
PCI Interrupts for x86 Machines under FreeBSD

John H. Baldwin
Yahoo!, Inc.

Atlanta, GA 30327
jhb@FreeBSD.org, http://people.FreeBSD.org/˜jhb

Abstract

An important element in computers with
multiple autonomous devices is the ability
of a device to notify the CPU that it needs
attention via an interrupt. The OS visible
mechanics of interrupts for PCI devices is
quite convoluted, especially on x86 PC sys-
tems. This paper will cover the various ways
that PCI INTx interrupts have been imple-
mented on x86 as well as the methods used
by the system BIOS to communicate the im-
plementation to operating systems. It will
also cover the newer Message Signaled Inter-
rupts that address some of the limitations of
INTx interrupts. Finally, the paper will pro-
vide an overview of FreeBSD’s implementa-
tion of both INTx and MSI interrupts on the
x86 platform.

1 Introduction

Interrupts are an important part of device
support in modern machines. They allow sys-
tem software to use event-driven algorithms
instead of polling. This in turn can allow for
much more efficient use of system resources
such as CPU time, especially in systems with
multiple devices operating concurrently.

One of the tasks an operating system must
perform when handling device interrupts is to
determine which device needs attention when
an interrupt is asserted. This mapping can
be done several different ways. Some sys-
tems may include this mapping information
in a static table hard-coded into the operating
system or firmware. Other systems may use
dynamic mappings with programmable hard-

ware, and still other systems may use a com-
bination.

PCI allows devices to assert interrupts in
two very different styles. The first style
consists of dedicated sideband signals and is
known as Legacy INTx interrupts. The sec-
ond style consists of special memory writes
that are sent over the data bus just like DMA
operations and is known as Message Signaled
Interrupts (MSI). MSI interrupts are only
available on newer devices as it is a recent
addition to the PCI standards.

First, however, a brief segue into nomen-
clature. In PCI, the term “device” actually
refers to a piece of hardware that contains
from one to eight “functions”. A typical x86
chipset may include several USB controllers
as functions of a single PCI device for ex-
ample. A PCI expansion slot is a PCI de-
vice, and a single expansion card may con-
tain multiple functions. However, from the
operating system’s perspective, each function
on a PCI device is a logical operating system
device. For example, on both Darwin and
FreeBSD, each function of a multi-function
PCI device receives its own device object and
can be served by different drivers. To attempt
to avoid confusion, the rest of this paper will
use the term “slot” for a PCI device and will
only use “device” to refer to a logical operat-
ing system device.

2 Legacy PCI INTx Interrupts

As mentioned above, PCI INTx inter-
rupts are implemented using side-band sig-
nals. Each PCI slot has four interrupt signals:
INTA#, INTB#, INTC#, and INTD#. Each PCI

function may use one of the interrupt signals
associated with its slot. The function indi-
cates which signal, if any, that it uses in one
of the standard config space registers.

PCI interrupt lines are level-triggered and
assert when the signal is pulled low. This
allows multiple interrupt signals to share a
single physical line.

3 Interrupts on x86 CPUs

Exceptions, Non-Maskable Interrupts
(NMIs), Inter-Processor Interrupts (IPIs),
and device interrupts all use the same
interrupt mechanism on x86 CPUs. The
operating system provides an Interrupt
Descriptor Table (IDT) to the CPU that
contains an array of handlers. When an
interrupt is asserted, the CPU determines
the associated IDT index, or vector. It
can do this by asking an external interrupt
controller for the IDT vector. If the interrupt
was triggered by a message, the message
will contain the IDT vector. Exceptions and
NMIs are assigned static IDT vectors. Once
the CPU has the IDT vector, it uses that
vector as an index into the IDT. It then
triggers the handler for that IDT slot. Thus,
for an operating system to handle a device
interrupt on an x86 CPU, it must know
which device driver handlers are associated
with a given IDT vector.

Thus, at one end we have a PCI interrupt
line being signaled by a PCI function that
needs attention. At the other end we have a
CPU receiving an IDT vector. In the middle
is one of those “and then a miracle occurs”
mysteries. In this case the mystery hardware
in the middle is known collectively as inter-
rupt controllers.

4 Interrupt Controllers (Stuff in
the Middle)

Interrupt controllers on the x86 platform
are responsible for receiving interrupt signals

from devices, mapping the signal to an IDT
vector, and then interrupting one or more
CPUs in the system with the IDT vector.
The x86 platform has some extra quirks, how-
ever. First, due to limitations with the orig-
inal interrupt controllers and busses used on
the PC-AT, separate programmable interrupt
routers were added to the platform to sit in
between PCI interrupt signals and the PC-
AT interrupt controllers. Second, as the x86
platform continued to progress, an entirely
new set of interrupt controllers, known as Ad-
vanced Programmable Interrupt Controllers
(APICs), were introduced. In order to pre-
serve backwards compatibility, systems with
APICs also still include the PC-AT interrupt
controllers and either system can be used to
handle interrupts on modern systems. It is
even possible to use both at the same time
though doing so is discouraged.

4.1 8259A Master and Slave PICs
(PC-AT)

The original PC-AT included two 8259A
Programmable Interrupt Controllers (PICs)
chained together. As with many other as-
pects of the PC-AT, this setup became part
of the de facto standard for the x86 platform.
Each 8259A has eight interrupt input signals
that are assigned to eight consecutive IDT
vectors. Two PICs thus yields sixteen total
interrupt inputs. On the PC-AT these signals
were known as ISA IRQs 0 through 15. How-
ever, the second 8259A (known as the slave
PIC) is connected to the third input pin on
the first 8259A (known as the master PIC).
Thus, ISA IRQ 2 is not available for device
interrupts, and there are really only fifteen in-
terrupt inputs available for device interrupts.

