
A Scalable Concurrent malloc(3) Implementation for FreeBSD

Jason Evans <jasone@FreeBSD.org>

April 16, 2006

Abstract
The FreeBSD project has been engaged in ongoing work to provide scalable support for multi-processor
computer systems since version 5. Sufficient progress has been made that the C library’s malloc(3)
memory allocator is now a potential bottleneck for multi-threaded applications running on multi-
processor systems. In this paper, I present a new memory allocator that builds on the state of the
art to provide scalable concurrent allocation for applications. Benchmarks indicate that with this al-
locator, memory allocation for multi-threaded applications scales well as the number of processors in-
creases. At the same time, single-threaded allocation performance is similar to the previous allocator
implementation.

Introduction
FreeBSD’s previous malloc(3) implementation by Kamp (1998), commonly referred to as phkmalloc,
has long been considered one of the best available, and has fared well in published comparisons (Feng
and Berger, 2005; Berger et al., 2000; Bohra and Gabber, 2001). However, it was designed at a time
when multi-processor systems were rare, and support for multi-threading was spotty. The FreeBSD
project is engaged in an ongoing effort to provide scalable performance on SMP systems, and has
made sufficient progress that malloc(3) had become a scalability bottleneck for some multi-threaded
applications. This paper presents a new malloc(3) implementation, informally referred to here as
jemalloc.

On the surface, memory allocation and deallocation appears to be a simple problem that merely re-
quires a bit of bookkeeping in order to keep track of in-use versus available memory. However, decades
of research and scores of allocator implementations have failed to produce a clearly superior allocator.
In fact, the best known practices for measuring allocator performance are remarkably simplistic, as are
the summary statistics for measured performance. Wilson et al. (1995) provide an excellent review of
the state of the art as of a decade ago. Multi-processors were not a significant issue then, but otherwise
the review provides a thorough summary of the issues that face modern allocators. Following are brief
mentions of various issues that particularly impact jemalloc, but no attempt is made to discuss all of
the issues that must be considered when designing an allocator.

Allocator performance is typically measured via some combination of application execution time and
average or peak application memory usage. It is not sufficient to measure the time consumed by the
allocator code in isolation. Memory layout can have a significant impact on how quickly the rest of the
application runs, due to the effects of CPU cache, RAM, and virtual memory paging. It is now commonly
accepted that synthetic traces are not even adequate for measuring the effects of allocation policy on
fragmentation (Wilson et al., 1995). The only definitive measures of allocator performance are attained
by measuring the execution time and memory usage of real applications. This poses challenges when
qualifying the performance characteristics of allocators. Consider that an allocator might perform very
poorly for certain allocation patterns, but if none of the benchmarked applications manifest any such
patterns, then the allocator may appear to perform well, despite pathological performance for some
work loads. This makes testing with a wide variety of applications important. It also motivates an
approach to allocator design that minimizes the number and severity of degenerate edge cases.

Fragmentation can be thought of in terms of internal fragmentation and external fragmentation.
Internal fragmentation is a measure of wasted space that is associated with individual allocations, due

1



to unusable leading or trailing space. External fragmentation is a measure of space that is physically
backed by the virtual memory system, yet is not being directly used by the application. These two
types of fragmentation have distinct characteristic impacts on performance, depending on application
behavior. Ideally, both types of fragmentation would be minimal, but allocators have to make some
tradeoffs that impact how much of each type of fragmentation occurs.

RAM has become dramatically cheaper and more plentiful over the past decade, so whereas phk-
malloc was specially optimized to minimize the working set of pages, jemalloc must be more concerned
with cache locality, and by extension, the working set of CPU cache lines. Paging still has the potential
to cause dramatic performance degradation (and jemalloc doesn’t ignore this issue), but the more com-
mon problem now is that fetching data from RAM involves huge latencies relative to the performance
of the CPU.

An allocator that uses less memory than another does not necessarily exhibit better cache locality,
since if the application’s working set does not fit in cache, performance will improve if the working set is
tightly packed in memory. Objects that are allocated close together in time tend also to be used together,
so if the allocator can allocate objects contiguously, there is the potential for locality improvement. In
practice, total memory usage is a reasonable proxy for cache locality; jemalloc first tries to minimize
memory usage, and tries to allocate contiguously only when it doesn’t conflict with the first goal.

