
ULE
The FreeBSD

S C H E D U L E R

of a multiprocess-
ing system is to apply the power of multiple
CPUs to a problem, or set of problems, to
achieve a result in less time than it would run
on a single-processor system. If a system has
the same number of runnable threads as it does
CPUs, then achieving this goal is easy. Each
runnable thread gets a CPU to itself and runs to
completion. Typically, there are many runnable
threads competing for a few processors. One
job of the scheduler is to ensure that the CPUs
are always busy and are not wasting their
cycles. When a thread completes its work, or is
blocked waiting for resources, it is removed
from the processor on which it was running.
While a thread is running on a processor, it
brings its working set—the instructions it is exe-
cuting and the data on which it is operating—
into the CPU’s memory cache. Migrating a
thread has a cost. When a thread is moved
from one CPU to another, its CPU-cache work-
ing set is lost and must be removed from the
CPU on which it was running and then loaded
into the new CPU to which it has been migrat-
ed. The performance of a multiprocessing sys-
tem with a naive scheduler that does not take
this cost into account can fall beneath that of a
single-processor system. The term processor
affinity describes a scheduler that only
migrates threads when necessary to give an idle
processor something to do.

A multiprocessing system may be built with
multiple processor chips. Each processor chip
may have multiple CPU cores, each of which
can execute a thread. The CPU cores on a single
processor chip share many of the processor’s
resources, such as memory caches and access to
main memory, so they are more tightly synchro-
nized than the CPUs on other processor chips.

Handling processor chips with multiple CPUs
is a derivative form of load balancing among
CPUs on different chips. It is handled by main-
taining a hierarchy of CPUs. The CPUs on the
same chip are the cheapest between which to
migrate threads. Next down in the hierarchy are
processor chips on the same motherboard.
Below them are chips connected by the same
backplane. The scheduler supports an arbitrary
depth hierarchy as dictated by the hardware.
When the scheduler is deciding on which
processor to migrate a thread, it will try to pick
a new processor higher in the hierarchy because
that is the lowest-cost migration path.

From a thread’s perspective, it does not know
that there are other threads running on the
same processor, because the processor is han-
dling them independently. The one piece of
code in the system that needs to be aware of
the multiple CPUs is the scheduling algorithm.
In particular, the scheduler treats each CPU on a
chip as one on which it is cheaper to migrate
threads than it would be to migrate the thread

1 FreeBSD Journal

THE GOAL

by Marshall

Kirk McKusick

and

Jeff Roberson

THE GOAL

Sept/Oct 2014 2

to a CPU on another chip. The mechanism for
getting tighter affinity between CPUs on the
same processor chip versus CPUs on other
processor chips is described later in this article.

The traditional FreeBSD scheduler maintains a
global list of runnable threads that it traverses
once per second to recalculate their priorities.
The use of a single list for all runnable threads
means that the performance of the scheduler is
dependent on the number of tasks in the sys-
tem, and as the number of tasks grows, more
CPU time must be spent in the scheduler main-
taining the list.

The ULE scheduler was developed during
FreeBSD 5.0 with major work continuing into
Free BSD 9.0, spanning 10 years of develop-
ment. The scheduler was developed to address
shortcomings of the traditional BSD scheduler on
multiprocessor systems. A new scheduler was
undertaken for several reasons:
• To address the need for processor affinity in
multiprocessor systems

• To supply equitable distribution of load
between CPUs on multiprocessor systems

• To provide better support for processors with
multiple CPU cores on a single chip

• To improve the performance of the scheduling
algorithm so that it is no longer dependent on
the number of threads in the system

• To provide interactivity and timesharing per-
formance similar to the traditional BSD
scheduler.
The traditional BSD scheduler had good inter-

activity on large timeshare systems and single-
user desktop and laptop systems. However, it
had a single global run queue and consequently
a single global scheduler lock. Having a single
global run queue was slowed both by con-
tention for the global lock and by difficulties
implementing CPU affinity.

The priority computation relied on a single
global timer that iterated over every runnable
thread in the system and evaluated its priority
while holding several highly contended locks.
This approach became slower as the number of
runnable threads increased. While the priority
calculations were being done, processes could
not fork() or exit() and CPU s could not context
switch.

