Validation and Conversion of Physical Units at Compile Time
Leveraging the power of the C++11 type system in your simulation model

Dominic Fandrey M.Sc.

3208 Edition

2015-12-30

Abstract

Unit conversions can be a major source of errors
in engineering and software development. Most of
the time they just cause delays and frustration. But
undiscovered they can cause unexpected behaviour
in the field.

This paper illustrates how to realise a type wrap-
per that performs verification of physical units and
generates conversion factors transparently at com-
pile time using the C++11 feature set.

1 Lost in Space

"The ’root cause’ of the loss of the space-
craft was the failed translation of En-
glish units into metric units in a segment
of ground-based, navigation-related mis-
sion software, as NASA has previously an-
nounced,” said Arthur Stephenson, chair-
man of the Mars Climate Orbiter Mission
Failure Investigation Board.

This NASA press release [6] from 1999 followed
what is now likely the world’s most commonly
known'unit conversion problem and at USD 125
million it certainly was expensive [16].

2 Requirements

The concepts for this unit verification and conver-
sion system were first implemented in a machining
simulation. Machining is a subject matter rife with

L According to a Google search for "unit conversion fail-
ures”

domain specific units. Even disregarding imperial
units, unit conversions are prevalent. E.g. angu-
lar velocities are usually provided as revolutions
divided by minutes instead of radians divided by
seconds and angles are given in degree instead of
radians.

Consider the following example from the machin-
ing simulation. The figure 1 illustrates the model
of the machining tool:

cutting speed (V) |
spindle speed (5)

tool radius (r)

Figure 1: Top view cross section of a milling process
(Fandrey [2])

The diameter and cutting speed are provided pa-
rameters, the spindle speed is derived from them.
Noteworthy conversions that have to take place:

e The diameter is commonly provided in mil-
limetre, while the cutting speed is provided in
metre/minute.

e The spindle speed is an angular velocity, ex-
pected to be represented in revolution/minute in-

stead of radian/minute.

The following code listing illustrates the resulting

conversions:

Listing 1: Weakly typed code with explicit conver-
sions

/**
* Update the angular velocity of the spindle, according
to the desired
cutting speed and tool radius.

*
*

* @param speed

* The cutting speed in m/min

* @param radius

* The tool radius in mm

*/
void Spindle::setCuttingSpeed(double const speed, double

const radius) {
this->av = speed * 1000 / (2 * PI % radius);

This example has the following problems:

¢ Input units must be meticulously documented.

e Input units are chosen to be convenient for the
user of the function instead of minimising the
conversions.

e There is no way to verify correct use of the in-
terface, e.g. it is syntactically valid to provide
a radius in seconds.

Which leads to the following list of requirements:

o Units should be strongly typed.

e The user should be able to provide a value like
the radius in any compatible unit like 0.41in,
394 mil or 10 mm.

e Providing an incompatible unit like radius =
10 s should result in compilation failure.

3 C+11

All these problems are solvable. In fact they have
been solved before, e.g. as a comprehensive boost
library [22]:

The Boost.Units library is a
C++implementation of dimensional
analysis in a general and extensible man-
ner, treating it as a generic compile-time
metaprogramming problem. With appro-
priate compiler optimization, no runtime
execution cost is introduced, facilitating
the use of this library to provide di-
mension checking in performance-critical
code.

Because unit validation and conversion are compile-
time solvable problems, this task is a good way to
learn to leverage some of the features introduced
by C++11 [9].

constexpr The key feature is the constexpr
(Reis et al. [21]) keyword, which can be used to
mark statements, functions and constructors as
compile time solvable. This makes it possible to
use complex types as constants, and perform meta
programming arithmetic with arbitrary types, even
floating point types like float or double.

static_assert() Another wuseful feature is
static_assert() (Klarer et al. [12]), which
provides a compile time version of the C assert
macro.

user-defined literals A feature that will make
the use of units convenient is user-defined literals
(McIntosh et al. [17]), which allows adding type in-
formation to literals, e.g. to turn a character array
into a regular expression or big number. It also al-
lows adding type information to floating point or
integer types, e.g. to turn a floating point value
into metres.

template aliases A very convenient feature of
C++11 is template aliases (Reis and Stroustrup [20]),
which rely on the using syntax to achieve some-
thing akin to a templated typedef. According to
Lavavej [13] using it is a great idea:

Walter E. Brown (who is unaffiliated with
Microsoft) proposed the <type traits>
alias templates in N3546 ”"Transformation-
Traits Redux”, which is unquestionably
the best feature voted into C++14. Any-
one who dares to question this assertion
is hereby sentenced to five years of hard
labor writing typename decay<T>::type
instead of decay_ t<T>.

variadic templates C++11 introduces wvariadic
templates, which are easily explained (Gregor et al.

[5]):

Variadic templates provide a way to ex-
press function and class templates that
take an arbitrary number of arguments.

auto, decltype Both keywords deal with deter-
mining the type returned by an expression (Jarvi
et al. [11]):

We suggest extending C++with the
decltype operator for querying the type
of an expression, and allowing the use of
keyword auto to indicate that the com-
piler should deduce the type of a variable
from its initializer expression. ..

4 Design

The basic concept was presented at the GoingNa-
tive 2012 by Bjarne Stroustrup [23]. The design
proposed by Stroustrup was a value container, that
took a type as an argument that would represent
the dimensions of the base units. User-defined liter-
als were to be used to convert values from different
units into the base units.

The idea to present the dimensions of the base
units in a type is also the basis for the presented
design. Additionally linear conversion factors can
be strongly typed. E.g. most factors can be rep-
resented as rationals, this has the side effect that
recombination of factors does not introduce impre-
cisions. This approach has its limited by integer
boundaries, which can however be circumvented by
choosing a domain appropriate base unit or float-
ing point constants, which are the third leg of the
presented design.

Their introductions stems from the desire to treat
angles as units and encoding 7 in a rational at suf-
ficient precision would quickly lead to integer over-
flow when combining types (and thus multiplying
linear factors).

The design is simplified by some things that will
not be supported:

e Negative linear factors as would be required
for certain temperature scales.

o Offsets, which would be required for units that
do not have a common 0 point (such as tem-
peratures, again).

e The distinction between absolute and relative
values.

Above features were not implemented for the ma-
chining simulation, because they were not required.
That does not mean they could not be.

The case for temperatures can still be covered by
converting to kelvin using user-defined literals. IL.e.
validation would still work, but compile time linear
factor recombination would not work for tempera-
tures.

The distinction between absolute and relative val-
ues exists in the aforementioned boost library [22].
In the simulation design this distinction was instead
made in the design of vectors, which distinguish be-
tween points (absolute) and spatial (relative) vec-
tors.

The listing 2 shows the strongly typed version of
listing 1 (p. 2):

Listing 2: Strongly typed code with implicit con-
versions

Jxx

* Update the angular velocity of the spindle, according

to the desired
cutting speed and tool radius.

*
*
* @param speed, radius
* The cutting speed and tool radius
*/
void Spindle::setCuttingSpeed(mmpmin const speed, mm const
radius) {
this->av = speed / radius * 1._rad;

This implementation has the following properties:

e The units of the speed and radius arguments
are documented by the type.

e Input units are chosen to minimise conversions
within the function body.

e Using an incompatible unit for speed or
radius causes compilation failure.

e The speed and rad-ius can be provided in any
unit with the same base dimensions and are
converted transparently.

o Just dividing the speed by the radius re-
sults in the unit 1/minute, which would result in
compilation failure because the expected unit
is revolution/minute. Adding the radian aspect
changes the type to radian/minute. The division
by 27 as seen in listing 1 (p. 2) happens
implicitly when the value is converted from

radian/minute to 1feVOl“tion/minute.

example A system of units is defined as follows:

n,m e 7

bases € {m"°,s" rad"?}

(1)
(2)

N .
factor € N’ the positive subset of Q (3)
constants € {m™°} (4)
(5)

system € {bases, factor, constants}

The base units have the following trivial definitions
in that system:

metre = {{ml,so,rado} , %, {ﬂ'o}}
second = {{mo,sl,rado} , %, {ﬂ'o}}
rad = {{m0,507rad1} , %, {71'0}}

The following units can be converted back to the
base units:

llimetre = 10 rad®
matiimetre {{m,s,ra ' 1000

WO}}
minute = {{mO,sl,radO} ks {WO}} (10)
revolution — {{m07so,rad1} 2 {Wl}} (1)

All units with a set of bases can be cast to all other
units with the same set of bases. This happens im-
plicitly for all operations where units must be iden-
tical, i.e. assignment, addition, subtraction and
modulo.

This kind of implicit cast introduces a runtime
cost, which cannot be avoided. However the cost
can be minimised to a single multiplication per cast.
The factor is determined at compile time.

In the following example of addition the right
hand side type needs to be converted to the left
hand side type:

expr: rgrad + xq revolution

= expr: (xg+ x -c) rad (13)
revolution
=|— 14
rad (14)
0 0 radll 2 Il
L [ttty 2
{{m07so,rad } V1 {770}}
2 gl
—c=1 " —or (16)
T
= expr: (xo+ 1 -2m) rad (17)

If 21 is a constant expression (e.g. a literal value),
it can be substituted with the converted value at
compile time.

