dissipation by 0.051 W. Similarly, lowering the
pixel clock frequency reduces power dissipation at an approximate rate of
5.2 mW/MHz.

Thermal Specifications 6–1

The relationship between clock speed and power dissipation permits trade-offs
between 21130 clock frequencies and ambient operating temperatures. Every
reduction of 6.5 MHz in either clock frequency allows an increase of 1°C in
maximum ambient temperature.

6–2 Thermal Specifications

7
Address Space

This chapter describes the DECchip 21130 address space allocations. The
21130 address space consists of the following discrete spaces:

• Configuration space

• ROM space

• VGA memory space

• VGA I/O space

• 2DA base address 0 and base address 1 mapped memory spaces

7.1 Overview
The 21130 responds to PCI accesses to the following address spaces:

• PCI configuration space

• BIOS ROM (256KB, relocatable)

• VGA I/O space (register accesses)

• Memory space (frame buffer accesses, 512KB range)

• 2DA base address 0 registers and frame buffer (32MB space)

• 2DA base address 1 access to VGA registers, DAC lookup tables (LUTs),
and generic peripheral port (GPP) — mapped into 2MB of PCI memory
space

All accesses are to PCI memory space (identified by transaction type), except
VGA register accesses (see Section 7.5.2).

Address Space 7–1

7.2 Configuration Space

7.2 Configuration Space
Configuration space includes all the PCI configuration registers described in
Section 8.2.

7.3 ROM Space
Note

The 21130 supports one external (E)(E)PROM. It and its associated
functions are referred to as the BIOS ROM, EEPROM, flash ROM, PCI
expansion ROM (space), and ROM ((sparse) space).ROM (space), and
sparse ROM (space).

The location of the ROM in PCI memory space is defined by the PCI expansion
ROM base address register (PRBR, Section 8.2.6). See Section 7.5.2.5 for more
information about accessing the expansion ROM.

7.4 VGA Memory Space
The VGA memory space is mapped (hardwired) to the standard VGA address
range of A0000 through BFFFF. Access to this memory space is enabled in
the PCI command and status register (PCSR <1>, Section 8.2.2). The VGA
graphics controller miscellaneous register (VGMISR, Section 8.15.9) specifies
the address range.

7.5 2DA Memory Space
The 2DA memory space is mapped by PCI device base address registers 0
and 1 (PDBR0 and PDBR1, Section 8.2.5). The 2DA base address 0 memory
space includes all of the 2D acceleration registers and the frame buffer. The
2DA base address 1 memory space contains the VGA alternate register space;
palette and DAC register space; interrupt status register space; generic
peripheral port (GPP) 0 and 1 spaces; and the ROM read and write sparse
space.

7.5.1 2DA Base Address 0 Memory Space
The size of the 2DA base address 0 memory space is 32MB. It is mapped into
PCI memory space at the base address specified in PDBR0 <31:4> (bits PDBR0
<24:4> are hardwired to zero).

7–2 Address Space

7.5 2DA Memory Space

The 32MB memory space contains up to eight copies of a core space (see
Figure 7–1). The core space size can be 4MB or 8MB, depending on the
application. The size of a core space is specified by the address mask in the
deep register (Table 7–1). The address mask is programmed with different
values to tailor core space organization according to the physical size of
memory in a particular configuration.

Table 7–1 shows the core space size and the appropriate settings of the deep
register address mask field for the supported configurations.

Table 7–1 Core Space per Frame Buffer Option

Configuration
Physical Memory

Size
Core Space

Size
Address�

Mask

1MB 1MB 4MB 000
2MB 2MB 4MB 000
4MB 4MB 8MB 001

�Deep register field binary codes (GDER <4:2>, Section 8.5.2).

Typically, the memory space maps to 32MB of PCI memory space, and the core
space is 4MB or 8MB; therefore, the memory space contains four or eight copies
of core space. Each copy of core space is identical and maps the frame buffer
and the same set of registers. These multiple copies of core space are useful in
systems based on CPUs that do not enforce write-ordering (see Section 11.12.1
for more information).

Figure 7–1 shows the memory space mapped as a function of the core space
size.

7.5.1.1 Base Address 0 Core Space Organization
The core space maps the 21130 general registers (register space, Section 7.5.1.2),
alternate control space (Section 7.5.1.3), and the 21130 frame buffer (frame
buffer space). The 21130 frame buffer space can be accessed in any of the
drawing modes described in Chapter 10. Figure 7–2 shows the core space maps
for various frame buffers.

Address Space 7–3

7.5 2DA Memory Space

Figure 7–1 Memory Space Organization

4MB Core Space

Offset from PCI base address (PDBR0)

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

4MB Core Space

32MB

4MB Core Space

4MB Core Space
0

28MB 8MB Core Space

24MB

8MB Core Space20MB

8MB Core Space

16MB

8MB Core Space

12MB

8MB

4MB

Figure 7–2 Core Space Maps

3MB

8MB

4MB

2MB

1MB

0

Offset from (PDBR0 PCI base address + core space offset)

RESERVED

Register SpaceRegister Space

Frame Buffer
Frame Buffer

2MB
Frame Buffer

1MB
Frame Buffer

Register Space

RESERVED

4MB
Frame Buffer

Frame Buffer

Alternate
Control Space

Alternate
Control Space

Alternate
Control Space

7–4 Address Space

7.5 2DA Memory Space

7.5.1.2 Base Address 0 Register Space Organization
The base address 0 (PDBR0, Section 8.2.5) register space contains all
the registers except the interrupt status register (MISR), and the PCI
configuration, VGA, and palette and DAC registers. The register space size
is 1MB. This space is only Dword accessible; that is, all byte enables must be
either asserted or deasserted.

Figure 7–3 shows how the register space is divided into sixteen 64KB register
core regions. Each register space core is identical and maps several aliases of
the 2KB register set. The 21130 registers are mapped by offset into each 2KB
alias. (Table 7–3 lists the base address 0 registers in order of offset.)

Figure 7–3 Base Address Register 0 Register Space Organization

Write alias space number

Reserved
1M

128K

64K

0

16K

14K

10K

8K

6K

4K

2K

0

Write Accumulate,

Write Replace,

GDAR < 0

GDAR < 0

Write Accumulate, ³

³

GDAR

GDAR

Reserved

0

0

Write Replace,

Reserved

Write Accumulate,

Write Replace,

Unconditional

Unconditional

12K

Register Core 15

Register Core 1

Register Core 0

Register Space
64K

Offset from: PDBR0 PCI Base Address
+ Register Space Offset
+ Register Core Offset

1

0

nRegister Core

7

5

6

4

3

2

The register write alias spaces support the repeat loop mechanism (Section 8.4.6).
Note that alias spaces 1, 4, 5, 6, and 7 should be used to write only the
registers listed in Table 7–2.

Address Space 7–5

7.5 2DA Memory Space

Table 7–2 Registers Supported by Write Alias Spaces 1, 4, 5, 6, and 7

Offset1 Name Mnemonic Access

03C Address register GADR RW
080 Data register GDAR RW
0B0 Dither row register GDRR RW
0B4 Dither column register GDCR RW
098 DMA base address register GDBR RW

1Hexadecimal offset into register-write alias space

Register writes to the various alias spaces cause the following actions to take
place when updating the register values.

Alias Space 0: Write Replace, Unconditional
A write to this alias space causes the register value to be replaced with the
value being written. This update is performed unconditionally. This is the only
alias space that supports all the registers listed in Table 7–3.

Alias Space 1: Write Accumulate, Unconditional
A write to this alias space causes the register to be updated with the sum of the
value being written and the current register value. This update is performed
unconditionally.

Alias Space 2 and 3: Reserved

Alias Space 4: Write Replace, GDAR � 0
A write to this alias space causes a write replace to be performed only if the
value of the data register (GDAR), sampled at the time of the last write to the
repeat begin register (GRBR) or repeat end register (GRER), is greater than or
equal to zero.

Alias Space 5: Write Accumulate, GDAR � 0
A write to this alias space causes a write accumulate to be performed if the
value of the GDAR, sampled at the time of the last write to the GRBR or
GRER, is greater than or equal to zero.

Alias Space 6: Write Replace, GDAR < 0
A write to this alias space causes a write replace to be performed only if the
value of the GDAR, sampled at the time of the last write to the GRBR or
GRER, is less than 0.

7–6 Address Space

7.5 2DA Memory Space

Alias Space 7: Write Accumulate, GDAR < 0
A write to this alias space causes a write accumulate to be performed if the
value of the GDAR, sampled at the time of the last write to the GRBR or
GRER, is less than zero.

Note

All undefined register locations are reserved and must not be used.

Table 7–3 lists the base address 0 registers in order of offset.

Table 7–3 Base Address Register 0 Register Map

Offset1 Name Mnemonic Access

000 Copy buffer register 0 GCBR0 RW2

004 Copy buffer register 1 GCBR1 RW3

008 Copy buffer register 2 GCBR2 RW2

00C Copy buffer register 3 GCBR3 RW3

010 Copy buffer register 4 GCBR4 RW2

014 Copy buffer register 5 GCBR5 RW3

018 Copy buffer register 6 GCBR6 RW2

01C Copy buffer register 7 GCBR7 RW3

020 Foreground register GFGR RW
024 Background register GBGR RW
02C Pixel mask register (one shot) GPXR RW
030 Mode register GMOR RW
034 Raster operation register GOPR RW
038 Pixel shift register GPSR RW
03C Address register GADR RW
040 Bresenham 1 register GB1R RW
044 Bresenham 2 register GB2R RW
048 Bresenham 3 register GB3R RW
04C Continue register GCTR WO
050 Deep register GDER RW
05C Pixel mask register (persistent) GPXR WO
060 Cursor base address register CCBR RW

1Hexadecimal offset into PDBR0 register write alias space
2Writes access copy buffer even locations
3Writes access copy buffer odd locations

(continued on next page)

Address Space 7–7

7.5 2DA Memory Space

Table 7–3 (Cont.) Base Address Register 0 Register Map

Offset1 Name Mnemonic Access

06C Video base address register VIVBR RW
070 Video valid register VIVVR RW
074 Cursor XY register CXYR RW
080 Data register GDAR RW
098 DMA base address register GDBR RW
09C Bresenham width register GBWR WO
0AC4 Address register GADR WO
0B0 Dither row register GDRR RW
0B4 Dither column register GDCR RW
0BC Span width register GSWR RW
0C4 Scaled-copy control register GSCR RW
0CC Video scanline increment register VISIR RW
0D0 Video line width register VILWR RW
0D4 Video pixel format register VFPFR RW
0E0 Video pixel occlusion bitmap base address register VFOBR RW
0E8 Alternate video control register VFAVR RW
0EC Cursor mode register CMOR RW
100 Slope-no-go register 0 GSNR0 WO
104 Slope-no-go register 1 GSNR1 WO
108 Slope-no-go register 2 GSNR2 WO
10C Slope-no-go register 3 GSNR3 WO
110 Slope-no-go register 4 GSNR4 WO
114 Slope-no-go register 5 GSNR5 WO
118 Slope-no-go register 6 GSNR6 WO
11C Slope-no-go register 7 GSNR7 WO
120 Slope register 0 GSLR0 WO
124 Slope register 1 GSLR1 WO
128 Slope register 2 GSLR2 WO
12C Slope register 3 GSLR3 WO
130 Slope register 4 GSLR4 WO
134 Slope register 5 GSLR5 WO
138 Slope register 6 GSLR6 WO
13C Slope register 7 GSLR7 WO
160 Copy-64 source register GCSR WO
164 Copy-64 destination register GCDR WO
1684 Copy-64 source register GCSR WO
16C4 Copy-64 destination register GCDR WO

1Hexadecimal offset into PDBR0 register write alias space
4Register alias

(continued on next page)

7–8 Address Space

7.5 2DA Memory Space

Table 7–3 (Cont.) Base Address Register 0 Register Map

Offset1 Name Mnemonic Access

1704 Copy-64 source register GCSR WO
1744 Copy-64 destination register GCDR WO
1784 Copy-64 source register GCSR WO
17C4 Copy-64 destination register GCDR WO
1F4 Video pixel occlusion bitmap current address register VFOAR RO
1F8 Command status register MCSR RO
1FC Video current refresh address register VFCRR RO
340 Repeat begin register GRBR WO
350 Repeat end register GRER WO
360 Copy-64A source register GCASR WO
364 Copy-64A destination register GCADR WO
Unused locations are reserved.

1Hexadecimal offset into PDBR0 register write alias space
4Register alias

The registers in base address 0 register space are described in Sections 8.3.1
through 8.8.5.

7.5.1.3 Base Address 0 Alternate Control Space Writes
Depending on the specific address, writes to alternate control space address
either the continue register (GCTR) or the address register (GADR), as shown
in Table 7–4.

Table 7–4 Targets for Writes to Alternate Control Space

Alternate Control Space Offset Write Target

0 � Even offset < 512K Address register (GADR)

0 < Odd offset < 512K Continue register (GCTR)

512K � Offset < 1M Continue register (GCTR)

In other words, writes to even addresses in alternate control space below 512K
address the GADR; other writes address the GCTR. Sequential access to the
GCTR and GADR are useful for 21130 graphics processing in systems based on
Alpha microprocessors, as described in Section 11.12.2.

Write access to alternate control space is only by Dword; PCI byte enables are
ignored.

Address Space 7–9

7.5 2DA Memory Space

7.5.2 Base Address 1 Memory Space
The base address 1 (PDBR1, Section 8.2.5) memory space is a sparsely
populated, longword-aligned, 2MB space. It contains the palette and DAC
register space, interrupt status register space, generic peripheral port (GPP) 0
and 1 spaces, and the ROM read and write sparse space. It also contains the
VGA alternate register space. (Because they control resources that are shared
by the VGA controller and the 2DA, certain addresses, such as the register
addresses for the VGA CRTC registers and the palette index registers, must be
accessible in both VGA mode and 2DA mode.)

Table 7–5 Base Address Register 1 Memory Space Map

Offset� Register Access

1FFFFF:100000 ROM sparse space RW
0FFFFF:080000 GPP space RW
07FFFF:040000 Interrupt status register space RW
03FFFF:001040 Reserved —
00103F:001000 Palette and DAC register space RW
000FFF:000000 VGA alternate register space RW

�Offset from value in PDBR1.

7.5.2.1 Base Address 1 VGA Alternate Register Space
The VGA alternate register space provides sparse space access to VGA
registers from PCI memory space. This allows PCI I/O addressing to be
disabled with the I/O space enable bit (PCSR <0>, Section 8.2.2), while
maintaining access to the CRTC controller and related registers from PCI
memory space. Typically, VGA alternate register space is used during 2DA
operation to access the following VGA CRTC-related registers:

• VGA CRTC index register (VCINXR, Section 8.13.1)

• VGA CRTC data register (VCDATR, Section 8.13.2)

• VGA miscellaneous output register (VEMISR, Section 8.11.1)

Vertical sync polarity (VSP, <7>)
Horizontal sync polarity (HSP, <6>)

• VGA feature control register (VEFCOR, Section 8.11.2)

Vertical sync select (VSS, <3>)

7–10 Address Space

7.5 2DA Memory Space

Bits <31:21> are stripped from addresses that are in the range mapped by
PDBR1. If bits <20:12> = 0, the addresses are aliased to PCI VGA register
space. PDBR1-mapped addresses in the range 000..FCC are right-shifted 2
bits, and passed to the VGA function (Table 7–6). For example, an address of
(contents of PDBR1) + ED4 accesses address 3B5 in VGA register space. The
low byte of the PCI bus (pci_ad<7:0>) is used for VGA data.

Table 7–6 lists the directly accessible VGA registers with their I/O and PDBR1
alternate register space addresses.

Table 7–6 Base Address Register 1 VGA Register Map

I/O
Address1

Memory
Address2 Name Mnemonic Access

3B4 ED0 VGA CRTC index register VCINXR RW3

3B5 ED4 VGA CRTC data register VCDATR RW3

3BA EE8 VGA feature control register VEFCOR W3

3C2 F08 VGA miscellaneous output register VEMISR W
3CA F28 VGA feature control register VEFCOR R
3CC F30 VGA miscellaneous output register VEMISR R
3D4 F50 VGA CRTC index register VCINXR RW4

3D5 F54 VGA CRTC data register VCDATR RW4

3DA F68 VGA feature control register VEFCOR W4

Unused locations are reserved.

1VGA I/O space address
2Base address 1 VGA alternate register space address
3Monochrome
4Color

The VGA registers are described in Sections 8.10 through 8.17.4.

7.5.2.2 Base Address 1 Generic Peripheral Port Space
The 128KB GPP space (512KB sparse PCI address space) provides access to
generic peripherals attached to the 21130.

Bits <31:21> are stripped from addresses that are in the range mapped by
PDBR1; and, if bits <20:19> = 012, the addresses result in a GPP access. The
GPP address comprises bits <18:2>. Chip select (gp_cs#) is asserted when the
GPP space is referenced. The low byte of the PCI bus (pci_ad<7:0>) is used
for GPP data.

Address Space 7–11

7.5 2DA Memory Space

Note

GPP accesses should be restricted to vertical blank time, or the
time when video is disabled by the video valid bit in the video valid
register (VIVVR <0>, Section 8.7.2). Byte packing and unpacking is not
supported in the GPP space.

See Chapter 3 for GPP signal descriptions and Chapter 4 for GPP timing.

7.5.2.3 Base Address 1 Interrupt Status Register Space
The interrupt status register (MISR, Section 8.3.2) is located in this space,
rather than in command buffered space (that is, base address 0 space) with
the other core registers, to accommodate interrupts that might occur during a
loop operation. This allows the interrupt service routine to clear the interrupt
status bits, without disturbing the contents of the command FIFO.

7.5.2.4 Base Address 1 Palette and DAC Register Space
The palette and DAC register space provides sparse space access to the palette
and DAC graphics color LUT (RAM), cursor color, and DAC control registers,
independently of VGA register space.

Note

The palette and DAC register space must be used to set the cursor
color; there is no equivalent function in VGA register space.

Bits <31:21> are stripped from addresses that are in the range mapped by
PDBR1; and, if bits <20:12> = 00116, the palette and DAC register space is
accessed. For example, an address of (contents of PDBR1) + 100416 accesses
the palette and DAC color register (Table 7–7).

Table 7–7 lists the palette and DAC registers and their offsets into PDBR1
memory space.

7–12 Address Space

7.5 2DA Memory Space

Table 7–7 Base Address Register 1 Palette and DAC Register Map

Offset Name Mnemonic Access

1000 Palette and DAC RAM write address register DPWR RW
1004 Palette and DAC RAM color register DPCR RW
1008 Palette and DAC pixel mask register DPMR RW
100C Palette and DAC RAM read address register DPRR RW
1010 Palette and DAC cursor write address register DCWR RW
1014 Palette and DAC cursor color register DCCR RW
1018 Palette and DAC command register 0 DCOR0 RW
101C Palette and DAC cursor read address register DCRR RW
1028 Palette and DAC status register DSTR RW
1030 Palette and DAC command register 1 DCOR1 RW
1034 Palette and DAC red signature register DRSR RW
1038 Palette and DAC green signature register DGSR RW
103C Palette and DAC blue signature register DBSR RW
Unused locations are reserved.

The palette and DAC registers are described in Sections 8.9 through 8.9.9.

7.5.2.5 Base Address 1 ROM Sparse Space Access
The 1MB ROM sparse space is embedded in core space. It provides an
alternate map of the EEPROM in addition to the standard PCI expansion
ROM space. (The standard PCI expansion ROM space is an independent,
256KB, byte-readable address space. Its location in PCI memory space is
defined by the PCI expansion ROM base address register PRBR, Section 8.2.6.)

Unlike the PCI expansion ROM space, ROM sparse space is not byte-
contiguous. Each Dword read returns 1 byte of ROM data. ROM sparse
space, in which 3 null bytes exist between consecutive valid ROM bytes, is
effectively a sparse version of the PCI expansion ROM space.

Because of the ROM sparse space layout, software must effectively multiply the
desired byte offset by 4 (left shift 2 bits) to get the correct ROM sparse space
address. For example, to operate on the second ROM byte, the offset into ROM
sparse space must be 8. The ROM sparse space Dword address is determined
as follows:

ROM sparse space address = PCI base address 1
+ ROM sparse space offset
+ (desired byte address � 4)

Address Space 7–13

7.5 2DA Memory Space

The EEPROM is read through the upper-half of the 64-bit memory port. To
avoid bus contention, the 21130 disables its drivers and the RAM data bus
drivers before reading the EEPROM. Externally, the byte-wide EEPROM must
be located on memdata<57:50> of the RAM data bus. The EEPROM data
must not be driven on memdata<57:50> unless the EEPROM chip enable
(rom_ce#) and output enable (rom_oe#) pins are active. (See Section 12.3 for
more information about the hardware interface to the external EEPROM.)

Note

When operating in 2DA mode, ROM accesses should be restricted to
vertical blank time, or the time when video is disabled by the video
valid bit in the video valid register (VIVVR <0>, Section 8.7.2).

The expansion ROM must be written through ROM sparse space.
The flash ROM write enable bit must be set in the deep register
(GDER <12>, Section 8.5.2) and software must observe the EEPROM
write recovery time.

Figure 7–4 shows the assembly and format of the PCI Dword read from ROM
sparse space, and Table 7–8 describes the fields.

7–14 Address Space

7.5 2DA Memory Space

Figure 7–4 ROM Sparse Space PCI Read Data Format

memdata<63:0>

31 0

Read
ROM

Byte

Read
ROM

Byte

63 58 057 50 49

10 987

A
S
D

gp_cs#
gp_stb#

Application−Specific Data

PCI
Read
Data

Internal
Register

Table 7–8 ROM Sparse Space PCI Read Data Field Description

Bits Field Description

9:8 ASD Application specific data <1:0> — when reset is asserted,
the gp_stb# and gp_cs# pins are sampled and saved in an
internal register. This sampled state is returned during a
sparse space ROM read.

7:0 ROM Read
Byte

The desired byte read from external EEPROM at the ROM
sparse space Dword address.

Address Space 7–15

8
Register Descriptions

This chapter describes all of the DECchip 21130 registers.

8.1 Overview
Except as noted in the appropriate register description:

• All 21130 registers can be read and written.

• Reserved fields must be zero (must never be written with a nonzero value
and return unpredictable values when read).

• Most registers are cleared when chip reset is asserted.

Note

Abbreviations in the access column of the register field description
tables are defined in the Conventions section of the Preface.

Registers are divided into two classes and several subclasses:

• PCI configuration registers — control PCI configuration for the 21130
device.

– Device-independent registers are required in all PCI devices to
implement generic PCI configuration functions.

– Device-specific registers implement PCI configuration functions specific
to the device.

• 21130 device registers — implement the following functions:

– Miscellaneous registers indicate the current status of chip processing
and pending interrupts, enable interrupts, provide a mechanism for
scheduling commands, and control the pixel clock.

– Graphics command registers initiate graphics operations.

Register Descriptions 8–1

8.1 Overview

– Graphics control registers provide the parameters for graphics
operations.

– Hardware cursor control registers define the location and display of the
chip’s 64 � 64 � 2 cursor.

– Video control and format registers define the location and display
format of a selected portion of the frame buffer.

– Palette and DAC registers control the color LUT, cursor color, and
DACs.

– VGA and VGA extended registers set up and control the VGA-
compatible subsystem for VGA mode operations.

Table 8–1 lists each 21130 register name, mnemonic, hexadecimal address or
index, and the section that describes the register.

Table 8–1 21130 Registers

Name Mnemonic Address Section

Configuration Space Header Block PxxR Range1 8.2

PCI identification register PIDR 03..00 8.2.1
PCI command and status register PCSR 07..04 8.2.2
PCI class and revision register PCRR 0B..08 8.2.3
PCI latency timer and header type register PLTR 0F..0C 8.2.4
PCI device base address register 0 PDBR0 13..10 8.2.5
PCI device base address register 1 PDBR1 17..14 8.2.5
Reserved — 2F..18 —
PCI expansion ROM base address register PRBR 33..30 8.2.6
Reserved — 3B..34 —
PCI interrupt line register PLIR 3F..3C 8.2.7

Device-Specific Configuration Space PxxR Range1 8.2

PCI clock control register PCCR 43..40 8.2.8
Reserved — FF..40 —

1Address = hexadecimal byte address range for PCI registers

(continued on next page)

8–2 Register Descriptions

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

Miscellaneous Registers MxxR Offset 8.3

Command status register MCSR 1F82 8.3.1
Interrupt status register MISR 07FFFF..

0400003
8.3.2

Graphics Command Registers GxxR Offset2 8.4

Slope register 7 GSLR7 13C 8.4.1
Slope register 6 GSLR6 138 8.4.1
Slope register 5 GSLR5 134 8.4.1
Slope register 4 GSLR4 130 8.4.1
Slope register 3 GSLR3 12C 8.4.1
Slope register 2 GSLR2 128 8.4.1
Slope register 1 GSLR1 124 8.4.1
Slope register 0 GSLR0 120 8.4.1
Span width register GSWR 0BC 8.4.2
Continue register GCTR 04C 8.4.3
Copy-64 source register GCSR 160 8.4.4
Copy-64 destination register GCDR 164 8.4.4
Copy-64A source register GCASR 360 8.4.5
Copy-64A destination register GCADR 364 8.4.5
Repeat begin register GRBR 340 8.4.6
Repeat end register GRER 350 8.4.6

Graphics Control Registers GxxR Offset2 8.5

Mode register GMOR 030 8.5.1
Deep register GDER 050 8.5.2
Slope-no-go register 7 GSNR7 11C 8.5.3
Slope-no-go register 6 GSNR6 118 8.5.3
Slope-no-go register 5 GSNR5 114 8.5.3
Slope-no-go register 4 GSNR4 110 8.5.3
Slope-no-go register 3 GSNR3 10C 8.5.3
Slope-no-go register 2 GSNR2 108 8.5.3
Slope-no-go register 1 GSNR1 104 8.5.3
Slope-no-go register 0 GSNR0 100 8.5.3

2Address = hexadecimal offset into PDBR0 register space
3Address = hexadecimal offset into PDBR1 memory space

(continued on next page)

Register Descriptions 8–3

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

Graphics Control Registers GxxR Offset2 8.5

Copy buffer register 7 GCBR7 01C 8.5.4
Copy buffer register 6 GCBR6 018 8.5.4
Copy buffer register 5 GCBR5 014 8.5.4
Copy buffer register 4 GCBR4 010 8.5.4
Copy buffer register 3 GCBR3 00C 8.5.4
Copy buffer register 2 GCBR2 008 8.5.4
Copy buffer register 1 GCBR1 004 8.5.4
Copy buffer register 0 GCBR0 000 8.5.4
Pixel shift register GPSR 038 8.5.5
Address register GADR 03C 8.5.6
Data register GDAR 080 8.5.7
Foreground register GFGR 020 8.5.8
Background register GBGR 024 8.5.8
Raster operation register GOPR 034 8.5.9
Pixel mask register (one shot) GPXR 02C 8.5.10
Pixel mask register (persistent) GPXR 05C 8.5.10
Bresenham 1 register GB1R 040 8.5.11
Bresenham 2 register GB2R 044 8.5.12
Bresenham 3 register GB3R 048 8.5.13
Bresenham width register GBWR 09C 8.5.14
DMA base address register GDBR 098 8.5.15
Scaled-copy control register GSCR 0C4 8.5.16
Dither row register GDRR 0B0 8.5.17
Dither column register GDCR 0B4 8.5.17

Hardware Cursor Registers CxxR Offset2 8.6

Cursor mode register CMOR 0EC 8.6.1
Cursor base address register CCBR 060 8.6.2
Cursor XY register CXYR 074 8.6.3

Video Control Registers VIxxR Offset2 8.7

Video base address register VIVBR 06C 8.7.1
Video scanline increment register VISIR 0CC 8.7.1
Video line width register VILWR 0D0 8.7.1

2Address = hexadecimal offset into PDBR0 register space

(continued on next page)

8–4 Register Descriptions

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

Video Control Registers VIxxR Offset2 8.7

Video valid register VIVVR 070 8.7.2

Video Format Registers VFxxR Offset2 8.8

Video pixel format register VFPFR 0D4 8.8.1
Video pixel occlusion bitmap base address register VFOBR 0E0 8.8.2
Video pixel occlusion bitmap current address register VFOAR 1F4 8.8.3
Video current refresh address register VFCRR 1FC 8.8.4
Alternate video control register VFAVR 0E8 8.8.5

Palette and DAC Registers DxxR Offset3 8.9

Palette and DAC RAM write address register DPWR 1000 8.9.1
Palette and DAC RAM read address register DPRR 100C 8.9.1
Palette and DAC RAM color register DPCR 1004 8.9.2
Palette and DAC cursor write address register DCWR 1010 8.9.3
Palette and DAC cursor read address register DCRR 101C 8.9.3
Palette and DAC cursor color register DCCR 1014 8.9.4
Palette and DAC pixel mask register DPMR 1008 8.9.5
Palette and DAC status register DSTR 1028 8.9.6
Palette and DAC command register 0 DCOR0 1018 8.9.7
Palette and DAC command register 1 DCOR1 1030 8.9.8
Palette and DAC red signature register DRSR 1034 8.9.9
Palette and DAC green signature register DGSR 1038 8.9.9
Palette and DAC blue signature register DBSR 103C 8.9.9

VGA External and General Registers VExxxR Index4 8.11

2Address = hexadecimal offset into PDBR0 register space
3Address = hexadecimal offset into PDBR1 memory space
4Address = hexadecimal address (3xx) or index for VGA registers

(continued on next page)

Register Descriptions 8–5

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

VGA External and General Registers VExxxR Index4 8.11

VGA miscellaneous output register VEMISR 3C25

3CC6
8.11.1

VGA feature control register VEFCOR 3BA5�7

3DA5�8

3CA6

8.11.2

VGA input status 0 register VEIS0R 3C26 8.11.3
VGA input status 1 register VEIS1R 3BA6�7

3DA6�8
8.11.4

VGA Sequencer Registers VSxxxR Index4 8.12

VGA sequencer index register VSINXR 3C4 8.12.1
VGA sequencer data register VSDATR 3C5 8.12.2
VGA sequencer reset register VSRESR 0 8.12.3
VGA sequencer clocking mode register VSCMOR 1 8.12.4
VGA sequencer plane mask register VSPLMR 2 8.12.5
VGA sequencer character map select register VSCMSR 3 8.12.6
VGA sequencer memory mode register VSMMOR 4 8.12.7

VGA CRT Controller Registers VCxxxR Index4 8.13

VGA CRTC index register VCINXR 3B47

3D48
8.13.1

VGA CRTC data register VCDATR 3B57

3D58
8.13.2

VGA CRTC horizontal total register VCHTOR 00 8.13.3
VGA CRTC horizontal display end register VCHDER 01 8.13.4
VGA CRTC start horizontal blank register VCHBSR 02 8.13.5
VGA CRTC end horizontal blank register VCHBER 03 8.13.5
VGA CRTC start horizontal sync register VCHSSR 04 8.13.6
VGA CRTC end horizontal sync register VCHSER 05 8.13.6
VGA CRTC vertical total register VCVTOR 06 8.13.7
VGA CRTC overflow register VCOVRR 07 8.13.8

4Address = hexadecimal address (3xx) or index for VGA registers
5Write access only
6Read access only
7Monochrome
8Color

(continued on next page)

8–6 Register Descriptions

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

VGA CRT Controller Registers VCxxxR Index4 8.13

VGA CRTC preset row register VCPROR 08 8.13.9
VGA CRTC maximum scanline register VCMSLR 09 8.13.10
VGA CRTC cursor start register VCCUSR 0A 8.13.11
VGA CRTC cursor end register VCCUER 0B 8.13.11
VGA CRTC start address high register VCSAHR 0C 8.13.12
VGA CRTC start address low register VCSALR 0D 8.13.12
VGA CRTC cursor location high register VCCLHR 0E 8.13.13
VGA CRTC cursor location low register VCCLLR 0F 8.13.13
VGA CRTC start vertical sync register VCVSSR 10 8.13.14
VGA CRTC end vertical sync register VCVSER 11 8.13.14
VGA CRTC end vertical display register VCVDER 12 8.13.15
VGA CRTC offset register VCOFFR 13 8.13.16
VGA CRTC underline row scan register VCULRR 14 8.13.17
VGA CRTC start vertical blanking register VCVBSR 15 8.13.18
VGA CRTC end vertical blanking register VCVBER 16 8.13.18
VGA CRTC mode control register VCMODR 17 8.13.19
VGA CRTC line compare register VCLCMR 18 8.13.20

VGA Extended Registers VXxxxR or Index4�9 8.14

VGA extended paging control register VXPCOR 8D 8.14.1
VGA extended host page offset A register VXHPAR 90 8.14.2
VGA extended host page offset B register VXHPBR 91 8.14.2
VGA extended split-screen start address low byte
register

VXSALR 93 8.14.3

VGA extended split-screen start address high byte
register

VXSAHR 94 8.14.3

VGA extended interlace control register VXICOR 97 8.14.4
VGA extended equalization start register VXEQSR 9A 8.14.5
VGA extended equalization end register VXEQER 9B 8.14.5
VGA extended half-line register VXHLNR 9C 8.14.6
VGA extended timing control A register VXTCAR 9D 8.14.7
VGA extended timing control B register VXTCBR 9E 8.14.8
VGA extended video FIFO control register VXFCOR A0 8.14.9
VGA extended clock control A register VXCKAR A1 8.14.10
VGA extended clock control B register VXCKBR A2 8.14.10

4Address = hexadecimal address (3xx) or index for VGA registers
9Indexed by VGA CRTC index register (VCINXR)

(continued on next page)

Register Descriptions 8–7

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

VGA Extended Registers VXxxxR or Index4�9 8.14

VGA extended interface control register VXEICR A3 8.14.11

VGA Graphics Controller Registers VGxxxR Index4 8.15

VGA graphics controller index register VGINXR 3CE 8.15.1
VGA graphics controller data register VGDATR 3CF 8.15.2
VGA graphics controller set/reset register VGSRER 0 8.15.3
VGA graphics controller enable set/reset register VGESRR 1 8.15.4
VGA graphics controller color compare register VGCCMR 2 8.15.5
VGA graphics controller data rotate register VGDROR 3 8.15.6
VGA graphics controller read map select register VGRMSR 4 8.15.7
VGA graphics controller mode register VGMODR 5 8.15.8
VGA graphics controller miscellaneous register VGMISR 6 8.15.9
VGA graphics controller color don’t care register VGCDCR 7 8.15.10
VGA graphics controller bit mask register VGBMKR 8 8.15.11

VGA Attribute Controller Registers VAxxxR Index4 8.16

VGA attribute controller index/data register VAIXDR 3C05

3C16
8.16.1

VGA attribute controller palette register VAPALR 00:0F 8.16.2
VGA attribute controller mode register VAMODR 10 8.16.3
VGA attribute controller overscan register VAOSCR 11 8.16.4
VGA attribute controller color plane enable register VACPER 12 8.16.5
VGA attribute controller pixel panning register VAPXPR 13 8.16.6
VGA attribute controller color select register VACSLR 14 8.16.7

4Address = hexadecimal address (3xx) or index for VGA registers
5Write access only
6Read access only
9Indexed by VGA CRTC index register (VCINXR)

(continued on next page)

8–8 Register Descriptions

8.1 Overview

Table 8–1 (Cont.) 21130 Registers

Name Mnemonic Address Section

VGA Attribute Controller Registers VAxxxR Index4 8.16

VGA Color Registers VPxxxR Index4 8.17

VGA color pixel address write mode register VPPAWR 3C8 8.17.1
VGA color pixel address read mode register VPPARR 3C75 8.17.1
VGA color DAC state register VPDSTR 3C76 8.17.2
VGA color pixel data register VPPDAR 3C9 8.17.3
VGA color pixel mask register VPPMAR 3C6 8.17.4

4Address = hexadecimal address (3xx) or index for VGA registers
5Write access only
6Read access only

Register Descriptions 8–9

8.2 PCI Configuration Registers

8.2 PCI Configuration Registers
All PCI devices require PCI configuration registers. PCI configuration registers
identify the device and vendor, soft-map the device in I/O or memory space,
and specify the allowed modes of operation for the device as a PCI master and
target.

The configuration space occupies 256 bytes, divided as follows:

• 64 bytes (00..3F) for the device-independent, configuration-space header
block

• 192 bytes (40..FF) for device-specific registers

All unused configuration space addresses are reserved (Table 8–1). (See the
PCI Local Bus Specification, Revision 2.0 for more information about the PCI
configuration space and function codes.)

8–10 Register Descriptions

8.2 PCI Configuration Registers

8.2.1 PCI Identification Register
Mnemonic:
Byte address range:
Reset value:

PIDR
00..03
000C1011

Vendor ID

31 16 15 0

Device ID

Bits Field Access Description

31:16 Device ID RO When read, returns 000C16 to identify the 21130 as
the device.

15:0 Vendor ID RO When read, returns 101116 to identify Digital as the
vendor.

The read-only PIDR identifies the vendor and device to system software.
Writes to this register are ignored.

Register Descriptions 8–11

8.2 PCI Configuration Registers

8.2.2 PCI Command and Status Register
Mnemonic:
Byte address range:
Reset value:

PCSR
04..07
02800000

31 30 29 928 27 826 25 724 23 622 5 4 2 1 0

DEV
D
P
E

S
S
E

S
E
N

P
E
R

V
P
S

M
S

I
O

B
B
C

RAZ
A
S
E

T
A
T

B
M

3

RAZ

10

B
B
E

D
P
D

T
A
M

M
A

Bits Field Access Description

31 DPE R/W1C Detected parity error—set when the 21130 detects a
parity error, regardless of the state of the PER bit
(<6>).

30 SSE R/W1C Signaled system error—set when the 21130 sets the
pci_serr# signal.

29 MA R/W1C Master abort—set when the 21130 issues a master-
abort termination.

28 TAM R/W1C Target abort, master—set when the 21130 detects a
target-abort termination while acting as a bus master.

27 TAT R/W1C Target abort, target—set when the 21130 terminates a
transaction with a target-abort.

26:25 DEV RO Device select timing—hard-wired to code 01 to indicate
that the 21130 has a medium response time to PCI
device select.

24 DPD R/W1C Data parity error detected—set when the pci_perr#
signal is asserted, <6> is set, and the 21130 is bus
master.

23 BBC RO Back-to-back capable—hard-wired to 1 to indicate
that the 21130 can handle fast back-to-back PCI
transactions as a target.

22:10 RAZ RO Reads as zero, ignored on writes, reserved.

9 BBE RO Back-to-back enable—hard-wired to 0 to indicate
that the 21130 cannot generate fast back-to-back PCI
transactions.

8–12 Register Descriptions

8.2 PCI Configuration Registers

Bits Field Access Description

8 SEN RW pci_serr# enable

0 The pci_serr# pin driver is disabled.
1 The pci_serr# pin driver is enabled.

This bit and <6> must be set to report parity errors.

7 ASE RO Address stepping enable—hard-wired to 0 to indicate
that the 21130 never does address stepping.

6 PER RW Parity error response—enables parity error reporting.

0 Parity error reporting is disabled.
1 Address parity errors are signaled on the

pci_serr# pin and data parity errors are
signaled on the pci_perr# pin.

5 VPS RW VGA palette snoop

0 The 21130 responds normally to writes to VGA
color register space.

1 The 21130 snoops writes to VGA color register
space.

4:3 RAZ RO Reads as zero, ignored on writes, reserved.

2 BM RW Bus master enable

0 The 21130 cannot become bus master.
1 The 21130 is enabled to become bus master.

1 MS RW Memory space enable

0 Response to memory space accesses is disabled.
1 Response to memory space accesses is enabled.

0 IO RW I/O space enable

0 Response to I/O space accesses is disabled.
1 Response to I/O space accesses is enabled.

The PCSR controls and indicates the status of several PCI functions, including
parity error reporting.

The master abort and target abort bits (<29:28>) are set when the 21130
detects or issues the respective transaction terminations. These bits remain
set until software explicitly clears them by writing a 1 to the bit (writing a 0
is ignored). The 21130 issues a master abort if a target does not respond by
asserting the pci_devsel# signal. The 21130 issues a target abort if a VGA
register is accessed with an invalid byte mask.

Register Descriptions 8–13

8.2 PCI Configuration Registers

When the back-to-back capable bit (<23>) is set, the 21130 responds to fast
back-to-back PCI transactions as a target. As a master, the 21130 does not
perform fast back-to-back cycles and the back-to-back enable bit (<9>) is
hard-wired to 0.

When a parity error is detected, the 21130 signals the error on the pci_serr#
pin if the error occurred during an address transaction, or on the pci_perr#
pin if the error occurred during a data transaction. The 21130 continues to
operate normally; that is, if the address is a valid 21130 address, it is used,
along with the subsequent data. If a data transaction had the error, the
erroneous data will be used for a write.

The VGA palette snoop bit (<5>) determines how the 21130 responds to VGA
color register (palette) writes. When the bit is set, the 21130 snoops; that is,
it transparently accepts write data but does not explicitly respond to write
transactions. When the bit is clear, the 21130 responds normally to VGA
color register writes; that is, as it does to any other write to its address space.
Palette writes are I/O space writes to addresses 3C6, 3C8, and 3C9. The 21130
never actively responds to an I/O access if the I/O space enable bit (<0>) is
clear.

Table 8–2 summarizes the 21130 response according to the value of bits <5,0>.

Table 8–2 Palette Snoop Response

Bit Writes

5 0 Palette Other Reads Mode Description

0 0 NR NR NR Completely shut down

0 1 AR AR AR Fully active

1 0 PS NR NR Shut down and snooping

1 1 PS AR AR Fully active and snooping

Abbreviations

NR
AR
PS

No response to the access
Active response to the access
Passive snoop, no active response to the access

8–14 Register Descriptions

8.2 PCI Configuration Registers

Note

The 21130 does not snoop a transaction that was terminated with a
master abort.

The master enable bit (<2>) must be set in order to invoke any 21130 DMA
graphics operation.

The 2D accelerator address space can be mapped only into PCI memory space.
The 21130 responds to PCI memory accesses in its 32MB address space when
the memory space enable bit (<1>) is set.

At reset, the value of the PCSR is 0280000016. The VPS, MS, and IO bits are
clear, and the DEV, BBC, BBE, and ASE bits return their hard-wired values.

Register Descriptions 8–15

8.2 PCI Configuration Registers

8.2.3 PCI Class and Revision Register
Mnemonic:
Byte address range:
Reset value:

PCRR
08..0B
03000002

31 8 724 23 16 15 0

Base Class Subclass Revision IDProgramming
Interface

Bits Field Access Description

31:24 Base Class RO Hard-wired to 0316 to indicate that the 21130 device
base class is display controller.

23:16 Subclass RO Hard-wired to 0016 to indicate that the 21130 device
subclass is VGA controller.

15:8 Programming
Interface

RO Hard-wired to 0016 to indicate that the 21130
supports the VGA programming interface.

7:0 Revision ID RO Hard-wired as follows:

0016 Revision A devices (DC7538A)
0116 Revision B devices (DC7538B)
0216 Revision C devices (DC7538C)

This field is used when the device revision is not a
subfield of the device ID (PIDR <15:0>).

The PCRR identifies the 21130 revision number, device class (base class and
subclass), and any compatible register-level programming interfaces.

PCI power-on self-test (POST) code reads the device class information to
determine whether the 21130 is suitable as a boot display device. The
programming interface (<15:8>) indicates the register-level programming
standard supported by the 21130.

At reset, the value of the PCRR is 0300000216. All fields return their hard-
wired values.

8–16 Register Descriptions

8.2 PCI Configuration Registers

8.2.4 PCI Latency Timer and Header Type Register
Mnemonic:
Byte address range:
Reset value:

PLTR
0C..0F
00000000

Header Type Latency Timer RAZRAZ

31 24 23 16 15 08 7

Bits Field Access Description

31:24 RAZ RO Reads as zero, ignored on writes, reserved.

23:16 Header
Type

RO Hard-wired to 0016 to identify the 21130 as a single-
function device.

15:8 Latency
Timer

RW 21130 bus ownership is limited to the number of PCI
clocks specified in this field.

7:0 RAZ RO Reads as zero, ignored on writes, reserved.

The PLTR identifies the type of configuration-space header block in the 21130
configuration space. It also specifies the length of time that the 21130 retains
bus ownership in the presence of other bus requests.

At reset, the value of the PLTR is 0000000016. The latency timer field is
cleared and the header type field returns its hard-wired value.

Register Descriptions 8–17

8.2 PCI Configuration Registers

8.2.5 PCI Device Base Address Registers
Mnemonic:
PDBR0 byte address range:
PDBR1 byte address range:
PDBR0 reset value:
PDBR1 reset value:

PDBR0, PDBR1
10..13
14..17
00000008
00000000

PDBR1

PDBR0

31 25 24 4 3 2 1 0

P
FDevice Base Address MSBs Device Base Address LSBs

T
y
p
e

S
p
a
c
e

P
FDevice Base Address LSBs

Device
Base Address

MSBs

T
y
p
e

S
p
a
c
e

31 4 3 2 1 021 20

Bits Field Access Description

PDBR0

31:25 Device
Base
Address
MSBs

RW This field can be used to relocate this 21130 address
space to any location that is aligned to 32MB.

24:4 Device
Base
Address
LSBs

RO Hard-wired to 00000016 to indicate that this base
address must be aligned to 32MB or greater.

3 PF RO Prefetchable—hard-wired to 1 to indicate that this
21130 address space is prefetchable.

2:1 Type RO Hard-wired to code 00 to indicate that this 21130
address space can be mapped anywhere within the
32-bit address space.

0 Space RO Hard-wired to 0 to specify that this 21130 address space
can be mapped only into PCI memory space.

8–18 Register Descriptions

8.2 PCI Configuration Registers

Bits Field Access Description

PDBR1

31:21 Device
Base
Address
MSBs

RW This field can be used to relocate this 21130 address
space to any location that is aligned to 2MB.

20:4 Device
Base
Address
LSBs

RO Hard-wired to 000016 to indicate that this base address
must be aligned to 2MB or greater.

3 PF RO Prefetchable—hard-wired to 0 to indicate that this
21130 address space is not prefetchable.

2:1 Type RO Same as PDBR0.

0 Space RO Same as PDBR0.

8.2.5.1 PDBR0 Functions
The 21130 accelerator-specific address space is mapped to the location in
memory space specified in the PDBR0. Configuration firmware can map this
address space into any naturally-aligned, contiguous, 32MB (or larger) region.

The value of the prefetchable bit (<3> = 1) indicates that there are no side
effects on reads to this 21130 address space. The 21130 returns all bytes on
reads regardless of the byte enables. However, host bridges must not collapse
or resequence writes into this region, because side effects might cause errors.
For example, consider a repeated write to frame buffer memory in simple mode
with the XOR Boolean operation. If the writes are collapsed, only one of the
writes will occur, leaving the pixel in the wrong state. For another example,
consider setting up a line-drawing operation. This involves a specific sequence.
If reordering hardware, such as a write buffer, resequences the steps, the line
will not be drawn as intended.

At reset, the value of the PDBR0 is 0000000816. The device base address MSB
field is cleared and the device base address LSB, PF, type, and space fields
return their hard-wired values.

8.2.5.2 PDBR1 Functions
The PDBR1 maps VGA alternate register space (Section 7.5.2.1), generic
peripheral port (GPP) register space (Section 7.5.2.2), interrupt status register
(MISR) space (Section 7.5.2.3), and DAC register space (Section 7.5.2.4).

Register Descriptions 8–19

8.2 PCI Configuration Registers

The value of the prefetchable bit (<3> = 0) indicates that there are side effects
on reads to this 21130 address space. The side effects are due to index registers
in the VGA alternate register space and DAC registers that change value when
read.

At reset, the value of the PDBR1 is 0000000016. The device base address MSB
field is cleared and the device base address LSB, PF, type, and space fields
return their hard-wired values.

8–20 Register Descriptions

8.2 PCI Configuration Registers

8.2.6 PCI Expansion ROM Base Address Register
Mnemonic:
Byte address range:
Reset value:

PRBR
30..33
00000000

ROM
Base Address

LSBs

D
EROM Base Address MSBs RAZ

31 111 01018 17

Bits Field Access Description

31:18 ROM
Base
Address
MSBs

RW The ROM base address MSBs.

17:11 ROM
Base
Address
LSBs

RO Hard-wired to 0016 to indicate that the ROM base
address must be aligned to 256KB or greater.

10:1 RAZ RO Reads as zero, ignored on writes, reserved.

0 DE RW Decode enable

1 ROM access decoding is enabled.
0 ROM access decoding is disabled.

The PRBR maps the ROM space and supports a ROM size up to 256KB. The
ROM must be mapped on naturally aligned 256KB boundaries. The 21130
responds to all accesses in the 256KB ROM space if the decode enable (<0> in
this register) and the memory space enable bit (PCSR <1>, Section 8.2.2) are
set.

At reset, the value of the PRBR is 0000000016. The ROM base address MSB
field and DE bit are cleared, and the ROM base address LSB field returns its
hard-wired value.

Register Descriptions 8–21

8.2 PCI Configuration Registers

8.2.7 PCI Interrupt Line Register
Mnemonic:
Byte address range:
Reset value:

PLIR
3C..3F
00040100

31 8 716

Minimum Grant TimeMaximum Latency Interrupt Pin Interrupt Line

15 024 23

Bits Field Access Description

31:24 Maximum
Latency

RO Hard-wired to 0016 to indicate that the 21130 has no
maximum latency requirements.

23:16 Minimum
Grant
Time

RO Hard-wired to 0416 to indicate that the 21130 requires
a burst length of 1 µs to efficiently use the PCI
bandwidth.

15:8 Interrupt
Pin

RO Hard-wired to 0116 to indicate that 21130 signals
interrupts on the pci_inta# pin.

7:0 Interrupt
Line

RW The 21130 pci_inta# pin is tied to the system interrupt
controller input identified by this field. POST firmware
initializes this field.

The PLIR provides hardware support for POST firmware interrupt
configuration and identification. The 21130 has only one physical interrupt
pin, and POST firmware sets the interrupt line field (<7:0>).

At reset, the value of the PLIR is 0004010016. The interrupt line field is clear
and the maximum latency, minimum grant time, and interrupt pin fields
return their hard-wired values.

8–22 Register Descriptions

8.2 PCI Configuration Registers

8.2.8 PCI Clock Control Register
Mnemonic:
Byte address range:
Reset value:

PCCR
40..43
00001C0X

31 8 7 4 3 214 13 1 0

RAZ M Term RAZ

S
R
E
S

T
C
S

P
C
S

M
C
S

Bits Field Access Description

31:14 RAZ RO Reads as zero, ignored on writes, reserved.

13:8 M Term RW Sets the memory clock PLL multiplier (Table 8–3). At
reset, the value of this field is 1C and the memory clock
is 50.1136 MHz.

7:4 RAZ RO Reads as zero, ignored on writes, reserved.

3 SRES RW Soft reset—allows software to reset the 21130.

0 21130 normal operation.
1 Resets the 21130. All registers, except the PCI

configuration registers, are forced to their reset
state.

2 TCS RW Test clock source—determines the test clock (pll_test)
source.

0 Memory clock (see bit <0>)
1 Pixel clock (see bit <1>)

1 PCS RW Pixel clock source—determines the pixel clock input
source.

0 Internal PLL
1 pixclk pin

When PCI reset (pci_rst#) is asserted, this bit is forced
to the inverse of the gp_int# signal.

0 MCS RW Memory clock source—determines the memory clock
input source.

0 Internal PLL
1 xtal2 pin

When PCI reset (pci_rst#) is asserted, this bit is forced
to the inverse of the gp_int# signal.

Register Descriptions 8–23

8.2 PCI Configuration Registers

The PCCR configures the memory clock; selects the memory, pixel, and
test clock sources; and enables software to reset the 21130. Note that the
clock control A and B registers (VXCKAR and VXCKBR, Section 8.14.10)
configure the pixel clock and determine the VGA dot clock source. The video
valid register also contains bits that control the test clock (VIVVR <13:12,10>,
Section 8.7.2). See Section 12.5 for more information about the clock generation
function.

Table 8–3 lists the memory clock frequencies.

Table 8–3 Memory Clock Frequency Select

M1 MHz2 M MHz M MHz M MHz

0F 26.8466 16 39.3750 1D 51.9034 24 64.4318
10 28.6364 17 41.1648 1E 53.6932 25 66.22163

11 30.4261 18 42.9545 1F 55.4830 26 68.0114
12 32.2159 19 44.7443 20 57.2727 27 69.8011
13 34.0057 1A 46.5341 21 59.0625 28 71.5909
14 35.7955 1B 48.3239 22 60.8523 29 73.3807
15 37.5852 1C 50.11364 23 62.6420 2A 75.1705

1M term specified in PCCR <13:8>. M values 00..0E and 2B..3F are reserved.
2Memory clock frequency in MHz.
3Design center.
4Reset value.

8–24 Register Descriptions

8.3 Miscellaneous Registers

8.3 Miscellaneous Registers
The miscellaneous registers return information about the current status of
chip processing and pending interrupts, and enable interrupts; provide a
synchronization mechanism for scheduling commands; and control the pixel
clock.

The MCSR is one of the core registers mapped in base address 0 memory
space (Section 7.5.1.2) by the PDBR0. The MISR is mapped in base address 1
memory space (Section 7.5.2) by the PDBR1.

8.3.1 Command Status Register
Mnemonic:
Offset:
Reset value:

MCSR
1F8
Cleared

RES RES
FIFO FIFO
Write

31

Pointer
Read

8

Pointer

722 21 16 15 14 13 1 0

RES

B
u
s
y

Bits Field Access Description

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:16 FIFO
Write
Pointer

RO Indicates the next command FIFO location to be
written. Forced to zero when the 21130 is idle (bit
<0> is clear).

15:14 RES MBZ Reserved, must be zero. Read value is unpredictable.

13:8 FIFO
Read
Pointer

RO Indicates the next command FIFO location to be read.
Forced to zero when the 21130 is idle (bit <0> is clear).

7:1 RES MBZ Reserved, must be zero. Read value is unpredictable.

0 Busy RO Indicates 21130 busy status.

0 The 21130 is idle.
1 The 21130 is processing commands from the

command FIFO.

When read, the read-only MCSR returns the state of the busy bit (<0>). The
busy bit indicates whether the chip is processing commands or has completed
all command processing and the command FIFO is empty.

Register Descriptions 8–25

8.3 Miscellaneous Registers

In addition to the PCI configuration registers and the VGA registers, the
MCSR is one of the few registers that is immediately accessible for read (see
Section 9.2.2.1). In other words, the command FIFO does not have to be
flushed before completing a read of the MCSR.

8.3.1.1 Write Memory Barrier
The 21130 is optimized as a primarily write-only device, and it implements
pipelined processing. In typical graphics operations, the driver can stream
writes and commands to the chip without overflowing the command FIFO. The
21130’s PCI retry mechanism combined with short command processing times
prevents most writes from stalling. Hardware retries any writes that do stall
and software polling is usually unnecessary.

However, in many cases software should poll the busy bit and wait for the
21130 to become idle before continuing. Although the 21130 provides hardware
interlocks to ensure coherency for most operations (such as holding a frame
buffer read until the write buffer is flushed), waiting for the 21130 to be idle
is necessary for unsupported interlocks and to synchronize hardware and
software processing.

The following situations are examples of when it is practical or necessary for
software to wait for the 21130 to be idle. The length of time to wait depends on
the specific situation.

• To avoid unnecessary retries on the PCI bus while long commands
complete.

• On any write to the deep register (GDER).

• When loop commands are used with long graphics commands.

The MCSR acts as a write memory barrier. The 21130 inserts a write
to the MCSR into the command FIFO as a flag to ensure that preceding
commands and writes are completely processed before subsequent commands
and writes are unloaded from the command FIFO. The command parser
unloads commands and writes from the command FIFO, performs some initial
processing, and then passes graphics processing requests to the pixel pipeline
(Section 2.3). The command parser provides a hardware interlock mechanism
to ensure that any writes it processes do not affect processing in progress
downstream in the pipeline. The MCSR interlock mechanism is an additional
precaution, in case the hardware interlock fails or cannot handle a particular
operation. (See Section 10.1.4 for more information.)

8–26 Register Descriptions

8.3 Miscellaneous Registers

8.3.2 Interrupt Status Register
Mnemonic:
Offset:
Reset value:

MISR
07FFFF..040000
Cleared

I
N
T
R

E
O
F
E
N

E
O
F
S
T

31 30 17 16 15 1 0622 21 520 4

RESRESRESRES

G
I
E
N

G
I
S
T

Bits Field Access Description

31 INTR RO Interrupt status—logical OR of interrupt-enable-
masked version of GST and EOFST (<5,0>).

30:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21 GIEN RW GPP interrupt enable—set to enable interrupts on the
GPP interrupt pin (gp_int#).

20:17 RES MBZ Reserved, must be zero. Read value is unpredictable.

16 EOFEN RW End-of-frame enable—set to enable end-of-frame
interrupts.

15:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 GIST R/W1C GPP interrupt status—set when the gp_int# pin is
asserted. Writing a 1 to this bit clears it.

4:1 RES MBZ Reserved, must be zero. Read value is unpredictable.

0 EOFST R/W1C End-of-frame interrupt status—set when end-of-frame
is reached. Writing a 1 to this bit clears it.

The MISR is located in base address 1 space, rather than in base address
0 space (that is, command buffered space) with the other core registers,
to accommodate interrupts that might occur during a loop operation. This
allows the interrupt service routine to clear the interrupt status bits, without
disturbing the contents of the command FIFO.

When an interrupt occurs, the corresponding interrupt status bit is set whether
the corresponding enable bit is set or clear; however, the pci_inta# signal is
asserted only if both the status and enable bits are set.

End-of-frame interrupts can be enabled in the VGA input status 0 register
(VEIS0R <7>, Section 8.11.3) as well as in the MISR. Digital recommends that
software use the MISR when operating in modes that are not VGA-compatible,
because one read of the MISR returns the source of a 21130 interrupt.

Register Descriptions 8–27

8.3 Miscellaneous Registers

In addition to the PCI configuration registers and the VGA registers, the
MISR is one of the few registers that is immediately accessible for read (see
Section 9.2.2.1). In other words, the command FIFO does not have to be
flushed before completing a read of the MISR.

8–28 Register Descriptions

8.4 Graphics Command Registers

8.4 Graphics Command Registers
The graphics command registers are part of the core registers mapped in base
address 0 memory space (Section 7.5.1.2) by the PDBR0.

The 21130 accelerated graphics operations are selected by specifying a mode in
the mode register (GMOR, Section 8.5.1) and initiated by a write to either of
the following:

• The frame buffer address space (standard drawing mechanism)

The chip is set to a specific mode and the frame buffer is written directly.
The address and data are interpreted according to the mode.

• Any graphics command register (alternate drawing mechanism)

The graphics software initiates a drawing operation by writing to a
graphics command register.

The graphics command registers are the only 21130 registers that initiate a
drawing action when written. They provide a faster and simpler mechanism to
draw, extend, and link lines, and copy large spans. They also allow software to
indirectly address the frame buffer.

Register Descriptions 8–29

8.4 Graphics Command Registers

8.4.1 Slope Registers
Mnemonic:
GSLR<7:0> offsets:
GSLR<7:0> reset value:

GSLR<7:0>
13C, 138, 134, 130, 12C, 128, 124, 120
Undefined

31 16 15 0

Absolute dy Absolute dx

Bits Field Access Description

31:16 Absolute
dy

WO An unsigned integer equal to the absolute value of the
difference in y of the two line endpoints.

15:0 Absolute
dx

WO An unsigned integer equal to the absolute value of the
difference in x of the two line endpoints.

Note

The Bresenham width register (GBWR, Section 8.5.14) must be written
before writing a GSLR.

The write-only GSLRs initialize the internal Bresenham engine for line
drawing. On a write to a GSLR, the following Bresenham terms are
automatically calculated as a function of absolute dx and absolute dy.

• Initial error

The 16-bit signed initial value stored in the Bresenham engine error
accumulator.

• Length

A 4-bit value specifying the number of pixels to be drawn in this line
segment.

• Error Increment 1

The positive value added to the error term when the Bresenham error term
is < 0 (a major axis step).

• Address Increment 1

The signed value added to the current address when the Bresenham error
term is < 0 (a major axis step).

8–30 Register Descriptions

8.4 Graphics Command Registers

• Error Increment 2

The positive value subtracted from the error term when the Bresenham
error term is � 0 (a step along the major and minor axes).

• Address Increment 2

The signed value added to the current address when the Bresenham error
term is � 0 (a step along the major and minor axes).

Each GSLR is associated with one of the drawing octants (Figure 8–1), and
each specifies a slope in terms of the absolute values of the rise in y (absolute
dy) and the run in x (absolute dx). Results are undefined if both absolute
dy and absolute dx are zero. Software must filter out zero-length lines.
(Section 10.2.9.2 includes the algorithm for calculating the Bresenham terms.)

On a write to a GSLR, the pixel length of the line segment is initialized to the
major axis length MOD 16 (GB3R <3:0>, Section 8.5.13). This means that the
21130 is initialized to draw up to 16 pixels when the GSLR is written. For
example, if the major axis length (the greater of absolute dx and absolute dy)
is 19, the GSLR initializes the pixel length to 3. When used with the continue
register (GCTR, Section 8.4.3), this feature allows software to draw lines of
arbitrary length without monitoring the length of each segment. If the line to
be drawn is not an exact multiple of 16 pixels, the shorter line (length MOD
16) is drawn first, and the line is completed with successive writes to the GCTR
(which always draws 16 pixels).

Depending on the graphics environment (GMOR <13>, Section 8.5.1), writing
a GSLR sets up the Bresenham terms correctly for all X-compliant lines and
most lines that comply with Windows NT. The GSLRs create the correct initial
terms for lines drawn under Windows NT only if the following criteria are met:

• The endpoint coordinates of the line are integers.