The ULE Scheduler
The ULE scheduler can logically be thought of as
two largely orthogonal sets of algorithms; those
that manage the affinity and distribution of
threads among CPUs and those that are respon-

sible for the order and duration of a thread’s
runtime. These two sets of algorithms work in
concert to provide a balance of low latency, high
throughput, and good resource utilization. The
remainder of the scheduler is event driven and
uses these algorithms to implement various deci-
sions according to changes in system state.

The goal of equaling the exceptional interac-
tive behavior and throughput of the traditional
BSD scheduler in a multiprocessor-friendly and
constant-time implementation was the most
challenging and time-consuming part of ULE’s
development. The interactivity, CPU utilization
estimation, priority, and time slice algorithms
together implement the timeshare scheduling
policy.

The behavior of threads is evaluated by ULE
on an event-driven basis to differentiate interac-
tive and batch threads. Interactive threads are
those that are thought to be waiting for and
responding to user input. They require low laten-
cy to achieve a good user experience. Batch
threads are those that tend to consume as much
CPU as they are given and may be background
jobs. A good example of the former is a text edi-
tor, and for the latter, a compiler. The scheduler
must use imperfect heuristics to provide a gradi-
ent of behaviors based on a best guess of the
category to which a given thread fits. This cate-
gorization may change frequently during the
lifetime of a thread and must be responsive on
timescales relevant to people using the system.

The algorithm that evaluates interactivity is
called the interactivity score. The interactivity
score is the ratio of voluntary sleep time to run
time normalized to a number between 0 and
100. This score does not include time waiting on
the run queue while the thread is not yet the
highest priority thread in the queue. By requiring
explicit voluntary sleeps, we can differentiate
threads that are not running because of inferior
priority versus those that are periodically waiting
for user input. This requirement also makes it
more challenging for a thread to be marked
interactive as system load increases, which is
desirable because it prevents the system from
becoming swamped with interactive threads
while keeping things like shells and simple text
editors available to administrators. When plot-
ted, the interactivity scores derived from a matrix
of possible sleep and run times becomes a three-
dimensional sigmoid function. Using this
approach means that interactive tasks tend to
stay interactive and batch tasks tend to stay
batched.

•

Eq. 2

Eq. 1

3 FreeBSD Journal

A particular challenge is complex X Window
applications such as Web browsers and office
productivity packages. These applications may
consume significant resources for brief periods
of time; however the user expects them to
remain interactive. To resolve this issue, a sev-
eral-second history of the sleep and run behav-
ior is kept and gradually decayed. Thus, the
scheduler keeps a moving average that can tol-
erate bursts of behavior, but will quickly penal-
ize timeshare threads that abuse their elevated
status. A longer history allows longer bursts
but learns more slowly.

The interactivity score is compared to the
interactivity threshold, which is the cutoff point
for considering a thread interactive. The inter-
activity threshold is modified by the process
nice value. Positive nice values make it more
challenging for a thread to be considered inter-
active, while negative values make it easier.
Thus, the nice value gives the user some con-
trol over the primary mechanism of reducing
thread-scheduling latency.

A thread is considered to be interactive if
the ratio of its voluntary sleep time versus its
run time is below a certain threshold. The
interactivity threshold is defined in the ULE
code and is not configurable. ULE uses two
equations to compute the interactivity score of
a thread. For threads whose sleep time exceeds
their run time, Equation1 is used:

When a thread’s run time exceeds its sleep
time, Equation 2 is used instead:

The scaling factor is the maximum interactiv-
ity score divided by two. Threads that score
below the interactivity threshold are considered
to be interactive; all others are noninteractive.
The sched_interact_update() routine is called at
several points in a thread’s existence—for
example, when the thread is awakened by a
wakeup() call—to update the thread’s run time
and sleep time. The sleep- and run-time values
are only allowed to grow to a certain limit.
When the sum of the run time and sleep time
passes the limit, they are reduced to bring
them back into range. An interactive thread
whose sleep history was not remembered at all
would not remain interactive, resulting in a
poor user experience. Remembering an interac-
tive thread’s sleep time for too long would
allow the thread to get more than its fair share

of the CPU. The amount of history that is kept
and the interactivity threshold are the two val-
ues that most strongly influence a user’s inter-
active experience on the system.