The original PC-AT also used an ISA bus
for its devices. ISA interrupts are edge trig-
gered and are asserted by having the device
raise the signal from low to high. This in-
hibits sharing of ISA interrupts by multiple
devices, so each ISA device requires a ded-
icated interrupt input on the 8259As. All
PC-AT compatible systems included an ISA
timer which used IRQ 0, a keyboard con-
troller that used IRQ 1, and a real time
clock which used IRQ 8. The optional float-

INTA#
PCI Slot 0

INTA#
PCI Slot 1

INTA#
PCI Slot 2

INTA#
PCI Slot 3

INTA#
PCI Slot 4

INTA#
PCI Slot 5

LNKA

LNKB

LNKC

LNKD

PIR

O0

O1

O2

O3

INTR

I0

I1

I2

I3

I4

I5

I6

I7

8259A
Slave

RT Clock

Mouse

FPU

Pri IDE

Sec IDE

INTR

I0

I1

I2

I3

I4

I5

I6

I7

8259A
Master

ISA Timer

Keyboard

COM2

COM1

Floppy

Printer

To CPU

Figure 1: PCI Interrupts Routed via a Programmable Interrupt Router to 8259As

ing point co-processor used IRQ 13 if it was
present. When PCI was introduced, most
PC-AT compatible systems included two se-
rial ports which used IRQs 3 and 4, a floppy
controller which used IRQ 6, a line printer
port which used IRQ 7, a PS/2 mouse port
which used IRQ 12, and two IDE controllers
which used IRQs 14 and 15. This left only
IRQs 5, 9, 10, and 11 for PCI interrupts to
use.

To make matters even more complicated
many systems included other ISA devices
such as additional serial or printer ports or
sound cards. Each of these additional ISA
devices also required a dedicated IRQ. Sound
cards, for example, often used IRQ 5. Thus,
the set of IRQs available for use by PCI inter-

rupts was not fixed. Rather, simply adding or
removing an ISA peripheral could change the
set across reboots. To deal with this compli-
cation, programmable interrupt routers were
added.

4.2 Programmable Interrupt
Routers (PCI Link Devices)

A programmable interrupt router is used
to route PCI interrupt signals to interrupt in-
puts on another interrupt controller. A router
contains several input signals and output sig-
nals. Each output signal is hooked up to an
input on an interrupt controller. Each input
signal can be routed to one of the output sig-
nals. Multiple input signals can be routed to

the same output signal. Multiple PCI inter-
rupt signals can be routed to a single input
signal.

System software, such as the BIOS or oper-
ating system, is responsible for programming
the interrupt router. Programming the router
consists of routing each input signal that is in
use to an output signal. For example, a PC-
AT compatible system might have the output
pins from the programmable interrupt router
hooked up to the interrupt lines for IRQs 3,
4, 5, 7, 9, 10, and 11 on the 8259A PICs. If
IRQs 3, 4, and 7 are in use by ISA devices,
then each input pin on the interrupt router
must be routed to one of the IRQs 5, 9, 10,
or 11. Note that routing a single input pin
(also known as a PCI Link Device) to an IRQ
routes all of the PCI interrupts connected to
that input pin to the IRQ. That is, one can’t
arbitrarily route individual PCI interrupts at
will. Instead, one can only route a group of
PCI interrupts that are connected to an input
pin. This grouping is set in the hardware and
cannot be altered by system software. Also, if
a system has more input pins than available
IRQs, then at least some of the input pins
will be routed to the same IRQ resulting in
the union of all the PCI interrupts on those
input pins sharing the same IRQ.

An example of using a programmable in-
terrupt router in combination with the 8259A
PICs can be found in Figure 1. On the left
are six PCI slots. The INTA# pin from each
slot is connected to one of the input pins on
the interrupt router, which is labeled “PIR.”
Notice that some of the PCI interrupts are
wired to the same input pin on the interrupt
router. For example, the first two interrupts
are both connected to the LNKA input pin.
The interrupt router also has four output pins
that are connected to input pins on the two
8259A controllers corresponding to IRQs 5, 9,
10, and 11. Suppose that LNKA is routed to
O0, LNKB is routed to O1, LNKC is routed to O2,
and LNKD is routed to 00. Then the interrupts
for PCI slots 0, 1, and 5 would be routed to
IRQ 5. The interrupt for PCI slot 2 would be
routed to IRQ 11, and the interrupts for PCI
slots 3 and 4 would be routed to IRQ 10.

4.3 I/O APICs

Many x86 systems, including most recent
systems, include a second set of interrupt con-
trollers known as APICs. In these systems,
each CPU includes a local APIC which re-
ceives interrupt messages and uses them to
assert interrupts on the CPU. The chipset in-
cludes one or more I/O APICs which are re-
sponsible for converting device interrupt sig-
nals into messages that are delivered to one
or more local APICs.

One of the biggest differences between the
8259A PICs and I/O APICs is that the pins
on I/O APICs are completely independent.
With the 8259A PICs, the eight input pins
are mapped to eight consecutive IDT vectors,
and all of the interrupts are sent to the same
CPU. I/O APICs, on the other hand, do not
have any controller-wide settings. Instead,
each pin is programmed independently. Each
pin is assigned its own IDT vector by the op-
erating system and can be mapped to one or
more CPUs. I/O APICs can also contain a
variable number of pins. Typically an I/O
APIC contains 16, 24, or 32 input pins.

PCI interrupt signals are routed to I/O
APIC interrupt pins in several different ways.
The earliest APIC systems include a single
I/O APIC with 16 input pins that simply
replicate the functionality of the two 8259A
PICs. In these systems, the 16 input pins are
used for the 16 ISA IRQs, and PCI interrupts
are routed onto the ISA IRQs using a pro-
grammable interrupt router. Most APIC sys-
tems, however, use dedicated I/O APIC input
pins for PCI interrupt signals. In these sys-
tems, the first 16 pins on the first I/O APIC
are used for the 16 ISA IRQs. PCI interrupt
signals are connected to other input pins on
the first I/O APIC (if it contains more than
16 input pins) as well as input pins on ad-
ditional I/O APICs (if present). Some very
recent systems have begun routing some of
the PCI interrupt signals to a programmable
interrupt router whose output pins are con-
nected to a set of I/O APIC input pins that
are dedicated to PCI interrupts.

Figure 2 contains an example of a system
with a 24-pin I/O APIC where the PCI in-

INTA#
PCI Slot 0

INTA#
PCI Slot 1

INTA#
PCI Slot 2

INTA#
PCI Slot 3

INTA#
PCI Slot 4

INTA#
PCI Slot 5

I7
I6
I5
I4
I3
I2
I1
I0

I12
I11
I10

I8
I9

I13
I14
I15

I19

I16
I17

I21
I22
I23

I18

I20

I/O APIC

Keyboard

COM2
ISA Timer

COM1

Floppy
Printer

RT Clock

Mouse
FPU

Pri IDE
Sec IDE

Master 8259A

Figure 2: PCI Interrupts Routed Directly to an I/O APIC

terrupts are connected directly to input pins
on the I/O APIC. As with the previous fig-
ure, there are six PCI slots on the left, and
the INTA# pin from each slot is connected to
one of the input pins on the I/O APIC. A
system may still have shared PCI interrupts
even when using APICs if multiple interrupt
lines are connected to the same I/O APIC in-
put pin. For example, the first two interrupts
for PCI slots 0 and 1 are both connected to
I20 input pin. The other interrupts are all
routed to their own input pin: PCI slots 2,
3, 4, and 5 are routed to input pins I19, I18,
I17, and I16, respectively.

