
Proposing a Replacement for FreeBSD’s powerd (Preview)
Or, how I tamed the fan of my notebook

Dominic Fandrey

Von Leitner-Institut für verteiltes Echtzeit-Java

GPN16, May 2016



Who? What? Why? Challenges! How? Conclusions!

Contents

Who?

What?

Why?

Challenges!

How?

Conclusions!

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Contents

Who?

What?

Why?

Challenges!

How?

Conclusions!

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Contents

Who?

What?

Why?

Challenges!

How?

Conclusions!

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Contents

Who?

What?

Why?

Challenges!

How?

Conclusions!

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Contents

Who?

What?

Why?

Challenges!

How?

Conclusions!

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Contents

Who?

What?

Why?

Challenges!

How?

Conclusions!

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

kamikaze a.k.a. Dominic Fandrey

▶ Dominic Fandrey <kami@freebsd.org>
▶ M.Sc. (Computer Science)

▶ Located in Europe/Karlsruhe
▶ Working as a researcher at an undisclosed polytechnic university

▶

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

mailto:kami@freebsd.org


Who? What? Why? Challenges! How? Conclusions!

kamikaze a.k.a. Dominic Fandrey

▶ Dominic Fandrey <kami@freebsd.org>
▶ M.Sc. (Computer Science)
▶ Located in Europe/Karlsruhe

▶ Working as a researcher at an undisclosed polytechnic university

▶

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

mailto:kami@freebsd.org


Who? What? Why? Challenges! How? Conclusions!

kamikaze a.k.a. Dominic Fandrey

▶ Dominic Fandrey <kami@freebsd.org>
▶ M.Sc. (Computer Science)
▶ Located in Europe/Karlsruhe
▶ Working as a researcher at an undisclosed polytechnic university

▶

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

mailto:kami@freebsd.org


Who? What? Why? Challenges! How? Conclusions!

kamikaze a.k.a. Dominic Fandrey

▶ Dominic Fandrey <kami@freebsd.org>
▶ M.Sc. (Computer Science)
▶ Located in Europe/Karlsruhe
▶ Working as a researcher at an undisclosed polytechnic university

▶

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

mailto:kami@freebsd.org


Who? What? Why? Challenges! How? Conclusions!

kamikaze a.k.a. Dominic Fandrey

▶ Dominic Fandrey <kami@freebsd.org>
▶ M.Sc. (Computer Science)
▶ Located in Europe/Karlsruhe
▶ Working as a researcher at an undisclosed polytechnic university

▶

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

mailto:kami@freebsd.org


Who? What? Why? Challenges! How? Conclusions!

kamikaze a.k.a. Dominic Fandrey

▶ Dominic Fandrey <kami@freebsd.org>
▶ M.Sc. (Computer Science)
▶ Located in Europe/Karlsruhe
▶ Working as a researcher at an undisclosed polytechnic university

▶

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

mailto:kami@freebsd.org


Who? What? Why? Challenges! How? Conclusions!

Definitions

▶ Load:

▶ The fraction of CPU cycles not spent idle
▶ P-State:

▶ Performance State, also frequently called stepping
▶ A CPU mode of operation with a specific clock frequency and core voltage

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Definitions

▶ Load:
▶ The fraction of CPU cycles not spent idle

▶ P-State:

▶ Performance State, also frequently called stepping
▶ A CPU mode of operation with a specific clock frequency and core voltage

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Definitions

▶ Load:
▶ The fraction of CPU cycles not spent idle

▶ P-State:

▶ Performance State, also frequently called stepping
▶ A CPU mode of operation with a specific clock frequency and core voltage

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Definitions

▶ Load:
▶ The fraction of CPU cycles not spent idle

▶ P-State:
▶ Performance State, also frequently called stepping

▶ A CPU mode of operation with a specific clock frequency and core voltage

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Definitions

▶ Load:
▶ The fraction of CPU cycles not spent idle

▶ P-State:
▶ Performance State, also frequently called stepping
▶ A CPU mode of operation with a specific clock frequency and core voltage

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

CPU p-state control

5 10 15 20 25 30 35
0

25

50

75

100

seconds

%
powerd++adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

CPU p-state control

5 10 15 20 25 30 35
0

25

50

75

100

seconds

%
powerd++adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why control p-state?

▶ Fan noise

▶ Battery/Energy conservation
▶ Hardware lifetime

5 10 15 20 25 30 35
0

25

50

75

100

seconds
%

powerd++adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why control p-state?

▶ Fan noise
▶ Battery/Energy conservation

▶ Hardware lifetime

5 10 15 20 25 30 35
0

25

50

75

100

seconds
%

powerd++adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why control p-state?

▶ Fan noise
▶ Battery/Energy conservation
▶ Hardware lifetime

5 10 15 20 25 30 35
0

25

50

75

100

seconds
%

powerd++adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why replace powerd?

5 10 15 20 25 30
0

25

50

75

100

seconds

%
powerd adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why replace powerd?