• The length of the line, as measured by the run of the line along the major
axis, is limited to 64K�1 pixels.

In general, lines that have subpixel endpoints and clipped lines cannot be
drawn with the GSLRs; the slope-no-go registers (GSNR<7:0>, Section 8.5.3)
and GCTR can be used to draw such lines.

Figure 8–1 shows the slope register associated with each of the drawing
octants.

Register Descriptions 8–31

8.4 Graphics Command Registers

Figure 8–1 Slope Registers and Drawing Octants

GSLR0

GSLR1

GSLR2

GSLR3

GSLR4 GSLR6

GSLR7

y

x

GSLR5

See Section 10.2.9.2 for more information about using the GSLRs to draw lines.

8–32 Register Descriptions

8.4 Graphics Command Registers

8.4.2 Span Width Register
Mnemonic:
Offset:
Reset value:

GSWR
0BC
Cleared

The function of the GSWR depends on whether it is being read (Section 8.4.2.1)
or written (Section 8.4.2.2).

8.4.2.1 GSWR Read

RES

31 3 2 1

dxGEdy

0

dxGE0
dyGE0

Bits Field Access Description

31:3 RES MBZ Reserved, must be zero. Read value is unpredictable.

2 dxGEdy RO Set when the absolute value of the run parameter (dx)
is greater than or equal to the absolute value of the rise
parameter (dy); otherwise, clear (dx is less than dy).

1 dxGE0 RO Set when the run (dx) of the slope is greater than
or equal to 0 (dx is positive); otherwise, clear (dx is
negative).

0 dyGE0 RO Set when the rise (dy) of the slope is greater than
or equal to 0 (dy is positive); otherwise, clear (dy is
negative).

On a read, the GSWR returns parameters that show the state of the internal
Bresenham engine.

The slope parameters are generated by the Bresenham engine on a write to the
GSWR, the slope registers, or the slope-no-go registers. (See Section 10.2.9 for
more information about the algorithm that generates the slope parameters.)

Register Descriptions 8–33

8.4 Graphics Command Registers

8.4.2.2 GSWR Write
On a write, the GSWR is an alias for slope register 7 (GSLR7), with the same
format and field descriptions (Section 8.4.1). The GSWR can be used to draw
spans when absolute dy is 0.

8–34 Register Descriptions

8.4 Graphics Command Registers

8.4.3 Continue Register
Mnemonic:
Offset:
Reset value:

GCTR
04C
Cleared

The function of the GCTR depends on whether it is being written
(Section 8.4.3.1) or read (Section 8.4.3.2).

8.4.3.1 GCTR Write

31

Mode−Specific Data

0

Bits Field Access Description

31:0 Mode-
Specific
Data

WO Same as the mode-specific PCI write-data formats
described in Chapter 10.

On a write, the two primary functions of the GCTR are to indirectly address
the frame buffer and continue a line or span for an additional 16 pixels without
recomputing and reloading parameters.

A PCI write to the 21130 frame buffer space usually initiates a drawing action.
The address used for the operation is the frame buffer address of the write, and
the PCI write data is interpreted according to the drawing mode. Alternatively,
software can initiate mode-dependent operations by writing the GCTR, and
indirectly specify the frame buffer address. Writes to the GCTR are interpreted
exactly the same as writes to the frame buffer.

The GCTR mode-specific data (<31:0>) has the mode-dependent format of the
frame buffer PCI write-data except in line mode.

Register Descriptions 8–35

8.4 Graphics Command Registers

GCTR Write in Line Mode

31 16 15 0

RES Line Mask

Bits Field Access Description

31:16 RES MBZ Reserved, must be zero. Read value is unpredictable.

15:0 Line
Mask

WO Mask or stipple for the next 16-pixel line segment.

The format of GCTR mode-specific data in line mode is the same as the
PCI write-data format in opaque-line mode (Section 10.2.9), except that the
GCTR data does not include the address LSBs (pci_ad<1:0>). These bits are
unnecessary because the address is fully contained in the address register
(GADR, Section 8.5.6). See Chapter 10 for more information about using the
GCTR to extend lines.

Indirect Frame Buffer Addressing
If the GADR was written since the previous operation, the GCTR will take the
frame buffer address from the GADR and initiate a graphics operation.

Line or Span Continuation
If the GADR is purposely not written before initiating a line mode operation,
the GCTR can be written to effectively extend, or continue, the line drawn
immediately prior to the current operation, using the address in the 21130
internal addressing hardware.

At the completion of a line or span drawing operation, the 21130 leaves its
internal line-drawing hardware in a state that allows a subsequent line-mode
operation to continue where the preceding line-mode operation stopped. That
state includes at least the frame buffer address, and can also include the
Bresenham error terms, depending on the specific line mode. Therefore, the
GCTR can quickly and easily extend the previous line-mode operation. For
example, a write to a slope register will set up and draw 16 pixels along a
line. After the initial write to the slope register, software can simply write the
GCTR twice to extend the line or span to a length of 48 pixels.

8–36 Register Descriptions

8.4 Graphics Command Registers

Writes to Alternate Control Space
The GCTR and GADR are mapped sequentially on writes to the alternate
control space in the 21130 PCI memory space. Basically, software can
alternately write the GCTR and GADR by writing sequential locations in
the otherwise read-only alternate control space. This method of sequential
access can help make effective use of the write buffer in an Alpha CPU. (See
Sections 7.5.1.3 and 11.12 through 11.12.2 for more information about alternate
control space access and mapping.)

8.4.3.2 GCTR Read

31

Undefined

0

Bits Field Access Description

31:0 Undefined RO Undefined.

On a read in any mode, the GCTR returns possibly undefined data.

Register Descriptions 8–37

8.4 Graphics Command Registers

8.4.4 Copy-64 Source and Destination Registers
Mnemonic:
GCSR offset:
GCDR offset:
GCSR, GCDR reset value:

GCSR, GCDR
160
164
Cleared

IGN

2

GCSR

GCDR

RES Frame Buffer Address Source

31 022 21

RES IGNFrame Buffer Address Destination

3

Bits Field Access Description

GCSR

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:3 Frame
Buffer
Address
Source

WO Frame buffer byte address of the source. The 8-byte-
aligned base address of the 64-byte span to be loaded
into the 21130 copy buffer.

2:0 IGN WO Ignored when written.

GCDR

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:3 Frame
Buffer
Address
Destination

WO Frame buffer byte address of the destination. The
64-byte span will be copied from the 21130 copy
buffer to the destination starting at this 8-byte-
aligned address.

2:0 IGN WO Ignored when written.

The GCSR and the GCDR are used together to perform fast, simple copies of
aligned, unmasked, 64-byte spans. Both registers are write-only.

8–38 Register Descriptions

8.4 Graphics Command Registers

Note

Before writing the copy buffer registers, copy mode must be selected
(GMOR <7:0>, Section 8.5.1).

A write to the GCSR must be matched with a write to the GCDR;
otherwise, the copy buffer will be left in an undefined state.

A write to the GCSR initiates a fill from the frame buffer to the onchip 64-byte
copy buffer, beginning at the frame buffer address source (GCSR <21:3>). A
subsequent write to the GCDR unloads the contents of the copy buffer into
the frame buffer, beginning at the frame buffer address destination (GCDR
<21:3>). The frame buffer source and destination addresses must be aligned to
8 bytes.

Writing the frame buffer address of the source span to the GCSR and then
writing the frame buffer address of the destination span to the GCDR
effectively copies a 64-byte span from an 8-byte-aligned source to an
8-byte-aligned destination.

Copying 8-bpp bitmaps with the GCSR and GCDR, which copies 64 pixels at
a time, is faster than copying with writes to the frame buffer, which copies
only 32 pixels at a time. However, the GCSR and GCDR can be used to copy
only unmasked spans in which the source and destination are aligned to 8
bytes. Therefore, the GCSR and GCDR are used primarily to copy the interiors
of large spans. Given an arbitrary source and destination, addresses are not
likely to be aligned to 8 bytes. In such cases, the edges of the span must be
copied with writes to the frame buffer in standard copy mode. The GCSR and
GCDR can then be used to quickly fill the remaining 8-byte-aligned interior of
the span.

Although the 21130 does not support masking when using the GCSR and
GCDR, it does shift pixel data to support copies in which the source and
destination are unaligned. Pixel data is shifted as specified in the pixel shift
register (GPSR, Section 8.5.5).

Register Descriptions 8–39

8.4 Graphics Command Registers

8.4.5 Copy-64A Source and Destination Registers
Mnemonic:
GCASR offset:
GCADR offset:
GCASR, GCADR reset value:

GCASR, GCADR
360
364
Cleared

RES

31 0

RESGCADR

GCASR

Bits Field Access Description

31:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The GCASR and the GCADR are used the same way as the copy-64 source and
destination registers (GCSR and GCDR, Section 8.4.4), and both registers are
write-only. Writes to the copy-64A registers cause 64 bytes of frame buffer data
to be read into and written from the copy buffer in the same way as writes to
the copy-64 registers. However, unlike operations initiated by writes to the
copy-64 registers, writes to the copy-64A registers use the address register
(GADR, Section 8.5.6) to define the starting address for the operation. The
copy-64A registers enable the use of 64-byte 8-bpp copy transfers within repeat
loops.

8–40 Register Descriptions

8.4 Graphics Command Registers

8.4.6 Repeat Begin and End Registers
Mnemonic:
GRBR offset:
GRER offset:
GRBR, GRER reset value:

GRBR, GRER
340
350
Cleared

GRER

GRBR

RES

31

Repeat NumberRES

11 010

Bits Field Access Description

GRBR

31:11 RES MBZ Reserved, must be zero. Read value is unpredictable.

10:0 Repeat
Number

WO The number of times to repeat the loop defined
by the GRBR and GRER. A value of 0 causes one
execution of the loop.

GRER

31:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The GRBR and GRER define a sequence of register space writes that are to be
executed multiple times. All register space writes that occur between writes
to the GRBR and GRER are part of the repeat loop. The value of the repeat
number field +1 specifies the number of iterations through the loop (repeat
number = 0 causes one execution of the loop).

The following restrictions are imposed when using the GRBR and GRER repeat
looping mechanism:

• The repeat loop must be programmed such that it does not exceed the size
of the 64-Dword command FIFO (Section 2.2). The write to the GRER
(but not the write to the GRBR) must be included in the repeat-loop size
calculation.

• The GRBR and GRER mechanism does not support nested repeat loops.

Register Descriptions 8–41

8.4 Graphics Command Registers

• The GRBR and GRER writes must not be placed in the command buffer as
part of a bursted write sequence. To enforce this restriction, ensure that
software never writes to Dword addresses adjacent to the GRBR and GRER
(that is, offsets 33C, 344, 34C, and 354).

• Reads of register space must not be done between writes to the GRBR and
GRER. Such reads are at risk of completing out of order.

8.5 Graphics Control Registers
The graphics control registers are part of the core registers mapped in base
address 0 memory space (Section 7.5.1.2) by the PDBR0.

The graphics control registers control 21130 graphics processing. Reading and
writing the graphics control registers does not initiate any drawing activity.
The register parameters characterize the operations that are initiated by
writing to the graphics command registers or frame buffer.

The graphics control registers need not be written for every drawing operation.
The number of graphics control registers needed to perform a graphics
operation depends on the mode the chip is in and whether drawing is initiated
by a write to the frame buffer or to a graphics command register. Additionally,
register fields that contain configuration-specific information, such as the
width of the frame buffer data path, are written only at initialization time.
(Chapter 10 describes the graphics operations and the registers that are
required, optional, or ignored for each type of operation.)

Most the graphics control registers can be read and written; however, as noted
in the register descriptions, some registers do not read exactly as written, and
all the bits in a given register do not necessarily have the same type of access.

8–42 Register Descriptions

8.5 Graphics Control Registers

8.5.1 Mode Register
Mnemonic:
Offset:
Reset value:

GMOR
030
00100000

RES

31

SB

8

RES

7

Mode

16

C
E

15

G
E

14

R

13

E

12

S

11 010

RES

22 21 20 1924 23

P
M
S

A
R
S

B
R
3
S

C
B
S

Bits Field Access Description

31:24 RES MBZ Reserved, must be zero. Read value is unpredictable.

23 PMS RO Pixel mask status—indicates whether the pixel mask
register (GPXR, Section 8.5.10) is operating in the
1-shot or persistent mode.

0 The GPXR is operating as a 1-shot mask.
1 The GPXR is operating as a persistent mask.

22 ARS RO Address register status—indicates the address source
for the next line operation.

0 The line operation will use the current internal
address.

1 The line operation will use the address in the
address register (GADR, Section 8.5.6).

This bit is set by writing to the GADR and cleared by
doing a line operation.

21 BR3S RO Bresenham 3 register status—indicates the source of
error and length values for the next line operation.

0 The line operation will use the current internal
error and length values.

1 The line operation will use the initial error and
length values from the Bresenham 3 register
(GB3R, Section 8.5.13).

This bit is set by writing to the GB3R and cleared by
doing a line operation.

Register Descriptions 8–43

8.5 Graphics Control Registers

Bits Field Access Description

20 CBS RO Copy buffer status (copy-direction flag)—indicates the
direction of the next copy buffer operation.

0 The next copy mode operation will drain the copy
buffer.

1 The next copy mode operation will fill the copy
buffer.

This bit is set at reset.

19:16 RES MBZ Reserved, must be zero. Read value is unpredictable.

15 CE RW Cap ends

0 Last pixel write is disabled.
1 Last pixel write is enabled.

14 RES MBZ Reserved, must be zero. Read value is unpredictable.

13 GE RW Graphics environment

0 The 21130 is operating in an X11 graphics
environment.

1 The 21130 is operating in a Win32 graphics
environment.

12:11 RES MBZ Reserved, must be zero. Read value is unpredictable.

10:8 SB RW Source bitmap—specifies the type of source bitmap.

000 8-bpp packed source
001 Reserved
010 Reserved
011 24-bpp source, unpacked, in 32-bpp frame buffer
100 16-bpp packed source, 5:6:5 (R:G:B) organization
101 16-bpp packed source, 1:5:5:5 (�:R:G:B)

organization
110 Reserved
111 Reserved

Note: The destination bitmap field (GOPR <10:8>,
Section 8.5.9) is included for DECchip 21030
compatibility. Software must ensure that the source
and destination bitmaps are the same type.

7:0 Mode RW The code in this field determines the 21130 graphics
mode, as shown in Table 8–4.

The GMOR determines how the 21130 responds to writes to the frame buffer
space and graphics command registers. Depending on the mode field (<7:0>),
the 21130 interprets the address and data differently on any write to the
frame buffer, and may interpret the data differently on a write to the graphics

8–44 Register Descriptions

8.5 Graphics Control Registers

command registers. (For more information about the effect of different modes
on 21130 graphics processing, see Section 10.2.)

The graphics environment bit (<13>) specifies whether graphics processing
must conform to Win32 or X11 specifications. Currently, this field controls how
lines are drawn, because Win32 requires a style incompatible with existing
X-server drawing code.

The cap ends bit (<15>) determines whether the last pixel in a line is drawn.
This bit affects only lines drawn by writing to the slope registers; it has no
effect when the frame buffer is accessed in one of the line modes. The host is
responsible for adjusting the line length when lines are drawn by writing to
the frame buffer in a line mode.

At reset, the value of the GMOR is 0010000016. The copy buffer status bit
(<20>) is set.

Table 8–4 lists the graphics modes.

Table 8–4 Graphics Modes

Code� Graphics Mode

00000000 Simple mode
00000001 Opaque stipple mode
01000001 Opaque bit-reversed stipple mode
00100001 Opaque fill mode
00101001 Opaque extended pattern fill mode
00000010 Opaque line mode
00000101 Transparent stipple mode
01000101 Transparent bit-reversed stipple mode
10000101 Transparent stipple with pixel mask mode
11000101 Transparent bit-reversed stipple with pixel mask mode
00100101 Transparent fill mode
00101101 Transparent extended pattern fill mode
00000110 Transparent line mode
00000111 Copy mode
00010111 DMA-read copy mode, non-dithered
01010111 Scaled-copy mode, enlarge, destination forward
01110111 Scaled-copy mode, reduce, destination forward
11010111 Scaled-copy mode, enlarge, destination backward
11110111 Scaled-copy mode, reduce, destination backward
Unused codes are reserved.

�Code in mode register bits <7:0>.

Register Descriptions 8–45

8.5 Graphics Control Registers

8.5.2 Deep Register
Mnemonic:
Offset:
Reset value:

GDER
050
0050001C

RES

31

G
I
B

M

22

D
F
R
W
E

3
2

21 20 19 11 01023 113 12 245

V
G
A
E

W
P
G

Addr
Mask

 RES RES RES

Bits Field Access Description

31:23 RES MBZ Reserved, must be zero. Read value is unpredictable.

22 VGAE RW VGA enable—determines whether VGA or accelerated
graphics (2DA) modes are enabled.

0 The 21130 accelerated modes are enabled.
1 The VGA mode is enabled.

Note: VGA operations with this bit clear and
accelerated operations with this bit set have undefined
results.

21 GIB RW Gib-endian

0 Gib-endian support is disabled.
1 Gib-endian support is enabled.

20 MD32 RW Mode 32

0 The frame buffer bus width is 64 bits.
1 The frame buffer bus width is 32 bits.

19:13 RES MBZ Reserved, must be zero. Read value is unpredictable.

12 FRWE RW Flash ROM write enable

0 Writes to the flash ROM are disabled.
1 The flash ROM can be written.

11 WPG RW Wrong parity generate

0 Even parity generation is enabled on PCI
transactions (normal operation).

1 Odd parity generation is enabled on PCI
transactions.

Used to test parity generation and reporting logic.

10:5 RES MBZ Reserved, must be zero. Read value is unpredictable.

8–46 Register Descriptions

8.5 Graphics Control Registers

Bits Field Access Description

4:2 Addr
Mask

RW Address mask—the code in this field determines which
bits of the incoming PCI address are masked according
to the size of the 21130 address space, as follows:

Code Mask Core Map Size

001 Mask <23:22> 8MB
000 Mask <24:22> 4MB
Unused codes are reserved

1:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The GDER specifies the width of the frame buffer data bus. It is typically
written once at initialization time and must be written before any frame buffer
access can be performed.

The address mask (<4:2>) determines how incoming PCI address bits <24:22>
are masked to index into the 21130’s 32MB address space. (See Chapter 7 for
more information.)

When the flash ROM write-enable bit (<12>) is clear, flash ROM writes are
disabled, but the cycle is externally visible and can be used to implement a
write-only parallel port.

8.5.2.1 Gib-Endian Support
The gib-endian bit (<21>) supports big-endian transfers on the PCI. Typically,
a big-endian bridge reorders the bytes when transferring data across the PCI.
Note that the byte order is maintained on the PCI, as required by the PCI
Local Bus Specification, Revision 2.0, but byte adjacency is destroyed. This has
undesirable side-effects on pixels that span across bytes.

Figure 8–2 shows 1:5:5:5 and 8:8:8:8 pixel format transfers with gib-endian
support.

Register Descriptions 8–47

8.5 Graphics Control Registers

Figure 8–2 Gib-Endian Transfers

R G B

31 30 926 25 21 520 416

Data on PCI Bus (Gib−Endian) After PCI Bridge Chip Transformation

15

Data After 21130 Gib−Endian Transformation

14 0

a

10

Byte 0
Pixel n+1

Big−Endian Data

31 29 28 8 724 23 622

1:5:5:5 Pixel Format Data Transfer

18 17 16 15 213 112 0

R G Ba

8 724 23

Byte 1 Byte 2 Byte 3
Pixel n

R G BaG B R Ga

Byte 3 Byte 2 Byte 1 Byte 0
Pixel nPixel n+1

R G B

31 30 926 25 21 520 416 15 14 0

a

10

R G Ba

8 724 23

Pixel n
Byte 3 Byte 2 Byte 1 Byte 0

31 16

Data on PCI Bus (Gib−Endian) After PCI Bridge Chip Transformation

15

Data After 21130 Gib−Endian Transformation

0

Byte 0

Big−Endian Data
8:8:8:8 Pixel Format Data Transfer

8 724 23

Byte 1 Byte 2 Byte 3
Pixel n

Byte 3 Byte 2 Byte 1 Byte 0

31 16 15 08 724 23

Pixel n

RGB a

Byte 3 Byte 2 Byte 1 Byte 0

31 16 15 08 724 23

Pixel n

R G Ba

R G Ba

Pixel n+1

The gib-endian bit operates only in the simple, DMA-read copy, and scaled-copy
modes. The byte mask is applied to bytes before the gib-endian reordering.
In the DMA-read copy and scaled-copy modes, gib-endian reordering is done
before the data is shifted.

8–48 Register Descriptions

8.5 Graphics Control Registers

Because gib-endian reordering is dependent upon the source bitmap field in the
mode register (GMOR <10:8>, Section 8.5.1), the value of the source bitmap
field should be set before performing gib-endian operations.

At reset, the value of the GDER is 0050001C. VGA is enabled, gib-endian
support is disabled, the data bus width is 32 bits, odd parity generation is
disabled, and the PCI address is not masked.

Register Descriptions 8–49

8.5 Graphics Control Registers

8.5.3 Slope-No-Go Registers
Mnemonic:
GSNR<7:0> offsets:
GSNR<7:0> reset value:

GSNR<7:0>
11C, 118, 114, 110, 10C, 108, 104, 100
Undefined

The function of GSNR<7:0> depends on whether the registers are being written
(Section 8.5.3.1) or read (Section 8.5.3.2).

8.5.3.1 GSNR<7:0> Write

31 16 15 0

Absolute dy Absolute dx

Bits Field Access Description

31:16 Absolute
dy

RW An unsigned integer equal to the absolute value of the
difference in y of the two line endpoints.

15:0 Absolute
dx

RW An unsigned integer equal to the absolute value of the
difference in x of the two line endpoints.

On a write, the GSNRs mimic the behavior of the slope registers (GSLR<7:0>,
Section 8.4.1), but they do not initiate drawing. That is, they initialize the
internal Bresenham engine for line drawing, but do not start Bresenham pixel
stepping or draw any pixels.

The GSNRs are primarily used to simplify the drawing of clipped lines
and, potentially, to assist in drawing lines with subpixel endpoints. (See
Section 11.8.2 for more information about drawing clipped lines.)

Note

The Bresenham width register (GBWR, Section 8.5.14) must be written
before writing a GSNR.

8–50 Register Descriptions

8.5 Graphics Control Registers

8.5.3.2 GSNR<7:0> Read

31

Copy Buffer Dword

0

Register Contents

GSNR7 Copy buffer entry 7 <63:32>
GSNR6 Copy buffer entry 7 <31:0>
GSNR5 Copy buffer entry 6 <63:32>
GSNR4 Copy buffer entry 6 <31:0>
GSNR3 Copy buffer entry 5 <63:32>
GSNR2 Copy buffer entry 5 <31:0>
GSNR1 Copy buffer entry 4 <63:32>
GSNR0 Copy buffer entry 4 <31:0>

On a read, each GSNR returns one Dword of copy buffer entries <7:4>
(Figure 8–3). See Sections 8.5.4 and 10.2.6 for more information about
programmed I/O access to the copy buffer.

Figure 8–3 shows how the GSNRs and copy buffer registers (GCBR<7:0>) are
mapped to the copy buffer entries.

Register Descriptions 8–51

8.5 Graphics Control Registers

Figure 8–3 Copy Buffer Layout

Slope−No−Go7

Copy Buffer7

Slope−No−Go6
Slope−No−Go5
Slope−No−Go4
Slope−No−Go3
Slope−No−Go2
Slope−No−Go1
Slope−No−Go0

Copy Buffer6
Copy Buffer5
Copy Buffer4
Copy Buffer3
Copy Buffer2
Copy Buffer1
Copy Buffer0

Entry7

Entry6

Entry5

Entry4

Entry3

Entry2

Entry1

Entry0

Write to
copy buffer
even entry

Write to
copy buffer
odd entry

Indexed Direct−Mapped
Register

Read Access
Register

Write Access

Copy Buffer

Temporary
Hold

Write
high longword

Write
low longword

8–52 Register Descriptions

8.5 Graphics Control Registers

8.5.4 Copy Buffer Registers
Mnemonic:
GCBR<7:0> offsets:
GCBR<7:0> reset value:

GCBR
01C, 018, 014, 010, 00C, 008, 004, 000
Cleared

31

Copy Buffer Dword

0

The copy buffer registers (GCBR<7:0>) provide read and write access into the
internal, 64-byte copy buffer. A read or write to each GCBR returns one Dword
from or stores one Dword into the copy buffer.

The copy buffer comprises 8 quadword (64-bit) entries (entry<7:0>). When
reading a source bitmap in copy mode, the 21130 fills the copy buffer 1
quadword at a time, from entry0 to entry7. When writing a destination bitmap
in copy mode, the 21130 unloads the copy buffer 1 quadword at a time (with
mask) in the same sequence (FIFO).

Software can also write the copy buffer in the same order (entry0 to entry7), by
alternately writing even-numbered and odd-numbered GCBRs.

Note

Before writing the copy buffer registers, copy mode must be selected in
the mode register (GMOR <7:0>, Section 8.5.1).

Writes to the copy buffer must occur in pairs; that is, a write to an
even-numbered GCBR must be followed by a write to an odd-numbered
GCBR.

Because a write to the first pair of copy-buffer registers (GCBR0 and GCBR1)
resets the copy-buffer write pointer, the correct procedure for loading the copy
buffer is to write the four even-odd pairs of GCBRs starting with GCBR0.

A write to an even-numbered GCBR specifies, but does not load, the low Dword
of the next empty copy buffer entry. A subsequent write to an odd-numbered
GCBR loads that Dword into the high Dword of the next entry and loads the
previously specified Dword into the low Dword of that entry. In other words,
writes to GCBRs 0, 2, 4, and 6 go to even-numbered copy buffer locations and
writes to GCBRs 1, 3, 5, and 7 go to odd-numbered copy buffer locations. The
results of a write to a full copy buffer are undefined.

Register Descriptions 8–53

8.5 Graphics Control Registers

On reads, software directly and randomly accesses individual Dwords of each
quadword entry (Figure 8–3). The 8 GCBRs are directly mapped to copy-buffer
entries<3:0> and the slope-no-go registers (GSNR<7:0>, Section 8.5.3) are
directly mapped to copy-buffer entries<7:4>. The GSNRs are mapped to the
copy buffer only in read mode.

8–54 Register Descriptions

8.5 Graphics Control Registers

8.5.5 Pixel Shift Register
Mnemonic:
Offset:
Reset value:

GPSR
038
Cleared

31

RES Pixel
Shift

4 3 0

Bits Field Access Description

31:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Pixel
Shift

RW Signed value indicating the number of bytes to shift
data on a write into the copy buffer.

The GPSR specifies the number of bytes to shift frame buffer read data in the
copy mode. The GPSR is ignored in all other modes. The shift takes place
before inserting data into the copy buffer.

As a signed quantity, the pixel shift value (<3:0>) can range from –8 to +7.
This allows arbitrary alignment of byte source and destination, and arbitrary
copy direction when copying spans. A negative shift value implies a backward
copy.

Copy Direction Flag
Writing the GPSR also sets the copy direction flag (the copy buffer status bit,
GMOR <20>, Section 8.5.1) to select read-source on the next frame buffer write
in copy mode. The flag determines whether the current frame buffer write
should read the source into the copy buffer or write the copy buffer into the
destination. The flag switches between the read-source and write-destination
states on every frame buffer write in copy mode.

(See Sections 10.2.6 and 10.2.7 for more information about using the GPSR and
the copy direction flag.)

Register Descriptions 8–55

8.5 Graphics Control Registers

8.5.6 Address Register
Mnemonic:
Offset:
Reset value:

GADR
03C
Cleared

31

Frame Buffer Address

022 21

RES

Bits Field Access Description

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:0 Frame
Buffer
Address

RW The starting address for the next operation initiated by
a write to a graphics command register.

The GADR specifies the starting pixel address for a drawing operation. It is
used only for operations initiated by writes to the following graphics command
registers:

• Slope registers (GSLR<7:0>)

• Span width register (GSWR)

• Continue register (GCTR)

• Copy-64A source and destination registers (GCASR and GCADR)

The frame buffer address (<21:0>) is defined as the offset into the 21130 frame
buffer space. A value of 00000016 in this field corresponds to the first memory
location in frame buffer space. The GADR can be used to access only frame
buffer memory; it cannot be used to access the 21130 register space, because
that is a separate space. (See Chapter 7 for more information about address
mapping.)

In typical operations initiated by a write to the frame buffer, the write address
is the starting address of the operation. On the other hand, when an operation
is initiated by a write to certain graphics command registers, the starting
address is in the GADR. It specifies the address of the first pixel for a drawing
operation.

8–56 Register Descriptions

8.5 Graphics Control Registers

The GADR is used only for operations initiated by writes to the GSLRs, GSWR,
GCTR, or GCASR and GCADR. For example, when writing GSLR0 to draw a
line, the address in the GADR is the starting address of the drawable. Writing
to the GADR does not initiate a drawing operation; it is used on the next write
to a GSLR or the GCTR.

When the GADR is written in any of the line modes, the frame buffer address
(<21:0>) is used only for the line operation immediately following. If the GADR
was not written since the last line operation, the 21130 uses the final address
of the most recent operation rather than the address in GADR <21:0>. This
feature helps accelerate the drawing of long or linked lines (Section 10.2.9.3).
A write to the GADR also sets the address register status bit in the mode
register (GMOR <22>, Section 8.5.1) to indicate that GADR <21:0> was written
since the last operation.

In repeat-loop copy operations, the GADR specifies the source address first,
then the destination address for the copy buffer operation.

The GADR can also be written through the even Dword locations of the first
512KB of alternate control space (Section 7.5.1.3).

Register Descriptions 8–57

8.5 Graphics Control Registers

8.5.7 Data Register
Mnemonic:
Offset:
Reset value:

GDAR
080
Cleared

The GDAR format depends on the enabled mode. It specifies a mask for fill
mode (Section 8.5.7.1) and some line-mode operations (Section 8.5.7.2).

8.5.7.1 GDAR Opaque-Fill and Transparent-Fill Modes

31

Fill Mask

0

Bits Field Access Description

31:0 Fill Mask WO The mask for each aligned 32-pixel span.

In any fill mode, the GDAR defines a repeating mask, aligned to 4 pixels. Only
one mask is specified and used, regardless of the span length. The mask is
repeated, or tiled, across the span at 32-pixel intervals. (See Chapter 10 for
more information about the fill modes.)

In the transparent-fill and transparent extended-pattern fill modes, the
foreground color is written to each pixel of the span that corresponds to a
set bit in the fill mask; no color is written to pixels that correspond to clear
mask bits. In opaque-fill mode, the foreground color is written to each pixel of
the span that corresponds to a set bit in the fill mask; the background color is
written to pixels that correspond to clear mask bits.

Note

In any fill mode (except opaque extended-pattern fill mode), the GDAR
must be written before the frame buffer, because the write to the
frame buffer starts the fill operation (the GDAR is ignored in opaque
extended-pattern fill mode).

8–58 Register Descriptions

8.5 Graphics Control Registers

In both the transparent and opaque extended-pattern fill modes, the pattern
data is taken from the copy buffer. (See Sections 10.2.4.1 and 10.2.5.1 for more
information about the extended-pattern fill modes.)

8.5.7.2 GDAR Line Mode

31 16 15 0

RES Line Mask

Bits Field Access Description

31:16 RES MBZ Reserved, must be zero. Read value is unpredictable.

15:0 Line
Mask

WO The mask for a 16-pixel line.

In line-mode operations initiated by a write to a slope register (GSLR<7:0>)
or the span width register (GSWR), the write data is the slope data, and the
GDAR specifies the mask for the 16 pixels of that line segment. (The GDAR is
not used when drawing line segments by writing to either the frame buffer in
a line mode or to the GCTR. The write data, rather than the GDAR, specifies
the line mask.)

The GDAR line mask (<15:0>) is expanded on a per-pixel basis into foreground
colors for transparent-line mode and into background or foreground (as
specified in the background and foreground registers) in opaque-line mode.
In transparent-line mode, the foreground color is written to any pixel in the
line that corresponds to a set bit in the line mask. No color is written to pixels
that correspond to clear mask bits. In opaque-line mode, the foreground color
is written to any pixel in the line that corresponds to a set bit in the line mask,
and the background color is written to pixels that correspond to clear mask
bits.

Note

The GDAR must be written before the GSLR, because the write to the
GSLR starts the drawing operation.

Register Descriptions 8–59

8.5 Graphics Control Registers

8.5.8 Foreground and Background Registers
Mnemonic:
GFGR offset:
GBGR offset:
GFGR, GBGR reset value:

GFGR, GBGR
020
024
Cleared

GFGR

31

Foreground

0

GBGR Background

Bits Field Access Description

GFGR

31:0 Foreground RW Defines the foreground color (or set of colors) used in
pixel substitution in any of the transparent or opaque
stipple, line, or fill modes, except extended-pattern fill
modes.

GBGR

31:0 Background RW Defines the background color (or set of colors) used in
pixel substitution in any of the transparent or opaque
stipple, line, or fill modes, except opaque extended-
pattern fill mode.

The GFGR defines foreground pixel colors and the GBGR defines background
pixel colors. Foreground color is substituted for 1s in the stipple mask, fill
mask, or line mask in any of the transparent or opaque stipple, fill, or line
modes; but not in the transparent or opaque extended-pattern fill modes.
Background color is substituted for 0s in the stipple mask, fill mask, or line
mask in any of the opaque-stipple, opaque-fill, or opaque-line modes; but
not in the opaque extended-pattern fill mode. In both the transparent and
opaque extended-pattern fill modes, the pattern data is taken from the copy
buffer. (See Sections 10.2.4.1 and 10.2.5.1 for more information about the
extended-pattern fill modes.)

8–60 Register Descriptions

8.5 Graphics Control Registers

The mask data can be any of the following:

• PCI write data on a write to the frame buffer or GCTR

• Data in the GDAR on a write to a GSLR or the GSWR

• Data in the GDAR on a write to the frame buffer in a fill mode

The foreground and background fields are 32-bit quantities regardless of
the depth of the bitmap type currently being drawn to. Consequently,
software must compensate for the actual depth by replicating the color across
the foreground and background fields for bitmap depths less than 32-bpp
(Figure 8–4). For example, to present the same color to each possible buffer
in 8-bpp mode, the foreground and background colors must be replicated four
times across the foreground and background fields. Similarly, in 16-bpp mode,
the color must be replicated across both sets of RGB values.

When drawing to 16-bpp bitmaps in a 32-bpp frame buffer, the byte mask
(GOPR <19:16>, Section 8.5.9) can be used with the GFGR and GBGR to draw
to only the target bitmap while masking off the other bitmap.

Figure 8–4 shows the GFGR and GBGR contents as a function of the bitmap
depth in 8-bpp and 32-bpp frame buffers.

Register Descriptions 8–61

8.5 Graphics Control Registers

Figure 8–4 Foreground and Background as a Function of Bitmap Depth

IndexIndexIndexIndex

BlueGreenRed Red Green Bluea a

Blue

Tag Red Green Blue

GreenRed

16−bpp

Red

24−bpp
31 8 724 23 16 15 0

Green

31

Blue

16 15 0926 25 21 520 4101430

8−bpp
31 8 724 23 16 15 0

27 11

8–62 Register Descriptions

8.5 Graphics Control Registers

8.5.9 Raster Operation Register
Mnemonic:
Offset:
Reset value:

GOPR
034
00000003

31

RES Raster
Op

4 3 08 711 10

RESDB

20 19 16 15

RESByte
Mask

Bits Field Access Description

31:20 RES MBZ Reserved, must be zero. Read value is unpredictable.

19:16 Byte
Mask

RW Each bit determines whether eight bit planes are
updated, as follows:

0 Updates to the bit’s corresponding bit planes are
enabled.

1 Updates to the bit’s corresponding bit planes are
disabled.

The bits control the following bit planes:

19 Bit planes 31:24
18 Bit planes 23:16
17 Bit planes 15:8
16 Bit planes 7:0

15:11 RES MBZ Reserved, must be zero. Read value is unpredictable.

Register Descriptions 8–63

8.5 Graphics Control Registers

Bits Field Access Description

10:8 DB RW Destination bitmap—specifies the type of destination
bitmap.

000 8-bpp packed destination
001 Reserved
010 Reserved
011 24-bpp destination, unpacked, in 32-bpp frame

buffer
100 16-bpp packed destination, 5:6:5 (R:G:B)

organization
101 16-bpp packed destination, 1:5:5:5 (�:R:G:B)

organization
110 Reserved
111 Reserved

Note: This field is included for DECchip 21030
compatibility. Software must ensure that the
destination and source bitmaps (GMOR <10:8>,
Section 8.5.1) are the same type.

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Raster
Op

RW Raster operation—specifies how the source (src) pixel
data and destination (dest) pixel data are logically
combined on a write to the destination (Table 8–5).

Table 8–5 lists the Boolean raster operations specified in the GOPR.

Table 8–5 Boolean Raster Operations

Code� Operation X OpenGL Win32

0000 dest � 0 GXclear lo_zero blackness
0001 dest � src AND dest GXand lo_and srcand/mergecopy
0010 dest � src AND (NOT dest) GXandReverse lo_andr srcerase
0011 dest � src GXcopy lo_src srccopy/patcopy
0100 dest � (NOT src) AND dest GXandInverted lo_andi (2216)
0101 dest � dest GXnoop lo_dst (AA16)
0110 dest � src XOR dest GXxor lo_xor srcinvert/patinvert
0111 dest � src OR dest GXor lo_or srcpaint
1000 dest � (NOT src) AND (NOT dest) GXnor lo_nor notsrcerase
1001 dest � (NOT src) XOR dest GXequiv lo_xnor (9916)
1010 dest � NOT dest GXinvert lo_ndst dstinvert

�From GOPR raster operation field <3:0>.

(continued on next page)

8–64 Register Descriptions

8.5 Graphics Control Registers

Table 8–5 (Cont.) Boolean Raster Operations

Code� Operation X OpenGL Win32

1011 dest � src OR (NOT dest) GXorReverse lo_orr (DD16)
1100 dest � NOT src GXcopyInverted lo_nsrc notsrccopy
1101 dest � (NOT src) OR dest GXorInverted lo_ori mergepaint
1110 dest � (NOT src) OR (NOT dest) GXnand lo_nand (7716)
1111 dest � 1 GXset lo_one whiteness

�From GOPR raster operation field <3:0>.

The 21130 uses the GOPR to support all of the Boolean operations specified
under X and OpenGL, and a subset of 2-operand operations specified under
Windows (Table 8–5). The source (src) can be used as the source or the pattern
to implement the Windows 2-operand raster operations. To update the pixel
value, most of these operations require the 21130 to perform read-modify-write
cycles to display memory. (The 21130 does not directly support Windows
3-operand operations; for information about handling such operations, see
Section 11.3.)

The raster operation field (<3:0>) defines the Boolean operation that is
performed on the source and destination pixel data when writing to the
destination bitmap in any graphics mode.

At reset, the value of the GOPR is 00000003. The raster operation field is set
to dest � src (00112).

Register Descriptions 8–65

8.5 Graphics Control Registers

8.5.10 Pixel Mask Register
Mnemonic:
Address (1-shot):
Address (persistent):
Reset value:

GPXR
02C
05C
FFFFFFFF

The GPXR format is mode-dependent. It is used to mask pixels in the opaque-
stipple modes and transparent-stipple with pixel mask modes (Section 8.5.10.1)
and in the simple mode (Section 8.5.10.2).

8.5.10.1 GPXR Stipple Modes

31

Pixel Mask

0

Bits Field Access Description

31:0 Pixel
Mask

RW The mask data for each 32-pixel stippled span. Writes
are enabled for pixels that correspond to set mask bits,
and disabled for pixels that correspond to clear mask
bits.

In the following stipple modes, the frame buffer write data determines whether
each of the 32 pixels beginning at the write address should be filled with
foreground or background color, but does not determine whether to write the
pixels; instead, the GPXR determines which pixels are written.

• Opaque-stipple mode

• Opaque bit-reversed stipple mode

• Transparent-stipple with pixel mask mode

• Transparent bit-reversed stipple with pixel mask mode

Prior to the frame buffer write, the 32-bit mask is written to the GPXR to
selectively write-enable each pixel on the subsequent opaque stipple operation.

8–66 Register Descriptions

8.5 Graphics Control Registers

8.5.10.2 GPXR Simple Mode

31

IGN Mask
GPXR

4 3 0

Bits Field Access Description

31:4 IGN RW Ignored when written, undefined when read.

3:0 Mask
GPXR

RW This is the mask data for each 32-bit frame buffer write.

0 Writes are disabled for bytes that correspond to
mask bits = 0.

1 Writes are enabled for bytes that correspond to
mask bits = 1.

The mask GPXR field (<3:0>) determines which data bytes are to be written
in the next frame buffer write. The field is logically ANDed with the incoming
PCI byte mask, to create the byte mask that is ultimately used in simple mode.

Byte mask data for simple mode is primarily useful in systems based on Alpha
microprocessors. Because the Alpha instruction set does not support byte
granularity, a true PCI byte mask may not be available.

8.5.10.3 GPXR Any Mode
The GPXR is mapped into the 21130 register space twice: as a persistent
GPXR and as a 1-shot GPXR. When written as a 1-shot GPXR, the value
in the GPXR is used only for the next operation. After that operation is
complete, the GPXR reinitializes to an inactive state of FFFFFFFF. When
written as a persistent GPXR, the GPXR retains its value until next written at
either address. The pixel mask status bit in the mode register (GMOR <23>,
Section 8.5.1) indicates the current state of GPXR.

Register Descriptions 8–67

8.5 Graphics Control Registers

8.5.11 Bresenham 1 Register
Mnemonic:
Offset:
Reset value:

GB1R
040
Cleared

31 16 15 0

Address Increment 1 Error Increment 1

Bits Field Access Description

31:16 Address
Increment 1

RW In line mode, the signed value added to the current
address when the Bresenham error term is < 0 (a
major axis step).

15:0 Error
Increment 1

RW The positive value added to the error term when the
Bresenham error term is < 0 (a major axis step).

The GB1R specifies the address and error increments to be used by the internal
Bresenham engine when the cumulative error value is negative. The GB1R
can be initialized and used in the following ways:

• Explicitly initialized by software and used during line drawing operations
initiated by writing to the frame buffer in line mode.

• Explicitly initialized by software and used during the scaled-copy mode.

• Implicitly initialized and used by 21130 hardware on a write to a slope or
slope-no-go register.

8.5.11.1 GB1R Line Mode
Software can initiate a line drawing operation by writing to the frame buffer
in line mode at the starting pixel address of the line. Typically, this loads the
values from the GB1R into the Bresenham engine, to specify one of the two
sets of error and address increment values — the Bresenham 2 register (GB2R)
specifies the other set. The engine uses these values to update the cumulative
Bresenham error value and addresses as it steps through the line.

When the cumulative error is negative:

• Error increment 1 (<15:0>) is added to the cumulative error.

• Address increment 1 (<31:16>) is added to the current internal address to
point to the next pixel address to be written along the line.

8–68 Register Descriptions

8.5 Graphics Control Registers

This is effectively one step along the major axis of the line.

A write to any slope register causes the 21130 to:

1. Automatically calculate address increment 1 and error increment 1.

2. Unconditionally load them into the Bresenham engine.

3. Initiate the drawing of the first 16 pixels of the line.

Writing to a slope-no-go register has the same effect, but drawing is not
initiated.

Section 10.2.9 describes how to draw lines by explicitly writing the GB1R, and
how the 21130 hardware initializes the values in the GB1R (as well as the
GB2R) on a write to the slope (or slope-no-go) registers.

8.5.11.2 GB1R Scaled-Copy Mode
A scaled-copy is initiated when a DMA command is issued while operating
in scaled-copy mode. As the pixels are processed by the YUV pipeline, the
Bresenham engine determines whether to replicate (magnify mode) or skip
(reduce mode) pixels. This determination is based on the cumulative error
register.

When the cumulative error is negative:

• Error increment 1 (<15:0>) is added to the cumulative error.

When magnifying, the frame buffer pixel pipe, but not the source pixel
pipe, is advanced (that is, the source pixel is duplicated). When reducing,
the source pixel pipe, but not the frame buffer pixel pipe, is advanced (that
is, the source pixel is skipped).

• Address increment 1 (<31:16>) is used to advance to the start of the next
span for scaled-copy operations that create multiple destination spans from
the same source span. It specifies the number of pixels to advance the
frame buffer address in order to move from the last pixel in the current
destination span to the first pixel in the next span. This address increment
is applied at the beginning of scaled-copy operations for which a new
destination address has not been specified (that is, scaled-copy operations
initiated through a write to the continue register).

See Section 10.2.8 for more information about scaled-copy mode.

Register Descriptions 8–69

8.5 Graphics Control Registers

8.5.12 Bresenham 2 Register
Mnemonic:
Offset:
Reset value:

GB2R
044
Cleared

31 16 15 0

Address Increment 2 Error Increment 2

Bits Field Access Description

31:16 Address
Increment 2

RW In line mode, the signed value added to the current
address when the Bresenham error term is � 0 (a
step along the major and minor axes).

15:0 Error
Increment 2

RW The positive value subtracted from the error term
when the Bresenham error term is � 0 (a step along
the major and minor axes).

The GB2R specifies the second set of address and error increments to be used
by the internal Bresenham engine. The behavior and use of the GB2R is the
same as the GB1R (Section 8.5.11), except that when the cumulative error is
greater than or equal to zero:

• Error increment 2 (<15:0>) is subtracted from the cumulative error.

• In line mode, address increment 2 (<31:16>) is added to the current
internal address, to point to the next pixel address to be written along the
line. Address increment 2 is not used in the scaled-copy mode.

• In the scaled-copy mode, both the frame buffer destination pixel pipe and
the source pixel pipe are advanced for magnification and reduction. See
Section 10.2.8 for more information about the scaled-copy mode.

8–70 Register Descriptions

8.5 Graphics Control Registers

8.5.13 Bresenham 3 Register
Mnemonic:
Offset:
Reset value:

GB3R
048
Cleared

31 4 315 14 0

Initial Error RES Length

Bits Field Access Description

31:15 Initial Error RW The signed initial value stored in the Bresenham
error accumulator.

14:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Length RW In line mode, the length, in pixels, of the line
segment to be drawn. A value of 016 = 16 pixels.
This field is not used in the scaled-copy mode.

The Bresenham error logic uses the initial error value from the GB3R (<31:15>)
to determine how to step along the line segment or how to magnify or minify
pixels.

The GB3R can be initialized and used in the following ways:

• Explicitly initialized by software and used during line drawing operations
initiated by writing to the frame buffer in line mode.

• Implicitly initialized and used by 21130 hardware on a write to one of the
slope or slope-no-go registers.

8.5.13.1 GB3R Line Mode
Software can initiate a line drawing operation by writing to the frame buffer
in line mode at the starting pixel address of the line. Typically, this loads
the values from the GB3R into the Bresenham engine, to specify the initial
error term and length of the line to be drawn. The engine updates the error
term at each pixel as it steps through the line. After each line segment has
been drawn, hardware initializes the length field to 016, so that all subsequent
segments along the line extend its length by 16 pixels.

The GB3R is not written when drawing lines by writing to the slope registers
because a write to any slope register causes the 21130 to:

Register Descriptions 8–71

8.5 Graphics Control Registers

1. Automatically calculate the initial error and initialize length to 16 pixels.

2. Unconditionally load both parameters into the Bresenham engine.

3. Initiate the drawing of the first 16 pixels of the line.

Writing to a slope-no-go register has the same effect, but drawing is not
initiated. Therefore, in conjunction with the slope-no-go registers, the GB3R
can be useful when drawing clipped lines and certain lines under Win32.
Section 10.2.9 describes how the 21130 hardware presets initial error as a
function of the slope, octant, and whether the line is being drawn in a Win32
or X11 graphics environment.

8.5.13.2 GB3R Scaled-Copy Mode
A scaled-copy is initiated when a DMA command is issued while operating in
scaled-copy mode. When the command is issued, the contents of the GB3R are
loaded into the error register to establish the initial error value. The length
field is not used in scaled-copy mode.

See Section 10.2.8 for more information about scaled-copy mode.

8–72 Register Descriptions

8.5 Graphics Control Registers

8.5.14 Bresenham Width Register
Mnemonic:
Offset:
Reset value:

GBWR
09C
Cleared

31 16 15 0

RES Bitmap Width

Bits Field Access Description

31:16 RES MBZ Reserved, must be zero. Read value is unpredictable.

15:0 Bitmap
Width

WO The width, in pixels, of the destination bitmap.

The GBWR must specify the width, in pixels, of the drawable for all line
drawing operations.

The 21130 Bresenham setup hardware uses the bitmap width (<15:0>) to
calculate the increment to the pixel’s drawable address, on steps along the
minor and major axes as the line is drawn. Hardware setup is done only on
writes to the slope or slope-no-go registers; therefore, software must initialize
the GBWR before writing a slope or slope-no-go register.

The calculated drawable-address increments are stored in, and can be read
from, the address increment 1 and 2 fields (GB1R <31:16> and GB2R <31:16>).

When drawing to the screen in a typical linear-addressed frame buffer, bitmap
width is set to the drawable screen width, in pixels; however, the bitmap width
is not necessarily constant. The 21130 can draw to arbitrary-sized drawables,
whether drawing on screen or off screen.

Register Descriptions 8–73

8.5 Graphics Control Registers

8.5.15 DMA Base Address Register
Mnemonic:
Offset:
Reset value:

GDBR
098
Cleared

The GDBR format depends on whether it is being used in the DMA-read copy
mode (Section 8.5.15.1) or in the scaled-copy mode (Section 8.5.13.2).

8.5.15.1 GDBR DMA-Read Copy Mode

231 1

DMA Address

0

RES

Bits Field Access Description

31:2 DMA
Address

RW The PCI Dword address pointing to the base address of
a drawable bitmap.

1:0 RES MBZ Reserved, must be zero. The PCI address must be
Dword-aligned.

In the DMA-read copy mode, the GDBR specifies the Dword PCI base address
of the source bitmap. A write to the frame buffer in this mode causes the 21130
to begin reading pixels beginning at the DMA address (<31:0>).

Note

To the 21130, the DMA address and other PCI memory addresses are
physical addresses. The 21130 has no indication of how the CPU maps
system addresses into physical PCI memory addresses, how virtual
addresses are translated to physical addresses, or how some systems
support scatter-gather mapping from the PCI into main memory.
Software must translate these levels of address indirection before
writing the GDBR.

8–74 Register Descriptions

8.5 Graphics Control Registers

8.5.15.2 GDBR Scaled-Copy Mode

31 23 22 2 1 0

RES RES

7 6

Base
Address

Low
Base Address High

Bits Field Access Description

31:23 Base
Address
High

RW The 9 most significant bits of the Dword-aligned DMA
start address.

22:7 RES MBZ Reserved, must be zero. Bits <15:0> of the PCI write
data (Figure 10–14) specifies DMA start address <22:7>.

6:2 Base
Address
Low

RW The 5 least significant bits of the Dword-aligned DMA
start address.

1:0 RES MBZ Reserved, must be zero. The PCI address must be
Dword-aligned.

In the scaled-copy mode (Section 10.2.8), the GDBR and PCI write data specify
the PCI Dword address at which a DMA-read copy is to begin. Dividing the
DMA start address across the GDBR and the PCI write data streamlines the
issue of multiple DMA-read copy video span commands.

Register Descriptions 8–75

8.5 Graphics Control Registers

8.5.16 Scaled-Copy Control Register
Mnemonic:
Offset:
Reset value:

GSCR
0C4
Cleared

R
E

R

S

MODE

E
S

RES FSM FSH

31 30 29 28 27 26 25 24 23 22 21 20 19

DRAW# EPIX

9

SPIX

8 7 4 3 2 1 0

R

12

E

11

PIX

10

S FOR
PIX
ORD

PIX
LW

422OUT
YUVCEN
DITHEN

Bits Field Access Description

31 RES MBZ Reserved, must be zero. Read value is unpredictable.

30:20 MODE RW Specifies the mode for the scaled-copy operation.
Table 8–6 describes the subfields and Table 8–7
describes some of the most useful scaled-copy mode
operations.

19:12 RES MBZ Reserved, must be zero. Read value is unpredictable.

11:10 FSM RW Smoothing filter to be used on the Y/G components.
When magnifying, the filter is applied after pixel
scaling. When reducing, the filter is applied before
scaling. This field maps to the following 3-tap filters:

00 0, 1, 0
01 0.5, 0.0, 0.5
10 Reserved
11 Reserved

Note: The filter should not be used with 8-bpp (3:3:2 or
index) source formats.

8–76 Register Descriptions

8.5 Graphics Control Registers

Bits Field Access Description

9:8 FSH RW Sharpening filter to be used on the Y/G components.
When magnifying, the filter is applied before pixel
scaling. When reducing, the filter is applied after
scaling. This field maps to the following 3-tap filters:

00 0, 1, 0
01 –0.5, 2.0, –0.5
10 Reserved
11 Reserved

Note: The filter should not be used with 8-bpp (3:3:2 or
index) source formats.

7:4 DRAW# RW Specifies the number of screen pixels to draw before
masking pixels in the last Dword of a DMA. Therefore,
it specifies an edge mask for the end of video spans.

Note: A DRAW# value of 0 results in 16 pixels drawn.

3:2 EPIX RW End pixel—specifies the position of the last source pixel
within the last DMA Dword to be used in a scaled-copy
operation. Subsequent pixels are ignored.

1:0 SPIX RW Start pixel—specifies the position of the first source
pixel within the first DMA Dword to be used in a
scaled-copy operation. Preceding pixels are ignored.

The GSCR controls video rendering during scaled-copy operations
(Section 10.2.8.1). Table 8–6 describes the subfields contained in the mode
field (<30:20>).

Table 8–6 GSCR Mode Field Description

Bits Field Access Description

30 422OUT RW 4:2:2 output—when set, and the source bitmap
field (GMOR <10:8>, Section 8.5.1) is set to 16-bpp,
destination pixel writes occur in a 4:2:2 YVYU format.

29 YUVCEN RW YUV convert enable—when set, converts pipeline data
to color indices through the YUV-to-color-index ROM.

28 RES MBZ Reserved, must be zero. Read value is unpredictable.

27 DITHEN RW Dither enable

0 Dithering is disabled.
1 Dithering is enabled.

(continued on next page)

Register Descriptions 8–77

8.5 Graphics Control Registers

Table 8–6 (Cont.) GSCR Mode Field Description

Bits Field Access Description

26 RES MBZ Reserved, must be zero. Read value is unpredictable.

25:24 PIXFOR RW Pixel format—indicates the format of the source pixels.
Each channel is MSB-padded up to 8 bits before being
sent down the filtering-scaling-dithering pipe. The field
is decoded as follows:

00 8:8:8
01 3:3:2
10 5:6:5
11 5:5:5

23:22 PIXORD RW Pixel order—indicates how the source pixels are
ordered in each DMA Dword. The order depends on
the programming of the PIXLW field (<21:20>). The
PIXORD field is decoded as follows:

PIXORD
Code

PIXLW Code

00 01 10 11

00 4:4:4
�YUV

4:2:2
YVYU

8-bpp
RGB

Reserved

01 4:4:4
UYV�

4:2:2
UYVY

Reserved Reserved

10 Reserved 4:2:2
VYUY

Reserved Reserved

11 32-bpp
RGB

16-bpp
RGB

Reserved Reserved

21:20 PIXLW RW Pixels per longword—indicates the number source pixels
contained in each DMA Dword.

00 1 pixel in 1 Dword
01 2 pixels in 1 Dword
10 4 pixels in 1 Dword
11 Reserved

Table 8–7 describes some of the most useful scaled-copy mode operations.

8–78 Register Descriptions

8.5 Graphics Control Registers

Table 8–7 Typical Scaled-Copy Mode Operations

Mode Field1
Source
Bitmap2 Input Output

Formats with 1 Source Pixel per Dword

0101 0 00 00 00
0101 0 00 00 00
0101 0 00 00 00

000
100
011

4:4:4 �VYU Color index into video palette generated through
the YUV conversion ROM. For 16- and 32-bpp
destinations (specified by GMOR <10:8>) the index
is replicated across all byte channels.

0000 0 00 00 00 011 4:4:4 �VYU 4:4:4 VYU (� is dropped).

1000 0 00 00 00 100 4:4:4 �VYU 4:2:2 YVYU.

0001 0 00 01 00
0001 0 00 01 00
0001 0 00 01 00

000
100
101

8:8:8 RGB Dithered RGB (3:3:2, 5:6:5, or 5:5:5). Dither
quantization is determined by GMOR <10:8>.

0000 0 00 01 00 011 8:8:8 �RGB 8:8:8 RGB (� is dropped).

Formats with 2 Source Pixels per Dword

0101 0 00 po 01
0101 0 00 po 01
0101 0 00 po 01

000
100
011

4:2:23 Color index into video palette. For 16- and 32-bpp
destinations (specified by GMOR <10:8>) the index
is replicated across all byte channels.

0000 0 00 po 01 011 4:2:23 4:4:4 VYU.

1000 0 00 po 01 100 4:2:23 4:2:2 YVYU.

0001 0 10 11 01
0001 0 10 11 01

000
101

5:6:5 RGB Dithered RGB (3:3:2 or 5:5:5). Dither quantization
is determined by GMOR <10:8>.

0000 0 10 11 01
0000 0 10 11 01

101
011

5:6:5 RGB 5:6:5 or MSB-padded 8:8:8 RGB. Output format is
determined by GMOR <10:8>. Use 5:6:5 to 5:6:5
for 16-bpp index mapping.

0001 0 11 11 01 000 5:5:5 RGB Dithered 3:3:2 RGB.

0000 0 11 11 01
0000 0 11 11 01
0000 0 11 11 01

100
101
011

5:5:5 RGB 5:5:5 or MSB-padded 5:6:5 or 8:8:8 RGB. Output
format is determined by GMOR <10:8>.

1GSCR <30:20>
2GMOR <10:8>
3po bits (<23:22>) select YVYU, UYVY, or VYUY

(continued on next page)

Register Descriptions 8–79

8.5 Graphics Control Registers

Table 8–7 (Cont.) Typical Scaled-Copy Mode Operations

Mode Field1
Source
Bitmap2 Input Output

Formats with 4 Source Pixels per Dword

0000 0 01 00 10
0000 0 01 00 10
0000 0 01 00 10
0000 0 01 00 10

000
100
101
011

3:3:2 RGB 3:3:2 or MSB-padded 5:5:5, 5:6:5, or 8:8:8 RGB.
Output format is determined by GMOR <10:8>.

0000 0 01 00 10 000 8-bpp color
index

8-bpp color index.

1GSCR <30:20>
2GMOR <10:8>

8–80 Register Descriptions

8.5 Graphics Control Registers

8.5.17 Dither Row and Column Registers
Mnemonic:
GDRR offset:
GDCR offset:
Reset value:

GDRR, GDCR
0B0
0B4
Cleared

GDRR

GDCR

31 27 26 0

RESDither
Row

RESDither
Column

Bits Field Access Description

GDRR

31:27 Dither
Row

RW The row pointer into the 32 � 32 dither matrix.
The row index is initialized with this value at the
beginning of each scaled-copy operation for which a
new destination span address is specified (that is, the
scaled-copy operation was not issued through a write to
the continue register.)

26:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

GDCR

31:27 Dither
Column

RW The column pointer into the 32 � 32 dither matrix. The
dither column index is initialized with this value at the
beginning of each destination span.

26:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The dither values are initialized at the start of a DMA-dither drawing
operation and are then updated by hardware on a per-pixel basis. The dither
matrix is used in scaled-copy mode when the dither enable bit (GSCR <27>,
Section 8.5.16) is set. The dither row field specifies the row pointer and the
dither column field specifies the column pointer into the internal 32 � 32
dither matrix. The pointers address the matrix to produce the dither offsets
added to each color before decimation. The GDRR and GDCR are also used in
the extended-pattern fill modes.

Register Descriptions 8–81

8.6 Hardware Cursor Registers

8.6 Hardware Cursor Registers
The hardware cursor registers are part of the core registers mapped in base
address 0 memory space (Section 7.5.1.2) by the PDBR0. See Section 11.11.1
for more information about changing the contents of the cursor registers.

8.6.1 Cursor Mode Register
Mnemonic:
Offset:
Reset value:

CMOR
0EC
Cleared

31 2 1 0

RES CM

Bits Field Access Description

31:2 RES MBZ Reserved, must be zero. Read value is unpredictable.

1:0 CM RW Cursor mode

00 Cursor disabled
01 3-color cursor
10 Microsoft Windows or XGA cursor
11 X Windows cursor

The 21130 supports a 64 � 64 hardware cursor. Each cursor pixel is defined
by two bits (value bit <1:0>, Table 8–8). The cursor mode (<1:0>) controls the
interpretation of the two bits that define each cursor pixel.

Figure 8–5 shows the relationship between the cursor value bits and the cursor
pixels.

8–82 Register Descriptions

8.6 Hardware Cursor Registers

Figure 8–5 Cursor Value Bits to Pixels Mapping

 Cursor

Quadword 0
630

Quadword 1
63 62

1 : 0

1 0

1 : 01 : 01 : 0

212 616261

. . .

360 603

. . .

.

Table 8–8 shows the interpretation of the cursor pixel value bits.

Table 8–8 Cursor Pixel Value Bit Description

Value Bit GMOR <1:0>

1:0
01

3-Color Pixel
10

MS Windows Pixel
11

X Windows Pixel

00 Palette data Cursor color 1 Palette data

01 Cursor color 1 Cursor color 2 Palette data

10 Cursor color 2 Palette data Cursor color 1

11 Cursor color 3 Palette data inverse Cursor color 2

Register Descriptions 8–83

8.6 Hardware Cursor Registers

8.6.2 Cursor Base Address Register
Mnemonic:
Offset:
Reset value:

CCBR
060
Cleared

31 922 21 010

RES Cursor Base Address RES

31 22 21 01011

RES Cursor Base Address RES

64−Bit
Mode

32−Bit
Mode

Bits Field Access Description

64-Bit Mode

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:10 Cursor
Base
Address

RW The starting address of the 1KB cursor pattern.

9:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

32-Bit Mode

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:11 Cursor
Base
Address

RW The left-shifted 64-bit mode value. As a result of the
shift, the 64-bit mode MSB is discarded and the 32-bit
mode LSB (<10>) must be zero.

10:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The format of the CCBR depends on the frame buffer bus mode (GDER <20>,
Section 8.5.2). In 32-bit mode, the 1KB pattern must be aligned to 2KB in
frame buffer address space (<10> must be zero).

8–84 Register Descriptions

8.6 Hardware Cursor Registers

8.6.3 Cursor XY Register
Mnemonic:
Offset:
Reset value:

CXYR
074
Cleared

31

RES Cursor X

24

Cursor Y

23 12 11 0

Bits Field Access Description

31:24 RES MBZ Reserved, must be zero. Read value is unpredictable.

23:12 Cursor Y RW Determines the displayed location of the bottom-most
cursor pattern pixels.

11:0 Cursor X RW Determines the displayed location of the right-most
cursor pattern pixels.

The CXYR specifies the position of the lower-right cursor pixel. For example,
when the cursor X and Y position values = 00016, only the bottom right pixel is
displayed on the screen. Conversely, when both values = FFF16, the cursor is
off the screen and not displayed. The cursor X and Y position information takes
effect on the next top-of-frame. Consequently, if the field is read immediately
after being written, the read data might be different than the write data.

8.7 Video Control Registers
The video control registers are part of the core registers mapped in base
address 0 memory space (Section 7.5.1.2) by the PDBR0.

The video control registers specify the portion of the frame buffer that is to be
displayed and the format of the scanlines composing the display.

See Section 11.11.1 for information about changing the contents of the video
control registers.

Register Descriptions 8–85

8.7 Video Control Registers

8.7.1 Video Base Address, Line Increment, and Line Width Registers
Mnemonic:
VIVBR offset:
VISIR offset:
VILWR offset:
VIVBR, VISIR, VILWR reset value:

VIVBR, VISIR, VILWR
06C
0CC
0D0
Cleared

M
B
Z

2

 RES

31

Video Base Address

22 21 3 2 0

31

VIVBR

22 4

Scanline Increment

3

VISIR

0

Scanline WidthVILWR

64−Bit Mode

VILWR

Video Base Address

Scanline Width

Scanline Increment

VIVBR

VISIR RES

 RES RES

32−Bit Mode
21

M
B
O

 RES

 RES

 RES

 RES

 RES

 RES

 RES

 RES

M
B
O

Bits Field Access Mode Description

VIVBR, VISIR, VILWR

31:22 RES MBZ 64-bit,
32-bit

Reserved, must be zero. Read value is unpredictable.

VIVBR

21:3 Video
Base
Address

RW 64-bit Specifies the start of the visible display in frame buffer
memory.

32-bit The left-shifted 64-bit mode value. As a result of the
shift, the 64-bit mode MSB is discarded and the 32-bit
mode LSB (<3>) must be zero.

8–86 Register Descriptions

8.7 Video Control Registers

Bits Field Access Mode Description

VISIR

21:3 Scanline
Increment

RW 64-bit Specifies the difference between successive scanlines.

32-bit The left-shifted 64-bit mode value. As a result of the
shift, the 64-bit mode MSB is discarded and the 32-bit
mode LSB (<3>) must be one (MBO).

VILWR

21:3 Scanline
Width

RW 64-bit Specifies the number of bytes minus 8 in a scanline.

32-bit The left-shifted 64-bit mode value. As a result of the
shift, the 64-bit mode MSB is discarded and the 32-bit
mode LSB (<3>) must be one (MBO).

VIVBR, VISIR, VILWR

2:0 RES MBZ 64-bit,
32-bit

Reserved, must be zero. Read value is unpredictable.

The format of the VIVBR, VISIR, and VILWR depends on the frame buffer
bus mode (GDER <20>, Section 8.5.2). In 32-bit mode the video base address,
scanline increment, and scanline width must be left-shifted 1 bit. As a result
of the shift, the 64-bit mode MSB is discarded, bit <3> in the VIVBR must be
zero, and bit <3> in the VISIR and VILWR must be one (MBO).

See Section 11.11.3 for more information about calculating the scanline
increment and scanline width.

Register Descriptions 8–87

8.7 Video Control Registers

8.7.2 Video Valid Register
Mnemonic:
Offset:
Reset value:

VIVVR
070
00001400

T
C
L
K
I

T
C
L
K
O

T
C
L
K
D

31

RES V
V

D
P
M
S

7 6 5 4 3 2 1 08

S
B
S

S
B
L
N
K

B
L
A
N
K

S
V
V

910

RES

111213

D
D
C

14

S

15

B

D D
D D
C C
D D
O I

Bits Field Access Description

31:15 RES MBZ Reserved, must be zero. Read value is unpredictable.

14 DDCSB RW DDC sync bypass—determines how the ddc_data pin is
used.

0 ddc_data is sampled with every vsync.
1 ddc_data is used directly.

This bit is cleared at reset.

13 TCLKI RO Test clock input—indicates the state of the test clock
(pll_test) pin.

0 pll_test is low.
1 pll_test is high.

This bit is forced to 0 when bit <10> is cleared (normal
test clock).

12 TCLKO RW Test clock output control—controls the test clock
(pll_test) pin.

0 pll_test is floating and can be pulled high or low
by an external device.

1 pll_test is pulled low.

The pll_test pin can also be used for ddc_clk (see bit
<10>). This bit is set at reset and is enabled when bit
<10> is set.

11 DDCDO RW DDC data output—controls the ddc_data pin.

0 ddc_data is floating and can be pulled high or
low by an external device.

1 The ddc_data pin is pulled low.

8–88 Register Descriptions

8.7 Video Control Registers

Bits Field Access Description

10 TCLKD RW Test clock output disable—determines whether the test
clock output (pll_test) pin is controlled by <12>.

0 Bit <13> is forced to 0 (normal test clock). This
allows pll_test to output the test clock selected
by the TCS bit in the PCI clock control register
(PCCR <10>, Section 8.2.8).

1 The pll_test output is controlled by <12>.

When set, this bit allows the pll_test pin to be used for
the ddc_clk signal. This bit is set at reset.

9 SBLNK RO Synchronized blank—set when the blank bit (<1>) is set
and the current frame pointer is at top-of-frame.

8 SVV RO Synchronized video valid—set when the video valid
bit (<0>) is set and the current frame pointer is at
top-of-frame.

7 SBS RW Sync and blank source—indicates whether the source
for the vsync, hsync, and blank# signals is external or
internal.

0 Internal
1 External

Software can write this bit to force the selection of an
internal or external source. When the pci_rst# signal is
asserted, this bit is forced to the inverse of the gp_int#
signal.

6 DDCDI RO DDC data input—when bit <14> is set, indicates the
state of the ddc_data pin.

0 The ddc_data pin is low.
1 The ddc_data pin is high.

When bit <14> is clear, indicates the state of ddc_data
sampled with vsync.

Software can use this field to implement the DDC
protocol.

5:4 DPMS RW Display power-management signaling—encodes the
DPMS states (Section 12.4.4).

00 On
01 Standby
10 Suspend
11 Off

3:2 RES MBZ Reserved, must be zero. Read value is unpredictable.

Register Descriptions 8–89

8.7 Video Control Registers

Bits Field Access Description

1 BLANK RW Blank (VGA and 2DA modes)

0 Unblank video display.
1 Blank video display.

The screen will be unblanked or blanked starting at the
next top-of-frame.

0 VV RW Video valid (2DA mode only)

0 Soft reset the 2DA video back-end functions.
1 Active display is enabled.

Note: When this bit is cleared to reset the 2DA video
back-end functions, bit <1> should be set to blank the
display.

The VIVVR contains several display control bits, as well as bits associated with
the test clock, display data channel (DDC), and display power management
signaling (DPMS). See Sections 8.2.8 and 12.5 for more information about the
test clock, see the VESA Display Data Channel Standard, Version 1.0, Revision
0 for more information about the DDC, and see Section 12.4.4 and the VESA
Display Power Management Signaling (DPMS) Proposal, Version 1.0p, Revision
0.7p for more information about DPMS.

Bit <7> indicates the state of the gp_int# signal. The signal is sampled at
reset. If it is asserted, bit <7> is cleared, indicating that the vsync, hsync,
and blank# signals are generated internally by the VGA CRTC registers. If
gp_int# is deasserted when sampled, bit <7> is set, indicating that the vsync,
hsync, and blank# signals are generated by an external source and input to
the video back end. Bit <7> can also be written by software to force, as well as
indicate, the source selection.

At reset, the value of the VIVVR is 0000140016. Bits <12,10> are set and all
other bits are clear.

8.8 Video Format Registers
The video format registers are part of the core registers mapped in base
address 0 memory space (Section 7.5.1.2) by the PDBR0.

The 21130 video format registers control pixel formatting and the operation
of the external video bus (VAFC). Support is also provided for reading the
internal state of the display refresh process.

See Section 11.11.1 for information about changing the contents of the video
format registers.

8–90 Register Descriptions

8.8 Video Format Registers

8.8.1 Video Pixel Format Register
Mnemonic:
Offset:
Reset value:

VFPFR
0D4
Cleared

P
O
B
E

31 9 5 413 12 11 010

RES

F
B
C
D

Outside Pixel
Format

Inside Pixel
Format

P
O
B

14

M

1516

S
P
O
B
E

R
E
S

Bits Field Access Description

31:16 RES MBZ Reserved, must be zero. Read value is unpredictable.

15 SPOBE RO Synchronized pixel occlusion bitmap enable—set when
the pixel occlusion bitmap enable bit (<12>) is set and
the current frame pointer is at top-of-frame.

14 RES MBZ Reserved, must be zero. Read value is unpredictable.

13 POBM RW Pixel occlusion bitmap mode

0 Use the pixel occlusion bitmap to select inside or
outside pixel format.

1 Use the pixel occlusion bitmap as a monochrome
overlay (Section 11.6.2).

12 POBE RW Pixel occlusion bitmap enable

0 Disabled—use outside pixel format (<9:5>) as
default.

1 Enabled—use the pixel occlusion bitmap
(Section 8.8.1.3) to switch between pixel formats.

Bit <15> shadows this bit.

11:10 FBCD RW Frame buffer color depth—this field controls only
how pixels are displayed, not how they are drawn.
Drawn pixels are defined by the destination bitmap
field in the graphics operation register (GOPR <10:8>,
Section 8.5.9).

00 8-bit frame buffer
01 16-bit frame buffer
10 24-bit frame buffer
11 32-bit frame buffer

Register Descriptions 8–91

8.8 Video Format Registers

Bits Field Access Description

9:5 Outside
Pixel
Format

RW See Table 8–9.

4:0 Inside
Pixel
Format

RW See Table 8–9.

Table 8–9 shows the decoding for the VFPFR outside pixel (<9:5>) and inside
pixel (<4:0>) fields.

Table 8–9 Video Pixel Formats

PFS
Code

VPFS
Code Interpretation Notes: 1

8-bpp

00000 — 8-bit index (RAM LUT)
00001 — 8-bit index (ROM LUT)
00010 — 3/3/2 RGB, direct mapped

16-bpp

00000 10000 5/5/5 RGB direct mapped 2
00001 10001 5/5/5 RGB true color (RAM LUT) 2
00010 — 5/6/5 RGB direct mapped
00011 — 5/6/5 RGB true color (RAM LUT)
01000 11000 8-bit index (RAM LUT) 3
01001 11001 8-bit index (ROM LUT) 3
01110 — 8-bpp chroma-keyed overlay (3/3/2 RGB, direct

mapped)
4

01111 — 8-bpp chroma-keyed overlay (ROM LUT) 4

24-bpp

00000 — 8/8/8 RGB direct mapped
00001 — 8/8/8 RGB true color (RAM LUT)

(continued on next page)

8–92 Register Descriptions

8.8 Video Format Registers

Table 8–9 (Cont.) Video Pixel Formats

PFS
Code

VPFS
Code Interpretation Notes: 1

32-bpp

00000 10000 8/8/8 RGB direct mapped 5
00001 10001 8/8/8 RGB true color (RAM LUT) 5
01000 11000 8-bit index position 1 (RAM LUT) 5
01001 11001 8-bit index position 1 (ROM LUT) 5
01010 11010 8-bit index position 2 (RAM LUT) 5
01011 11011 8-bit index position 2 (ROM LUT) 5
01110 11110 8-bpp chroma-keyed overlay (3/3/2 RGB, direct

mapped)
5

01111 11111 8-bpp chroma-keyed overlay (ROM LUT) 5

Unused codes are reserved.

Notes for Table 8–9

1 The pixel format select (PFS) and variable pixel format select (VPFS) codes
are contained in VFPFR <9:5> or <4:0>. Unused codes are reserved. See
Section 8.8.1.1 for a description of variable pixel formats.

2 The VPFS codes specify 16-bit pixel formats that are interpreted according to
frame buffer bit <15>. If frame buffer bit <15> = 0, bits <14:0> contain pixel
data for a 15-bit pixel. If frame buffer bit <15> = 1, bits <15:8> contain a code
(Table 8–10) that describes the remaining 8 bits of pixel data.

3 The VPFS codes specify 16-bit formats in which frame buffer bits <15:8> contain
a code (Table 8–10) that describes the remaining 8 bits of pixel data.

4 The VPFS codes are ignored. The upper and the lower bytes are interpreted as
follows:

– If frame buffer bits <15:8> are all zeros, the formats specified in bits <7:0>
are 8-bpp chroma-keyed overlay (3/3/2 RGB direct-mapped) and 8-bpp
chroma-keyed overlay (ROM LUT).

– If any frame buffer bit <15:8> is not zero (1..255), the format specified in bits
<15:8> is 8-bpp chroma-keyed overlay (RAM LUT).

(This is the same as is shown in Figure 8–6, 5 6 , bits <15:0>.)

5 The VPFS codes specify 32-bit formats in which frame buffer bits <31:24> contain
a code (Table 8–10) that describes the remaining 24 bits of data.

Figure 8–6 shows the format of 16- and 32-bit pixels with a variable pixel
format.

Register Descriptions 8–93

8.8 Video Format Registers

Figure 8–6 Variable Pixel Formats

8 3

1

16

RAM LUT

ROM LUT

8 7 0

2

5

4

32−bpp Frame Buffer Bits <23:0> Description

1

3

23

6

31

15

9
VFPFR

5 413 12 11

RAM LUT

010

8−bit index (RAM LUT)

14

8−bit index (ROM LUT)

1516

1 0 0
1

ROM LUT

0 0
0

0

0

0
0

0

0

1

5/5/5 RGB true color

0

5/5/5 RGB direct mapped

0 0 0
32−bpp Frame Buffer
31 30 29 28 27 26 25 24 23 015

0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 0 1 1 0 0 0 0

0 0 0 1 0 0 0 0
8−bit index position 1 (RAM LUT)

8/8/8 RGB direct mapped
8/8/8 RGB true color (RAM LUT)

1 1 1 0 0 0 0 0
1

8−bpp chroma−keyed overlay (3/3/2 RGB, direct mapped)
1 8−bpp chroma−keyed overlay (RAM LUT)1 1 0 0

8−bit index position 1 (ROM LUT)

0

8−bit index position 2 (RAM LUT)

0

8−bit index position 2 (ROM LUT)

2

4

1

3

ROM LUT
(1..255) RAM LUT

0 3/3/2 RGB true color
(1..255) RAM LUT

5

6

X = don’t care 0 = field <15:8> is 0 (1..255) = field <15:8> is nonzero

Outside
Pixel

Format

Inside
Pixel

Format
1

1
1
1
1
1
1
0
0

1
1
0
0
0
0
0
0

1
1
1
1
0
0
0
0

1
0
1
0
1
0
1
0

16−bpp Frame Buffer 9 8 715 14 13 12 11 010

8−bit index (RAM LUT)
8−bit index (ROM LUT)

0
0

0

8–94 Register Descriptions

8.8 Video Format Registers

8.8.1.1 Pixel Formatting
The video format logic supports the display of multiple pixel formats from the
same frame buffer. The default pixel format for the entire displayed region is
defined by the outside pixel format field (VFPFR <9:5>). Other pixel formats
can be selected through the pixel occlusion bitmap (Section 8.8.1.3) or by using
a variable pixel format.

In a variable pixel format, the actual pixel format is encoded in each pixel
read from the frame buffer. Variable pixel formats are possible in only 16- and
32-plane frame buffer organizations where extra bits in each pixel are available
for pixel format encoding (Figure 8–6).

Table 8–10 describes the upper-byte encoding for 16- and 32-bit pixels with a
variable pixel format.

Table 8–10 Variable Pixel Formats

Code� Interpretation

16-bpp

0ppppppp When bit <15> = 0, the ppppppp field is displayed according to the
specified outside or inside pixel format (VFPFR <9:5,4:0>, Section 8.8.1).
The following table is extracted from Table 8–9 for reference.

10000 5/5/5 RGB direct mapped
10001 5/5/5 RGB true color (RAM LUT)
11000 8-bit index (RAM LUT)
11001 8-bit index (ROM LUT)

10000000 8-bit index (RAM LUT)
10010000 8-bit index (ROM LUT)

32-bpp

00000000 8/8/8 RGB direct mapped
00010000 8/8/8 RGB true color (RAM LUT)
10000000 8-bit index position 1 (RAM LUT)
10010000 8-bit index position 1 (ROM LUT)
10100000 8-bit index position 2 (RAM LUT)
10110000 8-bit index position 2 (ROM LUT)
11100000 8-bpp chroma-keyed overlay (3/3/2 RGB, direct mapped)
11110000 8-bpp chroma-keyed overlay (ROM LUT)

�Code in upper byte of frame buffer data. Unused codes are reserved.

Register Descriptions 8–95

8.8 Video Format Registers

In most cases, when VFPR bit <9> or <4> is set, the pixel format is determined
by the code in the upper byte of the frame buffer, and VFPR bits <8:5> or <3:0>
are ignored. The following cases are exceptions:

• In a 16-bpp frame buffer, when bit <15> is 0, the code in the VFPR specifies
the pixel format.

• In a 32-bpp frame buffer, when the upper byte specifies either of the 8-bpp
chroma-keyed overlay variable pixel formats (Figure 8–6, 5 6), the lower
bytes are interpreted as follows:

– If frame buffer bits <15:8> are all zeros, the formats specified in bits
<7:0> are 8-bpp chroma-keyed overlay (3/3/2 RGB direct-mapped) and
8-bpp chroma-keyed overlay (ROM LUT).

– If any frame buffer bit <15:8> is not zero (1..255), the format specified
in bits <15:8> is 8-bpp chroma-keyed overlay (RAM LUT).

– Bits <23:16> are ignored.

8.8.1.2 Addressing the RAM LUT in 15-bpp and 16-bpp True-Color Modes
In true color mode, the 256 � 24 RAM LUT is separated into 3 256 � 8 LUTs.
Figure 8–7 shows how the pixel data is used to address the LUT. Note that
the 2 or 3 upper bits of each pixel color are replicated to form the lower LUT
address bits. This results in a sparse use of the 256-entry LUT. The following
pseudo code is an example of how the LUT is addressed in these modes.

Size = power of two size of input table. (e.g. 5 for a 5-bpp color)

Input_array[0..2^Size]

Output_array[0..255], to be used as one of the R, G, or B lookup tables

for (index=0; index==Size; index = index+1) ; loop through entire input table
temp = index << (8-Size) ; form most significant index bits
temp2 = index >> (8-Size) ; form least significant index bits
Output_array[temp+temp2] = Input_array[index]

next

8–96 Register Descriptions

8.8 Video Format Registers

Figure 8–7 RAM LUT Addressing in 15-bpp and 16-bpp True-Color Modes

5/5/5

9 5

0

4

1 1

15

0

0

14

1

1 1

010

LUT

Replicated
Bits

0 0 0

0 1 0

1 1 0

1 1 1 1 1

1

0

1

1

0

0 0

0 1 0

.

.

.

.

.

.

.

.

.

00000000

01011010

11001110

11111111

Register Descriptions 8–97

8.8 Video Format Registers

8.8.1.3 Pixel Occlusion Bitmap
Figure 8–8 shows the 256-byte pixel occlusion bitmap format in quadword
alignment. Table 8–11 describes its fields.

Figure 8–8 Pixel Occlusion Bitmap Format

Reserved

Quadword 19

248

Quadword 2

251 250

63

249

Quadword 20

10

Quadword 1

255 254 253 252

0 9

Repeat CountReserved
07 6 5 4 3 2 1

160167 166 165 164 163 162 161

Reserved
168171 170 169175 174 173 172

Table 8–11 Pixel Occlusion Bitmap Field Description

Bytes Field Description

255:168 Reserved

167:8 Pixel
Occlusion
Bitmap

Each bit in these bytes selects the inside or outside pixel
format.

0 Outside pixel format
1 Inside pixel format

7:2 Reserved

(continued on next page)

8–98 Register Descriptions

8.8 Video Format Registers

Table 8–11 (Cont.) Pixel Occlusion Bitmap Field Description

Bytes Field Description

1:0 Repeat
Count

Bits <9:0> indicate the number of scanlines �1 that will use
the pixel occlusion bitmap information in bytes 8 through
167. A zero value specifies that the pixel occlusion bitmap
information is valid for only the current scanline.

Note: The currently supported count range is 0..2047 (bits
<63:10> in bytes 7 through 1 are reserved).

The 256-byte pixel occlusion bitmap comprises a 160-byte (20 quadword) per-
pixel switch (bytes 167:8). The 21130 video format logic uses the pixel occlusion
bitmap to select between two pixel formats or two pixel streams. Typically, it
determines whether a given pixel will use the outside pixel format or the inside
pixel format. The pixel occlusion bitmap is stored in off-screen frame buffer
memory, and is formatted to allow vertical compression. (See Section 2.13.3 for
more information.)

Register Descriptions 8–99

8.8 Video Format Registers

8.8.2 Video Pixel Occlusion Bitmap Base Address Register
Mnemonic:
Offset:
Reset value:

VFOBR
0E0
Cleared

9 8

8 731

RES Pixel Occlusion Bitmap Base Address

22

RES

21 0

31 22

64−Bit
Mode

32−Bit
Mode

0

M
B
Z

Pixel Occlusion Bitmap Base Address RESRES

21 7

Bits Field Access Mode Description

31:22 RES MBZ Both Reserved, must be zero. Read value is
unpredictable.

21:8 Pixel
Occlusion
Bitmap
Base
Address

RW 64-bit The starting address of the quadword-
aligned pixel occlusion bitmap (Section 8.8.1.3).

32-bit The left-shifted 64-bit mode value. As a
result of the shift, the 64-bit mode MSB is
discarded and the 32-bit mode LSB (<8>)
must be zero.

7:0 RES MBZ Both Reserved, must be zero. Read value is
unpredictable.

The format of the VFOBR depends on the frame buffer bus mode (GDER <20>,
Section 8.5.2). In 32-bit mode the pixel occlusion bitmap base address must be
left-shifted 1 bit (compared to the address in 64-bit mode) and bit <22> must
be zero.

8–100 Register Descriptions

8.8 Video Format Registers

8.8.3 Video Pixel Occlusion Bitmap Current Address Register
Mnemonic:
Offset:
Reset value:

VFOAR
1F4
Cleared

31 22 21 3 2 0

RES Pixel Occlusion Bitmap Current Address RES

Bits Field Access Description

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:3 Pixel
Occlusion
Bitmap
Current
Address

RO A read-only copy of the pixel occlusion bitmap current
address. Used only for chip-level testing.

2:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The VFOAR is used only for chip-level testing. The current occlusion bitmap
address (<21:3>) is computed by adding the occlusion bitmap base address
(VFOBR <21:8>, Section 8.8.2) to either:

(1280 � 64) + 1 in 64-bit mode

or

(1024 � 32) + 1 in 32-bit mode.

In addition to the PCI configuration registers and the VGA registers, the
VFOAR is one of the few registers that is immediately accessible for read
(see Section 9.2.2.1). In other words, the command FIFO does not have to be
flushed before completing a read of the VFOAR.

Register Descriptions 8–101

8.8 Video Format Registers

8.8.4 Video Current Refresh Address Register
Mnemonic:
Offset:
Reset value:

VFCRR
1FC
Cleared

31 622 21 5 0

RES Current Refresh Address RES

Bits Field Access Description

31:22 RES MBZ Reserved, must be zero. Read value is unpredictable.

21:6 Current
Refresh
Address

RO A read-only copy of the current refresh address. All
of the bits are not provided because they change too
quickly at high refresh rates.

5:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

In addition to the PCI configuration registers and the VGA registers, the
VFCRR is one of the few registers that is immediately accessible for read
(see Section 9.2.2.1). In other words, the command FIFO does not have to be
flushed before completing a read of the VFCRR.

8–102 Register Descriptions

8.8 Video Format Registers

8.8.5 Alternate Video Control Register
Mnemonic:
Offset:
Reset value:

VFAVR
0E8
Cleared

31 7 6 5 4 3 2 1 0

VAFC

D EM I
W

O
S

F
S

B
CRES

10 9 8

RES

Bits Field Access Description

31:10 RES MBZ Reserved, must be zero. Read value is unpredictable.

9:8 VAFC M RW VAFC mode

00 Unpacked 8-bit pixels (feature-connector-
compatible format)

01 Packed 8-bit pixels
10 16-bit pixels
11 Reserved

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 VAFC FS RW VAFC frequency select

0 VAFC DCLK equals the pixel clock frequency.
1 VAFC DCLK equals one-half the pixel clock

frequency.

4 VAFC D RO VAFC direction

0 21130 receives pixels from video system.
1 21130 outputs pixels to video system.

3 VAFC IW RW VAFC input window

0 Full-screen VAFC input.
1 VAFC input window is defined by the pixel

occlusion bitmap.

2 VAFC OS RW VAFC output source

0 VAFC output pixels are derived directly from
frame buffer data.

1 VAFC output pixels are derived from DAC
pixel input.

Register Descriptions 8–103

8.8 Video Format Registers

Bits Field Access Description

1 VAFC BC RW VAFC blank control

0 The blank# signal is controlled by the VGA
CRTC blanking registers (Sections 8.13.5 and
8.13.18).

1 The blank# signal is unconditionally asserted.

0 VAFC E RW VAFC enable

0 VAFC enabled
1 VAFC disabled

See Section 2.13.5 for more information about the VAFC port.

8.9 Palette and DAC Registers
The palette and DAC registers are mapped in base address 1 memory space
(Section 7.5.2) by the PDBR1.

The palette and DAC registers control and indicate the status of the onchip
graphics color RAM LUT and DACs. They also control the cursor color. The
registers are accessed through the palette and DAC register space in the
PDBR1 register space (Section 7.5.2.4).

8–104 Register Descriptions

8.9 Palette and DAC Registers

8.9.1 Palette and DAC RAM Write and Read Address Registers
Mnemonic:
DPWR address:
DPRR address:
DPWR, DPRR reset value:

DPWR, DPRR
1000
100C
Undefined

31

RES

8

Palette Write Address

7 0

RES Palette Read AddressDPRR

DPWR

Bits Field Access Description

DPWR

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Palette
Write
Address

RW Specifies the location of the next palette write.

DPRR

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Palette
Read
Address

RW Specifies the location of the next palette read.

The DPWR specifies the address for palette RAM write operations and the
DPRR specifies the address for palette RAM read operations. See the palette
and DAC RAM color register (DPCR, Section 8.9.2) description for more
information.

Register Descriptions 8–105

8.9 Palette and DAC Registers

8.9.2 Palette and DAC RAM Color Register
Mnemonic:
Address:
Reset value:

DPCR
1004
Undefined

31

RES

8

Palette Data

7 0

Bits Field Access Description

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Palette
Data

RW Palette color data.

The DPCR accesses the palette location specified by the palette and DAC RAM
write address register or the palette and DAC RAM read address register
(DPWR or DPRR, Section 8.9.1).

To set palette color values, the desired palette address is loaded into the
DPWR; then the red, green, and blue data are written to the DPCR. After
the blue write is complete, the palette RAM is updated with the new values.
The DPWR is automatically incremented after the blue data is written;
consequently, successive palette locations can be updated without reloading the
DPWR. Note that the palette address is incremented after the blue value is
written to the internal palette holding register.

Palette read operations are similar to palette write operations. The desired
palette address is loaded into the DPRR; the address is incremented; then,
three successive reads to the DPCR return the red, green, and blue components
of the palette RAM entry. As in a write, the palette address is incremented
after the internal palette holding register is loaded, not after the blue value is
read.

8–106 Register Descriptions

8.9 Palette and DAC Registers

8.9.3 Palette and DAC Cursor Write and Read Address Registers
Mnemonic:
DCWR address:
DCRR address:
DCWR, DCRR reset value:

DCWR, DCRR
1010
101C
Undefined

31

RES

8

Write Address

7

Cursor

0

RES Read Address
CursorDCRR

DCWR

Bits Field Access Description

DCWR

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Cursor
Write
Address

RW Specifies the location of the next cursor color write.

DCRR

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Cursor
Read
Address

RW Specifies the location of the next cursor color read.

The DCWR specifies the address for cursor color write operations and the
DCRR specifies the address for cursor color read operations. See the DAC
cursor color register (DCCR, Section 8.9.4) description for more information.

Register Descriptions 8–107

8.9 Palette and DAC Registers

8.9.4 Palette and DAC Cursor Color Register
Mnemonic:
Address:
Reset value:

DCCR
1014
Undefined

31

RES

8

Cursor Color Data

7 0

Bits Field Access Description

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Cursor
Color
Data

RW Cursor color data.

The DCCR accesses the cursor color location specified by the palette and DAC
cursor write address register or the palette and DAC cursor read address
register (DCWR or DCRR, Section 8.9.3).

To set cursor color values, the desired cursor color address is loaded into
the DCWR; then the red, green, and blue data are written to the DCCR.
After the blue write is complete, the cursor color location is updated with the
new values. The DCWR is automatically incremented after the blue data is
written; consequently, successive cursor color locations can be updated without
reloading the DCWR. Note that the cursor color address is incremented after
the blue value is written to the internal cursor-color holding register.

Cursor color read operations are similar to cursor color write operations.
The desired cursor color address is loaded into the DCRR; the address is
incremented; then, three successive reads to the DCCR return the red, green,
and blue components of the cursor color entry. As in a write, the cursor color
address is incremented after the internal cursor-color holding register is
loaded, not after the blue value is read.

8–108 Register Descriptions

8.9 Palette and DAC Registers

8.9.5 Palette and DAC Pixel Mask Register
Mnemonic:
Address:
Reset value:

DPMR
1008
Undefined

31

RES

8

Mask Data

7 0

Bits Field Access Description

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

7:0 Mask
Data

RW Palette index mask.

The DPMR specifies the mask for palette index inputs when using indexed
color modes.

Register Descriptions 8–109

8.9 Palette and DAC Registers

8.9.6 Palette and DAC Status Register
Mnemonic:
Address:
Reset value:

DSTR
1028
Undefined

31

RES

4 3 2 1 0

ASS
S

R
W
S

Bits Field Access Description

31:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 SS RO Sense status

0 One or more DAC outputs exceeded the internal
voltage reference level (335 mV).

1 No DAC output exceeded the internal voltage
reference level.

2 RWS RO Read/write state—indicates whether the last palette or
cursor color operation was a read or write, as follows:

0 Write—defined as writing the DPWR or the
DCWR.

1 Read—defined as writing the DPRR or the DCRR.

1:0 AS RO Address state—indicates the color-component address
for the next read or write cycle to the DPCR or DCCR,
as follows:

00 Red
01 Green
10 Blue
11 Reserved

The DSTR contains several miscellaneous palette and DAC status bits.

8–110 Register Descriptions

8.9 Palette and DAC Registers

8.9.7 Palette and DAC Command Register 0
Mnemonic:
Address:
Reset value:

DCOR0
1018
Cleared

31

RES

6 5 4 3 2 1 0

S
E

G
S
E

D
R
S

P
D
E

R
E
S

R
E
S

Bits Field Access Description

31:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 SE RW Setup-enable

0 Blanking pedestal = 0 IRE.
1 Blanking pedestal = 7.5 IRE.

4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 GSE RW Green sync enable—when set, enables sync information
on the green DAC output.

2 RES MBZ Reserved, must be zero. Read value is unpredictable.

1 DRS RW DAC resolution select

0 Host 6-bit palette operations are enabled (the 2
LSBs are forced to zero).

1 Host 8-bit palette operations are enabled.

0 PDE RW Power-down enable

0 Normal palette and DAC operation is enabled.
1 Removes power to the DACs and palette RAM;

host palette operations are not affected.

The DCOR0 allows software to control the palette and DAC function.

Register Descriptions 8–111

8.9 Palette and DAC Registers

8.9.8 Palette and DAC Command Register 1
Mnemonic:
Address:
Reset value:

DCOR1
1030
Cleared

31

P
P

4

S

3 2 1 0

RES

S
A
E
N

M
S
E
L

Bits Field Access Description

31:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 SAEN RW Signature analysis enable

0 Signature analysis is disabled.
1 Signature analysis is enabled.

To enable signature analysis, this bit must be set and
blank# must be deasserted.

2 MSEL RW Mode select

0 Accumulate mode
1 Data strobe mode

1:0 PPS RW Pixel phase select—signature analysis samples every
fourth pixel in a displayed scanline, beginning with the
pixel specified in this field, as follows:

00 The first pixel after blank# is deasserted.
01 The second pixel after blank# is deasserted.
10 The third pixel after blank# is deasserted.
11 The fourth pixel after blank# is deasserted.

The signature analysis registers (DRSR, DGSR, and DBSR, Section 8.9.9) are
enabled to sample pixel data only when the signature analysis enable bit (<3>)
is set during active display (blank# is deasserted). When blank# is asserted,
the signature analysis registers retain the last value sampled. The signature
analysis registers should not be accessed during the time that blank# is
asserted plus 5 pixel clocks.

In accumulate mode (<2> = 0), the signature analysis register data changes
on every fourth clock. The signature value should be initialized with a specific
seed value (other than FF or 00) and a known pixel stream should be sampled.
When blank# is deasserted, the pixel data causes the signature value to
change on every fourth clock. The resulting accumulated value is a function of

8–112 Register Descriptions

8.9 Palette and DAC Registers

all the pixels that have been sampled. The known video pattern has a unique
signature value that can be used as a functional check.

In data strobe mode (<2> = 1), the signature analysis registers capture and
hold the data going to the DACs; there is no accumulated value. For example,
when the DACs are at full scale each signature value is FF.

Register Descriptions 8–113

8.9 Palette and DAC Registers

8.9.9 Palette and DAC Signature Analysis Registers
Mnemonic:
DRSR address:
DGSR address:
DBSR address:
DRSR, DGSR, DBSR reset value:

DRSR, DGSR, DBSR
1034
1038
103C
Undefined

DRSR

31 8 7 0

Red Signature

DGSR

DBSR

RES

Green SignatureRES

Blue SignatureRES

Bits Field Access Description

31:8 RES MBZ Reserved, must be zero. Read value is unpredictable.

DRSR

7:0 Red
Signature

RW Red color sample.

DGSR

7:0 Green
Signature

RW Green color sample.

DBSR

7:0 Blue
Signature

RW Blue color sample.

The palette and DAC signature analysis registers capture every fourth pixel
output to the DACs. See Section 8.9.8 for more information.

8–114 Register Descriptions

8.10 VGA Register Overview

8.10 VGA Register Overview
For VGA mode operations, the VGA registers are accessed in VGA memory
space (Section 7.4). The VGA registers are also mapped to VGA alternate
register space in base address 1 memory space (Section 7.5.2.1) by the PDBR1.

Table 8–12 lists the VGA registers according to groups. The registers are
either directly accessible (and listed with their port addresses) or indexed, as
follows:

• All of the VGA external and general registers are directly accessible.

• None of the VGA extended registers are directly accessible.

• Only the index and data registers in the remaining groups are directly
accessible.

The table also lists the I/O port address for direct access and the number of
indexed (not directly accessible) registers in each group.

Table 8–12 VGA Register Port Map

VGA Register Group

Directly
Accessible
Registers I/O Port Addresses

Indexed
Registers

External and general 4 3BA, 3DA, 3CA, 3C2, 3CC None

Sequencer Index
Data

3C4
3C5

5

CRT controller Index
Data

3B4, 3D4
3B5, 3D5

25

Extended None — 13

Graphics controller Index
Data

3CE
3CF

9

Attribute controller Index
Data

3C0
3C1

21

Color 5 3C6, 3C7, 3C8, 3C9 None

Register Descriptions 8–115

8.10 VGA Register Overview

A PCI target abort is signaled if the following VGA register accesses are
attempted:

• A longword access with a byte mask that specifies a nonimplemented
register.

• A longword or word access that straddles the palette registers or the
sequencer registers at address 3C4.

On word accesses to the VGA registers, the least significant byte is used
before the most significant byte to ensure that index register operations are
performed before data register operations.

8.11 VGA External and General Registers
Each of the external and general registers is directly accessible at its port
address, and indexing is not required.

Table 8–13 lists the VGA external and general registers and their read and
write access addresses.

Table 8–13 VGA External and General Register Port Map

Register
Write
Address

Read
Address

VGA miscellaneous output register 3C2 3CC

VGA feature control register 3DA 3CA

VGA input status 0 register — 3C2

VGA input status 1 register — 3DA

8–116 Register Descriptions

8.11 VGA External and General Registers

8.11.1 VGA Miscellaneous Output Register
Mnemonic:
Write address:
Read address:
Reset value:

VEMISR
3C2
3CC
Undefined

VSP HSP PB

7 6 5 4 3 2 1 0

RES CS IOAER

Bits Field Access Description

7 VSP RW Vertical sync polarity—sets the polarity of the vertical
sync pulse. Used with HSP (<6>) to determine
displayed vertical size (Table 8–14).

0 Positive vertical sync pulse
1 Negative vertical sync pulse

6 HSP RW Horizontal sync polarity—sets the polarity of the
horizontal sync pulse. Used with the VSP bit (<7>)
to determine displayed vertical size (Table 8–14).

0 Positive horizontal sync pulse
1 Negative horizontal sync pulse

5 PB RW Page bit—selects odd or even display page in modes 0,
1, 2, 3, and 7.

0 Low 64K page of memory
1 High 64K page of memory

4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:2 CS RW Clock source select

00 25-MHz clock source
01 28-MHz clock source
10 Reserved
11 Reserved

This field is selected by the VGA variable dot clock
select field in the clock control A register (VXCKAR <0>,
Section 8.14.10). The frequency is determined by
hardwired (that is, nonprogrammable) M, L, and N
term values (VXCKAR <6:1> and VXCKBR <5:4,3:0>).

Register Descriptions 8–117

8.11 VGA External and General Registers

Bits Field Access Description

1 ER RW Enable RAM

0 Disable CPU access to display memory.
1 Enable CPU access to display memory.

0 IOA RW I/O address select

0 Address 3Bx for monochrome emulation
1 Address 3Dx for color emulation

The VEMISR controls several VGA functions including the vertical size of the
display, dot clock source, display memory access, and monochrome or color I/O
address selection.

Table 8–14 shows the displayed vertical size and number of active lines as
a function of the vertical and horizontal sync pulse polarities selected by
VEMISR bits <7:6>.

Table 8–14 Displayed Vertical Size as Function of HSP and VSP

VSP
VEMISR <7>

HSP
VEMISR <6> Vertical Size Active Lines

0 (+) 0 (+) Reserved Reserved
0 (+) 1 (–) 400 lines 414 lines
1 (–) 0 (+) 350 lines 362 lines
1 (–) 1 (–) 480 lines 496 lines

8–118 Register Descriptions

8.11 VGA External and General Registers

8.11.2 VGA Feature Control Register
Mnemonic:
Write address (monochrome):
Write address (color):
Read address:
Reset value:

VEFCOR
3BA
3DA
3CA
Undefined

7 3 2 1 0

RES FC1 FC0

4

VSS RES

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 VSS RW Vertical sync select

0 Normal vertical sync output to monitor.
1 Vertical sync is the logical OR of vertical sync and

vertical display enable.

2 RES MBZ Reserved, must be zero. Read value is unpredictable.

1 FC1 RW Feature control <1>

0 The value FC1 is 0.
1 The value FC1 is 1.

0 FC0 RW Feature control <0>

0 The value FC0 is 0.
1 The value FC0 is 1.

VEFCOR bits <1:0> are implemented only for compatibility and do not affect
21130 operation.

Register Descriptions 8–119

8.11 VGA External and General Registers

8.11.3 VGA Input Status 0 Register
Mnemonic:
Read address:
Reset value:

VEIS0R
3C2
Undefined

7 6

VRI

0

RES

5 4 3

SSRES

Bits Field Access Description

7 VRI RO Vertical retrace interrupt

0 Not in vertical retrace.
1 Vertical retrace is occurring.

6:5 RES MBZ Reserved, must be zero. Read value is unpredictable.

4 SS RO Sense status

0 One or more DAC outputs exceeded the internal
voltage reference level (335 mV).

1 No DAC output exceeded the internal voltage
reference level.

This bit is included for compatibility and maps to
DSTR <4> (Section 8.9.6).

3:0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The VEIS0R indicates whether a vertical retrace interrupt is pending.

8–120 Register Descriptions

8.11 VGA External and General Registers

8.11.4 VGA Input Status 1 Register
Mnemonic:
Read address (monochrome):
Read address (color):
Reset value:

VEIS1R
3BA
3DA
Undefined

RESRES DIA

7

VR

6 5 4 3 2

DE

1 0

Bits Field Access Description

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5:4 DIA RO Diagnostic—indicates the display colors accessed as
a function of the VSM field in the color plane enable
register (VACPER <3:0>, Section 8.16.5).

VSM
DIA

<5:4> <5> <4>

00 Red Blue
01 Blue Green
10 Red Green

3 VR RO Vertical retrace

0 Display is in display mode.
1 Display is in vertical retrace mode.

2:1 RES MBZ Reserved, must be zero. Read value is unpredictable.

0 DE RO Display enable

0 Active display time.
1 Display is in horizontal or vertical retrace period.

The VEIS1R indicates the status of several display functions.

Register Descriptions 8–121

8.12 VGA Sequencer Registers

8.12 VGA Sequencer Registers
The VGA sequencer registers are accessed through the VGA sequencer
index register (VSINXR, address 3C4) and the VGA sequencer data register
(VSDATR, address 3C5).

8.12.1 VGA Sequencer Index Register
Mnemonic:
Address:
Reset value:

VSINXR
3C4
Undefined

7 2 0

RES SI

3

Bits Field Access Description

7:3 RES MBZ Reserved, must be zero. Read value is unpredictable.

2:0 SI RW Sequencer index—index to the following VGA sequencer
registers:

0 Reset (VSRESR)
1 Clocking mode (VSCMOR)
2 Plane mask (VSPLMR)
3 Character map select (VSCMSR)
4 Memory mode (VSMMOR)
Unused index values are reserved.

The VSINXR contains the index used to access the VGA sequencer registers.

8–122 Register Descriptions

8.12 VGA Sequencer Registers

8.12.2 VGA Sequencer Data Register
Mnemonic:
Address:
Reset value:

VSDATR
3C5
Undefined

7 0

Sequencer Data

Bits Field Access Description

7:0 Sequencer
Data

RW Indexed sequencer register read or write data.

The VSDATR contains the read or write data for the VGA sequencer register
indexed by the VSINXR (Section 8.12.1).

Register Descriptions 8–123

8.12 VGA Sequencer Registers

8.12.3 VGA Sequencer Reset Register
Mnemonic:
Index:
Reset value:

VSRESR
0
Undefined

7 2 1 0

RES SR AR

Bits Field Access Description

7:2 RES MBZ Reserved, must be zero. Read value is unpredictable.

1 SR RW Synchronous reset

0 Hold system in reset state.
1 Release reset if bit <0> = 1.

0 AR RW Asynchronous reset

0 Hold system in reset state.
1 Release reset if bit <1> = 1.

VSRESR bits <1:0> are implemented only for compatibility and do not affect
21130 operation.

8–124 Register Descriptions

8.12 VGA Sequencer Registers

8.12.4 VGA Sequencer Clocking Mode Register
Mnemonic:
Index:
Reset value:

VSCMOR
1
Undefined

RES SO S4

7 6 5 4 3 2 1 0

DC SL BW 8/9

Bits Field Access Description

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 SO RW Screen off

0 Screen is turned on (display refresh is active).
1 Screen is turned off (no display refresh).

4 S4 RW Shift four—in conjunction with bit <2>, determines
when video serializers are loaded, as follows:

S4 SL Load video serializers . . .

0 0 Every character clock.
0 1 Every other character clock.
1 X Every fourth character clock (SL is ignored).

3 DC RW Divide dot clock by 2

0 Video dot clock frequency = master clock
frequency.

1 Video dot clock frequency = (master clock
frequency � 2).

2 SL RW Shift load—see bit <4> description.

1 BW RW Bandwidth—implemented only for compatibility and
does not affect 21130 operation. The generic VGA
definition is as follows:

0 CRTC controls memory bus on 4 of 5 cycles.
1 CRTC controls memory bus on 2 of 5 cycles.

Register Descriptions 8–125

8.12 VGA Sequencer Registers

Bits Field Access Description

0 8/9 RW Divide dot clock by 8 or 9

0 Character clock period is 9 dots wide.
1 Character clock period is 8 dots wide.

The VSCMOR determines whether display refresh is enabled and controls
various sequencer timing functions.

8–126 Register Descriptions

8.12 VGA Sequencer Registers

8.12.5 VGA Sequencer Plane Mask Register
Mnemonic:
Index:
Reset value:

VSPLMR
2
Undefined

7 4 3 0

RES Mask

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Mask RW Each bit masks the corresponding memory plane, as
follows:

0 Disable memory plane on CPU write operations.
1 Enable memory plane on CPU write operations.

The VSPLMR determines whether memory planes 0 through 3 can be written.

Register Descriptions 8–127

8.12 VGA Sequencer Registers

8.12.6 VGA Sequencer Character Map Select Register
Mnemonic:
Index:
Reset value:

VSCMSR
3
Undefined

7 6 5 4 3 2 1 0

RES SAH SBH SA SB

Bits Field Access Description

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 SAH RW Select character generator A (high order).

4 SBH RW Select character generator B (high order).

3:2 SA RW Select character generator A.

1:0 SB RW Select character generator B.

VSCMSR bits <5,3:2> select character set (font) A and bits <4,1:0> select
character set B.

8–128 Register Descriptions

8.12 VGA Sequencer Registers

8.12.7 VGA Sequencer Memory Mode Register
Mnemonic:
Index:
Reset value:

VSMMOR
4
Undefined

RES EM

7 2 1 0

RESO/E

3

C4

4

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 C4 RW Chain 4

0 Normal buffer addressing.
1 CPU A0 = plane select bit 0

CPU A1 = plane select bit 1
The VGA graphics controller read map select
register (Section 8.15.7) is ignored

2 O/E RW Odd or even

0 Even/odd addressing. Even addresses select
planes 0 and 2, odd address select planes 1 and 3.

1 Normal buffer addressing.

This bit is the opposite of VGMODR <4> (Section 8.15.8).

1 EM RW Extended memory

0 No extended memory, display memory � 64KB.
1 Extended memory present, display memory

> 64KB.

0 RES MBZ Reserved, must be zero. Read value is unpredictable.

The VSMMOR determines whether extended memory is enabled and how the
planes are addressed.

Register Descriptions 8–129

8.13 VGA CRT Controller Registers

8.13 VGA CRT Controller Registers
The VGA CRT controller (CRTC) registers control display parameters and
are accessed through the VGA CRTC index register (VCINXR) and the VGA
CRTC data register (VCDATR), in either monochrome or color display mode.
The VCINXR and VCDATR have monochrome and display mode addresses,
and the choice of address pair implicitly selects the mode (3B4 and 3B5 for
monochrome, and 3D4 and 3D5 for color). The remaining VGA CRTC registers
are identical in either mode.

Note

When operating in the accelerated (2DA) modes (GDER <22> is clear,
Section 8.5.2), the active display area is derived from the CRTC
register values during blank time rather than the register values
during display enable time. This also implies that borders are not
available in accelerated modes.

The VCINXR and VCDATR also provide access to the VGA extended registers
(Section 8.14).

Figure 8–9 shows some of the horizontal and vertical screen parameters
controlled by CRTC registers.

8–130 Register Descriptions

8.13 VGA CRT Controller Registers

Figure 8–9 Screen Parameters

= Blank Start

= Sync Start

= Total

= Display End

= Sync End

= Blank End

Active Display

Blanked

 DE

 BS

 SS

 T

DE
BS
BE
SS
SE
T

 DE BS T

 BE

 SE

 SE SS BE

Border

Vertical

Horizontal

Register Descriptions 8–131

8.13 VGA CRT Controller Registers

8.13.1 VGA CRTC Index Register
Mnemonic:
Monochrome address:
Color address:
Reset value:

VCINXR
3B4
3D4
Undefined

7 0

CRTC or Extended Register Index

Bits Field Access Description

7:0 CRTC or
Extended
Register
Index

RW Selects the VGA CRTC or extended register to be read
or written through the VGA CRTC data register, as
listed in Table 8–15.

The VCINXR indexes the CRTC registers or the extended registers, depending
on the value of <7:5>, as follows:

000 Index CRTC registers.
100 Index extended registers.
Unused codes are reserved.

Table 8–15 lists the registers indexed by the VCINXR.

Table 8–15 VGA CRTC and Extended Register Indices

Index Register Mnemonic Section

00 Horizontal total register VCHTOR 8.13.3
01 Horizontal display end register VCHDER 8.13.4
02 Start horizontal blank register VCHBSR 8.13.5
03 End horizontal blank register VCHBER 8.13.5
04 Start horizontal sync register VCHSSR 8.13.6
05 End horizontal sync register VCHSER 8.13.6
06 Vertical total register VCVTOR 8.13.7
07 Overflow register VCOVRR 8.13.8

(continued on next page)

8–132 Register Descriptions

8.13 VGA CRT Controller Registers

Table 8–15 (Cont.) VGA CRTC and Extended Register Indices

Index Register Mnemonic Section

08 Preset row register VCPROR 8.13.9
09 Maximum scanline register VCMSLR 8.13.10
0A Cursor start register VCCUSR 8.13.11
0B Cursor end register VCCUER 8.13.11
0C Start address high register VCSAHR 8.13.12
0D Start address low register VCSALR 8.13.12
0E Cursor location high register VCCLHR 8.13.13
0F Cursor location low register VCCLLR 8.13.13
10 Start vertical sync register VCVSSR 8.13.14
11 End vertical sync register VCVSER 8.13.14
12 End vertical display register VCVDER 8.13.15
13 Offset register VCOFFR 8.13.16
14 Underline row scan register VCULRR 8.13.17
15 Start vertical blanking register VCVBSR 8.13.18
16 End vertical blanking register VCVBER 8.13.18
17 Mode control register VCMODR 8.13.19
18 Line compare register VCLCMR 8.13.20
8D Extended paging control register VXPCOR 8.14.1
90 Extended host page offset A register VXHPAR 8.14.2
91 Extended host page offset B register VXHPBR 8.14.2
93 Extended split-screen start address low byte register VXSALR 8.14.3
94 Extended split-screen start address high byte register VXSAHR 8.14.3
97 Extended interlace control register VXICOR 8.14.4
9A Extended equalization start register VXEQSR 8.14.5
9B Extended equalization end register VXEQER 8.14.5
9C Extended half-line register VXHLNR 8.14.6
9D Extended timing control A register VXTCAR 8.14.7
9E Extended timing control B register VXTCBR 8.14.8
A0 Extended video FIFO control register VXFCOR 8.14.9
A1 VGA extended clock control A register VXCKAR 8.14.10
A2 VGA extended clock control B register VXCKBR 8.14.10
A3 Extended interface control register VXEICR 8.14.11
Unused codes are reserved

Register Descriptions 8–133

8.13 VGA CRT Controller Registers

8.13.2 VGA CRTC Data Register
Mnemonic:
Monochrome address:
Color address:
Reset value:

VCDATR
3B5
3D5
Undefined

CRTC or Extended Register Data

7 0

Bits Field Access Description

7:0 CRTC or
Extended
Register
Data

RW Indexed VGA CRTC or extended register read or write
data.

The VCDATR contains the read or write data for the VGA CRTC or extended
register indexed by the VCINXR (Section 8.13.1).

8–134 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.3 VGA CRTC Horizontal Total Register
Mnemonic:
Index:
Reset value:

VCHTOR
00
Undefined

7 0

Horizontal Total

Bits Field Access Description

7:0 Horizontal
Total

RW The number of character clocks minus 5 from the start
of one active display scanline to the start of the next
active display scanline.

The VCHTOR specifies the number of character clocks from the start of one
scanline to the start of the next scanline; that is, the total number of character
clocks minus 5 during horizontal active display, blanking, retrace, and borders
(Figure 8–9). The number of pixels per character clock is specified by the VGA
sequencer clocking mode register (VSCMOR <0>, Section 8.12.4).

Register Descriptions 8–135

8.13 VGA CRT Controller Registers

8.13.4 VGA CRTC Horizontal Display End Register
Mnemonic:
Index:
Reset value:

VCHDER
01
Undefined

7 0

Horizontal Display End

Bits Field Access Description

7:0 Horizontal
Display
End

RW The number of character clocks minus 1 from the start
to the end of horizontal active display.

The VCHDER specifies the number of character clocks minus 1 during the
active display of a scanline (see Figure 8–9). The number of pixels per
character clock is specified by the VGA sequencer clocking mode register
(VSCMOR <0>, Section 8.12.4).

8–136 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.5 VGA CRTC Start and End Horizontal Blank Registers
Mnemonic:
VCHBSR index:
VCHBER index:
VCHBSR, VCHBER reset value:

VCHBSR, VCHBER
02
03
Undefined

7

VCHBSR

0

Start Horizontal Blank

VCHBER

7 6 5 4 0

CR
Display
Enable
Skew

End Horizontal Blank LSBs

Bits Field Access Description

VCHBSR

7:0 Start
Horizontal
Blank

RW The number of character clocks from the start of an
active horizontal display to the start of horizontal
blanking. This value must be greater than horizontal
display end (Section 8.13.4).

VCHBER

7 CR RW Compatible read—enables access to the VGA CRTC
start and end vertical sync registers (VCVSSR and
VCVSER, Section 8.13.14).

0 Disable access
1 Enable access

6:5 Display
Enable
Skew

RW Specifies the number of characters by which horizontal
display enable is delayed.

00 0 characters
01 1 character
10 2 characters
11 3 characters

Register Descriptions 8–137

8.13 VGA CRT Controller Registers

Bits Field Access Description

VCHBER

4:0 End
Horizontal
Blank
LSBs

RW The number of character clocks between the start
and end of horizontal blanking. This value must
not extend the blanking period beyond horizontal
total (Section 8.13.3). Bit <5> of this value is in
VCHSER <7> (Section 8.13.6).

The VCHBSR and VCHBER specify the start and width of the horizontal
blanking period (see Figure 8–9). The number of pixels per character clock
is specified by the VGA sequencer clocking mode register (VSCMOR <0>,
Section 8.12.4).

8–138 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.6 VGA CRTC Start and End Horizontal Sync Registers
Mnemonic:
VCHSSR index:
VCHSER index:
VCHSSR, VCHSER reset value:

VCHSSR, VCHSER
04
05
Undefined

7 0

Start Horizontal SyncVCHSSR

VCHSER

7 6 5 4 0

EHB
Horizontal

Sync
Delay

End Horizontal Sync

Bits Field Access Description

VCHSSR

7:0 Start
Horizontal
Sync

RW The number of character clocks from the start of an
active horizontal display to the start of horizontal
sync. This value must be greater than or equal to
horizontal display end (Section 8.13.4), and less than
or equal to horizontal total (Section 8.13.3) minus 4.

VCHSER

7 EHB RW End horizontal blank—EHB bit <5>. Bits <4:0> are
specified in VCHBER <4:0> (Section 8.13.5).

6:5 Horizontal
Sync Delay

RW Specifies the number of characters by which horizontal
sync is to be delayed.

00 0 characters
01 1 character
10 2 characters
11 3 characters

4:0 End
Horizontal
Sync

RW The number of character clocks between the start and
end of horizontal sync. This value must not extend the
sync period beyond horizontal total (Section 8.13.3)
and should not extend the sync period beyond the end
of the horizontal blank period (Section 8.13.5).

Register Descriptions 8–139

8.13 VGA CRT Controller Registers

The VCHSSR and VCHSER specify the start and width of the horizontal sync
pulse (retrace — see Figure 8–9). The number of pixels per character clock
is specified by the VGA sequencer clocking mode register (VSCMOR <0>,
Section 8.12.4).

8–140 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.7 VGA CRTC Vertical Total Register
Mnemonic:
Index:
Reset value:

VCVTOR
06
Undefined

7 0

Vertical Total LSBs

Bits Field Access Description

7:0 Vertical
Total
LSBs

RW The number of scanlines minus 2 from the start of one
frame to the start of the next frame. Bits <9:8> are in
VCOVRR <5,0> (Section 8.13.8).

The VCVTOR specifies the number of scanlines from the start of one frame
to the start of the next frame; that is, the total number of scanlines minus 2
during active display, blanking, retrace, and borders (see Figure 8–9).

Register Descriptions 8–141

8.13 VGA CRT Controller Registers

8.13.8 VGA CRTC Overflow Register
Mnemonic:
Index:
Reset value:

VCOVRR
07
Undefined

SVS<9> EVD<9> VT<9>

7 6 5 4 3 2 1 0

LC<8> SVB<8> SVS<8> EVD<8> VT<8>

Bits Field Access Description

7 SVS<9> RW Start vertical sync bit 9—see Section 8.13.14.

6 EVD<9> RW End vertical display bit 9—see Section 8.13.15.

5 VT<9> RW Vertical total bit 9—see Section 8.13.7.

4 LC<8> RW Line compare bit 8—see Section 8.13.20.

3 SVB<8> RW Start vertical blanking bit 8—see Section 8.13.18.

2 SVS<8> RW Start vertical sync bit 8—see Section 8.13.14.

1 EVD<8> RW End vertical display bit 8—see Section 8.13.15.

0 VT<8> RW Vertical total bit 8—see Section 8.13.7.

The VCOVRR holds some of the MSBs of several 10-bit vertical screen
parameter values.

8–142 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.9 VGA CRTC Preset Row Register
Mnemonic:
Index:
Reset value:

VCPROR
08
Undefined

7 6 5 4 0

RES BPAN PROW

Bits Field Access Description

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6:5 BPAN RW Byte panning—specifies the number of bytes by which
the display is to shift left. Should be combined with the
panning pixel count in VAPXPR <3:0> (Section 8.16.6).

00 No panning
01 Pan 1 byte
10 Pan 2 bytes
11 Pan 3 bytes

4:0 PROW RW Preset row—the initial scanline for the first character
row.

The VCPROR specifies the character-row scanline where scrolling begins. It
also specifies the coarse panning value.

Register Descriptions 8–143

8.13 VGA CRT Controller Registers

8.13.10 VGA CRTC Maximum Scanline Register
Mnemonic:
Index:
Reset value:

VCMSLR
09
Undefined

SD LC<9> SVB<9>

7

Height

6 5 4 0

Bits Field Access Description

7 SD RW Scan double—when set, enables line-doubling during
display.

6 LC<9> RW Line compare bit 9—see Section 8.13.20.

5 SVB <9> RW Start vertical blanking bit 9—see Section 8.13.18.

4:0 Height RW The number of scanlines per character row minus 1.

The VCMSLR specifies the number of scanlines minus 1 in a character row. It
also enables scanline-doubling and contains some of the 10-bit vertical screen
parameter value MSBs.

8–144 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.11 VGA CRTC Cursor Start and End Registers
Mnemonic:
VCCUSR index:
VCCUER index:
VCCUSR, VCCUER reset value:

VCCUSR, VCCUER
0A
0B
Undefined

Cursor StartVCCUSR

VCCUER

7 6 5 4 0

RES CEN

Cursor Skew Cursor EndRES

Bits Field Access Description

VCCUSR

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 CEN RW Cursor enable

0 The cursor is enabled.
1 The cursor is disabled.

4:0 Cursor
Start

RW Specifies the start of the cursor within a character row.

VCCUER

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6:5 Cursor
Skew

RW Specifies the number of character clocks by which the
cursor is to be delayed.

00 No delay
01 1 character clock
10 2 character clocks
11 3 character clocks

4:0 Cursor
End

RW Specifies the end of the cursor within a character row.

Register Descriptions 8–145

8.13 VGA CRT Controller Registers

The VCCUSR and VCCUER specify the scanlines on which the text cursor
starts and ends. They also enable the text cursor and specify its skew. The
number of pixels per character clock is specified by the VGA sequencer clocking
mode register (VSCMOR <0>, Section 8.12.4).

8–146 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.12 VGA CRTC Start Address High and Low Registers
Mnemonic:
VCSAHR index:
VCSALR index:
VCSAHR, VCSALR reset value:

VCSAHR, VCSALR
0C
0D
Undefined

7 0

Start Address HighVCSAHR

VCSALR Start Address Low

Bits Field Access Description

VCSAHR

7:0 Start
Address
High

RW The 8 MSBs of the display buffer starting address in
memory.

VCSALR

7:0 Start
Address
Low

RW The 8 LSBs of the display buffer starting address in
memory.

The VCSAHR and VCSALR values are combined to specify the starting address
of the display buffer (that is, the upper-left corner of the screen).