Modern multi-processor systems preserve a coherent view of memory on a per-cache-line basis. If
two threads are simultaneously running on separate processors and manipulating separate objects that
are in the same cache line, then the processors must arbitrate ownership of the cache line (Figure 1).
This false cache line sharing can cause serious performance degradation. One way of fixing this issue
is to pad allocations, but padding is in direct opposition to the goal of packing objects as tightly as
possible; it can cause severe internal fragmentation. jemalloc instead relies on multiple allocation
arenas to reduce the problem, and leaves it up to the application writer to pad allocations in order to
avoid false cache line sharing in performance-critical code, or in code where one thread allocates objects
and hands them off to multiple other threads.

cache line

allocatedallocated

CPU 0 CPU 1

Thread A Thread B Thread C

Figure 1: Two allocations that are used by separate threads share the same line in the physical memory
cache (false cache sharing). If the threads concurrently modify the two allocations, then the processors
must fight over ownership of the cache line.

One of the main goals for this allocator was to reduce lock contention for multi-threaded applications
running on multi-processor systems. Larson and Krishnan (1998) did an excellent job of presenting and
testing strategies. They tried pushing locks down in their allocator, so that rather than using a single

2



allocator lock, each free list had its own lock. This helped some, but did not scale adequately, despite
minimal lock contention. They attributed this to “cache sloshing” – the quick migration of cached
data among processors during the manipulation of allocator data structures. Their solution was to
use multiple arenas for allocation, and assign threads to arenas via hashing of the thread identifiers
(Figure 2). This works quite well, and has since been used by other implementations (Berger et al.,
2000; Bonwick and Adams, 2001). jemalloc uses multiple arenas, but uses a more reliable mechanism
than hashing for assignment of threads to arenas.

Thread A Thread B Thread C Thread D Thread E

Arena 0 Arena 1 Arena 2 Arena 3

Figure 2: Larson and Krishnan (1998) hash thread identifiers in order to permanently assign threads to
arenas. This is a pseudo-random process, so there is no guarantee that arenas will be equally utilized.

The rest of this paper describes the primary jemalloc algorithms and data structures, presents
benchmarks that measure performance and scalability of multi-threaded applications on a multi-
processor system, as well as performance and memory usage of single-threaded applications, and dis-
cusses measurement of memory fragmentation.

Algorithms and data structures
FreeBSD supports run-time configuration of the allocator via the /etc/malloc.conf symbolic link,
the MALLOCOPTIONSenvironment variable, or the malloc options global variable. This provides
for a low-overhead, non-intrusive configuration mechanism, which is useful both for debugging and
performance tuning. jemalloc uses this mechanism to support the various debugging options that
phkmalloc supported, as well as to expose various performance-related parameters.

Each application is configured at run-time to have a fixed number of arenas. By default, the number
of arenas depends on the number of processors:

Single processor: Use one arena for all allocations. There is no point in using multiple arenas, since
contention within the allocator can only occur if a thread is preempted during allocation.

Multiple processors: Use four times as many arenas as there are processors. By assigning threads
to a set of arenas, the probability of a single arena being used concurrently decreases.

The first time that a thread allocates or deallocates memory, it is assigned to an arena. Rather than
hashing the thread’s unique identifier, the arena is chosen in round-robin fashion, such that arenas

3



are guaranteed to all have had approximately the same number of threads assigned to them. Reliable
pseudo-random hashing of thread identifiers (in practice, the identifiers are pointers) is notoriously
difficult, which is what eventually motivated this approach. It is still possible for threads to contend
with each other for a particular arena, but on average, it is not possible to do initial assignments any
better than round-robin assignment. Dynamic re-balancing could potentially decrease contention, but
the necessary bookkeeping would be costly, and would rarely be sufficiently beneficial to warrant the
overhead.

Thread-local storage (TLS) is important to the efficient implementation of round-robin arena as-
signment, since each thread’s arena assignment needs to be stored somewhere. Non-PIC code and
some architectures do not support TLS, so in those cases, the allocator uses thread identifier hash-
ing. The thread-specific data (TSD) mechanism that is provided by the pthreads library (Butenhof,
1997) would be a viable alternative to TLS, except that FreeBSD’s pthreads implementation allocates
memory internally, which would cause infinite recursion if TSD were used by the allocator.

