FreeBSD ARM64: Porting on a new board

Emmanuel Vadot
manu@FreeBSD.org

7 -
d freeBSD

BSDCan
Ottawa Canada
June 8 — 9, 2018

manu@FreeBSD.org

Who am | 7

» ARM Kernel Hacker for 2 and half year

Self proclaimed maintainer for Allwinner SoCs (and now
RockChip)

Self proclaimed DTS Maintainer in FreeBSD
U-Boot Maintainer

v

v

v

v

Upstream guy in Linux for DTS and U-Boot

§ FreeBSD

Agenda

v

ARM /SoC/SBC

Bootloader

v

Serial
First kernel boot

v

v

v

Clocks and Resets
Clock API

v

What is an SoC ?

v

SoC == System On Chip
ARM does not manufacture processor
SoC vendor buys IP from ARM for the core

» Sometimes they also buy IP from other companies

v

v

v

An SoC integrates a processor and peripherals

§ FreeBSD

Single

v

v

v

v

Board Computer

SBC = Single Board Computer

Generaly from another company than the SoC one
Integrates SoC and other chips (PMU, PHY etc ...)
Also adds GPIOs, SD/MMC, ethernet connectors etc ...

@b rrccssD

Pine64 Rock64

RK3328 based SBC
1Gbps Ethernet
USB3

eMMC socket

v

v

v

v

Donated by Pine64, Thank you TL Lim

v

Why Porting 7

» [t's fun

U fFreeBSD

Why Porting 7

» It's fun

» You learn a lot

[
d FreeBSD

Why Porting 7

> It's fun
» You learn a lot

» New arm/arm64 boards every month or so
Having FreeBSD working on it expand our market

Why Porting 7

It's fun

v

You learn a lot

v

v

New arm/arm64 boards every month or so
Having FreeBSD working on it expand our market

v

Porting to a new arch is hard, new SoC not that much

§ FreeBSD

Bootloader requirement

» EFIl aware

Bootloader requirement

» EFIl aware

» FIT Image

Bootloader requirement

> EFI aware
» FIT Image
> AArch64 Linux Image

[
d FreeBSD

Bootloader requirement

EFI aware

v

v

FIT Image
AArch64 Linux Image

Convert kernel to kernel.bin

v

v

[
d FreeBSD

Bootloader requirement

EFI aware

v

v

FIT Image
AArch64 Linux Image

Convert kernel to kernel.bin

v

v

v

But you want EFI aware

Y <72
d FreeBSD

U-Boot life

» Mainline release every two months

U-Boot life

» Mainline release every two months

» SoC Vendor pick a release or a random commit

U-Boot life

» Mainline release every two months
» SoC Vendor pick a release or a random commit

» Stay on it and patch it

U-Boot life

v

Mainline release every two months

v

SoC Vendor pick a release or a random commit

v

Stay on it and patch it
SBC Vendor patch the SoC Vendor one

v

Y g
| FreeBSD

U-Boot life

v

Mainline release every two months

SoC Vendor pick a release or a random commit

v

v

Stay on it and patch it
SBC Vendor patch the SoC Vendor one
Linux Distribution patch the SBC Vendor one

v

v

Y g
| FreeBSD

U-Boot life at RockChip

» Mainline release every two months

[
d FreeBSD

U-Boot life at RockChip

» Mainline release every two months

» SoC Vendor pick a release or a random commit
Rockchip fork is based on 2017.09

U-Boot life at RockChip

» Mainline release every two months

» SoC Vendor pick a release or a random commit
Rockchip fork is based on 2017.09

» Stay on it and patch it
They do upstream some patches to mainline

§ FreeBSD

U-Boot life at RockChip

v

Mainline release every two months

v

SoC Vendor pick a release or a random commit
Rockchip fork is based on 2017.09

Stay on it and patch it
They do upstream some patches to mainline

SBC Vendor patch the SoC Vendor one
Few patches but none upstreamed

v

v

§ FreeBSD

U-Boot life at RockChip

» Mainline release every two months

» SoC Vendor pick a release or a random commit
Rockchip fork is based on 2017.09

» Stay on it and patch it
They do upstream some patches to mainline

» SBC Vendor patch the SoC Vendor one
Few patches but none upstreamed

» Linux Distribution patch the SBC Vendor one
something like 100 patches, none upstreamed

