IPv6 in FreeBSD

Joseph Koshy

jkoshy@freebsd.org
Structure of this talk

• What is FreeBSD?
• The FreeBSD development model
• The KAME project
• IPv6 support in FreeBSD
• Configuring IPv6 in FreeBSD
• Available IPv6 capable application software.
• Tracking IPv6 development under FreeBSD
• Conformance and performance
• A look at IPv6 in operation; demos
• Conclusion
What is FreeBSD?

http://www.freebsd.org/

- A high-performance, volunteer developed, open source, protected mode operating system.
- University of California, Berkeley heritage (BSD4.4-Lite). BSD License.
- Released for Intel (x86) PCs, laptops and Alpha workstations.
- Most recent stable release: FreeBSD v4.2
- Linux, SVR4 (Solaris), SCO application compatibility.
- A large number of ported applications (over 4000).
- used in very high load scenarios (YAHOO, HOTMAIL, ...); excellent as a workstation OS.
- Possesses an excellent IPv6 stack.
The BSD License

- very open to commercial use
- unlike the GPL, there is no requirement that you have to release your modified sources to the public
- only requires you to acknowledge authorship of the code
- no warranties on the code
- many companies are using the FreeBSD code base in their products
 e.g. the Interjet from Whistle Inc. (an internet appliance), many router products . . .
The FreeBSD Organization

- FreeBSD is developed and managed by its users.
- 3-level organization:
 - Over 75% of changes to the source tree originate from the FreeBSD user community.
 - COMMITTERS are individuals who have the rights to change the source tree.
 - CORE core@freebsd.org sets administrative policy; elected from COMMITTERS.
Development lines: -CURRENT vs -STABLE

- One source base for the entire working system: kernel, utilities, libraries
- two development lines -CURRENT and -STABLE
- new development happens on -CURRENT (the bleeding edge!)
- -STABLE lines are bug-fixed, release quality offerings
- the project follows excellent release engineering practices
- FreeBSD -STABLE has been IPv6 capable since 4.0 (March 2000)

End-users should use -STABLE!
The KAME Project

The KAME project (http://www.kame.net/).

- The KAME project supports most of the BSD family of OSes: NetBSD, OpenBSD, FreeBSD, BSDI.
- The KAME project exports their code in terms of patches to the OSes released code base.
- The KAME project supports older releases of some OSes: e.g. FreeBSD v3.5, FreeBSD v2.2.8, and BSD v3.1.
- KAME code is released under a BSD style license.
- IPv6 in FreeBSD vs KAME?
 - The KAME code is upto-date and has experimental features.
 - KAME code in FreeBSD is better tested, more integrated.
IPv6 on FreeBSD

FreeBSD supports a *dual stack* (IPv4 + IPv6).

- FreeBSD IPv6 code tracks that of the KAME project.
- IPv4 code is a BSD 4.4 Lite based stack with enhancements and bug fixes.
- the core FreeBSD networking utilities (*telnet*, *ftp*) support IPv6.
- the default FreeBSD 4-STABLE install is IPv6 enabled.
- many 3rd party applications (eg:- *mpg123*, *ssh*) have been IPv6 enabled by the FreeBSD Ports team and the KAME project working together.
Application Ports

FreeBSD supports a sophisticated way to build third party applications (from source) on your local machine.

- automates the process of fetching and building an application from source:

```bash
ob47191# pwd
/home/ports/net/mtr
ob47191# ls -CF
CVS/  distinfo pkg-comment pkg-plist
Makefile files/ pkg-descr
ob47191# make
>> mtr-0.42.tar.gz doesn’t seem to exist in /usr/ports/distfiles/.
>> Attempting to fetch from ftp://ftp.bitwizard.nl/mtr/.
Receiving mtr-0.42.tar.gz (84767 bytes): 100%
84767 bytes transferred in 20.7 seconds (4.01 kBps)
>> mtr-042-v6-20000719.diff.gz doesn’t seem to exist in /usr/ports/distfiles/.
>> Attempting to fetch from ftp://ftp.kame.net/pub/kame/misc/.
Receiving mtr-042-v6-20000719.diff.gz (23526 bytes): 100%
23526 bytes transferred in 5.9 seconds (3.86 kBps)
====> Extracting for mtr-gtk-0.42
>> Checksum OK for mtr-0.42.tar.gz.
>> Checksum OK for mtr-042-v6-20000719.diff.gz.
====> mtr-gtk-0.42 depends on executable: gmake - found
====> mtr-gtk-0.42 depends on shared library: X11.6 - found
...
====> mtr-gtk-0.42 depends on shared library: gtk12.2 - found
====> Patching for mtr-gtk-0.42
====> Applying distribution patches for mtr-gtk-0.42
```
Ports (contd)

---> Applying FreeBSD patches for mtr-gtk-0.42
---> Configuring for mtr-gtk-0.42
... the binary gets built
---> Installing for mtr-gtk-0.42
... install -c -s -m 4755 -o root -g wheel /home/ports/net/mtr/work/mtr-0.42/mtr /usr/local/sbin
...
---> Registering installation for mtr-gtk-0.42
---> SECURITY NOTE:
 This port has installed the following binaries which execute with increased privileges.
 195718 122 -rwsr-xr-x 1 root wheel 61680 Jan 3 10:59 /usr/local/sbin/mtr
...
- the ports mechanism can combine IPv6 patches from the KAME project with other patches needed to otherwise compile the code.