All memory that is requested from the kernel via sbrk(2) or mmap(2) is managed in multiples
of the “chunk” size, such that the base addresses of the chunks are always multiples of the chunk
size (Figure 3). This chunk alignment of chunks allows constant-time calculation of the chunk that is
associated with an allocation. Chunks are usually managed by particular arenas, and observing those
associations is critical to correct function of the allocator. The chunk size is 2 MB by default.

0x00000000

0x00200000

0x00400000

0x00600000

0x00800000

0x00a00000

0x00c00000

0x00e00000

0x01000000

0x01200000

0x01400000

0x01600000

0x01800000

0x01a00000

0x01c00000

0x01e00000

0x02000000

unusable

huge

arena

arena

arena

arena

huge (cont.)

huge (cont.)

unusable

huge

arena

unusable

huge

unused

arena

arena

Figure 3: Chunks are always the same size, and start at chunk-aligned addresses. Arenas carve chunks
into smaller allocations, but huge allocations are directly backed by one or more contiguous chunks.

Allocation size classes fall into three major categories: small, large, and huge. All allocation re-
quests are rounded up to the nearest size class boundary. Huge allocations are larger than half of a
chunk, and are directly backed by dedicated chunks. Metadata about huge allocations are stored in a
single red-black tree. Since most applications create few if any huge allocations, using a single tree is
not a scalability issue.

For small and large allocations, chunks are carved into page runs using the binary buddy algorithm.
Runs can be repeatedly split in half to as small as one page, but can only be coalesced in ways that

4



reverse the splitting process. Information about the states of the runs is stored as a page map at the
beginning of each chunk. By storing this information separately from the runs, pages are only ever
touched if they are used. This also enables the dedication of runs to large allocations, which are larger
than half of a page, but no larger than half of a chunk.

Small allocations fall into three subcategories: tiny, quantum-spaced, and sub-page. Modern archi-
tectures impose alignment constraints on pointers, depending on data type. malloc(3) is required
to return memory that is suitably aligned for any purpose. This worst case alignment requirement is
referred to as the quantum size here (typically 16 bytes). In practice, power-of-two alignment works for
tiny allocations since they are incapable of containing objects that are large enough to require quantum
alignment. Figure 4 shows the size classes for all allocation sizes.

Category Subcategory Size
Small Tiny 2 B

4 B
8 B

Quantum-spaced 16 B
32 B
48 B
. . .

480 B
496 B
512 B

Sub-page 1 kB
2 kB

Large 4 kB
8 kB

16 kB
. . .

256 kB
512 kB

1 MB
Huge 2 MB

4 MB
6 MB

. . .

Figure 4: Default size classes, assuming runtime defaults, 4 kB pages and a 16 byte quantum.

It would be simpler to have no subcategories for small allocations by doing away with the quantum-
spaced size classes. However, most applications primarily allocate objects that are smaller than 512
bytes, and quantum spacing of size classes substantially reduces average internal fragmentation. The
larger number of size classes can cause increased external fragmentation, but in practice, the reduced
internal fragmentation usually more than offsets increased external fragmentation.

Small allocations are segregated such that each run manages a single size class. A region bitmap is
stored at the beginning of each run, which has several advantages over other methods:

• The bitmap can be quickly scanned for the first free region, which allows tight packing of in-use
regions.

• Allocator data and application data are separate. This reduces the likelihood of the application
corrupting allocator data. This also potentially increases application data locality, since allocator
data are not intermixed with application data.

• Tiny regions can be easily supported. This would be more difficult if, for example, a free list were
embedded in the free regions.

There is one potential issue with run headers: they use space that could otherwise be directly used
by the application. This could cause significant external fragmentation for size classes that are larger

5



than the run header size. In order to limit external fragmentation, multi-page runs are used for all but
the smallest size classes. As a result, for the largest of the small size classes (usually 2 kB regions),
external fragmentation is limited to approximately 3%.

