FreeBSD and GDB

John Baldwin
June 11, 2016



Overview

e Structure of GDB
* Recent Userland Debugging Changes
* Kernel Debugging



GDB Concepts

e Inferior

— Something you can debug (e.g. a running process,
or a former process described by a core dump)

* GDB Architecture
— Describes a process ABI (e.g. FreeBSD/amd64 ELF)

* Targets

— Interface for interacting with an inferior



GDB Architectures (ABIs)

struct gdbarch describes an ABI “class”

Includes ABI-specific methods for certain
targets

— Core file target uses ABI methods to parse core
file register notes

Pointer to a shared library operations
structure

Signal frame handling



GDB Architectures (ABIs)

e ABIs are defined in “*tdep.c’ files

— fbsd-tdep.c holds FreeBSD routines common to all
FreeBSD ABIs

— amd64fbsd-tdep.c defines the FreeBSD/amd64
ABI

* ABI “sniffers” match against binaries
— For example, ELF header fields

* Associated initialization routine sets gdbarch
members when sniffer “matches”



GDB Targets

e Targets provide an interface to interact with an
inferior

— Read and write memory

— Get and set register values
— Enumerate threads

— Wait for an event

 Multiple targets can be attached to a single
inferior in a stack

— Upper targets may pass operations down to lower
targets



GDB Targets — Core Dump

Core Target —> core_bfd

\ 4

Exec File Target —>) exec_bfd




GDB Targets — Running

Native Target —> ptrace() / procfs

\ 4

Exec File Target —>) exec_bfd




Native Targets

* Native targets are used with executing
processes

. l(run”
— Attach to an existing process

* Native targets are defined in ‘inf-*.c’ and
“*nat.c’ files



Native Targets

e inf-child.c

— Base class of all native targets

* inf-ptrace.c

— OS-independent base ptrace() target
* PT 10, PT_CONTINUE, PT STEP, wait()

* fbsd-nat.c

— Platform-independent FreeBSD-specific ptrace()
methods



Native Targets (BSD)

e *BSD targets often share pan-BSD code
e amd64bsd-nat.c

— ptrace() operations to get and set registers

e amd64fbsd-nat.c
— FreeBSD/amd64 specific target

— Glues together bits from amd64bsd-nat.c and
fbsd-nat.c



Recent Userland Changes

* Fork following (gdb 7.10)
 LWP-based thread support (gdb 7.11)



Fork Following

* Native target requirements
— Automatically stop new child processes

— Report fork() event (including pid of new child
process) to debugger

* Could handle second by tracing all system call
exits and pulling return value out of registers
for SYS fork and SYS_vfork

— That’s ugly and requires an MD callback
— Still doesn’t solve first requirement



PT_LWPINFO

* FreeBSD’s ptrace() includes a PT_LWPINFO
operation to request extended state on a
process or thread

* Requesting state for a process reports the
thread that triggered the current stop

* PT _LWPINFO populates a ‘struct
ptrace_|wpinfo’ structure



struct ptrace Ilwpinfo

More details in ptrace(2)

pl_lwpid

pl_flags

— PL_FLAG_SCE: stopped at system call entry
— PL_FLAG_SCX: stopped at system call exit

pl_tdname



Fork Following in FreeBSD

e Fully functional ptrace() interface shipped in
9.1

 PT_FOLLOW_FORK

— Requests auto-attach to new child process

— Set ‘data’ to zero to disable or non-zero to enable



Fork Following in FreeBSD

New fields and flags in struct ptrace_lwpinfo

PL FLAG_FORKED
— Set in pl_flags of parent process

PL FLAG_CHILD
— Set in pl_flags of new child process on first stop
pl_child_pid

— Set to pid of new child process when
PL_FLAG_FORKED is set




Fork Following in GDB

* fbsd-nat.c defines a new target “wait” method

 Uses PT_LWPINFO to recognize fork events
and report them as fork events rather than
plain “stops”

