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Abstract—FreeBSD’s default I/O scheduling policy strives for a
general purpose performance across a wide range of applications
and media types. Its scheduler does not allow some I/O requests
to be given priority over others. It makes no allowances for write
amplification in flash devices. GEOM level scheduling is available,
but it is limited in what it provides. It is too high in the stack
to allow precise control over I/O access patterns. A scheduler in
Common Access Method (CAM) can exploit characteristics of the
device to precisely control I/O patterns to improve performance.
At Netflix, we found that limiting write requests to the drive
limited the effects of write amplification on read latency. In
addition, we found that favoring reads over writes improves
average read latency, but does not fix extreme outliers.

Updates to the software since this paper was written can be
found in an appendix. The changes in code and evolution of the
understanding of what conclusions can be drawn haven’t been
integrated through the whole paper as yet.

I. INTRODUCTION

The I/O subsystem can be thought of as a stack. At the top
of the stack are user requests. At the bottom of the stack are
media devices or remote connections to media devices that
service user requests. Each layer in the stack may generate
its own requests, combine multiple requests together, generate
multiple requests for a single higher-level request, or direct
requests to multiple places. Many layers may have hooks into
the VM system or cache information to optimize performance.

No matter where I/O scheduling happens, it may:
• reorder or delay dispatch of I/O requests
• happen at any layer of the I/O stack
• unfairly allocate I/O resources among users
• route related traffic to the same CPU
• trade performance of one class of I/O for another

While I/O scheduling in FreeBSD is generally good, as Fig. 1
shows, some workloads cause it to have horrible read latency.
The dotted red line shows normal latency of 5ms. The dashed
red line shows the highest acceptable latency of 35ms. These
spikes can be 100x or more above normal values. As we shall
see however, the fault lies not only with the FreeBSD I/O
scheduler but also with other factors.

II. FREEBSD’S I/O STACK

The FreeBSD I/O stack is similar to many others. Requests
enter the stack at the top via system calls. These are filtered
down either to the raw disk driver, or via a file system to the
disk. The layer just above the GEOM layer can be thought of
as the upper half of the stack. The upper half of the stack has
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Fig. 1. Default scheduler problem workload: latency spike in red.

its own optimizations, data flows, scheduling, etc. [1] which
are beyond the scope of this work. Fig. 2 shows these layers
as well as the lower half.

System Call Interface
Active File Entries
OBJECT/VNODE

File Systems
Page Cache Upper ↑

GEOM Lower ↓
CAM periph driver SD Card

CAM XPT mmc bus NVMe
CAM SIM Driver sdhci

newbus Bus Space busdma
Fig. 2. Simplified FreeBSD I/O stack. After [1, Fig. 7.1]

The disk driver layer in FreeBSD is called GEOM [2] [3].
It handles the disk partitioning in a general way, and imple-
ments advanced features, such as software RAID, encryption,



compression and scheduling. Below the GEOM layer, most
block devices use the CAM subsystem to manage access to the
media [4] [5] [6, §14]. CAM supports a variety of peripherals
(periph), transports (xpt), and SIMs.1 CAM implements a
generalized queuing and error recovery model. Although the
original CAM standard [7] was for SCSI only, FreeBSD
has extended it to support additional transports and protocols
(USB, Firewire, Fibre Channel, ATA, SATA, and iSCSI) and
to integrate SMP locking. While the vast majority of storage
devices in FreeBSD use CAM, some bypass CAM and use
their own queuing and recovery mechanisms. Disk drivers that
bypass CAM are beyond the scope of this work.2

From the GEOM layer on down can be thought of as the
lower half of the I/O stack in FreeBSD. The upper layers
transform all their requests from struct buf or system
calls into a common struct bio to pass into GEOM
[8]. Requests remain struct bio through GEOM. Most
requests that enter the GEOM layer are I/O requests that need
to access the media to satisfy them. They are eventually passed
to the struct disk drivers below.

The default I/O scheduling policy in GEOM is a simple
FIFO. As the requests come in, they are dispatched to the
lower layers without further buffering, ordering, delays, or
aggregation. Below the GEOM layer, each disk driver sets
its own scheduling policy. CAM provides two periph drivers
for all disk I/O in the system: one for SCSI-based disks
and one for ATA-based disks. Both drivers provide the same
scheduling policy. If a BIO DELETE is available, and none
are active, it combines as many BIO DELETE requests as
it can into one command and schedules it. Otherwise, it will
schedule as many BIO READ, BIO WRITE, or BIO FLUSH
commands with the underlying media as will fit into its
command queue. The SIM drivers for SCSI requests pass
the requests to the drives. The SIM driver for ATA requests
(ahci) is more complicated. NCQ3 commands are sent to the
drive if the queue is not frozen. For non-NCQ commands, it
freezes the queue, drains the current requests, sends the non-
NCQ command then unfreezes the queue. This makes non-
NCQ commands relatively expensive and disruptive. If they
run a long time, they add significant queuing latency to NCQ
requests that arrive during execution.