Since each run is limited in how many regions it can manage, there must be provisions for multiple
runs of each size class. At any given time, there is at most one “current” run for each size class. The
current run remains current until it either completely fills or completely empties. Consider though
that it would be possible for a single malloc/free to cause the creation/destruction of a run if there were
no hysteresis mechanism. To avoid this, runs are categorized according to fullness quartile, and runs
in the QINIT category are never destroyed. In order for a run to be destroyed, it must first be promoted
to a higher fullness category (Figure 5).

Fullness categories also provide a mechanism for choosing a new current run from among non-full
runs. The order of preference is: Q50, Q25, Q0, then Q75. Q75 is the last choice because such runs may
be almost completely full; routinely choosing such runs can result in rapid turnover for the current
run.

Delete

QINIT

Q0

Q25

Q50

Q75

Q100

0 25 50 75 100

Percent of regions in use

Fu
lln

es
s 

st
at

e

Figure 5: Runs are categorized according to fullness, and transition between states as fullness in-
creases/decreases past various thresholds. Runs start in the QINIT state, and are deleted when they
become empty in the Q0 state.

Experiments
In order to quantify the scalability of jemalloc as compared to phkmalloc, I ran two multi-threaded
benchmarks and five single-threaded benchmarks on a four-processor system (dual-dual Opteron 275),
using FreeBSD-CURRENT/amd64 (April 2006). I investigated several other thread-safe allocators
before performing the benchmarks, but ultimately only included Doug Lea’s dlmalloc, due to various
portability issues. I modified dlmalloc, version 2.8.3, so that I was able to integrate it into a custom libc
that included libc-based spinlock synchronization, just as phkmalloc and jemalloc use. All benchmarks
were invoked using the LD PRELOADloader mechanism in order to choose which allocator implementa-
tion was used. libthr was used rather than libpthread for all benchmarks, since there was a thread

6



switching performance issue in libpthread that had not been resolved as of the time this paper was
written.

It should be noted that dlmalloc is not intended as a scalable allocator for threaded programs.
It is included in all benchmarks for completeness, but the primary reason for including it in these
experiments was for the single-threaded benchmarks.

Multi-threaded benchmarks
malloc-test

malloc-test is a microbenchmark that was created by Lever and Boreham (2000) to measure the
upper bound on allocator scalability for multi-threaded applications. The benchmark executes a tight
allocation/deallocation loop in one or more threads. On a multi-processor system, allocator throughput
will ideally scale linearly as the number of threads increases to match the number of processors, then
remain constant as the number of threads continues to increase. Figure 6 shows the results.

5 10 15 20

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06
5e

+
06

1e
+

07
2e

+
07

Threads

A
llo

ca
tio

ns
/s

ec
on

d

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06
5e

+
06

1e
+

07
2e

+
07

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06
5e

+
06

1e
+

07
2e

+
07

1e
+

05
2e

+
05

5e
+

05
1e

+
06

2e
+

06
5e

+
06

1e
+

07
2e

+
07

jemalloc

dlmalloc

phkmalloc

Figure 6: Allocator throughput, measured in allocations/second, for increasing numbers of threads. Each
run performs a total of 40,000,000 allocation/deallocation cycles, divided equally among threads, creating
one 512-byte object per cycle. All configurations are replicated three times, and the results are summa-
rized by box plots, where the central lines denote the medians and the whiskers represent the most
extreme values measured.

phkmalloc and dlmalloc suffer severe performance degradation if more than one thread is used,
and performance continues to degrade dramatically as the number of threads increases. No results
are presented for more than ten threads for these allocators, due to to the extremely long run times
required.

jemalloc scales almost perfectly up to four threads, then remains relatively constant above four
threads, with an interesting exception above sixteen threads. jemalloc uses sixteen arenas by default

7



on a four-processor system, so contention is minimal until at least seventeen threads are running.
Above sixteen threads, some threads contend over arenas, and once the other threads finish, those that
are contending for arenas exhibit worst case performance until they complete.

super-smack

The second multi-threaded benchmark uses a database load testing tool called Super Smack (http:
//vegan.net/tony/supersmack/ ), version 1.3, that runs one or more client threads that access a
server — MySQL 5.0.18 in this case. Super Smack comes with two pre-configured load tests, and I
used one of them (select-key.smack ). Each run of super-smack performed approximately 200,000
queries, divided equally among client threads.