If ¢ and x; are constant expressions, the entire
expression can be substituted at compile time.

Multiplication and division have no additional
runtime cost. The following expression shows how
the type for an angular acceleration is calculated
without the need to interact with the runtime pay-
load:

10000 revolution

: 1
expr 1 minute - 2 second (18)
o expr 10000 revolution (19)
XDI:
P (1-2) (minute - second)
1 luti
= expr: ?fﬂ(ﬂ)rlew;;l} 12)11{ 0 (20)
() < m (,)5 lra d 71'0 >
[st), 3 {}}
e exor 10000 revolution
XPI:
P (1-2) {{m°,s? rado}, L, {n}}
(21)
10000 {{m?,s%, rad*} , 2, {71!
e 20000 ({0 '} 3 (1))
(1-2) {{m?,s2,rad"}, L, {x0}}
(22)
1
—> expr: (0000> {{ 0 s72 rad? } {71' }}
(23)

Note how separating the conversion factor from the
dimension of the base units makes it possible to mix
different derivations of base units, e.g. minute with
second.

5 Glossary

instance In the scope of this paper an instance
of a template is a type.

meta-function A meta-programming struct/-
class template that acts as a function, by taking
a meta-type as an argument and returning some-
thing through a member (e.g. value or type).

meta-type A meta-programming struct/class
template that carries information without a run-
time payload.

The distinction between meta-functions and
types is a semantic distinction, not a syntactical
one.

recursion See Fandrey [3].

6 A Rational Number Meta-
Type

A positive rational number meta-type is of limited
complexity, so it is a good point to start:

Listing 3: A primitive rational number type

namespace units {
typedef unsigned long long uint;

template <uint Numerator, uint Denominator>

struct rational {
static constexpr uint const numerator{Numerator};
static constexpr uint const denominator{Denominator};

s

} /* namespace units */

operators To be useful the meta-type requires
operators, rational<> is supposed to represent a
linear factor. When two unit values are multiplied
or divided, so should the linear factors of the types:

Listing 4: Meta-operators for the rational type

namespace units {

template <class Op>
struct rational_unary {
typedef rational<Op::denominator, Op::numerator>
invert;

1

template <class Op>
using rational_invert_t =
invert;

typename rational_unary<Op>::

template <class Lhs, class Rhs>
struct rational_binary {
typedef rational<Lhs::numerator * Rhs::numerator,
Lhs::denominator * Rhs::denominator>
mul;

s

template <class Lhs, class Rhs>

using rational_mul_t = typename rational_binary<Lhs, Rhs
>:imul;

template <class Lhs, class Rhs>

using rational_div_t = rational_mul_t<Lhs,
rational_invert_t<Rhs>>;

} /* namespace units */

This code works in principle, however it has some
problems. Namely that both numerator and
denominator grow with every multiplication and
may overflow. The resulting (grossly) wrong factor
would be mission fatal (the mission being to ensure
correctness).

In 1996 the European Space Agency learned the
hard way what may happen if integer overflow
remains undetected [15]. James Gleick [4] sum-
marised the event in the New York Times Maga-
zine:

It took the European Space Agency 10
years and $7 billion to produce Ariane 5,
a giant rocket capable of hurling a pair
of three-ton satellites into orbit with each
launch and intended to give Europe over-
whelming supremacy in the commercial
space business.

All it took to explode that rocket less
than a minute into its maiden voyage last
June, scattering fiery rubble across the
mangrove swamps of French Guiana, was
a small computer program trying to stuff
a 64-bit number into a 16-bit space.

So the first step is to make sure compilation fails

to enable the library user to avoid this case:

Listing 5: Prevent compilation on overflow

template <class Lhs, class Rhs>
struct rational_mul {

static_assert((Lhs::numerator * Rhs::numerator) / Rhs
:inumerator ==
Lhs: :numerator,
"Overflow in rational numerator
multiplication");

static_assert((Lhs::denominator * Rhs::denominator) /
Rhs::denominator ==
Lhs: :denominator,
"Overflow in rational denominator
multiplication");

typedef rational<Lhs::numerator * Rhs::numerator,
Lhs::denominator * Rhs::denominator>
type;
b

template <class Lhs, class Rhs>
using rational_mul_t = typename rational_mul<Lhs, Rhs>::
type;

Take note that the binary operator template was re-
named to rational_mul<>, this was done because
the static_assert()s are specific to multiplica-
tion, which means future binary operators should
not be grouped together in a single template with
multiplication.

minimising This version of the operator will at
least not stab its users in the back, but frequently
working around overflow, even when the base units
are well-chosen, would be a great burden on library
users nonetheless.

So rationals should transparently provide their
minimal representation. To minimise the represen-
tation of a rational the greatest common divider of
the numerator and the denominator is required.

A simple way of acquiring a GCD is Euclid’s (im-
proved) algorithm:

n,i €7 (24)
f(n,i) =n, fori =0 (25)
f(n,i) = f(i,n mod 7), fori #£0 (26)

The implementation of the algorithm belongs in
front of rational<>:

Listing 6: Euclid’s algorithm

template <uint Lhs, uint Rhs>
struct euclid : euclid<Rhs, Lhs % Rhs> {};

template <uint Gcd>
struct euclid<Ged, 0> {
static constexpr uint const value{Gcd};

15

In this case the recursion is realised through inheri-
tance (it could also be done using a member). The
termination of the recursion is a specialisation of
the template that provides the final value.

Alternatively a constexpr function can be used.
In C++11 a constexpr function has to consist of
a single return statement. C++14 relaxes these re-
quirements significantly, allowing the creation of lo-
cal variables, the use of assert() and loops. Non
of which are required to implement Euclid’s algo-
rithm:

Listing 7: Euclid’s algorithm

constexpr uint euclid(uint const a, uint const b) {
return b ? euclid(b, a % b) : a;

}

Now the rational template needs to use it:

Listing 8: A self-minimising rational number type

template <uint Numerator, uint Denominator>
struct rational {
static constexpr uint const numerator{
Numerator / euclid(Numerator, Denominator)};
static constexpr uint const denominator{
Denominator / euclid(Numerator, Denominator)};
typedef rational<numerator, denominator> type;

s

Note the new member type, it has a special
property. Discarding technical limitations ratio-
nals have an infinite amount of representations
for the same value. That means there is an
infinite amount of rational<> instances, that
all represent the same value. Due to minimising
the type traits however, all rational<> instances
representing the same value have the same
type member. KE.g. typename rational<l,
2>::type, typename rational<3, 6>::type,
typename rational<119, 238>::type all return
the same type.

value retrieval What remains to be achieved is
a way to retrieve a floating point value from the
rational. Several options present themselves, the

list is not exhaustive:

e Use the numerator and denominator mem-
bers directly.

e Create a meta-function that takes a target
type and a rational<> instance.

e Add a conversion operator to rational<>.

e Add a variable template to rational<>.

A wvariable template [19] is very convenient and con-
sistent with the established coding style:

Listing 9: Convert a rational value using a variable
template

template <uint Numerator, uint Denominator>
struct rational {

template <typename T>
static constexpr T const value{T{numerator} / T{
denominator}};
s

// Use: rational<l, 2>::value<double>

Unfortunately variable templates are a C++14 core
feature, that is not yet universally available. No-
tably, the C++ feature table for Visual Studio 2015
[14] lists them as unsupported.

So if portability is a concern, an alternative ap-
proach must be chosen. Accessing numerator and
denominator directly works out of the box, but is
cumbersome. A meta-function is a viable option:

Listing 10: Convert a rational value using a meta-
function

template <typename T, class Op>
struct rational_val {
static constexpr T const value{T{Op::numerator} / T{Op
::denominator}};
}s

// Use: rational_val<double, rational<l, 2>>::value

The advantage of this approach is that its imple-
mentation is very straightforward and consistent.
The disadvantage is that using it is unwieldy and
the order of operands is not necessarily intuitive.
An alternative is to add a conversion operator:

Listing 11: Convert a rational value using a conver-
sion operator

template <uint Numerator, uint Denominator>
struct rational {

template <typename T>
constexpr operator T() const { return T{numerator} / T
{denominator}; }
1
// Use: double(rational<l, 2>{})

This version is short and the code is easy enough to
read. The one disadvantage is that the rational<>
needs to be constructed to use the conversion oper-
ator, which is ugly but does not add runtime cost.

The remaining code examples will assume that
the code from listing 11 was used.

7 Testing

Especially in meta-programming, where debug-
ging can be extremely annoying, it is important
to test early. It is good practice to add some
static_assert()s after every template definition.
When the code has reached a stable state those
tests can be scooped up into a unit test.

Meta-function testing should be done from the
bottom up, so that the first test that fails is close
to the problem.