5 PCI Interrupt Routing (Nav-
igating the Maze)

PCI interrupt routing consists of figuring
out which platform-specific interrupt is as-
serted when a given PCI interrupt signal is
asserted. On x86 machines, this consists of
figuring out which input pin on an interrupt
controller is asserted when a given PCI in-
terrupt signal is asserted. This can include
a detour through a programmable interrupt
router in between the PCI interrupt signal
and the interrupt controller.

5.1 PCI-PCI Bridge Swizzle

Most PCI interrupt routing information is
platform-specific; however, the PCI specifica-
tion does define a specific case where inter-
rupt routing is platform independent. Specif-
ically, if an add-in card contains its own PCI-
PCI bridge, then the interrupt pins are for
the PCI slots behind the PCI-PCI bridge are
mapped onto the interrupt pins on the up-
stream side of the PCI-PCI bridge.

If you assign the values 0 - 3 to INTA# -
INTD# then the mapping can be described as:

pinparent = (slotchild + pinchild) mod 4

where pinparent is the upstream interrupt
pin on the PCI-PCI bridge and slotchild and
pinchild are the PCI slot and pin, respectively,
of the interrupt signal being routed across the
bridge. Thus, INTA# of slot 0 is mapped to
INTA# on the bridge. For slot 1, INTA# is
mapped to INTB# on the bridge, and INTD# is
mapped to INTA# on the bridge. A full table
of the mapping can be found in Table 24-13
of PCI System Architecture [5].

Although the PCI specification only defines
this routing for PCI-PCI bridges in add-in
cards, some x86 systems also use this map-
ping for PCI slots behind PCI-PCI bridges
that are not in add-in cards but are part of
the main chassis. The rule there appears to
be that if no other routing information is pro-
vided by the BIOS for a given PCI bus be-
hind a PCI-PCI bridge, the above mapping
should be used to route the interrupts across
the PCI-PCI bridge to the parent PCI bus.

5.2 Routing via $PIR

The first PCI interrupt routing table pro-
vided by the x86 BIOS is the $PIR table,
so named for it’s four character signature:
“$PIR”. This table describes how PCI inter-
rupt signals are connected to input pins on
a programmable interrupt router. In addi-
tion, it provides details that can be used by
the operating system to either program the

interrupt router directly or to ask the PCI
BIOS to route individual links. Note that
the $PIR table only knows about ISA IRQs,
so it cannot in general be used with APIC.
An exception to this rule is that some early
APIC systems only route ISA IRQs via their
sole I/O APIC and still use an programmable
interrupt router and a $PIR table to route
PCI interrupts onto ISA IRQs. Details on
the format and layout of the $PIR table can
be found in pages 233 - 238 of PCI System
Architecture [5].

5.2.1 The $PIR Table

The main body of the $PIR table consists of a
variable-sized array of slot entries. Each slot
entry contains details about a single PCI slot
such as whether or not the slot is an embed-
ded device in the main chassis or whether the
slot represents a physical slot on the moth-
erboard. Each slot entry also contains an
array of four pin entries containing the rout-
ing information for INTA#, INTB#, INTC#, and
INTD# for the slot. Each pin entry contains a
byte holding a link identifier and a bitmap of
valid ISA IRQs for this pin entry. Since each
slot entry always contains pin entries for all
four pins, but not all slots on embedded de-
vices use all four pins, a pin can be marked
as disconnected by using a link identifier of
zero.

Each non-zero link identifier refers to a spe-
cific input pin on the programmable interrupt
router. Thus, all of the (slot, pin) entries that
have the same link identifier are all physically
connected to the same input pin and will al-
ways share the same interrupt. Also, routing
a link to an IRQ routes all of the (slot, pin)
entries connected to that link to that IRQ.

Routing a PCI interrupt to an ISA IRQ us-
ing $PIR is a mostly straightforward process.
First, the bus, slot, and pin of the PCI inter-
rupt to be routed are used to lookup a (slot,
pin) entry in the $PIR table. The link for the
PCI interrupt is then taken from the (slot,
pin) entry. If the link is already routed to
an IRQ, then the routing is complete. Oth-
erwise, an IRQ must be chosen and the link
must be routed to the IRQ.

Once the operating system has picked an
IRQ for an unrouted link, there are two ways
the link can be routed to that IRQ. First, the
operating system can manually program the
interrupt router to route the link. Second,
the PCI BIOS provides a BIOS call to route
an individual link to a specific IRQ.

To aid with the first approach, the $PIR
table includes the PCI location (bus, slot,
and function) and device ID of the interrupt
router. The device ID can be used to de-
termine an interrupt router driver. For some
routers, for example, the programming model
is that the link identifier in the (slot, pin)
entries is the offset of a single byte regis-
ter and that the IRQ to be used is written
to the register to route the link. This ap-
proach requires the operating system to main-
tain several different interrupt router drivers,
and new routers aren’t supported until a new
driver is written or an existing driver up-
dated.

5.2.2 FreeBSD’s $PIR Implementa-
tion

To support $PIR routing, FreeBSD maintains
data about each link that appears in the $PIR
table. During boot, the kernel walks the $PIR
table to build a list of links and allocate per-
link data such as whether or not the link is
routed, and which IRQ it is routed to. The
kernel also determines if each link has already
been routed by the BIOS (and if so, to which
IRQ). To do this, it walks each slot entry in
the $PIR table. It then examines the intpin
and intline PCI config registers for each func-
tion at the PCI bus and slot specified in the
slot entry. If a function has a valid intline
config register, then the kernel assumes that
the BIOS has routed the link associated with
this function to the IRQ in the intline regis-
ter. It determines the link by using the intpin
register to index the pin entry in the $PIR
slot entry. The kernel also builds the bitmap
of valid IRQs for each link during this table
walk. In theory, all of the (slot, pin) entries
that refer to the same link should have the
same bitmap of valid IRQs. In practice, this
is not always the case. As a result, FreeBSD
uses the intersection of the various bitmaps

(via a bitwise AND) to determine the bitmap
of valid IRQs for a given link.