Register Descriptions 8–147

8.13 VGA CRT Controller Registers

8.13.13 VGA CRTC Cursor Location High and Low Registers
Mnemonic:
VCCLHR index:
VCCLLR index:
VCCLHR, VCCLLR reset value:

VCCLHR, VCCLLR
0E
0F
Undefined

7 0

Cursor Location HighVCCLHR

VCCLLR Cursor Location Low

Bits Field Access Description

VCCLHR

7:0 Cursor
Location
High

RW Specifies the 8 MSBs of the address at which the cursor
is displayed.

VCCLLR

7:0 Cursor
Location
Low

RW Specifies the 8 LSBs of the address at which the cursor
is displayed.

The VCCLHR and VCCLLR values are combined to specify the memory
location at which the text cursor is to be displayed. If the display buffer is
relocated, the cursor location should be updated.

8–148 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.14 VGA CRTC Start and End Vertical Sync Register
Mnemonic:
VCVSSR index:
VCVSER index:
VCVSSR, VCVSER reset value:

VCVSSR, VCVSER
10
11
Undefined

7 0

Start Vertical Sync LSBsVCVSSR

VCVSER

7 6 5 4 3 0

WP SRC EVSI CVSI End Vertical Sync

Bits Field Access Description

VCVSSR

7:0 Start
Vertical
Sync
LSBs

RW The number of scanlines from the start of the active
display to the start of the vertical sync pulse. Bits
<9:8> are in VCOVRR <7,3> (Section 8.13.8).

VCVSER

7 WP RW Write protect—enables writes to VGA CRTC registers
index 7 through 0. This bit does not affect the LC<8>
bit in the VGA CRTC overflow register (VCOVRR <4>,
Section 8.13.8).

0 Disables protection, enables writes to CRTC index
7 through 0.

1 Enables protection, disables writes to CRTC index
7 through 0.

6 SRC RW Select refresh cycles—implemented only for compati-
bility and does not affect 21130 operation. The generic
VGA definition is as follows:

0 Select 5 DRAM refresh cycles per scanline.
1 Select 3 DRAM refresh cycles per scanline.

Register Descriptions 8–149

8.13 VGA CRT Controller Registers

Bits Field Access Description

VCVSER

5 EVSI RW Enable vertical sync interrupt

0 The vertical retrace interrupt is enabled.
1 The vertical retrace interrupt is disabled.

4 CVSI RW Clear vertical sync interrupt

0 Clear vertical retrace status.
1 No effect.

3:0 End
Vertical
Sync

RW The number of scanlines during which vertical sync
is asserted. This value must not extend vertical sync
beyond vertical total (Section 8.13.7).

The VCVSSR and VCVSER specify the start and width of vertical sync (see
Figure 8–9). The VCVSER also controls the vertical sync interrupt.

Note

• For resolutions with 1024 or more vertical scanlines, vertical sync
start and vertical blank start must be specified such that the
vertical front porch is a minimum of 2 scanlines.

• To access the VCVSSR and VCVSER, the compatible read bit
in the VGA CRTC end horizontal blank register (VCHBER <7>,
Section 8.13.5) must be set.

8–150 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.15 VGA CRTC End Vertical Display Register
Mnemonic:
Index:
Reset value:

VCVDER
12
Undefined

7 0

End Vertical Display LSBs

Bits Field Access Description

7:0 End
Vertical
Display
LSBs

RW The number of scanlines from the start of the active
display to the last displayed scanline. Bits <9:8> are in
VCOVRR <6,1> (Section 8.13.8).

The VCVDER specifies the last scanline to be displayed (see Figure 8–9).

Register Descriptions 8–151

8.13 VGA CRT Controller Registers

8.13.16 VGA CRTC Offset Register
Mnemonic:
Index:
Reset value:

VCOFFR
13
Undefined

7 0

Offset

Bits Field Access Description

7:0 Offset RW Specifies the width of the display.

The VCOFFR specifies the width of the display in pixels. The value is
computed by dividing the difference between the addresses of two vertically
adjacent pixels by 2 or 4, for word- or byte-mode addressing. See the address
mode selection bit VCMODR <6> (Section 8.13.19).

8–152 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.17 VGA CRTC Underline Row Scan Register
Mnemonic:
Index:
Reset value:

VCULRR
14
Undefined

7 6 5 4 0

RES DW CB4 Underline Location

Bits Field Access Description

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6 DW RW Double-word mode

0 Normal word addressing — VCMODR <6>
(Section 8.13.19) selects byte- or word-mode
addressing.

1 Double-word addressing.

Note: Bits <6:5> should be in the same state.

5 CB4 RW Count by 4

0 Normal clocking.
1 Divide character clock to address counter by 4.

Note: Bits <6:5> should be in the same state.

4:0 Underline
Location

RW The number of scanlines minus 1 at which the underline
is located within a character cell.

The VCULRR specifies the vertical location of the underline in a character cell.
It also determines whether display memory is addressed on word (16-bit) or
Dword (32-bit) boundaries.

Register Descriptions 8–153

8.13 VGA CRT Controller Registers

8.13.18 VGA CRTC Start and End Vertical Blanking Registers
Mnemonic:
VCVBSR index:
VCVBER index:
VCVBSR, VCVBER reset value:

VCVBSR, VCVBER
15
16
Undefined

07

Start Vertical Blanking LSBsVCVBSR

VCVBER End Vertical Blanking

7 0

Bits Field Access Description

VCVBSR

7:0 Start
Vertical
Blanking
LSBs

RW The number of scanlines from the start of the active
display to the start of vertical blanking. Bit <9> is
in VCMSLR <5> (Section 8.13.10) and bit <8> is in
VCOVRR <3> (Section 8.13.8).

VCVBER

7:0 End
Vertical
Blanking

RW The number of scanlines from the start to the end of
vertical blanking.

The VCVBSR and VCVBER specify the scanlines at which vertical blanking
starts and ends (see Figure 8–9).

Note

For resolutions with 1024 or more vertical scanlines, vertical sync start
and vertical blanking start must be specified such that the vertical
front porch is a minimum of 2 scanlines.

8–154 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.19 VGA CRTC Mode Control Register
Mnemonic:
Index:
Reset value:

VCMODR
17
Undefined

HR WB AW RES

7 6 5 4 3 2 1 0

CB2 HRS SRS CMS

Bits Field Access Description

7 HR RW Hardware reset

0 Resets and holds all video control signals.
1 Enables horizontal and vertical control signals.

6 WB RW Word or byte mode select

0 Word mode selected, addresses shifted left 1
bit—enables bit <5>.

1 Byte mode selected, addresses unshifted.

5 AW RW Address wrap—ignored if <6> = 1; otherwise:

0 Select address bit <13> to be sent to LSB of
display memory.

1 Select address bit <15> to be sent to LSB of
display memory.

4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 CB2 RW Count by 2

0 Memory address counter is clocked by character
clock.

1 Memory address counter is clocked by every other
character clock.

2 HRS RW Horizontal retrace select

0 Clock scanline counter with every horizontal sync.
1 Clock scanline counter with every other horizontal

sync pulse.

1 SRS RW Select row scan counter—for Hercules compatibility

0 Sends row scan counter bit <1> to memory
address bus bit <14> during active display.

1 Memory addresses are output sequentially.

Register Descriptions 8–155

8.13 VGA CRT Controller Registers

Bits Field Access Description

0 CMS RW Compatibility mode support—for CGA compatibility

0 Substitutes row scan address bit <0> for memory
address <13>.

1 No substitution, memory is sequentially accessed.

The VCMODR contains miscellaneous CRTC control bits.

8–156 Register Descriptions

8.13 VGA CRT Controller Registers

8.13.20 VGA CRTC Line Compare Register
Mnemonic:
Index:
Reset value:

VCLCMR
18
Undefined

07

Line Compare LSBs

Bits Field Access Description

7:0 Line
Compare
LSBs

RW The scanline where the top screen ends and the
bottom screen begins. Bit <9> is in VCMSLR <6>
(Section 8.13.10) and bit <8> is in VCOVRR <4>
(Section 8.13.8).

The VCLCMR specifies the scanline where the top screen ends and the bottom
screen begins in a vertically split display.

8.14 VGA Extended Registers
To enable the VGA extended registers, the value of VGA CRTC index register
(VCINXR, Section 8.13.1) bits <7:6> must be 102. The data for the extended
registers is contained in the VGA CRTC data register (VCDATR). Table 8–15
in Section 8.13.1 lists the registers indexed by the VCINXR.

Register Descriptions 8–157

8.14 VGA Extended Registers

8.14.1 VGA Extended Paging Control Register
Mnemonic:
Index:
Reset value:

VXPCOR
8D
Undefined

VGAAD LADMD HPAGE

7 6 5 4 3 2 1 0

CURA16 RES SAA16 RES VSEG

Bits Field Access Description

7 VGAAD RW VGA compatibility address

0 Standard VGA mode video address (default).
1 Enables video address to count above 64KB for

640 � 480 � 256 mode.

6 LADMD RW Linear address mode

0 Linear addressing is disabled (default).
1 Enables linearly aligned video memory

addressing.

This bit should be set when HPAGE (<5>) is set.

5 HPAGE RW Host page select

0 Only host page offset A is used (default).
1 Host page offset A and B (Section 8.14.2) are

used.

Enables 32K windows in the 64K aperture. The host
can access the first 32K window at A0000 through
A7FFF and the second 32K window at A8000 through
AFFFF.

4 CURA16 RW Cursor address bit 16

0 The value of cursor address bit 16 is 0.
1 The value of cursor address bit 16 is 1.

3 RES MBZ Reserved, must be zero. Read value is unpredictable.

2 SAA16 RW Split-screen address bit 16

0 The value of split-screen address bit 16 is 0.
1 The value of split-screen address bit 16 is 1.

1 RES MBZ Reserved, must be zero. Read value is unpredictable.

8–158 Register Descriptions

8.14 VGA Extended Registers

Bits Field Access Description

0 VSEG RW Video address segment

0 Selects the first 256KB of video memory.
1 Selects the second 256KB of video memory.

Determines which 256KB video memory is the active
display window.

The VXPCOR defines the interface paging (address) controls.

Register Descriptions 8–159

8.14 VGA Extended Registers

8.14.2 VGA Extended Host Page Offset A and B Registers
Mnemonic:
VXHPAR index:
VXHPBR index:
VXHPAR, VXHPBR reset value:

VXHPAR, VXHPBR
90
91
Undefined

VXHPAR

VXHPBR

7 6

RES Host Page Offset A

0

RES Host Page Offset B

Bits Field Access Description

VXHPAR

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6:0 Host
Page
Offset A

RW The A offset within the 32KB windows boundary.

VXHPBR

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6:0 Host
Page
Offset B

RW The B offset within the 32KB windows boundary.

The VXHPAR and VXHPBR define the offset within the 32KB windows
boundary. Incrementing the offset value by 1 increases the page address by
4KB.

8–160 Register Descriptions

8.14 VGA Extended Registers

8.14.3 VGA Extended Split-Screen Start Address High and Low Byte
Register

Mnemonic:
VXSAHR index:
VXSALR index:
VXSAHR, VXSALR reset value:

VXSAHR, VXSALR
94
93
Undefined

VXSAHR

VXSALR

7

Split−Screen Start Address <15:8>

0

Split−Screen Start Address <7:0>

Bits Field Access Description

VXSAHR

7:0 Split-
Screen
Start
Address
<15:8>

RW Split-screen starting address high byte.

VXSALR

7:0 Split-
Screen
Start
Address
<7:0>

RW Split-screen starting address low byte.

The VXSAHR and VXSALR values are combined to define the 16-bit split-
screen starting address.

Register Descriptions 8–161

8.14 VGA Extended Registers

8.14.4 VGA Extended Interlace Control Register
Mnemonic:
Index:
Reset value:

VXICOR
97
Undefined

7 6 5 4 3 2 1 0

Equalization Start
<9:8> CSEN INLACE RES Dot Clock Divisor

Bits Field Access Description

7:6 Equalization
Start <9:8>

RW Equalization start MSBs—see Section 8.14.5.

5 CSEN RW Composite sync enable

0 Composite sync is disabled (default).
1 Composite sync is enabled.

4 INLACE RW Interlaced enabled

0 Interlace is disabled (default).
1 Interlace is enabled.

3:2 RES MBZ Reserved, must be zero. Read value is unpre-
dictable.

1:0 Dot Clock
Divisor

RW Determines the value of the dot clock divisor, as
follows:

Code Divide dot clock by . . .

00 1 (default)
01 2
10 4
11 Reserved

The VXICOR defines the controls for the interface composite sync, interlace,
and dot clock.

8–162 Register Descriptions

8.14 VGA Extended Registers

8.14.5 VGA Extended Equalization Start and End Registers
Mnemonic:
VXEQSR index:
VXEQER index:
VXEQSR, VXEQER reset value:

VXEQSR, VXEQER
9A
9B
Undefined

7

VXEQSR

0

VXEQER

Equalization Start <7:0>

Equalization End

Bits Field Access Description

VXEQSR

7:0 Equalization
Start <7:0>

RW The LSBs of the starting location of the composite
sync equalization pulse. The MSBs are contained
in VXICOR <7:6> (Section 8.14.4).

VXEQER

7:0 Equalization
End

RW The ending location of the composite sync
equalization pulse.

The VXEQSR and VGA extended interlace control register (VXICOR,
Section 8.14.4) define the starting location of the composite sync equalization
pulse.

The VXEQER defines the ending location of the composite sync equalization
pulse.

The VXEQSR and VXEQER are in effect only when composite sync is enabled
(VXICOR <5>, Section 8.14.4).

Register Descriptions 8–163

8.14 VGA Extended Registers

8.14.6 VGA Extended Half-Line Register
Mnemonic:
Index:
Reset value:

VXHLNR
9C
Undefined

7

Half−Line Location

0

Bits Field Access Description

7:0 Half-Line
Location

RW The half-line location of the composite sync.

The VXHLNR defines the half-line location of the composite sync pulse.
This register is in effect only when composite sync is enabled (VXICOR <5>,
Section 8.14.4).

8–164 Register Descriptions

8.14 VGA Extended Registers

8.14.7 VGA Extended Timing Control A Register
Mnemonic:
Index:
Reset value:

VXTCAR
9D
Undefined

7 6 5 4 0

CAS Width Horizontal Sync Width
CAS

Precharge
Period

Bits Field Access Description

7 CAS
Precharge
Period

RW Specifies the CAS precharge period in number of
SCLKs.

0 The CAS precharge period is 1 SCLK.
1 The CAS precharge period is 2 SCLKs.

6:5 CAS
Width

RW Specifies the CAS width in number of SCLKs.

00 The CAS width is 1 SLCK.
01 The CAS width is 2 SLCKs.
10 The CAS width is 3 SLCKs.
11 The CAS width is 3 SLCKs.

4:0 Horizontal
Sync
Width

RW Specifies the horizontal sync width in character clock
units.

00000 The HYSNC pulse is 1 character wide.
...

...
11111 The HYSNC pulse is 64 characters wide.

This field is in effect only when composite sync is
enabled (VXICOR <5>, Section 8.14.4).

The VXTCAR and VGA extended timing control B register (VXTCBR,
Section 8.14.8) define the interface timing controls.

Register Descriptions 8–165

8.14 VGA Extended Registers

8.14.8 VGA Extended Timing Control B Register
Mnemonic:
Index:
Reset value:

VXTCBR
9E
Undefined

RES IRQEN Burst MCD

7 6 5 4 3 2 1 0

RMD
RAS
Setup
Period

RAS
Precharge

Period

Bits Field Access Description

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6 IRQEN RW Interrupt enable

0 Vertical sync interrupts to the system are disabled
(default).

1 Vertical sync interrupts to the system are enabled.

5 Burst RW DRAM burst mode

0 Burst mode is disabled (default).
1 Burst mode is enabled.

4 MCD RW Multiplexer-to-CAS delay

0 The multiplexer-to-CAS delay is 1 SCLK (default).
1 The multiplexer-to-CAS delay is 2 SCLKs.

3 RMD RW RAS-to-multiplexer delay

0 The RAS-to-multiplexer delay is 1 SCLK (default).
1 The RAS-to-multiplexer delay is 2 SCLKs.

2 RAS
Setup
Period

RW Specifies the RAS setup period in number of SCLKs

0 The RAS setup period is 1 SCLK (default).
1 The RAS setup period is 2 SCLKs.

1:0 RAS
Precharge
Period

RW Specifies the RAS precharge period in number of SCLKs

00 The RAS precharge period is 3 SCLKs.
01 The RAS precharge period is 4 SCLKs.
10 The RAS precharge period is 5 SCLKs.
11 The RAS precharge period is 5 SCLKs.

The VXTCBR and VGA extended timing control A register (VXTCAR,
Section 8.14.7) define the interface timing controls.

8–166 Register Descriptions

8.14 VGA Extended Registers

8.14.9 VGA Extended Video FIFO Control Register
Mnemonic:
Index:
Reset value:

VXFCOR
A0
Undefined

RES FIFO DepthFIFO
Enable

FIFO
Reset

7 6 5 4 3 0

Bits Field Access Description

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 FIFO
Reset

RW

0 Disabled—the FIFO is active (default).
1 Enabled.

4 FIFO
Enable

RW

0 Disable FIFO read counter.
1 Normal operation.

3:0 FIFO
Depth

RW Specifies the number of entries in the FIFO.

0001 1 entry
0010 2 entries
0100 4 entries
1000 8 entries

The VXFCOR contains several video FIFO (counter) control bits.

Register Descriptions 8–167

8.14 VGA Extended Registers

8.14.10 VGA Extended Clock Control A and B Registers
Mnemonic:
VXCKAR index:
VXCKBR index:
VXCKAR reset value:
VXCKBR reset value:

VXCKAR, VXCKBR
A1
A2
<7:1> undefined, <0> = 0
Undefined

VXCKBR

VXCKAR

7 6 5 4 3 0

RES L Term N Term

7 6 1 0

RES M Term VVDS

Bits Field Access Description

VXCKAR

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6:1 M Term RW Specifies the value of the pixel clock PLL multiplier.
The maximum value is 63 and the minimum value is
25. When the pci_rst# and gp_int# signals are both
asserted, this field is set to 42.

0 VVDS RW VGA variable dot clock select—specifies how the pixel
clock frequency is determined in VGA mode.

0 The clock source field in the VGA miscellaneous
output register (VEMISR <3:2>, Section 8.11.1)
selects the pixel clock frequency.

1 The L, M, and N term fields determine the pixel
clock frequency (Table 8–16).

When the pci_rst# signal is asserted, this bit is forced
to the inverse of the gp_int# signal.

8–168 Register Descriptions

8.14 VGA Extended Registers

Bits Field Access Description

VXCKBR

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5:4 L Term RW Specifies the value of the pixel clock PLL VCO output
divider:

00 PLL VCO output � 1
01 PLL VCO output � 2
10 PLL VCO output � 4
11 PLL VCO output � 8

3:0 N Term RW Specifies the value of the pixel clock PLL divisor. The
maximum value is 15 and the minimum value is 4.
When the pci_rst# and gp_int# signals are both
asserted, this field is set to 6.

The VXCKAR and VXCKBR configure the pixel clocks and select the VGA
pixel clock (dot clock) source. (Note that the PCI clock control register, PCCR,
configures the memory clock and specifies the sources for the memory, pixel,
and test clocks — see Section 8.2.8.)

The pixel clock frequency is between 8 and 135 MHz, and is determined by the
the 14.31818-MHz crystal frequency on the xtal1 pin and the value in the L,
M, and N fields, as follows:

����� ����� � ��������

�
�

�

�
1
�

��

Table 8–16 lists the values of some typical pixel clock frequencies.

Register Descriptions 8–169

8.14 VGA Extended Registers

Table 8–16 Typical Pixel Clock Frequencies

M1 N L MHz2 Description

41 9 11 (�8) 8.153 Minimum pixel clock frequency
42 6 10 (�4) 25.057 VGA13

63 8 10 (�4) 28.189 VGA23

44 5 10 (�4) 31.500 640 � 480 @ 75 Hz
62 9 01 (�2) 49.318 800 � 600 @ 75 Hz
55 10 00 (�1) 78.750 1024 � 768 @ 75 Hz
47 5 00 (�1) 134.591 1280 � 1024 @ 75 Hz

1M term specified in VXCKAR <6:1>; L and N terms specified in VXCKBR <5:4,3:0>.
2Pixel clock frequency in MHz.
3VGA dot clock selections (VEMISR <3:2>, Section 8.11.1)

See Section 12.5 for more information about the clock generation function.

8–170 Register Descriptions

8.14 VGA Extended Registers

8.14.11 VGA Extended Interface Control Register
Mnemonic:
Index:
Reset value:

VXEICR
A3
Undefined

RES PLD TVS

7 6 5 4

T

3 0

FWSTN FWRAP

2 1

Bits Field Access Description

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 PLD RW Parallel load strobe—for diagnostics.

0 Logical 0
1 Logical 1

4 TVS RW Vertical sync strobe—strobes the vertical sync pulse.

0 Logical 0
1 Logical 1

3 FWSTN RW FIFO wrap reset

0 Reset FWRAP bit (<2>).
1 Normal operation.

2 FWRAP RW FIFO wrapped—when read, indicates whether the video
FIFO (counter) wrapped around.

0 FIFO did not wrap.
1 FIFO wrapped.

Writes to this bit are ignored.

1:0 T RW These are test bits and must not be used.

8.15 VGA Graphics Controller Registers
The VGA graphics controller registers are accessed through the VGA graphics
controller index register (VGINXR, address 3CE) and the VGA graphics
controller data register (VGDATR, address 3CF).

Register Descriptions 8–171

8.15 VGA Graphics Controller Registers

8.15.1 VGA Graphics Controller Index Register
Mnemonic:
Address:
Reset value:

VGINXR
3CE
Undefined

RES Graphics Address

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Graphics
Address

RW Index to the following VGA graphics controller registers:

0 Set/reset (VGSRER)
1 Enable set/reset (VGESRR)
2 Color compare (VGCCMR)
3 Data rotate (VGDROR)
4 Read map select (VGRMSR)
5 Mode (VGMODR)
6 Miscellaneous (VGMISR)
7 Color don’t care (VGCDCR)
8 Bit mask (VGBMKR)

The VGINXR contains the index used to access the VGA graphics controller
registers.

8–172 Register Descriptions

8.15 VGA Graphics Controller Registers

8.15.2 VGA Graphics Controller Data Register
Mnemonic:
Address:
Reset value:

VGDATR
3CF
Undefined

07

Graphics Controller Data

Bits Field Access Description

7:0 Graphics
Controller
Data

RW Indexed graphics controller register read or write
data.

The VGDATR contains the read or write data for the VGA graphics controller
register indexed by the VGINXR (Section 8.15.1).

Register Descriptions 8–173

8.15 VGA Graphics Controller Registers

8.15.3 VGA Graphics Controller Set/Reset Register
Mnemonic:
Index:
Reset value:

VGSRER
0
Undefined

RES Set/Reset Plane

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Set/Reset
Plane

RW The data from each bit is written to the corresponding
plane for write mode 0 or write mode 3. For write mode
0, the plane must be enabled through the VGESRR
(Section 8.15.4).

The VGSRER is loaded with the pattern to be written to the display planes in
write mode 0 or write mode 3. There is a one-to-one correspondence between
the bits in this register and the display planes. The write modes are specified
in the VGMODR (Section 8.15.8).

8–174 Register Descriptions

8.15 VGA Graphics Controller Registers

8.15.4 VGA Graphics Controller Enable Set/Reset Register
Mnemonic:
Index:
Reset value:

VGESRR
1
Undefined

RES Enable Set/Reset Plane

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Enable
Set/Reset
Plane

RW Each bit in this field determines the write data source
for the corresponding plane, as follows:

0 Write CPU data to the plane.
1 Write VGSRER (Section 8.15.3) data to the plane.

The VGESRR specifies the source of write data for planes 3 through 0 in write
mode 0. The write modes are specified in the VGMODR (Section 8.15.8).

Register Descriptions 8–175

8.15 VGA Graphics Controller Registers

8.15.5 VGA Graphics Controller Color Compare Register
Mnemonic:
Index:
Reset value:

VGCCMR
2
Undefined

RES Color Compare

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Color
Compare

RW The value of each bit is compared to all 8 pixels in the
corresponding memory plane.

In read mode 1, the value in the VGCCMR is compared to 8 adjacent pixels in
memory planes 3 through 0. The VGCDCR (Section 8.15.10) selects the planes
to be compared. The read returns a 1 in the bit positions corresponding to the
pixels in all 4 planes that match the value in this field. The read modes are
defined in the VGMODR (Section 8.15.8).

8–176 Register Descriptions

8.15 VGA Graphics Controller Registers

8.15.6 VGA Graphics Controller Data Rotate Register
Mnemonic:
Index:
Reset value:

VGDROR
3
Undefined

3 2 0

RES Function Select

7

Rotate Count

5 4

Bits Field Access Description

7:5 RES MBZ Reserved, must be zero. Read value is unpredictable.

4:3 Function
Select

RW Specifies the logical operation that is to be performed
using write data and latched memory data.

00 Write data is unmodified.
01 Write data is ANDed with latched memory data.
10 Write data is ORed with latched memory data.
11 Write data is XORed with latched memory data.

2:0 Rotate
Count

RW Specifies the number of bits that write data is to be
rotated to the right.

The VGDROR function select field (<4:3>) specifies a logical operation for the
write data in write mode 0. The write data can be new data from the host or
data from the set/reset logic. The write modes are specified in the VGMODR
(Section 8.15.8).

The rotate count field (<2:0>) can be used in any write mode. It specifies the
number of bit positions that write data from the host is to be rotated to the
right before it is modified by the set/reset logic.

Register Descriptions 8–177

8.15 VGA Graphics Controller Registers

8.15.7 VGA Graphics Controller Read Map Select Register
Mnemonic:
Index:
Reset value:

VGRMSR
4
Undefined

7 2 1 0

RES RMS

Bits Field Access Description

7:2 RES MBZ Reserved, must be zero. Read value is unpredictable.

1:0 RMS RW Read map select—specifies the plane to be read in read
mode 0.

00 Plane 0
01 Plane 1
10 Plane 2
11 Plane 3

The VGRMSR specifies the display memory plane to be read in read mode 0.
The read modes are specified in the VGMODR (Section 8.15.8).

8–178 Register Descriptions

8.15 VGA Graphics Controller Registers

8.15.8 VGA Graphics Controller Mode Register
Mnemonic:
Index:
Reset value:

VGMODR
5
Undefined

RES 256CM SR O/E

7 6 5 4 3 2 1 0

RM RES WM

Bits Field Access Description

7 RES MBZ Reserved, must be zero. Read value is unpredictable.

6 256CM RW 256-color mode

0 Configure shift registers for 2, 4, or 16 colors.
1 Configure shift registers for 256 colors.

5 SR RW Shift register

0 Configure shift registers for EGA or VGA
compatibility.

1 Configure shift registers for CGA compatibility.

4 O/E RW Odd or even

0 Normal buffer addressing.
1 Even/odd addressing.

This bit is the opposite of VSMMOR <2> (Section 8.12.7).

3 RM RW Read mode

0 Read mode 0—read data from the planes selected
by the VGRMSR (Section 8.15.7).

1 Read mode 1—read comparison of the planes and
the VGCCMR (Section 8.15.5).

2 RES MBZ Reserved, must be zero. Read value is unpredictable.

1:0 WM RW Write mode—specifies how planes enabled in the
VGA sequencer plane mask register (VSPLMR,
Section 8.12.5) are to be written. See Table 8–17.

The VGMODR controls several graphics controller functions including the read
and write modes (Table 8–17).

Register Descriptions 8–179

8.15 VGA Graphics Controller Registers

Table 8–17 VGA Graphics Controller Write Modes

VGMODR
<1:0>

Write
Mode Description

00 0 If set/reset is not enabled (VGESRR, Section 8.15.4), each plane is
written with the CPU data rotated by the number of bits specified
in the data rotate register (VGDROR, Section 8.15.6).

If set/reset is enabled, each enabled plane is written with
the value contained in the set/reset register (VGSRER,
Section 8.15.3). Write data is modified as specified by the
VGDROR function select field, and masked according to the
bit mask register (VGBMKR, Section 8.15.11).

01 1 The data contained in the CPU latches is written to each plane.

10 2 CPU data is masked according to the VGMBPR and written to
the selected plane.

11 3 Each plane is written with the value contained in the VGSRER,
regardless of the value in the VGESRR. Rotated CPU data is
ANDed with the VGMBPR to form a mask that serves the same
function as the VGMBPR in write modes 0 and 2.

8–180 Register Descriptions

8.15 VGA Graphics Controller Registers

8.15.9 VGA Graphics Controller Miscellaneous Register
Mnemonic:
Index:
Reset value:

VGMISR
6
Undefined

Memory Map <1:0>

7 4 3 2 1 0

RES COE GM

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:2 Memory
Map
<1:0>

RW Specifies memory mapping.

00 128KB (A0000:BFFFF)
01 64KB (A0000:AFFFF)
10 32KB (B0000:B7FFF)
11 32KB (B8000:BFFFF)

1 COE RW Chain odd/even

0 CPU A14 = video buffer A0 for map0 or map2.
CPU A16 = video buffer A0 for map1 or map3.

1 CPU A0 = 0 selects map2 or map0.
CPU A0 = 1 selects map3 or map1.

0 GM RW Graphics mode

0 Text mode
1 Graphics mode

The VGMISR controls the VGA display mode, monochrome graphics emulation,
and memory mapping.

Register Descriptions 8–181

8.15 VGA Graphics Controller Registers

8.15.10 VGA Graphics Controller Color Don’t Care Register
Mnemonic:
Index:
Reset value:

VGCDCR
7
Undefined

Color Don’t CareRES

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Color
Don’t
Care

RW Each bit in this field determines whether color
comparison is enabled for the corresponding plane.

0 Disable color comparison.
1 Enable color comparison.

The VGCDCR specifies the planes to be compared in a color compare operation.

8–182 Register Descriptions

8.15 VGA Graphics Controller Registers

8.15.11 VGA Graphics Controller Bit Mask Register
Mnemonic:
Index:
Reset value:

VGBMKR
8
Undefined

7 0

Bit Mask

Bits Field Access Description

7:0 Bit Mask RW A mask for modifying displayed pixels in which set
bits allow corresponding pixels to change. Bit <0>
corresponds to the right-most pixel in the displayed
group of 8 pixels.

The VGBMKR determines which pixels are modified in write modes 0, 2, and 3
(see Table 8–17 in Section 8.15.8).

8.16 VGA Attribute Controller Registers
The VGA attribute controller registers are accessed through the VGA attribute
controller index/data register (VAIXDR). The index and data values are written
sequentially to address 3C0 and read from address 3C1. Writing and reading
are implicitly controlled by the address.

Register Descriptions 8–183

8.16 VGA Attribute Controller Registers

8.16.1 VGA Attribute Controller Index/Data Register
Mnemonic:
Write address:
Read address:
Reset value:

VAIXDR
3C0
3C1
Undefined

RES PAS Address Attributes

7 6 5 4 0

Attribute Data

Address
Format
3C0, 3C1

Data
Format

Bits Field Access Description

Address Format

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5 PAS RW Palette address source — determines whether the color
palette address is supplied by the host or a location in
display memory.

0 The host supplies the palette address.
1 Display memory supplies the palette address

(normal operation).

4:0 Address
Attributes

RW To write an attribute controller register, the register
index is first written to this field at address 3C0,
followed by the write data to the same address. To
read an attribute controller register, the register index
is first written to this field at address 3C0, followed by
a read at address 3C1. The indexed registers are as
follows:

00:0F Palette registers (VAPALRs)
10 Mode register (VAMODR)
11 Overscan register (VAOSCR)
12 Color plane enable register (VACPER)
13 Pixel panning register (VAPXPR)
14 Color select register (VACSLR)
Unused index values are reserved.

8–184 Register Descriptions

8.16 VGA Attribute Controller Registers

Bits Field Access Description

Data Format

7:0 Attribute
Data

RO Attribute controller register write data (3C0) or read
data (3C1).

The VAIXDR contains the read or write index and data for the VGA attribute
controller registers. It also determines the palette address source.

Register Descriptions 8–185

8.16 VGA Attribute Controller Registers

8.16.2 VGA Attribute Controller Palette Registers
Mnemonic:
Indices:
Reset value:

VAPALR
0F:00
Undefined

RES Palette Data

7 06 5

Bits Field Access Description

7:6 RES MBZ Reserved, must be zero. Read value is unpredictable.

5:0 Palette
Data

RW Maps a pixel value to a color.

Each VAPALR maps the 6 LSBs of a pixel value to a palette address. The
PSEL bit in the VGA attribute controller mode register (VAMODR <7>,
Section 8.16.3) determines whether bits <5:4> are used. The MSBs are
contained in the VGA attribute controller color select register (VACSLR,
Section 8.16.7).

8–186 Register Descriptions

8.16 VGA Attribute Controller Registers

8.16.3 VGA Attribute Controller Mode Register
Mnemonic:
Index:
Reset value:

VAMODR
10
Undefined

PSEL PW PAN RES

7 6 5 4 3 2 1 0

BIA GCC CME GAM

Bits Field Access Description

7 PSEL RW P<5:4> select—selects source for pixel data bits <5:4>.

0 Palette register <5:4> (Section 8.16.2).
1 VGA attribute controller color select register

<1:0> (Section 8.16.7).

6 PW RW Pixel width

0 One pixel is 1 dot clock (all modes except 1316).
1 One pixel is 2 dot clocks (mode 1316).

5 PAN RW Pixel panning

0 Normal operation.
1 Successful line compare forces VGA attribute

controller pixel panning register (VAPXPR,
Section 8.16.6) output to zero.

4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 BIA RW Blink or intensity attribute

0 Select background intensity.
1 Enable blink.

2 GCC RW Graphics character codes

0 Ninth dot not enabled.
1 Ninth dot same as eighth dot.

1 CME RW Color or monochrome emulation

0 Color
1 Monochrome

0 GAM RW Graphics or alphanumeric mode

0 Alphanumeric
1 Graphics

The VAMODR contains miscellaneous attribute control bits.

Register Descriptions 8–187

8.16 VGA Attribute Controller Registers

8.16.4 VGA Attribute Controller Overscan Register
Mnemonic:
Index:
Reset value:

VAOSCR
11
Undefined

7 0

Overscan Color

Bits Field Access Description

7:0 Overscan
Color

RW Specifies the overscan color.

The VAOSCR determines the color of the display border (see Figure 8–9).

8–188 Register Descriptions

8.16 VGA Attribute Controller Registers

8.16.5 VGA Attribute Controller Color Plane Enable Register
Mnemonic:
Index:
Reset value:

VACPER
12
Undefined

RES Color Plane Enable

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Color
Plane
Enable

RW Set bits enable the corresponding plane.

The VACPER determines which of the four color planes (3 through 0) are
enabled. The planes can be enabled in any combination.

Register Descriptions 8–189

8.16 VGA Attribute Controller Registers

8.16.6 VGA Attribute Controller Pixel Panning Register
Mnemonic:
Index:
Reset value:

VAPXPR
13
Undefined

RES Pixel Panning

7 4 3 0

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:0 Pixel
Panning

RW Specifies the number of pixels by which video data is to
be left shifted. The following table lists the number of
pixels shifted, according to the register value and the
current mode.

Modes

Code 0+,1+,2+,3+,7,7+ 1316 All Others

0000 1 0 0
0001 2 NA 1
0010 3 1 2
0011 4 NA 3
0100 5 2 4
0101 6 NA 5
0110 7 3 6
0111 8 NA 7
1000 0 NA NA
Unused codes are reserved
NA = Not applicable

The VAPXPR specifies the number of pixels panned (smooth panning). The
number of bytes panned (coarse panning) is specified in the VGA CRTC preset
row register (VCPROR <6:5>, Section 8.13.9).

8–190 Register Descriptions

8.16 VGA Attribute Controller Registers

8.16.7 VGA Attribute Controller Color Select Register
Mnemonic:
Index:
Reset value:

VACSLR
14
Undefined

RES SC<7:6>

7 4 3 0

SC<5:4>

2 1

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3:2 SC<7:6> RW Select color <7:6>—palette data bits <7:6> in all color
modes except 256-color mode (1316).

1:0 SC<5:4> RW Select color <5:4>—palette data bits <5:4> if the PSEL
bit is set in the VGA attribute controller mode register
(VAMODR <7>, Section 8.16.3).

The VACSLR contains the conditional MSBs of the palette data. The LSBs
are contained in the VGA attribute controller palette registers (VAPALR,
Section 8.16.2).

8.17 VGA Color Registers
The VGA color registers are included only for compatibility. They map to
equivalent palette and DAC registers as follows:

VGA Color Register Palette and DAC Register

Pixel address write mode register (VPPAWR) RAM write address register (DPWR)

Pixel address read mode register (VPPARR) RAM read address register (DPRR)

DAC state register (VPDSTR) Status register (DSTR)

Pixel data register (VPPDAR) RAM color register (DPCR)

Pixel mask register (VPPMAR) Pixel mask register (DPMR)

Register Descriptions 8–191

8.17 VGA Color Registers

8.17.1 VGA Color Pixel Address Write Mode and Read Mode Registers
Mnemonic:
VPPAWR address:
VPPARR address:
VPPAWR, VPPARR reset value:

VPPAWR, VPPARR
3C8
3C7
Undefined

Color Register Address

7 0

Bits Field Access Description

VPPAWR

7:0 Color
Register
Address

RW The next palette address to be written.

VPPARR

7:0 Color
Register
Address

RW The next palette address to be read.

The VPPAWR and VPPARR are included only for compatibility. The
VPPAWR maps to the palette and DAC RAM write address register (DPWR,
Section 8.9.1) and the VPPARR maps to the palette and DAC RAM read
address register (DPRR, Section 8.9.1).

8–192 Register Descriptions

8.17 VGA Color Registers

8.17.2 VGA Color DAC State Register
Mnemonic:
Read address:
Reset value:

VPDSTR
3C7
Undefined

RES

7 2 1 04 3

ASRWSSS

Bits Field Access Description

7:4 RES MBZ Reserved, must be zero. Read value is unpredictable.

3 SS RO Sense status

0 One or more DAC outputs exceeded the internal
voltage reference level (335 mV).

1 No DAC output exceeded the internal voltage
reference level.

2 RWS RO Read/write state—indicates whether the last palette or
cursor color operation was a read or write, as follows:

0 Write—defined as writing the DPWR or the
DCWR.

1 Read—defined as writing the DPRR or the DCRR.

1:0 AS RO Address state—indicates the color-component address
for the next read or write cycle to the palette or cursor
color register, as follows:

00 Red
01 Green
10 Blue
11 Reserved

The VPDSTR is implemented only for compatibility. It maps to the palette and
DAC status register (DSTR, Section 8.9.6).

Register Descriptions 8–193

8.17 VGA Color Registers

8.17.3 VGA Color Pixel Data Register
Mnemonic:
Address:
Reset value:

VPPDAR
3C9
Undefined

Color Register Data

7 0

Bits Field Access Description

7:0 Color
Register
Data

RW Data read from or written to the addressed color
register.

The VPPDAR is implemented only for compatibility. It maps to the palette and
DAC RAM color register (DPCR, Section 8.9.2).

8–194 Register Descriptions

8.17 VGA Color Registers

8.17.4 VGA Color Pixel Mask Register
Mnemonic:
Address:
Reset value:

VPPMAR
3C6
Undefined

Mask

7 0

Bits Field Access Description

7:0 Mask RW Bitwise ANDed with 8-bit VGA pixel stream.

The VPPMAR is implemented only for compatibility. It maps to the palette
and DAC pixel mask register (DPMR, Section 8.9.5).

Register Descriptions 8–195

9
PCI Operations

This chapter describes the PCI functions supported by the DECchip 21130. The
PCI signals are described in Chapter 3. See the PCI Local Bus Specification,
Revision 2.0 for more information about the PCI bus transactions described in
this chapter.

9.1 Configuration Operations
Prior to normal device operation, configuration firmware must write several
configuration registers to define the following:

• Device address space

• Expansion ROM address space

• Bus access privilege

• Bus ownership duration

To allow system configuration software to access the configuration registers,
the 21130 supports the following PCI configuration transactions:

• Configuration write

• Configuration read

When the PCI interface detects a PCI configuration write or read operation
while the pci_idsel signal is asserted and pci_ad<1:0> = 00, it asserts
pci_devsel# and uses address bits pci_ad<7:2> to index into the PCI
configuration space header block (Table 8–1). Writes to reserved configuration
addresses are ignored, and reads return zeros. The 21130 will not abnormally
terminate a configuration cycle.

PCI Operations 9–1

9.2 Memory Reads and Writes

9.2 Memory Reads and Writes
The PCI interface decodes all memory read and write transactions. All
accesses are to PCI memory space except VGA register-access transactions.
The interface detects accesses to:

• PCI configuration space

• VGA I/O space (register accesses)

• PCI ROM space

• Frame buffer memory space (512KB)

• Base address 0 32MB memory space (2DA registers and frame buffer)

• Base address 1 alternate VGA register space

• Base address 1 palette and DAC space

• Base address 1 GPP space

• Base address 1 interrupt status register space

• Base address 1 sparse ROM space (256KB)

9.2.1 Memory Write to Core Space
The 32MB base address 0 memory space contains up to eight copies of a
core space (Section 7.5.1). Each copy of core space is identical and maps
the frame buffer and the same set of registers. On a memory write to core
space, the PCI interface loads the write address and data into the command
FIFO (Section 2.2). On a memory write burst, the interface loads the starting
address and successive Dwords of data into the command FIFO.

If the command FIFO is full at the start of a memory write, the interface waits
for up to 8 PCI clock cycles for an entry to become free. If an entry is still
not free, the PCI interface terminates the transaction with a RETRY on the
following PCI clock cycle.

If the command FIFO has free entries at the start of a memory write burst,
the interface can load at least the address and one Dword of data into the
command FIFO. If the command FIFO is then full, the interface waits for
up to 8 PCI clock cycles for an entry to become free. If an entry is still not
free, the PCI interface terminates the transaction with a DISCONNECT (with
pci_trdy# not asserted) on the following PCI clock cycle.

9–2 PCI Operations

9.2 Memory Reads and Writes

9.2.2 Memory Read of Core Space
On a memory read of core space, the PCI interface fetches data from one of the
following:

• A core register

• The frame buffer, through the frame buffer and device access (FBDA)
function

• The alternate ROM space, through the FBDA function

The interface drives the read data on the PCI and asserts pci_trdy#. If
pci_irdy# is asserted at that time, the interface tests for an attempted burst
read (pci_frame# asserted). If pci_irdy# is not asserted when pci_trdy#
is first asserted, the interface continues to assert pci_trdy# and waits until
pci_irdy# is asserted before testing for an attempted burst read.

If a burst read is attempted, the interface terminates the transaction with a
DISCONNECT (with pci_trdy# not asserted) on the following PCI clock cycle.
If a burst read is not attempted, the transaction completes normally.

On a memory read of alternate ROM space, the PCI interface shifts the address
left 2 bits, to map to the expansion ROM space, and then forwards the request
to the FBDA.

9.2.2.1 Read Interlock
The PCI interface provides a read interlock for the 21130 core registers, frame
buffer, and all external devices. A read of these objects cannot complete until
the 21130 is idle; that is, the busy bit is clear in the command status register
(MCSR, Section 8.3.1).

For core register reads, the PCI interface waits up to 8 PCI clock cycles for the
chip to become idle. If the chip is still not idle within 8 PCI clock cycles, the
PCI interface terminates the transaction with a RETRY on the following PCI
clock cycle.

For frame buffer or external device reads, the PCI interface waits up to 8 PCI
clock cycles for the chip to become idle. If the chip becomes idle in that time,
an internal request for data from an external resource is made. Depending on
possible priority collisions with refresh requests, the data can return as early
as 16 cycles or as late as 50 cycles after the request is made. If the chip is still
not idle within 8 PCI clock cycles, an internal request is not made and the PCI
interface terminates the transaction with a RETRY on the following PCI clock
cycle.

PCI Operations 9–3

9.2 Memory Reads and Writes

Note that the following registers are exceptions:

• PCI configuration registers

• VGA registers

• Command status register (MCSR)

• Interrupt status register (MISR)

• Video current refresh address register (VFCRR)

• Video occlusion bitmap current address register (VFOAR)

Read data is returned from these registers whether the busy bit is set or clear.

9.3 Target Operations
As a target, the 21130 responds to the following PCI memory transactions:

• Memory read

• Memory write

It responds to any memory read or memory write cycle in which the address
falls within the address space defined by either of the two PCI device base-
address registers (PDBR0 or PDBR1, Section 8.2.5). Additionally, the 21130
responds to any memory cycle in which the address falls within the address
space defined by the PCI expansion ROM base-address register (PRBR,
Section 8.2.6). Writes to expansion ROM address space are treated as writes to
a reserved location.

If the 21130 detects a write to a reserved location in the 21130 address space,
it responds to and completes the bus cycle, but ignores the data. Similarly, the
21130 responds to and completes a read transaction of a reserved location, but
returns zeros.

The 21130 also responds to the following types of memory transactions,
treating them as one of the simpler supported types:

• Memory write and invalidate (operates as memory write)

• Memory read line (operates as memory read)

• Memory read multiple (operates as memory read)

9–4 PCI Operations

9.3 Target Operations

9.3.1 Access Granularity
As a target, the 21130 supports arbitrary, subDword (less than 32 bits) read
and write accesses. The 21130 handles all possible permutations of byte masks
presented on the pci_cbe<3:0># pins during both read and write accesses,
with the following restrictions:

• Writes to 21130 registers are limited to Dword access. Byte masks are
ignored. That is, all 32 bits are written unless pci_cbe<3:0># = F, in
which case no bits are written.

• Expansion ROM reads, through the alternate ROM space (Sections 7.3 and
7.5.2.5), return only Dword-aligned data.

9.3.2 Transaction Termination
As a target, the 21130 supports arbitrary burst-length, memory-write cycles to
the base address 0 (PDBR0) PCI memory space. If the internal command FIFO
fills during a burst write, the 21130 disconnects to avoid losing write data.

The 21130 does not support burst memory-read cycles or any burst transactions
to PCI configuration space. The 21130 disconnects such transactions after one
successful transfer.

The PCI interface loads all base address 0 writes into the internal 64-entry
command FIFO. If the 21130 detects a memory-write cycle to its base address
0 address space and no command FIFO entries are available, it stalls for up to
8 PCI clocks, waiting for an entry to become available. If an entry is still not
available, the 21130 issues a target-disconnect termination. The 21130 does
not initiate a target-abort termination in response to a base address 0 or 1
(2DA) access.

Tables 9–1 through 9–4 summarize the 21130 response as a target to various
PCI transactions and conditions.

PCI Operations 9–5

9.3 Target Operations

Table 9–1 PCI Transactions to 2DA Memory Space

Read
PDBR0
Space

Read
PDBR1
Space

Write
PDBR0
Space

Write
PDBR1
Space

Transaction Response

Burst Automatic
disconnect

Automatic
disconnect

Allowed if
command FIFO is
not full

Automatic
disconnect

Null data
phase

Not applicable Not applicable Supported NO-OP —
immediately
assert pci_trdy#

End of
boundary

Automatic
disconnect

Automatic
disconnect

Disconnects at
appropriate time

Automatic
disconnect

Read side
effects

None Not marked as
prefetchable

Not applicable Not applicable

Stalls by
master

Assert pci_trdy#
and wait for
master

Assert pci_trdy#
and wait for
master

Assert pci_trdy#
and wait for
master

Wait for
pci_irdy# and
assert pci_trdy#

Response Transaction or Condition

Retry (first
data phase)

After 8 cycles
either pci_trdy#
or miscellaneous
access read
request is not
asserted

Never issued Command FIFO
remains full after
8 cycles

Never issued

Disconnect,
pci_trdy#
not asserted

Burst
attempted

Burst
attempted

Command FIFO
remains full after
8 cycles

Burst
attempted

Target abort The 21130 does not issue target aborts for these transactions.

9–6 PCI Operations

9.3 Target Operations

Table 9–2 PCI Transactions to Configuration Space and Expansion ROM Space

Read
Configuration
Space

Write
Configuration
Space

Read
Expansion
ROM Space

Write
Expansion
ROM Space

Transaction Response

Burst The 21130 automatically disconnects on burst transactions to these spaces.

Null data
phase

Not applicable NO-OP —
immediately
assert
pci_trdy#

Not applicable NO-OP —
immediately
assert
pci_trdy#

End of
boundary

The 21130 automatically disconnects on end-of-boundary transactions to these
spaces.

Read side
effects

None Not applicable None Not applicable

Stalls by
master

Assert pci_trdy#
and wait for
master

Wait for
pci_irdy# and
assert pci_trdy#

Assert pci_trdy#
and wait for
master

Assert pci_trdy#
and wait for
master

Response Transaction or Condition

Retry The 21130 does not issue retry on transactions to these spaces.

Disconnect,
pci_trdy#
not asserted

The 21130 will disconnect and not assert pci_trdy# on burst transactions to these
spaces.

Target abort The 21130 does not issue target aborts for these transactions.

PCI Operations 9–7

9.3 Target Operations

Table 9–3 PCI Transactions to VGA Memory and I/O Space

VGA Read� VGA Write�
I/O Space
Read DAC

I/O Space
Write DAC

Transaction Response

Burst The 21130 automatically disconnects on burst transactions to these spaces.

Null data
phase

Supported Supported Not applicable Supported

End of
boundary

The 21130 automatically disconnects on end-of-boundary transactions to these
spaces.

Read side
effects

Not marked
prefetchable

Not applicable Not marked
prefetchable

Not applicable

Stalls by
master

Assert pci_trdy#
and wait for
master

Wait for
pci_irdy# and
assert pci_trdy#

Assert pci_trdy#
and wait for
master

Wait for
pci_irdy# and
assert pci_trdy#

Response Transaction or Condition

Retry Issued Issued Never issued Never issued

Disconnect,
pci_trdy#
not asserted

The 21130 will disconnect and not assert pci_trdy# on burst transactions to these
spaces.

Target abort The 21130 issues target abort for
illegal combinations of VGA I/O
address and byte enables.

The 21130 issues target abort if
pci_cbe<3:0># do not match byte
address or fail to map only to bytes
owned by the 21130.

�VGA memory and I/O space

9–8 PCI Operations

9.3 Target Operations

Table 9–4 Snooped DAC Write PCI Transactions to VGA Space

Transaction Response

Burst Unsupported

Null data phase Supported

End of boundary Not applicable

Read side effects Not applicable

Stalls by master Wait until data is transferred, then snoop

Mix of null data
phases or bursts

Unsupported

Response Transaction or Condition

Retry Not applicable

Disconnect,
pci_trdy# not
asserted

Not applicable

Target abort Not applicable

9.4 Master Operation
The 21130 masters the PCI to move image data from system memory to display
memory. To support this function, the PCI interface initiates PCI transactions.

In response to a host read request, the 21130 attempts to read in bursts of
arbitrary length, according to the command it received. The 21130 responds
in a DMA-read copy mode. The specified length can be between 1 and 2K PCI
longword transfers (that is, burst read between 1 byte and 8KB). The 21130
attempts to string together the largest burst possible, but allows the PCI target
to regulate the access through its target-disconnect mechanism.

The 21130 monitors the number of transfers remaining to complete the DMA
request, making the number of separate burst transfers transparent to the
driver. If the initial attempt to transfer the entire burst length is disconnected,
the 21130 attempts to remaster the bus as many times as necessary to
complete the request without driver assistance. For example, if a DMA read
requests 100 bytes, the 21130 attempts one burst read of 100 bytes. However,
depending on the speed of the target (for example, a bridge to system memory),
the transfer might comprise 10 bursts averaging 10 bytes each, or 20 bursts
averaging 5 bytes each, and so on.

PCI Operations 9–9

9.4 Master Operation

9.4.1 DMA Read Transfer
The command parser can request a DMA read transfer over the PCI. While
a DMA operation is in progress, the PCI interface retries all target accesses
except those to the command status register (MCSR) or PCI configuration
space.

If the command parser requests a DMA read transfer, the PCI interface
requests the PCI bus. When the bus is granted, the PCI interface attempts to
read from the specified address until the request is completed and as long as
the DMA read FIFO is not full.

If the DMA read FIFO becomes full, the interface attempts to terminate
the transaction as soon as possible by deasserting pci_frame# in the cycle
following the completion of the current data phase. Depending on the status
of the DMA read-data pipe stages at the time of the termination, the PCI
interface can reread up to 3 address locations when it remasters the PCI in an
attempt to complete the DMA read operation.

9.4.2 Transaction Termination
The 21130 supports the PCI-master latency timer mechanism that limits a
master’s tenure in the presence of other bus requests. The 21130 limits its bus
ownership to the number of PCI clocks programmed in the PCI latency timer
register (PLTR, Section 8.2.4). The timer is cleared and disabled when the
21130 is not asserting pci_frame#. While pci_frame# is asserted, the timer
counts. If the count equals the value in the PLTR and pci_gnt# is deasserted
(that is, another agent needs the bus), the 21130 attempts to terminate the
transaction as soon as possible; that is, it deasserts pci_frame# and enters the
final data phase as soon as the current data phase is completed (signaled when
the target asserts pci_trdy#). The 21130 does not relinquish the bus until this
final data phase is completed.

When initiating a memory transaction, the 21130 issues a master abort if
it does not detect the assertion of pci_devsel# within 6 PCI clocks after it
asserts pci_frame#. In such cases, the 21130 terminates the transaction,
relinquishes PCI bus ownership, and sets the master-abort bit in the PCI
command and status register (PCSR <29>, Section 8.2.2).

Cycles terminated by a target abort are handled similarly. If a target signals
target abort, the 21130 immediately terminates the cycle, relinquishes bus
ownership and sets the target-abort bit (PCSR <28>).

9–10 PCI Operations

9.4 Master Operation

9.4.3 Aborted DMA Transaction Termination
The 21130 treats an aborted DMA-read copy transaction as a successfully
completed transaction, but it sets the appropriate abort-bit status in the PCSR.
The 21130 immediately completes all subsequent DMA transfers internally (no
PCI activity) until the abort bit is cleared.

As a master, the 21130 supports all types of target-initiated terminations
defined by the PCI Local Bus Specification, Revision 2.0.

9.5 Parity
The 21130 generates and drives parity on the pci_par pin. It also does parity-
error checking and notification on the pci_serr# and pci_perr#, as described
in the PCI Local Bus Specification, Revision 2.0.

As a master, the 21130:

• Generates parity across 36 bits (pci_ad<31:0> and pci_cbe<3:0>#) for all
address cycles

• Checks parity received on pci_par during read-data cycles and reports
errors if the PER bit is set in the PCI command and status register (PCSR,
Section 8.2.2)

As a target, the 21130:

• Generates parity for all read-data cycles

• Checks parity received on pci_par during address and write-data cycles
and reports errors if the PER bit is set in the PCI command and status
register (PCSR, Section 8.2.2)

When a parity error is detected, the 21130 signals the error on either the
pci_serr# pin if the error occurred during an address transaction, or the
pci_perr# pin if the error occurred during a data transaction. The 21130
continues to operate normally; that is, if the address is a valid 21130 address,
it is used, along with the subsequent data. If a data transaction had the error,
the erroneous data will be used for a write.

9.6 Bus Parking
The 21130 supports PCI bus parking. The central PCI arbitration resource can
select the 21130 to actively drive much of the PCI bus to a known state while
the bus is idle, to prevent the bus from floating. When the arbiter asserts the
pci_gnt# input, the 21130 drives pins pci_ad<31:0>, pci_cbe<3:0>#, and,
at least 1 clock later, pci_par, to an arbitrary state. The 21130 can enable
these drivers over several PCI clocks. When pci_gnt# is deasserted, the 21130

PCI Operations 9–11

9.6 Bus Parking

tristates pci_ad<31:0> and pci_cbe<3:0># on the next clock, and tristates
pci_par 1 clock later.

9.7 Functions Not Supported
The 21130 does not support and ignores special cycle and interrupt
acknowledge PCI transactions. The 21130 does not do address or data
stepping. As a target, the 21130 does not support the following:

• Exclusive accesses (LOCK cycles) for any of its registers or for display
memory

• Burst memory-read cycles

• Burst transactions to PCI configuration space

As a master, the 21130 does not do write transactions or request exclusive
access. Also see Tables 9–1 through 9–4.

9–12 PCI Operations

10
Graphics Operations

This chapter describes the DECchip 21130 general graphics functions and
specific graphics modes.

10.1 Overview
The accelerated graphics operations are specified by mode and initiated by a
write to either of the following:

• The frame buffer address space (standard)

• Any graphics command register (alternative)

10.1.1 Frame Buffer Writes
Writing to the frame buffer address space is the standard way to invoke a
graphics function. In general, the 21130 responds to and interprets write data
according to the mode specified in the mode register (GMOR, Section 8.5.1).
When the 21130 detects a write to its frame buffer address space, it starts
the mode-specified graphics operation at the specified address using control
parameters passed in the write data, and possibly, one or more graphics control
registers.

In several graphics modes, writing to the frame buffer to initiate an operation
does not take full advantage of the 21130’s speed or range. For example, a
write to the frame buffer in copy mode uses only half of the 64-byte onchip
copy buffer for an 8-bpp span. For another example, the 21130 memory
interface supports very fast line-drawing rates, but writing to the frame buffer
in line mode burdens the CPU with processing Bresenham-style setup code.

Table 10–1 describes the graphics functions that can be invoked in each mode
on a write to the frame buffer. (Table 8–4 lists all the modes.)

Graphics Operations 10–1

10.1 Overview

Table 10–1 Mode-Dependent Frame Buffer Write Operations

Mode Action Initiated on Frame Buffer Write

Simple Write pixels.

Opaque stipple Draw patterned, bitonal 32-pixel spans.

Opaque bit-reversed stipple Draw patterned, bitonal 32-pixel spans.

Transparent stipple Draw patterned, monotone 32-pixel spans.

Transparent bit-reversed stipple Draw patterned, monotone 32-pixel spans.

Transparent stipple with pixel
mask

Draw patterned, masked, monotone 32-pixel
spans.

Transparent bit-reversed stipple
with pixel mask

Draw patterned, masked, monotone 32-pixel
spans.

Opaque fill Fill bitonal span up to 2K pixels.

Opaque extended-pattern fill Fill patterned span up to 2K pixels.

Transparent fill Fill solid span up to 2K pixels.

Transparent extended-pattern fill Fill patterned span up to 2K pixels.

Opaque line Draw patterned, bitonal 16-pixel lines.

Transparent line Draw patterned, monotone 16-pixel lines.

Copy Fill the copy buffer with a 32-pixel, masked, 8-
bpp span or a 16-pixel, masked, 32-bpp span; or,
empty the copy buffer to a 32-pixel, masked, 8-bpp
span or a 16-pixel, masked, 32-bpp span.†

DMA-read copy Transfer an unaligned, edge-masked span up to
8KB from PCI addressable memory to display
memory.

Scaled-copy Transfer and scale an unaligned, edge-masked
span up to 4KB from PCI addressable memory to
display memory.

†Whether the copy buffer is filled or emptied depends on the state of the copy hardware.

10.1.2 Graphics Command Register Writes
For better performance, the graphics command registers can be used to initiate
graphics operations. They give software a faster and simpler way to invoke
graphics operations.

Similar to writing directly to the frame buffer, writing to a graphics command
register invokes a mode-dependent graphics operation, but the frame-buffer
address is provided in a register rather than on the write. Writes to graphics

10–2 Graphics Operations

10.1 Overview

command registers cannot invoke all mode operations, but can and should be
used to generate the graphics functions listed in Table 10–2.

Table 10–2 describes the graphics operations that can be initiated by writing to
a graphics command register.

Table 10–2 Graphics Command Register Write Operations

Register Mode Action Initiated on Register Write

Slope<7:0> (GSLR<7:0>)
Span width (GSWR)

Line� Initializes the Bresenham engine and then draws a
mode-dependent 16-pixel 2D line (Table 10–1).

Slope-no-go<7:0> (GSNR<7:0>)† Line� Initializes the Bresenham engine.

Continue (GCTR) Line� Continues the current line another 16 pixels.

Other In any mode other than a line mode, initiates an
operation based on the specified mode (Table 10–1),
conditionally using the address from the GADR.

Copy 64 source (GCSR) Copy Fills up to 64 bytes of the copy buffer from the
specified frame buffer address.

Copy 64 destination (GCDR) Copy Empties up to 64 bytes from the copy buffer to the
specified frame buffer address.

Copy-64A source (GCASR) Copy Fills up to 64 bytes of the copy buffer from the frame
buffer address specified in the GADR.

Copy-64A destination (GCADR) Copy Empties up to 64 bytes from the copy buffer to the
frame buffer address specified in the GADR.

�Any line mode.
†The GSNRs are included because they initialize the Bresenham engine, but they do not initiate line drawing
and are not graphics command registers.

10.1.3 Invoking Graphics Operations
To invoke a graphics function in any supported mode, the basic sequence is as
follows:

1. Set the mode for the desired operation.

2. Write the required mode-specific parameters to the appropriate graphics
control registers.

3. Initiate the operation with a write to the frame buffer or to a graphics
command register.

Graphics Operations 10–3

10.1 Overview

This sequence of writes is grouped as one command packet. Each packet
typically contains none to several control parameters, followed by the operation
that initiates the write. Software streams command packets to the 21130
where they are stored in the 64-entry command FIFO. The 21130 unloads the
packets from the FIFO one at a time, and executes them as specified by the
mode.

The order of the control parameters is usually not important, but they all must
be written before the final write that initiates the operation. All 21130 drivers
must maintain this level of ordering. In particular, Alpha drivers present
special problems because the CPU write buffer does not enforce write ordering.
(See Section 11.12.1 for more information about 21130 support for the write
buffer in Alpha CPUs.)

The 21130 uses a different set of control parameters for each operating mode.
The parameters are provided by the graphics control registers and also by the
data that the operation-initiating write passes to the frame buffer or to the
graphics command registers. In each mode, the 21130 can operate on a variety
of on-screen and off-screen visual bitmaps.