Thus, the first thing to test is the euclid () func-
tion:
Listing 12: Test Euclid’s algorithm

static_assert(euclid(3, 9) == 3,
"Euclid's algorithm

should return the GCD");

static_assert(euclid(7, 13) == 1,
"Euclid's algorithm should return the GCD");
static_assert(euclid(21, 91) == 7,
"Euclid's algorithm should return the GCD");

debugging If the test compiles everything is fine.
If it doesn’t it helps to look at the values. To make
the compiler tell an integer value, it is necessary to
create illegal code that causes a compilation error
with a type constructed from the value:

Listing 13: Retrieve integers from meta-functions

template <int... Values>

struct dints;

static_assert(ints<euclid(21, 91)>::foo, "bar");

The listing 13 leverages an easy way to trigger an
error message involving a certain type. Access to a
declared but undefined type.

While the verbose print shows the code as writ-
ten, the actual error message shows the computed
type ints<7> for euclid (21, 91):

Listing 14: The compiler output for listing 13

Listing 17: is_same_rational<> desired use

c++ -std=c++11 -Wall -Werror -pedantic -o bin/tests/
units_Units.o -c src/tests/units_Units.cpp
src/tests/units_Units.cpp:26:15: error: implicit
instantiation of undefined template 'ints<7>'
static_assert(ints<euclid(21, 91)>::foo, "bar");
A

src/tests/units_Units.cpp:24:8: note: template is declared
here

struct fints;
A

1 error generated.

Your mileage may vary depending on the compiler.
The output in listing 14 was produced by Clang
3.4.1.

is_same<> Before going on to testing
the rational<> type, some common meta-
programming techniques should be established.
The following are available in the std namespace
from the <type_traits> header.

Listing 15: std::is_same<> possible implementa-
tion

// In <type_traits>, since C++11
template <class A, class B>
struct is_same : std::false_type {};

template <class A>

struct is_same<A, A> : std::true_type {};

The is_same<> meta-function is simple. The de-
fault is for it to return false (false_type and
true_type have a boolean member value). Only if
the specialised template is selected, will is_same<>
return true.

The goal of using is_same<> is to compare ratio-
nals. But so far it is of limited use:

Listing 16: std::is_same<> to test rational

static_assert(!is_same<rational<l, 3>, rational<4, 12>>::

value,
"The rationals 1/3 and 4/12 are different
types");
static_assert(rational<4, 12>::numerator == 1,
"The minimised numerator of 4/12 should be 1
");
static_assert(rational<4, 12>::denominator == 3,
"The minimised denominator of 4/12 should be
3");

is_same_rational<> The obvious test at this
point is whether % and % represent the same value:

static_assert(is_same_rational<rational<l, 3>, rational<4,
12>>::value,
"The rationals 1/3 and 4/12 represent the
same value");

static_assert(!is_same_rational<rational<l, 4>, rational
<4, 12>>::value,
"The rationals 1/4 and 4/12 do not represent
the same value");

static_assert(is_same_rational<rational<l, 4>, rational<3,
12>>::value,
"The rationals 1/4 and 3/12 represent the
same value");

static_assert(!is_same_rational<double, rational<4, 12>>::
value,
"Double is not a rational");

To do that the type member of rational<> de-
fined in listing 8 (p. 6) can be used:

Listing 18: is_same_rational<> implementation

template <class, class>
struct is_same_rational : std::false_type {};
template <uint LNum, uint LDenom, uint RNum, uint RDenom>
struct is_same_rational<rational<LNum, LDenom>, rational<
RNum, RDenom>>
: is_same<typename rational<LNum, LDenom>::type,
typename rational<RNum, RDenom>::type> {};

This works because the type member is created
from the minimised numerator and denominator.

SFINAE Evidently, wusing specialisation to
match a certain template can become cumbersome,
especially if the template has many arguments,
which are not even required in the body. An al-
ternative is to use a so called SFINAE construct.

SFINAE stands for Substitution Failure Is Not
An Error and has already been part of C++98 [7],
which was the first ISO standard version of C++.

It refers to an aspect of template selection. Basi-
cally a C++ compiler is also an interpreter. Regular
code is compiled, but first templates are interpreted
to derive code from them, which in turn can be com-
piled.

As a result C++ templates constitute a functional
programming language, which permits program-
ming with types and integral values (Veldhuizen
25)):

The introduction of templates to
C++added a facility whereby the compiler
can act as an interpreter. This makes it
possible to write programs in a subset

of C++which are interpreted at compile
time.

This was an accidental development and its discov-
ery is commonly attributed to Erwin Unruh [24].
C++ selects the most specialised template to cre-
ate a type from. If any of the arguments of the
template are ill-formed, it selects a less specialised
version of the template. This is the part of the
process called SFINAE and it only works in the
template selection stage, that means SFINAE has
to be triggered in the template signature. Errors
in the body of a template do not affect template
selection and will thus lead to compilation failure.

void_t<> A most instructive example of SFINAE
is a meta-programming technique called void_t<>:

Listing 19: std::void_t<> possible implementa-
tion

// Will most likely be in <type_traits> with C++17
template <class...> using void_t = void;

Walter E. Brown [1] explains it, in his standard
proposal:

Given a template argument list consisting
of any number of well-formed types, the
alias will thus always name void. How-
ever, if even a single template argument
is ill-formed, the entire alias will itself be
ill-formed. As demonstrated above and in
our earlier papers, this becomes usefully
detectable, and hence exploitable, in any
SFINAE context.

In combination with decltype it is possible to in-
spect the members and runtime capabilities of ar-
gument types at compile time. The following imple-
mentation of an is_rational<> test checks a given
operand for providing the expected type traits:

Listing 20: is_rational<> test

template <class Op, class = void>
is_rational : std::false_type {};

template <class Op>

is_rational<Op, void_t<decltype(uint(Op::numerator)),
decltype(uint(Op: :denominator))>>
: is_same<Op, rational<Op::numerator, Op::denominator

>> {};

The case specialised with void_t<> is well-formed
if Op has the numerator and denominator mem-

bers and both of them can be used to construct an
unsigned integer.

This way of testing for type traits is good to ac-
cept user provided compatible types. If this kind
of extensibility is undesired, template specialisation
can be used to enforce use of the desired template:

Listing 21: is_rational<> test simplified

template <class>
is_rational : std::false_type {};

template <uint numerator, uint denominator>

is_rational<rational<numerator, denominator>> : true_type
{};

std::enable_if<> C++11 introduced the

<type_traits> header which provides many

convenient SFINAE constructs. A construct that
can be useful in this case is std: :enable_if<>:

Listing 22: std: :enable_if<> possible implemen-
tation

// In <type_traits>, since C++11
template <bool Cond, typename T = void>
struct enable_if {};

template <typename T>
struct enable_if<true, T> { typedef T type; };

// In <type_traits>, since C++14
template <bool Cond, typename T = void>
using enable_if_t = typename enable_if<Cond, T>::type;

The enable_if<> template can be used to create
code, which is ill-formed if a boolean expression
returns false. This can be used to trigger SFINAE,
which is demonstrate by the following alternative
implementation of is_same_rational<>:

Listing 23: is_same_rational<> implementation
using enable_if<>

template <class Lhs, class Rhs, class = void>
struct is_same_rational : false_type {};

template <class Lhs, class Rhs>
struct is_same_rational<
Lhs, Rhs, enable_if_t<is_rational<Lhs>::value &&
is_rational<Rhs>::value>>
: is_same<typename Lhs::type, typename Rhs::type> {};

Both the implementation from listing 18 (p. 8) and
23 make the tests from listing 17 (p. 8) work as
expected.

8 Dimensions

The core feature of a unit system is validation. Ie.
the system should enforce that the value provided
has the expected dimensions. Only then should
conversion to the expected unit be performed.

This check however is agnostic about the actual
base unit used. In fact the whole implementation
is base unit agnostic, e.g. metres can be defined
based on inches or inches based on metre. Either
way the compiler would emit the same code. This is
due to the fact that both definitions are equivalent:

9254
lin = 22 2
= Too00 ™ (27)
10000 .
1 m = ﬂ m (28)

As a result they produce the same conversion fac-
tors between units?.

exponents So to validate the dimensions of base
units it suffices to think about them in abstract
terms, i.e. length, mass, time instead of metre,
kilogram, second. FEach dimension only needs to
be represented by its exponents:

Listing 24: The desired interface for a list of expo-
nents

typedef long long sint;

template <sint... Exponents>
struct exponents {};

This format is convenient to enter, but very cum-
bersome to work with. When converting units,
both units must have the same exponents, which
is trivial to implement.

But when multiplying or dividing units, a de-
rived list of exponents composed of pairwise addi-
tion or subtraction has to be created®. So instead

Listing 25: The implementation for a list of expo-
nents

typedef long long sint;

template <sint Exponent, class Tail void>
struct exponents_chain {

typedef Tail tail;

static constexpr sint const value{Exponent};

};

This solution is easy to recurse through, the void
type is used to mark the end of the chain. As a
side effect all operations dealing with chains would
be able to be performed on the void type, which
effectively represents the zero-length chain.