5 10 15 20 25 30
0

25

50

75

100

seconds

%
powerd adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why replace powerd?

▶ Broken load estimation

▶ Aggressive speeding
▶ Reluctant braking
▶ Excessive fan noise

5 10 15 20 25 30
0

25

50

75

100

seconds
%

powerd adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why replace powerd?

▶ Broken load estimation
▶ Aggressive speeding

▶ Reluctant braking
▶ Excessive fan noise

5 10 15 20 25 30
0

25

50

75

100

seconds
%

powerd adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why replace powerd?

▶ Broken load estimation
▶ Aggressive speeding
▶ Reluctant braking

▶ Excessive fan noise

5 10 15 20 25 30
0

25

50

75

100

seconds
%

powerd adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Why replace powerd?

▶ Broken load estimation
▶ Aggressive speeding
▶ Reluctant braking
▶ Excessive fan noise

5 10 15 20 25 30
0

25

50

75

100

seconds
%

powerd adaptive

load

2,400
2,000
1,600
1,200
800 M

Hz

steppings
cpu0 clock
wanted

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Measuring loads

5 10 15 20 25 30
0

25

50

75

100

seconds

%
per core loads

cpu0
cpu1
cpu2
cpu3

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Measuring loads

▶ Load is noisy

▶ Load shifts
▶ Load saturates

5 10 15 20 25 30
0

25

50

75

100

seconds
%

per core loads

cpu0
cpu1
cpu2
cpu3

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Measuring loads

▶ Load is noisy
▶ Load shifts

▶ Load saturates

5 10 15 20 25 30
0

25

50

75

100

seconds
%

per core loads

cpu0
cpu1
cpu2
cpu3

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Measuring loads

▶ Load is noisy
▶ Load shifts
▶ Load saturates

5 10 15 20 25 30
0

25

50

75

100

seconds
%

per core loads

cpu0
cpu1
cpu2
cpu3

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:

▶ System should be responsive
▶ System should be energy efficient

▶ P-States:

▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive

▶ System should be energy efficient
▶ P-States:

▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:

▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:

▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie

▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie
▶ Extremely low nonsense p-states

▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:

▶ Make the right
compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:
▶ Make the right

compromises

▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:
▶ Make the right

compromises
▶ Make it tunable

▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm

▶ Contradicting goals:
▶ System should be responsive
▶ System should be energy efficient

▶ P-States:
▶ P-States lie
▶ Extremely low nonsense p-states
▶ P-State switching has a cost

▶ Conclusions:
▶ Make the right

compromises
▶ Make it tunable
▶ Set sane defaults

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd

▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes

▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd

▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes

▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only

▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load

▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only

▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load

▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads

▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target

▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads

▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target

▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis

▶ Aggressively tuned for
responsiveness

▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes

▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis

▶ Aggressively tuned for
responsiveness

▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes

▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness

▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness

▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Summary

powerd++

▶ Any granularity p-state changes
▶ Maximum load
▶ Aim for a load target
▶ Filter load to ignore short spikes
▶ Explicit CLA syntax like
--max 1.2ghz

versus

powerd
▶ Global p-state changes only
▶ Sum of loads
▶ Hysteresis
▶ Aggressively tuned for

responsiveness
▶ Hard coded units -M 1200

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm (powerd)

Pipeline

PipelineC
o
re

Pipeline

PipelineC
o
re

C
P
U

Pipeline

PipelineC
o
re

Pipeline

PipelineC
o
re

C
P
U

Physical Layer

dev.cpu.0

sysctl
Interface

dev.cpu.1

dev.cpu.2

dev.cpu.3

dev.cpu.4

dev.cpu.5

dev.cpu.6

dev.cpu.7

powerd

58%

42%

33%

66%

17%

33%

08%

25%

283%Overall Load

50% ↓Step do.

75% ↑Step up

Hysteresis

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Control algorithm (powerd++)

C
or

e 
G

ro
u
p

Te
ll Lo

a
d

C
or

e 
G

ro
u
p

Te
ll Lo

a
d

Pipeline

PipelineC
o
re

Pipeline

PipelineC
o
re

C
P
U

Pipeline

PipelineC
o
re

Pipeline

PipelineC
o
re

C
P
U

Physical Layer

dev.cpu.0

sysctl
Interface

dev.cpu.1

dev.cpu.2

dev.cpu.3

dev.cpu.4

dev.cpu.5

dev.cpu.6

dev.cpu.7

Load Target

 Group Load

Group Load 

powerd++
Frequency Up

Frequency Down

58%

42%

33%

66%

17%

33%

08%

25%

33%

66%

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Dealing with signal noise

5 10 15 20 25 30
0

25

50

75

100

seconds

%

per core loads

cpu0
cpu1
cpu2
cpu3

5 10 15 20 25 30
0

25

50

75

100

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0
25
50
75

100

200

300

400

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0

25

50

75

100

seconds

%

filtered loads (powerd++ )