The trickiest part of $PIR routing is fig-
uring out which IRQ to use for a link that
was not routed by the BIOS. FreeBSD uses a
rather conservative approach that favors reli-
ability at the expense of possibly forcing more
interrupt sharing than is strictly necessary. If
the link has only one valid IRQ in its bitmap,
then that IRQ is used. However, if there
is more than one valid IRQ, the process is
slightly more complex. When the kernel does
its initial scan of the $PIR table to build the
per-link data, it also builds a bitmap of IRQs
that the BIOS used to route links. Then when
it comes time to pick an IRQ for an unrouted
link, the kernel will try to use one of the IRQs
that the BIOS used as those IRQs are known
to work. If none of the IRQs used by the
BIOS are valid for the link, then the kernel
tries to use one of the IRQs in a system-wide
bitmap of PCI-only IRQs in the $PIR header.
If the kernel is still not able to find an IRQ
at this point, it tries to pick an IRQ from a
static bitmap of IRQs.

FreeBSD just uses the PCI BIOS call to
route a link to an IRQ to avoid the main-
tenance overhead of interrupt router drivers.
While some older systems may not include
the BIOS call, these older systems also will
typically route all the links to IRQs during
boot (or provide a BIOS option to do so).
Thus, for these systems the ability to route
links is not critical.

An example of the link table portion of
the output from pirtool can be find in Fig-
ure 3. This machine contains at least six dif-
ferent links: 0x60, 0x61, 0x62, 0x63, 0x68,
and 0x6b. The first entry indicates that the
INTA# pin for slot 2 on bus 0 is connected to
the 0x60 link, for example. This machine only
has one expansion slot, and the four intpins
in that slot are routed to links 0x62, 0x63,
0x60, and 0x61.

FreeBSD allows the user to tweak the $PIR
routing via loader tunables. First, the bitmap
of IRQs used as the last resort when choosing
an IRQ for an unrouted IRQ can be set via
hw.pci.irq override mask. Probably more
useful, however, is the ability to specify the

Entry Location Bus Device Pin Link IRQs
0 embedded 0 2 A 0x60 3 4 5 6 10 11 14 15
1 embedded 1 0 A 0x60 3 4 5 6 10 11 14 15
1 embedded 1 0 B 0x61 3 4 5 6 10 11 14 15
1 embedded 1 0 C 0x62 3 4 5 6 10 11 14 15
1 embedded 1 0 D 0x63 3 4 5 6 10 11 14 15
2 embedded 0 29 A 0x60 3 4 5 6 10 11 14 15
2 embedded 0 29 B 0x63 3 4 5 6 10 11 14 15
2 embedded 0 29 C 0x62 3 4 5 6 10 11 14 15
2 embedded 0 29 D 0x6b 3 4 5 6 10 11 14 15
3 embedded 0 31 A 0x62 3 4 5 6 10 11 14 15
4 embedded 4 13 A 0x61 3 4 5 6 10 11 14 15
5 embedded 2 4 A 0x60 3 4 5 6 10 11 14 15
6 embedded 4 3 A 0x68 3 4 5 6 10 11 14 15
7 slot 1 3 7 A 0x62 3 4 5 6 10 11 14 15
7 slot 1 3 7 B 0x63 3 4 5 6 10 11 14 15
7 slot 1 3 7 C 0x60 3 4 5 6 10 11 14 15
7 slot 1 3 7 D 0x61 3 4 5 6 10 11 14 15

Figure 3: $PIR Link Table from pirtool on a Dell SC 1425

IRQ for individual links. The tunable for
this is hw.pci.link.link.irq where link is
the link to route, and the value of the tun-
able is the IRQ to route the link to. The
link is specified as a hexadecimal value with
a leading “0x” identical to the output from
pirtool as well as all kernel output contain-
ing $PIR link identifiers. For example, to
route link 0x60 to IRQ 11, set the loader tun-
able hw.pci.link.0x60.irq=11. Any IRQs
used in user-specified routings are included
in the mask of IRQs used by the BIOS when
choosing IRQs for unrouted links. Thus, if a
BIOS routes only some links and routes them
all to IRQ 10, but IRQ 11 is known to be free
for PCI interrupts, one can force the system
to route one or more of the unrouted links
to IRQ 11 to split some of the interrupt load
simply by routing a single link to IRQ 11 us-
ing a tunable.

5.3 Routing via the MP Table

When APIC was introduced on x86, a new
table was introduced to describe the routing
of PCI interrupts to I/O APIC input pins.
This table is known as the MP Table, and
its format is described in the Multiprocessor
Specification [4]. The MP Table contains sev-
eral different types of entries including entries

enumerating processors and I/O APICs. It
also contains entries describing all device in-
terrupts that are connected to I/O APIC in-
put pins, and these entries are used for rout-
ing PCI interrupts.

Each interrupt entry in the MP Table con-
tains a device interrupt as the source, and an
I/O APIC input pin as the destination. The
source interrupt contains a bus type (such as
ISA or PCI), a bus ID, and an IRQ value.
For PCI interrupts, the bus ID is the PCI
bus number of the slot the interrupt belongs
to. The IRQ value contains both the PCI
slot and intpin. The lower two bits contain
the intpin (0 means INTA#, etc.), and bits 2
through 6 contain the slot. The destination
is specified as an APIC ID of an I/O APIC
and an input pin number.

Given this, routing a PCI interrupt using
the MP Table is fairly simple. The kernel sim-
ply walks the MP Table until it finds an entry
whose source interrupt matches the PCI bus,
slot, and intpin. It then uses the destination
I/O APIC input pin as the PCI interrupt’s
destination.

An example of the interrupt entries out-
put from mptable(8) can be find in Figure 4.
This system contains three I/O APICs with
APIC IDs of 8, 9, and 10. The ISA IRQs

I/O Ints: Type Polarity Trigger Bus ID IRQ APIC ID PIN#
ExtINT active-hi edge 5 0 8 0
INT conforms conforms 5 1 8 1
INT conforms conforms 5 0 8 2
INT conforms conforms 5 3 8 3
INT conforms conforms 5 4 8 4
INT conforms conforms 5 7 8 7
INT conforms conforms 5 8 8 8
INT conforms conforms 5 9 8 9
INT conforms conforms 5 12 8 12
INT conforms conforms 0 2:A 8 16
INT conforms conforms 0 29:A 8 16
INT conforms conforms 0 29:B 8 19
INT conforms conforms 0 29:D 8 23
INT conforms conforms 0 31:A 8 18
INT conforms conforms 4 13:A 8 17
INT conforms conforms 4 3:A 8 20
INT conforms conforms 2 4:A 9 0
INT conforms conforms 3 7:A 10 2
INT conforms conforms 3 7:B 10 3
INT conforms conforms 3 7:C 10 0
INT conforms conforms 3 7:D 10 1

Figure 4: MP Table Interrupt Entries from mptable(8) on a Dell SC 1425

are connected to the first sixteen pins on the
first I/O APIC. The PCI interrupts for PCI
busses 0 and 4 are connected to other pins on
the first I/O APIC. The only PCI interrupt
on PCI bus 2 is connected to the first pin on
the second I/O APIC, and the PCI interrupts
on PCI bus 3 are connected to the first four
pins on the third I/O APIC.