These general purpose algorithms work well enough for
most users of the system. Most access patterns fall neatly
into one of these two patterns. FreeBSD does offer a GEOM
module that can schedule I/O and associate I/O with different
queues tied to individual cores [9]. This scheduling algorithm
works well for a very narrow workload where multiple high

1Originally an abbreviation for “SCSI Interface Modules,” a SIM can now
be an interface module to any transport protocol. It is best to think of SIM
as a driver for any HBA (Host Bus Adapter).

2Generally these are drivers written before CAM became transport agnostic:
SD cards, raid controllers, really old CDROM drivers. However NVMe
bypasses CAM and is quite recent.

3NCQ — Native Command Queuing allows up to 32 tagged commands
to be sent to the drive at one time; however NCQ and non-NCQ commands
cannot be mixed. To execute a non-NCQ command, all NCQ commands must
finish first.

volume streams. The code in geom_sched provides a good
framework, but the default rr scheduling algorithm is highly
tuned for devices that match a 7200 RPM SATA hard drive.

Netflix found FreeBSD’s scheduling of I/Os to exhibit the
following undesirable traits:

• uneven latency for I/O in the system with extremely long
read-latency tails (see Fig. 1)

• no provisions to trade write performance for read latency,
or vice versa.

• no way to limit the effects of write amplification in
SSDs when they fall behind and the extra writes reduce
performance

• no way to bias read requests over other requests
• no way to limit the elevator’s car size in
bioq_disksort

• no deadline to submit I/O to drive, which can lead to long
latencies for spinning disks.4

III. FLASH DRIVE CHARACTERISTICS

Newer SSDs and other NAND flash devices offer a quantum
leap over traditional spinning disks. Devices built on NAND
flash reflect the NAND’s underlying characteristics [10] [11].
Conceptually, SSDs and NVMe cards can be modeled as

Host
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Controller

DRAM Buffer

NAND Chip

NAND Chip

NAND Chip

NAND Chip

Fig. 3. Generalized block diagram of flash storage device.

shown in Fig. 3. Drives connect over some transport layer
(SATA, SAS, PCIe, etc) via the Host Interconnect and present
a continuous range of blocks that can be read, written, or
trimmed using Logical Block Addresses (LBAs).5 The pro-
cessor on the drive converts LBAs in the host commands to
physical addresses on the NAND flash. The Flash Translation
Layer (FTL) runs on the processor and handles the translation
between the LBA and the physical NAND location, free pool

4Improving the read latencies on spinning media is beyond the scope of
this work.

5Numbered from 0 to N, contrasted with old addresses that specified
cylinder, head, and sector.



management, and wear leveling. The DRAM buffers the I/O
requests, drive responses, and the data streamed between the
host and flash. The NAND controller handles addressing the
NAND, sending it commands and streaming the data to and
from the DRAM. The processor and NAND controller work
together to cope with the difficult quirks NAND chips have to
hide them from the end user.

16 chips/package 4000 blocks/chip 500 pages/block

Fig. 4. NAND typical geometry.

As illustrated in Fig. 4, NAND flash is organized hierarchi-
cally. Each flash package contains a number of die (typically
a power of 2 up to 16). Each die has a number of erase
blocks (typically a few thousand), which is the smallest unit
that can be erased. Each block contains a number of pages
(typically a few hundred). Each page is a power of two bytes,
usually between 4k and 32k, plus a few percent extra for ECC
protection and metadata. The page is the smallest unit that can
be read or written.6 Pages can only be written once without be-
ing erased. Some technologies impose additional requirements.
MLC NAND7 generally must be written sequentially. Different
chip families may have additional requirements dictated by
their geometry. For example, for long-term data integrity,
pages within a block may need to be written as quickly as
possible. Some designs can write to a few blocks at a time to
facilitate garbage collection [10], reducing garbage collection’s
effect on user I/O performance. Some designs have special data
movement commands for garbage collection as well.