Priorities are assigned according to the
thread’s interactivity status. Interactive threads
have a priority that is derived from the interac-
tivity score and are placed in a priority band
above batch threads. They are scheduled like
real-time round-robin threads. Batch threads
have their priorities determined by the estimat-
ed CPU utilization modified according to their
process nice value. In both cases, the available
priority range is equally divided among possible
interactive scores or percent-cpu calculations,
both of which are values between 0 and 100.
Since there are fewer than 100 priorities avail-
able for each class, some values share priorities.
Both computations roughly assign priorities
according to a history of CPU utilization, but
with different longevities and scaling factors.

ULE Implementation
The CPU utilization estimator accumulates run
time as a thread runs and decays it as a thread
sleeps. The utilization estimator provides the
percent-cpu values displayed in top and ps.
ULE delays the decay until a thread wakes to
avoid periodically scanning every thread in the
system. Since this delay leaves values
unchanged for the duration of sleeps, the val-
ues must also be decayed before any user
process inspects them. This approach preserves
the constant-time and event-driven nature of
the scheduler.

The CPU utilization is recorded in the thread
as the number of ticks during which a thread
has been running, along with a window of
time defined as a first and last tick (each tick is
typically 1 millisecond). The scheduler attempts
to keep roughly 10 seconds of history. To
accomplish decay, it waits until there are 11
seconds of history and then subtracts one-
tenth of the tick value while moving the first
tick forward 1 second. This inexpensive, esti-
mated moving-average algorithm has the prop-
erty of allowing arbitrary update intervals. If
the utilization information is inspected after
more than the update interval has passed, the
tick value is zeroed. Otherwise, the number of
seconds that have passed divided by the
update interval is subtracted.

The scheduler implements round-robin
through the assignment of time slices. A time
slice is a fixed interval of allowed run time
before the scheduler will select another thread

interactivity score =
scaling factor

sleep run

interactivity score =
scaling factor

run / sleep
+ scaling factor

ULE Scheduler

of equal priority to run. The time slice prevents
starvation among equal priority threads. The time
slice, times the number of runnable threads in a
given priority, defines the maximum latency a
thread of that priority will experience before it
can run. To bound this latency, ULE dynamically
adjusts the size of slices it dispenses based on sys-
tem load. The time slice has a minimum value to
prevent thrashing and balance throughput with
latency. An interrupt handler calls the scheduler
to evaluate the time slice during every statclock
tick. Using the statclock to evaluate the time slice
is a stochastic approach to slice accounting that is
efficient but only grossly accurate.

The scheduler must also work to prevent star-
vation of low-priority batch jobs by higher-priori-
ty batch jobs. The traditional BSD scheduler
avoided starvation by periodically iterating over
all threads waiting on the run queue to elevate
the low-priority threads and decrease the priority
of higher-priority threads that had been monop-
olizing the CPU. This algorithm violates the
desire to run in constant time independent of
the number of system threads. As a result, the
run queue for batch-policy timeshare threads is
kept in a similar fashion to the system callwheel,
also known as a calendar queue. A calendar
queue is one in which the queue’s head and tail
rotate according to a clock or period. An ele-
ment can be inserted into a calendar queue
many positions away from the head and gradu-
ally migrate toward the head. Because this run
queue is special purpose, it is kept separately
from the real-time and idle queues while interac-
tive threads are kept along with the real-time
threads until they are no longer considered
interactive.

The ULE scheduler creates a set of three arrays
of queues for each CPU in the system. Having
per-CPU queues makes it possible to implement

processor affinity in a multiprocessor system.
One array of queues is the idle queue, where

all idle threads are stored. The array is arranged
from highest to lowest priority. The second array
of queues is designated the real-time queue. Like
the idle queue, it is arranged from highest to
lowest priority.

Figure 1 shows how the idle and real-time
thread queues are organized as a doubly linked
list of thread structures. The head of each run
queue is kept in an array. Associated with this
array is a bit vector, rq_status, that is used in
identifying the nonempty run queues.

