/*- * Copyright (c) 1997, 1998-2003 * Bill Paul . All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * 3. All advertising materials mentioning features or use of this software * must display the following acknowledgement: * This product includes software developed by Bill Paul. * 4. Neither the name of the author nor the names of any co-contributors * may be used to endorse or promote products derived from this software * without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY Bill Paul AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL Bill Paul OR THE VOICES IN HIS HEAD * BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF * THE POSSIBILITY OF SUCH DAMAGE. */ #include __FBSDID("$FreeBSD: src/sys/dev/re/if_re.c,v 1.66 2006/03/22 07:33:02 glebius Exp $"); /* * RealTek 8139C+/8169/8169S/8110S PCI NIC driver * * Written by Bill Paul * Senior Networking Software Engineer * Wind River Systems */ /* * This driver is designed to support RealTek's next generation of * 10/100 and 10/100/1000 PCI ethernet controllers. There are currently * four devices in this family: the RTL8139C+, the RTL8169, the RTL8169S * and the RTL8110S. * * The 8139C+ is a 10/100 ethernet chip. It is backwards compatible * with the older 8139 family, however it also supports a special * C+ mode of operation that provides several new performance enhancing * features. These include: * * o Descriptor based DMA mechanism. Each descriptor represents * a single packet fragment. Data buffers may be aligned on * any byte boundary. * * o 64-bit DMA * * o TCP/IP checksum offload for both RX and TX * * o High and normal priority transmit DMA rings * * o VLAN tag insertion and extraction * * o TCP large send (segmentation offload) * * Like the 8139, the 8139C+ also has a built-in 10/100 PHY. The C+ * programming API is fairly straightforward. The RX filtering, EEPROM * access and PHY access is the same as it is on the older 8139 series * chips. * * The 8169 is a 64-bit 10/100/1000 gigabit ethernet MAC. It has almost the * same programming API and feature set as the 8139C+ with the following * differences and additions: * * o 1000Mbps mode * * o Jumbo frames * * o GMII and TBI ports/registers for interfacing with copper * or fiber PHYs * * o RX and TX DMA rings can have up to 1024 descriptors * (the 8139C+ allows a maximum of 64) * * o Slight differences in register layout from the 8139C+ * * The TX start and timer interrupt registers are at different locations * on the 8169 than they are on the 8139C+. Also, the status word in the * RX descriptor has a slightly different bit layout. The 8169 does not * have a built-in PHY. Most reference boards use a Marvell 88E1000 'Alaska' * copper gigE PHY. * * The 8169S/8110S 10/100/1000 devices have built-in copper gigE PHYs * (the 'S' stands for 'single-chip'). These devices have the same * programming API as the older 8169, but also have some vendor-specific * registers for the on-board PHY. The 8110S is a LAN-on-motherboard * part designed to be pin-compatible with the RealTek 8100 10/100 chip. * * This driver takes advantage of the RX and TX checksum offload and * VLAN tag insertion/extraction features. It also implements TX * interrupt moderation using the timer interrupt registers, which * significantly reduces TX interrupt load. There is also support * for jumbo frames, however the 8169/8169S/8110S can not transmit * jumbo frames larger than 7440, so the max MTU possible with this * driver is 7422 bytes. */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(re, pci, 1, 1, 1); MODULE_DEPEND(re, ether, 1, 1, 1); MODULE_DEPEND(re, miibus, 1, 1, 1); /* "device miibus" required. See GENERIC if you get errors here. */ #include "miibus_if.h" /* * Default to using PIO access for this driver. */ #define RE_USEIOSPACE #include #define RE_CSUM_FEATURES (CSUM_IP | CSUM_TCP | CSUM_UDP) /* * Various supported device vendors/types and their names. */ static struct rl_type re_devs[] = { { DLINK_VENDORID, DLINK_DEVICEID_528T, RL_HWREV_8169S, "D-Link DGE-528(T) Gigabit Ethernet Adapter" }, { RT_VENDORID, RT_DEVICEID_8139, RL_HWREV_8139CPLUS, "RealTek 8139C+ 10/100BaseTX" }, { RT_VENDORID, RT_DEVICEID_8111B, RL_HWREV_8111B, "Realtek 8111B Single-Chip Gigabit Ethernet" }, { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169, "RealTek 8169 Gigabit Ethernet" }, { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169S, "RealTek 8169S Single-chip Gigabit Ethernet" }, { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8169SB, "RealTek 8169SB Single-chip Gigabit Ethernet" }, { RT_VENDORID, RT_DEVICEID_8169, RL_HWREV_8110S, "RealTek 8110S Single-chip Gigabit Ethernet" }, { COREGA_VENDORID, COREGA_DEVICEID_CGLAPCIGT, RL_HWREV_8169S, "Corega CG-LAPCIGT (RTL8169S) Gigabit Ethernet" }, { LINKSYS_VENDORID, LINKSYS_DEVICEID_EG1032, RL_HWREV_8169S, "Linksys EG1032 (RTL8169S) Gigabit Ethernet" }, { 0, 0, 0, NULL } }; static struct rl_hwrev re_hwrevs[] = { { RL_HWREV_8139, RL_8139, "" }, { RL_HWREV_8139A, RL_8139, "A" }, { RL_HWREV_8139AG, RL_8139, "A-G" }, { RL_HWREV_8139B, RL_8139, "B" }, { RL_HWREV_8130, RL_8139, "8130" }, { RL_HWREV_8139C, RL_8139, "C" }, { RL_HWREV_8139D, RL_8139, "8139D/8100B/8100C" }, { RL_HWREV_8139CPLUS, RL_8139CPLUS, "C+"}, { RL_HWREV_8169, RL_8169, "8169"}, { RL_HWREV_8169S, RL_8169, "8169S"}, { RL_HWREV_8169SB, RL_8169, "8169SB"}, { RL_HWREV_8110S, RL_8169, "8110S"}, { RL_HWREV_8100, RL_8139, "8100"}, { RL_HWREV_8101, RL_8139, "8101"}, { RL_HWREV_8111B, RL_8169, "8111B"}, { 0, 0, NULL } }; static int re_probe (device_t); static int re_attach (device_t); static int re_detach (device_t); static int re_encap (struct rl_softc *, struct mbuf **, int *); static void re_dma_map_addr (void *, bus_dma_segment_t *, int, int); static void re_dma_map_desc (void *, bus_dma_segment_t *, int, bus_size_t, int); static int re_allocmem (device_t, struct rl_softc *); static int re_newbuf (struct rl_softc *, int, struct mbuf *); static int re_rx_list_init (struct rl_softc *); static int re_tx_list_init (struct rl_softc *); #ifdef RE_FIXUP_RX static __inline void re_fixup_rx (struct mbuf *); #endif static void re_rxeof (struct rl_softc *); static void re_txeof (struct rl_softc *); #ifdef DEVICE_POLLING static void re_poll (struct ifnet *, enum poll_cmd, int); static void re_poll_locked (struct ifnet *, enum poll_cmd, int); #endif static void re_intr (void *); static void re_tick (void *); static void re_start (struct ifnet *); static void re_start_locked (struct ifnet *); static int re_ioctl (struct ifnet *, u_long, caddr_t); static void re_init (void *); static void re_init_locked (struct rl_softc *); static void re_stop (struct rl_softc *); static void re_watchdog (struct ifnet *); static int re_suspend (device_t); static int re_resume (device_t); static void re_shutdown (device_t); static int