— TARGET WAITKIND FORKED or
TARGET WAITKIND VFORKED

— Have to wait for both processes to stop before
reporting event to GDB

* Enable PT_FOLLOW _FORK unconditionally



FreeBSD Thread Support in GDB

* Originally written by multiple developers
under a BSD license

— Not feasible to upstream

* Used libthread db

— Pros: supported libc_r, libkse, libthr

— Cons: did not support other ABIs like compat32,
Linux; would need API changes for XSAVE/AVX;
each platform had to export custom register
conversion routines



FreeBSD Thread Support in GDB

Wanted an upstreamed thread target
No one uses libc_r or libkse anymore
Using libthread db requires a lot of code

Assuming LWPs (libthr) and using ptrace()
directly is less code

Platform native targets merely need to handle
LWP IDs with ptrace() register requests

— Some already did since other OS’s do the same



ptrace() and LWPs in FreeBSD

PT_GETNUMLWPS

— Returns number of valid LWPs for a process

PT_GETLWPLIST
— Populates an array of LWP IDs

PT_GETLWPINFO
— Current state of each LWP

PT SUSPEND / PT_RESUME

— Suspend/resume individual LWPs



Handling LWP Events

* Need to know when threads start and exit

e Older target using libthread db sets
breakpoints in pthread create() and
pthread exit()

* Newer target can rescan the LWP list on each
stop
— Means multiple ptrace() calls on every stop



LWP Events via ptrace()

FreeBSD 11 adds LWP event reporting via
ptrace()

PT _LWP_EVENTS
— Enables / disables LWP event reporting

PL FLAG_BORN
— Set in pl_flags on new LWP on first stop

PL_FLAG_EXITED
— Set in pl_flags on exiting LWP on last stop



LWP Events via ptrace()

* |nitial return from thread create system call by
new threads now reports a system call exit stop
event
— No event was reported previously

— System call exit event is always reported if system call
exits are traced regardless of PT_LWP_EVENTS

— No event reported for initial thread

e Exiting threads report a new stop event for
PL_FLAG_EXITED

— Final thread exit is reported via exit() instead



LWP Thread Target

e Enumerates LWPs and adds them as threads

* Only change to platform-specific targets is
supporting LWP IDs in register operations
— get_ptrace_pid() helper function handles this

 Uses PT_RESUME / PT SUSPEND if a resume
operation targets a specific thread



Tangent: truss

* truss —f now uses PT_FOLLOW_FORK

— Used to fork a new truss process to follow each
new child process

* truss now uses PT_LWP_EVENTS to report
thread events

— Since it can now tell which thread called exit() it
also logs an event for exit()



Kernel Debugging

* Cross-debugging support in libkvm
 Components of kgdb
* Cross-debugging support in kgdb



Cross-Debugging in libkvm

* libkvm is a library that includes support for
examining kernel crash dumps

» Specifically, it is able to translate kernel virtual
addresses into file offsets and return the data
referenced by a given kernel virtual address

* FreeBSD 11 adds support for examining crash
dumps from non-native kernels

— Earlier versions could only read a crash dump
from the same architecture as the host



libkvm APl Changes

e kvaddr_t

— Type (currently uint64 _t) used for kernel virtual
addresses

— Previously was unsigned long
— Allows 32-bit binaries to specify a 64-bit KVA
e struct kvm_nlist

— Like struct nlist, but uses kvaddr_t for n_value



libkvm APl Changes

e kvm_open2()

— Like kvm_open() but accepts an additional
parameter

— Parameter is a function pointer to a symbol
resolver function

— Resolver is required for non-native vmcores

 kvm_read2()
— Like kvm_read(), just uses kvaddr_t for KVA



KVM ARCH

libkvm now supports multiple backends
— Each backend supports a different vincore format
— Separate backends for “full” vs “mini” dumps

Backends added to linker set via KVM_ARCH()

Backends cannot use native constants / types
directly (e.g. PAGE_SIZE, PTE constants)

kvm_<platform>.h define M|l VM constants

— Statically asserts constants match



KVM ARCH

e Backends include a probe function that
examines a vmcore to see if it matches

— Uses libelf to parse ELF headers

e Backends also include a callback to translate a
KVA to a file offset

— Used by kvm_read() and kvm_read2()



kgdb Components

* What is added to gdb to create kgdb?