10.1.4 Register Load Synchronization
In general, software can write the frame buffer, any graphics control register,
or any graphics command register, without regard to the internal state of the
chip. The order of the writes within each command packet is important to the
extent that all control registers must be set before the frame buffer or graphics
command registers are written to initiate the graphics operation. However, in
all but a few cases, software need not send register data or command packets
in synchronism with the previous operation’s completion.

The 21130 does not schedule a command packet for execution until the previous
command has finished executing. Most of the graphics registers are double-
buffered, such that, while one set is being loaded from a command packet, the
other set can be used for graphics processing without interference. Therefore,
software can usually issue register and packet writes indefinitely, without
polling the state of the 21130 graphics processing hardware or registers.
However, the chip must be idle (that is, processing complete with the command
buffer empty) before writing to the deep register (GDER) in any mode.

When it is required, register-load synchronization can be done in either of the
following ways:

• Software can poll the busy bit in the command status register (MCSR <0>,
Section 8.3.1) and write the register only when the value of busy is zero.

10–4 Graphics Operations

10.1 Overview

• Software can insert a synchronization barrier into the command stream.
A write to the MCSR effectively causes the 21130 to wait for the busy bit
to go to logical zero. A write to the MCSR goes into the command buffer
along with all other writes. But when the MCSR write is removed from
the command buffer for processing, the operation stalls until all previous
graphics processing is completed. For example, before writing the GDER,
software can first write the MCSR and then write the GDER, rather than
polling the busy bit and waiting for the chip to become idle.

10.1.5 Source and Destination Operands
The 21130 references a source and a destination operand for every graphics
operation. Table 10–3 shows the specific source and destination operands
according to mode.

Table 10–3 Source and Destination Operands According to Mode

Mode Source Destination

Simple PCI write data Frame buffer bitmap

Opaque stipple
Opaque line
Transparent stipple
Transparent line

GFGR or GBGR Frame buffer bitmap

Opaque fill
Opaque extended-pattern fill

PCI write data Frame buffer bitmap

Transparent fill
Transparent extended-pattern fill

PCI write data Frame buffer bitmap

Copy Frame buffer bitmap Frame buffer bitmap

DMA-read copy PCI memory bitmap Frame buffer bitmap

Scaled-copy PCI memory bitmap Frame buffer bitmap

In most cases, the source and destination operands are simply pixel values
that are read from or written to a bitmap. For example, a copy mode operation
reads a pixel value from a source bitmap and writes it to a destination bitmap.

Graphics Operations 10–5

10.2 Graphics Modes

10.2 Graphics Modes
Sections 10.2.1 through 10.2.10 describe the graphics modes. Each section
describes the mode’s invocation, required parameter sets, and functional
operation. The descriptions include the standard invocation mechanism
(directly writing the frame buffer), and for applicable modes, the alternate
graphics command register mechanism.

Note

The functional-algorithm pseudo-code examples in the following
sections are for descriptive purposes and do not describe the exact logic
implementation.

10–6 Graphics Operations

10.2 Graphics Modes

10.2.1 Simple Mode
In the simple mode, a PCI write to the frame-buffer address space writes 4
independently masked bytes of data to the frame buffer at the Dword-aligned
write address. The 21130 performs the write as a function of the parameters
listed in Table 10–4.

Simple Write (Frame Buffer Address, Frame Buffer Data, Mask PCI, Byte Mask,
Mask GPXR, Raster Op, Destination Bitmap, GIB Endian);

Table 10–4 Simple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Data PCI write data <31:0> —

Mask PCI PCI data byte mask <3:0> —

Mask GPXR Pixel mask register GPXR <31:0> 8.5.10

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

GIB Endian Deep register GDER <21> 8.5.2

Figure 10–1 shows the PCI write data format for the Frame Buffer Data and
Mask PCI.

Figure 10–1 Simple Mode PCI Write-Data Format

31 0
PCI Data

3

PCI
Byte Mask

Frame Buffer Data

0

Mask PCI

In the simple mode, the 21130 acts as a generic 32-bit memory controller with
the following exceptions:

• The GPXR specifies a byte mask (Mask GPXR) to be used in addition to the
mask passed over PCI (Mask PCI).

• The Raster Op programmed in the GOPR is applied.

• The Byte Mask specified in the GOPR is applied.

Graphics Operations 10–7

10.2 Graphics Modes

For every write in the simple mode, the 21130 ANDs Mask PCI and Mask GPXR
to generate the final byte mask that determines whether to write each byte. As
specified by the Raster Op, the write conditionally combines the Frame Buffer
Data and the data stored at the Frame Buffer Address. Only the bit-planes
that are enabled by the Byte Mask are written.

The Destination Bitmap parameter allows access to all types of destination
bitmaps. The Frame Buffer Address must be aligned to 4 bytes (Dword-
aligned) for all destinations.

The following pseudo-code represents the basic algorithm for the simple mode:

Write Mask = Mask PCI & Mask GPXR;
Write Pixel (Frame Buffer Address, Frame Buffer Data, Raster Op, Byte Mask,

Write Mask, Destination Bitmap);

The 21130 always uses the GPXR to specify which Dword bytes are to be
written, but software does not always write the GPXR. Because hardware
resets the GPXR to FFFFFFF (all bytes unmasked) after every operation when
operating in 1-shot mode, software must write the GPXR only if a different
value is required. If a persistent mask is desired, software writes to the
persistent version of the GPXR (Section 8.5.10.3). Additionally, the 21130
always performs the Raster Op specified in the GOPR when writing the frame
buffer data (the Raster Op retains its value from operation to operation).

The GIB Endian bit must be set to enable gib-endian byte swapping during
simple writes and reads, DMA-read copy operations, and scaled copy operations
with 16-bpp and 32-bpp RGB sources.

The simple mode can also be used to write arbitrary data to the frame buffer.

10–8 Graphics Operations

10.2 Graphics Modes

10.2.2 Opaque-Stipple Mode
In the opaque-stipple mode, a PCI write to the frame buffer address space
draws a bitonal, masked span of 32 contiguous pixels starting at that address.
The 21130 draws the span as a function of the parameters listed in Table 10–5.

Opaque Stipple Span (Frame Buffer Address, Stipple Mask, Byte Mask,
Pixel Mask, Raster Op, Foreground, Background,
Destination Bitmap);

Table 10–5 Opaque-Stipple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Stipple Mask PCI write data <31:0> —

Pixel Mask Pixel mask register GPXR <31:0> 8.5.10

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Foreground Foreground register GFGR <31:0> 8.5.8

Background Background register GBGR <31:0> 8.5.8

The PCI write cycle to the Frame Buffer Address initiates the drawing
operation and specifies the Stipple Mask in the format shown in Figure 10–2.

Figure 10–2 Opaque-Stipple Mode PCI Write-Data Format

31 0

Stipple Mask

Graphics Operations 10–9

10.2 Graphics Modes

The 21130 expands the 32-bit Stipple Mask to 32 pixels, masking each pixel
according to the Pixel Mask (Figure 10–3), as follows:

Pixel Mask Bit Value Corresponding Pixel

0 Unmodified

1 Write enabled

Stipple Mask Bit Value Write to Corresponding Write-Enabled Pixel

0 Background color

1 Foreground color

The opaque-stipple operation writes a bitonal pattern to a bitmap. Figure 10–3
is an example of drawing in opaque-fill mode.

Figure 10–3 Opaque-Stipple Mode Operation

Background

Pixel Mask:
Stipple Mask: X

0
0
1

1
1

0
1

0
1

X
0

X
0

0
1

1
1

1
1

X
0

ForegroundUnmodified

The 21130 applies the specified Raster Op and Byte Mask on the write to the
frame buffer.

The Destination Bitmap parameter allows access to all types of destination
bitmaps. The Frame Buffer Address must be aligned to 4 bytes for 8-bpp
destinations or 8 bytes for 16-bpp and 32-bpp destinations.

The following pseudocode represents the basic algorithm for the opaque-stipple
mode:

10–10 Graphics Operations

10.2 Graphics Modes

for (n = 0; n <= 31; n++)
{
if (Pixel Mask<n> = 1)

{
Pixel = (Stipple Mask<n> ? Foreground : Background;
Write Frame Buffer (Frame Buffer Address, Pixel, Raster Op, Byte Mask,

Destination Bitmap);
}

Increment Pixel Address (Frame Buffer Address);
}

The 21130 optimizes the algorithm by writing 64 bits at a time; that is, up
to 8 pixels to 8-bpp bitmaps, 4 pixels to 16-bpp bitmaps, or 2 pixels to 24-bpp
bitmaps. The 21130 also increases performance by skipping over leading and
trailing strings of zeros in the Pixel Mask. In stipple mode, unlike line mode,
the 21130 does not update the internal pixel-processing address during a
stipple operation. Therefore, a continue operation cannot be used to extend
a stipple operation; instead, a new address must be specifies for each stipple
operation.

The 21130 requires address alignments of 4 bytes for 8-bpp bitmaps or 8 bytes
for 16-bpp and 32-bpp bitmaps and it does not implicitly mask span edges—
software must align addresses and mask left and right span edges. Therefore,
before delivering the Stipple Mask and Pixel Mask parameters to the 21130,
software must:

• Align the Stipple Mask

• Align and logically combine the intended Pixel Mask with the desired left
and right edge masks

The 21130 does the following operations in the opaque-stipple mode:

• Under X, does opaque stippling and tiling operations

• Under Windows, paints a region with an arbitrary bitonal brush

• In certain cases, draws text

• Quickly fills a solid region

(See Section 11.7 for more examples of opaque- and transparent-stipple mode
applications.)

10.2.2.1 Opaque Bit-Reversed Stipple Mode
In the opaque bit-reversed stipple mode, the bits in Stipple Mask and Pixel
Mask are reversed before being used, such that <31> corresponds to the first
pixel drawn and <0> corresponds to the last pixel drawn.

Graphics Operations 10–11

10.2 Graphics Modes

10.2.3 Transparent-Stipple Mode
In the transparent-stipple mode, a PCI write to the frame buffer address space
draws a solid, masked span of 32 contiguous pixels starting at that address.
The 21130 draws the span as a function of the parameters listed in Table 10–6.

Transparent Stipple Span (Frame Buffer Address, Stipple Mask, Byte Mask,
Raster Op, Foreground, Destination Bitmap)

Table 10–6 Transparent-Stipple Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Stipple Mask PCI write data — —

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Foreground Foreground register GFGR <31:0> 8.5.8

The PCI write cycle to the Frame Buffer Address initiates the drawing
operation and specifies the Stipple Mask in the format shown in Figure 10–4.

Figure 10–4 Transparent-Stipple Mode PCI Write-Data Format

31 0

Stipple Mask

Transparent-stipple operations are, in effect, a simpler version of opaque-
stipple operations, and operate in the same way with the following exceptions:

• The Pixel Mask is not specified.

• The Stipple Mask bits determine whether foreground color is written or
write is disabled for the corresponding pixels, rather than determining
whether foreground or background color is written.

These exceptions do not apply to the bit-reversed modes. See Section 10.2.3.1.

10–12 Graphics Operations

10.2 Graphics Modes

Figure 10–5 is an example of drawing in the transparent-stipple mode.

Figure 10–5 Transparent-Stipple Mode Operation

Stipple Mask: 0 0 1 0 0 1 1 0 1 1 1

ForegroundUnmodified

The transparent-stipple mode basic algorithm differs slightly from the opaque-
stipple mode basic algorithm, and is represented by the following pseudo-code:

for (n = 0; n <= 31; n++)
{
if (Stipple Mask<n> = 1)

Write Frame Buffer(Frame Buffer Address, Foreground, Raster Op,
Byte Mask, Destination Bitmap);

Increment Pixel Address(Frame Buffer Address);
}

The transparent-stipple mode does the following operations:

• Fills regions in X transparent-stipple mode

• Under Windows, paints a region with a monochrome brush

• In many cases, draws text

• In some cases, fills solid regions

(See Section 11.3 for more examples of opaque-stipple and transparent-stipple
mode applications.)

10.2.3.1 Transparent-Stipple with Pixel Mask Modes
In the transparent-stipple with pixel mask modes, the pixel mask register
(GPXR, Section 8.5.10) is used to mask pixels in the same way as in the
opaque-stipple modes. In the transparent-stipple with pixel mask modes,
pixels are drawn with the Foreground color if the corresponding bits in the
Stipple Mask and Pixel Mask are both set.

In the transparent bit-reversed stipple with pixel mask mode, the bits in
Stipple Mask and Pixel Mask are reversed before being used, such that <31>
corresponds to the first pixel drawn and <0> corresponds to the last pixel
drawn.

Graphics Operations 10–13

10.2 Graphics Modes

10.2.4 Opaque-Fill Mode
In the opaque-fill mode, a PCI write to the frame buffer address space writes a
bitonal, unmasked span of up to 2K contiguous pixels starting at that address.
The 21130 draws the span as a function of the parameters listed in Table 10–7.

Opaque Fill Span (Frame Buffer Address, Pixel Count,
Frame Buffer Address <1:0>, Foreground, Background,
Raster Op, Byte Mask, Fill Mask, Destination Bitmap);

Table 10–7 Opaque-Fill Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Address <1:0>
Pixel Count (-1)

PCI write data <17:16>
<10:0>

—

Foreground Foreground register GFGR <31:0> 8.5.8

Background Background register GBGR <31:0> 8.5.8

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Fill Mask Data register GDAR <31:0> 8.5.7

The PCI write cycle to the Frame Buffer Address initiates the drawing
operation and specifies the Pixel Count and Frame Buffer Address <1:0> in
the format shown in Figure 10–6.

Figure 10–6 Opaque-Fill Mode PCI Write-Data Format

31 18 17 16

Frame Buffer Address <1:0>

15 11 010

RES RES Pixel Count (−1)

10–14 Graphics Operations

10.2 Graphics Modes

The opaque-fill mode fills a span of Pixel Count (up to 2K) pixels with a
repeating, bitonal, 32-pixel pattern, as follows:

1. The pattern is defined by the Foreground, Background, and Fill Mask
parameters.

2. The 21130 writes the Foreground color to each pixel that corresponds to
a Fill Mask bit = 1, and writes the Background color to each pixel that
corresponds to a Fill Mask bit = 0.

3. The 32-pixel pattern is repeated as many times as necessary to fill up to
Pixel Count pixels.

Figure 10–7 is an example of drawing in the opaque-stipple mode.

Figure 10–7 Opaque-Fill Mode Operation

Fill Mask

Pattern

00001111000011111111000011110000

Opaque−Fill Span

 Length = Pixel Count

Foreground Background

The Frame Buffer Address must be aligned to 1 pixel (1 byte in 8-bpp frame
buffers) and Fill Mask must be aligned to 4 pixels. The Frame Buffer Address
<1:0> parameter (two LSBs) provides byte granularity on 8-bpp frame buffers.

Graphics Operations 10–15

10.2 Graphics Modes

10.2.4.1 Opaque Extended-Pattern Fill Mode
The opaque extended-pattern fill mode uses the 64-byte copy buffer to perform
n � n multicolor pattern fills. This mode is similar to the opaque-fill mode
(Section 10.2.4) except that the data register is ignored and the copy buffer,
rather than the foreground and background registers, provides the pattern
data.

Before the extended-pattern fill is performed, the copy buffer is loaded with
up to 64 bytes of pattern data. If the pattern is cached in off-screen memory,
the copy buffer can be loaded by writing to the copy-64 source register (GCSR,
Section 8.4.4); or, if the pattern is to be down-loaded from the host, the copy
buffer can be loaded by writing to the copy buffer registers (GCBR<7:0>,
Section 8.5.4).

The programmer cannot control which byte in a copy buffer quadword is chosen
to go to a given byte in a destination quadword because copy buffer data is not
shifted on output. However, the programmer can use the dither row and dither
column registers (GDRR and GDCR) to control which copy buffer quadword is
output to a given destination address. The following example shows how the
hardware selects one of the eight copy buffer quadwords for a given destination
address:

CopyQWORD =
(((ByteAddress >> 3) & DitherColumn) | (DitherColumn & ~DitherColumn)) & 7

Typically, this mode is used to fill an area with an 8 � 8 color brush. This
is easily done in 8-bpp mode by setting DitherColumn to 0 and incrementing
DitherRow for each line.

In 16-bpp and 32-bpp modes the entire brush does not fit in the copy buffer.
Therefore, two loops are required for 16-bpp and four loops are required for
32-bpp.

In a typical 16-bpp mode operation, every other brush line is loaded into the
copy buffer and the DitherColumn is set to 1. The loop outputs 1 line, then
increments the address register by 2 lines and the DitherRow by 2.

Similarly, in a typical 32-bpp mode operation, every fourth line is loaded into
the copy buffer, the DitherColumn is set to 3, and the DitherRow is incremented
by 4.

10–16 Graphics Operations

10.2 Graphics Modes

10.2.5 Transparent-Fill Mode
In the transparent-fill mode, a PCI write to the frame buffer address space
writes a solid, masked span of up to 2K contiguous pixels starting at that
address. The 21130 draws the span as a function of the parameters listed in
Table 10–8.

Transparent Fill Span (Frame Buffer Address, Pixel Count,
Frame Buffer Address <1:0>, Foreground,
Raster Op, Byte Mask, Fill Mask,
Destination Bitmap);

Table 10–8 Transparent-Fill Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Address <1:0>
Pixel Count (-1)

PCI write data <17:16>
<10:0>

—

Foreground Foreground register GFGR <31:0> 8.5.8

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Fill Mask Data register GDAR <31:0> 8.5.7

The transparent-fill mode fills a span of Pixel Count (up to 2K) pixels with a
repeating, bitonal, 32-pixel pattern defined by the Foreground and Fill Mask
parameters.

The transparent-fill mode is almost identical to the opaque-fill mode
(Section 10.2.4). The Foreground color is written to each pixel that corresponds
to a Fill Mask bit = 1; but in the transparent-fill mode, pixels that correspond
to a Fill Mask bit = 0 are unmodified (rather than being written with the
Background color).

As in the opaque-fill mode, the 32-pixel pattern is repeated as many times as
necessary to fill up to Pixel Count pixels.

Graphics Operations 10–17

10.2 Graphics Modes

10.2.5.1 Transparent Extended-Pattern Fill Mode
The transparent extended-pattern fill mode uses the 64-byte copy buffer
to perform n � n multicolor pattern fills. This mode is similar to the
transparent-fill mode (Section 10.2.5) except that the copy buffer, rather than
the foreground register, provides the pattern data.

Before the extended-pattern fill is performed, the copy buffer is loaded with
up to 64 bytes of pattern data. If the pattern is cached in off-screen memory,
the copy buffer can be loaded by writing to the copy-64 source register (GCSR,
Section 8.4.4); or, if the pattern is to be down-loaded from the host, the copy
buffer can be loaded by writing to the copy buffer registers (GCBR<7:0>,
Section 8.5.4). When the fill operation is initiated, the pattern data in the copy
buffer is used to color pixels as in the following pseudo-code:

if (8bpp)
{ iteration = (pixelAddress - startPixelAddress & 0x3f) / 8

QWIndex = ditherRow & ~ditherColumn | iteration & ditherColumn
pixel = copyBufferAsBytes[(QWIndex & 0x07 << 3) | pixelAddress & 0x07]

}
if (16bpp)
{ iteration = (pixelAddress - startPixelAddress & 0x3f) / 4

QWIndex = ditherRow & ~ditherColumn | iteration & ditherColumn
pixel = copyBufferAsWords[(QWIndex & 0x07 << 2) | pixelAddress & 0x03]

}
if (32bpp)
{ iteration = (pixelAddress - startPixelAddress & 0x3f) / 2

QWIndex = ditherRow & ~ditherColumn | iteration & ditherColumn
pixel = copyBufferAsLWs[(QWIndex & 0x07 << 1) | pixelAddress & 0x01]

}

10–18 Graphics Operations

10.2 Graphics Modes

10.2.6 Copy Mode
In the copy mode, a set of two consecutive PCI writes to the frame buffer
address space copies a contiguous span of up to 64 bytes from the first address
to the second address. The span can be copied in either direction: left-to-
right (increasing addresses) or right-to-left (decreasing addresses). The 21130
performs the copy as a function of the parameters listed in Table 10–9.

Copy Span (Frame Buffer Address Source, Frame Buffer Address Destination,
Mask Source, Mask Destination, Byte Mask, Raster Op,
Source Bitmap, Destination Bitmap);

Table 10–9 Copy Mode Parameters

Parameter Source Section

Frame Buffer Address Source PCI write address 1 — —

Mask Source PCI write data 1 — —

Frame Buffer Address
Destination

PCI write address 2 — —

Mask Destination PCI write data 2 — —

Pixel Shift Pixel shift register GPSR <3:0> 8.5.5

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Source Bitmap Mode register GMOR <10:8> 8.5.1

Two PCI write cycles are necessary to copy one span locally in the frame buffer.
The first PCI write addresses the location of the source span (Frame Buffer
Address Source) and passes a read mask for the source (Mask Source) as data.
The second PCI write addresses the location of the destination span (Frame
Buffer Address Destination) and passes a write mask for the destination
(Mask Destination) as data. Figure 10–8 shows the format of the PCI write
operations.

Graphics Operations 10–19

10.2 Graphics Modes

Figure 10–8 Copy Mode PCI Write Data Formats

Mask SourceMBZ

Mask Source

Mask Destination

Mask Destination

31 0

31 0

31 16 15 0

PCI Write 1 at Frame Buffer Address Source

PCI Write 2 at Frame Buffer Address Destination

PCI Write 2 at Frame Buffer Address Destination

 PCI Write 1 at Frame Buffer Address Source

MBZ

31 16 15 0

8−bpp or 16−bpp:

32−bpp:

The maximum span limit of 64 bytes is set by the depth of the internal copy
buffer and is independent of the pixel depth (Table 10–10). Consequently, the
maximum span size is 16 pixels for 32-bit pixels. For 16-bit pixels, the size of
the copy buffer allows only 32-pixel spans and each PCI write can supply only
32 bits to specify the mask. For 8-bit pixels, the size of the copy buffer allows
64-pixel spans, but each PCI write can supply only 32 bits to specify the mask.
Consequently, the maximum span is 32 pixels when copying a 16-bpp span
or 8-bpp masked span. (A different 21130 mechanism allows 64-pixel 8-bpp
unmasked spans to be copied, Section 10.2.6.5.)

10–20 Graphics Operations

10.2 Graphics Modes

Table 10–10 shows the copy mode span limits according to pixel depth.

Table 10–10 Copy Mode Span Limits

Pixel
Depth

Span Limit
(Masked)

Span Limit
(Unmasked)

8-bpp 32 pixels 64 pixels
16-bpp 32 pixels 32 pixels
32-bpp 16 pixels 16 pixels

Basically, the 21130 performs a masked, span copy operation in two stages, as
follows:

1. On the first PCI write, the 21130 reads up to 64 bytes from the Frame
Buffer Address Source, selectively aligning and depositing those bytes into
the copy buffer, starting at the bottom and filling upward. Only pixels that
correspond to a Mask Source bit = 1 are read.

2. On the second PCI write, the 21130 unloads up to 64 bytes from the
copy buffer, starting at the bottom and draining upward. Each pixel is
conditionally stored as a function of the Mask Destination, starting at the
Frame Buffer Address Destination. Only pixels that correspond to a Mask
Source bit = 1 are written.

On the final write to the destination, the Byte Mask and the Boolean
operation specified by the Raster Op parameter are applied.

Copy mode can handle any span including the following:

• Copies with aligned or unaligned source and destination

• Copies that require backward (right-to-left) processing in addition to
forward (left-to-right) processing

Arbitrarily aligned sources and destinations require the 21130 to shift source
data as it is processed. Backward processing is necessary in certain alignments
of overlapping copies, and requires the 21130 to increment and decrement its
addresses as it steps through the span.

Graphics Operations 10–21

10.2 Graphics Modes

10.2.6.1 Source and Destination Alignment
To copy a 32-pixel span, the 21130 reads up to 4 successive quadwords from
the Frame Buffer Address Source masked by Mask Source; and writes up to
4 successive quadwords to the Frame Buffer Address Destination masked by
Mask Destination. Consequently, copies are simple when both the Frame
Buffer Address Source and the Frame Buffer Address Destination lie
on natural quadword boundaries. However, graphics software (graphics
applications, window managers, and so on) is not limited to specifying
only quadword-aligned source and destination addresses. Therefore, the
21130 display driver must handle arbitrarily aligned source and destination
addresses. The 21130 driver and hardware share the responsibility for
ensuring that all possible combinations of desired source and destination
are correctly handled.

Software must first adjust (that is, decrement) the desired source-pixel
and destination addresses to quadword boundaries, such that the adjusted
addresses can be passed as the Frame Buffer Address Source and Frame Buffer
Address Destination. In addition, Mask Source and Mask Destination must be
bit-shifted by the number of bytes that the addresses were decremented. That
number is defined as Source Align and Destination Align for the source and
destination. They are calculated as follows:

Source Align = (desired source address) & Align Mask;
Destination Align = (desired destination address) & Align Mask;

In the previous equations,

Align Mask = 0000000716

In general, the specified source and the destination alignment is random, with
Source Align and Destination Align taking values from 0 to 7. In an aligned
copy, Source Align and Destination Align take the same value; however, the
21130 display driver must usually process an unaligned copy in which Source
Align and Destination Align take different values.

To process unaligned spans, the 21130 includes a hardware byte-shifter
that aligns quadword source read data to the destination prior to filling
the copy buffer. The Pixel Shift parameter is a signed 4-bit value
(–8 � Pixel Shift � 7) that specifies the number of bytes to shift. Embedded
in the byte-shifter is a 64-bit residue register that stores the previous
quadword read from the copy source. (The residue register cannot be directly
read or written.) The byte-shift function, in conjunction with the residue
register, allows the 21130 to process all possible combinations of the Source
Align and Destination Align values.

10–22 Graphics Operations

10.2 Graphics Modes

In an unaligned copy, at least 1 pixel from each of 2 successive quadwords
read from the source must be merged into 1 quadword in the destination.
Consequently, in each quadword the 21130 writes to the destination, it must
extract some subset of pixels from source quadword n and merge them with a
complementary subset of pixels from source quadword n–1. This amounts to
a 1-stage source-read pipeline, in which the residue register always stores the
last quadword read.

Starting at the Frame Buffer Address Source, the 21130 does the following:

1. Reads 1 to 4 quadwords, depending on the value in Mask Source.

2. Concatenates the 64 bits read from each quadword with the residue
register.

3. Rotates the resulting 128-bit quantity through the byte shifter by the
amount specified by the Pixel Shift value (a negative value rotates left,
and a positive value rotates right).

4. Extracts a quadword (now properly aligned with the destination) from the
bit positions corresponding to the position of the read data before rotation.

5. Loads the extracted quadword into the copy buffer in the next available
quadword entry.

6. Stores the last quadword read into the residue register.

7. Moves on to the next source quadword and repeats the process until the
span is complete.

Figure 10–9 is an example of an unaligned forward (left-to-right) copy with
an 8-bpp packed source and destination. The individual pixels are labeled
a through q. Three quadwords are read through Mask Source and three
are written through Mask Destination. For each read, the figure shows a
‘‘snapshot’’ of the contents of the residue register and the resultant byte-shifter
output quadword. An example of a copy with a 24-bpp source and destination
would be almost the same, with the following exceptions:

• Letters a through q would correspond to bytes within a pixel.

• The Source Align and Destination Align values would be 0 or 4.

Graphics Operations 10–23

10.2 Graphics Modes

Figure 10–9 Forward Span Copy

a b c d e f g h i j k l m n o p

Desired Source Address (Source Align = 3)

q

Pixel Shift = (Destination Align − Source Align) = +3

Frame Buffer Address Desired Destination Address (Destination Align = 6)

00 08 10 18 20

D0 D8 E0 E8 F0

03

a b c

D6

d e f g h i j k l m n o p q

− − − a b c d e

f g h i j k l m

c d e f g h i j

n o p q − − − −

−k l m n o p q

− − − a b− − −

Source Read 0

Source Read 1

Source Read 2

Copy Buffer

Residue Register

− − − − − − − −

− − − a b c d e

f g h i j k l m

Mask Destination 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0

Mask Source 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0

Frame Buffer Address
Source

Destination

1

1

10–24 Graphics Operations

10.2 Graphics Modes

10.2.6.2 Backward Copies
In addition to arbitrary alignments, the 21130 must process forward (left-
to-right) and backward (right-to-left) copies. Spans that overlap require the
graphics server to pick a direction, to avoid corrupting a portion of the source
before it is read. Consequently, the 21130 selectively increments (forward) or
decrements (backward) source and destination quadword addresses in order
to step through the span. The sign of the Pixel Shift value determines the
direction of the span copy, as follows:

–8 � Pixel Shift � –1 for backward copies
0 � Pixel Shift � 7 for forward copies

For a negative Pixel Shift value, the 21130 does the following:

• Begins reading at the Frame Buffer Address Source and writing at the
Frame Buffer Address Destination.

• Decrements the Frame Buffer Address Source after each quadword is read.

• Decrements the Frame Buffer Address Destination after each quadword is
written.

For a positive Pixel Shift value, the 21130 also begins at Frame Buffer
Address Source and Frame Buffer Address Destination, but it increments the
respective addresses as it steps through the span.

The sign of the Pixel Shift value also determines the direction that the byte
shifter rotates incoming source data (with residue): negative for rotate left and
positive for rotate right. Therefore, the assignment of the Pixel Shift value
must take into account that all incoming source data is rotated to the right in
a forward copy and to the left in a backward copy.

Table 10–11 shows how the Pixel Shift value is calculated as a function of
alignment and copy direction.

Table 10–11 Assigning the Pixel Shift Value

Direction Destination Align � Source Align

Forward Destination Align � Source Align
Backward (Destination Align � Source Align) � 8

Direction Source Align > Destination Align

Forward 8 � (Source Align � Destination Align)
Backward Destination Align � Source Align

Graphics Operations 10–25

10.2 Graphics Modes

10.2.6.3 Priming and Flushing the Residue Register
Certain combinations of alignment and copy direction require one additional
adjustment to be made prior to starting the copy mode operation. Two types of
copies fall into this category:

• Forward copies when Source Align > Destination Align

• Backward copies when Destination Align > Source Align

In either case, the first quadword written to the destination takes some bytes
from both the first and second quadwords read from the source. The Pixel
Shift value is set such that none of the valid pixels from the first read are
rotated into the first quadword generated by the byte shifter. The byte shifter
does not generate the proper quadword for the first destination quadword until
the second source quadword is read. In effect, the first read primes the residue
register, and every subsequent source read generates a valid destination
quadword to store in the copy buffer. This amounts to a 1-stage, read data
path pipeline.

To compensate for priming the residue register, software must adjust the
Frame Buffer Address Destination and Mask Destination by an additional
quadword. The Frame Buffer Address Destination must be decremented
(forward copies) or incremented (backward copies) by 8 and the Mask
Destination must be bit-shifted 8 bits to the right (forward) or left (backward)
(Figure 10–10).

In some cases, including those in which priming is not required, the pipeline
delay introduced by the residue register has a side effect. In such cases, the
residue register must be flushed after the last unmasked quadword has been
read, because it may contain leftover valid destination-pixels. Consider a span
copy similar to that shown in Figure 10–9, but with the source span extended
2 pixels to the right. In that case, the 21130 hardware flushes the residue
register when necessary, to generate the last destination-quadword written into
the copy buffer — software need not do anything special. However, residue-
register priming and flushing must also be considered in the DMA-read mode.
In that mode, flushing requires software intervention (see Section 10.2.7 for
more information).

Figure 10–10 is an example of a forward copy in which priming is necessary.

10–26 Graphics Operations

10.2 Graphics Modes

Figure 10–10 Primed Forward Span Copy

Desired Destination Address (Destination Align = 1)

a b c d e f g h i j

a

k

b

l

c

m

d

n

e f g h i j k l m n

Desired Source Address (Source Align = 3)

Pixel Shift = 8 − (Source Align − Destination Align) = +6

00 08 10 18 20

D0 D8 E0 E8 F0

03

D6

− − − a b c d e

f g h i j k l m

n − − − −

−

− − −

Source Read 0

Source Read 1

−

Source Read 2

− −

Copy Buffer

Residue Register

− − − − − − − −

− − − a b c d e

f g h i j k l m

Mask Destination

Mask Source

0 0

0

0 0

0

0 0

0

0 0

1

0 1

1

1 1

1

1 1

1

1

1 1

1

1 1

1

1 1

1

1

1

1

1

1

1

0

1

0

1

0

1

0

1

0

0

0

0

0

0

0

0

0

0 0 0 0 0 0 0 0 0 0 0

− −

− a b c d e f g

− − −

h i j k l m n

Frame Buffer Address
Source

Frame Buffer Address
Destination

1

Graphics Operations 10–27

10.2 Graphics Modes

The following pseudo-code represents the basic algorithm for copying a span in
copy mode, including source and destination alignment:

On PCI write 1:

for (i = 0; i <= 3; i++)
{

Read Quadword (Frame Buffer Address Source, Mask Source<i*8+7:i*8>,
Data Source, Source Bitmap);

Byte Rotate (Data Source, Residue, Pixel Shift, Data Shift);
Load Copy Buffer (Data Shift);
Residue = Data Source;
Frame Buffer Address Source += 8*Sign(Pixel Shift);

}

On PCI write 2:

for (i = 0; i <= 3; i++)
{

Unload Copy Buffer (Data Out);
Store Quadword (Frame Buffer Address Destination,

Mask Destination<i*8+7:i*8), Data Out, Destination Bitmap);
Frame Buffer Address Destination += 8*Sign(Pixel Shift);

}

The algorithm is for descriptive purposes and does not address all details of
the copy-mode operation. For example, the 21130 does not necessarily read
or write all 4 quadwords. The 21130 monitors leading and trailing zeros in
Mask Source and Mask Destination to save time when copying. The 21130
jumps to the first unmasked pixel to start reading, and terminates the read
and copy-buffer fill after the last unmasked pixel.

10.2.6.4 Copy Direction Flag
In the copy-mode process, software does not pass an explicit parameter to
indicate whether the address and mask parameters passed on a PCI write
to the frame buffer correspond to the source or the destination. In the copy
mode, the 21130 requires a strict ordering of alternating source reads and
destination-writes to the frame buffer, and uses the copy direction flag to
indicate the next operation. The copy direction flag is a 2-state, internal,
hardware pointer (GMOR <20>). The flag state, Source Next or Destination
Next, determines whether the next incoming PCI write to the Frame Buffer
Address space should trigger a read to, or a write from, the copy buffer.

Software neither reads the copy direction flag nor writes it directly. The flag
is initialized to Source Next on a write to the GPSR or copy buffer. Therefore,
when software sets the Pixel Shift parameter before starting the copy, the
hardware is ready to read the first span. Each time software writes the
frame buffer in the copy mode, the copy direction flag changes state. As

10–28 Graphics Operations

10.2 Graphics Modes

long as software properly initializes the GPSR and alternates source-reads
and destination-writes, the hardware always does the appropriate operation
without explicit software control. If necessary, software can rewrite the GPSR
to reset the copy direction flag.

10.2.6.5 64-Byte Unmasked Span Copies
The 32-bit masks passed in the copy mode limit the span to 32 bytes in
the packed 8-bpp format. This uses only half of the 64-byte copy buffer. To
overcome this limitation, the 21130 has a separate mechanism for copying
spans of 64, unmasked, contiguous bytes (masked copies are not supported).
In other words, this mechanism cannot be used to copy any span segment in
which either the source or destination includes an edge that is not naturally
aligned to an 8-byte boundary, because any such span must be masked.

Copying 64-byte spans involves a 2-stage operation: one PCI write to load the
copy buffer starting at a specified Frame Buffer Address Source aligned to 8
bytes; and a second PCI write to unload the copy buffer starting at the Frame
Buffer Address Destination. However in this case, rather than writing to
the frame buffer, software writes the copy-64 source register (GCSR) to load
the copy buffer, using the Frame Buffer Address Source as data. Similarly, to
write the copy buffer contents to the frame buffer, software writes the copy-64
destination register (GCDR), using the Frame Buffer Address Destination as
data.

Loading and unloading the copy buffer in this way always moves 64 bytes.
Although the GCSR and GCDR are not normally used for span segments
containing an edge, they can be used to fill interior span segments in a large
copy operation, where the edge segments are copied using alternating writes to
the frame buffer source and destination addresses.

10.2.6.6 Copy Buffer Operation
The 21130 copy buffer contains 8 quadword entries (Figure 10–11). The 21130
loads and unloads the copy buffer in copy-mode operations as follows:

• A write to the frame buffer in the copy mode with the copy direction flag
pointing to Source Next

For this operation, the 21130 loads the copy buffer with up to 8 quadwords
from a 32-pixel span, starting at copy buffer entry0 and filling contiguously
up to entry7. For 8-bpp frame buffers, a 32-pixel span consists of 32
bytes and only entries 0 through 3 are filled. The Mask Source parameter
specifies which pixels in the span are enabled to be loaded into the copy
buffer, but does not affect how each pixel is mapped to a copy-buffer entry.
In effect, each pixel in the quadword-aligned source span is mapped to a
specific byte (8-bpp) or Dword (32-bpp) of a specific entry. Zeros in the Mask

Graphics Operations 10–29

10.2 Graphics Modes

Source parameter affect only the leading and trailing ends of the span; the
21130 saves time by not reading pixels that will be masked.

For example, on a write to an 8-bpp frame buffer in the copy mode with
a Mask Source value of FFFFFFFF, the 21130 loads all bytes in all copy-
buffer entries, with the first pixel of the span loaded in the least significant
byte of entry0 and the last pixel in the most significant byte of entry7. On
the other hand, on a write with a Mask Source value of 00FFFF00, only
entries 1 and 2 are filled.

• A write to the frame buffer in copy mode with the copy direction flag
pointing to Destination Next

For this operation, the 21130 unloads up to 8 quadwords from the copy
buffer to a 32-pixel span, starting with entry0 and draining contiguously
up to entry7. For 8-bpp frame buffers, a 32-pixel span consists of 32 bytes
and only entries 0 through 3 are drained. On the write, Mask Destination
bits enable each byte in an 8-bpp frame buffer and each Dword in a 32-
bpp frame buffer. On the drain, the 21130 uses the Mask Destination
to optimize frame buffer accesses, skipping leading and trailing zeros.
The pixel masking does not affect how each copy buffer entry is mapped
to the quadword; for example, entry6 is always mapped to the starting
quadword-address + 7.

• A write to the copy-64 source register (GCSR)

For this operation, the 21130 fills the copy buffer with exactly 8 quadwords
from a quadword-aligned address, starting with entry0 and filling
contiguously up to entry7. Masking to read fewer than 8 quadwords is
not done.

• A write to the copy-64 destination register (GCDR)

For this operation, the 21130 drains exactly 8 quadwords from the copy
buffer to a quadword-aligned address, starting with entry0 and draining
contiguously up to entry7. Masking to write fewer than 8 quadwords is not
done.

Figure 10–11 shows how the copy buffer registers (GCBR<7:0>) and slope-no-go
registers (GSNR<7:0>) are mapped to the copy buffer entries.

10–30 Graphics Operations

10.2 Graphics Modes

Figure 10–11 Copy Buffer Layout

Slope−No−Go7

Copy Buffer7

Slope−No−Go6
Slope−No−Go5
Slope−No−Go4
Slope−No−Go3
Slope−No−Go2
Slope−No−Go1
Slope−No−Go0

Copy Buffer6
Copy Buffer5
Copy Buffer4
Copy Buffer3
Copy Buffer2
Copy Buffer1
Copy Buffer0

Entry7

Entry6

Entry5

Entry4

Entry3

Entry2

Entry1

Entry0

Write to
copy buffer
even entry

Write to
copy buffer
odd entry

Indexed Direct−Mapped
Register

Read Access
Register

Write Access

Copy Buffer

Temporary
Hold

Write
high longword

Write
low longword

Programmed I/O Copy Buffer Operation
The copy buffer is also available for programmed I/O read and write operations.
The host can sequentially fill or random-access-read all entries of the copy
buffer through the GCBRs and GSNRs. See Section 8.5.4 for more information.

Graphics Operations 10–31

10.2 Graphics Modes

10.2.6.7 Fast Frame Buffer Access Using the Copy Buffer Registers
The best way to copy back-and-forth between host and screen is to use the
DMA copy modes. While DMA should provide the best performance for large
operations, it incurs an appreciable amount of overhead that can make it
inefficient for small regions. On the other hand, simple mode, particularly
when reading, is too slow for extended, dumb frame buffer access or image
transfer between the host and screen. However, the copy mode, in conjunction
with direct software access to the copy buffer, allows localized regions in the
frame buffer to be quickly read and written.

Standard screen-to-screen copies involve groups of two alternating PCI writes,
either to the source and destination frame buffer addresses (the standard copy
mechanism) or to the GCSR and GCDR. However, each write can individually
load or unload the copy buffer from or to the frame buffer. Additionally,
software can directly read and write the copy buffer (Section 10.2.6.6). For
example, by interleaving writes to the GCSR and GCDR with programmed
I/O reads and writes, software can rapidly transfer image data between host
memory and the frame buffer.

To transfer a bitmap from host memory to the frame buffer, software can do
the following:

1. Write the GCBRs.

2. Write the resulting contents of the copy buffer to the frame buffer with
either a write to the destination address with the copy direction flag set to
write Destination Next, or a write to the GCDR.

Similarly, to transfer a bitmap from the frame buffer to host memory, software
can load the copy buffer with either a write to the source address with the copy
direction flag set to read Source Next, or a write to the GCSR.

In either transfer, using the copy direction flag can be awkward, because the
copy direction flag can be manipulated only through writes to the frame buffer
and the GPSR.

10–32 Graphics Operations

10.2 Graphics Modes

10.2.7 DMA-Read Copy Mode
In the DMA-read copy mode, a PCI write to the frame buffer address space
copies a contiguous span of up to 2K Dwords (8KB) from external PCI memory
to the frame buffer. The 21130 copies the span as a function of the parameters
listed in Table 10–12.

DMA Read Copy Span (DMA Address, Frame Buffer Address Destination,
Read Count (-1), Mask Left <1:0>, Mask Right <1:0>,
Byte Mask, Pixel Shift, Raster Op, Destination Bitmap,
GIB Endian)

Table 10–12 DMA-Read Copy-Mode Parameters

Parameter Source Section

Frame Buffer Address
Destination

PCI write address — —

Read Count (-1)
Mask Right 1
Mask Right 0
Mask Left 1
Mask Left 0

PCI write data <31:16>
<15:12>
<11:8>
<7:4>
<3:0>

—

DMA Address DMA base address register GDBR <31:0> 8.5.15

Pixel Shift Pixel shift register GPSR <3:0> 8.5.5

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Source Bitmap Mode register GMOR <10:8> 8.5.1

GIB Endian Deep register GDER <21> 8.5.2

The PCI write cycle initiates a DMA-read copy of one span from PCI external
memory into the frame buffer. The PCI write addresses the location of the
destination span (Frame Buffer Address Destination). The PCI write data
consists of a Dword Read Count and four read masks for the destination.
Figure 10–12 shows the format of the PCI write data.

Graphics Operations 10–33

10.2 Graphics Modes

Figure 10–12 DMA-Read Copy-Mode PCI Write-Data Format

31 8 7 4 316 15 12 11 027 26

Read Count (−1) Mask
Left 0

Mask
Left 1

Mask
Right 1

Mask
Right 0MBZ

On the PCI write, the 21130 requests and then masters the PCI bus. It then
reads Read Count Dwords from PCI external memory starting at the DMA
Address and writes the Dwords to the frame buffer, starting at the Frame
Buffer Address. On each successful transfer, the 21130 reads and writes 1 full
Dword as follows:

• First Dword

1. Reads the Dword from PCI external memory.

2. Writes the Dword to the frame buffer at the Frame Buffer Address
Destination. On the write, Mask Left 0 masks the individual bytes of
the first Dword.

3. Decrements the Read Count.

• Second Dword

4. Reads the Dword from PCI external memory.

5. Writes the Dword to the frame buffer at the next frame buffer address.
On the write, Mask Left 1 masks the individual bytes of the second
Dword.

6. Updates the frame buffer address.

7. Decrements the Read Count.

• Third Dword through next-to-last Dword

8. Reads the Dword from PCI external memory.

9. Writes the Dword to the frame buffer at the next frame buffer address.
No bytes are masked.

10. Updates the frame buffer address.

11. Decrements the Read Count.

• Last Dword

12. Reads the Dword from PCI external memory.

10–34 Graphics Operations

10.2 Graphics Modes

13. Writes the Dword to the frame buffer at the next frame buffer address.
On the write, Mask Right 0 masks the individual bytes of the last
Dword.

14. Updates the frame buffer address.

15. Decrements the Read Count.

• After the last Dword is read and written, the 21130 writes the contents of
the residue register to the frame buffer at the next frame buffer address,
masked by Mask Right 1.

• For each write to the frame buffer destination, the 21130 also executes the
specified Raster Op and filters data through the Byte Mask.

The DMA-read copy mode is functionally similar to the copy mode. However,
the DMA-read copy mode differs in the following ways:

• Addresses are aligned to Dword (4 bytes) rather than quadword (8 bytes).

• The copy source is located in PCI external memory.

• External memory does not support all bitmap formats.

• The span can contain as many as 2K Dwords.

• The PCI write data passes two sets of mask data to mask the span’s left
and right edges (per-pixel masking is not allowed).

The DMA-read copy operation can be considered to be a copy-mode operation
in which the source is accessed across the PCI bus and the granularity of
the operation is 32 bits rather than 64 bits. Both the Frame Buffer Address
Destination and DMA Address must be aligned to 4 bytes. The process of
reading the source, rotating using the residue register, and writing the
destination occurs in groups of 4 bytes rather than 8 bytes.

Because the Frame Buffer Address Destination and the DMA Address must be
aligned to 4 bytes, software must adjust the desired source and destination
addresses and masks for unaligned copies to the next whole Dword. However,
all bitmaps, except packed 8-bpp bitmaps, are naturally aligned to 4 bytes.

Each Dword read from PCI external memory is concatenated with a 32-bit
version of the residue register, and rotated by Pixel Shift bytes to produce the
destination Dword written to the frame buffer. In the DMA-read copy mode,
the Pixel Shift is calculated as in the copy mode (Table 10–11). However,
unlike the copy mode, the Pixel Shift value range is 0 to +3, because
backward copies are unnecessary and the granularity is 4 bytes rather than 8
bytes.

Graphics Operations 10–35

10.2 Graphics Modes

In the DMA-read copy mode, the copy buffer is not used, and the destination
Dword is written directly to the frame buffer, using the specified Raster Op and
Byte Mask. Residue-register priming and flushing is similar to the copy mode
(Section 10.2.6).

The GIB Endian bit must be set to enable gib-endian byte swapping during
simple writes and reads, DMA-read copy operations, and scaled-copy operations
with 16-bpp and 32-bpp RGB sources.

10.2.7.1 Priming and Flushing the Residue Register
The two left-edge masks compensate for residue-register priming. For the copy
alignments that require residue-register priming, the following occur:

• The Frame Buffer Address Destination is decremented one Dword (that is,
the destination span’s left edge is extended 4 bytes).

• Mask Left 0 masks out the additional Dword.

• Mask Left 1 contains the desired edge mask.

For alignments that do not require residue-register priming, Mask Left 0
usually contains the desired edge mask and Mask Left 1 is set to 11112.

The two right-edge masks compensate for copy alignments that require residue-
register flushing. As in the copy mode, the pipelined nature of the source-read
data path causes valid source data to remain in the residue register under
certain conditions. Depending on the alignment and location of the span’s
right edge, this also applies to the DMA-read copy mode. But unlike the copy
mode, the DMA-read copy mode requires explicit software attention to flush the
residue register. Specifically, explicit residue-register flushing is required for
alignments in which Source Aligned and Destination Aligned are the desired
address alignments of the end of the span and one of the following is true:

Source Align > Destination Align and
Source Aligned < Destination Aligned

or

Source Align < Destination Align and
Source Aligned > Destination Aligned

To flush the residue register in such cases, Mask Right 1 contains the desired
edge mask and Mask Right 0 is set to 11112.

Table 10–13 shows how the four edge-mask parameters are set according to the
requirement to prime and flush the residue register.

10–36 Graphics Operations

10.2 Graphics Modes

Table 10–13 Edge Mask Settings in DMA-Read Copy Mode

Mask Left Mask Right

Residue
Register 0 1 0 1

Prime 0000 Left-edge
mask

— —

No prime Left-edge
mask

1111 — —

Flush — — 1111 Right-edge
mask

No flush — — Right-edge
mask

0000

For short spans, in which fewer than 3 Dwords are read across the PCI, all
edge masks are not used. (However, the DMA copy modes are seldom used to
copy such small spans and the limitation can usually be ignored.) Table 10–14
lists the masks used for such spans.

Table 10–14 Edge Mask for Short Spans in DMA-Read Copy Mode

Mask Left Mask Right

Read Count 0 1 0 1

�3 Yes Yes Yes Yes

2 Yes No Yes Yes

1 No No Yes Yes

Figure 10–13 is an example of a packed, 8-bpp, short span copied to the frame
buffer over the PCI bus in DMA-read copy mode. The alignment requires an
extra frame buffer write to flush the residue register. For descriptive purposes,
the PCI cycle shown assumes a fast target response with no read latency.

Graphics Operations 10–37

10.2 Graphics Modes

Figure 10–13 DMA-Read Copy

Desired Destination Address (Destination Align = 3)

a b c d e f g h i j

Desired Source Address = XXXXXXX2 (Source Align = 2)

Pixel Shift = Destination Align − Source Align = +2

Frame Buffer Address

00 10 20 30 4001

Source Read 0

Source Read 1

Source Read 2

Residue Register

0 0 0 1 1 1 1 1 1 1 1 1 1 0 0 0

−h i j

− − − − − a b c

− a b c d e f g

d e f g h i j −

j − − −

f g h i

DMA
Address

b c d e

− − − a

Mask
Right 1

Mask
Right 0

Mask
Left 1

Mask
Left 0

PCI Clock

ad<31:0>

DMA Address = XXXXXXX0

PCI Memory Read Cycle:

Flush Residue

Destination

−abc defg − hij

1

1

10–38 Graphics Operations

10.2 Graphics Modes

10.2.8 Scaled-Copy Mode
In scaled-copy mode, a PCI write to the frame buffer address space copies
(with a start and end mask) a contiguous span of up to 1K Dwords (4KB) from
external PCI memory to the frame buffer. The 21130 performs the scaled-copy
as a function of parameters specified Table 10–15.

Scaled-copy (Base Address, Frame Buffer Address Destination,
Repeat Count (-1), Read Count (-1), Start Pixel,
End Pixel, Draw#, Filter Sharp, Filter Smooth,
Pixel In Longword, Pixel Order, Pixel Format,
Dither, YUV Convert, 422 Out, Address Increment 1,
Initial Error, Error Increment 1, Error Increment 2,
Dither Row, Dither Column, GIB Endian)

Table 10–15 Scaled-Copy Mode Parameters

Parameter Source Section

Frame Buffer Address
Destination

PCI write address — —

Repeat Count (-1)
Read Count (-1)
Base Address Mid

PCI write data <31:28>
<26:16>
<15:0>

—

Base Address Hi
Base Address Lo

DMA base address
register

GDBR <31:23>
GDBR <6:2>

8.5.15.2

Start Pixel
End Pixel
Draw#
Filter Sharp
Filter Smooth
Pixel In Longword
Pixel Order
Pixel Format
Dither
YUV Convert
422 Out

Scaled-copy control
register

GSCR <1:0>
GSCR <3:2>
GSCR <7:4>
GSCR <9:8>
GSCR <10:9>
GSCR <21:20>
GSCR <23:22>
GSCR <25:24>
GSCR <27>
GSCR <29>
GSCR <30>

8.5.16

Address Increment 1
Error Increment 1

Bresenham 1 register GB1R <31:16>
GB1R <15:0>

8.5.11.2

Error Increment 2 Bresenham 2 register GB2R <15:0> 8.5.12

Initial Error Bresenham 3 register GB3R <31:15> 8.5.13.2

Dither Row Dither row register GDRR <31:27> 8.5.17

(continued on next page)

Graphics Operations 10–39

10.2 Graphics Modes

Table 10–15 (Cont.) Scaled-Copy Mode Parameters

Parameter Source Section

Dither Column Dither column register GDCR <31:27> 8.5.17

GIB Endian Deep register GDER <21> 8.5.2

The PCI write cycle initiates a scaled-copy operation. The PCI write addresses
the location of the destination span (Frame Buffer Address Destination) and
passes as data Repeat Count, Read Count, and Base Address Mid. Figure 10–14
shows the format of the PCI write data, and Table 10–16 describes its fields.

Figure 10–14 Scaled-Copy Mode PCI Write Data Format

31

R
E
S

28 27 26 16 15 0

Read Count−1 Base Address Middle
Repeat
Count−1

Table 10–16 Scaled-Copy Mode PCI Write Data Field Description

Bits Field Description

31:28 Repeat
Count–1

Specifies the number of destination spans –1 to be created from
the specified source span. The Address Increment 1 field is
used to advance from the end of one destination span to the start
of the next. The Dither Row index is incremented by 1 for each
destination span created.

27 RES Reserved

26:16 Read
Count–1

Specifies the number of Dwords –1 to be transferred in rendering
each destination span specified by a scaled-copy command.

15:0 Base
Address
Middle

In scaled-copy mode this field is substituted for GDBR bits <22:7>
to form the PCI DMA start address (Figure 10–15).

Figure 10–15 shows how the Base Address Mid field of the PCI write data
is combined with the Base Address Hi and Base Address Lo fields to form
the source-span starting address. (This method of specifying the source
span starting address requires that the address stride between the start of
consecutive source spans is a multiple of 128 bytes.)

10–40 Graphics Operations

10.2 Graphics Modes

Figure 10–15 Scaled-Copy PCI DMA Start Address

28 31 27 26 16 15 0

PCI DMA Start Address

Read Count−1

22

Base Address Mid

31

2 1 0

PCI Write Data

GDBR

7

RES RES

23 6

7

22

6

2 1 0

Base
Address

Low

0 0

R
E
S

Repeat
Count−1

Base Address High

Base
Address

Low
Base Address High Base Address Mid

31 23

The DMA-read logic implements the scaled-copy mode. In this mode, as in
normal DMA-read copy mode, the 21130 does a DMA operation to transfer a
span from host memory to its frame buffer. However, the scaled-copy mode
includes the following functions that can be applied to the source span during
the transfer:

• Arbitrary up or down scaling

• Support for YUV source formats

• Sharpening and smoothing filters

• RGB color depth conversion

• Arbitrary remapping of 8-bpp indices

Graphics Operations 10–41

10.2 Graphics Modes

10.2.8.1 Video Rendering Pixel Flow
The scaled-copy mode supports video rendering. Using a sequence of scaled-
copy operations, a to-be-displayed YUV-space video image resident in host
memory (or any other PCI source) can be transferred to a window in the
21130’s frame buffer.

Each DMA command issued in scaled-copy mode causes the 21130 to obtain
mastership of the PCI bus and transfer a single source span to one or multiple
destination spans in the frame buffer. During the transfer, the span is filtered,
color-space converted, and scaled in the X axis. A repeat count (indicating the
number of destination spans to be created from the source span) assists in
doing Y-axis scaling.

Figure 10–16 shows the flow of pixels through the 21130 during video
rendering. The span is rendered as follows.

1 Input DMA Dword pixel data.

2 Byte-lane multiplexing is done to extract the Y, U, and V components
from the appropriate positions in each DMA Dword (multiple source YUV
formats are supported). 8-bpp (treated as 3:3:2) is MSB-replicated to 8:8:8.

3 Decoded pixel data is 24-bit (YUV or RGB) data and pixel x, y location.

4 The pixels pass through a selectable Y/G prescaling filter. The filter can be
sharpening (–0.5, 2.0, –0.5), smoothing (0.5, 0.0, 0.5), or bypassed (0, 1, 0).

Note

The filter should not be used with 8-bpp (3:3:2 or index) source formats.

5 The pixels are duplicated or omitted (to effect magnification or minification)
through a Bresenham-style scaler.

6 The pixels pass through a selectable Y/G postscaling filter. The filter can be
sharpening (–0.5, 2.0, –0.5), smoothing (0.5, 0.0, 0.5), or bypassed (0, 1, 0).

Note

The filter should not be used with 8-bpp (3:3:2 or index) source formats.

10–42 Graphics Operations

10.2 Graphics Modes

Figure 10–16 Host-to-Screen Scaled-Copy and Video Rendering Pixel Flow

Prescaling
Filter

Pixel
Duplication
or Omission

Postscaling
Filter

Pixel
Duplication
or Omission

Pixel
Duplication
or Omission

x Phase = 16

7 Bits
y Phase = 0

x Phase = 8

7 Bits
y Phase = 0

3/5/6/8

Dither
Matrix

2/5/5/8

5 Bits

3/5/5/8

S S

5 Bits

S

7 Bits

x Phase = 0
y Phase = 0

Pixel Locationy

Scale

Dither Bypass

9 Bits

8 Bits

9 Bits

Scale

Dither Bypass

Scale
9 Bits

8 Bits

Dither Bypass
9 Bits

9 Bits

8 Bits

9 Bits

4 Bits 3 Bits 3 Bits

Convert YUV
to Color Index

10 Bits

8 Bits

3:3:2 RGB or
5:5:5 RGB or
5:6:5 RGB or
8:8:8 RGB or
8:8:8 VYU or
4:2:2 YVYU

8, 16, or 32 Bits
Frame Buffer

ROM

1

2

3

13

4

4

5

6

7

10

11

12

8

Pixel Locationx

Y/G U/B V/R

Byte3 Byte2 Byte1 Byte0

Multiplexing

9

Graphics Operations 10–43

10.2 Graphics Modes

The prescaling and postscaling filters operate only on the luminance
components of the pixels. Duplication and omission occur across all
components of the YUV triplets.

After passing through the postscaling filter, pixels are dithered and quantized
to form 4:3:3 YUV values. The 32 � 32 dither matrix 7-bit output is ‘‘tiled’’
throughout the image. The U/B and V/R outputs are phase-shifted with respect
to the Y/G output.

7 The YUV/RGB data is shifted and scaled for dithering quantizations.

8 The ‘‘controlled noise’’ from the dither matrix is added to the YUV/RGB
data.

9 Either the dithered value or the original value (which bypasses the dither
logic) is selected.

1 0 The selected values are quantized (LSBs are truncated to form 8:8:8, 5:6:5,
5:5:5, or 3:3:2 RGB, or 8:8:8 or 4:4:3 YUV).

1 1 The quantized values are concatenated into 8:8:8, 5:6:5, 5:5:5, or 3:3:2 RGB;
or 8:8:8 or 4:4:3 YUV; or 4:2:2 YVYU.

1 2 A 1K � 8 ROM converts the quantized YUV values into 8-bit color indices.
(The color indices are translated into RGB values by a dedicated video
palette ROM LUT in the video back end.)

1 3 The pixel data is saved to the frame buffer. In 16-bpp or 32-bpp modes,
the 8-bit indices are replicated across all byte channels of the target
pixels. Certain mode selections also allow 4:2:2 or 4:4:4 YUV formats to be
written to the frame buffer (useful when driving an external NTSC encoder
connected to the 21130’s VAFC port).

10.2.8.2 YUV Pixel Formats
4:4:4 	VYU Format

31 8 724 23 16 15 0

V Y Ua

In the 4:4:4 	VYU format, each Dword represents a single YUV pixel.
During scaled-copy operations the 	 channel is not propagated from source to
destination pixels. In other words, the 	 channel in 	YUV format destination
pixels is indeterminate. This format matches PCI multimedia (MM) guidelines
(PCI Multimedia Design Guide, Revision 1.0).

10–44 Graphics Operations

10.2 Graphics Modes

4:2:2 YVYU Format

31 8 724 23 16 15 0

V U0Y1Y

In the 4:2:2 YVYU format, each Dword represents two YUV pixels. The two
pixels have independent Y values, but share U and V components. This format
matches the PCI MM guidelines for the little-endian 4:2:2 YUV format. If the
422OUT bit is set (GSCR <30>, Section 8.5.16), the 21130’s video logic can also
write pixels in this format to the frame buffer.

4:2:2 YVYU Destination Pixel Format
In a 16-bpp output mode, a 4:2:2 YVYU format destination is produced by
setting the 422OUT bit (GSCR <30>). This destination format is supported to
interface with an external NTSC encoder device through the VAFC connector.

Each 4:2:2 YVYU Dword is formed from 2 consecutive destination pixels
as created by the scaled-copy pipeline. The Y0 and U values are taken
from the destination pixel’s write address that points to the low word in
the destination Dword. Similarly, the Y1 and V values are taken from the
destination pixel’s write address that points to the high word in the destination
Dword. Consequently, the U and V values are sub-sampled by alternately
ignoring one and then the other U or V component. Note that U and V values
are not interpolated in this process.

4:2:2 UYVY Format

0Y 1Y

31 8 724 23 16 15 0

VU

In the 4:2:2 UYVY format, each Dword represents two YUV pixels. The two
pixels have independent Y values, but share U and V components.

Graphics Operations 10–45

10.2 Graphics Modes

4:2:2 VYUY Format

0Y1Y

31 8 724 23 16 15 0

UV

In the 4:2:2 VYUY format, each Dword represents two YUV pixels. The two
pixels have independent Y values, but share U and V components. This format
matches PCI MM guidelines.

10.2.8.3 16-bpp and 32-bpp RGB Formats
Both the 16-bpp and 32-bpp RGB formats require byte swapping that
effectively performs an endian-swap of bytes within each pixel. The GIB Endian
bit must be set to enable gib-endian byte swapping during simple writes and
reads, DMA-read copy operations, and scaled-copy operations with 16-bpp and
32-bpp RGB sources. (The gib-endian byte swapping implemented in the 21130
is based on the PCI Multimedia Design Guide, Revision 1.0 and the Apple seed
note Designing PCI Cards for Macintosh Computers.)