The third array of queues is designated the
timeshare queue. Rather than being arranged in
priority order, the timeshare queues are man-
aged as a calendar queue as shown in Figure 2.
The runq pointer references the current entry.
The runq pointer is advanced once per system
tick, although it may not advance on a tick until
the currently selected queue is empty. When
runq is incremented past the last queue, it is
reset to point at the first queue. Since each
thread is given a maximum time slice and no
threads may be added to the current position,
the queue will drain in a bounded amount of
time. This requirement to empty the queue
before advancing to the next queue means that
the wait time a thread experiences is not only a
function of its priority but also the system load.

The insq pointer references the base-point for
insertion. Insertion into the timeshare queue is
defined by the relative difference between a
thread’s priority and the best possible timeshare
priority. When a thread becomes runnable or the
currently running thread uses up its time slice, its
position in the calendar queue is calculated
using Equation 3:

Here priority is the thread’s priority (adjusted
based on its nice value) where small values rep-

0

lisp troff

ccrunq
insq

NQUEUE−1

f77 td_runq.tqe_prev

td_runq.tqe_next
thread thread

threadthread thread

thread

priority
high

low
priority

•••

run queues

Fig. 1. Queueing structure for idle and real-time priority threads Fig. 2. A timeshare calendar queue

queue index = (insq_index + priority – minimum_batch_priority) % NQUEUE

Sept/Oct 2014 4

Eq. 3

5 FreeBSD Journal

resent high priorities and large values represent
low priorities. The insq pointer is incremented
every 10 milliseconds or any time that after
runq is incremented runq and insq have the
same value. High-priority threads will be placed
soon after the current position. Low-priority
threads will be placed far from the current posi-
tion. This algorithm ensures that even the low-
est-priority timeshare thread will eventually
make it to the selected queue and execute in
spite of higher-priority timeshare threads being
available in other queues. The difference in pri-
orities of two threads will determine their ratio
of run time. The higher-priority thread may be
inserted ahead of the lower-priority thread mul-
tiple times before the queue position catches
up. This run-time ratio is what grants timeshare
CPU hogs with different nice values, different
proportional shares of the CPU.

These algorithms taken together determine
the priorities and run times of timesharing
threads. They implement a dynamic trade-off
between latency and throughput based on sys-
tem load, thread behavior, and a range of
effects based on user-scheduling decisions
made with nice. Many of the parameters gov-
erning the limits of these algorithms can be
explored in real time with the sysctl()
kern.sched tree. The rest are compile-time
constants that are documented at the top of
the scheduler source file
(/sys/kern/sched_ule.c).

Threads are picked to run, in priority order,
from the realtime queue until it is empty, at
which point threads from the currently selected
timeshare queue will be run. Threads in the idle
queues are run only when the other two arrays
of queues are empty. Real-time and interrupt
threads are always inserted into the real-time
queues so that they will have the least possible
scheduling latency. Interactive threads are also
inserted into the real-time queue to keep the
interactive response of the system acceptable.

Noninteractive threads are put into the time-
share queues and are scheduled to run when
the queues are switched. Switching the queues
guarantees that a thread gets to run at least
once every pass around the array of the time-
share queues regardless of priority, thus ensur-
ing fair sharing of the processor.

Multiprocessor Scheduling
A principal goal behind the development of ULE
was improving performance on multiprocessor
systems. Good multiprocessing performance

involves balancing affinity with utilization and
the preservation of the illusion of global sched-
uling in a system with local scheduling queues.
These decisions are implemented using a CPU
topology supplied by machine-dependent code
that describes the relationships between CPUs
in the system. The state is evaluated whenever
a thread becomes runnable, a CPU idles, or a
periodic task runs to rebalance the load. These
events form the entirety of the multiprocessor-
aware scheduling decisions.

The topology system was devised to identify
which CPUs were symmetric multi-threading
peers and then made generic to support other
relationships. Some examples are CPUs within a
package, CPUs sharing a layer of cache, CPUs
that are local to a particular memory, or CPUs
that share execution units such as in symmetric
multi-threading. This topology is implemented
as a tree of arbitrary depth where each level
describes some shared resource with a cost
value and a bitmask of CPUs sharing that
resource. The root of the tree holds CPUs in a
system with branches to each socket, then
shared cache, shared functional unit, etc. Since
the system is generic, it should be extensible to
describe any future processor arrangement.
There is no restriction on the depth of the tree
or requirement that all levels are implemented.

