
Backpressure in FreeBSD I/O Stack

M. Warner Losh

Netflix, Inc.

BSDCan 2017

http://people.freebsd.org/~imp/talks/bsdcan2017/bsdcan2017.pdf

http://people.freebsd.org/~imp/talks/bsdcan2017/bsdcan2017.pdf

Outline

Netflix Background
Netflix Network
Netflix Issues

FreeBSD I/O Stack
Overview
struct buf
Interfaces

Back Pressure

Netflix

I Internet Video

I Content Distribution Network (CDN)

I Operating at Scale

I Anticipating the Future

Netflix Open Connect

I According to Sandvine, Netflix streams ˜1/3 of Internet Traffic

I Netflix has own CDN (OpenConnect)

I Streams mutliple terabits per second

http://blog.streamingmedia.com/wp-content/uploads/2014/02/2013CDNSummit-Keynote-Netflix.pdf

Netflix Open Connect Appliance (OCA)

Directing Clients to Caches

Netflix Control Servers
Broadband ISP

3. Client connects to local cache

4. Local cache delivers video stream

•  User routing is done by
Netflix control servers,
not dependent on client
DNS configuration

•  Request is routed to the
nearest available OCA –
backup URLs are
provided for failover

•  ISP controls client to
OCA mapping/clustering/
failover via BGP

Open Connect
Appliance

(OCA)

Source: Netflix

Netflix OCA Types

I Netflix Storage Appliance (HDD with small SSD offload)

I Netflix Flash Appliance (SSD or NVMe based)

I Netflix Global Appliance (HDD and medium SSD offload)
I Netflix possible future appliances:

I HDD with NVMe
I SSD with NVMe
I HDD with SSD and NVMe

Diverse Storage Profiles

I Storage profiles are changing

I Latency ranging from sub µs to 100’s ms (6 orders of
magnitude)

I History dependent behavior
I SLC page pools (few percent of drive)
I Emergency garbage collection
I Scattered writes but single reads

I Workload dependent performance
I Read / Write Mix
I Drive idle time
I Bandwidth vs IOPS

FreeBSD Issues

I VM/Buffer Cache schedules most I/O in system
I Buffer Cache tries to be nice to I/O system

I Limits number of dirty buffers
I Limits number of bytes being written concurrently
I Uses Hi/Lo water marks to schedule work
I Mostly static allocation of resources at boot
I Limits generally Global

I CAM I/O Scheduler smooths out some performance quirks
I Throttling here inefficient
I Interacts poorly with global limits

Outline

Netflix Background
Netflix Network
Netflix Issues

FreeBSD I/O Stack
Overview
struct buf
Interfaces

Back Pressure

FreeBSD I/O Stack

System Call Interface
Active File Entries
OBJECT/VNODE

File Systems
Page Cache Upper ↑

GEOM Lower ↓
Disk Driver

Protocol/Transport
Host Storage Adapter

Newbus Bus Space busdma
After Figure 7.1 in The Design and Implementation of the FreeBSD Operating System, 2015.

FreeBSD I/O Stack High Level Overview

I Upper half of I/O Stack focus of VM system
I Buffer cache
I Memory mapped files / devices
I Loosely coupled user actions to device action

I GEOM handles partitioning, compression, encryption
I Filters data (compression, encryption)
I Muxes Many to one (partitioning)
I Muxes One to Many (striping / RAID)

I CAM handles queuing and scheduling
I Shapes flows to device
I Limits requests to number of slots
I Enforces rules (eg tagged vs non-tagged)
I Multiplexes shared resources between devices

struct buf – What’s in it?

I Maps a vnode + offset + len to memory / vm pages

I List membership and bookkeeping

I Flags to note state

I struct bufobj

I biodone routine

I Credentials

struct buf – How’s it used

I Schedules I/O to lower layers

I Tracks read ahead, write behind

I Caches most frequent blocks

I Managing working sets via pagers

I Buffer daemon

Buffer Daemon

I Runs from time to time

I Schedules dirty buffers for write

I Wakes up any processes sleeping about to dirty buffers

I Blocks on static limits

Buffer Cache Interfaces

I getblk and friends

I bread / bwrite and friends (bdwrite, bawrite, etc)

I bstrategy

I bufwait, bufsync, bufwrite, bufstrategy

struct bufobj

I Ties together the vnode and bufs to lower layers

I BO STRATEGY decides what to do with the request (queue
it, translate it, etc)

I BO SYNC Do a VOP SYNC to flush data on vnode

I BO WRITE Write data with runningbufs enforcement

I BO BDFLUSH Flush all dirty buffers asynchronously

Pagers

I Associates pages in VNODE or process with backing store

I Reads / writes pages

I Manages VM objects that back bufs.

I vnode pager, swap pager, device pager, default pager,
phys pager

Current write down path

I Before dirtying buffer, call bwillwrite, sleep if too many
dirty buffers.

I Prepare buffer by dirtying it with data and locking pages

I call BO WRITE (possibly sleeping for runningbuf in
bcanwrite)

I call BO STRATEGY

I g vfs strategy

I geom processes I/O

I bufdone

Outline

Netflix Background
Netflix Network
Netflix Issues

FreeBSD I/O Stack
Overview
struct buf
Interfaces

Back Pressure

Back Pressure Design

I Each device publishes current capacity

I Lower levels pass this to the upper layers

I Upper layers limits requests voluntarily

I Old interfaces emulate old model

I New interfaces allow upper layers more flexibility

New: Submission/Completion Record

I Time scale for I/O quantum

I Bitmask: IOP or BW limited (or both)

I IOPS available in next quantum

I BW available in next quantum

I Estimates are based on estimated capacity of drive less
scheduled I/O

New: BIO IOCAP I/O Command

I Returns the instantaneous capacity estimate of the device

I Call is synchronous, but immediate

I Complicated GEOM like gmirror, graid responsible for coming
up with something sensible

I Should be consistent with submission and completion reports.

New: BIO * flags

I BIO BP NO AUTO disables global back pressure for clients
that know the new protocol

I BIO BP NO SLEEP return EAGAIN if the request would
exceed the device’s current capacity.

New: Default I/O scheduler

I New I/O scheduler for bio

I Default behavior: check old global limits

I Other schedulers are possible

New: effective per-device runningbufs

I If device estimates capacity, then never exceed write capacity
(either by sleeping or returning EAGAIN)

I Default I/O scheduler will estimate 1/2 of queue depth

I CAM Adaptive I/O scheduler limits based on it’s estimates of
the disk.

Problems

I Code still quite green

I Knowing when drive saturated hard problem

I CAM I/O scheduler work not done

I Analysis for starvation and other unfair behavior
I Interaction with Buffer Daemon

I Global pool vs device information
I PID control would be better at cleaning buffers
I Lower-levels can know how much will likely be needed, but no

connection to Buffer Daemon

Questions

Questions?
Comments?

Warner Losh

wlosh@netflix.com

imp@FreeBSD.org

http://people.freebsd.org/~imp/talks/bsdcon2017/slides.pdf

http://people.freebsd.org/~imp/talks/bsdcon2017/slides.pdf

	Netflix Background
	Netflix Network
	Netflix Issues

	FreeBSD I/O Stack
	Overview
	struct buf
	Interfaces

	Back Pressure