The relationship between large erase blocks and smaller
pages (the typical I/O size) forces a log-structure for nearly all
devices [12]. A log is a sequentially written data structure. A
log-structured device appends data (and sometimes metadata)
blocks to the end of a log for writes. Reads are translated
from an LBA to the physical address. As LBAs are rewritten
or trimmed, holes develop within the log. When new blocks
are needed for data, the firmware moves old data from older
blocks to the end of the log and then erases the old block. After
this movement, the LBAs in the blocks are fully compacted,
freeing up the holes from the old blocks. The firmware keeps
metadata about these translations, which pages are used within
blocks, and other miscellaneous statistics [13].

The amount of garbage collection and data movement
directly affects performance. To find space for new data to be
written to the drive, its firmware must garbage collects empty
or mostly empty blocks. This garbage collection generates

6Large-page designs have sub-page reads to increase small request IOPS.
7Multi Level Cells, which encode two or more bits per cell.

additional read and write traffic for each write issued to the
drive.

Definition 1 (Write Amplification): In a log-structured sys-
tem, write amplification, A, due to garbage collection is
defined as the average of actual number of page writes per
user page write:

A =
U + S

U

where U is the number of user writes and S is the number
of additional writes generated by the drive firmware for
garbage collection or other reasons. The closely related Write
Amplification Factor can be expressed as:

Af =
S

U

implying that for each user write, 1 + Af writes are written
to the underlying media [13].

Write amplification is dependent on the workload, drive
history, and design choices of the firmware implementation.
In most typical workloads, write amplification varies over
time but tends to settle around some average. Some drives
provide a feedback mechanism to discover the current A
or Af . However, this information is either vendor specific,
unavailable, or too costly to retrieve. These limitations make
it hard to use A or Af in an I/O scheduler.

To help mitigate these issues, drive vendors have defined
commands to inform the drive when data is no longer needed.
In SATA, these commands are called Data Set Management (or
sometimes just TRIM, after the bit in the DSM command) [14,
§7.5]. SCSI defines different data deletion methods (UNMAP
is the term used) [15, §7.4]. Although the exact details differ
as to persistence, reliability, and predictability of the data after
a TRIM, all variations inform the drive of LBAs no longer in
use. TRIMs tell the drive when blocks no longer contain useful
data and can be freed. This increases the free pool of blocks
and reduces the data that must be copied forward. In theory,
this should reduce the effects of write amplification as the S
term will be reduced. In practice, the time it takes to execute
the TRIM command may negate this savings.

One other consideration is efficiency. The relationship be-
tween the TRIM size and time to execute is often non-linear.
The exact type of TRIM to use can be important as well,
since some TRIM commands can be queued and mixed with
other I/O, while others force all other I/O to drain before the
command can be issued and block new I/O from being sent
to the drive until the command completes. This latter form
can have a large effect on read latency for those reads forced
to wait for a TRIM to complete. Unfortunately, the ATA disk
driver in CAM uses only non-NCQ TRIM commands, which
increases the latency of all I/O. Other SIMs talk to devices
that do not have the interface to set the registers needed to
execute an NCQ DSM TRIM. Some controllers do all the
queue management for requests to the drive. This makes I/O
going through these SIM drivers more unpredictable because
control over each individual transaction’s timing is up to the
hardware, not the host.



Many have observed a large variation in quality of imple-
mentation between different drive models and manufacturers.
This evaluation of a new SSD [16] shows data from a range
of SSD models. The results varying by an order of mag-
nitude between models depending on the benchmark. These
differences can lead to substantial performance variation for
certain workloads. For example, during development of this
scheduler, a certain manufacturer’s drives showed large spikes
in latency when the write traffic to the drive was above a
few percent of the spec sheet value. When the drive had 98%
reads and 2% writes (approx 150MB/s read, 5MB/s write), the
latency for reads was characteristically 2–3ms. However, when
this changes to 90% reads and 10% writes (approximately
150MB/s read, 15MB/s write), read latency would spike to into
the hundreds of milliseconds. Investigation of traces showed
that some of this was due to some long writes (50–100ms) and
some long, blocking TRIMs (up to 200ms). The behavior was
not consistent because short bursts of writes did not exhibit
this degradation, and some TRIMs returned quickly (10ms).