Following the last chapter the first order of busi-
ness is to test the new chain type:

Listing 26: Test exponents_chain<>

static_assert(exponents_chain<23, exponents_chain<42,
exponents_chain<13>>>::value == 23,
"Test exponents_chain value retrieval");

static_assert(exponents_chain<23, exponents_chain<42,
exponents_chain<13>>>::tail::value == 42,
"Test exponents_chain value retrieval");

static_assert(exponents_chain<23, exponents_chain<42,
exponents_chain<13>>>::tail::tail::value == 13,
"Test exponents_chain value retrieval');

factory This works, and it can be processed re-
cursively, but it is very annoying to write. A simple
factory can make this much more convenient:

Listing 27: An exponents_chain<> factory

template <sint...
struct exponents {
typedef void type;

Exponents>

s

template <sint Exponent, sint... Tail>
struct exponents<Exponent, Tail...> {
typedef exponents_chain<Exponent, typename exponents<
Tail...>::type>
type;
}s

template <sint... Exponents>
using exponents_t = typename exponents<Exponents...>::type

5

a chained container type can be used:

2 Anything else would be madness.
3If you find a way to recursively instantiate variadic con-
tainers in a meta-function, please tell me about it!

10

Note how each of the following tests makes use of
the previously tested factory instance, so in each
test only one level of direct exponents_chain<>
use is required:

Listing 28: Test exponents<> factory

static_assert(is_same<exponents_t<>, void>::value,
"Test exponents_chain factory");
static_assert(is_same<exponents_t<0>, exponents_chain
<0>>::value,
"Test exponents_chain factory");
static_assert(is_same<exponents_t<1l, 0>, exponents_chain
<1, exponents_t<0>>>::value,
"Test exponents_chain factory");
static_assert(is_same<exponents_t<2, 1, 0>,
exponents_chain<2, exponents_t<1, 0>>>::value,
"Test exponents_chain factory");

operators The exponents_chain<> meta-type
needs to be used for the same operations as the
rational<> meta-type, i.e. multiplication and di-
vision. Working with exponents this translates into
addition and subtraction.

The first recursive template in this paper was the
euclid<> meta-function defined in listing 6 (p. 6).
It performs a recursive computation and returns
the result when the recursion terminates.

The exponents_chain<> meta-type itself is re-
cursive, so meta-functions do not just need to be
recursive, they also need to return a recursively
constructed type. The unary negation operand il-
lustrates the principle:

Listing 29: Negation meta-function for

exponents_chain<>

template <class Op>
struct exponents_unary {
typedef exponents_chain<
-Op::value, typename exponents_unary<typename Op::
tail>::negate>
negate;

s

template <>

struct exponents_unary<void> {
typedef void negate;

s

template <class Op>
using exponents_negate_t
negate;

typename exponents_unary<Op>::

To complete the required operands pairwise addi-
tion and subtraction are required, the recursion
works just like in listing 29:

11

Listing 30: Addition meta-function for

exponents_chain<>

template <class Lhs, class Rhs>
struct exponents_binary {
typedef exponents_chain<
Lhs::value + Rhs::value,
typename exponents_binary<typename Lhs::tail,
typename Rhs::tail>::
> add;

add
}s

template <>

struct exponents_binary<void, void> {
typedef void add;

15

template <class Lhs, class Rhs>
using exponents_add_t typename exponents_binary<Lhs, Rhs
>::add;

template <class Lhs, class Rhs>
using exponents_sub_t exponents_add_t<Lhs,
exponents_negate_t<Rhs>>;

Like everything else exponents handling should be
tested:

Listing 31: meta-functions for

exponents_chain<>

Test

static_assert(is_same<exponents_t<-1, -2, -3>,
exponents_negate_t<exponents_t<1, 2,
3>>>::value,
"Test unary negate operation");

static_assert(is_same<exponents_add_t<exponents_t<1, 2,
3>, exponents_t<4, 5, 6>>,
exponents_t<5, 7, 9>>::value,
"Test addition");

static_assert(is_same<exponents_sub_t<exponents_t<1, 2,
3>, exponents_t<4, 5, 6>>,
exponents_t<-3, -3, -3>>::value,
"Test subtraction");

9 Constants

In section 4 (p. 3) the number 7 is credited with
the need to work with constants. It can also be
useful when working with very large or very small
numbers. By defining a constant 10 units can work
with powers of 10, which avoids the overflow prob-
lems posed by rationals.

defining constants The first problem to solve is
how users can provide floating point constants to a
meta-type. Templates only accept types and inte-
gral type instances, which is why the rational<>
meta-type was created in the first place.

The answer has two aspects, constexpr can
make a floating point value compile time accessi-
ble and wrapping it in a type makes it accessible to
templates:

Listing 32: Defining a constant

struct constant_Pi {
static constexpr double const value
{3.14159265358979323846};

s

A preprocessor macro could be used to simplify the
creation of constant containers, but macros usually
provide an extra layer of obfuscation that is unde-
sirable.

breakdown At this point it helps to break the
task down. It can be divided into meta-types
and meta-functions. The following list reflects the
bottom-up approach that was used in the original
development:

o Take a constant to an integer power (meta-
function).

o Store a list of constants (meta-type).

o Store a list of exponents (meta-type).

e Support addition and subtraction for the list
of exponents (meta-function).

¢ Create a product of all constants to the power
of their respective exponents (meta-function).

e Pack the constants and exponents together
(meta-type).

e Extract the product of all constants to the
powers of their exponents from a pack (meta-
function).

e Provide multiplication and division for packs
(meta-function).

constant_pow<> Taking a constant to an integer
power can be solved by recursively multiplying the
constant:

ceR, the constant 29
n ez, the exponent 30
fle,n) =1,

32
33

forn >0

f(c,n) = C'f(canf]-)a
f(cv n) = f(C, _n)_17

Implementing these conditions in a template is a
little less straightforward. In the following listing

forn <0

(29)
(30)
forn=0 (31)
(32)
(33)

n > 0 is the default case and implements equa-
tion 32, the first specialisation implements 33 and
matches —(n > 0). It is not invoked for the case
n = 0, because the template signature for the im-
plementation of equation 31 is more specialised:

Listing 33: Take a constant to an integer power

// Case m > 0, see equation 32.
template <typename T, class Constant, sint Exponent, bool
= (Exponent > 0)>
struct constant_pow {
static constexpr T const value{
T{Constant::value} x
constant_pow<T, Constant, Exponent - 1>::value};

15

// Case n < 0, see equation 33.
template <typename T, class Constant, sint Exponent>
struct constant_pow<T, Constant, Exponent, false> {
static constexpr T const value{
T{1} / constant_pow<T, Constant, -Exponent>::value
};
}s

// Case n =0, see equation 31.

template <typename T, class Constant>

struct constant_pow<T, Constant, 0, false> {
static constexpr T const value{l};

}s

The previous definition of constant_Pi can be
used for the test cases:

Listing 34: Test constant_pow<>

static_assert(constant_pow<double, constant_Pi, 0>::value
== 1.,
"Test constant to the power 0");

static_assert(constant_pow<double, constant_Pi, -1>::value
== 1. / constant_Pi::value,
"Test constant to the power -1");

static_assert(constant_pow<double, constant_Pi, 2>::value
== constant_Pi::value * constant_Pi::value,
"Test constant to the power 2");

static_assert(constant_pow<double, constant_Pi, -2>::value
== 1. / (constant_Pi::value * constant_Pi::value),
"Test constant to the power -2");

constants_chain<> The storage container for
a list of constants can have a similar shape to
exponents_chain<>:

Listing 35: A plain constant_chain<> implemen-
tation

template <class Head, class Tail = void>
struct constants_chain {

typedef Tail tail;

typedef Head type;
}s

12

Because exponents_chain<>, defined in listing 25
(p. 10), stores an integral value it is syntacti-
cally impossible to provide illegal values. The plain
constants_chain<> definition in listing 35 has no
such guarantees, a library user is free to create
chains with types that do not provide a suitable
value member.

In order to support early detection, e.g. to dis-
cover typos, the implementation should reject such
types and fail to compile:

Listing 36: A safer constant_chain<> implemen-
tation

template <class Head, class Tail void,
class void_t<decltype(double(Head::value))>>
struct constants_chain {
typedef Tail tail;

typedef Head type;

s

This implementation uses void_t<> to ensure that
the provided type has has a value member from
which a double can be constructed.

Just like the exponents_chain<> factory in
listing 27 (p. 10), a factory to create
constants_chain<>s can be defined:

Listing 37: A constants_chain<> factory

template <class... Constants>
struct constants {
typedef void type;

13

template <class Head, class... Tail>
struct constants<Head, Tail...> {
typedef constants_chain<Head, typename constants<Tail
...>itype> type;
}s

template <class... Args>
using constants_t = typename constants<Args...>::type;

exponents According to the breakdown in sec-
tion 9 (p. 12), a meta-type for storing exponents
as well as meta-functions for addition and subtrac-
tion are required.

