
Reasoning about SMP in FreeBSD

Jeffrey Hsu
The FreeBSD Project

Abstract

While the subject of SMP locking primitives has been well covered in the literature [Val][Schm][Bald][Leh], there
has been relatively little discussion on the rationale and process behind the application of these locking primitives.
This leads to an inverted problem where the bulk of the work in making a kernel SMP-safe lies above the locking
primitives, yet there is little guidance on how and where to lock in the individual subsystems. In this paper, we will
discuss our experiences with SMP locking in the FreeBSD kernel and illustrate some of the reasoning concerning
the placement or non-placement of SMP locks in the kernel. We hope this will aid other developers in locking up
the remaining subsystems and in understanding the locks that are already in place. We start with an overview of
general locking strategies followed by many examples of race conditions caused by faulty SMP reasoning and give
solutions for correctly locking up the affected piece of code. All our examples are taken from actual committed ver-
sions of the FreeBSD source.

1. Global Reasoning
Our first guideline pertains to the difference between
global reasoning and local reasoning. To paraphrase a
famous quote about distributed systems[Lamp], SMP
locking is where some code that you didn't even know
existed can break your own local code.

Guideline #1: Think globally.

For SMP to work properly, all the affected code must
adhere to the same locking strategy. A single piece not
under the necessary lock can render all the other locks
useless. For example, one common race condition con-
cerns read-modify-write operations. A race window
exists between the time a processor does the read and
before it does the write, whereby another processor
does a write.

processor 1 processor 2
 read
 modify

read
 modify

write

 write Å loses processor 2's write!

The most frequently used solution for this race is to
place locks around all the read-modify-writes of this
variable. However, missing a lock can mysteriously
result in a write being lost. We see this race in rev
1.114 of kern_descrip.c between the fcntl() function
and the flock() function, both of which perform read-

modify-write operations on the f_flag field, but only
one of which holds the mutex lock.

fcntl():

 ...
 case F_SETFL:
 ...
 fp->f_flag &= ~FNONBLOCK;

 flock():
 ...
 FILE_LOCK(fp);
 fp->f_flag |= FHASLOCK;
 FILE_UNLOCK(fp);

Here, even though the flock() code takes care to per-
form its operation while holding the mutex lock for a
file structure, a fcntl() operation could sneak in and
modify some other, totally different, bit in the f_flag
field, causing the result of the flock() to be lost!

fcntl flock
 read
 modify

 lock
read
modify
write
unlock

 write Å loses flock() result!

Furthermore, the result of either operation can be lost
due to the missing lock, not just the place where the
lock is missing, as is illustrated by the following se-
quence of operations:

fcntl flock
lock
read
modify

read
modify
write

 loses fcntl() result! Æ write

unlock

In this case, both operations occur in the same file in
the well-examined kern/ directory, so this bug should
have been easy to detect. However, there are uses and
assignments of the f_flag field in far off places like
dev/streams/streams.c which need to be examined for
potential races.

2. Understand the underlying code
A closely related principle to knowing all the places
where a field is used is to understand what the underly-
ing code does. Only by understanding what the subsys-
tem is trying to accomplish can a proper locking strat-
egy be devised. Many cases of improper SMP locking
can be traced back to a misunderstanding about what
the underlying code does.

Guideline #2: Understand the code to be locked.

For example, in rev 1.79 of uipc_usrreq.c, file descrip-
tor table locks were added in the following code in
unp_attach():

FILEDESC_LOCK(curproc->p_fd);
unp->unp_rvnode = curthread->td_proc->p_fd>fd_rdir;
FILEDESC_UNLOCK(curproc->p_fd);

Figure 1

This example locks a single read statement of the word-
sized fd_rdir field. A word-sized memory read opera-
tion is already an atomic operation [Schimmel. Neither
the fd_rdir nor the unp_rvnode fields are accessed in
the rest of the routine. As we shall see later on, placing
locks around a single read statement as is done here is
rarely the right thing to do. But more importantly, the
field that is being updated, unp_rvnode, is obsolete and
is not used anywhere else in the code! So, the correct

thing to do here should have been simply to delete this
line, rather than wrapping a useless assignment inside a
mutual exclusion lock. Here is a case where knowing
what the unp_rvnode field is used for or not used for
would have resulted in leaving out the file descriptor
table lock altogether. An application of the first guide-
line would have helped in discovering this.

A proper approach to SMP locking starts with asking
what the underlying subsystem is trying to do, then
asking which of these operations involve races, and
finally, which type of locks are appropriate to close
these races. This is in marked contrast to a bottoms-up
approach of locking individual statements considered in
isolation, which does not work.