cpu0 filtered
cpu1 filtered
cpu2 filtered
cpu3 filtered

5 10 15 20 25 30
0

25

50

75

100

seconds

%

max of filtered load (powerd++ )

cpus filtered
max

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Dealing with signal noise

5 10 15 20 25 30
0

25

50

75

100

seconds

%

per core loads

cpu0
cpu1
cpu2
cpu3

5 10 15 20 25 30
0

25

50

75

100

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0
25
50
75

100

200

300

400

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0

25

50

75

100

seconds

%

filtered loads (powerd++ )

cpu0 filtered
cpu1 filtered
cpu2 filtered
cpu3 filtered

5 10 15 20 25 30
0

25

50

75

100

seconds

%

max of filtered load (powerd++ )

cpus filtered
max

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Dealing with signal noise

5 10 15 20 25 30
0

25

50

75

100

seconds

%

per core loads

cpu0
cpu1
cpu2
cpu3

5 10 15 20 25 30
0

25

50

75

100

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0
25
50
75

100

200

300

400

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0

25

50

75

100

seconds

%

filtered loads (powerd++ )

cpu0 filtered
cpu1 filtered
cpu2 filtered
cpu3 filtered

5 10 15 20 25 30
0

25

50

75

100

seconds

%

max of filtered load (powerd++ )

cpus filtered
max

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Dealing with signal noise

5 10 15 20 25 30
0

25

50

75

100

seconds

%

per core loads

cpu0
cpu1
cpu2
cpu3

5 10 15 20 25 30
0

25

50

75

100

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0
25
50
75

100

200

300

400

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0

25

50

75

100

seconds

%

filtered loads (powerd++ )

cpu0 filtered
cpu1 filtered
cpu2 filtered
cpu3 filtered

5 10 15 20 25 30
0

25

50

75

100

seconds

%

max of filtered load (powerd++ )

cpus filtered
max

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Dealing with signal noise

5 10 15 20 25 30
0

25

50

75

100

seconds

%

per core loads

cpu0
cpu1
cpu2
cpu3

5 10 15 20 25 30
0

25

50

75

100

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0
25
50
75

100

200

300

400

seconds

%

summary load (powerd)

cpus
sum

5 10 15 20 25 30
0

25

50

75

100

seconds

%

filtered loads (powerd++ )

cpu0 filtered
cpu1 filtered
cpu2 filtered
cpu3 filtered

5 10 15 20 25 30
0

25

50

75

100

seconds

%

max of filtered load (powerd++ )

cpus filtered
max

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Solved problems

▶ Load signal noise

▶ Low multi core loads
▶ Lower sample rate, gliding average
▶ Without breaking single core loads

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Solved problems

▶ Load signal noise

▶ Low multi core loads

▶ Lower sample rate, gliding average

▶ Without breaking single core loads

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Solved problems

▶ Load signal noise
▶ Low multi core loads

▶ Lower sample rate, gliding average

▶ Without breaking single core loads

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Solved problems

▶ Load signal noise
▶ Low multi core loads

▶ Lower sample rate, gliding average
▶ Without breaking single core loads

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Unsolved problems

▶ High frequency core hopping

▶ P-States that lie reduce accuracy
▶ kern_clock.c only supports global

frequency changes

▶ This is rare
▶ Ignoring this works well enough
▶ This is fixable, but may break

scheduling

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Unsolved problems

▶ High frequency core hopping

▶ P-States that lie reduce accuracy
▶ kern_clock.c only supports global

frequency changes

▶ This is rare

▶ Ignoring this works well enough
▶ This is fixable, but may break

scheduling

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Unsolved problems

▶ High frequency core hopping
▶ P-States that lie reduce accuracy

▶ kern_clock.c only supports global
frequency changes

▶ This is rare

▶ Ignoring this works well enough
▶ This is fixable, but may break

scheduling

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Unsolved problems

▶ High frequency core hopping
▶ P-States that lie reduce accuracy

▶ kern_clock.c only supports global
frequency changes

▶ This is rare
▶ Ignoring this works well enough

▶ This is fixable, but may break
scheduling

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Unsolved problems

▶ High frequency core hopping
▶ P-States that lie reduce accuracy
▶ kern_clock.c only supports global

frequency changes

▶ This is rare
▶ Ignoring this works well enough

▶ This is fixable, but may break
scheduling

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

Unsolved problems

▶ High frequency core hopping
▶ P-States that lie reduce accuracy
▶ kern_clock.c only supports global

frequency changes

▶ This is rare
▶ Ignoring this works well enough
▶ This is fixable, but may break

scheduling

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI



Who? What? Why? Challenges! How? Conclusions!

\(-)/
Praise the sun!

https://github.com/lonkamikaze/powerdxx

Proposing a Replacement for FreeBSD’s powerd (Preview) VLI

https://github.com/lonkamikaze/powerdxx

	Who?
	What?
	Why?
	Challenges!
	How?
	Conclusions!