Parsing this topology is a single recursive
function called cpu_search(). It is a path-aware,
goal-based, tree-traversal function that may be
started from arbitrary subtrees. It may be asked
to find the least- or most-loaded CPU that
meets a given criteria, such as a priority or load
threshold. When considering load, it will con-
sider the load of the entire path, thus giving the
potential for balancing sockets, caches, chips,
etc. This function is used as the basis for all
multiprocessing-related scheduling decisions.
Typically, recursive functions are avoided in ker-
nel programming because there is potential for
stack exhaustion. However, the depth is fixed
by the depth of the processor topology that
typically does not exceed three.

When a thread becomes runnable as a result
of a wakeup, unlock, thread creation, or other
event, the sched_pickcpu() function is called to
decide where it will run. ULE determines the
best CPU based on the following criteria:

• Threads with hard affinity to a single CPU
or short-term binding pick the only allowed
CPU.
• Interrupt threads that are being scheduled by
their hardware interrupt handlers are scheduled
on the current CPU if their priority is high

ULE Scheduler

Sept/Oct 2014 6

•

enough to run immediately.
• Thread affinity is evaluated by walking back-
wards up the tree starting from the last CPU on
which it was scheduled until a package or CPU
is found with valid affinity that can run the
thread immediately.
• The whole system is searched for the least-
loaded CPU that is running a lower-priority
thread than the one to be scheduled.
• The whole system is searched for the least-
loaded CPU.
• The results of these searches are compared to
the current CPU to see if that would give a
preferable decision to improve locality among
the sleeping and waking threads as they may
share some state.

This approach orders from most preferential
to least preferential. The affinity is valid if the
sleep time of the thread was shorter than the
product of a time constant and a largest-cache-
shared level in the topology. This computation
coarsely models the time required to push state
out of the cache. Each thread has a bitmap of
allowed CPUs that is manipulated by cpuset
and is passed to cpu_search() for every deci-
sion. The locality between sleeper and waker
can improve producer/consumer type threading
situations when they have shared cache state
but it can also cause underutilization when
each thread would run faster given its own
CPU. These examples exemplify the types of
decisions that must be made with imperfect
information.

The next major multiprocessing algorithm
runs when a CPU idles. The CPU sets a bit in a
bitmask shared by all processors that says that
it is idle. The idle CPU calls tdq_idled() to search
other CPUs for work that can be migrated, or
stolen in ULE terms, to keep the CPU busy. To
avoid thrashing and excessive migration, the
kernel sets a load threshold that must be
exceeded on another CPU before some load
will be taken. If any CPU exceeds this thresh-
old, the idle CPU will search its run queues for
work to migrate. The highest-priority work that
can be scheduled on the idle CPU is then
taken. This migration may be detrimental to
affinity but improves many latency-sensitive
workloads.

Work may also be pushed to an idle CPU.
Whenever an active CPU is about to add work
to its own run queue, it first checks to see if it
has excess work and if another CPU in the sys-
tem is idle. If an idle CPU is found, then the
thread is migrated to the idle CPU using an
interprocessor interrupt (IPI). Making a

migration decision by inspecting a shared bit-
mask is much faster than scanning the run
queues of all the other processors. Seeking out
idle processors when adding a new task works
well because it spreads the load when it is pre-
sented to the system.

The last major multiprocessing algorithm is
the long-term load balancer. This form of
migration, called push migration, is done by
the system on a periodic basis and more
aggressively offloads work to other processors
in the system. Since the two scheduling events
that distribute load only run when a thread is
added and when a CPU idles, it is possible to
have a long-term imbalance where more
threads are running on one CPU than another.
Push migration ensures fairness among the
runnable threads. For example, with three
runnable threads on a two-processor system, it
would be unfair for one thread to get a proces-
sor to itself while the other two had to share
the second processor. To fulfill the goal of emu-
lating a fair global run queue, ULE must period-
ically shuffle threads to keep the system bal-
anced. By pushing a thread from the processor
with two threads to the processor with one
thread, no single thread would get to run alone
indefinitely. An ideal implementation would
give each thread an average of 66 percent of
the CPU available from a single CPU.