IV. NETFLIX’S WORKLOAD

According to published reports, Netflix accounts for a little
more than one-third of the peak download traffic in the US
[17] [18] [19]. Netflix embeds its Open Connect Appliance
(OCA) [20] at various locations in the Internet to stream
video to its customers. There are two main types of OCA
appliance: storage and flash. The storage appliance stores the
entire catalog on spinning disks but can serve only a limited
number of clients. The flash appliance stores the most popular
content on SSDs and can serve many more clients but has a
smaller storage footprint. During off-peak times, these boxes
update their content on a staggered schedule. New content is
licensed, old content expires, and content is occasionally re-
encoded to fix problems or increase efficiency. In addition,
popularity changes over time. During peak hours, no changes
are made to the box since at peak load there are not enough
resources in the box for updates. Averaged over a day, OCAs
read between 1,000 and 10,000 times more data than they
write.

Conventional wisdom states video streaming workloads are
sequential [21]. However, I/O traces of the OCA at the disk
interface show it to be a random workload. Although each
video is sequential on the disk, two factors confound the
sequential pattern. First, when multiple clients are streaming
the same title, at the same bit-rate, they rarely all start at the
same time. This temporal displacement of clients effectively
makes each one an independent stream. Second, the sheer
number of clients (30,000–40,000 on a busy flash OCA)
randomizes things even more.

Netflix has established metrics to gauge the quality of
the customer experience with its streaming service. These
metrics include a measure of read latency for the media in
our systems. When latency gets too high or variable, customer
experience suffers as the factors necessary for smooth, high-
quality playback are not all present. To keep playback quality
high, and to avoid serving when latency is likely to be high,

OCA servers take a break from serving clients while refreshing
their content. This fill window is a few hours during the off
hours.

A frequent request from our network operations team for
OCAs is to allow filling while content is being served during
off-peak hours. Operationally, when a server is filling its new
content, it is not serving clients. This takes capacity out of the
network during off-peak hours. Our flash systems do not serve
traffic while filling due to the nature of the SSD drives that
are in them. When even a small stream of writes is going to
the drive, its read performance plummets, leading to latency
spikes large enough to disrupt streaming to clients.

FreeBSD’s default I/O scheduler treats all I/O the same
and schedules it in FIFO order to flash devices. This in-
order scheduling is well suited for a general purpose operating
system. However, there is no way to limit the writes to a drive
to lessen the effects of write amplification. Unlike network
interfaces, there is no way to do any kind of traffic shaping to
the drive. There is no way to prioritize your most important
traffic. There is no way to monitor the time that I/Os are in
the media’s hardware buffers before being satisfied. While the
default I/O scheduler does a fair job with these things (good
enough for Netflix to serve the traffic in the previously cited
reports), it lacks the fidelity of choice necessary to intelligently
shape traffic to the drive to keep it operating within its optimal
envelope.

Fig. 1 illustrates a specific problem we observed in our
systems on many occasions. This data is from one of our flash
cache machines when a fill of content happened while serving
video to clients (overriding the defaults to not do this). We
see a read rate of about 120MB/s with a latency of about
4ms. This is about 40% of the drive’s data-sheet capacity
of 300MB/s read, 400MB/s write. About nine minutes into
this data set, the application starts writing at about 20MB/s,
giving about an 85%/15% read/write ratio. four minutes later,
read latency spikes to hundreds of ms. Our system control
infrastructure notices the high latency and reduces traffic to
this node reducing SSD reads. After ten more minutes, update
completes, the write load ceases, and read latency returns to
normal. Our control infrastructure notices and starts sending
more traffic to the box, restoring the 120MB/s read rate. These
data illustrate the problem, though the exact numbers vary
from run to run. We created the Netflix I/O scheduler to
address this, and similar, problems.

V. FREEBSD I/O SCHEDULER

Fig. 5 shows the flow of struct bio I/O requests down
from the upper layers through GEOM and into CAM. In
this diagram, simaction represents the action routine
passed to cam_sim_alloc when the SIM was registered.
sim_intr is the SIM’s interrupt routine registered with
newbus. The diagram shows the flow for a SCSI direct access
device (da driver).8 The flow for the ada driver that handles

8By convention, all routines from the da driver start with da, eg dadone,
dastart, etc. Similarly for the ada. Sadly there is no dabulls routine,
much to the chagrin of Chicago Bulls fans [22].



SATA devices is the same.

bio request from
upper layers

geom→start(bio)

g disk start(bio)

disk→strategy(bio)

dastrategy(bio)

daschedule()

xpt schedule()

dastart()

while room in devq

use bio to
fill in ccb

xpt action(ccb)

simaction(ccb)

dispatch to
hardware

dadone(ccb,bio)

bio done(bio)

xpt done(ccb)

sim intr()

hw interrupt

bioq disksort

schedule bio

bio queue /
delete queue

enq

bioq first
next bio

deq

Fig. 5. Disk I/O data path through CAM [23].