5.4 Routing via ACPI

The Advanced Configuration and Power
Interface (ACPI) was developed in part to
provide a unified interface to configuration
management for x86 machines [1]. Both the
$PIR table and the MP Table are among
the configuration methods and tables merged
into the ACPI umbrella. Thus, ACPI pro-
vides a unified interface to PCI interrupt
routing on x86 that replaces both $PIR and
the MP Table. There are four main compo-
nents to ACPI’s interrupt routing support:
global system interrupts (GSIs), the global
PIC method, PCI interrupt link devices, and
per-PCI bus PRT methods.

5.4.1 Global System Interrupts

ACPI uses a cookie system to “name” in-
terrupts known as Global System Interrupts.
Each interrupt controller input pin is assigned
a GSI using a fairly simple scheme. For the
8259A case, the GSIs map directly to ISA
IRQs. Thus, IRQ 0 is GSI 0, etc. The APIC
case is slightly more complicated, but still
simple. Each I/O APIC is assigned a base
GSI by the BIOS. Each input pin on the I/O
APIC is mapped to a GSI number by adding
the pin number (zero-based) to the base GSI.
Thus, if an I/O APIC has a base GSI of N,
pin 0 on that I/O APIC has a GSI of N, pin 1
has a GSI of N + 1, etc. The I/O APIC with
a base GSI of 0 maps the ISA IRQs onto its
first 16 input pins. Thus, the ISA IRQs are ef-
fectively always mapped 1:1 onto GSIs. More
details about GSIs can be found in Section
5.2.11 of the ACPI 2.0c spec [2].

5.4.2 The PIC Method

The global PIC method is a global ACPI
function that the operating system calls dur-

ing boot to inform ACPI which set of inter-
rupt hardware it plans to use. It accepts a
single input parameter which indicates the
interrupt mode to use. For x86 platforms,
the parameter has two possible values: 0 in-
dicates PIC mode (that is, 8259As), and 1
indicates APIC mode. The mode defaults to
PIC mode on boot. Typically, the implemen-
tation of PIC saves the interrupt mode in
a global variable that is used by subsequent
calls to PRT methods to determine which
routing tables to return. Figure 5 contains a
sample implementation of PIC. More details
can be found in Section 5.8.1 of the ACPI 2.0c
spec [2].

5.4.3 PCI Interrupt Link Devices

Each input pin on a programmable interrupt
router is represented as a device in the ACPI
namespace. These devices are called PCI in-
terrupt link devices and are identified with a
PnP ID of PNP0C0F. The destination of the
link is set via an IRQ resource in the de-
vice’s resource list. It is managed using the
CRS, PRS, and SRS methods just like the
IRQ resource is managed for other ACPI de-
vices such as built-in serial ports on the LPC
bus.

FreeBSD manages PCI interrupt link de-
vices in much the same way it handles links in
the $PIR table. One difference is that ACPI
provides a standard way to query the link
for its current setting via the CRS method.
In practice, however, CRS is not always im-
plemented, so the PCI interrupt link driver
does examine the PCI intline config register
of any devices that use a link to determine
which IRQ, if any, the BIOS routed the link
to. Another difference is that ACPI allows
links to be turned off completely via the DIS
method. In fact, FreeBSD turns off all links
during boot and explicitly turns them on only
when they are needed to route interrupts.

Routing a link to an ISA IRQ follows much
the same process for both PCI interrupt link
devices and $PIR links. One difference is
that all PCI interrupt link devices are dis-
abled during boot, so all of them must be
routed to an IRQ on first use. However, the

PCI interrupt link device will simply route
the link to the IRQ assigned by the BIOS if
the BIOS assigned one during boot and that
IRQ is still valid (the IRQ might not be valid
if a link device is used in APIC mode and has
a different set of valid GSIs in APIC mode
than in PIC mode). The PCI interrupt link
driver builds a mask of known-good ISA IRQs
from the IRQs used by the BIOS similar to
the $PIR driver. However, ACPI doesn’t pro-
vide a global mask of PCI-only IRQs similar
to the one found in the $PIR table header.
The PCI interrupt link driver also does not
include a static mask of possible ISA IRQs or
honor the hw.pci.irq override mask sysctl.
On the other hand, the ACPI System Con-
trol Interrupt (SCI) is always shareable with
PCI interrupts, so it is added to the mask
of known-good ISA IRQs when in PIC mode.
Thus, there is always at least one IRQ in that
mask when operating in PIC mode, removing
the need for both the global mask of PCI-
only IRQs and the static mask of possible ISA
IRQs.

Routing a link to a non-ISA GSI is fairly
simple. In that case, there aren’t any com-
plications with trying to determine which of
the possible interrupts really are usable. In-
stead, all of the possible GSIs are usable, and
a simple weighting scheme is used to balance
the links across the available GSIs.

As with the $PIR code, the PCI inter-
rupt link driver allows the user to over-
ride the routing for individual links via
tunables. The format of the tunable is
hw.pci.link.link.irq where link is the link
to route, and the value of the tunable is the
GSI to route the link to. The link is specified
as the last component of the PCI interrupt
link devices path in the ACPI namespace. For
example, to route the PCI interrupt link de-
vice
SB .PCI0.ISA0.LNKA to ISA IRQ 11, set the
loader tunable hw.pci.link.LNKA.irq=11.
Unlike the $PIR code, any IRQs used in user-
specified routings are not included in the
mask of known-good ISA IRQs used by the
BIOS.

Scope (\)
{

Name (PICF, 0x00)
Method (_PIC, 1, NotSerialized)
{

Store (Arg0, PICF)
}

}

Figure 5: ACPI PIC method from a Dell SC 1425

5.4.4 PRT Methods

The meat of PCI interrupt routing via ACPI
is the PRT method. Each PCI bus that ACPI
provides interrupt routing information for ap-
pears as a device in the ACPI namespace.
Each of these devices contains a PRT method
that returns an array of objects describing the
interrupt routing for slots on that PCI bus.