§ FreeBSD

U-Boot for Rock64

» Using vendor u-boot first

[
d FreeBSD

U-Boot for Rock64

» Using vendor u-boot first

» Decided to use the 'community’ build by ayufan

Y <72
d FreeBSD

U-Boot for Rock64

» Using vendor u-boot first
» Decided to use the 'community’ build by ayufan

» Produce an sd card image for spi flash burning

U-Boot for Rock64

v

Using vendor u-boot first

v

Decided to use the 'community’ build by ayufan

v

Produce an sd card image for spi flash burning

v

And it supports tftpboot

U-Boot for Rock64

v

Using vendor u-boot first

v

Decided to use the 'community’ build by ayufan

v

Produce an sd card image for spi flash burning

v

And it supports tftpboot
andreast@FreeBSD.Org updated to recent u-boot

v

§ FreeBSD

Serial

> FreeBSD Kernel try to resolve the /chosen/std{in,out}

)

Serial

> FreeBSD Kernel try to resolve the /chosen/std{in,out}

» Fallback on dtb node named serial0

Serial

> FreeBSD Kernel try to resolve the /chosen/std{in,out}
» Fallback on dtb node named serial0
» Node need it's status to be != disabled

@b rrccssD

Serial

v

v

v

v

FreeBSD Kernel try to resolve the /chosen/std{in,out}
Fallback on dtb node named serialO
Node need it's status to be != disabled

There is a good chance that the uart controller is already
supported

¥ FreeBSD

First Boot

> uart + loader.efi = kernel booting

First Boot

> uart + loader.efi = kernel booting

» using a mfsroot can be handy

Y <72
d FreeBSD

Device Driver

» Now you can write device drivers !!!

Device Driver

» Now you can write device drivers !!!

» Well no, you need clocks and resets support first

Y g
| FreeBSD

Clocks

@ fFreeBSD

Clocks

» 24Mhz oscilator on the board

[
d FreeBSD

Clocks

» 24Mhz oscilator on the board

» SoC derive some PLLs based on it

Clocks

» 24Mhz oscilator on the board
» SoC derive some PLLs based on it

» Peripherals clocks are derived from PLLs

Clocks

v

v

v

v

24Mhz oscilator on the board
SoC derive some PLLs based on it
Peripherals clocks are derived from PLLs

Peripherals clocks can choose between multiples parent

¥ FreeBSD

Clocks

v

v

v

v

v

24Mhz oscilator on the board
SoC derive some PLLs based on it
Peripherals clocks are derived from PLLs

Peripherals clocks can choose between multiples parent
Each SoCs is different

§ FreeBSD

Clocks

24Mhz oscilator on the board

SoC derive some PLLs based on it

Peripherals clocks are derived from PLLs

Peripherals clocks can choose between multiples parent
Each SoCs is different

Most of the time Vendors reuse the clock models between
SoCs

[=,
d FreeBSD

Resets

» Active/Deactivate the peripheral

Resets

» Active/Deactivate the peripheral

» Usually just a bit in one register

Y g
| FreeBSD

How to manage clocks

» Calling socname_clock_blah(uint64_t freq, bool enable)

How to manage clocks

» Calling socname_clock_blah(uint64_t freq, bool enable)

> It means a lot of if/else in driver code
No generic way to manage clocks and clock/parent
relationship
No code reuse between SoCs (or just a little)

How to manage clocks

» Calling socname_clock_blah(uint64_t freq, bool enable)

> It means a lot of if/else in driver code
No generic way to manage clocks and clock/parent
relationship
No code reuse between SoCs (or just a little)

» Right way is to use the clock api

Clock API

» First appeared in FreeBSD 11, work done by
mmel@FreeBSD.Org

Clock API

» First appeared in FreeBSD 11, work done by
mmel@FreeBSD.Org

» Used for Nvidia Tegra, Allwinner and RockChip SoCs

Y g
| FreeBSD

Clock API

» First appeared in FreeBSD 11, work done by
mmel@FreeBSD.Org

» Used for Nvidia Tegra, Allwinner and RockChip SoCs

» Clock driver registers clocks

§ FreeBSD

Clock API

v

First appeared in FreeBSD 11, work done by
mmel@FreeBSD.Org

Used for Nvidia Tegra, Allwinner and RockChip SoCs

Clock driver registers clocks

v

v

» Driver can enable/disable/change frequency of clock in a
SoCs independant way.