- Ports are classified according to functionality: shells, editors, devel, lang, www, ...

- currently there are 50+ applications that use IPv6. These include nearly every popular open source network capable application (e.g. emacs).

- many network analysis tools (tcpdump, mtr, ...) are already IPv6 enabled.
IPv6 Feature Support Status

As of Dec 2000:

<table>
<thead>
<tr>
<th>Feature</th>
<th>Status in -STABLE</th>
<th>Status in -CURRENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>KAME Source base</td>
<td>Early Jun ’00</td>
<td>Early Jul ’00</td>
</tr>
<tr>
<td>KAME IPv4 IPsec</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>KAME IPv6 IPsec</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>Advanced API</td>
<td>RFC2292</td>
<td>RFC 2292</td>
</tr>
<tr>
<td>NDP Support</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>NUD on P2P links</td>
<td>Yes</td>
<td>Yes</td>
</tr>
<tr>
<td>V6 NFS</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>V6 RPC</td>
<td>No</td>
<td>No</td>
</tr>
</tbody>
</table>
IPv6 Feature Support (contd)

Tools and utilities:

<table>
<thead>
<tr>
<th>Feature</th>
<th>in -STABLE</th>
<th>in -CURRENT</th>
<th>Comments</th>
</tr>
</thead>
<tbody>
<tr>
<td>V6 Userland</td>
<td>Yes</td>
<td>Yes</td>
<td>telnet, ftp etc.</td>
</tr>
<tr>
<td>route6d</td>
<td>Yes</td>
<td>Yes</td>
<td>RIP6 routing</td>
</tr>
<tr>
<td>bgpd</td>
<td>No</td>
<td>No</td>
<td>Only in KAME sourcebase</td>
</tr>
<tr>
<td>pim6dd/pim6sd</td>
<td>Yes</td>
<td>Yes</td>
<td>Multicasting</td>
</tr>
<tr>
<td>rtsol</td>
<td>Yes</td>
<td>Yes</td>
<td>Router solicitation</td>
</tr>
<tr>
<td>rtadvd</td>
<td>Yes</td>
<td>Yes</td>
<td>Route advertisement</td>
</tr>
<tr>
<td>rrrenumd</td>
<td>Yes</td>
<td>Yes</td>
<td>Router renumbering</td>
</tr>
<tr>
<td>faithd</td>
<td>Yes</td>
<td>Yes</td>
<td>V6 to V4 TCP relay</td>
</tr>
</tbody>
</table>
Tracking IPv6 on FreeBSD

- KAME code keeps evolving, you may want to keep up-to-date.

- *option*: track FreeBSD-STABLE (or even -CURRENT)
 - retrieve sources over the Internet using **AnonCVS** or **cvsup** (5mts daily).
 - build the “world” from source (500+ MB disk space, 4hrs).
 - will see stable, tested IPv6 code.

- *option*: mirror the CVS repository locally
 - **cvsup** does this very efficiently.
 - requires 1GB+ space.
 - fast access to full history of the project in the CVS logs.

- *option*: use a released version of FreeBSD with the KAME patch kit.
Tracking FreeBSD Development (contd)

- Sources for the base OS are kept in a publically available (CVS) repository. This repository contains the *entire* history of the project since its inception.

- The repository is efficiently mirrored using John Polstra’s `cvsup` tool.

- Another tool, `CTM`, allows tracking of the sources using email.

- Once you have the sources, the *whole system* can be built with a single command:

  ```
  # cd /usr/src
  # make world
  ```

 This takes approximately 1.5–12 hours depending on your machine speed.

- Nearly every aspect of the project is accessible to the public; discussion lists, bug reports, security advisories …
Conformance

- RFC compliance:
 1886/2671 (DNSv6), 1981 (Path MTU), 2080 (RIPng), 2292 (Advanced API), 2373 (Addressing Arch.), 2374/2375/2710 (Multicasting), 2428 (FTP Extensions), 2460 (IPv6), 2461 (Neighbour Discovery), 2462 (Stateless Autoconfig), 2463 (ICMPv6), 2464 (v6/Enet), 2467 (v6/FDDI), 2472 (v6/PPP), 2675 (Jumbograms), 2732 (literal address format), 2766 (NAT), 2894 (Router renumbering), and others...