re_ifmedia_upd (struct ifnet *); static void re_ifmedia_sts (struct ifnet *, struct ifmediareq *); static void re_eeprom_putbyte (struct rl_softc *, int); static void re_eeprom_getword (struct rl_softc *, int, u_int16_t *); static void re_read_eeprom (struct rl_softc *, caddr_t, int, int, int); static int re_gmii_readreg (device_t, int, int); static int re_gmii_writereg (device_t, int, int, int); static int re_miibus_readreg (device_t, int, int); static int re_miibus_writereg (device_t, int, int, int); static void re_miibus_statchg (device_t); static void re_setmulti (struct rl_softc *); static void re_reset (struct rl_softc *); static int re_diag (struct rl_softc *); #ifdef RE_USEIOSPACE #define RL_RES SYS_RES_IOPORT #define RL_RID RL_PCI_LOIO #else #define RL_RES SYS_RES_MEMORY #define RL_RID RL_PCI_LOMEM #endif static device_method_t re_methods[] = { /* Device interface */ DEVMETHOD(device_probe, re_probe), DEVMETHOD(device_attach, re_attach), DEVMETHOD(device_detach, re_detach), DEVMETHOD(device_suspend, re_suspend), DEVMETHOD(device_resume, re_resume), DEVMETHOD(device_shutdown, re_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, re_miibus_readreg), DEVMETHOD(miibus_writereg, re_miibus_writereg), DEVMETHOD(miibus_statchg, re_miibus_statchg), { 0, 0 } }; static driver_t re_driver = { "re", re_methods, sizeof(struct rl_softc) }; static devclass_t re_devclass; DRIVER_MODULE(re, pci, re_driver, re_devclass, 0, 0); DRIVER_MODULE(re, cardbus, re_driver, re_devclass, 0, 0); DRIVER_MODULE(miibus, re, miibus_driver, miibus_devclass, 0, 0); #define EE_SET(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) | x) #define EE_CLR(x) \ CSR_WRITE_1(sc, RL_EECMD, \ CSR_READ_1(sc, RL_EECMD) & ~x) /* * Send a read command and address to the EEPROM, check for ACK. */ static void re_eeprom_putbyte(sc, addr) struct rl_softc *sc; int addr; { register int d, i; d = addr | sc->rl_eecmd_read; /* * Feed in each bit and strobe the clock. */ for (i = 0x400; i; i >>= 1) { if (d & i) { EE_SET(RL_EE_DATAIN); } else { EE_CLR(RL_EE_DATAIN); } DELAY(100); EE_SET(RL_EE_CLK); DELAY(150); EE_CLR(RL_EE_CLK); DELAY(100); } } /* * Read a word of data stored in the EEPROM at address 'addr.' */ static void re_eeprom_getword(sc, addr, dest) struct rl_softc *sc; int addr; u_int16_t *dest; { register int i; u_int16_t word = 0; /* Enter EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Send address of word we want to read. */ re_eeprom_putbyte(sc, addr); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_PROGRAM|RL_EE_SEL); /* * Start reading bits from EEPROM. */ for (i = 0x8000; i; i >>= 1) { EE_SET(RL_EE_CLK); DELAY(100); if (CSR_READ_1(sc, RL_EECMD) & RL_EE_DATAOUT) word |= i; EE_CLR(RL_EE_CLK); DELAY(100); } /* Turn off EEPROM access mode. */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); *dest = word; } /* * Read a sequence of words from the EEPROM. */ static void re_read_eeprom(sc, dest, off, cnt, swap) struct rl_softc *sc; caddr_t dest; int off; int cnt; int swap; { int i; u_int16_t word = 0, *ptr; for (i = 0; i < cnt; i++) { re_eeprom_getword(sc, off + i, &word); ptr = (u_int16_t *)(dest + (i * 2)); if (swap) *ptr = ntohs(word); else *ptr = word; } } static int re_gmii_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct rl_softc *sc; u_int32_t rval; int i; if (phy != 1) return (0); sc = device_get_softc(dev); /* Let the rgephy driver read the GMEDIASTAT register */ if (reg == RL_GMEDIASTAT) { rval = CSR_READ_1(sc, RL_GMEDIASTAT); return (rval); } CSR_WRITE_4(sc, RL_PHYAR, reg << 16); DELAY(1000); for (i = 0; i < RL_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (rval & RL_PHYAR_BUSY) break; DELAY(100); } if (i == RL_TIMEOUT) { if_printf(sc->rl_ifp, "PHY read failed\n"); return (0); } return (rval & RL_PHYAR_PHYDATA); } static int re_gmii_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct rl_softc *sc; u_int32_t rval; int i; sc = device_get_softc(dev); CSR_WRITE_4(sc, RL_PHYAR, (reg << 16) | (data & RL_PHYAR_PHYDATA) | RL_PHYAR_BUSY); DELAY(1000); for (i = 0; i < RL_TIMEOUT; i++) { rval = CSR_READ_4(sc, RL_PHYAR); if (!(rval & RL_PHYAR_BUSY)) break; DELAY(100); } if (i == RL_TIMEOUT) { if_printf(sc->rl_ifp, "PHY write failed\n"); return (0); } return (0); } static int re_miibus_readreg(dev, phy, reg) device_t dev; int phy, reg; { struct rl_softc *sc; u_int16_t rval = 0; u_int16_t re8139_reg = 0; sc = device_get_softc(dev); if (sc->rl_type == RL_8169) { rval = re_gmii_readreg(dev, phy, reg); return (rval); } /* Pretend the internal PHY is only at address 0 */ if (phy) { return (0); } switch (reg) { case MII_BMCR: re8139_reg = RL_BMCR; break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); /* * Allow the rlphy driver to read the media status * register. If we have a link partner which does not * support NWAY, this is the register which will tell * us the results of parallel detection. */ case RL_MEDIASTAT: rval = CSR_READ_1(sc, RL_MEDIASTAT); return (rval); default: if_printf(sc->rl_ifp, "bad phy register\n"); return (0); } rval = CSR_READ_2(sc, re8139_reg); return (rval); } static int re_miibus_writereg(dev, phy, reg, data) device_t dev; int phy, reg, data; { struct rl_softc *sc; u_int16_t re8139_reg = 0; int rval = 0; sc = device_get_softc(dev); if (sc->rl_type == RL_8169) { rval = re_gmii_writereg(dev, phy, reg, data); return (rval); } /* Pretend the internal PHY is only at address 0 */ if (phy) return (0); switch (reg) { case MII_BMCR: re8139_reg = RL_BMCR; break; case MII_BMSR: re8139_reg = RL_BMSR; break; case MII_ANAR: re8139_reg = RL_ANAR; break; case MII_ANER: re8139_reg = RL_ANER; break; case MII_ANLPAR: re8139_reg = RL_LPAR; break; case MII_PHYIDR1: case MII_PHYIDR2: return (0); break; default: if_printf(sc->rl_ifp, "bad phy register\n"); return (0); } CSR_WRITE_2(sc, re8139_reg, data); return (0); } static void re_miibus_statchg(dev) device_t dev; { } /* * Program the 64-bit multicast hash filter. */ static void re_setmulti(sc) struct rl_softc *sc; { struct ifnet *ifp; int h = 0; u_int32_t hashes[2] = { 0, 0 }; struct ifmultiaddr *ifma; u_int32_t rxfilt; int mcnt = 0; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; rxfilt = CSR_READ_4(sc, RL_RXCFG); if (ifp->if_flags & IFF_ALLMULTI || ifp->if_flags & IFF_PROMISC) { rxfilt |= RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, 0xFFFFFFFF); CSR_WRITE_4(sc, RL_MAR4, 0xFFFFFFFF); return; } /* first, zot all the existing hash bits */ CSR_WRITE_4(sc, RL_MAR0, 0); CSR_WRITE_4(sc, RL_MAR4, 0); /* now program new ones */ IF_ADDR_LOCK(ifp); TAILQ_FOREACH(ifma, &ifp->if_multiaddrs, ifma_link) { if (ifma->ifma_addr->sa_family != AF_LINK) continue; h = ether_crc32_be(LLADDR((struct sockaddr_dl *) ifma->ifma_addr), ETHER_ADDR_LEN) >> 26; if (h < 32) hashes[0] |= (1 << h); else hashes[1] |= (1 << (h - 32)); mcnt++; } IF_ADDR_UNLOCK(ifp); if (mcnt) rxfilt |= RL_RXCFG_RX_MULTI; else rxfilt &= ~RL_RXCFG_RX_MULTI; CSR_WRITE_4(sc, RL_RXCFG, rxfilt); CSR_WRITE_4(sc, RL_MAR0, hashes[0]); CSR_WRITE_4(sc, RL_MAR4, hashes[1]); } static void re_reset(sc) struct rl_softc *sc; { register int i; RL_LOCK_ASSERT(sc); CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_RESET); for (i = 0; i < RL_TIMEOUT; i++) { DELAY(10); if (!