* vmcore target
— fbsd-kvm.c

— Uses libkvm to read kernel memory from /dev/mem
or a crash dump

— “proc” and “tid” commands

 Kernel thread enumeration
— fbsd-kthr.c
— Used by vmcore target

— Remote debugging relies on in-kernel GDB stub to
enumerate threads



kgdb Components

e Shared library target for kernel modules
— fbsd-kld.c
— Uses kernel linker data structures to enumerate KLDs

— Presents KLDs to users as shared libraries
— “add-kld” command

e New ABI — FreeBSD ELF Kernel

— Allows gdb to treat kernels differently than regular
userland binaries

— Detects FreeBSD kernel by checking for “/red/herring”
dynamic interpreter



kgdb Components — MD

* Platform-specific code

e Special frame handlers (“unwinders”)
— Interrupt, fault, and exception frames
— Most just use a trapframe

— i386 double fault frames require dealing with TSS



kgdb Components — MD

Process (really Thread) Control Block hooks
— Extract register state from PCB
— Locate PCB of currently executing thread

» stoppcbs[cpuid] on most platforms

Kernel ABIs defined in “*fbsd-kern.c’

— ABIs use KLD solibs hook rather than svrd
— ABIs add custom unwinders

— ABIs register PCB hooks for vmcore target



Cross-Debugging in kgdb

Old kgdb used native structures directly

— E.g. read ‘struct proc’ and use ‘p_list.le_next’ to
locate next process

As with libkvm, cannot do that in a cross-
debugger

Have to query ABI for pointer size and
endianness

GDB provides methods to decode an integer



Cross-Debugging in kgdb

* Have to explicitly handle structure layouts
e Can use debug symbols and manual offsetof()

proc_off p pid = parse_and eval address(
"&((struct proc *)0)->p pid");

proc_off p comm = parse_and eval address(
"&((struct proc *)0)->p comm");

proc_off p list = parse _and _eval address(
"&((struct proc *)0)->p list");



Cross-Debugging in kgdb

* Recent kernels include helper variables

* Permits enumerating threads without debug
symbols

const int proc _off p pid = offsetof(struct proc, p _pid);
const int proc_off p comm = offsetof(struct proc, p_comm);
const int proc_off p list = offsetof(struct proc, p _list);

* kgdb uses these symbols if they exist instead
of manual offsetof()



Reading struct proc Fields

struct type *ptr_type =

builtin_type (gdbarch)->builtin_data ptr;
enum bfd endian byte order =

gdbarch_byte order (gdbarch);

tdaddr = read_memory typed address (paddr +
proc_off p threads, ptr_type);

pid = read_memory integer (paddr + proc_off p pid, 4,
byte order);

pnext = read _memory typed address (paddr +
proc_off p list, ptr_type);



Cross-Debugging in kgdb

* PCB hooks and custom unwinders have to
define constants for structure layouts

— Similar to existing tables in userland ABIs for core
dump register notes

* Parsing cpuset _t for stopped cpus

— Have to query ABI for size of long
— Effectively inline CPU_ISSET() by hand
— cpu_stopped() in fbsd-kthr.c



Future Work

e Adding support for more architectures (both
userland and kernel)

— X86 works and cross-debug of x86 works

— ppc64 userland works fine, kgdb can’t parse PCBs
correctly

* Various gdb features not yet supported
— info auxv, info os
— powerpc vector registers



Future Work

 Portable libkvm

— Would only include vmcore support, not
kvm_getprocs, etc.

— Would permit kgdb/lldb hosted on non-FreeBSD

* bhyve gdb stub ala gemu
— Export each vCPU as a “thread”
— Use VT-x to single-step, etc.
— Needs a new vmcore-like target



Conclusion

Available in devel/gdb port

pkg install gdb

Phase out old gdb in base system?
https://github.com/bsdjhb/gdb.git

— freebsd-*-kgdb branches hold kgdb (currently
freebsd-7.11-kgdb)

— Non-kgdb bits are upstreamed to gdb master