Results are summarized in Figure 7. When jemalloc is used, performance degrades gracefully as
the number of client threads increases, and variability is low, especially for worst case performance.
When phkmalloc is used, median performance is typically about the same as for jemalloc, but worst
case performance variability is extreme. Additionally, there is a sudden dramatic drop in performance
between 75 and 80 client threads. dlmalloc performs well on average, but as with phkmalloc, worst
case variability is extreme.

20 40 60 80 100

15
00

0
20

00
0

25
00

0
30

00
0

Clients

Q
ue

rie
s/

se
co

nd

15
00

0
20

00
0

25
00

0
30

00
0

5 10 20 30 40 50 60 70 80 90 100

15
00

0
20

00
0

25
00

0
30

00
0

15
00

0
20

00
0

25
00

0
30

00
0

dlmalloc
jemalloc
phkmalloc

Figure 7: MySQL query throughput, measured in queries/second, for increasing numbers of client
threads. A total of approximately 100,000 queries are performed during each run, divided evenly among
client threads. All configurations are replicated ten times, and the results are summarized by box plots.

8

http://vegan.net/tony/supersmack/
http://vegan.net/tony/supersmack/


Single-threaded benchmarks
I performed benchmarks of five single-threaded programs. These benchmarks should be taken with a
grain of salt in general, since I had to search pretty far and wide to find repeatable tests that showed
significant run time differences. The run times of most real programs simply do not depend signifi-
cantly on malloc performance. Additionally, programs that make heavy use of networks or filesystems
tend to be subject to high variability in run times, which requires many replicates when assessing sig-
nificance of results. As a result, there is an inherent selection bias here, and these benchmarks should
not be interpreted to be representative of any particular class of programs.

Figure 8 summarizes the results for the single-threaded benchmarks. More details about the bench-
marks follows.

cca cfrac gs sh6bench smlng

R
un

 ti
m

e
(m

ea
n,

 n
or

m
al

iz
ed

)

0.
0

0.
4

0.
8

cca cfrac gs sh6bench smlng

M
ax

. r
es

. m
em

.
(m

ea
n,

 n
or

m
al

iz
ed

)

0.
0

0.
4

0.
8

dlmalloc
phkmalloc
jemalloc

Figure 8: Scaled run time and maximum resident memory usage for five single-threaded programs. Each
graph is linearly scaled such that the maximum value is 1.0.

cca

cca is a Perl script that makes heavy use of regular expressions to extract cpp logic from C code, and
generate various statistics and a PostScript graph of the cpp logic. For these experiments, I concate-
nated all .c and .h files from FreeBSD’s libc library, and used the resulting file as input to cca . I
used version 5.8.8 of Perl from the ports tree, and compiled it to use the system malloc. Following is a
summary of three replicates (also see Figure 8):

cca dlmalloc phkmalloc jemalloc
Run time (mean) 72.88 s 77.73 s 69.37 s
Max. res. mem. (mean) 11244 kB 10681 kB 11045 kB

9



cfrac

cfrac is a C program that factors large numbers. It is included with the Hoard memory allocator
(http://www.cs.umass.edu/˜emery/hoard/ ). I used 47582602774358115722167492755475367767
as input. Following is a summary of ten replicates (also see Figure 8):

cfrac dlmalloc phkmalloc jemalloc
Run time (mean) 9.57 s 11.45 s 10.55 s
Max. res. mem. (mean) 2105 kB 2072 kB 2064 kB

cfrac overwhelmingly allocates 16- and 32-byte objects, but its overall memory usage is not high.
dlmalloc likely uses slightly more memory than the other allocators due to higher internal fragmenta-
tion for small objects.

gs

gs (GhostScript) is a PostScript interpreter. I used AFPL GhostScript 8.53 from the ports tree. I used
a 37 MB input file, and ran gs as:

gs -dBATCH -dNODISPLAY PS3.ps

Following is a summary of three replicates (also see Figure 8):

gs dlmalloc phkmalloc jemalloc
Run time (mean) 31.06 s 42.48 s 34.24 s
Max. res. mem. (mean) 15001 kB 15464 kB 15616 kB

gs overwhelmingly allocates either 240-byte objects or large objects, since it uses a custom allocator
internally. As a result, this benchmark stresses performance of large object allocation.