(CSR_READ_1(sc, RL_COMMAND) & RL_CMD_RESET)) break; } if (i == RL_TIMEOUT) if_printf(sc->rl_ifp, "reset never completed!\n"); CSR_WRITE_1(sc, 0x82, 1); } /* * The following routine is designed to test for a defect on some * 32-bit 8169 cards. Some of these NICs have the REQ64# and ACK64# * lines connected to the bus, however for a 32-bit only card, they * should be pulled high. The result of this defect is that the * NIC will not work right if you plug it into a 64-bit slot: DMA * operations will be done with 64-bit transfers, which will fail * because the 64-bit data lines aren't connected. * * There's no way to work around this (short of talking a soldering * iron to the board), however we can detect it. The method we use * here is to put the NIC into digital loopback mode, set the receiver * to promiscuous mode, and then try to send a frame. We then compare * the frame data we sent to what was received. If the data matches, * then the NIC is working correctly, otherwise we know the user has * a defective NIC which has been mistakenly plugged into a 64-bit PCI * slot. In the latter case, there's no way the NIC can work correctly, * so we print out a message on the console and abort the device attach. */ static int re_diag(sc) struct rl_softc *sc; { struct ifnet *ifp = sc->rl_ifp; struct mbuf *m0; struct ether_header *eh; struct rl_desc *cur_rx; u_int16_t status; u_int32_t rxstat; int total_len, i, error = 0; u_int8_t dst[] = { 0x00, 'h', 'e', 'l', 'l', 'o' }; u_int8_t src[] = { 0x00, 'w', 'o', 'r', 'l', 'd' }; /* Allocate a single mbuf */ MGETHDR(m0, M_DONTWAIT, MT_DATA); if (m0 == NULL) return (ENOBUFS); RL_LOCK(sc); /* * Initialize the NIC in test mode. This sets the chip up * so that it can send and receive frames, but performs the * following special functions: * - Puts receiver in promiscuous mode * - Enables digital loopback mode * - Leaves interrupts turned off */ ifp->if_flags |= IFF_PROMISC; sc->rl_testmode = 1; re_init_locked(sc); re_stop(sc); DELAY(100000); re_init_locked(sc); /* Put some data in the mbuf */ eh = mtod(m0, struct ether_header *); bcopy ((char *)&dst, eh->ether_dhost, ETHER_ADDR_LEN); bcopy ((char *)&src, eh->ether_shost, ETHER_ADDR_LEN); eh->ether_type = htons(ETHERTYPE_IP); m0->m_pkthdr.len = m0->m_len = ETHER_MIN_LEN - ETHER_CRC_LEN; /* * Queue the packet, start transmission. * Note: IF_HANDOFF() ultimately calls re_start() for us. */ CSR_WRITE_2(sc, RL_ISR, 0xFFFF); RL_UNLOCK(sc); /* XXX: re_diag must not be called when in ALTQ mode */ IF_HANDOFF(&ifp->if_snd, m0, ifp); RL_LOCK(sc); m0 = NULL; /* Wait for it to propagate through the chip */ DELAY(100000); for (i = 0; i < RL_TIMEOUT; i++) { status = CSR_READ_2(sc, RL_ISR); if ((status & (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) == (RL_ISR_TIMEOUT_EXPIRED|RL_ISR_RX_OK)) break; DELAY(10); } if (i == RL_TIMEOUT) { if_printf(ifp, "diagnostic failed, failed to receive packet " "in loopback mode\n"); error = EIO; goto done; } /* * The packet should have been dumped into the first * entry in the RX DMA ring. Grab it from there. */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_POSTREAD); bus_dmamap_sync(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[0], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[0]); m0 = sc->rl_ldata.rl_rx_mbuf[0]; sc->rl_ldata.rl_rx_mbuf[0] = NULL; eh = mtod(m0, struct ether_header *); cur_rx = &sc->rl_ldata.rl_rx_list[0]; total_len = RL_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->rl_cmdstat); if (total_len != ETHER_MIN_LEN) { if_printf(ifp, "diagnostic failed, received short packet\n"); error = EIO; goto done; } /* Test that the received packet data matches what we sent. */ if (bcmp((char *)&eh->ether_dhost, (char *)&dst, ETHER_ADDR_LEN) || bcmp((char *)&eh->ether_shost, (char *)&src, ETHER_ADDR_LEN) || ntohs(eh->ether_type) != ETHERTYPE_IP) { if_printf(ifp, "WARNING, DMA FAILURE!\n"); if_printf(ifp, "expected TX data: %6D/%6D/0x%x\n", dst, ":", src, ":", ETHERTYPE_IP); if_printf(ifp, "received RX data: %6D/%6D/0x%x\n", eh->ether_dhost, ":", eh->ether_shost, ":", ntohs(eh->ether_type)); if_printf(ifp, "You may have a defective 32-bit NIC plugged " "into a 64-bit PCI slot.\n"); if_printf(ifp, "Please re-install the NIC in a 32-bit slot " "for proper operation.\n"); if_printf(ifp, "Read the re(4) man page for more details.\n"); error = EIO; } done: /* Turn interface off, release resources */ sc->rl_testmode = 0; ifp->if_flags &= ~IFF_PROMISC; re_stop(sc); if (m0 != NULL) m_freem(m0); RL_UNLOCK(sc); return (error); } /* * Probe for a RealTek 8139C+/8169/8110 chip. Check the PCI vendor and device * IDs against our list and return a device name if we find a match. */ static int re_probe(dev) device_t dev; { struct rl_type *t; struct rl_softc *sc; int rid; u_int32_t hwrev; t = re_devs; sc = device_get_softc(dev); while (t->rl_name != NULL) { if ((pci_get_vendor(dev) == t->rl_vid) && (pci_get_device(dev) == t->rl_did)) { /* * Only attach to rev. 3 of the Linksys EG1032 adapter. * Rev. 2 i supported by sk(4). */ if ((t->rl_vid == LINKSYS_VENDORID) && (t->rl_did == LINKSYS_DEVICEID_EG1032) && (pci_get_subdevice(dev) != LINKSYS_SUBDEVICE_EG1032_REV3)) { t++; continue; } /* * Temporarily map the I/O space * so we can read the chip ID register. */ rid = RL_RID; sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE); if (sc->rl_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); return (ENXIO); } sc->rl_btag = rman_get_bustag(sc->rl_res); sc->rl_bhandle = rman_get_bushandle(sc->rl_res); hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res); if (t->rl_basetype == hwrev) { device_set_desc(dev, t->rl_name); return (BUS_PROBE_DEFAULT); } } t++; } return (ENXIO); } /* * This routine takes the segment list provided as the result of * a bus_dma_map_load() operation and assigns the addresses/lengths * to RealTek DMA descriptors. This can be called either by the RX * code or the TX code. In the RX case, we'll probably wind up mapping * at most one segment. For the TX case, there could be any number of * segments since TX packets may span multiple mbufs. In either case, * if the number of segments is larger than the rl_maxsegs limit * specified by the caller, we abort the mapping operation. Sadly, * whoever designed the buffer mapping API did not provide a way to * return an error from here, so we have to fake it a bit. */ static void re_dma_map_desc(arg, segs, nseg, mapsize, error) void *arg; bus_dma_segment_t *segs; int nseg; bus_size_t mapsize; int error; { struct rl_dmaload_arg *ctx; struct rl_desc *d = NULL; int i = 0, idx; if (error) return; ctx = arg; /* Signal error to caller if there's too many segments */ if (nseg > ctx->rl_maxsegs) { ctx->rl_maxsegs = 0; return; } /* * Map the segment array into descriptors. Note that we set the * start-of-frame and end-of-frame markers for either TX or RX, but * they really only have meaning in the TX case. (In the RX case, * it's the chip that tells us where packets begin and end.) * We also keep track of the end of the ring and set the * end-of-ring bits as needed, and we set the ownership bits * in all except the very first descriptor. (The caller will * set this descriptor later when it start transmission or * reception.) */ idx = ctx->rl_idx; for (;;) { u_int32_t cmdstat; d = &ctx->rl_ring[idx]; if (le32toh(d->rl_cmdstat) & RL_RDESC_STAT_OWN) { ctx->rl_maxsegs = 0; return; } cmdstat = segs[i].ds_len; d->rl_bufaddr_lo = htole32(RL_ADDR_LO(segs[i].ds_addr)); d->rl_bufaddr_hi = htole32(RL_ADDR_HI(segs[i].ds_addr)); if (i == 0) cmdstat |= RL_TDESC_CMD_SOF; else cmdstat |= RL_TDESC_CMD_OWN; if (idx == (RL_RX_DESC_CNT - 1)) cmdstat |= RL_TDESC_CMD_EOR; d->rl_cmdstat = htole32(cmdstat | ctx->rl_flags); i++; if (i == nseg) break; RL_DESC_INC(idx); } d->rl_cmdstat |= htole32(RL_TDESC_CMD_EOF); ctx->rl_maxsegs = nseg; ctx->rl_idx = idx; } /* * Map a single buffer address. */ static void re_dma_map_addr(arg, segs, nseg, error) void *arg; bus_dma_segment_t *segs; int nseg; int error; { bus_addr_t *addr; if (error) return; KASSERT(nseg == 1, ("too many DMA segments, %d should be 1", nseg)); addr = arg; *addr = segs->ds_addr; } static int re_allocmem(dev, sc) device_t dev; struct rl_softc *sc; { int error; int nseg; int i; /* * Allocate map for RX mbufs. */ nseg = 32; error = bus_dma_tag_create(sc->rl_parent_tag, ETHER_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, MCLBYTES * nseg, nseg, MCLBYTES, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rl_ldata.rl_mtag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* * Allocate map for TX descriptor list. */ error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, RL_TX_LIST_SZ, 1, RL_TX_LIST_SZ, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rl_ldata.rl_tx_list_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for the TX ring */ error = bus_dmamem_alloc(sc->rl_ldata.rl_tx_list_tag, (void **)&sc->rl_ldata.rl_tx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rl_ldata.rl_tx_list_map); if (error) return (ENOMEM); /* Load the map for the TX ring. */ error = bus_dmamap_load(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ, re_dma_map_addr, &sc->rl_ldata.rl_tx_list_addr, BUS_DMA_NOWAIT); /* Create DMA maps for TX buffers */ for (i = 0; i < RL_TX_DESC_CNT; i++) { error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0, &sc->rl_ldata.rl_tx_dmamap[i]); if (error) { device_printf(dev, "can't create DMA map for TX\n"); return (ENOMEM); } } /* * Allocate map for RX descriptor list. */ error = bus_dma_tag_create(sc->rl_parent_tag, RL_RING_ALIGN, 0, BUS_SPACE_MAXADDR_32BIT, BUS_SPACE_MAXADDR, NULL, NULL, RL_RX_LIST_SZ, 1, RL_RX_LIST_SZ, BUS_DMA_ALLOCNOW, NULL, NULL, &sc->rl_ldata.rl_rx_list_tag); if (error) { device_printf(dev, "could not allocate dma tag\n"); return (ENOMEM); } /* Allocate DMA'able memory for the RX ring */ error = bus_dmamem_alloc(sc->rl_ldata.rl_rx_list_tag, (void **)&sc->rl_ldata.rl_rx_list, BUS_DMA_NOWAIT | BUS_DMA_ZERO, &sc->rl_ldata.rl_rx_list_map); if (error) return (ENOMEM); /* Load the map for the RX ring. */ error = bus_dmamap_load(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ, re_dma_map_addr, &sc->rl_ldata.rl_rx_list_addr, BUS_DMA_NOWAIT); /* Create DMA maps for RX buffers */ for (i = 0; i < RL_RX_DESC_CNT; i++) { error = bus_dmamap_create(sc->rl_ldata.rl_mtag, 0, &sc->rl_ldata.rl_rx_dmamap[i]); if (error) { device_printf(dev, "can't create DMA map for RX\n"); return (ENOMEM); } } return (0); } /* * Attach the interface. Allocate softc structures, do ifmedia * setup and ethernet/BPF attach. */ static int re_attach(dev) device_t dev; { u_char eaddr[ETHER_ADDR_LEN]; u_int16_t as[3]; struct rl_softc *sc; struct ifnet *ifp; struct rl_hwrev *hw_rev; int hwrev; u_int16_t re_did = 0; int error = 0, rid, i; sc = device_get_softc(dev); mtx_init(&sc->rl_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->rl_stat_callout, &sc->rl_mtx, 0); /* * Map control/status registers. */ pci_enable_busmaster(dev); rid = RL_RID; sc->rl_res = bus_alloc_resource_any(dev, RL_RES, &rid, RF_ACTIVE); if (sc->rl_res == NULL) { device_printf(dev, "couldn't map ports/memory\n"); error = ENXIO; goto fail; } sc->rl_btag = rman_get_bustag(sc->rl_res); sc->rl_bhandle = rman_get_bushandle(sc->rl_res); /* Allocate interrupt */ rid = 0; sc->rl_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->rl_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Reset the adapter. */ RL_LOCK(sc); re_reset(sc); RL_UNLOCK(sc); hw_rev = re_hwrevs; hwrev = CSR_READ_4(sc, RL_TXCFG) & RL_TXCFG_HWREV; while (hw_rev->rl_desc != NULL) { if (hw_rev->rl_rev == hwrev) { sc->rl_type = hw_rev->rl_type; break; } hw_rev++; } if (sc->rl_type == RL_8169) { /* Set RX length mask */ sc->rl_rxlenmask = RL_RDESC_STAT_GFRAGLEN; /* Force station address autoload from the EEPROM */ CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_AUTOLOAD); for (i = 0; i < RL_TIMEOUT; i++) { if (!(CSR_READ_1(sc, RL_EECMD) & RL_EEMODE_AUTOLOAD)) break; DELAY(100); } if (i == RL_TIMEOUT) device_printf(dev, "eeprom autoload timed out\n"); for (i = 0; i < ETHER_ADDR_LEN; i++) eaddr[i] = CSR_READ_1(sc, RL_IDR0 + i); } else { /* Set RX length mask */ sc->rl_rxlenmask = RL_RDESC_STAT_FRAGLEN; sc->rl_eecmd_read = RL_EECMD_READ_6BIT; re_read_eeprom(sc, (caddr_t)&re_did, 0, 1, 0); if (re_did != 0x8129) sc->rl_eecmd_read = RL_EECMD_READ_8BIT; /* * Get station address from the EEPROM. */ re_read_eeprom(sc, (caddr_t)as, RL_EE_EADDR, 3, 0); for (i = 0; i < 3; i++) { eaddr[(i * 2) + 0] = as[i] & 0xff; eaddr[(i * 2) + 1] = as[i] >> 8; } } /* * Allocate the parent bus DMA tag appropriate for PCI. */ #define RL_NSEG_NEW 32 error = bus_dma_tag_create(NULL, /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT,/* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MAXBSIZE, RL_NSEG_NEW, /* maxsize, nsegments */ BUS_SPACE_MAXSIZE_32BIT,/* maxsegsize */ BUS_DMA_ALLOCNOW, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->rl_parent_tag); if (error) goto fail; error = re_allocmem(dev, sc); if (error) goto fail; ifp = sc->rl_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "can not if_alloc()\n"); error = ENOSPC; goto fail; } /* Do MII setup */ if (mii_phy_probe(dev, &sc->rl_miibus, re_ifmedia_upd, re_ifmedia_sts)) { device_printf(dev, "MII without any phy!