3. Naive SMP Locking
While the first principle requiring locks to be globally
applied would seem to dictate that everything should be
wrapped inside locks, this is not the case. In fact, a na-
ive "wrap all accesses inside locks" approach is rarely
the right thing to do and leads to unnecessary locking
where locks are not needed and missing locks where
locks are needed. The places where this approach gets a
lock right, it's by accident. So, this guideline pertains
with what not to do.

Guideline #3: Don't simply wrap all accesses inside
locks

We already saw a consequence of this in Figure 1,
where file descriptor table locks were placed around a
single atomic read of a field in the file descriptor table
structure. Another example of an unnecessary lock is in
rev 1.79 of uipc_usrreq.c,

FILEDESC_LOCK(td->td_proc->p_fd);
vattr.va_mode =
 (ACCESSPERMS & ~td->td_proc->p_fd-
>fd_cmask);
FILEDESC_UNLOCK(td->td_proc->p_fd);

which is an atomic read of the fd_cmask field with no
other reads of any other file descriptor table structure
fields nearby.

Corollary: Don't lock single atomic memory reads.

Consider the following generic structure,

 struct something {
 int field;

int otherfield;
 } *p;

There are few cases where

 LOCK(p)
 x = p->field
 UNLOCK(p)

can protect anything.

If someone else is writing to p->field, then that write
either occurs before or after this read. Even with locks,
both of the following two cases are possible.

 processor 1 processor 2
 LOCK(p)

modify p->field
UNLOCK(p)

 LOCK(p)
 x = p->field
 UNLOCK(p)
or

 processor 1 processor 2
LOCK(p)

 x = p->field;
 UNLOCK(p)
 LOCK(p)
 modify p->field
 UNLOCK(p)

So the lock doesn't help determine an order here. The
variable x could hold either the new or the old value of
p->field. The read of this field might as well be
unlocked. (The same argument applies to the store
memory barrier effect of the LOCK() and UNLOCK()
operations --- the store could occur either before or
after the read, so it has no effect on determining the
value read.)

But, one case where locks would be required is if the
field temporarily holds a value that no one else is sup-
posed to see and the writer, operating with the lock
held, will store a valid value before releasing his lock.
In this case, both the writer and reader need to hold the
lock before accessing this field.

The situation is different if multiple fields in the struc-
ture were being read and we wanted to guarantee their
read values were mutually consistent. Here, the reader
would hold a lock around the multiple read statements

and the writer would hold a lock across the multiple
write statements. Then both readers and writers would
always see a consistent picture of the fields. So, in the
case, the correct course of action here is to expand the
scope of the lock to cover all the nearby reads without
releasing the lock in between. Then it is not a lock
around a single read statement, but around multiple
statements.

Finally, one might lock a structure in order to guarantee
that it does not get freed while its fields are being used,
but this is not the case for the examples mentioned.
Locking to avoid deallocation during use usually re-
quires some other lock to protect the initial call to
LOCK(). Often, this problem is better solved with a
reference count, a scheme that we will discuss next.

This section gives some valuable guidelines on what
needs to be locked and why. Don't put a lock around
everything just to put a lock around everything. As
shown, that strategy can go wrong by having locks that
cover too few statements, cover statements which don't
need to be covered, and gives a false sense of security
concerning the ordering between read and write opera-
tions. The goal in SMP locking is not to serialize every-
thing through mutex locks, but to allow as much paral-
lelism as possible while maintaining SMP safety.

4. Reference Counting Strategy
One of these SMP safety issues concerns guarding
against deallocation. Reference counting is a scheme
frequently used in SMP systems to protect against deal-
location while an object is still in use. When a reference
to an object is returned or stored, the reference count
for that object is incremented. When a reference is no
longer needed, the count is decremented, and if zero,
the object is freed. The reference count manipulation
must be performed under a mutual exclusion lock to
avoid race conditions involving the count. These rules
must be followed uniformly for the protection to work
and to avoid memory leaks.

A disadvantage of the reference counting strategy is
that a lock is typically acquired and released twice in
the process of incrementing and decrementing the ref-
erence count. These count manipulation operations are
an example of a read-modify-write operation
mentioned earlier. (An alternative is to use the atomic
operations in <sys/atomic.h>, but those are not
applicable to reference counting scenarios where some
set of actions must be performed atomically. They also
incur the same amount of lock overhead at the machine
level.)