phkmalloc appears to suffer system call overhead due to the large memory usage fluctuations,
whereas the other allocators have more hysteresis built in, which reduces the total number of sys-
tem calls. jemalloc does not perform quite as well as dlmalloc because of the additional overhead of
managing runs, as opposed to merely calling mmap() .

sh6bench

sh6bench is a microbenchmark by MicroQuill, available for download from their website (http://
www.microquill.com/ ). This program repeatedly allocates groups of equal-size objects, retaining
some portion of the objects from each cycle, and freeing the rest, in various orders. The number of
objects in each group is larger for small objects than for large objects, so that there is a bias toward
allocating small objects.

I modified sh6bench to call memset() immediately after each malloc() call, in order to assure
that all allocated memory was touched. For each run, sh6bench was configured to do 2500 iterations,
for object sizes ranging from 1 to 1000. Following is a summary of ten replicates (also see Figure 8):

sh6bench dlmalloc phkmalloc jemalloc
Run time (mean) 3.35 s 6.96 s 4.50 s
Max. res. mem. (mean) 105467 kB 90047 kB 63314 kB

The fact that allocations aren’t actually used for anything in this microbenchmark penalizes je-
malloc as compared to dlmalloc. jemalloc has to touch the per-run region bitmap during every alloca-
tion/deallocation, so if the application does not make significant use of the allocation, jemalloc suffers
decreased cache locality. In practice, it is unrealistic to allocate memory and only access it once. jemal-
loc can actually improve cache locality for the application, since its bitmap does not spread out regions
like the region headers do for dlmalloc.

As mentioned in the introduction, synthetic traces are not very useful for measuring allocator per-
formance, and sh6bench is no exception. It is difficult to know what to make of the huge differences
in memory usage among the three allocators.

10

http://www.cs.umass.edu/~emery/hoard/
http://www.microquill.com/
http://www.microquill.com/


smlng

smlng is an Onyx (http://www.canonware.com/onyx/ ) program. It implements an SML/NG parser
and optimizer, for the ICFP 2001 Programming Contest (http://cristal.inria.fr/ICFP2001/
prog-contest/ ). I used a single-threaded build of Onyx-5.1.2 for this benchmark. For input, I re-
peatedly concatenated various SML/NG examples and test cases to create a 513 kB file. Following is a
summary of ten replicates (also see Figure 8):

smlng dlmalloc phkmalloc jemalloc
Run time (mean) 12.65 s 13.89 s 11.49 s
Max. res. mem. (mean) 71987 kB 93320 kB 65772 kB

jemalloc appears to use less memory than phkmalloc because the predominantly used size classes
are not all powers of two: 16, 48, 96, and 288. jemalloc also appears to do a good job of recycling
regions as memory use fluctuates, whereas dlmalloc experiences some external fragmentation due to
the allocation pattern.

Analysis
Exhaustive benchmarking of allocators is not feasible, and the benchmark results should not be inter-
preted as definitive in any sense. Allocator performance is highly sensitive to application allocation
patterns, and it is possible to construct microbenchmarks that show any of the three allocators tested
here in either a favorable or unfavorable light, at the benchmarker’s whim. I made every attempt to
avoid such skewing of results, but my objectivity should not be assumed by the reader. That said, the
benchmarks should be sufficient to convince the reader of at least the following:

• jemalloc’s run time performance scales well for multi-threaded programs running on multi-processor
systems.

• jemalloc exhibits similar performance to phkmalloc and dlmalloc for single-threaded programs,
both in terms of run time and memory usage.

In point of fact, jemalloc performed very well for the presented benchmarks, and I have found no
reasons to suspect that jemalloc would perform substantially worse than phkmalloc or dlmalloc for
anything but specially crafted microbenchmarks.

None of the benchmarks were designed to measure performance under memory pressure. Such
benchmarks would be of interest, but I did not include them here mainly because phkmalloc has been
shown to perform well under memory pressure (Kamp, 1998; Feng and Berger, 2005), and jemalloc
uses sufficiently similar algorithms that it should exhibit similar performance.