\n"); error = ENXIO; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_mtu = ETHERMTU; ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = re_ioctl; ifp->if_capabilities = IFCAP_VLAN_MTU; ifp->if_start = re_start; ifp->if_hwassist = /*RE_CSUM_FEATURES*/0; ifp->if_capabilities |= IFCAP_HWCSUM|IFCAP_VLAN_HWTAGGING; ifp->if_capenable = ifp->if_capabilities & ~IFCAP_HWCSUM; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif ifp->if_watchdog = re_watchdog; ifp->if_init = re_init; IFQ_SET_MAXLEN(&ifp->if_snd, RL_IFQ_MAXLEN); ifp->if_snd.ifq_drv_maxlen = RL_IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); /* * Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Perform hardware diagnostic. */ error = re_diag(sc); if (error) { device_printf(dev, "attach aborted due to hardware diag failure\n"); ether_ifdetach(ifp); goto fail; } /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->rl_irq, INTR_TYPE_NET | INTR_MPSAFE, re_intr, sc, &sc->rl_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); } fail: if (error) re_detach(dev); return (error); } /* * Shutdown hardware and free up resources. This can be called any * time after the mutex has been initialized. It is called in both * the error case in attach and the normal detach case so it needs * to be careful about only freeing resources that have actually been * allocated. */ static int re_detach(dev) device_t dev; { struct rl_softc *sc; struct ifnet *ifp; int i; sc = device_get_softc(dev); ifp = sc->rl_ifp; KASSERT(mtx_initialized(&sc->rl_mtx), ("re mutex not initialized")); #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { RL_LOCK(sc); #if 0 sc->suspended = 1; #endif re_stop(sc); RL_UNLOCK(sc); callout_drain(&sc->rl_stat_callout); /* * Force off the IFF_UP flag here, in case someone * still had a BPF descriptor attached to this * interface. If they do, ether_ifdetach() will cause * the BPF code to try and clear the promisc mode * flag, which will bubble down to re_ioctl(), * which will try to call re_init() again. This will * turn the NIC back on and restart the MII ticker, * which will panic the system when the kernel tries * to invoke the re_tick() function that isn't there * anymore. */ ifp->if_flags &= ~IFF_UP; ether_ifdetach(ifp); } if (sc->rl_miibus) device_delete_child(dev, sc->rl_miibus); bus_generic_detach(dev); /* * The rest is resource deallocation, so we should already be * stopped here. */ if (sc->rl_intrhand) bus_teardown_intr(dev, sc->rl_irq, sc->rl_intrhand); if (ifp != NULL) if_free(ifp); if (sc->rl_irq) bus_release_resource(dev, SYS_RES_IRQ, 0, sc->rl_irq); if (sc->rl_res) bus_release_resource(dev, RL_RES, RL_RID, sc->rl_res); /* Unload and free the RX DMA ring memory and map */ if (sc->rl_ldata.rl_rx_list_tag) { bus_dmamap_unload(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map); bus_dmamem_free(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list, sc->rl_ldata.rl_rx_list_map); bus_dma_tag_destroy(sc->rl_ldata.rl_rx_list_tag); } /* Unload and free the TX DMA ring memory and map */ if (sc->rl_ldata.rl_tx_list_tag) { bus_dmamap_unload(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map); bus_dmamem_free(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list, sc->rl_ldata.rl_tx_list_map); bus_dma_tag_destroy(sc->rl_ldata.rl_tx_list_tag); } /* Destroy all the RX and TX buffer maps */ if (sc->rl_ldata.rl_mtag) { for (i = 0; i < RL_TX_DESC_CNT; i++) bus_dmamap_destroy(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_tx_dmamap[i]); for (i = 0; i < RL_RX_DESC_CNT; i++) bus_dmamap_destroy(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i]); bus_dma_tag_destroy(sc->rl_ldata.rl_mtag); } /* Unload and free the stats buffer and map */ if (sc->rl_ldata.rl_stag) { bus_dmamap_unload(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_rx_list_map); bus_dmamem_free(sc->rl_ldata.rl_stag, sc->rl_ldata.rl_stats, sc->rl_ldata.rl_smap); bus_dma_tag_destroy(sc->rl_ldata.rl_stag); } if (sc->rl_parent_tag) bus_dma_tag_destroy(sc->rl_parent_tag); mtx_destroy(&sc->rl_mtx); return (0); } static int re_newbuf(sc, idx, m) struct rl_softc *sc; int idx; struct mbuf *m; { struct rl_dmaload_arg arg; struct mbuf *n = NULL; int error; if (m == NULL) { n = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (n == NULL) return (ENOBUFS); m = n; } else m->m_data = m->m_ext.ext_buf; m->m_len = m->m_pkthdr.len = MCLBYTES; #ifdef RE_FIXUP_RX /* * This is part of an evil trick to deal with non-x86 platforms. * The RealTek chip requires RX buffers to be aligned on 64-bit * boundaries, but that will hose non-x86 machines. To get around * this, we leave some empty space at the start of each buffer * and for non-x86 hosts, we copy the buffer back six bytes * to achieve word alignment. This is slightly more efficient * than allocating a new buffer, copying the contents, and * discarding the old buffer. */ m_adj(m, RE_ETHER_ALIGN); #endif arg.sc = sc; arg.rl_idx = idx; arg.rl_maxsegs = 1; arg.rl_flags = 0; arg.rl_ring = sc->rl_ldata.rl_rx_list; error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[idx], m, re_dma_map_desc, &arg, BUS_DMA_NOWAIT); if (error || arg.rl_maxsegs != 1) { if (n != NULL) m_freem(n); return (ENOMEM); } sc->rl_ldata.rl_rx_list[idx].rl_cmdstat |= htole32(RL_RDESC_CMD_OWN); sc->rl_ldata.rl_rx_mbuf[idx] = m; bus_dmamap_sync(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[idx], BUS_DMASYNC_PREREAD); return (0); } #ifdef RE_FIXUP_RX static __inline void re_fixup_rx(m) struct mbuf *m; { int i; uint16_t *src, *dst; src = mtod(m, uint16_t *); dst = src - (RE_ETHER_ALIGN - ETHER_ALIGN) / sizeof *src; for (i = 0; i < (m->m_len / sizeof(uint16_t) + 1); i++) *dst++ = *src++; m->m_data -= RE_ETHER_ALIGN - ETHER_ALIGN; return; } #endif static int re_tx_list_init(sc) struct rl_softc *sc; { RL_LOCK_ASSERT(sc); bzero ((char *)sc->rl_ldata.rl_tx_list, RL_TX_LIST_SZ); bzero ((char *)&sc->rl_ldata.rl_tx_mbuf, (RL_TX_DESC_CNT * sizeof(struct mbuf *))); bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE); sc->rl_ldata.rl_tx_prodidx = 0; sc->rl_ldata.rl_tx_considx = 0; sc->rl_ldata.rl_tx_free = RL_TX_DESC_CNT; return (0); } static int re_rx_list_init(sc) struct rl_softc *sc; { int i; bzero ((char *)sc->rl_ldata.rl_rx_list, RL_RX_LIST_SZ); bzero ((char *)&sc->rl_ldata.rl_rx_mbuf, (RL_RX_DESC_CNT * sizeof(struct mbuf *))); for (i = 0; i < RL_RX_DESC_CNT; i++) { if (re_newbuf(sc, i, NULL) == ENOBUFS) return (ENOBUFS); } /* Flush the RX descriptors */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = 0; sc->rl_head = sc->rl_tail = NULL; return (0); } /* * RX handler for C+ and 8169. For the gigE chips, we support * the reception of jumbo frames that have been fragmented * across multiple 2K mbuf cluster buffers. */ static void re_rxeof(sc) struct rl_softc *sc; { struct mbuf *m; struct ifnet *ifp; int i, total_len; struct rl_desc *cur_rx; u_int32_t rxstat, rxvlan; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; i = sc->rl_ldata.rl_rx_prodidx; /* Invalidate the descriptor memory */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_POSTREAD); while (!RL_OWN(&sc->rl_ldata.rl_rx_list[i])) { cur_rx = &sc->rl_ldata.rl_rx_list[i]; m = sc->rl_ldata.rl_rx_mbuf[i]; total_len = RL_RXBYTES(cur_rx); rxstat = le32toh(cur_rx->rl_cmdstat); rxvlan = le32toh(cur_rx->rl_vlanctl); /* Invalidate the RX mbuf and unload its map */ bus_dmamap_sync(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i], BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i]); if (!