5. Protect The Initial Reference
One of the problems encountered when implementing a
reference counting scheme is how to protect the initial
reference. Before locking an object to increment its
reference count, we must ensure that object doesn't get
freed before it is locked.

get pointer to object
Å obj freed here!

lock(ptr->mtx)
increment ptr->refcnt
unlock(ptr->mtx)

This problem is a particularly thorny one and can be
addressed in the FreeBSD kernel in a number of ways,
all of which involve reasoning inductively from some
base case. For example, system calls occur within a
process context, so system call code can safely lock the
proc structure first before validating and acquiring a
substructure lock. In the absence of such a natural base
case, a global lock can be used in its place.

Another solution involves the transfer of a reference
count lock protected by already holding an existing
count or sole reference. For example, on initial alloca-
tion of a structure and before any references to that
structure are made accessible, the allocation routine
increments the reference count to 1. The calling routine
can then store the reference in some other structure,
taking care to increment the count as necessary. Any
code that later accesses that reference knows by induc-
tion that a visible reference is a valid one.

6. Guard Against Deallocation
The deallocation during use problem looks like

processor 1 processor 2
 get obj
 var1 = obj->field1

free(obj)
 var2 = obj->field2 Å use after free!

Holding the lock is one strategy to guard against deal-
location during use.

 processor 1 processor 2
lock(obj)
 waits for unlock Æ lock(obj)
uses of obj
unlock(obj) Å indicates obj no longer in use

free(obj)

The strategy of holding the lock to guard against deal-
location during use must be used in conjuction with
another strategy to guard the initial reference. The ad-
vantages of holding the lock to guard against dealloca-
tion is that it is simpler and lower overhead than refer-
ence counting, which requires a lock to atomically in-
crement the reference count and another lock to
atomically decrement it. It does, however, limit concur-
rency. With reference counting, simultaneous use of an
object is allowed.

processor 1 processor 2
lock obj
increment refcnt
unlock obj

lock obj
increment refcnt
unlock obj

use obj Å simultaneous use Æ use obj

lock obj
decrement refcnt
unlock obj
 lock obj

decrement refcnt
unlock obj

An example of a place where mutexes are used to guard
against deallocation is the inpcb lock in the networking
stack. Here, due to the serial nature of the operations
performed while holding an inpcb lock, only one proc-
essor can access the structure at a time anyways, so
holding the lock to guard against deallocation rather
than obtaining a reference count does not artificially
limit parallelism.

7. Protect Linked Lists
Linked list traversal and linked list manipulation must
be performed under a lock. This lock must be common
to all the readers and writers of this linked list. One
example of faulty locking is in rev 1.90 of sys_pipe.c,
which uses the pipe lock in many places to protect
knote list traversal, for example, in filt_pipedetach():

PIPE_LOCK(cpipe);
SLIST_REMOVE(&cpipe->pipe_sel.si_note,

 kn, knote, kn_selnext);
PIPE_UNLOCK(cpipe);

Unfortunately, the knote() function in kern_event.c,
which walks the knote list, is called without holding the

pipe lock, leading to a race condition between the two
operations. This bug is an example of not holding the
same SMP lock for list traversal and list manipulation.
This can be addressed, after tracing the calls of the
knote() function back to pipeselwakeup(), by ensuring
that pipeselwakeup() is always called with the pipe lock
held. Alternatively, a new lock can be introduced to
protect the knote list and acquired during both list tra-
versal and list manipulation.

If a list will be traversed by more than one thread si-
multaneously, it may pay to use a shared sx lock
[Bald], as is done for the some of the process lists.
From the pfind() routine in kern_proc.c,

 sx_slock(&allproc_lock);
 LIST_FOREACH(p, PIDHASH(pid), p_hash)
 ...
 sx_sunlock(&allproc_lock);

Here, the allproc_lock shared lock is used to protect the
linked list pointer stored in the p_hash field. This is a
shared lock, so multiple threads can be executing this
code in pfind() simultaneously. When modifying this
field, an exclusive lock must be obtained to lock out
other readers and writers, as is done, for example, in
exit1() in kern_exit.c:

 sx_xlock(&allproc_lock);
 LIST_REMOVE(p, p_hash);
 sx_xunlock(&allproc_lock);

Unfortunately, shared locks are many times more ex-
pensive than simple mutexes, so they should only be
used when lock profiling indicates lock contention for a
given lock. Since most locks are not contested, using a
shared lock rarely pay off.