Fragmentation was quite difficult to analyze, since it is mainly a qualitative issue, and standard
tools only provide quantitative metrics. Maximum resident memory usage results are only moder-
ately useful when analyzing fragmentation, since differences between allocators indicate differences
in fragmentation at the point of maximum memory utilization. Obviously, an allocator could cause
much worse data locality for the application without having a substantial impact on maximum resi-
dent memory usage.

In order to better understand fragmentation, I wrote a program that processes kdump(1) output
that was generated by using the “U” malloc(3) option in conjunction with ktrace(1) . An example
graph is shown in Figure 9. With this program I was able to observe the effects of various layout
policies, and as a result jemalloc uses memory much more effectively than in earlier development
versions.

Understanding allocator performance for various allocation patterns is a constant challenge. Mech-
anisms for gaining insight into what the allocator is actually doing are important both during allocator
development and application development. To this end, jemalloc outputs detailed statistics at exit if
optional code is enabled at libc compile time, and if the “P” malloc(3) option is specified. Following is
output from running the cca benchmark. Detailed interpretation is left to the reader who is interested
enough to read the allocator source code. However, most of the statistics should have obvious meanings
after having read this paper.

11

http://www.canonware.com/onyx/
http://cristal.inria.fr/ICFP2001/prog-contest/
http://cristal.inria.fr/ICFP2001/prog-contest/


___ Begin malloc statistics ___
Number of CPUs: 4
Number of arenas: 16
Chunk size: 2097152 (2ˆ21)
Quantum size: 16 (2ˆ4)
Max small size: 512
Pointer size: 8
Assertions enabled
Allocated: 7789600, space used: 14680064

chunks:
nchunks highchunks curchunks

1279 7 7

huge:
nmalloc ndalloc allocated

0 0 0

arenas[0] statistics:
allocated: 7789600
calls:

nmalloc ndalloc nmadvise
76908219 76890620 0

large requests: 10681
bins:

bin size nregs run_sz nrequests nruns hiruns curruns npromo ndemo
0 T 2 1892 4096 184 1 1 1 0 0
1 T 4 946 4096 2824 1 1 1 1 0
2 T 8 985 8192 64656199 9318 21 14 201961 319453
3 Q 16 1004 16384 5431302 169 3 2 12121 16369
4 Q 32 1014 32768 2058948 1 1 1 3 0
5 Q 48 1358 65536 4518045 4 4 4 1827 1889
6 Q 64 1019 65536 101063 2 2 2 7 1
7 Q 80 815 65536 53401 1 1 1 0 0
8 Q 96 679 65536 55408 2 2 2 5 1
9 Q 112 582 65536 609 1 1 1 0 0

10 Q 128 509 65536 5261 1 1 1 0 0
11 Q 144 452 65536 3564 1 1 1 0 0
12 Q 160 407 65536 1206 1 1 1 0 0
13 Q 176 370 65536 326 1 1 1 0 0
14 Q 192 339 65536 549 1 1 1 0 0
15 Q 208 313 65536 100 1 1 1 0 0
16 Q 224 291 65536 53 1 1 1 0 0
17 Q 240 271 65536 90 1 1 1 0 0
18 Q 256 254 65536 58 1 1 1 0 0
19 Q 272 239 65536 7550 1 1 1 0 0
20 Q 288 226 65536 44 1 1 1 0 0
21 Q 304 214 65536 52 1 1 1 0 0
22 Q 320 203 65536 36 1 1 1 0 0
23 Q 336 194 65536 38 1 1 1 0 0
24 Q 352 185 65536 26 1 1 1 0 0
25 Q 368 177 65536 49 1 1 1 0 0
26 Q 384 169 65536 16 1 1 1 0 0
27 Q 400 163 65536 36 1 1 1 0 0
28 Q 416 156 65536 13 1 1 1 0 0
29 Q 432 150 65536 19 1 1 1 0 0
30 Q 448 145 65536 19 1 1 1 0 0
31 Q 464 140 65536 12 1 1 1 0 0
32 Q 480 135 65536 29 1 1 1 0 0
33 Q 496 131 65536 45 1 1 1 0 0
34 Q 512 127 65536 14 1 1 1 0 0
35 S 1024 63 65536 230 1 1 1 0 0
36 S 2048 31 65536 120 1 1 1 3 0

--- End malloc statistics ---

12



Figure 9: Graph of memory usage on amd64 when running the smlng benchmark. Each position along
the horizontal axis represents a snapshot of memory at an instant in time, where time is discretely
measured in terms of allocation events. Each position along the vertical axis represents a memory range,
and the color indicates what proportion of that memory range is in use.