Each object contains four members that de-
scribe the routing for a single PCI interrupt.
The first member is an ACPI PCI address us-
ing the same format as ADR. Thus, the upper
four bytes contain the slot, and the lower four
bytes contain the function. Since the PCI
function is not part of a PCI interrupt’s ad-
dress, it is always specified as a wildcard value
of 0xFFFF and should be ignored by the oper-
ating system. The second member is a single
byte indicating the intpin. A value of 0 spec-
ifies INTA#, 1 specifies INTB#, etc.

The third and fourth members define the
destination of the interrupt. If the third value
is either zero or an empty string, then the
fourth value is a GSI and the PCI interrupt
is hard-wired to that GSI. This type of map-
ping is just like the MP Table I/O interrupt
entries which map PCI interrupts to specific
I/O APIC input pins. If the third value is not
empty, then it is the name of a PCI interrupt
link device in the ACPI namespace, and the
fourth value is a resource index. The resource
index indicates which of the resources of the
PCI interrupt link device the interrupt is con-
nected to. In practice, though, some BIOSes
bogusly include a name of a link device even
in entries that are routed via a hardwired
GSI, and no systems to date use a resource
index other than zero. Thus, as a workaround

for the busted systems, FreeBSD ignores the
third value and assumes the fourth value is a
hardwired GSI if the fourth value is not zero.
The PRT method is described in further de-
tail in Section 6.2.8 of the ACPI 2.0c spec [2].

Figure 6 contains a portion of an example
PRT. Specifically, it includes the first entry
in the table. This corresponds to the PCI
interrupt for PCI bus 3, slot 7, INTA# and
can be compared with the routing for this
same interrupt in Figures 3 and 4. First, note
there are actually two routing tables declared
as constants: PIC3 is used for PIC mode,
and APC3 is used for APIC mode. The PRT
method checks the value of the PICF global
variable to determine which table to return
to the operating system. Recall that PICF
is set in the PIC method in Figure 5. For
PIC mode, the interrupt is routed to the LNKC
device, which is an ACPI PCI interrupt link
device corresponding to link 0x62 from the
$PIR table. For APIC mode, the interrupt
is routed to GSI 66. For this machine, ACPI
assigns a base GSI of 64 to the I/O APIC
with an APIC ID of 10. Thus, GSI 66 cor-
responds to pin 2 on that I/O APIC which
matches the routing in the MP Table for this
PCI interrupt.

Note that ACPI allows PCI interrupt link
devices to be specified in PRT entries in APIC
mode. Thus, ACPI allows the BIOS to com-
municate an interrupt routing where a PCI
interrupt signal is connected to an input pin
on a programmable interrupt router whose
output pins are connected to arbitrary input
pins on one or more I/O APICs. Neither the
$PIR table or MP Table allow for this con-
figuration since the $PIR table assumes all
IRQ values are less than 16, and the MP Ta-
ble assumes all PCI interrupts are mapped to

Device (PXHB)
{

...
Name (PIC3, Package (0x04)
{

Package (0x04)
{

0x0007FFFF,
0x00,
LNKC,
0x00

},
...

})
Name (APC3, Package (0x04)
{

Package (0x04)
{

0x0007FFFF,
0x00,
0x00,
0x42

},
...

})
Method (_PRT, 0, NotSerialized)
{

If (LNot (PICF))
{

Store (PIC3, Local0)
}
Else
{

Store (APC3, Local0)
}

Return (Local0)
}

}

Figure 6: Excerpt of ACPI PRT method from a Dell SC 1425 for PCI3:7:INTA#

hardwired I/O APIC input pins.

6 FreeBSD’s INTx Implementa-
tion

FreeBSD’s PCI interrupt routing code at-
tempts to provide a machine independent
framework that machine dependent code can
hook into where necessary. First, FreeBSD
uses cookie values defined by machine depen-
dent code for SYS RES IRQ resources. This
provides a way to handle interrupts in ma-
chine independent code and interfaces. Sec-
ond, when the PCI bus needs to route an in-
terrupt it passes the request up the device
tree until it reaches a level where the request
can be handled.

All interrupt resources in FreeBSD drivers
are managed as SYS RES IRQ resources.
When a driver wants to use an interrupt,
it allocates a SYS RES IRQ resource in much
the same way it allocates memory or I/O
space. The driver can then attach an in-
terrupt handler to that resource. When a
PCI device attempts to allocate a INTx in-
terrupt, the PCI bus first routes it to an IRQ
value that is used to create the SYS RES IRQ
resource. It does this by asking its parent
device, which is either a Host-PCI or PCI-
PCI bridge, to look up the IRQ for the given
PCI interrupt. The different interrupt rout-
ing algorithms are then implemented in differ-
ent drivers for Host-PCI and PCI-PCI bridge
drivers.

The simplest PCI bridge driver is the PCI-
PCI bridge driver. This driver’s interrupt
routing routine implements the swizzle de-
fined in Section 5.1 by calculating the cor-
responding slot and pin on the upstream side
of the bridge and passing the request up to
the PCI bridge driver for the upstream PCI
bus. Thus, routing requests for interrupts on
busses that are not part of the main chassis
will bubble up through the device tree until
they hit a bridge for a PCI bus that is part
of the main chassis.

Interrupt routing for PCI busses that are
part of the main chassis is handled by ma-

chine dependent PCI bridge drivers. For ex-
ample, if ACPI is enabled, then ACPI will
probe and attach to all the PCI bridges in
the ACPI namespace. When an interrupt
routing request reaches a PCI bridge with
an ACPI driver, it will use the PRT for the
corresponding PCI bus to determine the GSI
for the PCI interrupt. It then maps the GSI
to a SYS RES IRQ cookie value which it re-
turns. Thus, the machine dependent code is
responsible for mapping platform-specific in-
terrupts to SYS RES IRQ cookies in the PCI
bridge drivers. Then in the top-level root,
or nexus, devices in the device tree, the ma-
chine dependent code is responsible for map-
ping the SYS RES IRQ resources back to the
platform-specific interrupts.