GEOM transforms the bio into the proper absolute offsets
on the disk based on the relative offset in the partition. It
passes this to the disk’s strategy routine. The da periph driver
places the bio onto a queue and calls daschedule to tell
CAM to allocate a struct ccb (CAM Control Block) if any
slots are available in the periph’s devq. CAM keeps track of
how many requests are outstanding to a periph in its devq
and calls dastart only if there are slots free (otherwise
it will just return). Once dastart is called, it will try to
pull a request from the bio_queue and use a request to
fill in the ccb with the appropriate command block for the
request. xpt_action puts the ccb into the SIM’s queue
and call its action routine. This delivers the command to the
hardware. Later, an interrupt will fire, indicating the command
has completed and call the SIM’s poll routine. The SIM
will then call xpt_done, which calls xpt_schedule if
there is a free slot in the device’s devq. xpt_done then
call the request’s done routine dadone which completes the
bio request by looking at the status in the ccb and calling
either bio_done when there is no errors, or bio_error to
signal an error. The order here is important, and different than
typical.

The current I/O scheduler is so simple that you might have
missed it. In Fig. 5, it is the boxes in the left-hand column.
Today, the disk’s strategy routine simply places the I/O onto
the bio_queue using the elevator sort algorithm discussed
earlier (for flash devices, it simply places it at the end of
the queue since the elevator optimization provides no benefit
and has the in-order insertion cost associated with it). The
start routine then pulls the first I/O off the queue and sends
it to the device. When the I/O completes, the ISR signals the
completion up the stack. BIO DELETE requests are special,
as explained above, since only one TRIM command can be
active at a time.

VI. NETFLIX SCHEDULER THEORY

We know from basic design theory of NAND-based flash
storage that write amplification is a concern [13]. Write ampli-
fication is the biggest concern when you invalidate part of the
drive and write new LBAs (either from the range invalidated
or not). Write amplification has been observed in our systems
to be 3 or 4 at times (though the long term average is between
1 and 2). Some drives, which do not support querying write
amplification, exhibit behavior that suggests an even higher
write amplification due to max write throughput being less
than 5% of the data-sheet write rates. Furthermore, we know
from the chips used in our drives that the controller has a
limited number of concurrent channels available for reading
and writing. During garbage collection, blocks must be erased
before their pages can be written to.

A relatively low write amplification can cause problems.
If you allow up to 32 writes to the drive at one time, with
a moderate I/O size, you can easily consume a significant
portion of a logical NAND block with in-flight data. To satisfy
those writes, the controller must read and write several blocks
when space is low and it has no free blocks to allocate to the
I/O. This causes several banks of the system to be used at once.
To write a block, you have to erase it first, which is a very
time consuming operation for NAND today. The more banks
that are involved in writing data, the fewer that are available
for reading. NAND chips can process only one request at a
time, be it erase, read, or write. If a bank is writing data, read
requests wait for that to finish. Pending reads queue up behind
this activity, leading to a fairly long time to service the read,
as well as long wait times to dispatch the reads to the drive.

The Netflix scheduler implements a two-pronged attack.
First, priority is given to reads over writes when the scheduler
must pick which one to send to the drive. For Netflix’s work-
load, reads are the most important thing, and we are willing
to trade write performance to get extra and more sustained
read performance. Second, to limit the number of banks that
will be affected by write amplification, the scheduler limits
the number of outstanding write requests that are sent to the
drive. With fewer write requests in the queue at any time,
the drive is necessarily limited to one bank for most likely
garbage collection scenarios. By limiting the in-flight writes
to a small fraction of a logical NAND block, and knowing
that our drive vendors over provision the NAND chips by



about 10% according to the data sheets, we hope to limit data
movement from garbage collection to less than one logical
NAND block of data. With this limit, at most two banks of
the drive will be busy. It appears that our vendor has 8 banks,
so during the time it takes to write to the drive, three-fourths
of the banks suffer no delay. One-fourth of the banks will
suffer delays by contenting with garbage collection. We bound
this contention, however, to approximately the erase time for
a block (or about 5-10ms). Without visibility into the FTL,
the I/O scheduler is unable to avoid sending down reads that
would conflict (tying up queue slots that could otherwise be
used for useful I/O).