Discussion
One of the constant frustrations when developing jemalloc was the observation that even seemingly
innocuous additional features, such as the maintenance of a per-arena counter of total allocated mem-
ory, or any division, caused measurable performance degradation. The allocator started out with many
more features than it ended up with. Removed features include:

• malloc stats np() . Just adding a per-arena counter of total allocated memory has a measur-
able performance impact. As a result, all statistics gathering is disabled by default at build time.
Since the availability of statistics isn’t a given, a C API isn’t very useful.

• Various sanity checks. Even simple checks are costly, so only the absolute minimum checks that
are necessary for API compliance are implemented by default.

On a more positive note, the runtime allocator configuration mechanism has proven to be highly flexi-
ble, without causing a significant performance impact.

Allocator design and implementation has strong potential as the subject of career-long obsession,
and indeed there are people who focus on this subject. Part of the allure is that no allocator is superior

13



for all possible allocation patterns, so there is always fine tuning to be done as new software introduces
new allocation patterns. It is my hope that jemalloc will prove adaptable enough to serve FreeBSD for
years to come. phkmalloc has served FreeBSD well for over a decade; jemalloc has some big shoes to
fill.

Availability
The jemalloc source code is part of FreeBSD’s libc library, and is available under a two-clause BSD-like
license. Source code for the memory usage graphing program that was used to generate Figure 9 is
available upon request, as are the benchmarks.

Acknowledgments
Many people in the FreeBSD community provided valuable help throughout this project, not all of
whom are listed here. Kris Kennaway performed extensive stability and performance testing for sev-
eral versions of jemalloc, which uncovered numerous issues. Peter Wemm provided optimization ex-
pertise. Robert Watson provided remote access to a four-processor Opteron system, which was useful
during early benchmarking. Mike Tancsa donated computer hardware when my personal machine fell
victim to an electrostatic shock. The FreeBSD Foundation generously funded my travel so that I could
present this work at BSDcan 2006. Aniruddha Bohra provided data that were used when analyzing
fragmentation. Poul-Henning Kamp provided review feedback that substantially improved this paper.
Finally, Rob Braun encouraged me to take on this project, and was supportive throughout.

References
Berger ED, McKinley KS, Blumofe RD, Wilson PR (2000) Hoard: A Scalable Memory Allocator for

Multithreaded Applications. ASPLOS 2000

Bohra A, Gabber E (2001) Are Mallocs Free of Fragmentation? In USENIX 2001 Annual Technical
Conference: FREENIX Track

Bonwick J, Adams J (2001) Magazines and Vmem: Extending the Slab Allocator to Many CPUs and
Arbitrary Resources. In Proceedings of the 2001 USENIX Annual Technical Conference

Butenhof DR (1997) Programming with POSIX Threads. Addison–Wesley, Reading, Massachusetts

Feng Y, Berger ED (2005) A Locality-Improving Dynamic Memory Allocator. MSP

Kamp PH (1998) Malloc(3) revisited. In USENIX 1998 Annual Technical Conference: Invited Talks
and FREENIX Track, 193–198

Larson P, Krishnan M (1998) Memory allocataion for long-running server applications. In Proceedings
of the International Symposium on Memory Management (ISSM), 176–185

Lever C, Boreham D (2000) malloc() Performance in a Multithreaded Linux Environment. In
USENIX 2000 Annual Technical Conference: FREENIX Track

Wilson PR, Johnstone MS, Neely M, Boles D (1995) Dynamic Storage Allocation: A Survey and Critical
Review. In Proceedings of the 1995 International Workshop on Memory Management

14