This functionality is already provided by the ex-
ponents in section 8 (p. 10).

constants_prod<> The next item to implement
is the meta-function that recursively creates the
product of all constants to the power of their ex-
ponents. The function can use constant_pow<>
and recursively call itself to create the product:

13

Listing 38: Product of constants to the power of
their exponents

template <typename T, class Constants, class Exponents>
struct constants_prod {
static constexpr T const value{
constant_pow<T, typename Constants::type,
Exponents::value>::value *
constants_prod<T, typename Constants::tail,
typename Exponents::tail>::value};

15

template <typename T>
struct constants_prod<T, void, void> {
static constexpr T const value{l};

15

Note that the termination of recursion requires
both chains, the constants and the exponents to
be void terminated and have the same length.

constants_pack<> The next item on the break-
down is creating a container type that accumulates
constants and exponents:

Listing 39: A simple constants_pack<> imple-
mentation

template <class Constants, class Exponents>
struct constants_pack {

typedef Constants constants;

typedef Exponents exponents;
}s

template <class Constants, sint... Exponents>
using constants_pack_t constants_pack<Constants,
exponents_t<Exponents...>>;

An obvious problem is that the library user can pro-
vide chains of different lengths. So far two chained
list meta-types were created that use the type traits
for recursion and terminate a chain with void. A
utility function that compares the length of two
given chains can make use of this use of common
idioms:

Listing 40: Check whether two cains have the same

length

template <class Lhs, class Rhs, class
struct is_same_length : false_type {};

void>

template <class Lhs, class Rhs>
struct is_same_length<Lhs, Rhs, void_t<typename Lhs::tail,
typename Rhs::tail>>
: is_same_length<typename Lhs::tail, typename Rhs::
tail> {};

template <>

struct is_same_length<void, void> : true_type {};

As is usual for tests the default case returns false.

specialisation is selected if both arguments have a
tail member type. This specialisation recursively
calls itself until one of the chains runs out of its
tail, e.g. because the last tail was void. In that
case the default case is invoked. The last speciali-
sation catches the case where both chains end after
the same number of recursions.

This meta-function can be used in a simi-
lar manner to listing 23 (p. 9) to make a
constants_pack<> implementation that is safer to
use:

Listing 41: A safer constants_pack<> implemen-
tation

template <class Constants, class Exponents,
class = enable_if_t<is_same_length<Constants,
Exponents>: :value>>
struct constants_pack {
typedef Constants constants;
typedef Exponents exponents;

s

template <class Constants, sint... Exponents>
using constants_pack_t = constants_pack<Constants,
exponents_t<Exponents...>>;

constants_pack_prod<> The
constants_pack<> meta-type ties the concept
of constants and exponents together into a single
entity. So the constants_pack<> should provide
a single interface for all required operations.

A simple wrapper around constants_prod<>
provides value retrieval:

Listing 42: A wrapper around constants_prod<>

template <typename, class>
struct constants_pack_prod;

template <typename T, class Constants, class Exponents>
struct constants_pack_prod<T, constants_pack<Constants,
Exponents>>
: constants_prod<T, Constants, Exponents> {};

template matching This code illustrates some
of the finer points of template selection. A template
has a signature, which the compiler must match to
use the template. Only after the compiler selected
the template, does it select a specialisation. At
this stage SFINAE rules kick in and compilation
only fails if no well-formed specialisation could be
found.

The template matching is the reason that listing
42 requires a declaration. This declaration estab-

lishes the template signature, which allows the com-
piler to select the template. The unraveling of the
constants_pack<> arguments can only happen in
a specialisation.

Because the generic case is only declared and not
implemented compilation fails when the template
is selected but no matching specialisation can be
found, which is the desired behaviour. Illegal code
should fail to compile.

The distinction between template matching and
selecting a specialisation can become important
when working with typical SFINAE constructs like
void_t<> and enable_if_t<>.

Listing 40 (p. 13) uses void_t<> in the SFINAE
context, i.e. the template has already been selected
and the void_t<> construct only influences which
specialisation is selected.

This is not the case for the enable_if_t<> use
in listing 41. The enable_1if_t<> statement is part
of the template declaration and thus the template
signature. Even given a specialisation that matches
a different set of arguments, that does not have the
same length requirement, it could never be selected,
because the template was already rejected during
template matching?.

So in order to support different sets of arguments
for constants_pack<>, the declaration would have
to be separated from the implementation. The
condition in the declaration would be replaced by
the traditional class = void (actually any type
would do, this is just a convention). The condi-
tion would become part of a specialisation, contest-
ing with other specialisations for being the most
specialised well-formed implementation of the tem-
plate.

operators Multiplication and division can be
mapped to addition and subtraction on the in-
volved exponents. Implementing these operations
should at this point be straightforward:

4Unless the template user cheats by overriding the default
template argument (i.e. the condition) by providing a type
in its stead.

14

Listing 43: Operators for the constants_pack<>
meta-type

template <class>
struct constants_pack_unary;

template <class Constants, class Exponents>
struct constants_pack_unary<constants_pack<Constants,
Exponents>> {
typedef constants_pack<Constants, exponents_negate_t<
Exponents>>
invert;

};

template <class... Args>
using constants_pack_invert_t typename
constants_pack_unary<Args...>::invert;

template <class, class>
struct constants_pack_binary;

template <class Constants, class LExponents, class
RExponents>
struct constants_pack_binary<constants_pack<Constants,
LExponents>,
constants_pack<Constants,
RExponents>> {
typedef constants_pack<Constants,
exponents_add_t<LExponents,
RExponents>> mul;

};

template <class... Args>
using constants_pack_mul_t = typename
constants_pack_binary<Args...>::mul;

template <class Lhs, class Rhs>

using constants_pack_div_t
typename constants_pack_binary<Lhs,

constants_pack_invert_t<Rhs>>::mul;

These operators follow the established patterns. In-
version of the pack is mapped to negation of the ex-
ponents. Multiplication of two packs is mapped to
addition of their exponents. The template special-
isation ensures that only packs based on the same
constants can be multiplied.

10 Testing Reloaded

The original implementation this paper is based on
has a lot more conditions and tests this paper over-
looks for the sake of scale and clarity.

Except for the multiplication meta-function for
the rational<> meta-type in listing 5 (p. 6) ille-
gal use of meta-types and functions has been caught
at the template matching/selection level. Either
implicitly, by using template unravelling or explic-
itly by using enable_if_t<> and void_t<>, e.g.
constants_pack<> in listing 41 (p. 14).

The overwhelming advantage of

15

static_assert() is its readability and the
ability to produce useful error messages. Most of
the safeguards built into the code so far, could be
static_assert() based, which would result in
code looking less cryptic and make it much easier
for a library user to find out what they did wrong.

The sole reason to choose this less convenient
form is that it allows testing whether an illegal con-
struct would fail in an SFINAE context. Which
means fails-to-compile tests can be performed in a
static_assert(). E.g. the following listing tests
whether constants_pack<> does not accept lists,
which have different lengths:

Listing 44: Compile failure testing

template <class Constants, class Exponents, class void>

struct test_constants_pack : std::false_type {};

template <class Constants, class Exponents>
struct test_constants_pack<Constants, Exponents,
void_t<constants_pack<Constants
, Exponents>>>

: std::true_type {};

static_assert(test_constants_pack<constants_t<constant_Pi
>, exponents_t<1>>::value,
"Verify that the test accepts valid cases.")

5
static_assert(!test_constants_pack<constants_t<constant_Pi
>, exponents_t<1l, 2>>::value,
"Constants and exponents lists with
different lengths should be rejected.")

5
static_assert(!test_constants_pack<constants_t<constant_Pi
>, exponents_t<>>::value,
"Constants and exponents lists with
different lengths should be rejected.")

5

While testing positive cases that should work is
straightforward (i.e. just use the functionality),
this testing of cases that should not compile is more
difficult to achieve, but just as important. The
added effort means that it should be given a much
higher priority.

Note that such tests should always exhaust all
negative and positive cases, to ensure that both the
tested code as well as the test work as expected. It
is advisable to test new tests, i.e. sabotaging the
tested functionality and checking whether the test
catches it.

The reason why static_assert() was chosen
for rational_operator_mul<> in listing 5 (p. 6)
is that overflow is a technical limitation and can
be caused by regular, intended use of the library.
Because the error is so non-obvious, issuing a
clear error message is more important than the

benefits of testing the failure to compile in a
static_assert().

11 The Unit Container

In the original design by Stroustrup [23], there were
two templates, a Unit<> meta-type and a Value<>
template. The Unit<> meta-type represents the ex-
ponents of the base units. The Value<> template
takes a Unit<> instance as an argument and carries
the payload, a value member referred to as a mag-
nitude. L.e. a value has a unit and a magnitude.