- the code also implements a few draft standards related to tunnelling, potential abuse issues during transition etc.

- the IMPLEMENTATION document distributed by the KAME project has the complete details of conformance.

- conformance testing is being done by the Tahi project:
 http://www.tahi.org/
Performance

Some very ad-hoc performance testing, just for this presentation:

- timed the transfer of a large file using `ftp -6` and `ftp -4`
- Conclusion: IPv6 appears to be as fast as IPv4 (1.1MB/s).
Non x86 architectures?

What if you are looking at bringing IPv6 to a machine that is not running an x86 family processor?

- FreeBSD runs on Alpha processor based machines
- NetBSD is perhaps the most portable open source OS today
- OpenBSD has their own implementation of IPSec
- KAME IPv6 code is used in {Open,Net} BSD projects
- The developer community for these projects is active, but is not as large as that of FreeBSD.
Configuring IPv6

A simple 3-step procedure:

- build and install a kernel with IPv6 capabilities (default **GENERIC** kernel is already IPv6 capable).
- turn on the knobs in `/etc/rc.conf`, setup `/etc/hosts` ...
- reboot

Building and Installing the kernel

- modify the existing kernel configuration file
 (copy `/usr/src/sys/i386/conf/GENERIC` and edit to suit)
- add IPv6 related options
- build and install
IPv6 Kernel Configuration Options

Edit your kernel configuration file:

```
/usr/src/sys/i386/conf/OB47191
```

```
... options INET #InterNETworking
options INET6 #IPv6 communications protocols
options IPSEC #IP security
options FFS #Berkeley Fast Filesystem
...
pseudo-device gif 4 # IPv6 and IPv4 tunneling
pseudo-device faith 1 # IPv6-to-IPv4 relaying (translation)
pseudo-device stf 1 # 6to4 IPv6 over IPv4 encapsulation
...
pseudo-device bpf #Berkeley packet filter
```
Building and Installing the new kernel

```
# cd /usr/src
# make buildkernel KERNEL=OB47191
... build output deleted
# make installkernel KERNEL=OB47191
...
```

- a simple 2 step procedure:
- the new kernel will be installed as `/kernel` on 4-STABLE machines.
- `/usr/src/sys/i386/conf/LINT` lists all the supported kernel options.
Edit /etc/rc.conf

```
ipv6_enable="YES" # Set to YES to set up for IPv6.
...
ipv6_defaultrouter="NO" # Set to IPv6 default gateway
ipv6_gateway_enable="NO" # host will be a gateway?
ipv6_route_enable="NO" # run the IPv6 routing daemon?
rtadvd_enable="YES" # enable IPv6 router adv.
mroute6d_enable="NO" # Do IPv6 multicast routing?
gif_interfaces="gif0 gif1" # Examples
stf_interface_ipv4addr="" # 6to4 IPv6 over IPv4
ipv6_firewall_enable="NO" # enable IPv6 firewall
...
```

Setup /etc/hosts

```
# IPV6 addresses
fe80::260:b0ff:fe57:fe42%xe0 pc45026-v6
fe80::280:c8ff:fe3f:f5e5%xe0 csypcnt3-v6
fe80::210:a4ff:fe07:2d2c%xe0 ob47191-v6
```
Running IPv6

Check your `ifconfig` output:

```sh
$ ifconfig xe0
xe0: flags=8843<UP,BROADCAST,RUNNING,SIMPLEX,MULTICAST> mtu 1500
    inet 15.10.47.191 netmask 0xffffffff800 broadcast 15.10.47.255
    inet6 fe80::210:a4ff:fe07:2d2c%xe0 prefixlen 64 scopeid 0x7
    ether 00:10:a4:07:2d:2c
    media: autoselect (100baseTX)
    supported media: autoselect 10baseT/UTP 100baseTX
$ ifconfig lo0
lo0: flags=8049<UP,LOOPBACK,RUNNING,MULTICAST> mtu 16384
    inet6 fe80::1%lo0 prefixlen 64 scopeid 0x5
    inet6 ::1 prefixlen 128
    inet 127.0.0.1 netmask 0xff000000
$ ifconfig gif0
gif0: flags=8010<POINTOPOINT,MULTICAST> mtu 1280
```
What applications are available?