One technique used in the FreeBSD code to leave open
the option to switch from a fast simple mutex to a slow
shared sx lock is to use macro definitions for the lock-
ing. We see this in net/if_var.h,

#define IFNET_WLOCK() mtx_lock(&ifnet_lock)
#define IFNET_WUNLOCK()

 mtx_unlock(&ifnet_lock)
#define IFNET_RLOCK() IFNET_WLOCK()
#define IFNET_RUNLOCK() IFNET_WUNLOCK()

where shared read locks are differentiated from exclu-
sive write locks in the code, but the two types of lock
usage are both defined as the same simple mutex lock.
This allows for an easy switch to a shared sx lock if
lock profiling later determines that this is a heavily con-

tested lock and the code usage exhibits a strong multi-
ple-readers single-writer pattern. The amount of lock
contention will depend on the application mix being
run as well as the number of processors in the system.

8. Lock-Free Synchronization
There are many opportunities to exploit lock-free syn-
chronization techniques in an SMP setting. The
FreeBSD kernel does not, as yet, use many of these
techniques. One technique that is currently deployed is
the use of a generation count on a structure. This is a
count that is incremented each time a structure is modi-
fied or freed. The generation count is remembered be-
fore an unlocked operation and checked at the end of an
operation. If the generation count hasn't changed, then
the structure was not modified during the operation.
For example, this technique is used to avoid locking
structures that are copied out to user-land for sysctls.

9. Lock Ordering and Deadlocks
Lock ordering considerations pervade much of the
locking in the FreeBSD kernel.

There are four necessary conditions [Silb] for deadlock:

1. mutual exclusion
2. hold and wait
3. no preemption
4. circular wait

Breaking any one of these conditions is sufficient to
guarantee that no deadlock can occur. The most com-
monly used approach and the one FreeBSD has chosen
by design is to order the locks.

This means that locks are acquired in a particular order
and if a lock is required while a higher numbered lock
is held, the higher numbered lock is released and lock
acquisition proceeds anew from the top. The witness
facility automatically tracks lock ordering and warns if
it detects locks being acquired out of order.

10. The dreaded "Could sleep while holding
lock" warning
Blocking memory allocations are detected by witness
and commonly reported by FreeBSD-current users.
There are several common strategies for dealing with
this. One is to allocate before acquiring mutex. Another
is to allocate after releasing mutex. Sometimes a block-

ing malloc can be avoided by copying into local vari-
ables. Finally, if all else fails, use non-blocking alloca-
tion.

11. Related Work
There has been much work in the past concerning the
formal semantics of programs. Some of this targets
formal reasoning about concurrent programs [Lamp2].
In general, with notable exceptions such as [Sav], few
of these techniques have not been applied to programs
as large as the FreeBSD operating system.

12. Summary and Future Work
Many of the subsystems still remain to be locked up.
An analysis of what the subsystem does, the inherent
race conditions, and the proper locking strategy should
precede placing actual locks in the code. That all the
bugs discussed here were found in committed code
indicates that we should focus on SMP safety and com-
pleteness. After that has been accomplished, then we
can turn out attention towards lock profiling, tuning,
and reorganizing code and data structures to better take
advantage of the SMP environment.

We have gone over some of the techniques used in
locking up the subsystems in the FreeBSD kernel. Both
examples of correct as well as incorrect SMP locking
and the reasoning behind both were explored. The
common question of what needs to be locked and what
does not need to be locked was illustrated in a number
of contexts within the kernel. We hope this aids devel-
opers in understanding the current locking employed in
the FreeBSD SMP kernel and in locking up the remain-
ing modules.

13. References
[Bald] John Baldwin, Locking in the Multithreaded
FreeBSD Kernel, Proceedings of the BSDCon 2002
Conference, Usenix, 2002.

[Lamp] Leslie Lamport, "A distributed system is one in
which the failure of a computer you didn't even know
existed can render your own computer unusable."
CACM, June 1992.

[Lamp2] Leslie Lamport, “A Temporal Logic of Ac-
tion”, ACM Transactions on Programming Languages
and Systems, May 1994.

[Leh] Greg Lehey, Improving the FreeBSD SMP Im-
plementation, Proceedings of FREENIX Track: 2001
USENIX Annual Technical Conference, Usenix, 2001.

[Sav] Stefan Savage, Eraser: A Dynamic Data Race
Detector for Multi-Threaded Programs, ACM Transac-
tions on Computer Systems, Vol 15, No 4, Nov 1997.

[Schm] Curt Schimmel, UNIX Systems for Modern
Architectures: Symmetric Multiprocessing and Caching
for Kernel Programmers, Addison-Wesley, 1994.

[Silb] Silberschatz, Operating System Concepts, 6th
Edition, John Wiley & Sons, 2001.

[Val] Vahalia, UNIX Internals: The New Frontiers,
Prentice Hall, 1995.