The following code is from slide 27:

Listing 45: Unit verification according to Strous-
trup [23]
// A unit in the MKS system

template<int M, 1int K, int S> struct Unit {
enum { m=M, kg=K, s=S };

};

// A magnitude with a unit
template<typename Unit> struct Value {
// the magnitude
double val;
// construct a Value from a double
explicit Value(double d): val(d) {}
15

// metres/second type

using Speed Value<Unit<l, 0, -1>>;
// metres/second/second type

using Acceleration Value<Unit<1, 0,

-2>>;

In the following design a different nomenclature is
used. The unit<> template instance is the type of
a value. I.e. the value container is called unit<>
instead of Value<> and the Unit<> meta-type is
replaced with base units, a conversion factor and
constant factors. Those are represented by in-
stances of the exponents_chain<>, rational<>
and constants_pack<> meta-types:

16

Listing 46: The unit<> signature

template <typename T, class BaseUnits, class Factor,
class ConstantsPack = constants_pack<void, void
>>
struct unit {
typedef T value_type;
typedef BaseUnits base_units;
typedef Factor factor;
typedef ConstantsPack constants_pack;
typedef unit<T, BaseUnits, Factor, ConstantsPack> type

b
T value;
constexpr unit() : value{0} {}
constexpr explicit unit(T const copy) : value{copy} {}
// Insert additional constructors and operators here

1

Note that the constants pack has effectively been
made optional by providing a default empty pack.
This results in constants_pack_prod<> always re-
turning 1.

This definition of the unit<> template suffices to
create a first set of units for testing.

Listing 47: First test of the unit<> signature

// Define constant_Pi like in listing 32 (p. 12)

template <sint... Exponents>

using consts constants_pack_t<constants_t<constant_Pi>,
Exps ...

>3

typedef unit<double, exponents_t<0, 0, 0, 0>,
rational<l, 1>, consts<0>> scalar;
unit<double, exponents_t<1, 0, 0, 0>,
rational<l, 1>, consts<0>> metre;
unit<double, exponents_t<0, 1, 0, 0>,
rational<l, 1>, consts<0>> kilogram;
unit<double, exponents_t<0, 0, 1, 0>,
rational<l, 1>, consts<0>> second;
unit<double, exponents_t<0, 0, 0, 1>,
rational<l, 1>, consts<0>> rad;
unit<double, exponents_t<1, 0, 0, 0>,
rational<1000, 1>, consts<0>> kilometre;
unit<double, exponents_t<0, 0, 1, 0>,
rational<60 * 60, 1>, consts<0>> hour;
unit<double, exponents_t<0, 0, 0, 1>,
rational<l, 180>, consts<1>> deg;

typedef
typedef
typedef
typedef
typedef
typedef

typedef

static_assert(kilometre{}.value .y
"Test default constructor");

static_assert(kilometre{2.}.value == 2.,
"Test explicit constructor");

implicit conversion The promised functional-
ity is implicit converion between compatible types.
This can be performed with a non-explicit copy
constructor:

Listing 48: A unit<> constructor that performs
implicit conversion

template <class Op>
constexpr unit(Op const copy)
: value{copy.value *
(T(rational_div_t<typename Op::factor,
>{}) *
constants_pack_prod<
T, constants_pack_div_t<typename Op::
constants_pack,

Factor

ConstantsPack>>::
value)} {}

This constructor multiplies the value of the given
unit with the conversion factors, like in equation 14
(p. 4). The conversion is ugly to read, the following
version is more elaborate:

Listing 49: A more readable unit<> conversion con-
structor

// INSIDE THE UNIT<> BODY

// rational<> component of the conversion factor

template <class Op>

using rational_factor_t
factor, Factor>;

rational_div_t<typename Op::

// constants_pack<> component of the conversion factor
template <class Op>
using constants_div_t =
constants_pack_div_t<typename Op::constants_pack,
ConstantsPack>;

// value container for the constants_pack factor

template <class Op>

using constants_factor_t
constants_div_t<0p>>;

constants_pack_prod<T,

// the constructor
template <class Op>
constexpr unit(Op const copy)
: value{copy.value *
(T(rational_factor_t<Op>{}) x*
constants_factor_t<Op>::value)} {}

This version of the conversion constructor is easier
to comprehend, however it still has a huge draw-
back — it converts units with different base units,
permitting illegal conversions:

Listing 50: Test unit<> conversion constructor

static_assert(kilometre{kilometre{3.}}.value == 3.,
"Test copy construction without conversion")

)

static_assert(kilometre{metre{2000.}}.value == 2.,
"Test copy construction with conversion");

static_assert(kilometre{second{2000.}}.value == 2.,
"Test illegal conversion"); // This should
not compile!!!

This can be prevented using template unraveling or

17

enable_if_t<>:

Listing 51: A strict unit<> conversion constructor

template <class Op,
class enable_if_t<
is_same<BaseUnits, typename Op::base_units
>::value>>
constexpr unit(Op const copy)
: value{copy.value *
(T(rational_factor_t<Op>{}) *
constants_factor_t<Op>::value)} {}

The SFINAE test for illegal conversion failure looks
like this:

Listing 52: Test strict unit<> conversion

// default to false
template <typename, typename, class void>
struct construct_copy : std::false_type {};

// return true for successful construction of To from From
template <typename To, typename From>
struct test_construct_copy<To, From,
void_t<decltype(To{From{}})>> :
std::true_type {};

// Test strictness of conversion
static_assert(test_construct_copy<kilometre, kilometre>::
value,
"Verify that test recognises valid case");
static_assert(test_construct_copy<kilometre, metre>::value
5
"Verify that test recognises valid case");
static_assert(!test_construct_copy<kilometre, second>::
value,
"Conversion with different base units should
fail");

This SFINAE construct can test whether one type
is constructible from another. It cannot verify that
such construction happens correctly, so it cannot
replace regular tests like at the end of listing 49.

trivial operators A lot of operators require the
same type for the left-hand and right-hand side
operands. Given the conversion operators they are
trivial to implement, because the conversion hap-
pens implicitly:

Listing 53: Trivial operators

// INSIDE THE UNIT<> BODY

// unary operators

constexpr type operator+() const { return xthis; }

constexpr type operator-() const { return type{-this->
value}; }

// trivial arithmetic operators

constexpr type operator+(type const op) const {
return type{this->value + op.value}; }

constexpr type operator-(type const op) const {
return type{this->value - op.value}; }

// boolean operators
constexpr bool operator==(type const op) const {

return this->value == op.value; }
constexpr bool operator!=(type const op) const {
return this->value != op.value; }

constexpr bool operator<(type const op) const {
return this->value < op.value; }

constexpr bool operator<=(type const op) const {
return this->value <= op.value; }

constexpr bool operator>(type const op) const {
return this->value > op.value; }

constexpr bool operator>=(type const op) const {
return this->value >= op.value; }

multiplication The multiplication and division
operators on the other hand should not just accept
convertible units, but any unit (within the system).
Instead of returning the type of the current unit
these operators should return a composite type like
illustrated by the equations 18 to 23 (p. 4).

To avoid messy code like in listing 48 (p. 17)
these type conversions should be available as meta-
functions. To enable template unraveling the
unit<> template should be declared before the
meta-functions, but the meta-functions should be
available in the unit<> body. So the declaration
and the definition of unit<> should be split:

Listing 54: Meta-function context for unit<>

template <typename T, class BaseUnits, class Factor,
class ConstantsPack = constants_pack<void, void
>>

struct unit;
// meta-functions go here ...

template <typename T, class BaseUnits, class Factor, class
ConstantsPack>
struct unit<T, BaseUnits, Factor, ConstantsPack> {
// unit body ...
b

For the implementation of meta-functions the es-
tablished patterns apply, create a meta-function
that performs inversion and one that performs mul-
tiplication. The remaining functionality can be tied

18

up in alias templates:

Listing 55: Meta-functions for unit<>

template <class>
struct unit_unary;

template <typename T, class BaseUnits, class Factor, class
ConstantsPack>
struct unit_unary<unit<T, BaseUnits, Factor, ConstantsPack
>> {
typedef unit<T, exponents_negate_t<BaseUnits>,
rational_invert_t<Factor>,
constants_pack_invert_t<ConstantsPack>>
invert;

1

template <class... Args>
using unit_invert_t = typename unit_unary<Args...>::invert

5

template <class Lhs, class Rhs>
struct unit_binary {
typedef unit<
typename Lhs::value_type,
exponents_add_t<typename Lhs::base_units,
typename Rhs::base_units>,
rational_mul_t<typename Lhs::factor, typename Rhs
::factor>,
constants_pack_mul_t<typename Lhs
typename Rhs
>> mul;

::constants_pack,
::constants_pack

}s

template <class...
using unit_mul_t

Args>
typename unit_binary<Args...>::mul;

template <class Lhs, class Rhs>
using unit_div_t = unit_mul_t<Lhs, unit_invert_t<Rhs>>;

What the meta-functions do is straightforward
enough:

e unit_invert_t<0p>

— negate base unit exponents
— invert rational factor
— invert constant pack

e unit_mul_t<Lhs, Rhs>

— add base unit exponents
— multiply rational factors
— multiply constant packs

e unit_div_t<Lhs, Rhs>

— invert Rhs
— call unti_mul_t<>

With the plumbing done the multiplication and di-
vision operators are simple:

Listing 56: Multiplication and division operators

// INSIDE THE UNIT<> BODY

// multiply with unit<> instance
template <class Op, class Result unit_mul_t<type, Op>>
constexpr Result operatorx(Op const op) const {

return Result{this->value x op.value};

}

// divide by unit<> instance
template <class Op, class Result unit_div_t<type, Op>>
constexpr Result operator/(Op const op) const {

return Result{this->value / op.value};

}

With all the complexity moved into the type system,
the function bodies are reduced to multiplying the
payloads. I.e. unit multiplication and division add
no runtime cost.

scalars A special case is multiplication with and
division by scalar values. These can be performed
without type mutations and should be supported.
The alternative would be to create a scalar unit
with all base unit exponents zeroed, instances of
which would have to be constructed explicitly.