50+ network applications are IPv6 ready today. Some examples:

<table>
<thead>
<tr>
<th>Application</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>apache+ipv6-1.3.14</td>
<td>The extremely popular Apache http server.</td>
</tr>
<tr>
<td>bind-9.0.1</td>
<td>The Berkeley Internet Name Daemon</td>
</tr>
<tr>
<td>emacs-20.7</td>
<td>GNU editing macros</td>
</tr>
<tr>
<td>ethereal-0.8.14</td>
<td>An X11/GTK network analyzer/capture tool</td>
</tr>
<tr>
<td>fetchmail-5.6.1</td>
<td>Mail retrieval utility for pop2, pop3, apop, imap</td>
</tr>
<tr>
<td>irc-2.10.3</td>
<td>The ’Internet Relay Chat’ Server</td>
</tr>
<tr>
<td>mozilla+ipv6-M18</td>
<td>The mozilla ver 0.0 communicator web-surfboard</td>
</tr>
<tr>
<td>sendmail-8.11.1</td>
<td>Reliable, highly configurable mail transfer agent</td>
</tr>
<tr>
<td>ssh-1.2.27</td>
<td>Secure shell client and server (remote login program)</td>
</tr>
<tr>
<td>zebra-0.89a</td>
<td>RIPv1, RIPv2, OSPFv2, BGP4 route software</td>
</tr>
</tbody>
</table>
IPv6 in operation: Network traces

tcpdump -n -e -f -i de0 ip6
11:08:57.048493 0:80:c8:3d:f5:e5 0:10:a4:7:2d:2c 86dd 94:
fe80::280:c8ff:fe3d:f5e5.1005 > fe80::210:a4ff:fe07:2d2c.22:
S 1201176387:1201176387(0) win 16384 <mss 1440,nop,wscale 0,
nop,nop,timestamp 59810721 0>

11:08:57.788120 0:10:a4:7:2d:2c 33:33:ff:3d:f5:e5 86dd 86:
fe80::210:a4ff:fe07:2d2c > ff02::1:ff3d:f5e5:
icmp6: neighbor sol: who has fe80::280:c8ff:fe3d:f5e5

11:08:57.788288 0:80:c8:3d:f5:e5 0:10:a4:7:2d:2c 86dd 86:
fe80::280:c8ff:fe3d:f5e5 > fe80::210:a4ff:fe07:2d2c:
icmp6: neighbor adv: tgt is fe80::280:c8ff:fe3d:f5e5

11:08:57.788703 0:10:a4:7:2d:2c 0:80:c8:3d:f5:e5 86dd 78:
fe80::210:a4ff:fe07:2d2c.22 > fe80::280:c8ff:fe3d:f5e5.1005:
S 1234536047:1234536047(0) ack 1201176388 win 17280 <mss 1440>
[flowlabel 0x60a5c]
Demos: FTP and Ping

Ping:

(orthanc) 16:08 ~ % ping6 ob47191-v6
PING6(56=40+8+8 bytes) fe80::280:c8ff:fe3d:f5e5%de0 -->
 fe80::210:a4ff:fe07:2d2c%de0
16 bytes from fe80::210:a4ff:fe07:2d2c%de0, icmp_seq=0 hlim=64 time=0.62 ms
16 bytes from fe80::210:a4ff:fe07:2d2c%de0, icmp_seq=1 hlim=64 time=0.54 ms
^C
--- ob47191-v6 ping6 statistics ---
2 packets transmitted, 2 packets received, 0% packet loss
round-trip min/avg/max = 0.54/0.58/0.62 ms

FTP:

(orthanc) 12:36 ~ % ftp -6 fe80::210:a4ff:fe07:2d2c%de0
Connected to fe80::210:a4ff:fe07:2d2c%de0.
220 ob47191 FTP server (Version 6.00LS) ready.
Name (fe80::210:a4ff:fe07:2d2c%de0:jkoshy): jkoshy
331 Password required for jkoshy.
Password: *******
... rest of the session
Demo: A Web Server / Web Client running IPv6

- Install port `apache+ipv6` or `thttpd` for the server.
- IPv6 capable WWW clients: `w3m`, `lynx`, `mozilla`, ...
- Capture and analyse traffic using `ethereal`.
Getting Started with FreeBSD

- Recommended: at least an i486 with 8MB RAM, 0.5GB Disk Space.
- Download and install over the Internet (requires good connectivity)
- 4 CD packs from Walnut Creek Inc. Cheaper 1 CD version from CheapBytes Inc. Installation via CD takes about 15 minutes.
- Other installation options: floppies, NFS, DOS partition …
- Standard Unix administration knowledge will see you through most of your needs.
- The FreeBSD Handbook (http://www.freebsd.org/handbook/) is a good resource.
- Subscribe to the mailing lists (freebsd-newbies, freebsd-questions, freebsd-hackers, freebsd-current, freebsd-stable, …)
Conclusion

FreeBSD is an excellent way to get started with IPv6.

- runs on commodity PCs
- supports a dual-stack (IPv4/IPv6)
- has stable code, good performance
- has an up-to-date IPv6 stack and utilities
- has a commercialization friendly BSD license
- has an active developer community
- provides tools to ease to tracking ongoing development

http://www.freebsd.org/