10.2.8.4 Rendering Full Frames
The programming interface for scaled-copy rendering is optimized for the
case of an unoccluded or trivially occluded target window. This performance-
critical case requires only one PCI write per source video-frame span, enabling
maximum use of the 21130 command FIFO. (The command FIFO queues the
write commands used to initiate scaled-copy renderings. By queuing enough
scaled-copy commands, the 21130 can buffer enough work to keep it busy while
the CPU spends a few cycles on other tasks, such as video decompression.) As
the occlusion of a target window becomes more complex, additional PCI writes
and CPU supervision are required, which might degrade overall rendering
performance. Such performance degradation is acceptable for video rendering
applications, because complexly occluded windows are expected to lack user
focus.

10.2.8.5 Unoccluded or Trivially Occluded Target Windows
Unoccluded or trivially occluded target windows typically require only one PCI
write per span of the source video frame.

The PCI write address specifies the Frame Buffer Address Destination for
the start of the destination span. The destination span address can also be
specified indirectly, by a write to the address register (GADR, Section 8.5.6);
or the destination span address can be accumulated through writes to the

10–46 Graphics Operations

10.2 Graphics Modes

continue register (GCTR, Section 8.4.3), so that a new address is not required
for each operation.

The PCI write data specifies the source span starting address (Base Address
Mid), the number of Dwords to be transferred (Read Count), and the number
of consecutive destination spans to be created from the source span (Repeat
Count). The Address Increment 1 value is used to advance from the end of one
destination span to the start of the next.

Unoccluded Target Window
To render into an unoccluded target window, software first writes to the Base
Address Hi and Base Address Lo fields. Software then writes the Frame Buffer
Address Destination to the GADR. Subsequent writes to the GCTR initiate
one scaled-copy operation for each PCI write. The Base Address (DMA start
address) for each scaled-copy operation is formed as shown in Figure 10–15.

During the scaled-copy operation, the source span at the Base Address
is transferred to one or multiple destination spans. After rendering each
destination span, the Dither Row is incremented by 1 and the Frame Buffer
Address is incremented by Address Increment 1 in preparation for rendering
the next destination span.

Trivially Occluded Target Window
If occlusions exist such that each screen span has identical x-extents and
is composed of only a single unoccluded region (for instance, a situation in
which only the left side of a target window is exposed) the window is trivially
occluded. Trivially occluded windows require only one PCI write per source
span. The Base Address Lo field can be adjusted to align the source span
starting address with the edge of the occlusion.

Note

The scaled-copy mode supports operation in which source frame data is
not arranged specially in PCI memory. In this case, two writes (rather
than one) are required per screen span rendered. In addition to the
frame buffer write, the GDBR must be written for each span in order
to specify arbitrary values for the Base Address Hi and Base Address
Lo fields.

Graphics Operations 10–47

10.2 Graphics Modes

10.2.8.6 Nontrivially Occluded Windows
For windows that are occluded such that there exist regions of differing x-
extents, additional writes are required to the registers controlling scaled-copy
operations. Upon crossing into a region of different x-extent, the Base Address
Lo, Dither Column, Initial Error, Start Pixel, End Pixel, and Draw# fields
might require updating, depending on the situation. To minimize the number
of additional PCI writes required, software can render spans with identical
x-extents as a group.

10.2.8.7 Determining the Command FIFO Entry Availability
When rendering a video frame using scaled-copy operations, it is useful to
know the number of entries that are available in the 21130 command FIFO.
By issuing only the number of commands needed to fill the FIFO, the CPU can
avoid stalling until enough scaled-copy operations complete to accommodate
the remaining operations.

To determine command FIFO entry availability, the current FIFO read and
write pointers are included in the data returned on a command status register
(MCSR) read. The CPU can subtract and mask to determine the number of
entries available (minimum entries available = write pointer � read pointer).
The command status register returns 0000000016 when the 21130 is idle.

Figure 10–17 shows the MCSR format (read and write).

Figure 10–17 MCSR Format

RES RES
FIFO FIFO
Write

31

Pointer
Read

8

Pointer

722 21 16 15 14 13 1 0

RES

B
u
s
y

10.2.8.8 Scaling
The 21130 uses a Bresenham scaler to scale spans horizontally. The precision
of the Initial Error, Error Increment 1, and Error Increment 2 allows the
magnification or reduction of source lines from 0 to 65535 (0 to 216–1) pixels,
in 1-pixel increments, to frame buffer spans of 0 to 65535 pixels, in 1-pixel
increments.

The CPU must do vertical scaling. Magnification can be done with multiple
scaled-copy operations, to place a given source frame line into multiple 21130
frame buffer spans. Similarly, reduction can be done by selectively omitting
source frame lines. For arbitrary vertical scaling, a software Bresenham
scaler (similar to the 21130 internal scaler) can be used. The 21130’s dithering

10–48 Graphics Operations

10.2 Graphics Modes

function helps to reduce banding caused by vertical span duplication during
magnification.

10.2.8.9 Programming the Bresenham Scaler for Unoccluded Spans
The following sections summarize how to program the horizontal Bresenham
scaler to effect reduction, magnification, and unity scaling. The method
of calculating the initial Bresenham errors in this section conforms to the
Windows NT DrvStretchBlt source and destination alignment constraints.

Reduction
To map a source frame line of numSource pixels to a frame buffer span
of numDest pixels (where numSource > numDest), the following Bresenham
increments and initial error can be used:

Bresenham1.Increment1 = numDest;
Bresenham2.Increment2 = numSource - numDest;
Bresenham3.InitialError = (Increment1 >> 1) - Increment2;
Mode.mode = Scaled-copy_reduce;

Iteration within the 21130’s Bresenham scaler proceeds as follows:

error = InitialError;
repeat until no more source pixels

if (error < 0)
move to next source pixel;
error = error + Increment1;

else
create destination pixel from current source pixel;
move to next source pixel;
error = error - Increment2;

Magnification
To map a source frame line of numSource pixels to a frame buffer span
of numDest pixels (where numSource < numDest), the following Bresenham
increments and initial error can be used:

Bresenham1.Increment1 = numSource;
Bresenham2.Increment2 = numDest - numSource;
Bresenham3.InitialError = (Increment1 >> 1) - Increment2;
Mode.mode = Scaled-copy_magnify;

Iteration within the 21130’s Bresenham scaler proceeds as follows:

Graphics Operations 10–49

10.2 Graphics Modes

error = InitialError;
repeat until no more source pixels

if (error < 0 && (Increment1 != 0))
create destination pixel from current source pixel;
error = error + Increment1;

else
create destination pixel from current source pixel;
move to next source pixel;
error = error - Increment2;

Unity Scaling
To map a source frame line of numSource pixels to a frame buffer span
of numDest pixels (where numSource = numDest) the following Bresenham
increments and initial error can be used:

Bresenham1.Increment1 = 0;
Bresenham2.Increment2 = 0;
Bresenham3.InitialError = 0;
Mode.mode = Scaled-copy_reduce or _magnify;

10.2.8.10 Scaling of Occluded Spans
When rendering an occluded span, Bresenham scaler initialization is slightly
different than for nonoccluded or trivially occluded spans.

The effective scaling factor of an occluded span is identical to that of its parent
unoccluded span, such that the Error Increment 1 and Error Increment
2 fields are programmed as described in the preceding sections. (When
calculating the increments, the values of numSource and numDest for the full,
unoccluded span are used.) On the other hand, it might be necessary to modify
the Initial Error term if the first frame buffer pixel to be rendered does not
originate from the first pixel in the source span. When this is the case, the
Initial Error value should be set to the accumulated error value that would
have resulted if Bresenham stepping was done from the first Dword in the
source line up to the pixel that is the origin of the first frame buffer pixel to
be rendered. If the error is not initialized in this way, the target image might
be skewed in the x-direction at boundaries between regions of unlike occlusion.
Software can calculate the Initial Error value using the same algorithm as
the 21130 scaling hardware. Note that the Initial Error calculation needs to
be done only once per region of similar x-extent.

10–50 Graphics Operations

10.2 Graphics Modes

10.2.8.11 Specifying Span Starting and Trailing Edges
The Initial Error, Start Pixel, End Pixel, and Draw# values position the
starting and trailing edges for spans generated by scaled-copy operations.

The first pixel generated by a scaled-copy operation is placed at the Frame
Buffer Address Destination specified by the PCI write which initiated the
operation (or was programmed into the GADR, or was advanced by Address
Increment 1 from the end of the previous span). The Initial Error and
Start Pixel values map the destination span starting edge to the appropriate
position on the source span.

The Start Pixel value indicates which pixel in the first source Dword is the
first pixel to be used. For example, if the source format is 4:2:2 Y1VY0U and
the Start Pixel value is 1, then the source pixel associated with Y0 of the
first Dword will be skipped; instead, the first source pixel used will be the
one associated with Y1. The Initial Error value establishes the number of
destination pixels to be created from the first source pixel.

The trailing edge of a destination span is specified with the End Pixel and
Draw# values. The End Pixel value indicates which pixel within the last DMA
Dword is the last pixel to be considered from the source span. The Draw# value
indicates the number of destination pixels to be generated from the last source
pixel. The 4-bit wide Draw# value supports span trailing edge masking for
magnifications up to approximately 16�.

Note

Nonsensical combinations of Start Pixel and End Pixel (Start Pixel
> End Pixel for DMA-count of 1; or Start Pixel or End Pixel > the
number of pixels in a Dword) produce undefined results, but will not
hang the chip.

10.2.8.12 Required Software Interlock
Scaled-copy mode requires a software interlock when updating the GB1R,
GB2R, GB3R, GDCR, or GDRR so that register updates do not corrupt an
ongoing scaled-copy operation. Digital recommends an interlock mechanism
that writes the GSCR before writing to the GB1R, GB2R, GB3R, GDCR, or
GDRR. This causes the register updates to stall until an ongoing scaled-
copy mode operation is complete. This software interlock should not impose
performance constraints because the registers should require updating only
when transitioning to a swath of different x-extent.

Graphics Operations 10–51

10.2 Graphics Modes

10.2.9 Opaque-Line Mode
Section 10.2.9.1 describes opaque-line mode operations initiated by the
standard frame buffer write mechanism, and it is included for continuity.
However, the same functionality is more efficiently implemented with the
alternate slope register write mechanism described in Section 10.2.9.2.

10.2.9.1 Drawing Lines with Frame Buffer Writes
In the opaque-line mode, a PCI write to the frame buffer address space draws
a masked, 16-pixel, bitonal line segment starting at the specified address. For
this description, a line segment is defined as a string of 16 contiguous pixels
drawn along an arbitrary slope; a line is made up of multiple segments and its
length is arbitrary.

The 21130 draws the line segment as a function of the parameters listed in
Table 10–17.

Opaque Line (Frame Buffer Address, Frame Buffer Address <1:0>, Line Mask, Raster Op,
Byte Mask, Foreground, Background, Address Increment 1,
Address Increment 2, Error Increment 1, Error Increment 2, Initial Error,
Length, Destination Bitmap, Cap Ends);

Table 10–17 Opaque-Line Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Address <1:0>
Line Mask

PCI write data <17:16>
<15:0>

—

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Foreground Foreground register GFGR <31:0> 8.5.8

Background Background register GBGR <31:0> 8.5.8

Address Increment 1
Error Increment 1

Bresenham 1 register GB1R <31:16>
GB1R <15:0>

8.5.11

Address Increment 2
Error Increment 2

Bresenham 2 register GB2R <31:16>
GB2R <15:0>

8.5.12

Initial Error
Length

Bresenham 3 register GB3R <31:16>
GB3R <3:0>

8.5.13

Cap Ends Mode register GMOR <15> 8.5.1

The PCI write cycle initiates the line segment drawing operation to the 21130
frame buffer. The PCI write addresses the start of the segment (Frame Buffer

10–52 Graphics Operations

10.2 Graphics Modes

Address) and passes as data the two address LSBs (Frame Buffer Address
<1:0>) and a 16-bit Line Mask to pattern the line. Figure 10–18 shows the
format of the PCI write data.

Figure 10–18 Opaque-Line Mode PCI Write-Data Format

31 18 17 16

Frame Buffer Address <1:0>

15 0

RES Line Mask

The Frame Buffer Address must be aligned to 1 pixel. For drawing to packed
8-bpp bitmaps, the two LSBs of the frame buffer address (Frame Buffer
Address <1:0>) are part of the PCI write data. For drawing to any other
bitmap, the address is Dword-aligned (by default) and Frame Buffer Address
<1:0> is ignored.

Before writing to the frame buffer in a line mode, software must ensure that
the Address Increment, Error Increment, Length, and Initial Error values
stored in the Bresenham registers are appropriate to the slope, octant, and
length of the line segment. Software can write these parameters directly or
initialize them indirectly by writing the GSLRs or GSNRs (Section 10.2.9.2).

Before starting to draw the line segment, the 21130 uses the Frame Buffer
Address (concatenated with Frame Buffer Address <1:0>, if necessary) to
initialize the address stored in its Bresenham engine.

The 21130 draws a line segment as follows:

1. To draw the first pixel, the 21130 checks the bits from the Line Mask as
follows:

• If the first Line Mask bit = 1, Foreground color is written.

• If the first Line Mask bit = 0, Background color is written.

2. On any write in opaque-line mode, the 21130 does the specified Raster Op
and uses the Byte Mask to mask the writes to individual pixel bits.

3. The Bresenham engine then takes one step along the line, as follows:

• If the current error term is <0, the engine adds Address Increment 1 to
the current address and adds Error Increment 1 to the current error
term to take one step along the major axis of the line segment.

Graphics Operations 10–53

10.2 Graphics Modes

• If the current error term is �0, the engine adds Address Increment 2 to
the current address and subtracts Error Increment 2 from the current
error term to take one step along the major and minor axes of the line
segment.

4. The 21130 then decrements Length and repeats the process for each pixel
along the line, until the segment Length = 0. Once initialized by Frame
Buffer Address <1:0>, the 21130 internally monitors which Dword-byte is
to be written to a packed 8-bpp bitmap as it steps through the line.

The following pseudo-code represents the basic algorithm for opaque-line mode:

while (Length > 0)
{

Pixel = (Extract Bit(Line Mask,Length)) ? Foreground : Background;
Write Frame Buffer(Frame Buffer Address, Pixel, Raster Op, Byte Mask,

Destination Bitmap);
/* Bresenham step along line */
if (Error < 0)
{

Frame Buffer Address += Address Increment 1;
Error += Error Increment 1;

}
else
{

Frame Buffer Address += Address Increment 2;
Error -= Error Increment 2;

}
Length --;

}

10.2.9.2 Drawing Lines with the Slope Registers
Drawing lines as described in Section 10.2.9.1 results in a bottleneck for the
following reasons:

• Overall line throughput in the CPU or I/O is slow, due to the software
overhead incurred in setting up and writing all of the Bresenham address
and error terms for each line.

• The 21130’s high-performance, 64-bit memory bus can draw at a rate faster
than a CPU can supply commands and data.

To avoid bottlenecks, the GSLRs are a faster and simpler mechanism for
drawing lines with less computation and fewer writes.

Table 10–18 is the modified list of parameters used in drawing lines with the
GSLRs.

10–54 Graphics Operations

10.2 Graphics Modes

Table 10–18 Opaque-Line Mode Parameters Using Slope Registers

Parameter Source Section

Absolute Dy
Absolute Dx

Slope register GSLRn <31:16>
GSLRn <15:0>

8.4.1

Frame Buffer Address Address register GADR <31:0> 8.5.6

Line Mask Data register GDAR <15:0> 8.5.7

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Foreground Foreground register GFGR <31:0> 8.5.8

Background Background register GBGR <31:0> 8.5.8

Bitmap Width Bresenham width register GBWR <15:0> 8.5.14

Cap Ends Mode register GMOR <15> 8.5.1

Drawing lines with the GSLRs is similar to the standard line drawing
mechanism, with the following exceptions:

• A write to a GSLR, rather than to the frame buffer, initiates the drawing
operation.

• The address and line-mask data are specified in registers.

• Software must initialize the Bresenham width register (GBWR,
Section 8.5.14) instead of the GB1R, GB2R, and GB3R registers.

Each GSLR corresponds to one drawing octant (Figure 8–1) and contains two
16-bit fields, one for the absolute value of the slope rise (Absolute Dy) and the
other for the absolute value of the slope run (Absolute Dx).

On a write to a GSLR, the 21130 calculates the Bresenham terms and then
starts the standard Bresenham line drawing algorithm. Because the PCI
write that initiates the drawing operation addresses a GSLR and passes slope
information as data, the Frame Buffer Address and Line Mask parameters are
specified in the GADR and GDAR, rather than in the PCI write data.

Given the slope and octant information, the 21130 does all of the Bresenham
setup. It calculates all of the Bresenham error and address terms and stores
them in the appropriate Bresenham register fields. The 21130 implements a
slightly different setup algorithm depending on whether the line must comply
with Win32 or be compatible with existing Digital conventions for lines drawn
under X.

Graphics Operations 10–55

10.2 Graphics Modes

The following pseudo-code represents the basic hardware setup algorithm:

dxGEdy = (Absolute Dx >= Absolute Dy);
dxGE0 = (Absolute Dx > 0);
dyGE0 = (Absolute Dy > 0);
dmajor = (dxGEdy ? Absolute Dx : Absolute Dy)
dminor = (dxGEdy ? Absolute Dy : Absolute Dx)
majorGE0 = (dxGEdy ? dxGE0 : dyGE0);
minorGE0 = (dxGEdy ? dyGE0 : dxGE0);
amajor = (dxGEdy ? PixelBytes : BitmapWidth);
aminor = (dxGEdy ? BitmapWidth : PixelBytes);
if Graphics Environment

{
errinc = (dxGEdy ? dyGE0 : !dxGE0);
}

else
{

errinc = majorGE0;
}

/* Initial Bresenham terms */
Length = dmajor + Cap Ends mod16;
Error Increment 1 = dminor;
Error Increment 2 = dmajor + ~dminor + 1;
Initial Error = ((dminor<<1) + ~dmajor + errinc) >>1;
Address Increment 1 = (majorGE0 ? amajor : ~amajor + 1);
Address Increment 2 = (minorGE0 ? aminor : ~aminor + 1) + Address Increment 1;

Cap Ends is an additional parameter specified in the GMOR. Results are
undefined if Absolute Dx and Absolute Dy are both set to zero.

Note that Length is set to the major axis length MOD 16. Therefore, the 21130
draws up to, but not necessarily exactly, 16 pixels when a GSLR is written. For
example, if the major axis length is 19, writing a GSLR causes a 3-pixel line to
be drawn (assuming Cap Ends is set).

Because Win32 has strict requirements on which pixels must be illuminated
for a particular line, while X does not, the Initial Error term is calculated
differently for Win32 display drivers than for Digital X servers. Win32 lines
must comply with Microsoft’s grid intersect quantization (GIQ) specification:

‘‘That is, the geometric line from the starting point to the ending point
is imagined as drawn on a grid with p(ix)els at the grid intersections.
Whenever the geometric line crosses the grid, the nearest p(ix)el is
illuminated. In the case where two p(ix)els are equidistant, the upper
or left p(ix)el is illuminated, unless the slope of the line is exactly one, in
which case the upper or right p(ix)el is illuminated.’’

10–56 Graphics Operations

10.2 Graphics Modes

While Win32 lines are generally X-compliant, they do not comply with Digital’s
traditional way of drawing lines under X. Traditionally, Digital’s X servers
draw X-compliant lines that are not always Win32-compliant; specifically,
the upper or left pixel is not always illuminated in accordance with the GIQ
specification. Consequently, the 21130 line setup compensates for the difference
by setting Initial Error as a function of the graphics environment. If there is
no need to adhere to traditional practice, the 21130 draws X-compliant lines,
including when the graphics environment is Win32.

In any line mode, drawing lines by writing to the GSLRs is almost always
faster than drawing lines by writing to the frame buffer. However, additional
restrictions imposed when drawing Win32-compliant lines prevent using the
GSLRs. Therefore, some lines can be drawn only by directly writing to the
frame buffer. These restrictions affect the 21130 display driver rather than the
hardware (Section 11.8).

The slope-no-go registers (GSNR<7:0>) mimic the behavior of the GSLRs,
but they do not initiate drawing. That is, on a write to a GSNR, the 21130
processes the slope data, generates the Bresenham terms, and loads them into
the Bresenham registers, but the line is not drawn. The GSNRs are useful for
drawing clipped lines, in which some portion of the line is not drawn.

Figure 10–19 is an example opaque-line mode operation.

10.2.9.3 Extending and Linking 2D Lines
The 21130 processes up to 16 pixels per line-segment drawing operation, but
graphics applications do not limit line drawing requests to lines that are 16 or
fewer pixels. Additionally, applications can request a string of lines, with each
subsequent line starting at the end of the preceding line. The line drawing
hardware supports two ways of linking 16-pixel line segments:

• A previously drawn line can be extended up to 16 pixels along the same
slope.

• A new line drawing can start at the end of a previously drawn line.

For example, to draw a 50-pixel line, the 21130 software must link four
segments along the same line. The 21130 allows multiple segments of the
same line and multiple lines to be drawn without software reassigning the
address and other parameters for each segment. The Bresenham engine has
several features to facilitate such operations.

Graphics Operations 10–57

10.2 Graphics Modes

Figure 10–19 is an example opaque-line mode operation.

Figure 10–19 Opaque Line Drawing

Frame Buffer Address || Frame Buffer Address <1:0>

0101010101010101

0 15

Line Mask

Foreground

Background

Unmodified

The Bresenham engine contains a working set of the parameters Initial
Error, Length, and Frame Buffer Address. When a line-segment drawing
operation is initiated, the Bresenham engine conditionally loads the primary
parameter values into its working set. (The drawing operation can be initiated
by a write to a GSLR or the GCTR.) During the line-stepping process, the
Bresenham engine operates only on the working set.

On completion of the segment drawing operation, the Bresenham engine leaves
its working set in a state suitable for linking to the next segment or line.
Specifically, the Bresenham engine’s working set of parameters is managed as
follows:

• If a GSLR was written since the last line segment was drawn, the
Bresenham engine updates its working copies of Length and Initial
Error from the register before drawing a line segment. Otherwise, the line
segment is drawn without updating the working set parameters.

10–58 Graphics Operations

10.2 Graphics Modes

• If a new address was specified in the GADR since the last line segment
was drawn, the Bresenham Engine updates its working copy of the
Frame Buffer Address before drawing a line segment. Otherwise, the
line segment is drawn without updating the working copy of the Frame
Buffer Address.

• On completion of a line-segment drawing operation, the Bresenham engine
does the following:

– Leaves its working copy of the Frame Buffer Address at the address of
the next pixel along the line.

– Resets the value of its working copy of Length to 16.

– Sets its copy of Initial Error to the error term for the next pixel along
the line.

In other words, the Bresenham engine uses new values of Initial Error and
Length only if a GSLR was reloaded after the last line segment was drawn;
otherwise, the engine does not sample either parameter, but uses the current
working set values.

Similarly but independently, the Bresenham engine uses a new address only if
a new address was specified by a write to the GADR after the last line segment
was drawn.

Extending a Single Line
By taking advantage of the Bresenham engine behavior, software can extend
the current opaque line up to 16 pixels by writing the Line Mask for the
next segment to the GCTR. Because software does not write a GSLR, the
Bresenham engine’s working parameters correspond to the next pixel in the
line, with Length reset to 16. Given the new line mask, the 21130 extends the
line 16 pixels.

In summary, the fastest way for software to extend the current line by one
more 16-pixel segment is to write the following:

1. Any relevant registers, except the GADR and GSLR

2. The segment’s Line Mask to the GCTR

This process can be repeated as many times as necessary to draw lines of
arbitrary length. Usually, the first segment is drawn by writing to a GSLR,
and all subsequent segments along the same line are drawn by writing to the
GCTR.

Graphics Operations 10–59

10.2 Graphics Modes

Figure 10–20 shows a typical sequence for drawing a line of length n by
drawing the first segment and then drawing as many extending segments as
necessary.

Note

Other than Length, Initial Error, and Frame Buffer Address, all
relevant opaque-line mode parameters (such as Foreground and
Background) are sampled every time a line segment drawing operation
is initiated.

Linking Multiple Lines
The Bresenham engine behavior also allows software to link multiple lines.
Each line can have different color, mask, or slope attributes, but the lines must
be drawn end-to-end (a polyline). In this case, software writes a GSLR, rather
than the GCTR, and does not write the GADR. This effectively reinitializes all
of the engine’s slope parameters, including Initial Error, but does not change
the working copy of the Frame Buffer Address.

In summary, to write the first segment of a new line where the previous line
terminated, software writes the following:

1. Any relevant registers except the GADR

2. A GSLR

Specifying Cap Ends
Whether extending or linking lines, software must specify the appropriate
value for Cap Ends (GMOR <15>). When the value of Cap Ends = 0, the last
pixel in the line is not drawn; otherwise, the last pixel is drawn. Therefore,
to extend or link line segments as described above, software must set
Cap Ends = 0, so that the last pixel in the previous line segment is not drawn.
If the value of Cap Ends = 1, the last pixel in the previous line segment and the
first pixel in the next line segment will be drawn at the same place, possibly
with undesired results.

10–60 Graphics Operations

10.2 Graphics Modes

Figure 10–20 Opaque-Line Drawing Sequence

N

Y
n > 16?

Mode
Foreground
Background
Plane Mask
Raster Operation

Data

Bresenham Width

Write registers:

Continue

Address

Write registers:

Slope

Write registers:

n n − 16

Set up for lines

Draw first segment

Draw segment

Draw last segment

n

Draw

Draw

Draw

Continue
Write registers:

Graphics Operations 10–61

10.2 Graphics Modes

10.2.10 Transparent-Line Mode
In the transparent-line mode, a PCI write to the frame buffer address space
draws a masked, 16-pixel solid-line segment starting at the specified address.
The 21130 draws the line segment as a function of the parameters listed in
Table 10–19.

Transparent Line (Frame Buffer Address, Frame Buffer Address <1:0>, Line Mask,
Raster Op, Byte Mask, Foreground, Address Increment 1,
Address Increment 2, Error Increment 1, Error Increment 2,
Initial Error, Length, Destination Bitmap, Cap Ends);

Table 10–19 Transparent-Line Mode Parameters

Parameter Source Section

Frame Buffer Address PCI write address — —

Frame Buffer Address <1:0>
Line Mask

PCI write data <17:16>
<15:0>

—

Byte Mask
Destination Bitmap
Raster Op

Raster operation register GOPR <19:16>
GOPR <10:8>
GOPR <3:0>

8.5.9

Foreground Foreground register GFGR <31:0> 8.5.8

Address Increment 1
Error Increment 1

Bresenham 1 register GB1R <31:16>
GB1R <15:0>

8.5.11

Address Increment 2
Error Increment 2

Bresenham 2 register GB2R <31:16>
GB2R <15:0>

8.5.12

Initial Error

Length

Bresenham 3 register GB3R <31:16>

GB3R <3:0>

8.5.13

Cap Ends Mode register GMOR <15> 8.5.1

The transparent-line mode works in the same way as the opaque-line mode
(Section 10.2.9), and is similarly more efficient when operations are initiated
by writing a slope register rather than the frame buffer. Transparent-line
mode differs in that Line Mask determines whether the Foreground color is
written (Line Mask bit = 1) or write is disabled (Line Mask bit = 0), rather than
determining whether foreground or background color is written.

10–62 Graphics Operations

11
Programming

This chapter contains additional programming information. It includes
information about the DECchip 21130 configuration firmware, graphics drivers
and servers, video support functions, and functions to support Alpha systems.

11.1 PCI Configuration Firmware
The 21130 hardware implements the full set of required PCI configuration
registers, and is fully configurable by generic PCI-compliant system firmware.
The 21130 is not limited to motherboard applications, but behaves as a
generic plug-and-play PCI option for all PCI-compliant systems independent
of operating system. (Section 11.12 addresses systems that require dedicated
support for the 21130 in the base system firmware.)

11.1.1 Device Address Mapping
Configuration firmware can map the 21130 device and enable response to
that mapping by manipulating fields in the PCI device base address registers
(PDBR0 and PDBR1, Section 8.2.5) and PCI command and status register
(PCSR, Section 8.2.2). Table 11–1 describes the fields to be manipulated.

Table 11–1 21130 Base Address and Memory Space Enable Fields

Field Register Bits Field Description

Device
base
address

PDBR0
PDBR1

<31:4>
<31:4>

The PCI memory address defined as base address
0 and 1 of the 21130 address space.

Memory
space
enable

PCSR <1> When set, enables the 21130 to respond to
memory space accesses.

The PCI device base address and command and status registers are written in
the following sequence:

Programming 11–1

11.1 PCI Configuration Firmware

1. Configuration firmware probes the device base address registers to
determine where the 21130 is to be mapped and the amount of space
to allocate to it; that is, firmware writes all ones to the registers and then
reads back the value. The 21130 returns the following values:

• PDBR0:

– <24:4> = 00000016 to indicate that base address 0 must be aligned
to 32MB or greater.

– <0> = 0 to indicate that this address space must be mapped to PCI
memory space.

• PDBR1:

– <20:4> = 0000016 to indicate that base address 0 must be aligned
to 2MB or greater.

– <0> = 0 to indicate that this address space must be mapped to PCI
memory space.

2. Firmware allocates:

• 32MB of naturally aligned PCI memory space and writes the base
address 0 MSBs to PDBR0 <31:25>

• 2MB of naturally aligned PCI memory space and writes the base
address 1 MSBs to PDBR1 <31:21>

3. Firmware sets the memory space enable bit (PCSR <1>) to enable device
response. (Usually, memory space enable should not be set until PDBR0
and PDBR1 have been properly initialized as described in steps 1 and 2.)

After the PDBR0 and PDBR1 are written and memory space enable is set in
the PCSR, the 21130 can respond as a normal PCI target (Section 9.3).

11.1.2 Bus Mastering
The 21130 supports DMA operations to rapidly transfer image data from
PCI-accessible memory to display memory. To invoke 21130 DMA operations,
the 21130 must be able to master the PCI bus. Configuration firmware must
write fields in the PCI latency timer register (PLTR, Section 8.2.4) and PCSR,
to enable the 21130 to be a PCI bus master. Table 11–2 describes the fields to
be written.

11–2 Programming

11.1 PCI Configuration Firmware

Table 11–2 PCI Latency Timer and Bus Master Enable Fields

Field Register Bits Field Description

Latency
timer

PLTR <15:8> 21130 bus ownership is limited to the number of
PCI clocks specified in this field.

Bus
master

PCSR <2> When set, enables the 21130 to become bus master.
It must be set to enable DMA operations, but
should not be set until the PLTR is initialized.

DMA operations usually involve a long (hundreds of bytes) burst transfer.
Therefore, a high latency-timer value helps improve performance. However, the
benefit of a high latency-timer value depends on the PCI bridging structure,
and is limited, for example, by PCI bridges that terminate transfers on
cache-line boundaries.

11.1.3 Interrupt Routing
Configuration firmware is also responsible for mapping system interrupt lines
to PCI devices that require interrupt services (as does the 21130). After the
interrupt lines are mapped, configuration firmware must write the routing
information to the interrupt line field in the PCI interrupt line register (PILR
<7:0>, Section 8.2.7). During subsequent normal graphics operation, display
drivers or the operating system can determine interrupt vectors and priorities
either by reading the line interrupt registers or through the GET_DEVICE_
INTERRUPT BIOS routine.

11.1.4 Expansion ROM
The 21130 supports an external EEPROM that conforms to PCI expansion
ROM specifications. See the PCI Local Bus Specification, Revision 2.0 for more
information.

11.2 Mode Switching
Sections 11.2.1 and 11.2.2 describe programming considerations for switching
the 21130 from VGA mode to 2DA mode and from 2DA mode to VGA mode.

11.2.1 VGA-to-2DA Mode Switching
Digital recommends the following procedure to efficiently switch the 21130
from VGA mode to 2DA mode. The first five steps place the VGA cell in a
known state, and then halt video and graphics memory cycles issued by the
VGA cell. The remaining steps set up 2DA video, switch the memory pins to
the 2DA memory controller, and enable 2DA video.

1. Call the video BIOS to set up mode 3.

Programming 11–3

11.2 Mode Switching

2. Clear the synchronous reset bits (1:0) in the reset register (VSRESR <1:0>,
Section 8.12.3). The VSRESR is index 0 in the VGA sequencer register set.

3. Clear the VGA enable bit (<22>) and update the mode 32 bit (<20>) as
appropriate in the graphics deep register (GDER, Section 8.5.2).

4. Set the desired pixel clock values and set the VGA variable dot clock select
bit (<0>) in the clock control A register (VXCKAR, Section 8.14.10).

5. Set the synchronous reset bits (1:0) in the reset register (VSRESR <1:0>).

6. Load the 21130-specific video control and format registers (Sections 8.7
through 8.8.5).

7. Set the DAC resolution select bit in the palette and DAC command
register 0 (DCOR0 <1>, Section 8.9.7) to enable 8-bit DAC resolution.

8. Set the video valid bit in the video valid register (VIVVR <0>,
Section 8.7.2). Active video will start on the next top-of-frame.

Frame buffer data is not preserved across the mode switch. Digital
recommends that the software doing the mode switch initialize the frame
buffer after the switch is completed.

11.2.2 2DA-to-VGA Mode Switching
Digital recommends the following procedure to efficiently switch the 21130
from 2DA mode to VGA mode. The first step halts video cycles issued by
the 2DA. The remaining steps switch the memory controller pins to the VGA
memory controller and enable VGA operation.

1. Clear the video valid bit (<0>) and blank bit (<1>) in the video valid
register (VIVVR, Section 8.7.2).

2. Read the video valid register and wait for synchronized video valid to
deassert (VIVVR <8>).

The video back end is idle.

3. Read the command status register and wait for the busy bit (MCSR <0>,
Section 8.3.1) to deassert.

4. Set the mode-32 bit in the graphics deep register (GDER <20>,
Section 8.5.2).

5. Reset the video control and format registers (Sections 8.7 through 8.8.5) to
their initial power-up states.

6. Clear the synchronous reset bits (1:0) in the reset register (VSRESR <1:0>,
Section 8.12.3). The VSRESR is index 0 in the VGA sequencer register set.

11–4 Programming

11.2 Mode Switching

7. Clear the VGA variable dot-clock select bit in the clock control A register
(VXCKAR <0>, Section 8.14.10).

8. Clear the screen-off bit in the clocking mode register (VSCMOR <5>,
Section 8.12.4). The VSCMOR is index 1 in the VGA sequencer register
set.

9. Clear the DAC resolution select bit in the palette and DAC command
register 0 (DCOR0 <1>, Section 8.9.7) to enable 6-bit DAC resolution.

10. Read the command status register and wait for the busy bit (MCSR <0>) to
deassert.

11. Set the VGA enable bit in the graphics deep register (GDER <22>).

12. Read the command status register and wait for the busy bit (MCSR <0>) to
deassert.

13. Set the synchronous reset bits (1:0) in the reset register (VSRESR <1:0>).

14. Call the video BIOS to set the desired mode.

Frame buffer data is not preserved across the mode switch. Digital
recommends that the software doing the mode switch initialize the frame
buffer after the switch is completed.

11.2.2.1 Expected 2DA Operation During VGA Mode
The graphics engine and memory controller are not disabled during VGA
mode. This means that any attempted 2DA graphics operations will complete,
but actual frame buffer operations will not be done. This behavior prevents
inadvertent programming from hanging the 21130.

11.3 Bit-Block Transfers
Bit-block transfers (BitBlts) can be implemented as screen-to-screen copies and
host-to-screen copies.

11.3.1 Screen-to-Screen Copy
For high performance, screen-to-screen copy is the most important function to
accelerate. The 21130 copy mode, 64-bit memory port, and 64-byte copy buffer
all contribute to the high speed of screen-to-screen copies.

Typically, driver-level calls move a rectangular source region to a destination
region, and, possibly, apply a Boolean raster operation to the source and
destination. Because the copy mode (Section 10.2.6) supports only span copies,
software must break the rectangle into as many individual spans as necessary,
with the width of each span equal to the width of the rectangle. Furthermore,
it must break each arbitrary-width span into as many individual segments

Programming 11–5

11.3 Bit-Block Transfers

as necessary, with the length of each segment equal to 16, 32, or 64 pixels,
depending on the frame buffer, bitmap, and masking used (Figure 11–1).

For overlapping source and destination spans, software must choose the proper
copy direction (right-to-left or left-to-right), so that the source is not corrupted
before it is read. The copy mode supports both directions, and maintains the
internal state of the residue register for unaligned copies. Therefore, software
must prime the residue register for only the first span segment (if necessary),
rather than for each segment copy. Priming for subsequent segments occurs on
the last read of the previous segment.

For the most efficient copying of 8-bpp spans, the copy-64 source and
destination registers (GCSR and GCDR, Section 8.4.4) use the entire copy
buffer. Although the GCSR and GCDR can copy only aligned, unmasked span
segments, they can be used to copy the interior of a large unaligned copy,
where the left and right edges are copied by direct writes to the frame buffer.

Figure 11–1 shows how an arbitrary rectangle can be broken into segments
and where priming and flushing occur, if necessary.

11–6 Programming

11.3 Bit-Block Transfers

Figure 11–1 BitBlt Using Copy Mode Example

Segment 0

Segment 3

Segment 6

Segment 9

Segment 1

Segment 4

Segment 7

Segment 10

Segment 2

Segment 5

Segment 8

Segment 11

Segment 0

Segment 3

Segment 6

Segment 9

Segment 1

Segment 4

Segment 7

Segment 10

Segment 2

Segment 5

Segment 8

Segment 11

50 X 4 Pixel Source Rectangle

Destination Rectangle

Left−to−right copy direction
(If alignments require, prime only
for segments 0, 3, 6, and 9)

12 Consecutive Copy Mode Operations

The 21130 provides 16 raster-operation encodings to support the full set of
2-operand Boolean operations specified by X and OpenGL, but not the full
set of Win32 graphics operations. (Win32 supports 256 ternary operations,
two of which can be specified in a particular operation by a mask operand.)
However, the 21130 raster operation encodings do include the most commonly
used Win32 Boolean operations (such as srccopy and patcopy). (See the raster
operation register description, Section 8.5.9.) Therefore, under Win32, if the
Boolean operation passed in the DrvBitBlt call is not supported by the 21130, it
can be broken into supported operations (if possible and desirable), or handled
by the graphics device interface (GDI). Note that handling unsupported raster
operations is not specific to BitBlts — raster operations are called into every
Win32 device-driver interface (DDI) graphics call.

Programming 11–7

11.3 Bit-Block Transfers

11.3.2 Host-to-Screen Copy
An image or bitmap can be copied between host memory and the 21130 frame
buffer with X PutImage or GetImage calls or a Win32 DrvCopyBits call.
Ideally, the DMA-read copy mode can be used. If DMA-read copy mode cannot
be used, the image or bitmap can be burst-written directly into the 21130 frame
buffer space using simple mode and standard programmed I/O. A final (and
likely slower than simple mode) option is to write the copy buffer in standard
programmed I/O, then unload the copy buffer with a write to the GCDR.

To use the DMA-read copy mode, the source rectangle must be broken into
spans (as in the case of local frame buffer copies). The residue register is
primed and flushed as necessary, with appropriate address and pixel-count
values. (See Section 10.2.7 for more information about the DMA-read copy
mode.)

11.3.3 Scaled-Copy
In the scaled-copy mode, as in the DMA-read copy mode, the 21130 does a DMA
operation to transfer a span from host memory to its frame buffer. However,
the scaled-copy mode includes the following functions that can be applied to
the source span during the transfer:

• Arbitrary up or down scaling

• Support for YUV source formats

• Sharpening and smoothing filters

• RGB color depth conversion

• Arbitrary remapping of 8-bpp indices

See Sections 11.4, 11.5, and 10.2.8 for more information.

11.4 Dither Mathematics
The proprietary dithering logic in the 21130 is inherited from the
DECchip 21030, with minor modifications for different output quantizations.
The dithering operation is a two step process:

1. The input value is scaled by a simple shift and subtract operation. The
scaling is performed in order to range-limit the dither output according to
the desired output quantization.

2. A noise value obtained from a lookup into a fixed 32 � 32 ROM matrix is
added to the scaled input. Lookups into the noise matrix are coordinated
so as to tile the 32 � 32 matrix across the target image.

11–8 Programming

11.4 Dither Mathematics

The output of the dithering process is the most significant n bits of the noise
addition result. In the 21130, output quantizations (values of n) of 2, 3, 4, 5,
and 6 are used.

The following pseudo-code represents the exact operations the 21130 performs
during the dithering process, for different output quantizations. In the 21130,
the input value is 8 bits and noise values are 7 bits. During the subtraction
and addition, 9 bits of intermediate result are carried.

n=2: {dataOut(1:0),ignored(6:0)} =
{dataIn(7:0),1’b0} - ({dataIn(7:0),1’b0}>>2) + (matrix(6:0) >> 0);

n=3: {dataOut(2:0),ignored(5:0)} =
{dataIn(7:0),1’b0} - ({dataIn(7:0),1’b0}>>3) + (matrix(6:0) >> 1);

n=4: {dataOut(3:0),ignored(4:0)} =
{dataIn(7:0),1’b0} - ({dataIn(7:0),1’b0}>>4) + (matrix(6:0) >> 2);

n=5: {dataOut(4:0),ignored(3:0)} =
{dataIn(7:0),1’b0} - ({dataIn(7:0),1’b0}>>5) + (matrix(6:0) >> 3);

n=6: {dataOut(5:0),ignored(2:0)} =
{dataIn(7:0),1’b0} - ({dataIn(7:0),1’b0}>>6) + (matrix(6:0) >> 4);

Dither Phases
Dither noise from different locations in the 32 � 32 matrix are applied to the
RGB (VYU) channels. For hardware simplicity, the same row (y-direction)
index is used for all three channels. However, the column indices (x-direction)
use phase offsets 0 (R/V), 8 (G/Y), and 16 (B/U).

11.5 Scaling Filters
The 21130 supports two 3-tap filters for the Y/G channel: a smoothing filter,
with coefficients 0.5, 0.0, and 0.5; and a sharpening filter, with coefficients
–0.5, 2.0, and –0.5. The sharpening filter is clamped to prevent overflow and
underflow. The following pseudo-code represents the exact operations the
21130 performs in applying the 3-tap filters.

smoothing:
(0.5, 0, 0.5): {dataOut(7:0),ignored} =
pixelLeft(7:0) + pixelRight(7:0);

sharpening:
(-0.5,2,-0.5): {dataOut(7:0),ignored} =
(4*pixelCenter(7:0) - pixelLeft(7:0) - pixelRight(7:0) < 0) ?
9’b000000000 :
(4*pixelCenter(7:0) - pixelLeft(7:0) - pixelRight(7:0) > 511) ?
9’b111111111 :
(4*pixelCenter(7:0) - pixelLeft(7:0) - pixelRight(7:0));

Programming 11–9

11.5 Scaling Filters

Special treatment is given to the first and last pixels of the source and
destination spans. For these pixels, the filters are forced to operate in pass-
through mode. More specifically, the first and last pixels in the source span
after the application of the Start Pixel and End Pixel values pass through
the prescaling filter unmodified; and the first and last pixels in the destination
span after scaling, but before the application of the Draw# value, pass through
the postscaling filter unmodified. All other pixels are modified according to the
current filter settings.

11.6 Overlays
Sections 11.6.1 through 11.6.3 describe the use of overlays.

11.6.1 Flicker-Free Monochrome Overlay Support
Certain multimedia applications combine text, graphics, and video in a single
window. Typically, this is done by specifying a base image (perhaps a video
frame) along with an overlay image (that is, text or graphics). The two images
are combined to form the image displayed in the window. This style of overlay
support is included in a recent Microsoft and Intel display control interface
(DCI) specification.

In a 21130 system, the process of rendering with an overlay is likely to be done
as follows:

1. One (or multiple) scaled-copy operations transfer base image spans to the
target window.

2. Simple, stipple, or other graphics modes selectively place pixels from the
overlay image on top of the base image spans.

Because these two operations do not occur instantaneously, it is possible that
the screen refresh process will ‘‘snapshot’’ the target window spans before
they are fully updated. This can cause pixel color errors that, if they occur
frequently enough, cause motion sequences to ‘‘flicker’’ or ‘‘sparkle.’’

To provide a mechanism by which software can prevent overlay flicker or
sparkle, the 21130’s current screen refresh address is readable (VFCRR,
Section 8.8.4). By checking the screen refresh address before rendering video
and overlay spans, software can avoid issuing commands at a time likely to
collide with the screen refresh operation. Unlike most reads (which are stalled
until the chip goes idle), reads of the screen refresh address are serviced
immediately.

11–10 Programming

11.6 Overlays

11.6.2 True Monochrome Overlay with Pixel Occlusion Bitmap
Hardware
The 21130’s pixel occlusion bitmap hardware can be used as a true monochrome
overlay surface (as well as specifying regions of inside and outside pixel format
— see Section 8.8.1.1). This overlay mechanism provides a true overlay for
8-bpp depths. (True overlay surfaces for 16-bpp and 32-bpp pixel depths can be
implemented using the mechanism described in Section 11.6.3.)

Note

The pixel occlusion bitmap hardware cannot be used to select between
RAM and ROM LUTs at the same time that it is being used as a
monochrome overlay. When using the pixel occlusion bitmap hardware
as a monochrome overlay, software must coordinate the sharing of a
single LUT by graphics and video applications.

To implement the monochrome overlay function, the onchip palette and DAC
is forced to display cursor color 3 when a lit overlay pixel is encountered. This
imposes the following limitations on the use of the monochrome overlay.

• The overlay is merged with the graphics pixel stream only after the stream
has passed through the palette and DAC. Therefore, modes that output
pixels to the VAFC before palette and DAC processing cannot use the
overlay.

• Because cursor color 3 is the overlay color, and to maintain hardware
simplicity, the monochrome overlay is supported only when the cursor
mode is 002 (cursor disabled) or 102 (MS Windows mode). Cursor mode is
set in the cursor mode register (CMOR <1:0>, Section 8.6.1).

To use the pixel occlusion bitmap hardware as a monochrome overlay:

• Set the pixel occlusion bitmap mode bit in the video pixel format register
(VFPFR <13>, Section 8.8.1).

• Set the cursor mode to disabled or MS Windows in the CMOR.

Table 11–3 shows the displayed pixel value for all combinations of monochrome
overlay and cursor data. The first two table entries apply to cursor disabled
mode and the remainder of the table assumes MS Windows mode is specified.
Note that the table shows the palette and DAC cursor mode (not necessarily
the same as the value programmed in the CMOR).

Programming 11–11

11.6 Overlays

Table 11–3 Cursor Color Displayed with Monochrome Overlay

Pixel�

Occlusion
Bitmap
Value

Cursor�

Data
Cursor†
Mode

Cursor†
Data

Color
Displayed

0 Not in range 00 Don’t care Palette data
1 Not in range 01 11 (color 3) Overlay color

0 00 (color 1) 10 00 (color 1) Cursor color 1
0 01 (color 2) 10 01 (color 2) Cursor color 2
0 10 (transparent) 10 10 (transparent) Palette data
0 11 (invert) 10 11 (invert) Inverse palette data

1 00 (color 1) 10 00 (color 1) Cursor color 1
1 01 (color 2) 10 01 (color 2) Cursor color 2
1 10 (transparent) 01 11 (color 3) Overlay color
1 11 (invert) 01 11 (color 3) Overlay color

�From frame buffer
†To palette and DAC

11.6.3 True 8-bpp Overlay in 16-bpp or 32-bpp Frame Buffers
The 21130’s ability to display high-quality video in 8 bits enables it to easily
provide a superior 8-bpp overlay in 16-bpp and 32-bpp frame buffer depths.
The 8-bpp overlay can be used to implement the DCI’s chroma-keyed overlay
surfaces.

For pixels with a pixel occlusion bitmap bit value of 1 (indicating that the pixel
is part of a video window), the ROM palette index is displayed through the
ROM LUT if the overlay value matches the 0016 chroma-key. If the overlay is
not 0016, the overlay value is displayed through the RAM LUT. Pixels with a
pixel occlusion bitmap bit-value of 0 (pixels not part of the video window) are
displayed as 16- or 24-bit direct color (the LUTs are not used).

The 21130 byte mask (GOPR <19:16>, Section 8.5.9) can be used to select the
byte within the 16-bpp and 32-bpp visual to which the video pipeline writes
the ROM LUT indices. The memory controller can detect the byte mask and,
consequently, does not need to do read-modify-write operations to write the
pixels.

11–12 Programming

11.6 Overlays

Figure 11–2 shows the arrangement of overlay data in 16-bpp and 32-bpp
frame buffers.

Figure 11–2 Overlay Data in 16-bpp and 32-bpp Frame Buffers

8 7

15 0

15 0

5:6:5 or 5:5:5 RGB

16−bpp Frame Buffer:

Overlay ROM Palette Index

32−bpp Frame Buffer:

31

31

8 7

8 724 23

16 15 0

16 15 0

R

Pixel Occlusion Bitmap = 0 (outside)

G B

Overlay ROM Palette Index

Pixel Occlusion Bitmap = 0 (outside)

Pixel Occlusion Bitmap = 1 (outside)

Pixel Occlusion Bitmap = 1 (outside)

11.7 Fills
Sections 11.7.1 through 11.7.3 describe filling, stippling, and tiling functions.

11.7.1 Solid
A region can be solid-filled with X FillSpan or PolyFillRect calls, or under
Win32 with a DrvPaint call and a solid brush. The best way to do a solid fill is
to use the transparent-fill or opaque-fill mode. The specific mode used depends
on the following conditions:

• Fill region size

Programming 11–13

11.7 Fills

• Required raster operation

• Destination bitmap

Because the transparent-fill mode only fills spans, software must do the
following:

1. Break the fill region into spans no longer than 2K pixels.

2. Replicate the solid color as necessary across the foreground register (GFGR,
Section 8.5.8).

3. Write the frame buffer as many times as necessary to fill the spans.

(The fill modes are described in Sections 10.2.4 and 10.2.5.)

11.7.2 Stippling or Filling with a Monochrome Brush
When stippling or filling with a monochrome brush, a 1-bpp bitmap is
expanded into a foreground (and optionally, background) color to tile a solid or
bitonal pattern across a region. The opaque-stipple or opaque-fill mode can be
used, depending on the following conditions:

• Size of the fill region

• Number of pixels at which the pattern repeats

• Raster operation

• Destination bitmap

• Masking

Filling a region with a 4 � 4 or 8 � 8 monochrome brush is a common
Windows operation. The pattern must repeat at intervals of 2� and ���, and
the foreground and background color must be specified.

If none of the fill modes can be used or the region is very small, the opaque-
stipple (or transparent-stipple) mode can be used, in conjunction with the
foreground and background registers.

11.7.3 Tiling or Filling with a Non-Monochrome Brush
When tiling or filling with a non-monochrome brush, a tile or brush pattern
that is the same depth as the destination bitmap is repeated across the fill
region. The width and number of colors in the pattern can be arbitrary.

The copy mode or DMA-read copy mode can be used to recopy the same pattern
from off-screen memory or main memory, respectively, to the destination as
many times as necessary.

11–14 Programming

11.7 Fills

In the DMA-read copy mode, the 21130 can read more than 100 MB/s from
the PCI bus. It can write the frame buffer at approximately the same rate,
depending on the length of the copy. Therefore, the DMA-read copy mode
can theoretically tile (brush) at approximately 100 MB/s; however, the actual
rate in a specific system implementation varies as a function of the PCI bus
performance (that is, latency, burst lengths, use, and so on). By comparison,
the standard copy-mode fill rate is more than 50 MB/s. The simple mode can
also be used, and might be the best choice for small regions.

11.8 Lines
The X PolyLine or PolySegment calls or the Win32 DrvStrokePath call can
request 2D lines. The 21130 can draw lines in either of the following ways:

• Standard mechanism — software initializes the Bresenham terms and then
writes the frame buffer to initiate the drawing operation.

• Alternate mechanism — software writes a slope register (GSLR<7:0>,
Section 8.4.1) and the 21130 automatically generates the Bresenham terms
and initiates the drawing operation.

Drawing with the GSLRs is preferred because it is significantly faster than
drawing lines using the standard mechanism. In either case, the continue
register (GCTR) can be used to extend lines to an arbitrary length.

Typically, all X lines can be drawn using the GSLRs. Conversely, the GSLRs
cannot always be used to draw Win32 lines.

11.8.1 Line Drawing Under X
The following sequences list the steps for drawing various types of 2D lines
under X.

• Solid or Bitonal Lines

1. Set the mode to opaque- or transparent-line mode, as desired.

2. Set the foreground and background colors in the foreground register
(GFGR) and background register (GBGR, Section 8.5.8).

3. Write the starting address to the address register (GADR,
Section 8.5.6).

4. Initialize the data register (GDAR, Section 8.5.7) to XXXXFFFF to
draw all pixels (X = unused).

5. Write the appropriate GSLR.

6. Use the GCTR to extend the line to the desired length.

Programming 11–15

11.8 Lines

• Patterned or Styled Lines

Do the solid or bitonal lines sequence described previously, but write the
desired pattern, rather than XXXXFFFF, to the GDAR.

• Connected Lines

Do the solid or bitonal lines sequence described previously, but do not write
to the GADR. The 21130 will draw the new line starting 1 pixel beyond the
end of the previous line.

• Clipped Lines

Figure 11–3 shows a clipped line drawn through a clipping rectangle.

Figure 11–3 Drawing Clipped Lines

Clip Rectangle

Start End

1. Write slope-no-go register 7 (GSNR7, Section 8.5.3) to draw in octant 7.

2. Write the starting pixel address to the GADR.

3. Write the initial error and line length to the Bresenham 3 register
(GB3R).

4. Write the GCTR to draw the line (and repeat for rectangle wider than
16 pixels).

11–16 Programming

11.8 Lines

5. Repeat steps 2 through 4 for each rectangle in the clip list.

11.8.2 Line Drawing Under Win32
The coordinate constructs supported by Win32 do not allow the GSLRs
to be used to draw all lines that the GDI might request from the display
driver. To improve the appearance of rendered lines, Win32 supports subpixel
coordinates. Each coordinate is in the 28.4 format (28 integer bits and 4
fraction bits). The coordinate system can be visualized as a grid in which
an endpoint can reside at any grid intersection, but pixels reside at every
sixteenth pixel in both X and Y. (For more information, see the Win32 device-
driver kit documentation.) The following is a more detailed description of this
‘‘problem’’ and its ‘‘solution.’’

Problem
On a write to a GSLR, the hardware sets up the line; that is, it translates the
absolute dx and absolute dy information into the Bresenham address and error
increment values and initial error term. However, absolute dx and absolute dy
are 16-bit quantities, assumed to be 16 bits of integer and 0 bits of fraction.
This presents two problems:

• The setup hardware cannot properly correct a subpixel endpoint to the
pixel centers.

• Lines passed by the GDI can be too long for the Bresenham engine to
render without the risk of introducing error in the digital differential
analyzer (DDA).

The first problem is complex. Determining the starting pixel can be critical,
and depends on the location of the endpoint in the subpixel grid. For some
endpoints, the first pixel drawn is the pixel closest to the intersection of the
geometric line and the first major-axis grid, rather than the pixel nearest to
the specified endpoint. That is, the first pixel drawn can be a function of the
starting subpixel endpoint and the slope.

The 21130 setup hardware cannot handle such constructs. It cannot correctly
choose the address of the proper endpoint and cannot calculate the proper
Bresenham initial error term. The initial error generated would be relative
to the first subpixel rather than the first real pixel, which can be up to 16
subpixels away.

Secondly, if the 21130 could properly correct the starting address error term,
the 21130 DDA, with 16 bits of resolution, cannot draw lines greater than
64K pixels in major-axis length with guaranteed accuracy. Consequently,
the GSLRs cannot be used to draw any line with endpoints having nonzero
fractional components or any line longer than 64K pixels.

Programming 11–17

11.8 Lines

Solution
To support all possible lines requested by the Win32 GDI, the 21130 Win32
display driver must use a combination of GSLR accesses, direct manipulation
of the Bresenham registers, and writes to the frame buffer. The following is a
suggested strategy for dealing with an arbitrary GDI line drawing request:

1. If the line is less than 64K pixels in the major axis, go to step 2. Otherwise,
do either of the following:

• Default to the GDI.

• Break long lines into smaller segments and go to step 2.

2. Screen for endpoints with nonzero fractional components.

For integer endpoints, draw by writing the GSLR, passing a 16.0 format
value for absolute dx and absolute dy.

For noninteger endpoints, do the following (and refer to the Win32 device-
driver kit documentation for more detail):

a. Determine the starting pixel and calculate the address.

b. Write a GSNR to calculate the address and error increment terms (that
is, the parameters in the GB1R and GB2R) passing 12.4 format values
for absolute dx and absolute dy. The setup process will calculate these
terms correctly, regardless of the number of fractional bits.

c. Adjust the initial error term relative to the starting pixel. This can
be done by performing the DDA at subpixel increments until the first
major-axis grid is reached (which might be necessary in any case) and
scale the error term. Write the error term to the GB3R initial error
field.

d. Write the address of the starting pixel to the GADR and draw the first
16-pixel segment with a write to the GCTR. Repeat this step for lines
longer than 16 pixels.

In effect, this operation appears to be a clipped line with the edge of the
clipping rectangle set at the first integer major-axis grid crossed by the
geometric line.

11–18 Programming

11.9 Text

11.9 Text
The 21130 stipple modes can process a request for any of the X text or glyph
calls or the Win32 DrvTextOut call. The opaque-stipple or transparent-stipple
mode can be used, depending on the following:

• The destination bitmap

• Whether a nontrivial raster operation is required

• Whether the text foreground is filled with a solid, monochrome, or arbitrary
patterned brush or tile

Transparent-stipple mode is used for a solid brush, with the glyph mask
specified as the stipple mask. Opaque-stipple mode is used for a monochrome
brush, with the glyph mask specified as the pixel mask. In either case, if
a mix raster operation is specified for the foreground under Win32, each
raster operation requires two passes using transparent-stipple mode. For an
arbitrarily patterned brush (that is, other than simple monochrome) that does
not repeat at appropriate intervals, simple mode can be used to write the glyph
foreground through the glyph mask.

All stipple modes allow up to 32 pixels to be drawn per operation. Therefore, it
is advantageous to try to group spans from multiple glyphs that are contiguous
in display memory. For example, rather than draw four 8 � 16 glyphs one at
a time, draw all four in parallel, one span at a time — one write can draw one
span from each glyph at the same time.

11.10 Repeat Loop Examples
The following are several repeat-loop templates. Italics indicate parameters
that should be adjusted to tailor the template for the particular Blt to be
performed.

Monochrome or Bitonal Brush Fill
This sequence fills a rectangular area based on colors in the foreground and
background registers and the pattern in the data register.

Alias� Register Value

(Miscellaneous setup)

0 Address Byte address of top-left corner of destination rectangle

0 Repeat begin Height (in scanlines)

�Base address 0 register space alias (Section 7.5.1.2)

Programming 11–19

11.10 Repeat Loop Examples

Alias� Register Value

0 Continue Width (in pixels)

1 Address Virtual screen width (in bytes)

0 Repeat end —

�Base address 0 register space alias (Section 7.5.1.2)

8 � 8 8-bpp Pattern Fill
This sequence fills a rectangular area with an 8 � 8 8-bpp pattern that was
previously cached in off-screen memory.

Alias� Register Value

(Miscellaneous setup)

0 Mode Copy mode, 8-bpp

0 Copy-64 source Byte address of cached pattern

0 Dither row (Top-left Y coordinate of destination rectangle) MOD 8

0 Address Byte address of top-left corner of destination rectangle

0 Mode Extended-pattern fill mode, 8-bpp

0 Repeat begin Height (in scanlines)

0 Continue Width (in pixels)

1 Address Virtual screen width (in bytes)

1 Dither row 0116

0 Repeat end —

�Base address 0 register space alias (Section 7.5.1.2)

Scaled Video DMA (Magnification Only)
This sequence transfers an image from host memory to a window within the
frame buffer. Vertical Bresenham interpolation is used to vertically magnify
the image.

Alias� Register Value

(Miscellaneous setup)

0 DMA base address PCI byte address of top-left corner of source rectangle

0 Data Initial error for vertical scaling

�Base address 0 register space alias (Section 7.5.1.2)

11–20 Programming

11.10 Repeat Loop Examples

Alias� Register Value

0 Address Byte address of top-left corner of destination rectangle

0 Repeat begin Height of destination rectangle (in scanlines)

0 Continue Source rectangle width (in Dwords)

5 DMA base address Source rectangle stride (in bytes)

5 Data Vertical error increment 1

7 Data Vertical error increment 2

0 Repeat end —

�Base address 0 register space alias (Section 7.5.1.2)

8-bpp Screen-to-Screen Copy
This sequence performs a screen-to-screen copy of a rectangular region. The
source and destination rectangle widths must be less than 320 pixels. Height
is arbitrary.

Alias� Register Value

0 Address Byte address of top-left corner of source rectangle

0 Repeat begin Height (in scanlines)

0 Continue FFFFFFFF

1 Address Byte offset = destination top-left � source top-left

0 Continue Start mask

1† Address Byte offset = source top-left � destination top-left

0† Copy-64A source 0000000016

1† Address Byte offset = destination top-left � source top-left

0† Copy-64A destination 0000000016

1 Address Byte offset = source top-left � destination top-left

0 Continue FFFFFFFF

1 Address Byte offset = destination top-left � source top-left

0 Continue End mask

1 Address Byte offset required to get to next source line

0 Repeat end —

�Base address 0 register space alias (Section 7.5.1.2)
†Repeat these register writes as necessary to reach the desired rectangle width.