§ FreeBSD

Clock API

» First appeared in FreeBSD 11, work done by
mmel@FreeBSD.Org

» Used for Nvidia Tegra, Allwinner and RockChip SoCs
» Clock driver registers clocks

» Driver can enable/disable/change frequency of clock in a
SoCs independant way.

» Sadly no man pages

Clock API - Clock type

> basic clocks type exists

[
d FreeBSD

Clock API - Clock type

> basic clocks type exists

» clk_fixed : Either a fixed frequency or child of another clock
+ multiplier or divider

Clock API - Clock type

> basic clocks type exists
» clk_fixed : Either a fixed frequency or child of another clock
+ multiplier or divider

» clk_div : Support fractional divider or divider table

§ FreeBSD

Clock API - Clock type

v

basic clocks type exists

v

clk_fixed : Either a fixed frequency or child of another clock
+ multiplier or divider

v

clk_div : Support fractional divider or divider table

v

clk_mux : Simple multiple parent clock

§ FreeBSD

Clock API - Clock type

v

basic clocks type exists

v

clk_fixed : Either a fixed frequency or child of another clock
+ multiplier or divider

v

clk_div : Support fractional divider or divider table

v

clk_mux : Simple multiple parent clock

v

All SoCs specific clock needs to be created

§ FreeBSD

Clock API - Create a clock type

» Subclass the clknode_class (See clknode_if.m)

[
d FreeBSD

Clock API - Create a clock type

» Subclass the clknode_class (See clknode_if.m)

» clknode_init is called during the clock registration
Should init the parent(s)

Clock API - Create a clock type

» Subclass the clknode_class (See clknode_if.m)

» clknode_init is called during the clock registration
Should init the parent(s)

» clknode_setgate Enable/Disable the clock

Clock API - Create a clock type

» Subclass the clknode_class (See clknode_if.m)

» clknode_init is called during the clock registration
Should init the parent(s)

» clknode_setgate Enable/Disable the clock

» clknode_setmux Switch parent

§ FreeBSD

Clock API - Create a clock type

» Subclass the clknode_class (See clknode_if.m)

» clknode_init is called during the clock registration
Should init the parent(s)

» clknode_setgate Enable/Disable the clock
» clknode_setmux Switch parent

» clknode_recalc Refresh the cached value of the current clock
frequency

Clock API - Create a clock type

» Subclass the clknode_class (See clknode_if.m)

» clknode_init is called during the clock registration
Should init the parent(s)

» clknode_setgate Enable/Disable the clock
» clknode_setmux Switch parent

» clknode_recalc Refresh the cached value of the current clock
frequency

» clknode_setfreq Change the frequency of the clock

Clock API - Create a Clock Unit Driver

» 1) Device create a clock domain with clkdom_create

[
d FreeBSD

Clock API - Create a Clock Unit Driver

» 1) Device create a clock domain with clkdom_create

» 2) Create a clknode with clknode_create

[=,
d FreeBSD

Clock API - Create a Clock Unit Driver

» 1) Device create a clock domain with clkdom_create
» 2) Create a clknode with clknode_create

> 3) Register the clknode with clknode_register

Clock API - Create a Clock Unit Driver

v

1) Device create a clock domain with clkdom_create

v

2) Create a clknode with clknode_create

v

3) Register the clknode with clknode_register

v

Repeat 2 and 3 for every clock on the SoC and finalize the
clock domain with clkdom_finit

§ FreeBSD

Clock API - Create a Clock Unit Driver

v

1) Device create a clock domain with clkdom_create

v

2) Create a clknode with clknode_create

v

3) Register the clknode with clknode_register

v

Repeat 2 and 3 for every clock on the SoC and finalize the
clock domain with clkdom_finit

v

Use clk_set_assigned to parse the 'assigned-clock’ properties

[=,
d FreeBSD

assigned-clock example (1)

assigned-clocks =

<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru
<&cru

DCLK_LCDC>, <&cru SCLK_PDM>,
SCLK_RTC32K>, <&cru SCLK_UARTO>,
SCLK_UART1>, <&cru SCLK_UART2>,
ACLK_BUS_PRE>, <&cru ACLK_PERI_PRE>,
ACLK_VIO_PRE>, <&cru ACLK_RGA_PRE>,
ACLK_VOP_PRE>, <&cru ACLK_RKVDEC_PRE>,
ACLK_RKVENC>, <&cru ACLK_VPU_PRE>,
SCLK_VDEC_CABAC>, <&cru SCLK_VDEC_CORE>,
SCLK_VENC_CORE>, <&cru SCLK_VENC_DSP>,
SCLK_SDIO>, <&cru SCLK_TSP>,
SCLK_WIFI>, <&cru ARMCLK>,