VII. NEW I/O SCHEDULER DESIGN

The design implemented gives different treatment to differ-
ent classes of I/O based on configurable options. The funda-
mental flow is unchanged from the stock FreeBSD scheduler,
with one exception. Where the current design has a single
bio_queue, the new design splits it into separate queues for
reads and writes. TRIMs retain their own queue. The new
design allows the entire I/O scheduler to be swapped out,
allowing for different schedulers to be used based on the needs
of the system. Fig. 6 shows the new additions in red.

The new design, however, abstracts out all the scheduler
decisions currently from the periph driver and puts them into a
library. We modified the periph drivers to use this new library.
Most scheduling decisions have been moved into this library,
although some decisions related to TRIM remain in the periph
drivers. Since the performance of TRIM differs between SCSI
and SATA devices, it is not clear if forcing the same policy
for both would be optimal.

Two schedulers were implemented for this project: control
and Netflix. The control scheduler is functionally identical to
the current I/O scheduler. It uses the new scheduler interface
to implement the same policy as the current scheduler with
one queue. This scheduler ensured identical performance and
functionality when compared against the old code. When we
found a difference, we fixed this scheduler to conform to the
old behavior.

The Netflix scheduler we developed behaves very similarly
to the default scheduler, unless any of its limiters are enabled.
Two limiters were implemented: fairness bias and queue depth
limits. First, we implemented a read vs. write fairness bias. We
choose one type vs. the other with a predicable bias when the
queue has both types in it. Second, we implemented a read,
write, or TRIM limiter. When in effect, the scheduler will
not queue more than the limit for each type of I/O request
to the SIM, even when additional devq slots are available.
These limiters are independent and can be enabled separately
or together.

The new calls to the scheduler from the periph drivers
are shown in red in Fig. 6. These routines implement the
scheduling algorithms. In addition to abstracting the code into
a library, we made one minor change to the periph drivers.
When limiting I/O requests, we had to change the behavior of
the dastart routine slightly. It now will sometimes return

with devq slots available, even though the driver has requests
in one of its queues. Prior to our changes, this was never
the case. Since dastart is called by xpt_done before the
ccb’s done routine, no I/O will be scheduled (since dadone
hasn’t run to update the counters for dastart to know it can
schedule data. When completing an I/O from a limited queue,
we had to add a call to daschedule to ensure dastart
was called again after the limiting was no longer in effect
and the counters had been updated. This change is why the
arc from dadone to daschedule was made red in Fig. 6.
Without this change, I/O requests could become stuck in da’s
queues after any queue reached its limit. The added call keeps
the I/O requests flowing. Finally, the bio_queue was split
into a separate read queue and write queue to simplify the
implementation of the limiters.

bio request from
upper layers

geom→start(bio)

g disk start(bio)

disk→strategy(bio)

dastrategy(bio)

daschedule()

xpt schedule()

dastart()

while room in devq

use bio to
fill in ccb

xpt action(ccb)

simaction(ccb)

dispatch to
hardware

dadone(ccb,bio)
*

bio done(bio)

xpt done(ccb)

sim intr()

hw interrupt

bioq disksort

read queue /
write queue /
delete queue

enq

bioq first

deq

cam iosched queue work

schedule bio

cam iosched next bio

next bio

Fig. 6. Modified disk I/O data path through CAM [23].

VIII. RESULTS

As we saw in Fig. 1, read latency was extreme in the
presence of writes. To see if this resulted from some bias in
the FreeBSD I/O scheduler, we tested our implementation just



turning on the read bias code. This code gave a 100 to 1 bias to
read requests when a choice had to be made between reads and
writes but otherwise let all requests through when there was
no conflict. We had hoped this would produce useful results.
We found a small (1%–2%) improvement in average latency
but continued to observe the extreme read latency outliers.
Seeing the outlier behavior unchanged lead us to conclude the
fault was not in any bias against reads in the FreeBSD I/O
scheduler.

We next wanted to test the theory that these outliers were
caused by the drive needing to garbage collect. We learned
from the manufacturer that the drive would automatically
garbage collect blocks from TRIM requests sent down, but
only after the interface had been idle 100ms. Since we were
pushing thousands of IOPS through the device, the interface
would never be idle that long. Modifying the scheduler to hold
off read and write this long requests to allow for automatic
garbage collection to take place was out of the question. This
meant, unfortunately, that garbage collection happened in real
time when the drive needed space for write requests. Our test
data suggested that after writing about 5–10 GB we would
see a big spike in read latency. This is less than 1% of the
drive’s capacity, but daily updates to the OCA typically were
much larger. Whatever the drive was doing to keep a pool of
free space available was insufficient to keep up with unlimited
writes an update triggered.