Programming 11–21

11.11 Video Registers

11.11 Video Registers
Sections 11.11.1 through 11.11.3 describe programming considerations for the
video control and video format registers described in Sections 8.7 through 8.8.5.

11.11.1 Modifying the Contents of the Video Registers
There are three categories of video registers (Table 11–4) in terms of when
software can modify their contents:

• Fully shadowed and pseudo-shadowed registers

Software can write these registers at any time; however, the programmed
value is not effective until the beginning of the next frame. The fully
shadowed and pseudo-shadowed registers are distinguished by the
hardware shadowing mechanism — the difference is transparent to
software.

• Video-disabled

These registers should be written only when the video valid bit in the video
valid register (VIVVR <0>, Section 8.7.2) is clear. Changing the registers
during active video might create artifacts on the screen.

Table 11–4 lists video registers and their type according to programming class.

Table 11–4 Fully Shadowed, Pseudo-Shadowed, and Video-Disabled
Registers

Register Name Mnemonic Type

Cursor mode CMOR Video disabled

Cursor base address CCBR Pseudo shadowed

Cursor XY CXYR Fully shadowed

Video base address VIVBR Pseudo shadowed

Video valid VIVVR Fully shadowed 1

Video scanline increment VISIR Video disabled

Video line width VILWR Video disabled

Video pixel format VFPFR Video disabled 2

(continued on next page)

11–22 Programming

11.11 Video Registers

Table 11–4 (Cont.) Fully Shadowed, Pseudo-Shadowed, and Video-Disabled
Registers

Register Name Mnemonic Type

Video pixel occlusion bitmap base address VFOBR Pseudo shadowed

Video pixel occlusion bitmap current address VFOAR Read Only

Video current refresh address VFCRR Read Only

Alternate video control VFAVR Video disabled

Notes for Table 11–4

1 Some VIVVR bits are in the video-disabled programming class. When such bits
need to be changed, software should:

1. Write the VIVVR to turn off video.

2. Poll the VIVVR until the synchronized video valid bit (<8>) signals that video
is inactive.

3. Modify the VIVVR bits that require video disabled.

2 All of the VFPFR bits are in the video disabled class except the pixel occlusion
bitmap enable bit (<12>) which is fully shadowed. When changing VFPFR <12>
while video is enabled, the other VFPFR bits must be written with their current
value to eliminate any unwanted side effects.

11.11.2 Video Registers in 64-Bit and 32-Bit Frame Buffer Modes
To maintain page locality when a 32-bit frame buffer is present, the memory
controller splits each quadword operation from the graphics core into two
longword operations (Figure 11–4). The quadword address is left-shifted 1
bit, and the address LSB is toggled to differentiate between the upper and
lower longword (Figure 11–5). Consequently, 32-bit mode results in a sparsely
populated quadword address space.

Figure 11–4 shows how the frame buffer is populated in 64-bit and 32-bit
modes.

Programming 11–23

11.11 Video Registers

Figure 11–4 Frame Buffer Address Space in 64-Bit and 32-Bit Modes

64−Bit Mode

32−Bit Mode

LW
7

LW
6

LW
5

LW
4

LW
3

LW
2

LW
1

LW
0 XXXXXXXX

LW
7

LW
6

LW
5

LW
4

LW
3

LW
2

LW
1

LW
0

1000 1001 1002 1003

2000 2001 2002 2003 2004 2005 2006 2007

UnpopulatedX

To maintain correlation between drawing and video refresh, the values
programmed in the video address configuration registers must be left-shifted
1 bit — the 64-bit MSB is discarded and the 32-bit LSB must be a zero or one
(Figure 11–5).

Figure 11–5 shows 64-bit and 32-bit frame buffer video address format, and
Table 11–5 lists the affected registers.

11–24 Programming

11.11 Video Registers

Figure 11–5 Video Address in 64-Bit and 32-Bit Modes

9

4 3

64−Bit
Mode

Video Address RES RES

31 22 21 2 0
VIVBR, VISIR, VILWR

VFOBR

64−Bit
Mode

8 7 0

Video Address RES RES

31 22 21

32−Bit
Mode Video Address RES RES

M
B
*

* Must be 0 in VIVBR, VISIR, and VFOBR; must be 1 in VILWR

32−Bit
Mode RES Video Address RES

M
B
*

Table 11–5 Video Address Configuration Registers

Register Mnemonic Section

Video base address register VIVBR 8.7.1

Video line increment register VISIR 8.7.1

Video line width register VILWR 8.7.1

Video pixel occlusion bitmap base address register VFOBR 8.8.2

11.11.3 Video Refresh Calculations
Figure 11–6 represents a virtual screen in the frame buffer, with the beginning
and ending frame buffer address of several scanlines (numbered 1 through
3).

Programming 11–25

11.11 Video Registers

Figure 11–6 Video Scanline Addresses

Frame Buffer

Virtual Screen

Video Base Address:

Scanline Width:

Scanline Increment: 1 for normal screens

for virtual screens−

− − 1 quadword()

3

3

2

2

2

1

1

1

For a virtual screen, the video base address (1) is loaded into the refresh
address generator at top-of-frame. The refresh address is incremented until
the end of the scanline is reached (specified by the scanline width: 2 minus 1

minus 1 quadword). At the end of the scanline, the scanline increment value
(3 minus 2) is added to the refresh address to determine the starting address
of the next scanline. This address is then used with the scanline width to
determine the end of the next scanline, and so on.

11.12 Programming for Alpha CPUs
Sections 11.12.1 and 11.12.2 describe special programming considerations when
using the 21130 with Alpha microprocessors.

11–26 Programming

11.12 Programming for Alpha CPUs

11.12.1 Programmed I/O Through the CPU Write Buffer
Alpha microprocessors contain an internal 4-entry write buffer. To optimize
the use of system bus bandwidth, the write buffer attempts to collapse and
merge quadwords (64 bits) and Dwords before they are written externally. This
mechanism has an unwanted side effect on write ordering. Specifically, an
ordered packet of Dwords written by a simple string of STL instructions (as in
writing a command packet to the 21130) is not necessarily written on the PCI
bus in the same order or with all the Dwords intact.

To counter this unwanted side effect, a 21130 driver running on an Alpha
microprocessor must:

• Avoid collapsing two separate writes to the same address.

• Enforce write ordering to order-critical 21130 registers.

To enforce write ordering, the Alpha instruction set includes the memory
barrier (MB) instruction that allows software to flush the write buffer between
stores. However, the MB instruction significantly degrades performance when
it is used as frequently as is necessary with an order-dependent, bandwidth-
consuming, programmed I/O device such as the 21130. Therefore, to selectively
enforce ordering and eliminate collapsed writes, the 21130 software can:

• Access multiple aliased regions in the 21130 address space.

• Carefully order accesses within aligned hexawords (eight Dwords) as
appropriate.

The 21130 memory space provides multiple aliases to access the 21130 registers
as well as the frame buffer. In most cases, the multiple address-space aliases
can be used to work around the CPU write buffer’s lack of ordering, without
using MB instructions.

For example, rather than writing to the same register twice and issuing an
explicit MB instruction, software can write to two aliases of the same register.
The different addresses will reside in different write-buffer entries, such that
the writes will not merge and will maintain ordering.

Ordering within each CPU write-buffer entry must also be carefully monitored.
Each hexaword (eight Dwords) write-buffer entry empties from least significant
to most significant Dword (or so it appears on the PCI bus). Therefore, stores
to the same hexaword are in low-to-high order regardless of when they were
written.

Programming 11–27

11.12 Programming for Alpha CPUs

However, strict ordering is not necessary for all writes to the 21130. A typical
graphics drawing command packet (Section 10.1.2) written to the 21130
consists of several order-independent register writes, followed by an ordered
write to another register or the frame buffer. The first several writes can be
arbitrarily reordered among themselves, but they all must appear after the
previous command packet and before the last write of the current packet.

The 21130 register-space core map is organized by hexaword to map cleanly to
the CPU’s write buffer. Within a typical command packet, order-independent
register writes are mapped in the same hexaword, and the order-dependent
register or frame buffer write is mapped either in the most-significant Dword
location of the same hexaword or in another hexaword. If software needs to
address another hexaword entry for the order-dependent write, it should choose
a different alias for every fourth consecutive access. The order-dependent write
then always appears after the order-independent writes.

11.12.2 Address and Continue Register Access
The alternate control space aliases of the address and continue registers
(GADR and GCTR) is another mechanism for using the unenforcing write
buffer in Alpha microprocessors. The GADR maps to all the even offsets in the
first 512KB of alternate ROM space, and the GCTR maps to all the odd offsets
(Section 7.5.1.3).

Any graphics operation invoked by a write to the frame buffer can also be
invoked by a write to the GADR followed by a write to the GCTR. This allows
the 21130 to be programmed by a continuous stream of alternating writes to
the GADR and GCTR. By taking advantage of the odd and even aliases in
alternate control space, software can effectively pack GADR and GCTR writes
in the CPU write buffers. This also minimizes the translation-lookaside buffer
(TLB) overhead in the CPU, because all the writes are local.

11–28 Programming

12
Hardware Interface

This chapter describes the DECchip 21130 external hardware interfaces, with
the exception of the PCI interface. In addition to PCI, test, and power pins,
the 21130 pins provide external connections to the following:

• 64-bit frame buffer memory

• VGA subsystem

• ROM and generic peripheral port (GPP)

• Video port including the VAFC and monitor

• Clocks

All of the 21130 pins and signals are described in Chapter 3. PCI operations
are described in Chapter 9. Appendix A is a summary of the 21130 pinout.

12.1 Frame Buffer Interface
A total of 86 signals are used to move data between the 21130 and its frame
buffer DRAMs — a 64-bit data path and 22 address and control signals. In
normal operation these 86 signals represent data and control signals for
frame buffer memory cycles. However, the physical pins are shared with other
subsystems on the 21130 chip that access the graphics BIOS ROM, optional
peripheral chips, and the VAFC.

12.1.1 Hardware Mode Restrictions
The use of shared pins restricts the functions available and imposes some
limitations in a particular hardware mode. Tables 12–1 through 12–4 show
how the shared pins and associated dedicated pins are used in each hardware
mode.

Hardware Interface 12–1

12.1 Frame Buffer Interface

Note

The ordering of the VAFC and feature connector signals on shared pins
is opposite to the pin number order (see Table 12–4).

Table 12–1 Pin Usage in VGA Mode

Pins Memory Operations ROM Operations

Shared Pins
Signals

memdata<31:00> memdata<31:00> Not used
memdata<49:32> Not used rom_adr<17:0>
memdata<57:50> Not used rom_d<7:0>
memdata<58> Not used rom_we#
memdata<63:59> Feature connector data <3:7> Not used
vafc_data<2:0> Feature connector data <2:0> Not used
gp_stb# Not used rom_oe#

Dedicated Pins
Signals

memaddr<8:0> memaddr<8:0> Not used
cas<7:0># cas<7:0># Not used
ras<2:0># ras<2:0># Not used
oeb# oeb# Not used
wrb# wrb# Not used
gp_cs# Not used Not used
rom_ce# Not used rom_ce#

Table 12–2 Pin Usage in 32-bit GPP and ROM Modes

Pins Memory Operations GPP Operations ROM Operations

Shared Pins
Signals

memdata<16:00> memdata<16:00> gp_adr<16:00> Not used
memdata<17> memdata<17> Not used Not used
memdata<25:18> memdata<25:18> gp_data<7:0> Not used
memdata<26> memdata<26> gp_rdsel# Not used
memdata<27> memdata<27> gp_wrsel# Not used

(continued on next page)

12–2 Hardware Interface

12.1 Frame Buffer Interface

Table 12–2 (Cont.) Pin Usage in 32-bit GPP and ROM Modes

Pins Memory Operations GPP Operations ROM Operations

Shared Pins
Signals

memdata<31:28> memdata<31:28> Not used Not used
memdata<49:32> Not used Not used rom_adr<17:00>
memdata<57:50> Not used Not used rom_d<7:0>
memdata<58> Not used Not used rom_we#
memdata<63:59> Not used Not used Not used
vafc_data<2:0> Not used Not used Not used
gp_stb# Not used gp_stb# rom_oe#

Dedicated Pins
Signals

memaddr<8:0> memaddr<8:0> Not used Not used
cas<7:0># cas<7:0># Not used Not used
ras<2:0># ras<2:0># Not used Not used
oeb# oeb# Not used Not used
wrb# wrb# Not used Not used
gp_cs# Not used gp_cs# Not used
rom_ce# Not used Not used rom_ce#

Table 12–3 Pin Usage in 64-bit GPP and ROM Modes

Pins Memory Operations GPP Operations ROM Operations

Shared Pins
Signals

memdata<16:00> memdata<16:00> gp_adr<16:00> Not used
memdata<17> memdata<17> Not used Not used
memdata<25:18> memdata<25:18> gp_data<7:0> Not used
memdata<26> memdata<26> gp_rdsel# Not used
memdata<27> memdata<27> gp_wrsel# Not used
memdata<31:28> memdata<31:28> Not used Not used
memdata<49:32> memdata<49:32> Not used rom_adr<17:00>
memdata<57:50> memdata<57:50> Not used rom_d<7:0>
memdata<58> memdata<58> Not used rom_we#
memdata<63:59> memdata<63:59> Not used Not used
vafc_data<2:0> Not used Not used Not used
gp_stb# Not used gp_stb# rom_oe#

(continued on next page)

Hardware Interface 12–3

12.1 Frame Buffer Interface

Table 12–3 (Cont.) Pin Usage in 64-bit GPP and ROM Modes

Pins Memory Operations GPP Operations ROM Operations

Dedicated Pins
Signals

memaddr<8:0> memaddr<8:0> Not used Not used
cas<7:0># cas<7:0># Not used Not used
ras<2:0># ras<2:0># Not used Not used
oeb# oeb# Not used Not used
wrb# wrb# Not used Not used
gp_cs# Not used gp_cs# Not used
rom_ce# Not used Not used rom_ce#

Table 12–4 Pin Usage in 32-bit GPP and VAFC Modes

Pins Memory Operations GPP Operations VAFC Operations

Shared Pins
Signals

memdata<16:00> memdata<16:00> gp_adr<16:00> Not used
memdata<17> memdata<17> Not used Not used
memdata<25:18> memdata<25:18> gp_data<7:0> Not used
memdata<26> memdata<26> gp_rdsel# Not used
memdata<27> memdata<27> gp_wrsel# Not used
memdata<31:28> memdata<31:28> Not used Not used
memdata<50:32> Not used Not used Not used
memdata<63:51> Not used Not used vafc_p<3:15>
vafc_data<2:0> Not used Not used vafc_p<2:0>
gp_stb# Not used gp_stb# Not used

(continued on next page)

12–4 Hardware Interface

12.1 Frame Buffer Interface

Table 12–4 (Cont.) Pin Usage in 32-bit GPP and VAFC Modes

Pins Memory Operations GPP Operations VAFC Operations

Dedicated Pins
Signals

memaddr<8:0> memaddr<8:0> Not used Not used
cas<7:0># cas<7:0># Not used Not used
ras<2:0># ras<2:0># Not used Not used
oeb# oeb# Not used Not used
wrb# wrb# Not used Not used
gp_cs# Not used gp_cs# Not used
vafc_dclk Not used Not used vafc_dclk
vafc_vclk Not used Not used vafc_vclk
blank# Not used Not used blank#
hsync Not used Not used hsync
vsync Not used Not used vsync
grdy Not used Not used grdy
evideo# Not used Not used evideo#

After the PCI reset signal (pci_rst#) is asserted, the 21130 is operating with
VGA enabled. This mode allows the VGA feature connector (not VAFC) output
to be used, allows ROM accesses, and uses the lower-half of the 64-bit data
bus for VGA frame buffer accesses. Sixteen-bit VAFC and GPP cycles are not
available.

When the 2DA mode with the 64-bit data bus is selected, ROM and GPP cycles
are available, and neither 8-bit (feature connector) nor 16-bit VAFC mode is
available.

If a 32-bit data bus mode is selected while operating in 2DA mode, either GPP
and VAFC modes or ROM and GPP modes are available. (VAFC and ROM are
not available simultaneously because they use the same pins.) Table 2–1 in
Section 2.12.2 summarizes these restrictions and limitations.

12.1.2 Frame Buffer Configuration Sensing
During reset, the state of the gp_cs# and gp_stb# pins are sampled and saved
in an internal register. When a ROM read is done from sparse ROM space, the
internal register contents are available on bits <9:8> of the returned ROM data
(Section 7.5.2.5). gp_cs# is <9> and gp_stb# is <8>. The module designer can
assign configuration data to these pins, to allow software to set the appropriate
register bits. For example, to select 32- or 64-bit memory widths, an external
22 k
 resistor can be connected to the pin and either Vss to read a zero or
Vdd to read a one.

Hardware Interface 12–5

12.2 VGA Subsystem

12.2 VGA Subsystem
The 21130 powers up with VGA active and the 2DA inactive. When the
21130 is operating in VGA mode, the PCI address decoders are disabled, and
addresses propagate through to the PCI-to-VGA interface, which contains its
own decoders.

Figure 12–1 shows the three primary interfaces between the VGA subsystem
and the PCI interface, video back end, and frame buffer.

12.2.1 PCI–to–VGA Interface
Because the VGA controller has ISA characteristics on its system interface, the
PCI-to-VGA interface translates PCI protocols, data formats, and addresses
into their ISA-like equivalents. The PCI-to-VGA interface is a layer of logic
and state machines between the back of the PCI interface and the ISA front
end of the VGA controller.

12.2.2 VGA-to-Frame Buffer Memory Interface
In VGA mode, the ras<1:0> signals independently control a 16-bit-wide
memory bank. In 2DA mode, the ras<1:0> signals are tied internally and
have identical timing to drive 32 or 64 bits of frame buffer DRAMs. (The ras2
signal is active in 2DA mode, if there is a second bank of frame buffer memory.)
The VGA controller uses only 32 bits of frame buffer, regardless of the actual
memory width.

The VGA memory control, address, and data signals are multiplexed with
their equivalents from the 2DA memory controller immediately before the pins.
In VGA mode, the VGA controller has complete control of the frame buffer,
including display refresh and DRAM refresh functions.

See Section 12.1.1 for more information about mode restrictions due to shared
pins.

12.2.3 VGA-to-Video Back End Interface
The VGA controller outputs an 8-bit video pixel stream, sync, and blanking.
The video stream passes through a multiplexer to the DACs for output to a
monitor.

The 21130 uses the VGA CRT controller (CRTC) for the VGA and 2DA modes
of operation. It generates timing for graphics resolutions up to 1280� 1024.
Because a common CRTC is used, the CRTC register addresses must be
mapped in both modes of operation.

12–6 Hardware Interface

12.2 VGA Subsystem

Figure 12–1 VGA Subsystem Interfaces

(3
)

in
it_

io
 (

re
se

t)
ir

q2
ir

qe
n

m
is

ca
cc

es
s_

da
ta

<
7:

0>

m
is

ca
cc

es
s_

co
nt

ro
l

m
is

ca
cc

es
s_

ad
dr

<
9:

0>

ad
dr

no
w

w
as

ird
y

vg
a_

i/o
vg

am
em

vg
ar

dr
ea

dy
vg

aw
rr

ea
dy

re
tr

y

vg
ar

dh
it

vg
aw

rh
it

bu
sg

ra
b_

cb
e<

3:
0>

vg
ar

dd
at

a<
31

:0
>

bu
sg

ra
b_

ad
<

31
:0

>
pc

i_
cl

k

m
cl

k

di
n<

15
:0

>

do
ut

<
15

:0
>

sa
<

19
:0

>

re
se

t
co

lo
r

m
em

w
rn

m
em

rd
n

io
w

rn
io

rd
n

sb
he

n
w

ai
tn

m
em

se
l<

1:
0>

vg
aa

bo
rt

P
C

I−
V

G
A

In
te

rf
ac

e
P

C
I

In
te

rf
ac

e
V

G
A

S
ub

sy
st

em

re
d

g
re

en

b
lu

e

D
A

C
s

sy
nc

bl
an

k

px
dt

<
7:

0>
se

ns
e

do
tc

lk

dc
lk

se
l

px
cl

k

(3
)

2D
A

 A
dd

re
ss

an
d

C
on

tr
ol

V
G

A
 A

dd
re

ss
an

d
C

on
tr

ol
m

em
ad

d
r<

9:
0>

m
em

d
at

a<
31

:0
>

ra
s<

2:
0>

ca
s<

7:
0>

w
rb

#
o

e
b

#

2D
A

 W
rit

e

vm
do

<
31

:0
>

D
at

a

V
id

eo
 B

ac
k

E
nd

LU
T

s

vs
yn

c

h
sy

n
c

b
la

n
k#

vm
di

<
31

:0
>

M U X M U X

Hardware Interface 12–7

12.3 ROM and Generic Peripheral Port Interface

12.3 ROM and Generic Peripheral Port Interface
The BIOS ROM is accessed on system power-up, reconfiguration, or reset.
Because these are infrequent and low-bandwidth events, most signals used to
access the ROM are shared with frame buffer interface signals on common pins
(see Section 12.1.1).

Note

When operating in 2DA mode, ROM accesses should be restricted to
vertical blank time, or the time when video is disabled by the video
valid bit in the video valid register (VIVVR <0>, Section 8.7.2).

The GPP also shares pins with the frame buffer data path for GPP data,
address, and some of the control signals. Consequently, GPP accesses must
arbitrate with other contenders for time on these pins. This arbitration
adds up to 25 PCI clocks of latency on the PCI bus. The GPP bandwidth is
appropriate for bidirectional traffic in the range of 1 MB/s and lower. This
is suitable for the control needs of many multimedia devices, or for digitized
audio streams; but inadequate for full-time video traffic. The VAFC is more
appropriate for full-time video traffic, while control traffic or audio can
simultaneously use the GPP. To simplify design, the GPP supports a single
access speed of 300 ns.

Note

GPP accesses should be restricted to vertical blank time, or the time
when video is disabled by the video valid bit in the video valid register
(VIVVR <0>, Section 8.7.2).

See Section 7.5.2.2 for a description of GPP address space mapping.

12.3.1 GPP Read and Write Access
Some devices use a single read/write line and a strobe signal to indicate the
start of a cycle (valid address, write data). For such devices, the gp_wrsel#
signal functions as the read/write signal. In most cases, a single small external
device can do any required signal translation to adapt to various interface
requirements.

12–8 Hardware Interface

12.3 ROM and Generic Peripheral Port Interface

12.3.2 GPP Interrupts
The gp_int# interrupt signal can be asserted asynchronously with respect to
the 21130 clocks. Internally, the 21130 samples the signal and passes it to the
PCI interface, where it results in a PCI interrupt. If enabled, gp_int# sets
bit <5> in the interrupt status register (MISR, Section 8.3.2). The interrupt
service routine reads the MISR to determine if the interrupt is in the 21130 or
on the GPP. If it is a GPP interrupt, the interrupt service routine then reads
specific status registers in the peripheral device to determine the nature of the
interrupt.

The gp_int# signal is also used to select the following:

• Internal or external clocks in the PCI clock control register (PCCR <1:0>,
Section 8.2.8)

• Internal or external vsync, hsync, and blank# signals in the video valid
register (VIVVR <7>, Section 8.7.2)

• With the pci_rst# pin, select clock frequencies in the clock control A and B
registers (VXCKAR and VXCKBR, Section 8.14.10)

12.4 Video Port and Display Monitor Interface
Sections 12.4.1 through 12.4.5 describe the video port and monitor interfaces.

12.4.1 VESA Advanced Feature Connector
The VESA advanced feature connector (VAFC) provides a way to send or
receive pixel data. VAFC base-level operation requires the following pins to be
supported:

vafc_dclk
vafc_vclk
vafc_p<0:15>
grdy

evideo#
blank#
hsync
vsync

Additionally, the 21130 supplies the vafc_en# output signal to the external
bus. The 21130 provides all these pins to support the VAFC base level.
When operating in VGA mode, only 8-bit output is allowed (for backwards
compatibility with the previous generation feature connector). The VAFC
modes are described in Sections 12.4.1.3 and 12.4.1.4, and the signals are
described in Chapter 3.

Hardware Interface 12–9

12.4 Video Port and Display Monitor Interface

Note

The VESA Advanced Feature Connector (VAFC) Standard, Version 1.0
requires the 8-bit output mode at power up. This implies that the video
source driving the VAFC must not assert the evideo# signal at power
up, because the 21130 will not accept pixel input. If the video source
does assert the evideo# signal, the 21130 deasserts the vafc_en#
signal, to prevent possible bus contention.

12.4.1.1 VAFC Operation
For all modes, the pixel data appearing on the feature connector is taken from
the internal pixel bus prior to being sent to the variable pixel formatting logic.
In any mode, it must be ensured that the bits-per-pixel selected by the video
pixel format register (VFPFR <11:10>, Section 8.8.1) matches the VAFC output
format. (For example, the VAFC 16-bit pixel format can be used with the
15-bpp or 16-bpp formats.)

12.4.1.2 Relationship Between vafc_vclk and vafc_dclk
The output dot clock (vafc_dclk) is generated from either the 21130’s internal
pixel clock or pixel clock divided by 2. It is sent over the VAFC, to the external
video card. In turn, the video card uses vafc_dclk to generate pixels. Because
vafc_dclk cannot drive all of the logic on the video card, the card buffers
vafc_dclk. It is this buffered version of vafc_dclk that is sent back to the
21130 as vafc_vclk. Input pixels are sampled by vafc_vclk, and grdy is a
function of vafc_vclk. (Pixel clock generation is described in Section 12.5.3.)

12.4.1.3 VAFC Pixel Output Modes
The 21130 supports the following VAFC pixel output modes.

• 8-bit frame buffer or VGA data, 1 pixel per clock

This mode supports standard VGA pass-through output. VGA pixels are
8-bpp indexed, and the 21130 in native mode can output 8-bpp indexed or
3:3:2 RGB pixels. The pixel data occupies bits vafc_p<7:0> on the VAFC
bus (bits <15:8> are ignored).

• 8-bit frame buffer data, 2 pixels per clock

In this mode, 2 pixels at 8-bpp indexed or 3:3:2 RGB are placed on the
VAFC bus at the same time. The vafc_dclk is programmed to be one-
half the frequency of the 21130’s internal pixel clock. The left-most pixel
displayed on the screen occupies VAFC bus bits vafc_p<7:0> and the
right-most pixel occupies bits vafc_p<15:8>.

• 16-bit frame buffer data, 1 pixel per clock

12–10 Hardware Interface

12.4 Video Port and Display Monitor Interface

This mode supports 5:5:5 RGB, 5:6:5 RGB, and 4:2:2 YUV pixel output.

12.4.1.4 VAFC Pixel Input Modes
The 21130 supports the following VAFC pixel input modes.

• 8-bit video system data, 1 pixel per clock

The VAFC input pixels are treated as 8-bit frame buffer data. Pixel
interpretation is controlled by the inside pixel format. The pixel data
occupies bits vafc_p<7:0> on the VAFC bus (bits <15:8> are ignored).

• 8-bit video system data, 1 pixel per 2 clocks

The VAFC dot clock (vafc_dclk) is programmed to be one-half the
frequency of the 21130’s internal pixel clock. Each pixel arriving over the
VAFC bus is displayed during two successive pixels. Pixel interpretation
is controlled by the inside pixel format. The pixel data occupies bits
vafc_p<7:0> on the VAFC bus (bits <15:8> are ignored). The divided-down
dot clock constrains pixels to be displayed on even pixel boundaries.

• 8-bit video system data, 2 pixels per clock

The VAFC input pixels are treated as 8-bit frame buffer data. Pixel
interpretation is controlled by the inside pixel format. The VAFC dot
clock (vafc_dclk) is programmed to be one-half the frequency of the
21130’s internal pixel clock. The left-most pixel displayed on the screen
occupies VAFC bus bits vafc_p<7:0> and the right-most pixel occupies bits
vafc_p<15:8>. The divided-down dot clock constrains pixels to be displayed
on even pixel boundaries.

• 16-bit video system data, 1 pixel per clock

The VAFC input pixels are treated as 16-bit frame buffer data. Pixel
interpretation is controlled by the inside pixel format. The pixel data
occupies bits vafc_p<0:15> on the VAFC bus.

• 16-bit video system data, 1 pixel per 2 clocks

The VAFC dot clock (vafc_dclk) is programmed to be one-half the
frequency of the 21130’s internal pixel clock. Each pixel arriving over the
VAFC bus is displayed during two successive pixels. Pixel interpretation
is controlled by the inside pixel format. The pixel data occupies bits
vafc_p<0:15> on the VAFC bus. The divided-down dot clock constrains
pixels to be displayed on even pixel boundaries.

Hardware Interface 12–11

12.4 Video Port and Display Monitor Interface

12.4.1.5 VAFC Input Windows
The external video system uses the grdy signal to enable VAFC bus transfers.
The 21130 uses grdy to define a window in which VAFC input pixels can be
displayed. VAFC input can be full screen, and the 21130 generates grdy from
a blanking signal. VAFC input can also be a window within a full screen. To
accomplish this, the 21130 uses the pixel occlusion bitmap (Section 8.8.1.3)
to define the input window. When using the pixel occlusion bitmap with a
divided-down vafc_dclk, every pair of bits within the pixel occlusion bitmap
must be identical because vafc_dclk can sample the bitmap data only on every
other clock cycle.

12.4.1.6 VAFC Blank Enable
The 21130’s blank# pin signals valid VAFC output pixels. To blank the VAFC
video system without also blanking the monitor connected directly to the
21130, the alternate video control register contains a VAFC-specific blank
enable (VFAVR <1>, Section 8.8.5).

12.4.1.7 VAFC Output Screen Resolutions
The 21130 supports the following VAFC output screen resolutions.

• 1024 � 768 @ 75 Hz

– 8-bit frame buffer or VGA data, 1 pixel per clock

– 8-bit frame buffer data, 2 pixels per clock

• 800 � 600 @ 75 Hz

– 8-bit frame buffer or VGA data, 1 pixel per clock

– 8-bit frame buffer data, 2 pixels per clock

– 16-bit frame buffer data, 1 pixel per clock

• 640 � 480 @ 75 Hz and below

– 8-bit frame buffer or VGA data, 1 pixel per clock

– 8-bit frame buffer data, 2 pixels per clock

– 16-bit frame buffer data, 1 pixel per clock

• NTSC resolutions

– 8-bit frame buffer or VGA data, 1 pixel per clock

– 8-bit frame buffer data, 2 pixels per clock

– 16-bit frame buffer data, 1 pixel per clock

12–12 Hardware Interface

12.4 Video Port and Display Monitor Interface

12.4.1.8 VAFC Input Screen Resolutions
The 21130 supports the following VAFC input screen resolutions.

• 1024 � 768 @ 75 Hz, 8-bpp

– 8-bit video system data, 1 pixel per 2 clocks

– 8-bit video system data, 2 pixels per clock

– 16-bit video system data, 1 pixel per 2 clocks

• 800 � 600 @ 75 Hz, 8-bpp

– 8-bit video system data, 1 pixel per 2 clocks

– 8-bit video system data, 2 pixels per clock

– 16-bit video system data, 1 pixel per 2 clocks

• 640 � 480 @ 75 Hz and below, 8-bpp and 16-bpp

– 8-bit video system data, 1 pixel per clock

– 8-bit video system data, 1 pixel per 2 clocks

– 8-bit video system data, 2 pixels per clock

– 16-bit video system data, 1 pixel per clock

– 16-bit video system data, 1 pixel per 2 clocks

See the VESA Advanced Feature Connector (VAFC) Standard, Version 1.0 for
more information about the VAFC.

12.4.2 Video Port Transceivers
When the 21130 is sourcing RGB video to an off-card destination, the vafc_en#
signal is asserted. This enables transceivers in the 21130 to VAFC connector
direction, which drive the card-top cable to its destination (typically, another
video card which in turn drives a display monitor). The transceivers play an
important role in buffering the critical frame buffer data path signals from
the capacitive loading and reflections of the VAFC connectors and cables.
Transceivers must be placed as close as possible to the 21130 data path pins to
minimize stub length.

12.4.3 Monitor Connection
The 21130 drives three analog outputs to the monitor. The three color outputs
can drive doubly-terminated 75-
 coaxial signal lines to the display monitor.
Sync can be combined with the green output, using the DAC command
register 0 (DCOR0 <3>, Section 8.9.7).

Hardware Interface 12–13

12.4 Video Port and Display Monitor Interface

12.4.4 Display Power Management Signaling
Display power management signaling (DPMS) is a VESA ‘‘green computer’’
standard that defines four levels of monitor operation for power management.
The 21130 selects the level of monitor operation (DPMS state) with
combinations of the presence and absence of horizontal sync (hsync) and
vertical sync (vsync) pulses. The states are controlled by the DPMS and blank
fields in the video valid register (VIVVR <5:4,1>, Section 8.7.2).

See the VESA Display Power Management Signaling (DPMS) Proposal,
Version 1.0p, Revision 0.7p for more information.

Table 12–5 lists the DPMS states.

Table 12–5 DPMS States

State hsync vsync Video Power Savings Recovery Time

On Pulse Pulse Active None Not applicable

Standby None Pulse Blanked Minimal Short

Suspend Pulse None Blanked Substantial Longer

Off None None Blanked Maximum System-dependent

12.4.5 Display Data Channel
The display data channel (DDC) is described in the VESA Display Data
Channel Standard, Version 1.0, Revision 0. It specifies a data format that
can be transmitted between a computer display and the host system. The
21130 provides low-level support for the two types of data channels (DDC1 and
DDC2) that carry DDC data. DDC1 data is transferred in a single signal that
is clocked by the vsync signal. DDC2 data is transferred over an ACCESS.bus
channel.

The 21130 supports DDC1 with the DDCDI bit in the video valid register
(VIVVR <6>, Section 8.7.2). The DDCDI bit, in conjunction with the VRI bit in
the VGA input status 0 register (VEIS0R <7>, Section 8.11.3), allows software
to deserialize the DDC data stream. Briefly, the VESA specification states that
the DDC data will be valid when vsync is low, which corresponds to a set VRI
bit. Consequently, software can poll the VRI bit, and accumulate DDC data
when the bit is set.

To support the ACCESS.bus data channel, software must generate both the
data and the clock signals, in accordance with the I2C protocol. Software can
use the DDCDO and TCLKO bits (VIVVR <11:12>) to generate, respectively,
the I2C data and clock signals SDA and SCL. The I2C protocol states that,

12–14 Hardware Interface

12.4 Video Port and Display Monitor Interface

in the absence of collisions, data can be changed while the clock is low,
and should be sampled when the clock is high. Additionally, software must
detect and generate, start and stop conditions. For more information, see
the I2C specification in the Philips Data Handbook for I2C Peripherals for
Microcontrollers.

12.5 Clocks and Clock Control
In addition to the externally supplied PCI clock, the 21130 has two internally-
generated primary clocks — the memory clock and the pixel clock. See
Figure 12–2.

12.5.1 Memory Clock
The memory clock (mem_clk) is a 66-MHz (nominal) clock to the accelerator
section, VGA controller, and memory controller. It is generated by a PLL-based
clock generator circuit (buffered_fastclk in Figure 12–2). The memory clock
frequency M term multiplier is programmable, and is selected in the PCI clock
control register (PCCR, Section 8.2.8). Note that the N term divisor is a fixed
value of 8 and the L term divisor is not used in the memory clock PLL.

12.5.2 Core Clock
The core clock (core_clk) is also used by the accelerator section. It is one-half
the frequency of the memory clock (buffered_slowclk in Figure 12–2).

12.5.3 Pixel Clock
The pixel clock (pix_clk) is generated by a programmable source, based on
a second PLL circuit. It can generate pixel clock rates between 8 MHz and
135 MHz. The frequency is selected in the clock control A and B registers
(VXCKAR and VXCKBR, Section 8.14.10) L, M, and N terms. Both the
memory clock and the pixel clock are derived from the same reference clock,
provided by a low-cost 14.31818 MHz crystal on the xtal1 and xtal2 input
pins. The xtal2 pin also serves as the backup clock input for the memory
clock, if an external source is selected (PCCR<0>).

The pixel clock for video generation can be sourced from an internal PLL
circuit or on the pixlck pin from an external ICS2595 device (as a risk-
reduction backup). Software uses the PCS bit (PCCR <1>) to control an
internal multiplexer, which selects an internal or external source.

On power up or reset, the 21130 selects the internal source. Software must
intervene to change to the external source. Use of an external pixel clock
source is considered a backup scheme in the event the internal circuit does not
meet requirements.

Hardware Interface 12–15

12.5 Clocks and Clock Control

If the external pixel clock source is an ICS2595, its output frequency must be
software-selected through the 21130. A 4-bit value is loaded into the ICS2595
to select one of 16 preprogrammed pixel clock frequencies. The 21130 uses the
GPP to interface to the ICS2595. The lower four GPP data path bits connect
to the four ICS2595 data input pins, and the gp_cs# signal connects to the
ICS2595 strobe input.

The pixel clock also drives vafc_dclk. See Section 12.4.1.2 for more
information.

12.5.4 VGA Dot Clock
The pixel clock (buffered_pixclk in Figure 12–2) is driven either by the PLL
directly or the VGA controller. The PLL drives the VGA dot clock to the VGA
controller where it is divided or not, depending on the specific VGA mode, and
returned to the clock generation function as the VGA pixel clock. If VGA mode
is enabled, the VGA pixel clock drives the buffered pixel clock; otherwise, in
2DA mode, the PLL pixel clock drives the buffered pixel clock directly.

The VGA variable dot clock select bit (VXCKAR <0>) determines whether
the VGA dot clock frequency is controlled by the VGA miscellaneous output
register (VEMISR, Section 8.11.1) or directly by the L, M, and N fields in the
VXCKAR and VXCKBR. If the VEMISR is selected, its clock source select bits
control a multiplexer (not shown in Figure 12–2) that forces the PLL L, M, and
N values to generate either 25.057 or 28.189 MHz.

12.5.5 Test Clock
In test mode, either of the two internally generated clocks can be selected as
the pll_test test clock output. The TCS bit (PCCR <2>) selects the pixel clock
or memory clock as the test clock source. The video valid register (VIVVR,
Section 8.7.2) also contains test clock control bits.

Figure 12–2 is a simplified block diagram of the clock generation function.

12–16 Hardware Interface

12.5 Clocks and Clock Control

Figure 12–2 Clock Generation
vg

a_
do

tc
lk

te
st

cl
k_

se
l

´
M

V
C

O

P
ha

se
D

et
ec

to
r

p
ll_

fi
lt

er

xt
al

2

p
ix

cl
k

p
ll

_t
es

t

bu
ffe

re
d_

pi
xc

lk

bu
ffe

re
d_

sl
ow

cl
k

bu
ffe

re
d_

fa
st

cl
k

pl
l_

pi
xc

lk

pi
xc

lk
_s

el

ba
ck

up
_m

em
cl

k
xt

al
1

P
ha

se
D

et
ec

to
r

´
M

V
C

O

ba
ck

up
_p

ix
cl

k

vg
a_

m
od

e

¸
N 8

¸

L
¸

2
¸ P

ha
se

C
on

tr
ol

Lo
gi

c

an
d

V
X

C
K

B
R

P
1

C
C

R

pl
l_

m
em

cl
k

m
em

cl
k_

se
l

vg
a_

pi
xc

lk

 lo
w

er
ca

se
 b

o
ld

fa
ce

 t
yp

e.
E

xt
er

na
l s

ig
na

ls
 a

re
 s

ho
w

n
in

31
8

7
14

13

14
.3

18
18

M
H

z

4
3

2
1

0

M

M U X M U X

M U XM U X

1
6

7

M

0
V

X
C

K
A

R
6

5
4

3
0

N

7

L

Hardware Interface 12–17

A
Pin Summary

Table A–1 summarizes the DECchip 21130 signal pins. The following
abbreviations are used in Table A–1:

#
I
I/O
O
P
NA
TS
OD
DH
DL
DI
SH

Low-asserted
Input
Bidirectional
Output
Power
Not applicable
Tristate
Open drain
Driven, high
Driven, low
Driven, indeterminate
Shared

Table A–1 Signals by Function

Signal Qty Type Function Value at Reset

PCI Interface

pci_idsel 1 I PCI initialization device select NA

pci_gnt# 1 I PCI DMA grant NA

pci_rst# 1 I PCI reset NA

pci_clk 1 I PCI clock NA

pci_ad<31:0> 32 I/O PCI address or data TS

pci_cbe<3:0># 4 I/O PCI command and byte enable TS

pci_frame# 1 I/O PCI frame TS

(continued on next page)

Pin Summary A–1

Table A–1 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

PCI Interface

pci_irdy# 1 I/O PCI initiator ready TS

pci_trdy# 1 I/O PCI target ready TS

pci_devsel# 1 I/O PCI device select TS

pci_stop# 1 I/O PCI stop transaction TS

pci_perr# 1 I/O PCI parity error TS

pci_par 1 I/O PCI parity TS

pci_req# 1 O PCI DMA request TS

pci_inta# 1 O PCI interrupt OD

pci_serr# 1 O PCI system error OD

Vdd (pci<6:0>) 7 P PCI I/O 5-V supply NA

Vss (pci<7:0>) 8 P PCI I/O ground NA

Frame Buffer Interface

memdata<63:0> 64 I/O Memory data DI

memaddr<8:0> 9 O Memory address DI

cas<7:0># 8 O Column address strobe DH

ras<2:0># 3 O Row address strobe DH

oeb# 1 O Output enable DH

wrb# 1 O Write enable DL

GPP and ROM Interface

gp_int# 1 I Generic peripheral interrupt NA

gp_data<7:0>1 (8) I/O Generic peripheral data SH

gp_adr<16:0>2 (17) O Generic peripheral address SH

gp_rdsel#3 (1) O Generic peripheral read select SH

1The gp_data<7:0> signals share the memdata<25:18> pins.
2The gp_adr<16:0> signals share the memdata<16:0> pins.
3The gp_rdsel# signal shares the memdata<26> pin.

(continued on next page)

A–2 Pin Summary

Table A–1 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

GPP and ROM Interface

gp_wrsel#4 (1) O Generic peripheral write select SH

gp_cs# 1 O Generic peripheral chip select TS5

gp_reset# 1 O Generic peripheral reset DL

gp_stb# 1 O Generic peripheral strobe TS5

rom_d<7:0>6 (8) I/O ROM data path SH

rom_adr<17:0>7 (18) O ROM address SH

rom_ce# 1 O ROM chip enable DH

rom_oe#8 (1) O ROM output enable SH

rom_we#9 (1) O ROM write enable SH

VGA and VAFC Video Port Interface

ddc_data 1 I/O Display data channel TS

evideo# 1 I Enable external video data NA

vafc_vclk 1 I VAFC video clock NA

vafc_p<0:15>10 (16) I/O Port AH

vafc_en# 1 O VAFC data enable DL

vafc_dclk 1 O VAFC dot clock Pixel clock

grdy 1 O Graphics device ready DL

blank# 1 O Composite video blank DI

RGB-to-Monitor Interface

hsync 1 O Horizontal video sync DI

vsync 1 O Vertical video sync DH

4The gp_wrsel# signal shares the memdata<27> pin.
5At reset, the gp_cs# and gp_stb# signals are inputs and are sampled.
6The rom_d<7:0> signals share the memdata<57:50> pins.
7The rom_adr<17:0> signals share the memdata<49:32> pins.
8The rom_oe# signal shares the gp_stb# pin.
9The rom_we# signal shares the memdata<58> pin.
10The vafc_p<3:15> signals share the memdata<63:51> pins.

(continued on next page)

Pin Summary A–3

Table A–1 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

RGB-to-Monitor Interface

red 1 O Red analog output DI

green 1 O Green analog output DI

blue 1 O Blue analog output DI

DAC Interface

comp 1 I DAC external compensation NA

fsadjust 1 I DAC external resistor NA

ref 1 I DAC external voltage reference NA

dac_Vdd 1 P DAC 5-V supply NA

dac_Vss 3 P DAC ground NA

opamp_Vdd 1 P DAC op amp 5-V supply NA

opamp_Vss 1 P DAC op amp ground NA

Clock Interface

xtal1 1 I Crystal input Reference clock

xtal2 1 I Crystal input/memory clock NA

pixclk 1 I Backup pixel clock NA

pll_filter 1 I External filter capacitors NA

pll_test 1 O Clock test output DL

pll_Vdd 1 P PLL 5-V supply NA

pll_Vss 3 P PLL ground NA

Miscellaneous Test Pins

test_in 1 I Test input NA

Miscellaneous Power Pins

Vdd (video) 1 P Video clock 5-V supply NA

(continued on next page)

A–4 Pin Summary

Table A–1 (Cont.) Signals by Function

Signal Qty Type Function Value at Reset

Miscellaneous Power Pins

Vss (video) 1 P Video clock ground NA

Vdd (ac<2:0>) 3 P I/O 5-V ac supply NA

Vss (ac<4:0>) 5 P I/O ac ground NA

Vdd (dc<1:0>) 2 P I/O 5-V dc supply NA

Vss (dc<1:0>) 2 P I/O dc ground NA

Vdd (core<1:0>) 2 P Core logic 5-V supply NA

Vss (core<1:0>) 2 P Core logic ground NA

Pin Summary A–5

B
Register Summary

This appendix includes an alphabetical list (Table B–1) and a summary
(Table B–2) of the DECchip 21130 registers.

Table B–1 is an alphabetical list of the 21130 registers, which references the
sections in which they are described.

Table B–1 21130 Register Alphabetical List

Name Mnemonic Section

Address register GADR 8.5.6
Alternate video control register VFAVR 8.8.5
Background register GBGR 8.5.8
Bresenham 1 register GB1R 8.5.11
Bresenham 2 register GB2R 8.5.12
Bresenham 3 register GB3R 8.5.13
Bresenham width register GBWR 8.5.14
Command status register MCSR 8.3.1
Continue register GCTR 8.4.3
Copy-64 destination register GCDR 8.4.4
Copy-64 source register GCSR 8.4.4
Copy-64A destination register GCADR 8.4.5
Copy-64A source register GCASR 8.4.5
Copy buffer register 7:0 GCBR<7:0> 8.5.4
Cursor base address register CCBR 8.6.2
Cursor mode register CMOR 8.6.1
Cursor XY register CXYR 8.6.3
Data register GDAR 8.5.7
Deep register GDER 8.5.2
Dither column register GDCR 8.5.17
Dither row register GDRR 8.5.17
DMA base address register GDBR 8.5.15

(continued on next page)

Register Summary B–1

Table B–1 (Cont.) 21130 Register Alphabetical List

Name Mnemonic Section

Foreground register GFGR 8.5.8
Interrupt status register MISR 8.3.2
Mode register GMOR 8.5.1
Palette and DAC blue signature register DBSR 8.9.9
Palette and DAC command register 0 DCOR0 8.9.7
Palette and DAC command register 1 DCOR1 8.9.8
Palette and DAC cursor color register DCCR 8.9.4
Palette and DAC cursor read address register DCRR 8.9.3
Palette and DAC cursor write address register DCWR 8.9.3
Palette and DAC green signature register DGSR 8.9.9
Palette and DAC pixel mask register DPMR 8.9.5
Palette and DAC RAM color register DPCR 8.9.2
Palette and DAC RAM read address register DPRR 8.9.1
Palette and DAC RAM write address register DPWR 8.9.1
Palette and DAC red signature register DRSR 8.9.9
Palette and DAC status register DSTR 8.9.6
PCI class and revision register PCRR 8.2.3
PCI clock control register PCCR 8.2.8
PCI command and status register PCSR 8.2.2
PCI device base address register 0 PDBR0 8.2.5
PCI device base address register 1 PDBR1 8.2.5
PCI expansion ROM base address register PRBR 8.2.6
PCI identification register PIDR 8.2.1
PCI interrupt line register PILR 8.2.7
PCI latency timer and header type register PLTR 8.2.4
Pixel mask register GPXR 8.5.10
Pixel shift register GPSR 8.5.5
Raster operation register GOPR 8.5.9
Repeat begin register GRBR 8.4.6
Repeat end register GRER 8.4.6
Scaled-copy control register GSCR 8.5.16
Slope registers 7:0 GSLR<7:0> 8.4.1
Slope-no-go registers 7:0 GSNR<7:0> 8.5.3
Span width register GSWR 8.4.2
VGA attribute controller color plane enable register VACPER 8.16.5
VGA attribute controller color select register VACSLR 8.16.7
VGA attribute controller index/data register VAIXDR 8.16.1
VGA attribute controller mode register VAMODR 8.16.3
VGA attribute controller overscan register VAOSCR 8.16.4

(continued on next page)

B–2 Register Summary

Table B–1 (Cont.) 21130 Register Alphabetical List

Name Mnemonic Section

VGA attribute controller palette register VAPALR 8.16.2
VGA attribute controller pixel panning register VAPXPR 8.16.6
VGA color DAC state register VPDSTR 8.17.2
VGA color pixel address read mode register VPPARR 8.17.1
VGA color pixel address write mode register VPPAWR 8.17.1
VGA color pixel data register VPPDAR 8.17.3
VGA color pixel mask register VPPMAR 8.17.4
VGA CRTC cursor end register VCCUER 8.13.11
VGA CRTC cursor location high register VCCLHR 8.13.13
VGA CRTC cursor location low register VCCLLR 8.13.13
VGA CRTC cursor start register VCCUSR 8.13.11
VGA CRTC data register VCDATR 8.13.2
VGA CRTC end horizontal blank register VCHBER 8.13.5
VGA CRTC end horizontal sync register VCHSER 8.13.6
VGA CRTC end vertical blanking register VCVBER 8.13.18
VGA CRTC end vertical display register VCVDER 8.13.15
VGA CRTC end vertical sync register VCVSER 8.13.14
VGA CRTC horizontal display end register VCHDER 8.13.4
VGA CRTC horizontal total register VCHTOR 8.13.3
VGA CRTC index register VCINXR 8.13.1
VGA CRTC line compare register VCLCMR 8.13.20
VGA CRTC maximum scanline register VCMSLR 8.13.10
VGA CRTC mode control register VCMODR 8.13.19
VGA CRTC offset register VCOFFR 8.13.16
VGA CRTC overflow register VCOVRR 8.13.8
VGA CRTC preset row register VCPROR 8.13.9
VGA CRTC start address high register VCSAHR 8.13.12
VGA CRTC start address low register VCSALR 8.13.12
VGA CRTC start horizontal blank register VCHBSR 8.13.5
VGA CRTC start horizontal sync register VCHSSR 8.13.6
VGA CRTC start vertical blanking register VCVBSR 8.13.18
VGA CRTC start vertical sync register VCVSSR 8.13.14
VGA CRTC underline row scan register VCULRR 8.13.17
VGA CRTC vertical total register VCVTOR 8.13.7
VGA extended clock control A register VXCKAR 8.14.10
VGA extended clock control B register VXCKBR 8.14.10
VGA extended equalization end register VXEQER 8.14.5
VGA extended equalization start register VXEQSR 8.14.5
VGA extended half-line register VXHLNR 8.14.6

(continued on next page)

Register Summary B–3

Table B–1 (Cont.) 21130 Register Alphabetical List

Name Mnemonic Section

VGA extended host page offset A register VXHPAR 8.14.2
VGA extended host page offset B register VXHPBR 8.14.2
VGA extended interface control register VXEICR 8.14.11
VGA extended interlace control register VXICOR 8.14.4
VGA extended paging control register VXPCOR 8.14.1
VGA extended split-screen start address high byte
register

VXSAHR 8.14.3

VGA extended split-screen start address low byte
register

VXSALR 8.14.3

VGA extended timing control A register VXTCAR 8.14.7
VGA extended timing control B register VXTCBR 8.14.8
VGA extended video FIFO control register VXFCOR 8.14.9
VGA feature control register VEFCOR 8.11.2
VGA graphics controller bit mask register VGBMKR 8.15.11
VGA graphics controller color compare register VGCCMR 8.15.5
VGA graphics controller color don’t care register VGCDCR 8.15.10
VGA graphics controller data register VGDATR 8.15.2
VGA graphics controller data rotate register VGDROR 8.15.6
VGA graphics controller enable set/reset register VGESRR 8.15.4
VGA graphics controller miscellaneous register VGMISR 8.15.9
VGA graphics controller mode register VGMODR 8.15.8
VGA graphics controller index register VGINXR 8.15.1
VGA graphics controller read map select register VGRMSR 8.15.7
VGA graphics controller set/reset register VGSRER 8.15.3
VGA input status 0 register VEIS0R 8.11.3
VGA input status 1 register VEIS1R 8.11.4
VGA miscellaneous output register VEMISR 8.11.1
VGA sequencer character map select register VSCMSR 8.12.6
VGA sequencer clocking mode register VSCMOR 8.12.4
VGA sequencer data register VSDATR 8.12.2
VGA sequencer index register VSINXR 8.12.1
VGA sequencer memory mode register VSMMOR 8.12.7
VGA sequencer plane mask register VSPLMR 8.12.5
VGA sequencer reset register VSRESR 8.12.3
Video base address register VIVBR 8.7.1
Video current refresh address register VFCRR 8.8.4
Video line width register VILWR 8.7.1
Video pixel format register VFPFR 8.8.1
Video pixel occlusion bitmap base address register VFOBR 8.8.2

(continued on next page)

B–4 Register Summary

Table B–1 (Cont.) 21130 Register Alphabetical List

Name Mnemonic Section

Video pixel occlusion bitmap current address register VFOAR 8.8.3
Video scanline increment register VISIR 8.7.1
Video valid register VIVVR 8.7.2

Table B–2 is a summary of the 21130 registers grouped according to function.
It includes the type of access and reset state.

Table B–2 21130 Register Summary

Name Mnemonic Access Address Reset State

Configuration Space Header Block PxxR — Range1 —

PCI identification register PIDR RW 03..00 000C1011
PCI command and status register PCSR RW 07..04 02800000
PCI class and revision register PCRR RW 0B..08 03000002
PCI latency timer and header type register PLTR RW 0F..0C 00800000
PCI device base address register 0 PDBR0 RW 13..10 00000008
PCI device base address register 1 PDBR1 RW 17..14 00000000
Reserved — — 2F..18 —
PCI expansion ROM base address register PRBR RW 33..30 00000000
Reserved — — 3B..34 —
PCI interrupt line register PILR RW 3F..3C 00040100

Device-Dependent Configuration Space PxxR — Range1 —

PCI clock control register PCCR RW 43..40 0000280X
Reserved — — FF..40 —

Miscellaneous Registers MxxR — Offset —

Command status register MCSR RO 1F82 Cleared
Interrupt status register MISR RW 07FFFF..

0400003
Cleared

1Address = hexadecimal byte address range for PCI registers.
2Address = hexadecimal offset into PDBR0 register space.
3Address = hexadecimal offset into PDBR1 memory space.

(continued on next page)

Register Summary B–5

Table B–2 (Cont.) 21130 Register Summary

Name Mnemonic Access Address Reset State

Graphics Command Registers GxxR — Offset2 —

Slope register 7 GSLR7 WO 13C Undefined
Slope register 6 GSLR6 WO 138 Undefined
Slope register 5 GSLR5 WO 134 Undefined
Slope register 4 GSLR4 WO 130 Undefined
Slope register 3 GSLR3 WO 12C Undefined
Slope register 2 GSLR2 WO 128 Undefined
Slope register 1 GSLR1 WO 124 Undefined
Slope register 0 GSLR0 WO 120 Undefined
Span width register GSWR RW 0BC Cleared
Continue register GCTR WO 04C Cleared
Copy-64 source register GCSR WO 160 Cleared
Copy-64 destination register GCDR WO 164 Cleared
Copy-64A source register GCASR WO 360 Cleared
Copy-64A destination register GCADR WO 364 Cleared
Repeat begin register GRBR WO 340 Cleared
Repeat end register GRER WO 350 Cleared

Graphics Control Registers GxxR — Offset2 —

Mode register GMOR RW 030 00100000
Deep register GDER RW 050 0050001C
Slope-no-go register 7 GSNR7 WO 11C Undefined
Slope-no-go register 6 GSNR6 WO 118 Undefined
Slope-no-go register 5 GSNR5 WO 114 Undefined
Slope-no-go register 4 GSNR4 WO 110 Undefined
Slope-no-go register 3 GSNR3 WO 10C Undefined
Slope-no-go register 2 GSNR2 WO 108 Undefined
Slope-no-go register 1 GSNR1 WO 104 Undefined
Slope-no-go register 0 GSNR0 WO 100 Undefined
Copy buffer register 7 GCBR7 RW 01C Cleared
Copy buffer register 6 GCBR6 RW 018 Cleared
Copy buffer register 5 GCBR5 RW 014 Cleared
Copy buffer register 4 GCBR4 RW 010 Cleared
Copy buffer register 3 GCBR3 RW 00C Cleared
Copy buffer register 2 GCBR2 RW 008 Cleared
Copy buffer register 1 GCBR1 RW 004 Cleared

2Address = hexadecimal offset into PDBR0 register space.

(continued on next page)

B–6 Register Summary

Table B–2 (Cont.) 21130 Register Summary

Name Mnemonic Access Address Reset State

Graphics Control Registers GxxR — Offset2 —

Copy buffer register 0 GCBR0 RW 000 Cleared
Pixel shift register GPSR RW 038 Cleared
Address register GADR WO 03C Cleared
Data register GDAR RW 080 Cleared
Foreground register GFGR RW 020 Cleared
Background register GBGR RW 024 Cleared
Raster operation register GOPR RW 034 00000003
Pixel mask register (one shot) GPXR RW 02C Cleared
Pixel mask register (persistent) GPXR WO 05C Cleared
Bresenham 1 register GB1R RW 040 Cleared
Bresenham 2 register GB2R RW 044 Cleared
Bresenham 3 register GB3R RW 048 Cleared
Bresenham width register GBWR WO 09C Cleared
DMA base address register GDBR RW 098 Cleared
Dither row register GDRR RW 0B0 Cleared
Dither column register GDCR RW 0B4 Cleared
Scaled-copy control register GSCR RW 0C4 Cleared

Hardware Cursor Registers CxxR — Offset2 —

Cursor mode register CMOR RW 0EC Cleared
Cursor base address register CCBR RW 060 Cleared
Cursor XY register CXYR RW 074 Cleared

Video Control Registers VIxxR — Offset2 —

Video base address register VIVBR RW 06C Cleared
Video valid register VIVVR RW 070 00001400
Video scanline increment register VISIR RW 0CC Cleared
Video line width register VILWR RW 0D0 Cleared

Video Format Registers VFxxR — Offset2 —

Video pixel format register VFPFR RW 0D4 Cleared
Video pixel occlusion bitmap base address
register

VFOBR RW 0E0 Cleared

2Address = hexadecimal offset into PDBR0 register space.

(continued on next page)

Register Summary B–7

Table B–2 (Cont.) 21130 Register Summary

Name Mnemonic Access Address Reset State

Video Format Registers VFxxR — Offset2 —

Video pixel occlusion bitmap current address
register

VFOAR RW 1F4 Cleared

Video current refresh address register VFCRR RO 1FC Cleared
Alternate video control register VFAVR RW 0E8 Cleared

Palette and DAC Registers DxxR — Offset3 —

Palette and DAC RAM write address
register

DPWR RW 1000 Undefined

Palette and DAC RAM color register DPCR RW 1004 Undefined
Palette and DAC pixel mask register DPMR RW 1008 Undefined
Palette and DAC RAM read address register DPRR RW 100C Undefined
Palette and DAC cursor write address
register

DCWR RW 1010 Undefined

Palette and DAC cursor color register DCCR RW 1014 Undefined
Palette and DAC command register 0 DCOR0 RW 1018 Cleared
Palette and DAC cursor read address
register

DCRR RW 101C Undefined

Reserved — — 1020 —
Reserved — — 1024 —
Palette and DAC status register DSTR RO 1028 Undefined
Reserved — — 102C —
Palette and DAC command register 1 DCOR1 RW 1030 Cleared
Palette and DAC red signature register DRSR RW 1034 Undefined
Palette and DAC green signature register DGSR RW 1038 Undefined
Palette and DAC blue signature register DBSR RW 103C Undefined

VGA External and General Registers VExxxR — Index4 —

VGA miscellaneous output register VEMISR WO
RO

3C2
3CC

Undefined

2Address = hexadecimal offset into PDBR0 register space.
3Address = hexadecimal offset into PDBR1 memory space.
4Address = hexadecimal address (3xx) or index for VGA registers.

