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Definitions

▶ Load:

▶ The fraction of CPU cycles not spent idle
▶ P-State:

▶ Performance State, also frequently called stepping
▶ A CPU mode of operation with a specific clock frequency and core voltage
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Why control p-state?

▶ Fan noise

▶ Battery/Energy conservation
▶ Hardware lifetime
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Why replace powerd?

▶ Broken load estimation

▶ Aggressive speeding
▶ Reluctant braking
▶ Excessive fan noise
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Measuring loads
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Measuring loads

▶ Load is noisy

▶ Load shifts
▶ Load saturates
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Control algorithm

▶ Contradicting goals:

▶ System should be responsive
▶ System should be energy efficient

▶ P-States:

▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults
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Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd

▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200
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Control algorithm (powerd)
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Control algorithm (powerd++)
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Dealing with signal noise
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Dealing with signal noise
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Solved problems

▶ Load signal noise

▶ Low multi core loads
▶ Lower sample rate, gliding average
▶ Without breaking single core loads
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Unsolved problems

▶ High frequency core hopping

▶ P-States that lie reduce accuracy
▶ kern_clock.c only supports global

frequency changes

▶ This is rare
▶ Ignoring this works well enough
▶ This is fixable, but may break

scheduling
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\(-)/
Praise the sun!

https://github.com/lonkamikaze/powerdxx
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