PLL_GPLL>, <&cru PLL_CPLL>,
ACLK_BUS_PRE>, <&cru HCLK_BUS_PRE>,
PCLK_BUS_PRE>, <&cru ACLK_PERI_PRE>,
HCLK_PERI>, <&cru PCLK_PERI>,
SCLK_RTC32K>;

[
d FreeBSD

assigned-clock example (2)

assigned-clock-parents =
<&cru HDMIPHY>, <&cru PLL_APLL>,
<&cru PLL_GPLL>, <&xin24m>,
<&xin24m>, <&xin24m>;
assigned-clock-rates =
<0>, <61440000>,

<0>, <24000000>,
<24000000>, <24000000>,
<15000000>, <15000000>,
<100000000>, <100000000>,
<100000000>, <100000000>,
<50000000>, <100000000>,
<100000000>, <100000000>,
<50000000>, <50000000>,
<50000000>, <50000000>,
<24000000>, <600000000>,
<491520000>, <1200000000>,
<150000000>, <75000000>,
<75000000>, <150000000>,
<75000000>, <75000000>,
<32768>;

[
d FreeBSD

Clock API - Create a Reset provider

» Usually same device as the clock unit

Clock API - Create a Reset provider

» Usually same device as the clock unit
» Two DEVMETHODs hwreset_assert and hwreset_is_asserted

Y <72
d FreeBSD

Clock API - Create a Reset provider

» Usually same device as the clock unit
» Two DEVMETHODs hwreset_assert and hwreset_is_asserted

> Register as a reset provider with hwreset_register_ofw_provider

Clock API - Driver usage

» Clocks for devices are standardized

[
d FreeBSD

Clock API - Driver usage

» Clocks for devices are standardized

» Device driver get the clock using clk_get_by_ofw_name
or clk_get_by_ofw_index

Clock API - Driver usage

» Clocks for devices are standardized

» Device driver get the clock using clk_get_by_ofw_name
or clk_get_by_ofw_index

» Enable/Disable using clk_enable,disable,stop

| v,
| FreeBSD

Clock API - Driver usage

Clocks for devices are standardized

v

v

Device driver get the clock using clk_get_by_ofw_name
or clk_get_by_ofw_index

v

Enable/Disable using clk_enable,disable,stop

v

Set/Get frequency using clk_set,get_freq

§ FreeBSD

Clock API - Driver usage

Clocks for devices are standardized

v

v

Device driver get the clock using clk_get_by_ofw_name
or clk_get_by_ofw_index

v

Enable/Disable using clk_enable,disable,stop

v

Set/Get frequency using clk_set,get_freq

v

Free the clock using clk_release

§ FreeBSD

Clock API - Advices

» Starts we a few clocks - Mandatory PLLs, AHB clocks etc ...
Also start with no set_freq method

Clock API - Advices

» Starts we a few clocks - Mandatory PLLs, AHB clocks etc ...
Also start with no set_freq method

» Use clkdom_dump after clkdom_finit under boot verbose

Clock API - Advices

» Starts we a few clocks - Mandatory PLLs, AHB clocks etc ...
Also start with no set_freq method

» Use clkdom_dump after clkdom_finit under boot verbose
> Use the hw.clock sysctl

Clock API - Advices

v

Starts we a few clocks - Mandatory PLLs, AHB clocks etc ...
Also start with no set_freq method

v

Use clkdom_dump after clkdom_finit under boot verbose

v

Use the hw.clock sysctl

v

Make sure that your clock is really working and that it is not a
bootloader leftover

Device Driver

» Now you can write device drivers !!!

Device Driver

» Now you can write device drivers !!!

» Check if a driver already exists in the tree
Some Vendor often use a common IP as a base

Device Driver

» Now you can write device drivers !!!

» Check if a driver already exists in the tree
Some Vendor often use a common IP as a base

» Beware of docs, sometimes you need to read linux drivers ...

Questions ?
Emmanuel Vadot
manu@freebsd.org
Twitter: @manuvadot
Freelance contractor available for work