FreeBSD does allow the user to override
the IRQ for any given PCI interrupt via
a tunable. The format for this tunable is
hw.pcibus.slot.INTpin.irq where bus is
the PCI bus number, slot is the PCI slot num-
ber, and pin is the intpin (A, B, C, or D). The
value of the tunable is the IRQ to use for the
specified PCI interrupt. This tunable should
only be used as a last resort when there aren’t
more specific tunables (such as the PCI link
tunables) available. One instance in which
this tunable is useful is correcting hard-wired
routing to I/O APIC intpins due to a bro-
ken MP Table or PRT entry. For example,
to route the PCI interrupt for bus 0, slot
16, INTA# to IRQ 24, set the loader tunable
hw.pci0.16.INTA.irq=24.

6.1 IRQs are Yummy Cookies

For the x86 platforms, FreeBSD models
the mapping of IRQ values to platform in-
terrupts on the Global System Interrupts
approach from ACPI. In fact, when using
ACPI FreeBSD uses the GSI values directly
as IRQs. FreeBSD also always maps IRQ val-
ues 0 through 15 to the sixteen ISA IRQs.
The only remaining case is when using the
MP Table to enumerate APICs and route in-
terrupts. For this case, the MP Table code
simulates the GSI approach by assigning suit-
able base IRQ values to each I/O APIC sim-
ilar to th base GSI values used by ACPI.
The MP Table code calculates the base IRQs

by adding the number of input pins on each
I/O APIC to the base IRQ of the current
I/O APIC to determine the base IRQ of the
next I/O APIC. Thus, if you have a system
with three I/O APICs where the first two
I/O APICs have 24 pins and the third I/O
APIC has 16 pins, the first I/O APIC would
be assigned IRQs 0-23, the second I/O APIC
would be assigned IRQs 24-47, and the last
I/O APIC would be assigned IRQs 48-63.

The x86 platforms use a global array in-
dexed by the IRQ value to map the IRQs to
platform interrupts. Each entry in the ar-
ray is a pointer to an interrupt source ob-
ject. Interrupt source objects consist of a
struct intsrc which contains a pointer to a
group of function pointers in a struct pic.
One can think of struct intsrc and struct
pic as abstract base classes. Each inter-
rupt controller driver provides its own ex-
tended versions of struct pic and struct
intsrc. The extended versions contain the
base structure as the first member and add
driver-specific data after that. For example,
the I/O APIC code defines a struct ioapic
which extends struct pic. Each instance of
struct ioapic contains functions for man-
aging I/O APIC input pins in its method ta-
ble. It also defines a struct ioapic intsrc
which extends struct intsrc to add I/O
APIC-specific data such as which I/O APIC
input pin an interrupt source represents.
The interrupt controller drivers determine
the IRQ values for each interrupt source ob-
ject. Thus, they must ensure the IRQ prop-
erly matches up with the IRQ value used for
any PCI interrupts routed to that interrupt
source.

6.2 IDT Vectors on x86

Once the operating system has mapped a
PCI interrupt to an interrupt source, the only
remaining step for x86 platforms is mapping
the interrupt source to an IDT vector. IDT
vectors range from 0 to 255, and IDT vectors
0-31 are reserved for CPU faults and excep-
tions and NMIs. In addition, FreeBSD uses
vectors 240-255 for IPIs, vector 239 for the
local APIC timer interrupt, and vector 128
for system calls. That leaves vectors 32-127

and 129-238 for device interrupts.

The 8259As each require 8 contiguous IDT
vectors. They each can also interrupt the
CPU even when all input pins are masked
if a spurious interrupt occurs. Thus, vectors
32-47 are reserved for the 8259As, even when
APICs are used instead of the 8259As.

The rest of the device interrupts are allo-
cated on an as-needed basis to active inter-
rupt sources. For example, I/O APIC in-
put pins allocate an IDT vector the first time
an interrupt handler is registered. Most I/O
APIC input pins are never used, so this strat-
egy avoids reserving IDT vectors for interrupt
sources that will never trigger.

7 PCI Message Signaled Inter-
rupts

Legacy PCI INTx interrupts work, but
they have several limitations. First, each PCI
function is only allowed a single interrupt.
Second, PCI INTx interrupts use a separate
signal from the address and data lines used
for PCI data transactions.

The single interrupt restriction can be a
bottleneck for high-performance devices. For
example, on some Ethernet adapters, the
transmit and receive units run in parallel, but
a single interrupt forces the driver to process
events from the two units serially. Another
case where a device can benefit from multi-
ple handlers is a device that generates inter-
rupts for specific performance-critical events
very often while also generating interrupts
for other events less often. An Ethernet
device can be an example of this as well.
A busy Ethernet device will generate sev-
eral receive and transmit completion inter-
rupts while handling traffic, and it can also
generate other interrupts for events like link
status changes. If the device were able to
split out the receive and transmit completion
events into dedicated interrupts, those inter-
rupt handlers could be smaller and faster al-
lowing for less overhead for those events.

Using a separate signal from the normal

address and data lines for PCI INTx inter-
rupts raises several issues. First, on many x86
systems this requires separate physical traces
on the motherboard to connect the signals to
interrupt controller input pins. Second, the
platform and operating system have to work
together to route the interrupts. The largest
issue, however, is that by using separate sig-
nals, the interrupt may be raised on the CPU
before all of the effects of the event that trig-
gered the interrupt are visible to the CPU.
As a result, all PCI device driver interrupt
handlers must begin with a read from a reg-
ister on the PCI device. This read will not be
completed until any pending transactions in
between the CPU and the PCI device com-
plete, and thus guarantees that all the effects
of the event that triggered the interrupt will
be visible to the CPU. This adds extra la-
tency and work to the interrupt handler even
if the handler doesn’t need to read a PCI
register. For example, if an Ethernet device
had dedicated interrupt handlers for receive
and transmit completion events, those han-
dlers only need to walk the descriptor rings
in RAM in the common case. Forcing them
to start with a dummy read would just add
overhead and latency.

Starting with PCI 2.2, a new interrupt
mechanism known as Message Signaled Inter-
rupts (MSI) was introduced to address these
concerns. With MSI, each PCI function can
have one or more interrupt messages. Each
message has associated address and data reg-
isters whose values are assigned by the oper-
ating system. When a PCI function asserts
an interrupt using MSI, it performs a PCI
write operation that writes the value of the
data register to the address specified in the
address register. The platform must ensure
that something is listening for writes to the
addresses used by MSI messages and trans-
late them into interrupt requests to one or
more CPUs.

The format of the message address and
data fields is platform-specific. For x86 plat-
forms, the message data contains the IDT
vector to trigger when the interrupt occurs.
Thus, MSI interrupts are able to bypass the
entire interrupt routing maze, and the oper-
ating system can directly link MSI interrupts
to IDT vectors.