The long-term load balancer balances the
worst path pair in the hierarchy to avoid sock-
et-, cache-, and chip-level imbalances. It runs
from an interrupt handler in a randomized
interval of roughly 1 second. The interval is ran-
domized to prevent harmonic relationships
between periodic threads and the periodic load
balancer. In much the same way a stochastic
sampling profiler works, the balancer picks the
most- and least-loaded path from the current
tree position and then recursively balances
those paths by migrating threads.

The scheduler must decide whether it is nec-
essary to send an IPI when adding a thread to a
remote CPU, just as it must decide whether
adding a thread to the current CPU should pre-
empt the current thread. The decision is made
based on the current priority of the thread run-
ning on the target CPU and the priority of the
thread being scheduled. Preempting whenever
the pushed thread has a higher priority than the
currently running thread results in excessive
interrupts and preemptions. Thus, a thread must
exceed the timesharing priority before an IPI is
generated. This requirement trades some latency
in batch jobs for improved performance.

A notable omission to the load balancing
events is thread preemption. Preempted
threads are simply added back to the run
queue of the current CPU. An additional load-
balancing decision can be made here.
However, the run-time of the preempting
thread is not known and the preempted
thread may maintain affinity. The scheduler
optimistically chooses to wait and assume
affinity is more valuable than latency.

Each CPU in the system has its own set of
run queues, statistics, and a lock to protect
these fields in a thread-queue structure.
During migration or a remote wakeup, a lock
may be acquired by a CPU other than the one
owning the queue. In practice, contention on
these locks is rare unless the workload
exhibits grossly overactive context switching
and thread migration, typically suggesting a
higher-level problem. Whenever a pair of
these locks is required, such as for load bal-
ancing, a special function locks the pair with a
defined lock order. The lock order is the lock
with the lowest pointer value first. These per-

CPU locks and queues resulted in nearly linear
scaling with well-behaved workloads in cases
where performance previously did not
improve with the addition of new CPUs and
occasionally have decreased as new CPUs
introduced more contention. The design has
scaled well from single CPUs to 512-thread
network processors.

Adaptive Idle
Many workloads feature frequent interrupts
that do little work but need low latency.
These workloads are common in low-through-
put, high-packet-rate networking. For these
workloads, the cost of waking the CPU from a
low-power state, possibly with an IPI from
another CPU, is excessive. To improve per-
formance, ULE includes a feature that opti-
mistically spins, waiting for load when the
CPU has been context switching at a rate
exceeding a set frequency. When this frequen-
cy lowers or we exceed the adaptive spin
count, the CPU is put into a deeper sleep. •

7 FreeBSD Journal

This article is based on the discussion of the ULE scheduler in Chapter 4 of The Design and Implementation of the Free-

BSD Operating System, Second Edition. The material from that chapter is used with the permission of Pearson Education.

MARSHALL KIRK MCKUSICK writes books and articles, con-
sults, and teaches classes on Unix- and BSD-related subjects.
While at the University of California at Berkeley, he imple-
mented the 4.2BSD fast file system and was the Research
Computer Scientist at the Berkeley Computer Systems
Research Group (CSRG), overseeing the development and
release of 4.3BSD and 4.4BSD. His particular areas of interest
are the virtual-memory system and the filesystem.
In his spare time, he enjoys swimming, scuba diving, and

wine collecting. The wine is stored in a specially constructed
wine cellar (accessible from the Web at
http://www.McKusick.com/cgi-bin/readhouse) in the base-
ment of the house that he shares with Eric Allman, his partner
of 35-and-some-odd years and husband since 2013.
You can contact him via email at <mckusick@mckusick.com>.

JEFF ROBERSON is a consultant who lives on the island of
Maui in the Hawaiian island chain. When he is not cycling, hik-
ing, or otherwise enjoying the island, he gets paid to improve
FreeBSD. He is particularly interested in problems facing serv-
er installations and has worked on areas as varied as the ker-
nel memory allocator, thread scheduler, filesystems inter-
faces, and network packet storage among others.
You can contact him via email at <jroberson@jroberson.net>.

ULE Scheduler