To test this theory, we turned on write limiting in the Netflix
I/O scheduler. We set the write queue limit to 1. This would
have two effects. First, it would limit the number of concurrent
writes sent to the drive, keeping in-flight data smaller than a
logical NAND block. Second, it would rate-limit the writes,
which would rate-limit the write amplification from garbage
collection. Our tests showed that the extremely large read
latency outliers had disappeared. Contrast Fig. 1 with Fig. 7,
which are graphed with the same vertical (performance) scale.
The graph shows that the write rate is about 25% lower
than before, but the read latency no longer spikes up by a
factor of 100x, but is limited to only about a 4x rise (20–
30ms) in general (though sometimes 20x spikes do occur).
The situation is much better but still not yet ideal. Note: the
test that generated this data was a much larger fill designed to
last for hours instead of minutes.

IX. FUTURE WORK

After we implemented the low-level I/O scheduler in CAM
a number of improvements suggest themselves. Some of these
are quite general, while others are fairly specific.

Low-level drivers cannot signal back pressure to upper parts
of the stack. Low-level drivers can only cope with the I/O
requests they are given but cannot give hints to the upper
layers to help with request pacing. It would be useful if back
pressure could be signaled to the upper layers of the system so
they could limit their generation of I/O requests or make other
choices to assist in whatever pacing the lower layer drivers can
do.
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Fig. 7. Modified scheduler on problem workload.

This I/O scheduler was implemented as a library of routines
that the ATA and SCSI periph drivers called to schedule their
I/O in a uniform fashion. This suggests that the functionality
could more easily be incorporated into CAM’s queuing mech-
anisms.

The Netflix I/O scheduler categorized the normal I/O into
a set of new classes. These new classes each had their own
queue. These queues exist outside of CAM’s notion of devq,
so the periph drivers needed to be modified as described
to work around this mismatch. Future work would include
generalizing devq in CAM to allow multiple queues.

CAM’s allocation of CCBs is needlessly complex for mod-
ern machines. It was optimized for machines of the 1990s
with 8–32MB of DRAM where the complexity was critical for
good performance. Machines with so little memory are now
quite rare, even among embedded systems running FreeBSD.
It would make sense to modify this code to trade some memory
use for code simplicity.

This I/O scheduler helped Netflix’s read latency problems.
However, it does not match well the classic definition of an I/O
scheduler. It provides no way to allocate resources between
users or processes, and it provides no way to prioritize I/O
for certain users or applications over other I/O to give, for
example, a more pleasant interactive response to users. Quotas
to limit IOPS or bandwidth are unimplemented.

The Netflix I/O scheduler provided only static configuration
of its limiters, perhaps changed by user land monitoring
tools. Dynamic steering of rate limiters would provide fast
reaction to the changing performance characteristics of the
drive. Since write amplification from garbage collection varies



over time, as shown in [24] and [25], dynamic tuning would
increase performance. Static tuning cannot take advantage of
the dynamically changing bandwidth capabilities the variation
in garbage collection implies.

TRIMs currently are implemented using nearly identical
code between the SCSI direct access driver (da) and the
SATA/ATA direct access driver (ada). Given the differing
queue depths, variation in the quality of implementation for
TRIMs, and differences between the semantics of an SATA
TRIM and a SCSI UNMAP, it is unclear if it would be
beneficial to keep these paths separate or if it would make
sense to enshrine the code into a common library. Further
research in this area is needed.

To date, testing has been limited to one model of SSD
from one vendor. Replicating the results across a number of
different vendors and models would help validate the range of
applicability of these techniques.

Finally, more types of I/O limiting are desirable, such as
rate limiting IOPS or bandwidth. In addition, limiting based
not on I/O type — but on the class a user or process belongs
to — can be beneficial for some applications. None of these
traditional scheduling features were provided. It is unclear if
the low level is even the right place for them, as they can
be more efficiently implemented at the GEOM layer (though
actually using them is quite cumbersome due to geom sched
being implemented as a node rather than a policy engine to
GEOM). More research into these areas is advised.