(continued on next page)

B–8 Register Summary

Table B–2 (Cont.) 21130 Register Summary

Name Mnemonic Access Address Reset State

VGA External and General Registers VExxxR — Index4 —

VGA feature control register VEFCOR WO
WO
RO

3BA5

3DA6

3CA

Undefined

VGA input status 0 register VEIS0R RO 3C2 Undefined
VGA input status 1 register VEIS1R RO

RO
3BA5

3DA6
Undefined

VGA Sequencer Registers VSxxxR — Index4 —

VGA sequencer index register VSINXR RW 3C4 Undefined
VGA sequencer data register VSDATR RW 3C5 Undefined
VGA sequencer reset register VSRESR RW 0 Undefined
VGA sequencer clocking mode register VSCMOR RW 1 Undefined
VGA sequencer plane mask register VSPLMR RW 2 Undefined
VGA sequencer character map select register VSCMSR RW 3 Undefined
VGA sequencer memory mode register VSMMOR RW 4 Undefined

VGA CRT Controller Registers VCxxxR — Index4 —

VGA CRTC index register VCINXR RW 3B45

3D46
Undefined

VGA CRTC data register VCDATR RW 3B55

3D56
Undefined

VGA CRTC horizontal total register VCHTOR RW 0 Undefined
VGA CRTC horizontal display end register VCHDER RW 1 Undefined
VGA CRTC start horizontal blank register VCHBSR RW 2 Undefined
VGA CRTC end horizontal blank register VCHBER RW 3 Undefined
VGA CRTC start horizontal sync register VCHSSR RW 4 Undefined
VGA CRTC end horizontal sync register VCHSER RW 5 Undefined
VGA CRTC vertical total register VCVTOR RW 6 Undefined
VGA CRTC overflow register VCOVRR RW 7 Undefined
VGA CRTC preset row register VCPROR RW 8 Undefined
VGA CRTC maximum scanline register VCMSLR RW 9 Undefined
VGA CRTC cursor start register VCCUSR RW 0A Undefined
VGA CRTC cursor end register VCCUER RW 0B Undefined

4Address = hexadecimal address (3xx) or index for VGA registers.
5Monochrome
6Color

(continued on next page)

Register Summary B–9

Table B–2 (Cont.) 21130 Register Summary

Name Mnemonic Access Address Reset State

VGA CRT Controller Registers VCxxxR — Index4 —

VGA CRTC start address high register VCSAHR RW 0C Undefined
VGA CRTC start address low register VCSALR RW 0D Undefined
VGA CRTC cursor location high register VCCLHR RW 0E Undefined
VGA CRTC cursor location low register VCCLLR RW 0F Undefined
VGA CRTC start vertical sync register VCVSSR RW 10 Undefined
VGA CRTC end vertical sync register VCVSER RW 11 Undefined
VGA CRTC end vertical display register VCVDER RW 12 Undefined
VGA CRTC offset register VCOFFR RW 13 Undefined
VGA CRTC underline row scan register VCULRR RW 14 Undefined
VGA CRTC start vertical blanking register VCVBSR RW 15 Undefined
VGA CRTC end vertical blanking register VCVBER RW 16 Undefined
VGA CRTC mode control register VCMODR RW 17 Undefined
VGA CRTC line compare register VCLCMR RW 18 Undefined

VGA Extended Registers VXxxxR — Index4�7 —

VGA extended paging control register VXPCOR RW 8D Undefined
VGA extended host page offset A register VXHPAR RW 90 Undefined
VGA extended host page offset B register VXHPBR RW 91 Undefined
VGA extended split-screen start address low
byte register

VXSALR RW 93 Undefined

VGA extended split-screen start address
high byte register

VXSAHR RW 94 Undefined

VGA extended interlace control register VXICOR RW 97 Undefined
VGA extended equalization start register VXEQSR RW 9A Undefined
VGA extended equalization end register VXEQER RW 9B Undefined
VGA extended half-line register VXHLNR RW 9C Undefined
VGA extended timing control A register VXTCAR RW 9D Undefined
VGA extended timing control B register VXTCBR RW 9E Undefined
VGA extended video FIFO control register VXFCOR RW A0 Undefined
VGA extended clock control A register VXCKAR RW A1 <7:1> =

undefined,
<0> = 0

VGA extended clock control B register VXCKBR RW A2 Undefined
VGA extended interface control register VXEICR RW A3 Undefined

4Address = hexadecimal address (3xx) or index for VGA registers.
7Indexed by VGA CRTC index register (VCINXR)

(continued on next page)

B–10 Register Summary

Table B–2 (Cont.) 21130 Register Summary

Name Mnemonic Access Address Reset State

VGA Graphics Controller Registers VGxxxR — Index4 —

VGA graphics controller index register VGINXR RW 3CE Undefined
VGA graphics controller data register VGDATR RW 3CF Undefined
VGA graphics controller set/reset register VGSRER RW 0 Undefined
VGA graphics controller enable set/reset
register

VGESRR RW 1 Undefined

VGA graphics controller color compare
register

VGCCMR RW 2 Undefined

VGA graphics controller data rotate register VGDROR RW 3 Undefined
VGA graphics controller read map select
register

VGRMSR RW 4 Undefined

VGA graphics controller mode register VGMODR RW 5 Undefined
VGA graphics controller miscellaneous
register

VGMISR RW 6 Undefined

VGA graphics controller color don’t care
register

VGCDCR RW 7 Undefined

VGA graphics controller bit mask register VGBMKR RW 8 Undefined

VGA Attribute Controller Registers VAxxxR — Index4 —

VGA attribute controller index/data register VAIXDR WO
RO

3C0
3C1

Undefined

VGA attribute controller palette register VAPALR RW 00:0F Undefined
VGA attribute controller mode register VAMODR RW 10 Undefined
VGA attribute controller overscan register VAOSCR RW 11 Undefined
VGA attribute controller color plane enable
register

VACPER RW 12 Undefined

VGA attribute controller pixel panning
register

VAPXPR RW 13 Undefined

VGA attribute controller color select register VACSLR RW 14 Undefined

VGA Color Registers VPxxxR — Index4 —

VGA color pixel address write mode register VPPAWR RW 3C8 Undefined
VGA color pixel address read mode register VPPARR WO 3C7 Undefined
VGA color DAC state register VPDSTR RO 3C7 Undefined
VGA color pixel data register VPPDAR RW 3C9 Undefined
VGA color pixel mask register VPPMAR RW 3C6 Undefined

4Address = hexadecimal address (3xx) or index for VGA registers.

Register Summary B–11

C
Technical Support, Ordering Information,

and Associated Literature

Technical Support
If you need technical support or help deciding which literature best meets your
needs, call the Semiconductor Information Line:

United States and Canada
Outside North America

1–800–332–2717
+1–508–628–4760

Ordering Digital Semiconductor Products
To order the DECchip 21130 PCI Integrated Graphics and Video Accelerator
and the associated evaluation board, contact your local distributor.

You can order the following semiconductor products from Digital:

Product Order Number

DECchip 21130 PCI Integrated Graphics and Video
Accelerator

21130–AA

DECchip 21130 PCI Integrated Graphics and Video
Accelerator Evaluation Board

21A30–OA

Technical Support, Ordering Information, and Associated Literature C–1

Ordering Associated Semiconductor Literature
The following table lists some of the available Digital Semiconductor literature.
For a complete list, contact the Digital Semiconductor Information Line.

Title Order Number

Alpha Architecture Reference Manual1 EY–L520E–DP–YCH

DECchip 21130 PCI Integrated Graphics and Video Accelerator
Evaluation Board User’s Guide

EC–QHV0B–TE

DECchip 21130 PCI Integrated Graphics and Video Accelerator
Product Brief

EC–QD2NA–TE

1To order and purchase the Alpha Architecture Reference Manual, call 1–800–DIGITAL from
the U.S. or Canada, or contact your local Digital office, or technical or reference bookstore where
Digital Press books are distributed by Prentice Hall.

Ordering Third-Party Literature
You can order the following third-party literature directly from the vendor:

Title Vendor

PCI Local Bus Specification, Revision 2.0
PCI Multimedia Design Guide, Revision 1.0
PCI System Design Guide

PCI Special Interest Group
1–800–433–5177 (U.S.)
1–503–797–4207 (International)
1–503–234–6762 (FAX)

VESA standards:

• Display Data Channel Standard, Version 1.0,
Revision 0

• Display Power Management Signaling
(DPMS) Proposal, Version 1.0p, Revision
0.7p

• VESA Monitor Timing Proposed Standard for
640X480, 800X600, and 1280X1024 at 75 Hz,
VDMT 75HZ Rev 1.2P

• VESA Advanced Feature Connector (VAFC)
Standard, Version 1.0

• VESA Advanced Feature Connector (VAFC)
Proposal, Version 1.0p, Revision 0.4

VESA
2150 N. First Street, Suite 440
San Jose, CA 95131–2029
FAX: 1–408–435–8225

C–2 Technical Support, Ordering Information, and Associated Literature

Title Vendor

Data Handbook for I2C Peripherals for
Microcontrollers

Philips Semiconductors
Contact your nearest Philips
Semiconductors national
organization.

Technical Support, Ordering Information, and Associated Literature C–3

Index

1-shot GPXR, 8–67
2D accelerator (2DA), 7–1

expected operation during VGA mode,
11–5

memory space, 7–2
base address 0, 7–2
base address 1, 7–10

2DA-to-VGA mode switching, 11–4
4:2:2 output (422OUT) bit, 8–77
4:2:2 UYVY format, 10–45
4:2:2 VYUY format, 10–46
4:2:2 YVYU

destination pixel format, 10–45
format, 10–45

4:4:4 �VYU format, 10–44
8-bpp screen-to-screen copy repeat loop,

11–21
8 � 8 8-bpp pattern fill repeat loop, 11–20
16-bpp and 32-bpp RGB formats, 10–46
256-color mode (256CM) bit, 8–179

A
Abbreviations, xx
Aborted DMA transaction termination, 9–11
Absolute dx field, 8–30, 8–50
Absolute dy field, 8–30, 8–50
Absolute maximum ratings, 4–1
ac specifications, 4–6
Access abbreviations defined, xx
Access granularity, PCI, 9–5
Address attributes field, 8–184
Address convention, xxi

Address increment
1 field, 8–68
2 field, 8–70

Address mapping, device, 11–1
Address mask field, 8–47
Address register (GADR), 8–56

access, 11–28
status (ARS) bit, 8–43

Address space, 7–1
Address state (AS) field, 8–110, 8–193
Address stepping

enable (ASE) bit, 8–13
PCI, not supported, 9–12

Address wrap (AW) bit, 8–155
Addresses

color register address field, 8–192
device base address field, 11–1
frame buffer address space in 64-bit and

32-bit modes, 11–23
frame buffer destination address field,

8–38
frame buffer source address field, 8–38
RAM LUT, 8–96
video address in 64-bit and 32-bit modes,

11–24
Alias space

See Base address 0 register space
Aligned convention, xxi
Alpha CPU programming, 11–26
Alpha documentation, C–2
Alphabetical list of registers, B–1
Alphanumeric or graphics mode

(GAM) bit, 8–187

Index–1

Alternate control space, 7–9
GCTR writes, 8–37
write targets, 7–9

Alternate drawing mechanism, 8–29
Alternate register space, 7–10 to 7–11
Alternate video control register (VFAVR),

8–103
Application specific data (ASD) field, 7–15
Architecture, internal, 2–1
Assigning pixel shift values, 10–25
Associated literature, C–2
Asynchronous reset (AR) bit, 8–124
Attribute controller registers

See VGA attribute controller registers
Attribute data field, 8–185

B
Back-to-back capable (BBC) bit, 8–12
Back-to-back enable (BBE) bit, 8–12
Background as a function of bitmap depth,

8–61
Background field, 8–60
Background register (GBGR), 8–60
Backward copies, 10–25
Bandwidth (BW) bit, 8–125
Base address

device base address field, 11–1
high field, 8–75
low field, 8–75
register, DMA (GDBR), 8–74

Base address 0
alternate control space, 7–9
core space, 7–3
memory space, 7–2
register alias space, 7–5 to 7–6
register space, 7–5 to 7–7

Base address 1
alternate register space, 7–10
GPP space, 7–11
memory space, 7–10
MISR space, 7–12
palette and DAC register space, 7–12
ROM sparse space, 7–13
VGA register map, 7–11

Base class field, 8–16
Basic programming model, 1–5

extensions, 1–6
BIOS ROM

See Expansion ROM, Flash ROM, ROM
Bit descriptions

8/9, 8–126
AR, 8–124
ARS, 8–43
ASE, 8–13
AW, 8–155
BBC, 8–12
BBE, 8–12
BIA, 8–187
BLANK, 8–90
BM, 8–13, 11–2
BR3S, 8–43
Burst, 8–166
Busy, 8–25
BW, 8–125
C4, 8–129
CAS precharge period, 8–165
CB2, 8–155
CB4, 8–153
CBS, 8–44
CE, 8–44
CEN, 8–145
256CM, 8–179
CME, 8–187
CMS, 8–156
COE, 8–181
Color don’t care, 8–182
CR, 8–137
CS, 8–117
CSEN, 8–162
CVSI, 8–150
DC, 8–125
DDCDI, 8–89
DDCDO, 8–88
DDCSB, 8–88
DE, 8–21, 8–121
DEV, 8–12
DITHEN, 8–77
DPD, 8–12
DPE, 8–12

Index–2

Bit descriptions (cont’d)
DRS, 8–111
DW, 8–153
EM, 8–129
EOFEN, 8–27
EOFST, 8–27
ER, 8–118
EVSI, 8–150
FC0, 8–119
FC1, 8–119
FRWE, 8–46
GAM, 8–187
GCC, 8–187
GE, 8–44
GIB, 8–46
GIEN, 8–27
GIST, 8–27
GM, 8–181
GSE, 8–111
HPAGE, 8–158
HR, 8–155
HRS, 8–155
HSP, 8–117
INLACE, 8–162
INTR, 8–27
IO, 8–13
IOA, 8–118
IRQEN, 8–166
LADMD, 8–158
MA, 8–12
MCD, 8–166
MCS, 8–23
MD32, 8–46
MS, 8–13
MSEL, 8–112
O/E, 8–129, 8–179
422OUT, 8–77
PAN, 8–187
PAS, 8–184
PB, 8–117
PCS, 8–23
PDE, 8–111
PER, 8–13
PF, 8–18
PLD, 8–171

Bit descriptions (cont’d)
PMS, 8–43
POBE, 8–91
POBM, 8–91
PSEL, 8–187
PW, 8–187
RM, 8–179
RMD, 8–166
RWS, 8–110, 8–193
S4, 8–125
SA, 8–128
SAEN, 8–112
SAH, 8–128
SB, 8–128
SBH, 8–128
SBLNK, 8–89
SBS, 8–89
SC<5:4>, 8–191
SD, 8–144
SE, 8–111
SEN, 8–13
SL, 8–125
SO, 8–125
Space, 8–18
SPOBE, 8–91
SR, 8–124, 8–179
SRC, 8–149
SRES, 8–23
SRS, 8–155
SS, 8–110, 8–120, 8–193
SSE, 8–12
SVV, 8–89
TAM, 8–12
TAT, 8–12
TCLKD, 8–89
TCLKI, 8–88
TCLKO, 8–88
TCS, 8–23
TVS, 8–171
VAFC BC, 8–104
VAFC D, 8–103
VAFC E, 8–104
VAFC FS, 8–103
VAFC IW, 8–103
VAFC M, 8–103

Index–3

Bit descriptions (cont’d)
VAFC OS, 8–103
VGAAD, 8–158
VGAE, 8–46
VPS, 8–13
VR, 8–121
VRI, 8–120
VSEG, 8–159
VSP, 8–117
VSS, 8–119
VV, 8–90
VVDS, 8–168
WB, 8–155
WP, 8–149
WPG, 8–46
YUVCEN, 8–77

Bit mask field, 8–183
Bit notation conventions, xxi
Bit-block transfer (BitBlt), 1–2, 11–5

copy mode example, 11–6
stretchBlt, 1–2

Bitmap destination (DB) field, 8–64
Bitmap source (SB) field, 8–44
Bitmap width field, 8–73
Blank

synchronized (SBLNK) bit, 8–89
VAFC blank control (VAFC BC) bit,

8–104
VAFC enable, 12–12

Blank and sync source (SBS) bit, 8–89
BLANK bit, 8–90
blank# signal description, 3–4
Blink or intensity attribute (BIA) bit, 8–187
Block diagram, 2–1
blue signal description, 3–4
Blue signature field, 8–114
Boolean raster operation table, 8–64
bpp abbreviation, xx
Bresenham 1 register (GB1R), 8–68

line mode, 8–68
scaled-copy mode, 8–69

Bresenham 2 register (GB2R), 8–70
Bresenham 3 register (GB3R), 8–71

line mode, 8–71
scaled-copy mode, 8–72

Bresenham 3 register (GB3R) (cont’d)
status (BR3S) bit, 8–43

Bresenham engine, 1–2, 2–5
Bresenham setup hardware, 2–4
Bresenham width register (GBWR), 8–73
Burst read cycles, unsupported, 9–3
Bus master enable (BM) bit, 8–13, 11–2
Bus mastering, 11–2
Bus parking, 9–11
Busy bit, 8–25
Byte mask field, 8–63
Byte or word mode select (WB) bit, 8–155
Byte panning (BPAN) field, 8–143
Byte shifter, 10–22

C
Cap ends

(CE) bit, 8–44
specifying, 10–60

CAS precharge period bit, 8–165
CAS width field, 8–165
cas<7:0># signal description, 3–4
Caution convention, xxi
Chain 4 (C4) bit, 8–129
Chain odd/even (COE) bit, 8–181
Clear vertical sync interrupt (CVSI) bit,

8–150
Clock

See also Core clock, Dot clock, Memory
clock, Pixel clock, Test clock

Clock control, 2–13, 12–15
register (PCCR), 8–23

Clock domains, 4–3
PCI clock, 4–7
pixel clock, 4–23
VAFC clock, 4–23

Clock frequency tables
memory clock, 8–24
pixel clock, 8–170

Clock generation, 12–16
Clock source select (CS) bit, 8–117
Color compare field, 8–176

Index–4

Color don’t care bit, 8–182
Color expansion, 1–2
Color or monochrome emulation (CME) bit,

8–187
Color plane enable field, 8–189
Color register

See also VGA color registers
address field, 8–192
data field, 8–194

Column address strobe
See CAS

Command buffer
See Command FIFO

Command FIFO, 2–1
determining entry availability, 10–48

Command parser, 2–3
Command status register (MCSR), 8–25
comp signal description, 3–4
Compatibility mode support (CMS) bit,

8–156
Compatible read (CR) bit, 8–137
Composite sync enable (CSEN) bit, 8–162
Configuration

See also PCI configuration
frame buffer, 2–10, 12–5
operations, 9–1
space, 7–2

Continue register (GCTR), 8–35
access, 11–28
indirect frame buffer addressing, 8–36
line or span continuation, 8–36
read, 8–37
write, 8–35

alternate control space, 8–37
line mode, 8–36

Conventions, xx to xxiii
Copy

backward, 10–25
forward span, 10–23

primed, 10–26
host-to-screen, 11–8
screen-to-screen, 11–5

8-bpp repeat loop example, 11–21

Copy buffer, 1–2, 2–8
layout, 8–51, 10–30
operation, 10–29

programmed I/O, 10–31
registers (GCBR<7:0>), 8–53

fast frame buffer access, 10–32
write requirement, 8–53

status (CBS) bit, 8–44
write pointer, 8–53

Copy direction flag, 8–44, 8–55, 10–28
Copy mode, 1–6, 1–7, 10–19

64-byte unmasked span, 10–29
BitBlt example, 11–6
span limits, 10–21

Copy-64 destination register (GCDR), 8–38
write requirement, 8–39

Copy-64 source register (GCSR), 8–38
write requirement, 8–39

Copy-64A destination register (GCADR),
8–40

Copy-64A source register (GCASR), 8–40
Core clock, 12–15
Core registers, 2–7

See also Registers
Core space, 7–3
core_clk signal description, 12–15
Count by 2 (CB2) bit, 8–155
Count by 4 (CB4) bit, 8–153
CRT controller (CRTC), 1–3

registers, see VGA CRTC registers
Current refresh address field, 8–102
Cursor, 1–3

color displayed with monochrome overlay,
11–11

generation, 2–12
pixel value bit description, 8–83
value bits to pixels mapping, 8–82

Cursor address bit 16 (CURA16), 8–158
Cursor base address

field, 8–84
register (CCBR), 8–84

Cursor color data field, 8–108
Cursor enable (CEN) bit, 8–145

Index–5

Cursor end field, 8–145
Cursor location

high field, 8–148
low field, 8–148

Cursor mode
(CM) field, 8–82
register (CMOR), 8–82

Cursor read address field, 8–107
Cursor registers, 8–82

See also Palette and DAC registers, VGA
CRTC registers

Cursor skew field, 8–145
Cursor start field, 8–145
Cursor write address field, 8–107
Cursor X position field, 8–85
Cursor XY register (CXYR), 8–85
Cursor Y position field, 8–85

D
dac_Vdd signal description, 3–4
dac_Vss signal description, 3–4
Data parity error detected (DPD) bit, 8–12
Data register (GDAR), 8–58

fill modes, 8–58
line mode, 8–59
write requirement, 8–58, 8–59

Data stepping, PCI, not supported, 9–12
Data units defined, xxii
dc

operating specifications, 4–5
parameters, 4–6
specifications, 4–3

DDC, 12–14
data input (DDCDI) bit, 8–89
data output (DDCDO) bit, 8–88
sync bypass (DDCSB) bit, 8–88

ddc_data signal description, 3–4
Decode enable (DE) bit, 8–21
Deep register (GDER), 8–46

software scheduling requirement, 2–3
Destination alignment, 10–22
Destination bitmap (DB) field, 8–64

Destination operands, 10–5
according to mode, 10–5

Detected parity error (DPE) bit, 8–12
Device address mapping, 11–1
Device base address

field, 11–1
LSBs field, 8–18

Device ID field, 8–11
Device select timing (DEV) bit, 8–12
Diagnostic (DIA) field, 8–121
Digital differential analyzer (DDA), 11–17
Digital-to-analog converter (DAC), 1–3

See also Palette and DAC
resolution select (DRS) bit, 8–111

Direct memory access
See DMA

Display data channel
See DDC

Display enable
(DE) bit, 8–121
skew field, 8–137

Display modes, VESA, 1–4
Display power management signaling

See DPMS
Dither

logic, 2–5
mathematics, 11–8
phases, 11–9

Dither column
field, 8–81
register (GDCR), 8–81

Dither enable (DITHEN) bit, 8–77
Dither row

field, 8–81
register (GDRR), 8–81

Dithering, 1–2
DMA address field, 8–74
DMA base-address register (GDBR), 8–74

DMA-read copy mode, 8–74
scaled-copy mode, 8–75

DMA engine, 1–2
DMA read

FIFO, 2–7
transfers, 9–10

Index–6

DMA-read copy mode, 10–33
edge mask for short spans, 10–37
edge mask settings, 10–36
GB1R, 8–74
operation, 10–37

Documentation, C–2
Dot clock, 12–16

divide by 2 (DC) bit, 8–125
divide by 8 or 9 (8/9) bit, 8–126
divisor field, 8–162
variable dot clock select (VVDS) bit,

8–168
Double-word mode (DW) bit, 8–153
DPMS, 1–4, 12–14

field, 8–89
states, 12–14

DRAM burst mode (Burst) bit, 8–166
DRAW# field, 8–77
Drawing

clipped lines, 11–16
lines with slope registers, 10–52, 10–54
octants, 8–31

Drawing mechanism
alternate, 8–29
standard, 8–29

Dword, defined, xxii
dx field, 8–30, 8–50
dxGE0 field, 8–33
dxGEdy field, 8–33
dy field, 8–30, 8–50
dyGE0 field, 8–33

E
Edge mask

for short spans in DMA-read copy mode,
10–37

settings in DMA-read copy mode, 10–36
EEPROM

See Expansion ROM, Flash ROM, ROM
Electrical specifications, 4–1

ac, 4–6
dc, 4–3

Enable RAM (ER) bit, 8–118
Enable set/reset plane field, 8–175
Enable vertical sync interrupt (EVSI) bit,

8–150
End horizontal blank

(EHB) bit <5>, 8–139
LSBs field, 8–138

End horizontal sync field, 8–139
End pixel (EPIX) field, 8–77
End vertical blanking field, 8–154
End vertical display

(EVD<8>) bit 8, 8–142
(EVD<9>) bit 9, 8–142
LSBs field, 8–151

End vertical sync field, 8–150
End-of-frame

enable (EOFEN) bit, 8–27
status (EOFST) bit, 8–27

Equalization end field, 8–163
Equalization start

<7:0> field, 8–163
<9:8> field, 8–162

Error increment
1 field, 8–68
2 field, 8–70

evideo# signal description, 3–4
Exclusive access, PCI, not supported, 9–12
Expansion ROM, 11–3

See also Flash ROM, ROM
Extended memory (EM) bit, 8–129
Extended registers

See VGA extended registers
Extending a single line, 10–59
Extending and linking 2D lines, 10–57
Extensions to the basic programming model,

1–6
Extents convention, xxii
External and general registers

See VGA external and general registers
External to DECchip 21130, xxii

Index–7

F
Feature connector, 2–10, 12–5

See also VAFC
Feature control

<0> (FC0) bit, 8–119
<1> (FC1) bit, 8–119

Features, 1–1
FIFOs

command, 2–1
read pointer field, 8–25
write pointer field, 8–25

DMA read, 2–7
video

depth field, 8–167
enable bit, 8–167
reset bit, 8–167
wrap reset (FWSTN) bit, 8–171
wrapped (FWRAP) bit, 8–171

Fill mask field, 8–58
Fill mode, 2–4

opaque, 10–14
opaque extended-pattern, 10–16
stipple, 1–6
transparent, 10–17
transparent extended-pattern, 10–18

Filling
8 � 8 8-bpp pattern repeat loop example,

11–20
monochrome brush, 11–14
monochrome or bitonal brush repeat loop

example, 11–19
non-monochrome brush, 11–14

Fills, 11–13
solid, 11–13

Flags
copy direction, 8–44, 8–55, 10–28
write memory barrier, 8–26

Flash ROM
See also Expansion ROM, ROM
write enable (FRWE) bit, 8–46

Flicker-free monochrome overlay, 11–10

Flushing the residue register
copy mode, 10–26
DMA-read copy mode, 10–36

Foreground as a function of bitmap depth,
8–61

Foreground field, 8–60
Foreground register (GFGR), 8–60
Forward span copy, 10–23

primed, 10–26
Frame buffer

access with copy buffer registers, 10–32
configuration sensing, 12–5
configurations, 2–10
core space, 7–3
interface, 12–1
memory, 2–9
mode-dependent write operations, 10–1
VGA interface, 12–6
writes, 2–4, 10–1

Frame buffer address
destination field, 8–38
field, 8–56
source field, 8–38

Frame buffer address space in 64-bit and
32-bit modes, 11–23

Frame buffer and device access (FBDA),
2–8, 9–3

requests, 2–6
Frame buffer color depth (FBCD) field, 8–91
fsadjust signal description, 3–5
Fully shadowed registers, 11–22
Function select field, 8–177
Functions not supported, 1–4

PCI, 9–12

G
Generic peripheral port

See GPP
Gib-endian

(GIB) bit, 8–46
support, 8–47
transfer formats, 8–47

Index–8

GPP, 1–3, 2–8
access restriction, 2–8, 7–12, 12–8
interface, 12–8
interrupts, 12–9
read and write access, 12–8
space, 7–11

GPP interrupt
enable (GIEN) bit, 8–27
status (GIST) bit, 8–27

gp_adr<16:0> signal description, 3–5
gp_cs# signal description, 3–5
gp_data<7:0> signal description, 3–5
gp_int# signal description, 3–5
gp_rdsel# signal description, 3–5
gp_reset# signal description, 3–5
gp_stb# signal description, 3–5
gp_wrsel# signal description, 3–5
Grant time, minimum field, 8–22
Graphics

device interface (GDI), 1–5
modes, table, 8–45
operations, 10–1
operations, invoking, 10–3
pipeline, 1–2

Graphics address field, 8–172
Graphics character codes (GCC) bit, 8–187
Graphics command

register writes, 10–2
registers, 8–29

Graphics control registers, 8–42
Graphics controller data field, 8–173
Graphics controller registers

See VGA graphics controller registers
Graphics environment(GE) bit, 8–44
Graphics mode (GM) bit, 8–181
Graphics or alphanumeric mode (GAM) bit,

8–187
grdy signal description, 3–5
green signal description, 3–5
Green signature field, 8–114
Green sync enable (GSE) bit, 8–111
Grid intersect quantization (GIQ)

specification, 10–56

H
Half-line location field, 8–164
Hardware

interface, 12–1
mode restrictions, 2–10, 12–1

Hardware reset (HR) bit, 8–155
Header type field, 8–17
Height field, 8–144
Hexaword, defined, xxii
Horizontal blank

end
(EHB) bit <5>, 8–139
LSBs field, 8–138

start field, 8–137
Horizontal display end field, 8–136
Horizontal retrace select (HRS) bit, 8–155
Horizontal sync

delay field, 8–139
end field, 8–139
polarity (HSP) bit, 8–117
start field, 8–139
width field, 8–165

Horizontal total field, 8–135
Host page offset

A field, 8–160
B field, 8–160

Host page select (HPAGE) bit, 8–158
Host-to-screen

copy, 11–8
scaled-copy and video rendering pixel flow,

10–42
hsync signal description, 3–5

I
I2C, 1–3, 2–9, 12–14
I/O address select (IOA) bit, 8–118
I/O space enable (IO) bit, 8–13
Ignore (IGN) convention, xx
Indirect frame buffer addressing, GCTR,

8–36

Index–9

Initial error field, 8–71
Input/output

See I/O
Inside pixel format

field, 8–92
table, 8–92

Interlaced enabled (INLACE) bit, 8–162
Internal architecture, 2–1
Interrupt acknowledge, ignored, 9–12
Interrupt enable (IRQEN) bit, 8–166
Interrupt line field, 8–22
Interrupt pin field, 8–22
Interrupt status

(INTR) bit, 8–27
register (MISR), 8–27

space, 7–12
Interrupts

clear vertical sync interrupt (CVSI) bit,
8–150

enable vertical sync interrupt (EVSI) bit,
8–150

end-of-frame
enable (EOFEN) bit, 8–27
status (EOFST) bit, 8–27

GPP, 12–9
interrupt enable (GIEN) bit, 8–27
interrupt status (GIST) bit, 8–27

routing, 11–3
vertical retrace interrupt (VRI) bit, 8–120

L
L term field, VXCKBR, 8–169
Latency timer field, 8–17, 11–2
Latency, maximum field, 8–22
Length field, 8–71
Line compare

(LC<8>) bit 8, 8–142
(LC<9>) bit 9, 8–144
LSBs field, 8–157

Line drawing, 1–2
engine, 1–2
under Win32, 11–17
under X, 11–15
with frame buffer writes, 10–52

Line drawing (cont’d)
with slope registers, 10–54

Line mask field, 8–36, 8–59
Line mode, 1–6, 1–7

GB1R, 8–68
GB3R, 8–71
GDAR, 8–59
opaque, 1–6, 10–52
transparent, 1–6, 10–62

Line or span continuation, GCTR, 8–36
Line width field, 8–87
Linear address mode (LADMD) bit, 8–158
Lines, 11–15

extending a single line, 10–59
extending and linking 2D lines, 10–57
linking multiple lines, 10–60
opaque drawing, 10–58

sequence, 10–60
Linking and extending 2D lines, 10–57
Linking multiple lines, 10–60
Literature, C–2
LOCK cycle, PCI, not supported, 9–12
Longword, defined, xxii
Look-up table (LUT)

See RAM LUT, ROM LUT

M
M term field

PCCR, 8–23
VXCKAR, 8–168

Magnification, 10–49
Mask data field, DPMR, 8–109
Mask field, VPPMAR, 8–195
Mask GPXR field, 8–67
Mask memory plane field, VSPLMR, 8–127
Master abort

issued by 21130, 8–13
(MA) bit, 8–12

Master operation, PCI, 9–9
Maximum latency field, 8–22
Mechanical specifications, 5–1
memaddr<8:0> signal description, 3–6

Index–10

memdata<63:0> signal description, 3–6
Memory

frame buffer, 2–9
interface, 12–1

Memory barrier, write, 8–26
Memory clock, 12–15

frequency table, 8–24
source (MCS) bit, 8–23

Memory controller, 1–3, 2–5
Memory map <1:0> field, 8–181
Memory read, 9–2

core space, 9–3
interlock, 9–3

Memory space
See also Core space, Register space
2DA, 7–2

base address 0, 7–2
base address 1, 7–10

enable
field, 11–1
(MS) bit, 8–13

map, base address 1, 7–10
organization, 7–3
VGA, 7–2

Memory write, 9–2
core space, 9–2

Memory, extended (EM) bit, 8–129
mem_clk signal description, 12–15
Minimum grant time field, 8–22
Minimum system, 1–5
Miscellaneous registers, 8–25
Mode 32 (MD32) bit, 8–46
Mode field

graphics, 8–44
scaled-copy, 8–76

MODE field, scaled-copy, 8–76
Mode register (GMOR), 8–43
Mode select (MSEL) bit, 8–112
Mode-dependent frame buffer write

operations, 10–1
Mode-specific data field, 8–35
Modes

copy, 1–6, 1–7, 10–19, 10–21
DMA-read copy, 10–33

operation, 10–37

Modes (cont’d)
fill, 2–4
graphics, 10–6

table, 8–45
graphics or alphanumeric mode (GAM)

bit, 8–187
line, 1–6, 1–7

opaque, 1–6
transparent, 1–6

opaque bit-reversed stipple, 10–11
opaque extended-pattern fill, 10–16
opaque-fill, 10–14

operation, 10–15
opaque-line, 10–52
opaque-stipple, 10–9

operation, 10–10
primary, 1–5
restrictions, 2–10
scaled-copy, 10–39
simple, 1–6, 10–7
stipple, 1–6

opaque, 1–6
transparent, 1–6

stipple-fill, 1–6
switching, 11–3

2DA to VGA, 11–4
VGA to 2DA, 11–3

transparent extended-pattern fill, 10–18
transparent-fill, 10–17
transparent-line, 10–62
transparent-stipple, 10–12

operation, 10–13
with pixel mask, 10–13

VGA graphics controller write modes,
8–179

Monitor
connection, 12–13
timing generation, 2–11

Monochrome or bitonal brush fill repeat loop,
11–19

Multimedia, 1–1
pipeline, 1–2

Multiplexer-to-CAS delay (MCD) bit, 8–166

Index–11

Must be zero (MBZ) convention, xx

N
N term field, VXCKBR, 8–169
Nontrivially occluded windows, 10–48
Normal operating conditions, 4–2
Note convention, xxii
Numbering convention, xxii

O
Occluded

See Unoccluded, Trivially occluded
Odd or even (O/E) bit, 8–129, 8–179
oeb# signal description, 3–6
Offset field, 8–152
opamp_Vdd signal description, 3–6
opamp_Vss signal description, 3–6
Opaque bit-reversed stipple mode, 10–11
Opaque fill mode, 10–14

extended-pattern, 10–16
GDAR, 8–58
operation, 10–15

Opaque line drawing, 10–58
sequence, 10–60

Opaque line mode, 1–6, 10–52
Opaque stipple mode, 1–6, 10–9

operation, 10–10
Operands

source and destination, 10–5
according to mode, 10–5

Operating specifications, dc, 4–5
Ordering products, C–1
Outside pixel format

field, 8–92
table, 8–92

Overlays, 11–10
data in 16-bpp and 32-bpp frame buffers,

11–13
flicker-free monochrome, 11–10
true 8-bpp, 11–12
true monochrome, 11–11

Overscan color field, 8–188

P
P<5:4> select (PSEL) bit, 8–187
Page bit (PB), 8–117
Palette address source (PAS) bit, 8–184
Palette and DAC, 1–3, 2–13

register space, 7–12
Palette and DAC registers, 8–104

blue signature analysis register (DBSR),
8–114

command register 0 (DCOR0), 8–111
command register 1 (DCOR1), 8–112
cursor color register (DCCR), 8–108
cursor read address register (DCRR),

8–107
cursor write address register (DCWR),

8–107
green signature analysis register (DGSR),

8–114
pixel mask register (DPMR), 8–109
RAM color register (DPCR), 8–106
RAM read address register (DPRR),

8–105
RAM write address register (DPWR),

8–105
red signature analysis register (DRSR),

8–114
status register (DSTR), 8–110

Palette data field, 8–106, 8–186
Palette mask data field, 8–109
Palette read address field, 8–105
Palette snoop

response table, 8–14
(VPS) bit, 8–13

Palette write address field, 8–105
Parallel load strobe (PLD) bit, 8–171
Parameters

copy mode, 10–19
DMA-read copy mode, 10–33
opaque-fill mode, 10–14
opaque-line mode, 10–52, 10–54
opaque-stipple mode, 10–9
scaled-copy mode, 10–39

Index–12

Parameters (cont’d)
simple mode, 10–7
transparent-fill mode, 10–17
transparent-line mode, 10–62
transparent-stipple mode, 10–12

Parity error response (PER) bit, 8–13
Parity, PCI, 9–11
Parser, command, 2–3
Parts ordering, C–1
PCI

aborted DMA transaction termination,
9–11

access granularity, 9–5
address stepping, not supported, 9–12
bus master enable bit, 11–2
bus mastering, 11–2
bus parking, 9–11
data stepping, not supported, 9–12
electrical specification conformance, 4–1
exclusive access, not supported, 9–12
functions not supported, 9–12
interrupt routing, 11–3
operations, 9–1
parity, 9–11
read data format, ROM sparse space,

7–14
PCI clock signal parameters, 4–7
PCI configuration

registers, see PCI registers
firmware, 11–1
operations, 9–1

PCI expansion ROM
See Expansion ROM, Flash ROM, ROM

PCI interface, 1–1, 2–1
PCI interrupt acknowledge, ignored, 9–12
PCI latency timer field, 11–2
PCI LOCK cycle, not supported, 9–12
PCI master operation, 9–9
PCI master transaction termination, 9–10
PCI registers, 2–1

class and revision register (PCRR), 8–16
clock control register (PCCR), 8–23
command and status register (PCSR),

8–12

PCI registers (cont’d)
device base address registers (PDBR0,

PDBR1), 8–18
expansion ROM base address register

(PRBR), 8–21
identification register (PIDR), 8–11
interrupt line register (PLIR), 8–22
latency timer and header type register

(PLTR), 8–17
PCI special cycle, ignored, 9–12
PCI target operations, 9–4
PCI target transaction termination, 9–5
PCI transactions

to 2DA memory space, 9–5
to configuration space and expansion

ROM space, 9–7
to VGA memory and I/O space, 9–8

PCI write-data format
copy mode, 10–19
DMA-read copy mode, 10–33
opaque-fill mode, 10–14
opaque-line mode, 10–53
opaque-stipple mode, 10–9
simple mode, 10–7
transparent-stipple mode, 10–12

PCI-to-VGA interface, 12–6
pci_ad<31:0> signal description, 3–6
pci_cbe<3:0># signal description, 3–6
pci_clk signal description, 3–6
pci_devsel# signal description, 3–6
pci_frame# signal description, 3–6
pci_gnt# signal description, 3–6
pci_idsel signal description, 3–7
pci_inta# signal description, 3–7
pci_irdy# signal description, 3–7
pci_par signal description, 3–7
pci_perr# signal description, 3–7
pci_req# signal description, 3–8
pci_rst# signal description, 3–8
pci_serr# enable (SEN) bit, 8–13
pci_serr# signal description, 3–8
pci_stop# signal description, 3–8
pci_trdy# signal description, 3–8

Index–13

Persistent GPXR, 8–67
Pin characteristics, 4–4
Pin interfaces, 12–1
Pin summary, A–1
Pinout, 3–1
Pins, shared

32-bit GPP and ROM modes, 12–2
64-bit GPP and ROM modes, 12–3
32-bit GPP and VAFC modes, 12–4
VGA mode, 12–2

Pipeline
graphics and multimedia video, 1–2
pixel processing, 2–3

pixclk signal description, 3–8
Pixel clock, 12–15

frequency table, 8–170
signal parameters, 4–23
source (PCS) bit, 8–23

Pixel engine, 2–4
Pixel format (PIXFOR) field, 8–78
Pixel mask

field, 8–66
register (GPXR), 8–66

any mode, 8–67
mask field, 8–67
simple mode, 8–67
stipple modes, 8–66

status (PMS) bit, 8–43
Pixel merge function, 2–5
Pixel occlusion bitmap, 2–11, 8–98

base address field, 8–100
base address register (VFOBR), 8–100
current address field, 8–101
current address register (VFCRR), 8–102
current address register (VFOAR), 8–101
enable (POBE) bit, 8–91
field, 8–98
hardware restriction, 11–11
mode (POBM) bit, 8–91
synchronized enable (SPOBE) bit, 8–91

Pixel order (PIXORD) field, 8–78
Pixel panning

field, 8–190
(PAN) bit, 8–187

Pixel phase select (PPS) field, 8–112
Pixel processing pipeline, 2–3
Pixel shift

field, 8–55
register (GPSR), 8–55

Pixel width (PW) bit, 8–187
Pixels

assigning shift values, 10–25
formatting, 8–95
inside and outside pixel formats table,

8–92
inside format field, 8–92
outside format field, 8–92
VAFC input modes, 12–11
VAFC output modes, 12–10
variable pixel formats, 8–92 to 8–95
YUV formats, 10–44

Pixels per longword (PIXLW) field, 8–78
pix_clk signal description, 12–15
pll_filter signal description, 3–8
pll_test signal description, 3–8
pll_Vdd signal description, 3–8
pll_Vss signal description, 3–8
Pointer, copy-buffer write pointer, 8–53
Postscaling filter restriction, 10–42
Power dissipation, 4–2
Power-down enable (PDE) bit, 8–111
Power-on self-test (POST) code, 8–16
Prefetchable (PF) bit, 8–18
Prescaling filter restriction, 10–42
Preset row (PROW) field, 8–143
Primary operating modes, 1–5
Priming the residue register

copy mode, 10–26
DMA-read copy mode, 10–36

Programmed I/O
copy buffer operation, 10–31
through CPU write buffer, 11–27

Programming, 11–1
Alpha CPUs, 11–26
basic programming model, 1–5

extensions, 1–6
the Bresenham scaler for unoccluded

spans, 10–49

Index–14

Programming interface field, 8–16
Pseudo-shadowed registers, 11–22

Q
Quadword, defined, xxii

R
RAM LUT, 1–3

addressing, 8–96
RAM registers

See Palette and DAC registers
RAMDAC

See Palette and DAC
Ranges convention, xxii
RAS precharge period field, 8–166
RAS setup period field, 8–166
RAS to multiplexer delay (RMD) bit, 8–166
ras<2:0># signal description, 3–8
Raster operation

field, 8–64
register (GOPR), 8–63
table, 8–64

Read as zero (RAZ) convention, xx
Read clears (RC) convention, xx
Read FIFO, DMA, 2–7
Read map select (RMS) field, 8–178
Read mode (RM) bit, 8–179
Read only (RO) convention, xxi
Reads

DMA transfers, 9–10
GCTR, 8–37
GSNR<7:0>, 8–51
GSWR, 8–33
interlock, 9–3
memory core space, 9–3
memory interlock, 9–3

Read/write (RW) convention, xxi
Read/write one to clear (R/W1C) convention,

xxi
Read/write state (RWS) bit, 8–110, 8–193
red signal description, 3–9

Red signature field, 8–114
Reduction, 10–49
ref signal description, 3–9
Refresh address, current field, 8–102
Refresh calculations, 11–25
Refresh cycles select (SRC) bit, 8–149
Register

access abbreviations defined, xx
load synchronization, 10–4
space

alternate register space map, 7–11
base address 0, 7–5
base address 0 map, 7–7
MISR, base address 1, 7–12
palette and DAC, base address 1,

7–12
VGA alternate, base address 1, 7–10
VGA register map, 7–11

Register alias space
See Base address 0 register space

Registers
address register (GADR), 8–56
alphabetical list, B–1
attribute controller registers

See VGA attribute controller registers
background register (GBGR), 8–60
Bresenham

1 register (GB1R), 8–68
2 register (GB2R), 8–70
3 register (GB3R), 8–71
width register (GBWR), 8–73

clock control register (PCCR), 8–23
color registers

See VGA color registers
command status register (MCSR), 8–25
continue register (GCTR), 8–35
copy buffer registers (GCBR<7:0>), 8–53
copy-64 destination register (GCDR),

8–38
copy-64 source register (GCSR), 8–38
copy-64A destination register (GCADR),

8–40
copy-64A source register (GCASR), 8–40
core registers, 2–7

Index–15

Registers (cont’d)
CRTC registers

See VGA CRTC registers
cursor registers

See Cursor registers, Palette and DAC
registers, VGA CRTC registers

data register (GDAR), 8–58
deep register (GDER), 8–46
dither column register (GDCR), 8–81
dither row register (GDRR), 8–81
DMA base-address register (GDBR), 8–74
extended registers

See VGA extended registers
external and general registers

See VGA external and general
registers

figures conventions, xxiii
foreground register (GFGR), 8–60
graphics command registers, 8–29
graphics control registers, 8–42
graphics controller registers

See VGA graphics controller registers
interrupt status register (MISR), 8–27
miscellaneous registers, 8–25
mode register (GMOR), 8–43
palette and DAC registers

See Palette and DAC registers
PCI registers

See PCI registers
pixel mask register (GPXR), 8–66
pixel shift register (GPSR), 8–55
raster operation register (GOPR), 8–63
repeat begin register (GRBR), 8–41
repeat end register (GRER), 8–41
reset state, B–5
residue register

description, 10–22
priming and flushing, 10–26, 10–36

scaled-copy control register (GSCR), 8–76
sequencer registers

See VGA sequencer registers
shadowed registers, 11–22
slope registers (GSLR<7:0>), 8–30

Registers (cont’d)
slope-no-go registers (GSNR<7:0>), 8–50
span width register (GSWR), 8–33
summary, B–1
video control registers

See Video registers
video format registers

See Video registers
Related documentation, C–2
Rendering full frames, 10–46
Repeat begin register (GRBR), 8–41
Repeat count field, 8–99
Repeat end register (GRER), 8–41
Repeat loop examples, 11–19 to 11–21
Repeat number field, 8–41
Required software interlock, 10–51
Reserved (RES) convention, xxi
Reset state, registers, B–5
Residue register

description, 10–22
priming and flushing in copy mode,

10–26
priming and flushing in DMA-read copy

mode, 10–36
Revision ID field, 8–16
RGB 16-bpp and 32-bpp formats, 10–46
ROM, 2–6, 7–2

See also Expansion ROM, Flash ROM
access restriction, 7–14, 12–8

ROM interface, 12–8
ROM LUT, 1–3
ROM read byte field, 7–15
ROM space, 7–2
ROM sparse space, 7–13

PCI read data field description, 7–15
PCI read data format, 7–14

ROM write enable (FRWE) bit, 8–46
rom_adr<17:0> signal description, 3–9
rom_ce# signal description, 3–9
rom_d<7:0> signal description, 3–9
rom_oe# signal description, 3–9
rom_we# signal description, 3–9

Index–16

Rotate count field, 8–177
Row address strobe

See RAS

S
Scaled video DMA repeat loop example,

11–20
Scaled-copy, 11–8

PCI DMA start address, 10–40
Scaled-copy and video rendering pixel flow,

10–42
Scaled-copy control register (GSCR), 8–76
Scaled-copy mode, 10–39

GB1R, 8–69
GB3R, 8–72
GDBR, 8–75
operations table, 8–78
PCI write data field description, 10–40
PCI write data format, 10–40

Scaling, 10–48
filters, 11–9
occluded spans, 10–50
unity scaling, 10–50

Scan double (SD) bit, 8–144
Scanline addresses, 11–25
Scanline increment field, 8–87
Screen off (SO) bit, 8–125
Screen parameters, 8–130
Screen-to-screen copy, 11–5

8-bpp repeat loop example, 11–21
Select character generator A

high order (SAH) bit, 8–128
(SA) bit, 8–128

Select character generator B
high order (SBH) bit, 8–128
(SB) bit, 8–128

Select color
<5:4> (SC<5:4>) bit, 8–191
<7:6> (SC<7:6>) field, 8–191

Select horizontal retrace (HRS) bit, 8–155
Select host page (HPAGE) bit, 8–158
Select refresh cycles (SRC) bit, 8–149

Select row scan counter (SRS) bit, 8–155
Select vertical sync (VSS) bit, 8–119
Select word or byte mode (WB) bit, 8–155
Semiconductor

documentation, C–2
information line, C–1

Sense status (SS) bit, 8–110, 8–120, 8–193
Sequencer data field, 8–123
Sequencer index (SI) field, 8–122
Sequencer registers

See VGA sequencer registers
Set/Reset plane field, 8–174
Setup-enable (SE) bit, 8–111
Shadowed registers, 11–22
Shared pins

32-bit GPP and ROM modes, 12–2
64-bit GPP and ROM modes, 12–3
32-bit GPP and VAFC modes, 12–4
VGA mode, 12–2

Sharpening filter (FSH) field, 8–77
Shift four (S4) bit, 8–125
Shift load (SL) bit, 8–125
Shift register (SR) bit, 8–179
Signaled system error (SSE) bit, 8–12
Signals

active level, 3–15
by direction, 3–11, 3–15
by function, 3–11, A–1
descriptions, 3–4, 12–15
list, 3–1
naming convention, xxiii
notation convention, 3–1
summary, A–1

Signature analysis enable (SAEN) bit, 8–112
Signature analysis registers

See Palette and DAC registers
Simple mode, 1–6, 10–7

GPXR, 8–67
Slope registers (GSLR<7:0>), 8–30

drawing lines with, 10–54
drawing octants, 8–31
write requirement, 8–30

Index–17

Slope-no-go registers (GSNR<7:0>), 8–50
read, 8–51
write, 8–50
write requirement, 8–50

Smoothing filter (FSM) field, 8–76
Snoop response table, 8–14
Snooped DAC write PCI transactions to VGA

space, 9–9
Soft reset (SRES) bit, 8–23
Software interlock required, 10–51
Solid fills, 11–13
Source alignment, 10–22
Source bitmap (SB) field, 8–44
Source operands, 10–5

according to mode, 10–5
Space bit, 8–18
Span limits, copy mode, 10–21
Span or line continuation, GCTR, 8–36
Span starting and trailing edges, 10–51
Span width register (GSWR), 8–33

read, 8–33
write, 8–34

Sparse space
base address 1 memory space, 7–10
GPP space, 7–11
palette and DAC register space, 7–12
ROM, 7–13
ROM read field description, 7–15
VGA alternate register space, 7–10

Special cycle, ignored, 9–12
Specifications

electrical, 4–1
mechanical, 5–1
thermal, 6–1

Specifying cap ends, 10–60
Split-screen address bit 16 (SAA16), 8–158
Split-screen start address

<7:0> field, 8–161
<15:8> field, 8–161

Standard drawing mechanism, 8–29
Start address

high field, 8–147
low field, 8–147

Start horizontal
blank field, 8–137
sync field, 8–139

Start pixel (SPIX) field, 8–77
Start vertical blanking

LSBs field, 8–154
(SVB <9>) bit 9, 8–144
(SVB<8>) bit 8, 8–142

Start vertical sync
LSBs field, 8–149
(SVS<8>) bit 8, 8–142
(SVS<9>) bit 9, 8–142

Stencil
See Pixel occlusion bitmap

Stipple logic, 2–4
Stipple mode, 1–6
Stipple modes

GPXR, 8–66
opaque, 1–6, 10–9
opaque bit-reversed, 10–11
transparent, 1–6, 10–12, 10–13

Stipple-fill mode, 1–6
Stippling, monochrome brush, 11–14
StretchBlt, 1–2
Subclass field, 8–16
Supply current, 4–2
Sync

composite sync enable (CSEN) bit, 8–162
green sync enable (GSE) bit, 8–111
horizontal sync

delay field, 8–139
end field, 8–139
polarity (HSP) bit, 8–117
start field, 8–139
width field, 8–165

hsync signal description, 3–5
vertical sync

end field, 8–150
interrupt clear (CVSI) bit, 8–150
interrupt enable (EVSI) bit, 8–150
polarity (VSP) bit, 8–117
select (VSS) bit, 8–119
start (SVS<8>) bit 8, 8–142
start (SVS<9>) bit 9, 8–142
start LSBs field, 8–149

Index–18

Sync
vertical sync (cont’d)

strobe (TVS) bit, 8–171
vsync signal description, 3–10

Sync and blank source (SBS) bit, 8–89
Synchronized blank (SBLNK) bit, 8–89
Synchronized pixel occlusion bitmap enable

(SPOBE) bit, 8–91
Synchronized video valid (SVV) bit, 8–89
Synchronous reset (SR) bit, 8–124

T
Target abort

issued by 21130, 8–13
master (TAM) bit, 8–12
target (TAT) bit, 8–12

Target operations, PCI, 9–4
Technical support, C–1
Test clock, 12–16

input (TCLKI) bit, 8–88
output control (TCLKO) bit, 8–88
output disable (TCLKD) bit, 8–89
source (TCS) bit, 8–23

Test conditions, 4–2
test_in signal description, 3–9
Text, 11–19
Thermal specifications, 6–1
Third-party documentation, C–2
Tiling, non-monochrome brush, 11–14
Transaction termination

aborted DMA, 9–11
PCI master, 9–10
PCI target, 9–5

Transparent fill mode, 10–17
extended-pattern, 10–18
GDAR, 8–58

Transparent line mode, 1–6, 10–62
Transparent stipple mode, 1–6, 10–12

operation, 10–13
with pixel mask, 10–13

Trivially occluded or unoccluded target
windows, 10–46

Trivially occluded target window, 10–47
Trivially occluded, defined, 10–47
True 8-bpp overlay in 16-bpp or 32-bpp frame

buffers, 11–12
True monochrome overlay, 11–11
Type field, 8–18

U
Unaligned convention, xxi
Underline location field, 8–153
Unity scaling, 10–50
Unmasked span copies, 10–29
Unoccluded or trivially occluded target

windows, 10–46
Unoccluded target window, 10–47
Unsupported functions, 1–4

PCI, 9–12

V
VAFC, 12–9

See also Feature connector
blank enable, 12–12
input screen resolutions, 12–13
input windows, 12–12
operation, 12–10
output screen resolutions, 12–12
pixel input modes, 12–11
pixel output modes, 12–10
port, 1–3, 2–12
signal ordering, 12–2

VAFC blank control (VAFC BC) bit, 8–104
VAFC clock domain signal parameters, 4–23
VAFC direction (VAFC D) bit, 8–103
VAFC enable (VAFC E) bit, 8–104
VAFC frequency select (VAFC FS) bit, 8–103
VAFC input window (VAFC IW) bit, 8–103
VAFC mode (VAFC M) bit, 8–103
VAFC output source (VAFC OS) bit, 8–103
vafc_dclk signal description, 3–9
vafc_en# signal description, 3–9
vafc_p<0:15> signal description, 3–9

Index–19

vafc_vclk signal description, 3–9
Variable dot clock select (VVDS) bit, 8–168
Variable pixel formats, 8–95
Vdd signal description, 3–10
Vendor ID field, 8–11
Vertical

size as function of HSP and VSP, 8–118
vsync signal description, 3–10

Vertical blanking end field, 8–154
Vertical blanking start

LSBs field, 8–154
(SVB <9>) bit 9, 8–144
(SVB<8>) bit 8, 8–142

Vertical display end
(EVD<8>) bit 8, 8–142
(EVD<9>) bit 9, 8–142
LSBs field, 8–151

Vertical retrace
interrupt (VRI) bit, 8–120
(VR) bit, 8–121

Vertical sync end field, 8–150
Vertical sync interrupt

clear (CVSI) bit, 8–150
enable (EVSI) bit, 8–150

Vertical sync polarity (VSP) bit, 8–117
Vertical sync select (VSS) bit, 8–119
Vertical sync start

LSBs field, 8–149
(SVS<8>) bit 8, 8–142
(SVS<9>) bit 9, 8–142

Vertical sync strobe (TVS) bit, 8–171
Vertical total

LSBs field, 8–141
(VT<8>) bit 8, 8–142
(VT<9>) bit 9, 8–142

VESA advanced feature connector
See VAFC

VESA display modes, 1–4
VGA alternate register space, 7–10 to 7–11
VGA attribute controller registers, 8–183

color plane enable register (VACPER),
8–189

color select register (VACSLR), 8–191
index/data register (VAIXDR), 8–184
mode register (VAMODR), 8–187

VGA attribute controller registers (cont’d)
overscan register (VAOSCR), 8–188
palette registers (VAPALR), 8–186
pixel panning register (VAPXPR), 8–190

VGA color registers, 8–191
DAC state register (VPDSTR), 8–193
pixel address

read mode register (VPPARR), 8–192
write mode register (VPPAWR),

8–192
pixel data register (VPPDAR), 8–194
pixel mask register (VPPMAR), 8–195

VGA compatibility address (VGAAD) bit,
8–158

VGA controller, 1–3
VGA CRTC registers, 8–130

cursor end register (VCCUER), 8–145
cursor location

high register (VCCLHR), 8–148
low register (VCCLLR), 8–148

cursor start register (VCCUSR), 8–145
data register (VCDATR), 8–134

data field, 8–134
end horizontal blank register (VCHBER),

8–137
end horizontal sync register (VCHSER),

8–139
end vertical blanking register (VCVBER),

8–154
end vertical display register (VCVDER),

8–151
end vertical sync register (VCVSER),

8–149
horizontal display end register

(VCHDER), 8–136
horizontal total register (VCHTOR),

8–135
index register (VCINXR), 8–132

index field, 8–132
line compare register (VCLCMR), 8–157
maximum scanline register (VCMSLR),

8–144
mode control register (VCMODR), 8–155
offset register (VCOFFR), 8–152
overflow register (VCOVRR), 8–142

Index–20

VGA CRTC registers (cont’d)
preset row register (VCPROR), 8–143
start address

high register (VCSAHR), 8–147
low register (VCSALR), 8–147

start horizontal blank register (VCHBSR),
8–137

start horizontal sync register (VCHSSR),
8–139

start vertical blanking register (VCVBSR),
8–154

start vertical sync register (VCVSSR),
8–149

underline row scan register (VCULRR),
8–153

vertical total register (VCVTOR), 8–141
VGA dot clock

See Dot clock
VGA enable (VGAE) bit, 8–46
VGA extended registers, 8–157

clock control
A register (VXCKAR), 8–168
B register (VXCKBR), 8–168

data register (VCDATR)
data field, 8–134

equalization
end register (VXEQER), 8–163
start register (VXEQSR), 8–163

half-line register (VXHLNR), 8–164
host page offset

A register (VXHPAR), 8–160
B register (VXHPBR), 8–160

index register (VCINXR)
index field, 8–132

interface control register (VXEICR),
8–171

interlace control register (VXICOR),
8–162

paging control register (VXPCOR), 8–158
split-screen start address

high byte register (VXSAHR), 8–161
low byte register (VXSALR), 8–161

timing control
A register (VXTCAR), 8–165
B register (VXTCBR), 8–166

VGA extended registers (cont’d)
video FIFO control register (VXFCOR),

8–167
VGA external and general registers, 8–116

feature control register (VEFCOR), 8–119
input status

0 register (VEIS0R), 8–120
1 register (VEIS1R), 8–121

miscellaneous output register (VEMISR),
8–117

port map, 8–116
VGA graphics controller registers, 8–171

bit mask register (VGBMKR), 8–183
color compare register (VGCCMR), 8–176
color don’t care register (VGCDCR),

8–182
data register (VGDATR), 8–173
data rotate register (VGDROR), 8–177
enable set/reset register (VGESRR),

8–175
index register (VGINXR), 8–172
miscellaneous register (VGMISR), 8–181
mode register (VGMODR), 8–179
read map select register (VGRMSR),

8–178
set/reset register (VGSRER), 8–174

VGA graphics controller write modes, 8–179
VGA memory space, 7–2
VGA palette snoop (VPS) bit, 8–13
VGA registers, 8–115

port map, 8–115
VGA sequencer registers, 8–122

character map select register (VSCMSR),
8–128

clocking mode register (VSCMOR), 8–125
data register (VSDATR), 8–123
index register (VSINXR), 8–122
memory mode register (VSMMOR), 8–129
plane mask register (VSPLMR), 8–127
reset register (VSRESR), 8–124

VGA subsystem, 2–9, 12–6
interfaces, 12–6

Index–21

VGA variable dot clock select (VVDS) bit,
8–168

VGA-to-2DA mode switching, 11–3
VGA-to-frame buffer memory interface,

12–6
VGA-to-PCI interface, 12–6
VGA-to-video back end interface, 12–6
Video address

configuration registers, 11–25
in 64-bit and 32-bit modes, 11–24
segment (VSEG) bit, 8–159

Video back end, 2–11
VGA interface, 12–6

Video base address
field, 8–86
register (VIVBR), 8–86

Video line width register (VILWR), 8–86
Video pipeline, 1–2
Video pixel format

register (VFPFR), 8–91
table, 8–92

Video pixel occlusion bitmap registers
See Pixel occlusion bitmap registers

Video port and display monitor interface,
12–9

Video port transceivers, 12–13
Video refresh, 2–11

calculations, 11–25
Video registers, 11–22

alternate video control register (VFAVR),
8–103

base address register (VIVBR), 8–86
control registers, 8–85
format registers, 8–90
in 64-bit and 32-bit frame buffer modes,

11–23
line width register (VILWR), 8–86
modifying the contents, 11–22
pixel format register (VFPFR), 8–91
pixel occlusion bitmap registers

See Pixel occlusion bitmap registers
scanline increment register (VISIR), 8–86
video valid register (VIVVR), 8–88

Video rendering pixel flow, 10–42
Video scanline addresses, 11–25
Video scanline increment register (VISIR),

8–86
Video valid

register (VIVVR), 8–88
synchronized (SVV) bit, 8–89
(VV) bit, 8–90

Video-disabled registers, 11–22
Vss signal description, 3–10
vsync signal description, 3–10

W
Word or byte mode select (WB) bit, 8–155
wrb# signal description, 3–10
Write buffer, 2–6
Write memory barrier, 8–26
Write mode

VGA graphics controller, 8–179
(WM) field, 8–179

Write only (WO) convention, xxi
Write pointer, copy-buffer, 8–53
Write protect (WP) bit, 8–149
Writes

frame buffer, 2–4, 10–1
mode-dependent operations, 10–1

GCTR, 8–35
alternate control space, 8–37
line mode, 8–36

graphics command register, 10–2
operations, 10–3

GSNR<7:0>, 8–50
GSWR, 8–34
memory, 9–2

Wrong parity generate (WPG) bit, 8–46

X
xtal1 signal description, 3–10
xtal2 signal description, 3–10

Index–22

Y
YUV convert enable (YUVCEN) bit, 8–77
YUV pixel formats, 10–44

4:2:2 UYVY, 10–45
4:4:4 �VYU, 10–44
4:2:2 VYUY, 10–46
4:2:2 YVYU, 10–45
4:2:2 YVYU destination pixel, 10–45

Index–23