(rxstat & RL_RDESC_STAT_EOF)) { m->m_len = RE_RX_DESC_BUFLEN; if (sc->rl_head == NULL) sc->rl_head = sc->rl_tail = m; else { m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; sc->rl_tail = m; } re_newbuf(sc, i, NULL); RL_DESC_INC(i); continue; } /* * NOTE: for the 8139C+, the frame length field * is always 12 bits in size, but for the gigE chips, * it is 13 bits (since the max RX frame length is 16K). * Unfortunately, all 32 bits in the status word * were already used, so to make room for the extra * length bit, RealTek took out the 'frame alignment * error' bit and shifted the other status bits * over one slot. The OWN, EOR, FS and LS bits are * still in the same places. We have already extracted * the frame length and checked the OWN bit, so rather * than using an alternate bit mapping, we shift the * status bits one space to the right so we can evaluate * them using the 8169 status as though it was in the * same format as that of the 8139C+. */ if (sc->rl_type == RL_8169) rxstat >>= 1; /* * if total_len > 2^13-1, both _RXERRSUM and _GIANT will be * set, but if CRC is clear, it will still be a valid frame. */ if (rxstat & RL_RDESC_STAT_RXERRSUM && !(total_len > 8191 && (rxstat & RL_RDESC_STAT_ERRS) == RL_RDESC_STAT_GIANT)) { ifp->if_ierrors++; /* * If this is part of a multi-fragment packet, * discard all the pieces. */ if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_newbuf(sc, i, m); RL_DESC_INC(i); continue; } /* * If allocating a replacement mbuf fails, * reload the current one. */ if (re_newbuf(sc, i, NULL)) { ifp->if_ierrors++; if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } re_newbuf(sc, i, m); RL_DESC_INC(i); continue; } RL_DESC_INC(i); if (sc->rl_head != NULL) { m->m_len = total_len % RE_RX_DESC_BUFLEN; if (m->m_len == 0) m->m_len = RE_RX_DESC_BUFLEN; /* * Special case: if there's 4 bytes or less * in this buffer, the mbuf can be discarded: * the last 4 bytes is the CRC, which we don't * care about anyway. */ if (m->m_len <= ETHER_CRC_LEN) { sc->rl_tail->m_len -= (ETHER_CRC_LEN - m->m_len); m_freem(m); } else { m->m_len -= ETHER_CRC_LEN; m->m_flags &= ~M_PKTHDR; sc->rl_tail->m_next = m; } m = sc->rl_head; sc->rl_head = sc->rl_tail = NULL; m->m_pkthdr.len = total_len - ETHER_CRC_LEN; } else m->m_pkthdr.len = m->m_len = (total_len - ETHER_CRC_LEN); #ifdef RE_FIXUP_RX re_fixup_rx(m); #endif ifp->if_ipackets++; m->m_pkthdr.rcvif = ifp; /* Do RX checksumming if enabled */ if (ifp->if_capenable & IFCAP_RXCSUM) { /* Check IP header checksum */ if (rxstat & RL_RDESC_STAT_PROTOID) m->m_pkthdr.csum_flags |= CSUM_IP_CHECKED; if (!(rxstat & RL_RDESC_STAT_IPSUMBAD)) m->m_pkthdr.csum_flags |= CSUM_IP_VALID; /* Check TCP/UDP checksum */ if ((RL_TCPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_TCPSUMBAD)) || (RL_UDPPKT(rxstat) && !(rxstat & RL_RDESC_STAT_UDPSUMBAD))) { m->m_pkthdr.csum_flags |= CSUM_DATA_VALID|CSUM_PSEUDO_HDR; m->m_pkthdr.csum_data = 0xffff; } } if (rxvlan & RL_RDESC_VLANCTL_TAG) { VLAN_INPUT_TAG(ifp, m, ntohs((rxvlan & RL_RDESC_VLANCTL_DATA))); if (m == NULL) continue; } RL_UNLOCK(sc); (*ifp->if_input)(ifp, m); RL_LOCK(sc); } /* Flush the RX DMA ring */ bus_dmamap_sync(sc->rl_ldata.rl_rx_list_tag, sc->rl_ldata.rl_rx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_rx_prodidx = i; } static void re_txeof(sc) struct rl_softc *sc; { struct ifnet *ifp; u_int32_t txstat; int idx; ifp = sc->rl_ifp; idx = sc->rl_ldata.rl_tx_considx; /* Invalidate the TX descriptor list */ bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_POSTREAD); while (idx != sc->rl_ldata.rl_tx_prodidx) { txstat = le32toh(sc->rl_ldata.rl_tx_list[idx].rl_cmdstat); if (txstat & RL_TDESC_CMD_OWN) break; /* * We only stash mbufs in the last descriptor * in a fragment chain, which also happens to * be the only place where the TX status bits * are valid. */ if (txstat & RL_TDESC_CMD_EOF) { m_freem(sc->rl_ldata.rl_tx_mbuf[idx]); sc->rl_ldata.rl_tx_mbuf[idx] = NULL; bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_tx_dmamap[idx]); if (txstat & (RL_TDESC_STAT_EXCESSCOL| RL_TDESC_STAT_COLCNT)) ifp->if_collisions++; if (txstat & RL_TDESC_STAT_TXERRSUM) ifp->if_oerrors++; else ifp->if_opackets++; } sc->rl_ldata.rl_tx_free++; RL_DESC_INC(idx); } if (idx != sc->rl_ldata.rl_tx_considx) sc->rl_ldata.rl_tx_considx = idx; if (idx == sc->rl_ldata.rl_tx_prodidx) ifp->if_timer = 0; else ifp->if_timer = 5; if (idx != sc->rl_ldata.rl_tx_considx) { sc->rl_ldata.rl_tx_considx = idx; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; ifp->if_timer = 0; } /* * If not all descriptors have been released reaped yet, * reload the timer so that we will eventually get another * interrupt that will cause us to re-enter this routine. * This is done in case the transmitter has gone idle. */ if (sc->rl_ldata.rl_tx_free != RL_TX_DESC_CNT) CSR_WRITE_4(sc, RL_TIMERCNT, 1); } static void re_tick(xsc) void *xsc; { struct rl_softc *sc; struct mii_data *mii; sc = xsc; RL_LOCK_ASSERT(sc); mii = device_get_softc(sc->rl_miibus); mii_tick(mii); callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); } #ifdef DEVICE_POLLING static void re_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; RL_LOCK(sc); if (ifp->if_drv_flags & IFF_DRV_RUNNING) re_poll_locked(ifp, cmd, count); RL_UNLOCK(sc); } static void re_poll_locked(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct rl_softc *sc = ifp->if_softc; RL_LOCK_ASSERT(sc); sc->rxcycles = count; re_rxeof(sc); re_txeof(sc); if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) re_start_locked(ifp); if (cmd == POLL_AND_CHECK_STATUS) { /* also check status register */ u_int16_t status; status = CSR_READ_2(sc, RL_ISR); if (status == 0xffff) return; if (status) CSR_WRITE_2(sc, RL_ISR, status); /* * XXX check behaviour on receiver stalls. */ if (status & RL_ISR_SYSTEM_ERR) { re_reset(sc); re_init_locked(sc); } } } #endif /* DEVICE_POLLING */ static void re_intr(arg) void *arg; { struct rl_softc *sc; struct ifnet *ifp; u_int16_t status; sc = arg; RL_LOCK(sc); ifp = sc->rl_ifp; if (sc->suspended || !