8 FreeBSD’s MSI Implementa-
tion

FreeBSD implements MSI messages as
SYS RES IRQ interrupts similar to the legacy
INTx interrupts. The driver visible differ-
ences include different resource IDs (legacy
INTx interrupt is rid 0, MSI messages start
at rid 1) for SYS RES IRQ resources and new
APIs for allocating and releasing MSI mes-
sages. Behind the scenes, the PCI bus driver
is responsible for programming the various
MSI registers. It also allocates IRQs to map
MSI messages onto via requests to the parent
bridge. These requests pass up through the
various PCI bridge drivers (very similar to
how PCI interrupt routing passes up through
PCI bridges) until it finds a device that can
allocate IRQs for MSI messages. Similar re-
quests are forwarded up the device tree to re-
lease MSI IRQs no longer in use and to com-
pute the address and data register values for
an MSI IRQ.

For the x86 platforms, the PCI bridge re-
quests bubble up through the device tree un-
til they arrive at the nexus0 device. This
device’s driver proxies the requests over to
the x86 MSI code. The x86 MSI code uses
interrupt source objects to manage IRQs for
MSI messages. It provides a single struct
pic shared by all MSI interrupt sources. The
MSI interrupt sources are created on the fly
when a request is made by a driver to allocate
MSI messages. Each MSI interrupt source is
assigned an IRQ value in the range 256 - 383.
These IRQ values are used to avoid conflict-
ing with the IRQs used for legacy INTx in-
terrupts which use a range of 0 - 255. Once
an MSI interrupt source is created, it is never
destroyed, but it may be reused by a different
device if it is released by a driver and another
driver makes a subsequent allocation request.
When an MSI interrupt source is allocated, it
is assigned an IDT vector. If the MSI inter-
rupt source is released, it frees the IDT vec-
tor back to the system. If a driver requests
multiple MSI messages, care must be taken to
ensure that the group of MSI messages use an
aligned, contiguous range of IDT vectors. An
extension to MSI known as MSI-X removes
this limitation since it provides for separate
address and data registers for each message.

9 Conclusion

Correctly implementing support for PCI
interrupts requires knowledge of both PCI
and the underlying platform. The x86 plat-
form, in particular, requires a non-trivial
amount of effort to properly support. Hope-
fully MSI will reduce the complexity of sup-
porting PCI interrupts on future platforms as
well as future variations of the x86 platform.

10 Acknowledgments

The PCI interrupt code in FreeBSD has
been designed and implemented by several
different people. Mike Smith and Warner
Losh provided the initial support for PCI in-
terrupt routing including support for using
the $PIR routing table. Mike and Warner
also conceived the idea of PCI busses ask-
ing their parent bridge driver to route inter-
rupts. Mike also implemented the initial sup-
port for routing interrupts via the ACPI PRT
tables. Mitsuru Iwasaki and Nate Lawson
implemented the first pci link management
driver.

The work I have done on PCI interrupts
was also greatly aided by others. Enhance-
ments to the existing PCI routing code were
sponsored by The Weather Channel, while
the MSI code was sponsored by Yahoo!. Both
companies sponsored my time and provided
hardware for testing.

My biggest debt is owed to Mike Smith,
however. Several years ago Mike sat down
with me and explained exactly what the in-
terrupt routing information in the MP Table
meant and why the existing code in FreeBSD
4.x needed to be improved. He also encour-
aged me to work on ACPI and PCI interrupt
routing general. On an even broader scale,
Mike mentored me as a I transitioned from
working on FreeBSD documentation to hack-
ing on the source to the FreeBSD kernel in-
cluding my work on SMP, ACPI, and PCI
support.

11 Availability

All of the code for managing PCI interrupts
is available in the FreeBSD source tree [3].
The code is split into roughly two parts.
First, the code to manage interrupt routing
and MSI is contained in the kernel. Second,
the code for various utilities to dump inter-
rupt routing tables is contained in userland
sources. All of the interrupt routing code and
related utilities can be found in FreeBSD 5.2
and later. The MSI code as well as the update
to pciconf to display PCI capabilities was
added to FreeBSD after FreeBSD 6.2 and will
be present in both FreeBSD 6.3 and FreeBSD
7.0.

The PCI-PCI bridge driver is found in
src/sys/dev/pci/pci pci.c. Among other
things, this driver contains the code to use
the PCI-PCI bridge swizzle to route inter-
rupts across PCI-PCI bridges in add-in cards.

The $PIR interrupt routing code is found
in src/sys/i386/include/pc/bios.h and
src/sys/i386/pci/pci pir.c. The source
for the pirtool utility is found in the
src/tools/tools/pirtool directory.

The MP Table interrupt rout-
ing code is present for both amd64
and i386. For amd64 it is found in
src/sys/amd64/include/mptable.h,
src/sys/amd64/amd64/mptable.c, and
src/sys/amd64/amd64/mptable pci.c.
The i386 code is found in the same files
but under src/sys/i386. The source for
the mptable(8) utility is found in the
src/usr.sbin/mptable directory.

The ACPI interrupt routing code is all
found in the src/sys/dev/acpica directory.
The acpi pci link.c file contains the de-
vice driver for PCI interrupt link devices.
The acpi pcib.c file contains the code to
parse PRT tables. It will call the PCI
interrupt link code when a PCI interrupt
is attached to a link device. The source
for the acpidump utility is found in the
src/usr.sbin/acpi/acpidump utility.

The machine independent code for MSI
support is found in src/sys/dev/pci/pci.c

and src/sys/dev/pci/pci pci.c. The
MSI support for amd64 and i386 is
found in src/sys/amd64/amd64/msi.c
and src/sys/i386/i386/msi.c, respec-
tively. The source for the pciconf utility is
found in the src/usr.sbin/pciconf direc-
tory, with the code to parse PCI capabilities
in cap.c.

References

[1] ACPI - Advanced Configura-
tion and Power Interface, http:
//www.acpi.info

[2] Advanced Configuration and
Power Interface Revision 2.0c,
http://www.acpi.info/DOWNLOADS/
ACPIspec-2-0c.pdf

[3] FreeBSD Project, http://www.
FreeBSD.org

[4] Multiprocessor Specification v1.4, http:
//developer.intel.com/design/
pentium/datashts/24201606.pdf

[5] Tom Shanley and Don Anderson, PCI
System Architecture, Fourth Edition,
Mindshare, Inc. (1999).