These scalar operators are as simple as the trivial
operators in section 11 (p. 17):

Listing 57: Scalar multiplication and division oper-
ators

// INSIDE THE UNIT<> BODY

// multiply with scalar value
constexpr type operator*(T const op) const {
return type{this->value * op};

}

// divide by scalar value

constexpr type operator/(T const op) const {
return type{this->value / op};

}

These operators make statements like metre{2.}
% 5. possible. To support 5. * metre{2.} binary
operators outside of the unit<> body need to be
defined:

19

Listing 58: Left hand scalar multiplication and di-
vision operators

template <typename T, class...

constexpr unit<T, Spec...>

operatorx (T const lhs, unit<T, Spec...> const rhs) {
return unit<T, Spec...>{lhs * rhs.value};

Spec>

}

template <typename T, class... Spec>

constexpr unit_invert_t<unit<T, Spec...>>

operator/(T const lhs, unit<T, Spec...> const rhs) {
return unit_invert_t<unit<T, Spec...>>{lhs / rhs.value

1

Unlike the operators in listing 57, these operators
are templates. Thus the type T has to be matched
exactly, because the compiler does not perform
implicit conversions to match templates. E.g. if
typename T = float, and the left hand operand
is a double, template matching fails:

Listing 59: Templates require exact matches

src/model/Tool.cpp:113:20: error: invalid operands to
binary expression ('double' and 'types::rpms')
this->rotation += .5 * frame.acc * frametime * frametime;

src/model/../units/Units.hpp:1853:28: note: candidate
template ignored: deduced conflicting types for
parameter 'T' ('double' vs. 'float')

constexpr unit<T, Spec...> operator*(T const lhs, unit<T,

Spec...> const rhs) {
A

This inconsistency can be solved by defining them
as friend functions from within the struct body.
Friend functions are commonly declared in class
bodies to allow certain functions (defined some-
where else) to access private members. But they
can also be defined from within a class/struct body,
where all the template’s arguments and traits are
available:

Listing 60: Left hand scalar multiplication and di-
vision friend operators

// INSIDE THE UNIT<> BODY

friend constexpr type operatorx(T const lhs, type const
rhs) {
return type{lhs * rhs.value};
}

friend constexpr unit_invert_t<type>
operator/(T const lhs, type const rhs) {
return unit_invert_t<type>{lhs / rhs.value};

}

Whenever the unit<> template is instantiated, the
compiler emits the friend functions as regular func-

tions. That is the case, even when the declaration
of the friend function itself is a template.

One thing to pay attention to is that every friend
function defined in a template body is defined in a
way that makes its signature unique to the template
instance. In listing 60 (p. 19) this is ensured by hav-
ing a type argument (type is the trait representing
the current template instance) in the signature.

What happens if the one definition rule is vio-
lated by a friend function emitted from a template
depends on the compiler. Clang 3.4.1 and 3.6.2 as
well as GCC 5.2.0 ignore it (i.e. they emit imple-
mentation defined behaviour). Visual Studio 2015
RTM (Release To Manufacturing) treats it as an
error.

The one definition rule was established by the
C++03 [8] standard.

modulo One operator that has been omitted so
far is the modulo operator. The modulo func-
tion is well defined for numbers in R, but C++ only
provides the modulo operator % for integral types
(Z C R). The <cmath> header provides the fmod ()
function for floating point types.

So two definitions of the modulo operator, one
that uses the operator and one that uses the fmod ()
function, are required:

Listing 61: Two implementations of the modulo op-
erator

// INSIDE THE UNIT<> BODY

// for integral types
constexpr operator%(type const op) const {
return type{this->value % op.value};

}

// for floating point types
constexpr operator%(type const op) const {
return type{fmod(this->value, op.value)};

}

Of course compilers do not accept these two func-
tions with identical signatures to coexist. So a selec-
tion criteria is required, e.g. the <type_traits>
header provides the ds_integral<> meta-
function.

Another approach, which is more favourable for
supporting user-defined types, is to check for the
modulo operator and fall back to fmod (). To facili-
tate this a meta-function that tests for the existence
of the operator needs to be defined:

Listing 62: Test for modulo operator

template <typename T, class = void>
struct has_op_modulo : false_type {};

template <typename T>
struct has_op_modulo<T, void_t<decltype(T{} % T{})>> :
true_type {};

This test requires the tested type to be default con-
structible and provide the modulo operator to re-
turn true.

Listing 63: Two implementations of the modulo op-
erator

// INSIDE THE UNIT<> BODY

template <bool NativeMod = has_op_modulo<T>::value>
constexpr enable_if_t<NativeMod, type> operator%(type
const op) const {
return type{this->value % op.value};

}

template <bool NativeMod = has_op_modulo<T>::value>
constexpr enable_if_t<!NativeMod, type> operator%(type
const op) const {
return type{fmod(this->value, op.value)};

This enables statement like metre{1337.} %
kilometre{1.} metre{337.}. Note that this
kind of statement is only a constant expression if
the underlying operator or fmod () are constant ex-
pressions.

12 Using the Library

This concludes the implementation of the unit<>
template. Defining units like in listing 47 (p. 16)
is the job of the library user. The unit<> struct
template is designed to replace builtin types with
small hassle and huge benefits.

literals For a more seamless experience, literals
should be defined. User-defined literals provide a
means of creating modifiers like those provided by
the language, e.g. 5.F or 12L.

The only limitation is that user-defined literals
have to start with an underscore (McIntosh et al.

[17]):

Literal suffix identifiers that do not start
with an underscore are reserved for future
standardization.

20

defining literals User-defined literals depend on
the declaration of a literal operator:

Listing 64: Literal operators for the units in listing
47

constexpr metre operator "" _m(long double const value) {
return metre{double(value)};

}
// use: 1337._m

constexpr kilometre operator "" _km(long double const
value) {
return kilometre{double(value)};
}
// use: 1.337_km

Note that the operator signature takes a long
double instead of the desired double. This rule
is described in the standard proposal [17]:

3. The declaration of a literal operator
shall have a parameter-declaration-
clause equivalent to one of the
following:

char constx*

unsigned long long 1int

long double

char const*, std::size_t
wchar_t constx, std::size_t
charl6_t constx, std::size_t
char32_t constx, std::size_t

A raw literal operator is a literal op-
erator with a single parameter whose
type is char constx (the first case
in the list above).

using literals Brief examples were alread pro-
vided in listing 64. To use a literal suffix just con-
catenate it to the literal:

auto const velocity

100._km / 1._h;

Use auto to use the natural type of an expression.
User-defined literals require an exact type match.
E.g. 5_mis not caught by the long doubtle literal:

Listing 65: Literal operator type mismatch

c++ -02 -pipe -march=native -std=c++11 -Wall -Werror -
pedantic -0 bin/io/Parse.o -c src/io/Parse.cpp

In file included from src/io/Parse.cpp:9:

In file included from src/io/../model/Tool.hpp:10:

src/io/../model/Units.hpp:256:16: error: no matching
literal operator for call to 'operator "" _m' with
argument of type 'unsigned long long' or 'const char
*', and no matching literal operator template

static_assert(5_m == 5000._mm, "Test");
A

21

As the error message in listing 65 shows, every lit-
eral number can also be caught as a string literal.
This allows the creation of literals for big numbers
(integers not fitting into 64 bits), or supporting dif-
ferent bases, e.g. base 64, without using quotes.
Literals can also be used to create new types:

Listing 66: Using literals to define new types

typedef decltype(l._m/1l._s) mps;
typedef decltype(l._km/1._h) kmph;

void showSpeed(mps const speed) {
std::cout << "Speed in m/s:
"\n'
<< "Speed in km/h:
"\n';

" << mps{speed}.value <<

" << kmph{speed}.value <<

This code is equivalent to the following listing:

Listing 67: Using literals to define new types

typedef decltype(metre{}/second{}) mps;
typedef decltype(kilometre{}/hour{}) kmph;

void showSpeed(mps const speed) {
std::cout << "Speed in m/s:
l\nl
<< "Speed in km/h:
"\n';

" << mps{speed}.value <<

" << kmph{speed}.value <<

adaptive signatures In listings 66 and 67 the
signature enforces conversion.
This can be avoided using function templates:

Listing 68: Using literals to define new types

// base unit for velocities
typedef exponents_t<1, 0, -1, 0> base_velocity;

// output units
typedef decltype(l._m/1l._s) mps;
typedef decltype(l._km/1._h) kmph;

// match any unit that has the right base units
template <class... Args>
void showSpeed(unit<base_velocity, Args...> const speed) {
std::cout << "Speed in m/s: " << mps{speed}.value <<
"\n'
<< "Speed 1in km/h:
"\n';

" << kmph{speed}.value <<

This approach also works in combination with
inline and constexpr.