(ifp->if_flags & IFF_UP)) goto done_locked; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) goto done_locked; #endif for (;;) { status = CSR_READ_2(sc, RL_ISR); /* If the card has gone away the read returns 0xffff. */ if (status == 0xffff) break; if (status) CSR_WRITE_2(sc, RL_ISR, status); if ((status & RL_INTRS_CPLUS) == 0) break; if (((status & RL_ISR_RX_OK) || (status & RL_ISR_RX_ERR)) && ifp->if_drv_flags & IFF_DRV_RUNNING) re_rxeof(sc); if (((status & RL_ISR_TIMEOUT_EXPIRED) || (status & RL_ISR_TX_ERR) || (status & RL_ISR_TX_DESC_UNAVAIL)) && ifp->if_drv_flags & IFF_DRV_RUNNING) re_txeof(sc); if (status & RL_ISR_SYSTEM_ERR) { re_reset(sc); re_init_locked(sc); } if (status & RL_ISR_LINKCHG) { callout_stop(&sc->rl_stat_callout); re_tick(sc); } } if (!IFQ_DRV_IS_EMPTY(&ifp->if_snd)) re_start_locked(ifp); done_locked: RL_UNLOCK(sc); } static int re_encap(sc, m_head, idx) struct rl_softc *sc; struct mbuf **m_head; int *idx; { struct mbuf *m_new = NULL; struct rl_dmaload_arg arg; bus_dmamap_t map; int error; struct m_tag *mtag; RL_LOCK_ASSERT(sc); if (sc->rl_ldata.rl_tx_free <= 4) return (EFBIG); /* * Set up checksum offload. Note: checksum offload bits must * appear in all descriptors of a multi-descriptor transmit * attempt. This is according to testing done with an 8169 * chip. This is a requirement. */ arg.rl_flags = 0; if ((*m_head)->m_pkthdr.csum_flags & CSUM_IP) arg.rl_flags |= RL_TDESC_CMD_IPCSUM; if ((*m_head)->m_pkthdr.csum_flags & CSUM_TCP) arg.rl_flags |= RL_TDESC_CMD_TCPCSUM; if ((*m_head)->m_pkthdr.csum_flags & CSUM_UDP) arg.rl_flags |= RL_TDESC_CMD_UDPCSUM; arg.sc = sc; arg.rl_idx = *idx; arg.rl_maxsegs = sc->rl_ldata.rl_tx_free; if (arg.rl_maxsegs > 4) arg.rl_maxsegs -= 4; arg.rl_ring = sc->rl_ldata.rl_tx_list; map = sc->rl_ldata.rl_tx_dmamap[*idx]; error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map, *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT); if (error && error != EFBIG) { if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n", error); return (ENOBUFS); } /* Too many segments to map, coalesce into a single mbuf */ if (error || arg.rl_maxsegs == 0) { m_new = m_defrag(*m_head, M_DONTWAIT); if (m_new == NULL) return (ENOBUFS); else *m_head = m_new; arg.sc = sc; arg.rl_idx = *idx; arg.rl_maxsegs = sc->rl_ldata.rl_tx_free; arg.rl_ring = sc->rl_ldata.rl_tx_list; error = bus_dmamap_load_mbuf(sc->rl_ldata.rl_mtag, map, *m_head, re_dma_map_desc, &arg, BUS_DMA_NOWAIT); if (error) { if_printf(sc->rl_ifp, "can't map mbuf (error %d)\n", error); return (EFBIG); } } /* * Insure that the map for this transmission * is placed at the array index of the last descriptor * in this chain. (Swap last and first dmamaps.) */ sc->rl_ldata.rl_tx_dmamap[*idx] = sc->rl_ldata.rl_tx_dmamap[arg.rl_idx]; sc->rl_ldata.rl_tx_dmamap[arg.rl_idx] = map; sc->rl_ldata.rl_tx_mbuf[arg.rl_idx] = *m_head; sc->rl_ldata.rl_tx_free -= arg.rl_maxsegs; /* * Set up hardware VLAN tagging. Note: vlan tag info must * appear in the first descriptor of a multi-descriptor * transmission attempt. */ mtag = VLAN_OUTPUT_TAG(sc->rl_ifp, *m_head); if (mtag != NULL) sc->rl_ldata.rl_tx_list[*idx].rl_vlanctl = htole32(htons(VLAN_TAG_VALUE(mtag)) | RL_TDESC_VLANCTL_TAG); /* Transfer ownership of packet to the chip. */ sc->rl_ldata.rl_tx_list[arg.rl_idx].rl_cmdstat |= htole32(RL_TDESC_CMD_OWN); if (*idx != arg.rl_idx) sc->rl_ldata.rl_tx_list[*idx].rl_cmdstat |= htole32(RL_TDESC_CMD_OWN); RL_DESC_INC(arg.rl_idx); *idx = arg.rl_idx; return (0); } static void re_start(ifp) struct ifnet *ifp; { struct rl_softc *sc; sc = ifp->if_softc; RL_LOCK(sc); re_start_locked(ifp); RL_UNLOCK(sc); } /* * Main transmit routine for C+ and gigE NICs. */ static void re_start_locked(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mbuf *m_head = NULL; int idx, queued = 0; sc = ifp->if_softc; RL_LOCK_ASSERT(sc); idx = sc->rl_ldata.rl_tx_prodidx; while (sc->rl_ldata.rl_tx_mbuf[idx] == NULL) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; if (re_encap(sc, &m_head, &idx)) { IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } /* * If there's a BPF listener, bounce a copy of this frame * to him. */ BPF_MTAP(ifp, m_head); queued++; } if (queued == 0) return; /* Flush the TX descriptors */ bus_dmamap_sync(sc->rl_ldata.rl_tx_list_tag, sc->rl_ldata.rl_tx_list_map, BUS_DMASYNC_PREWRITE|BUS_DMASYNC_PREREAD); sc->rl_ldata.rl_tx_prodidx = idx; /* * RealTek put the TX poll request register in a different * location on the 8169 gigE chip. I don't know why. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_GTXSTART, RL_TXSTART_START); else CSR_WRITE_2(sc, RL_TXSTART, RL_TXSTART_START); /* * Use the countdown timer for interrupt moderation. * 'TX done' interrupts are disabled. Instead, we reset the * countdown timer, which will begin counting until it hits * the value in the TIMERINT register, and then trigger an * interrupt. Each time we write to the TIMERCNT register, * the timer count is reset to 0. */ CSR_WRITE_4(sc, RL_TIMERCNT, 1); /* * Set a timeout in case the chip goes out to lunch. */ ifp->if_timer = 5; } static void re_init(xsc) void *xsc; { struct rl_softc *sc = xsc; RL_LOCK(sc); re_init_locked(sc); RL_UNLOCK(sc); } static void re_init_locked(sc) struct rl_softc *sc; { struct ifnet *ifp = sc->rl_ifp; struct mii_data *mii; u_int32_t rxcfg = 0; union { uint32_t align_dummy; u_char eaddr[ETHER_ADDR_LEN]; } eaddr; RL_LOCK_ASSERT(sc); mii = device_get_softc(sc->rl_miibus); /* * Cancel pending I/O and free all RX/TX buffers. */ re_stop(sc); /* * Enable C+ RX and TX mode, as well as VLAN stripping and * RX checksum offload. We must configure the C+ register * before all others. */ CSR_WRITE_2(sc, RL_CPLUS_CMD, RL_CPLUSCMD_RXENB| RL_CPLUSCMD_TXENB|RL_CPLUSCMD_PCI_MRW| RL_CPLUSCMD_VLANSTRIP| (ifp->if_capenable & IFCAP_RXCSUM ? RL_CPLUSCMD_RXCSUM_ENB : 0)); /* * Init our MAC address. Even though the chipset * documentation doesn't mention it, we need to enter "Config * register write enable" mode to modify the ID registers. */ /* Copy MAC address on stack to align. */ bcopy(IF_LLADDR(ifp), eaddr.eaddr, ETHER_ADDR_LEN); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_WRITECFG); CSR_WRITE_STREAM_4(sc, RL_IDR0, *(u_int32_t *)(&eaddr.eaddr[0])); CSR_WRITE_STREAM_4(sc, RL_IDR4, *(u_int32_t *)(&eaddr.eaddr[4])); CSR_WRITE_1(sc, RL_EECMD, RL_EEMODE_OFF); /* * For C+ mode, initialize the RX descriptors and mbufs. */ re_rx_list_init(sc); re_tx_list_init(sc); /* * Enable transmit and receive. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); /* * Set the initial TX and RX configuration. */ if (sc->rl_testmode) { if (sc->rl_type == RL_8169) CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON); else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG|RL_LOOPTEST_ON_CPLUS); } else CSR_WRITE_4(sc, RL_TXCFG, RL_TXCFG_CONFIG); CSR_WRITE_4(sc, RL_RXCFG, RL_RXCFG_CONFIG); /* Set the individual bit to receive frames for this host only. */ rxcfg = CSR_READ_4(sc, RL_RXCFG); rxcfg |= RL_RXCFG_RX_INDIV; /* If we want promiscuous mode, set the allframes bit. */ if (ifp->if_flags & IFF_PROMISC) rxcfg |= RL_RXCFG_RX_ALLPHYS; else rxcfg &= ~RL_RXCFG_RX_ALLPHYS; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); /* * Set capture broadcast bit to capture broadcast frames. */ if (ifp->if_flags & IFF_BROADCAST) rxcfg |= RL_RXCFG_RX_BROAD; else rxcfg &= ~RL_RXCFG_RX_BROAD; CSR_WRITE_4(sc, RL_RXCFG, rxcfg); /* * Program the multicast filter, if necessary. */ re_setmulti(sc); #ifdef DEVICE_POLLING /* * Disable interrupts if we are polling. */ if (ifp->if_capenable & IFCAP_POLLING) CSR_WRITE_2(sc, RL_IMR, 0); else /* otherwise ... */ #endif /* * Enable interrupts. */ if (sc->rl_testmode) CSR_WRITE_2(sc, RL_IMR, 0); else CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); /* Set initial TX threshold */ sc->rl_txthresh = RL_TX_THRESH_INIT; /* Start RX/TX process. */ CSR_WRITE_4(sc, RL_MISSEDPKT, 0); #ifdef notdef /* Enable receiver and transmitter. */ CSR_WRITE_1(sc, RL_COMMAND, RL_CMD_TX_ENB|RL_CMD_RX_ENB); #endif /* * Load the addresses of the RX and TX lists into the chip. */ CSR_WRITE_4(sc, RL_RXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_rx_list_addr)); CSR_WRITE_4(sc, RL_RXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_rx_list_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_HI, RL_ADDR_HI(sc->rl_ldata.rl_tx_list_addr)); CSR_WRITE_4(sc, RL_TXLIST_ADDR_LO, RL_ADDR_LO(sc->rl_ldata.rl_tx_list_addr)); CSR_WRITE_1(sc, RL_EARLY_TX_THRESH, 16); /* * Initialize the timer interrupt register so that * a timer interrupt will be generated once the timer * reaches a certain number of ticks. The timer is * reloaded on each transmit. This gives us TX interrupt * moderation, which dramatically improves TX frame rate. */ if (sc->rl_type == RL_8169) CSR_WRITE_4(sc, RL_TIMERINT_8169, 0x800); else CSR_WRITE_4(sc, RL_TIMERINT, 0x400); /* * For 8169 gigE NICs, set the max allowed RX packet * size so we can receive jumbo frames. */ if (sc->rl_type == RL_8169) CSR_WRITE_2(sc, RL_MAXRXPKTLEN, 16383); if (sc->rl_testmode) return; mii_mediachg(mii); CSR_WRITE_1(sc, RL_CFG1, RL_CFG1_DRVLOAD|RL_CFG1_FULLDUPLEX); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; callout_reset(&sc->rl_stat_callout, hz, re_tick, sc); } /* * Set media options. */ static int re_ifmedia_upd(ifp) struct ifnet *ifp; { struct rl_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->rl_miibus); RL_LOCK(sc); mii_mediachg(mii); RL_UNLOCK(sc); return (0); } /* * Report current media status. */ static void re_ifmedia_sts(ifp, ifmr) struct ifnet *ifp; struct ifmediareq *ifmr; { struct rl_softc *sc; struct mii_data *mii; sc = ifp->if_softc; mii = device_get_softc(sc->rl_miibus); RL_LOCK(sc); mii_pollstat(mii); RL_UNLOCK(sc); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } static int re_ioctl(ifp, command, data) struct ifnet *ifp; u_long command; caddr_t data; { struct rl_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error = 0; switch (command) { case SIOCSIFMTU: RL_LOCK(sc); if (ifr->ifr_mtu > RL_JUMBO_MTU) error = EINVAL; ifp->if_mtu = ifr->ifr_mtu; RL_UNLOCK(sc); break; case SIOCSIFFLAGS: RL_LOCK(sc); if (ifp->if_flags & IFF_UP) re_init_locked(sc); else if (ifp->if_drv_flags & IFF_DRV_RUNNING) re_stop(sc); RL_UNLOCK(sc); break; case SIOCADDMULTI: case SIOCDELMULTI: RL_LOCK(sc); re_setmulti(sc); RL_UNLOCK(sc); break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->rl_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: { int mask, reinit; mask = ifr->ifr_reqcap ^ ifp->if_capenable; reinit = 0; #ifdef DEVICE_POLLING if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { error = ether_poll_register(re_poll, ifp); if (error) return(error); RL_LOCK(sc); /* Disable interrupts */ CSR_WRITE_2(sc, RL_IMR, 0x0000); ifp->if_capenable |= IFCAP_POLLING; RL_UNLOCK(sc); } else { error = ether_poll_deregister(ifp); /* Enable interrupts. */ RL_LOCK(sc); CSR_WRITE_2(sc, RL_IMR, RL_INTRS_CPLUS); ifp->if_capenable &= ~IFCAP_POLLING; RL_UNLOCK(sc); } } #endif /* DEVICE_POLLING */ if (mask & IFCAP_HWCSUM) { ifp->if_capenable ^= IFCAP_HWCSUM; if (ifp->if_capenable & IFCAP_TXCSUM) ifp->if_hwassist = RE_CSUM_FEATURES; else ifp->if_hwassist = 0; reinit = 1; } if (mask & IFCAP_VLAN_HWTAGGING) { ifp->if_capenable ^= IFCAP_VLAN_HWTAGGING; reinit = 1; } if (reinit && ifp->if_drv_flags & IFF_DRV_RUNNING) re_init(sc); } break; default: error = ether_ioctl(ifp, command, data); break; } return (error); } static void re_watchdog(ifp) struct ifnet *ifp; { struct rl_softc *sc; sc = ifp->if_softc; RL_LOCK(sc); if_printf(ifp, "watchdog timeout\n"); ifp->if_oerrors++; re_txeof(sc); re_rxeof(sc); re_init_locked(sc); RL_UNLOCK(sc); } /* * Stop the adapter and free any mbufs allocated to the * RX and TX lists. */ static void re_stop(sc) struct rl_softc *sc; { register int i; struct ifnet *ifp; RL_LOCK_ASSERT(sc); ifp = sc->rl_ifp; ifp->if_timer = 0; callout_stop(&sc->rl_stat_callout); ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); CSR_WRITE_1(sc, RL_COMMAND, 0x00); CSR_WRITE_2(sc, RL_IMR, 0x0000); if (sc->rl_head != NULL) { m_freem(sc->rl_head); sc->rl_head = sc->rl_tail = NULL; } /* Free the TX list buffers. */ for (i = 0; i < RL_TX_DESC_CNT; i++) { if (sc->rl_ldata.rl_tx_mbuf[i] != NULL) { bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_tx_dmamap[i]); m_freem(sc->rl_ldata.rl_tx_mbuf[i]); sc->rl_ldata.rl_tx_mbuf[i] = NULL; } } /* Free the RX list buffers. */ for (i = 0; i < RL_RX_DESC_CNT; i++) { if (sc->rl_ldata.rl_rx_mbuf[i] != NULL) { bus_dmamap_unload(sc->rl_ldata.rl_mtag, sc->rl_ldata.rl_rx_dmamap[i]); m_freem(sc->rl_ldata.rl_rx_mbuf[i]); sc->rl_ldata.rl_rx_mbuf[i] = NULL; } } } /* * Device suspend routine. Stop the interface and save some PCI * settings in case the BIOS doesn't restore them properly on * resume. */ static int re_suspend(dev) device_t dev; { struct rl_softc *sc; sc = device_get_softc(dev); RL_LOCK(sc); re_stop(sc); sc->suspended = 1; RL_UNLOCK(sc); return (0); } /* * Device resume routine. Restore some PCI settings in case the BIOS * doesn't, re-enable busmastering, and restart the interface if * appropriate. */ static int re_resume(dev) device_t dev; { struct rl_softc *sc; struct ifnet *ifp; sc = device_get_softc(dev); RL_LOCK(sc); ifp = sc->rl_ifp; /* reinitialize interface if necessary */ if (ifp->if_flags & IFF_UP) re_init_locked(sc); sc->suspended = 0; RL_UNLOCK(sc); return (0); } /* * Stop all chip I/O so that the kernel's probe routines don't * get confused by errant DMAs when rebooting. */ static void re_shutdown(dev) device_t dev; { struct rl_softc *sc; sc = device_get_softc(dev); RL_LOCK(sc); re_stop(sc); /* * Mark interface as down since otherwise we will panic if * interrupt comes in later on, which can happen in some * cases. */ sc->rl_ifp->if_flags &= ~IFF_UP; RL_UNLOCK(sc); }