X. CONCLUSION

Placing I/O scheduling at the lowest level has advantages
and disadvantages. At the low level, I/O requests can be
reordered and paced to have minimal disruption to the sys-
tem and existing code. The outliers in read latency can be
substantially reduced, giving smoother system performance
and a better video streaming experience for the customer.
However, the complexity of the code and the difficulty of
implementing it are a cause for concern. The improved read
latency performance came at a rather substantial reduction to
the write performance. The benefit is small in comparison to
the effort. The work has been worth the effort to Netflix. We’ve
been able to cut the read latency substantially without unduly
affecting write throughput. While this specific profile change
may be of limited interest, the dramatic results from relatively
simple measures strongly suggests further investigation. Re-
ducing the harmful effects of write amplification may be of
interest to a wide range of applications. Learning to ameliorate
the performance degradation that happens in SSDs and other
NAND flash devices could prove quite beneficial.

XI. UPDATES

An revised version of this paper may be available at http:
//people.freebsd.org/∼imp/bsdcan2015/iosched-v3.pdf. Slides
from BSDCan 2015 may be available at http://people.freebsd.
org/∼imp/bsdcan2015/iosched-slides.pdf. The code for this
work can be found at https://svn.freebsd.org/base/projects/

iosched. The code has not been updated yet for the changes
described in the Recent Changes section below.

XII. RECENT CHANGES

Here’s a running log of recent changes to the I/O scheduler
that haven’t been integrated into the paper yet.

• Added limiters for bandwidth and IOPs. Users can now
specify, on a per–disk basis, limits on queue-depth, band-
width or IOPS. You cannot limit on all these, just one.

• Added timeout call to update quota for each quanta. The
bandwidth and IOPS limits are implemented by giving the
disk a certain amount of resource to use for each quanta,
and then checking to see if there’s quota left before doing
each I/O. When the timer fires, the scheduler gives each
disks its new quota for the time–slice and then sees if
there’s any pending I/O that can now be scheduled. At
the present time, the time slice simply divides the total
amount of I/O in a second by the time slice, so if you
have very low rates, integer quantization may result in
either a lot more or a lot less than desired due to Nyquist
sampling limits. The figures in this paper have not been
updated to reflect this timeout yet, but it would just be
another box that updates things that the can do I/O box
would reference to see if I/O is permitted.

• Added the notion of a feedback loop. You can now steer,
for example, the write bandwidth limit based on the read
load. A control loop to steer the write rate based on
the current read latency has been written. Turns out that
tuning the control loop has exposed a number of issues.

– Large quanta cause I/Os to be delayed a long time.
In addition devstat returns artificially inflated
percent busy statistics.

– Integer quantization effect is much larger.
– Overhead from timeouts is tiny. Large quanta save

little to nothing over small quanta.
– Drive performance varies second by second, so steer-

ing loop needs to steer this quickly. The current EMA
stats (exponential moving average) average over tens
or hundreds of seconds. This blunts the signals when
the performance changes, which retards the reaction
of the steering loop.

– When limiting write bandwidth, write latencies can
become quite large.

The addition of steering and dynamic performance tuning
has suggested a number of things to explore in the future:

• Feedback to the upper layers would help a lot. When
we suddenly have to choke down the write rates, the
latency of the writes spikes, and stays spiked because the
upper layers keep feeding write requests. Upper layers
can make better choices if they know they are dealing
with a constrained write (or even read) environment.

• Long latencies suggest a deadline scheduler option would
be useful. This is true to solve the problem of read
starvation of requests (to help bound latency: the default
scheduler has only a very coursed–grained hammer to do



this). However, this would introduce chaining of rules:
limit write speed based so it doesn’t affect reads, unless
the latency is too large, in which case relax the limits in
some way. The best way or new limit (if any) when writes
are pushed out due to expired timeout for maximum
queue latency timed is a poorly understood problem.

• Investigation of making TRIMs optional or advisory so
they can be deleted when large numbers are causing de-
lays in processing of other requests. This is an interesting
idea, but they can help performance overall (by freeing
the blocks in the drive well in advance of writing them
again). These effects are hard to measure, so it is hard to
study the problem in all but the most carefully controlled
environments, let alone automate the decisions based on
measured effects.

dastrategy(bio)

daschedule()

xpt schedule()

dastart()

while room in devq

Same as above

dadone(ccb,bio)
*

bio done(bio)

xpt done(ccb)

sim intr()

hw interrupt

bioq disksort

read queue /
write queue /
delete queue

enq

bioq first

deq

cam iosched queue work

schedule bio

cam iosched next bio

next bio

cam iosched ticker

Fig. 8. Recent modifications to disk I/O data path through CAM [23].
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