It also shows how to extract plain values from
a unit typed value. Note the explicit conversion
in listing 66, even though speed already had the
desired unit. When extracting the magnitude from
a unit typed value, the required output unit should

always be stated explicitly. This makes the code
more readable and safer to maintain. E.g. the same
code still works in listing 68, where the input unit is
constrained to velocities, but otherwise unknown.

13 Summary

The following recap of all the previous sections con-
cludes this article:

1 Units are troubling and mistakes potentially
dangerous.
2 Units must be strongly typed without causing
additional runtime cost.
3 C++11 [9] has much better meta-programming
support.
4 Units are sets of properties, describing base
units and conversion factors.
5 Types and functions are a semantic distinction
in meta-programming.
6 Create meta-types and recursive meta-
functions.
7 Test everything, test bottom up, test early,
TEST EVERYTHING!
8 Meta-types can be recursive, too.
9 Break problems down into atomic pieces and
solve them one at a time.
10 Do MORE TESTING!
11 Tie it together into a unit template.
12 Use literals, avoid unnecessary conversions.
13 See recursion in section 5 (p. 5).

The complete source code is available from https:
//github.com/lonkamikaze/units.

References

[1] Walter E. Brown. Transformationtrait alias void t.
2014. URL http://www.open-std.org/jtcl/sc22/
wg21l/docs/papers/2014/n3911.pdf.

[2] Dominic Fandrey. Mesh based dynamic octree mod-
elling, 2013.

[3] Dominic Fandrey. Validation and conversion of physi-
cal units at compile time - leveraging the power of the
c++11 type system in your simulation model. In Pro-
ceedings of the 382nd Chaos Communication Congress
(32C3), 2015.

[4] James Gleick. A bug and a crash. New York Times

Magazine, 1996. URL http://www.around.com/ariane.
html.

22

5

6

[7

8

[9

(10]

(11]

(12]

(13]

(14]

[15]

[16]

(17)

(18]

Douglas Gregor, Jaakko Jéarvi, and Gary Pow-
ell. Variadic templates (revision 3). 2006. URL
http://www.open-std.org/jtcl/sc22/wg21/docs/
papers/2006/n2080.pdf.

Douglas Isbell and Don Savage. Mars climate
orbiter failure board releases report, 1999. URL
http://spaceflight.nasa.gov/spacenews/releases/
1999/h99-134. html.

ISO/IEC. 14882:1998 information technology - pro-
gramming languages - c+-+, 1998.

ISO/IEC. 14882:2003 information technology - pro-
gramming languages - c++, 2003.

ISO/IEC. 14882:2011 information technology - pro-
gramming languages - c++, 2011.

ISO/IEC. 14882:2014 information technology - pro-
gramming languages - c++, 2014.

Jaakko Jarvi, Bjarne Stroustrup, and Gabriel Dos
Reis. Decltype and auto (revision 4). 2004. URL
http://www.open-std.org/jtcl/sc22/wg21/docs/
papers/2004/n1705.pdf.

Robert Klarer, Dr. John Maddock, Beman Dawes,
and Howard Hinnant. Proposal to add static asser-
tions to the core language (revision 3). 2004. URL
http://www.open-std.org/jtcl/sc22/wg21/docs/
papers/2004/n1720.html.

Stephan T. Lavavej. C++11/14 stl features,
fixes, and breaking changes in vs 2013. Vi-
sual C++ Team Blog, 2013. URL http:

//blogs.msdn.com/b/vcblog/archive/2013/06/28/

c-11-14-stl-features-fixes-and-breaking-changes-in-vs-2013.

aspx.

Stephan T. Lavavej. C+-+11/14/17 features in vs
2015 rtm. Visual C++ Team Blog, 2015. URL
http://blogs.msdn.com/b/vcblog/archive/2015/06/
19/c-11-14-17-features-in-vs-2015-rtm.aspx.

Prof. Jacques-Louis Lions, Dr. Lennart Liibeck, Mr.
Jean-Luc Fauquembergue, Mr. Gilles Kahn, Prof. Dr.
Ing. Wolfgang Kubbat, Dr. Ing. Stefan Levedag, Dr.
Ing. Leonardo Mazzini, Mr. Didier Merle, and Dr. Colin
O’Halloran. Ariane 5 flight 501 failure, 1996. URL http:
//esamultimedia.esa.int/docs/esa-x-1819eng.pdf.

Robin Lloyd. Metric mishap caused loss of nasa orbiter.
CNN.com, 1999. URL http://edition.cnn.com/TECH/
space/9909/30/mars.metric.02/.

Tan McIntosh, Michael Wong, Raymond Mak,
Robert Klarer, Jens Maurer, Alisdair Meredith,
Bjarne Stroustrup, and David Vandevoorde. User-
defined literals (aka. extensible literals (revision 5)).
2008. URL http://www.open-std.org/jtcl/sc22/
wg2l/docs/papers/2008/n2765.pdf.

Media Relations Office. Nasa’s mars climate orbiter be-
lieved to be lost, 1999. URL http://spaceflight.nasa.
gov/spacenews/releases/1999/jpl-092399.html.

https://github.com/lonkamikaze/units
https://github.com/lonkamikaze/units
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2014/n3911.pdf
http://www.around.com/ariane.html
http://www.around.com/ariane.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2080.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2006/n2080.pdf
http://spaceflight.nasa.gov/spacenews/releases/1999/h99-134.html
http://spaceflight.nasa.gov/spacenews/releases/1999/h99-134.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1705.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1705.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2004/n1720.html
http://blogs.msdn.com/b/vcblog/archive/2013/06/28/c-11-14-stl-features-fixes-and-breaking-changes-in-vs-2013.aspx
http://blogs.msdn.com/b/vcblog/archive/2013/06/28/c-11-14-stl-features-fixes-and-breaking-changes-in-vs-2013.aspx
http://blogs.msdn.com/b/vcblog/archive/2013/06/28/c-11-14-stl-features-fixes-and-breaking-changes-in-vs-2013.aspx
http://blogs.msdn.com/b/vcblog/archive/2013/06/28/c-11-14-stl-features-fixes-and-breaking-changes-in-vs-2013.aspx
http://blogs.msdn.com/b/vcblog/archive/2015/06/19/c-11-14-17-features-in-vs-2015-rtm.aspx
http://blogs.msdn.com/b/vcblog/archive/2015/06/19/c-11-14-17-features-in-vs-2015-rtm.aspx
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://esamultimedia.esa.int/docs/esa-x-1819eng.pdf
http://edition.cnn.com/TECH/space/9909/30/mars.metric.02/
http://edition.cnn.com/TECH/space/9909/30/mars.metric.02/
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2008/n2765.pdf
http://spaceflight.nasa.gov/spacenews/releases/1999/jpl-092399.html
http://spaceflight.nasa.gov/spacenews/releases/1999/jpl-092399.html

(19]

20]

(21]

(22]

23]

[24]

[25]

Gabriel Dos Reis. Variable templates (revision 1).
2013. URL http://www.open-std.org/jtcl/sc22/
wg21l/docs/papers/2013/n3651.pdf.

Gabriel Dos Reis and Bjarne Stroustrup. Templates

aliases (revision 3). 2007. URL http://www.open-std.

org/jtcl/sc22/wg21l/docs/papers/2007/n2258.pdf.

Gabriel Dos Reis, Bjarne Stroustrup, and Jens Mau-
rer. Generalized constant expressions — revision
5. 2007. URL http://www.open-std.org/jtcl/sc22/
wg21l/docs/papers/2007/n2235. pdf.

Matthias Christian Schabel and Steven Watanabe.
Boost. Units 1.1.0, 2015. URL http://www.boost.org/
doc/libs/1_59_0/doc/html/boost_units.html.

Bjarne Stroustrup. Keynote - bjarne
stroustrup: C++11 style. In GoingNa-
tive, 2012. URL https://channel9.msdn.

com/Events/GoingNative/GoingNative-2012/
Keynote-Bjarne-Stroustrup-Cppll-Style.

Erwin Unruh. Temple metaprogrammierung, 2002.
URL http://www.erwin-unruh.de/meta.html.

Todd Veldhuizen. Template metaprograms. 1995.

23

http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3651.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2013/n3651.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2258.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2235.pdf
http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2007/n2235.pdf
http://www.boost.org/doc/libs/1_59_0/doc/html/boost_units.html
http://www.boost.org/doc/libs/1_59_0/doc/html/boost_units.html
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style
https://channel9.msdn.com/Events/GoingNative/GoingNative-2012/Keynote-Bjarne-Stroustrup-Cpp11-Style
http://www.erwin-unruh.de/meta.html

	Lost in Space
	Requirements
	[11]
	Design
	Glossary
	A Rational Number Meta-Type
	Testing
	Dimensions
	Constants
	Testing Reloaded
	The Unit Container
	Using the Library
	Summary

