/*- * Copyright (c) 2009,2010 Oleksandr Tymoshenko * All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions * are met: * 1. Redistributions of source code must retain the above copyright * notice unmodified, this list of conditions, and the following * disclaimer. * 2. Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE * ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF * SUCH DAMAGE. */ #include __FBSDID("$FreeBSD$"); /* * AR71XX gigabit ethernet driver */ #ifdef HAVE_KERNEL_OPTION_HEADERS #include "opt_device_polling.h" #endif #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include #include MODULE_DEPEND(adapter, ether, 1, 1, 1); MODULE_DEPEND(adapter, miibus, 1, 1, 1); #include "miibus_if.h" #include #undef ADAPTER_DEBUG #ifdef ADAPTER_DEBUG #define dprintf printf #else #define dprintf(x, arg...) #endif static int adapter_attach(device_t); static int adapter_detach(device_t); static int adapter_ifmedia_upd(struct ifnet *); static void adapter_ifmedia_sts(struct ifnet *, struct ifmediareq *); static int adapter_ioctl(struct ifnet *, u_long, caddr_t); static void adapter_init(void *); static void adapter_init_locked(struct adapter_softc *); static void adapter_link_task(void *, int); static int adapter_miibus_readreg(device_t, int, int); static void adapter_miibus_statchg(device_t); static int adapter_miibus_writereg(device_t, int, int, int); static int adapter_probe(device_t); static int adapter_resume(device_t); #ifdef DEVICE_POLLING static int adapter_poll(struct ifnet *, enum poll_cmd, int); #endif static int adapter_shutdown(device_t); static void adapter_start(struct ifnet *); static void adapter_start_locked(struct ifnet *); static void adapter_stop(struct adapter_softc *); static int adapter_suspend(device_t); static void adapter_intr(void *); static int adapter_intr_filter(void *); static void adapter_tick(void *); static void arge_dmamap_cb(void *, bus_dma_segment_t *, int, int); static int arge_dma_alloc(struct arge_softc *); static void arge_dma_free(struct arge_softc *); static device_method_t adapter_methods[] = { /* Device interface */ DEVMETHOD(device_probe, adapter_probe), DEVMETHOD(device_attach, adapter_attach), DEVMETHOD(device_detach, adapter_detach), DEVMETHOD(device_suspend, adapter_suspend), DEVMETHOD(device_resume, adapter_resume), DEVMETHOD(device_shutdown, adapter_shutdown), /* bus interface */ DEVMETHOD(bus_print_child, bus_generic_print_child), DEVMETHOD(bus_driver_added, bus_generic_driver_added), /* MII interface */ DEVMETHOD(miibus_readreg, adapter_miibus_readreg), DEVMETHOD(miibus_writereg, adapter_miibus_writereg), DEVMETHOD(miibus_statchg, adapter_miibus_statchg), { 0, 0 } }; static driver_t adapter_driver = { "adapter", adapter_methods, sizeof(struct adapter_softc) }; static devclass_t adapter_devclass; DRIVER_MODULE(adapter, nexus, adapter_driver, adapter_devclass, 0, 0); DRIVER_MODULE(miibus, adapter, miibus_driver, miibus_devclass, 0, 0); static struct mtx miibus_mtx; MTX_SYSINIT(miibus_mtx, &miibus_mtx, "adapter mii lock", MTX_SPIN); static int adapter_probe(device_t dev) { device_set_desc(dev, "FIXME: Detailed ADAPTER description here"); return (0); } static int adapter_attach(device_t dev) { uint8_t eaddr[ETHER_ADDR_LEN]; struct ifnet *ifp; struct adapter_softc *sc; int error = 0, rid; sc = device_get_softc(dev); sc->adapter_dev = dev; /* * FIXME: do some preliminary stuff here, like get MAC address * into eaddr (if needed) */ mtx_init(&sc->adapter_mtx, device_get_nameunit(dev), MTX_NETWORK_LOCK, MTX_DEF); callout_init_mtx(&sc->adapter_stat_callout, &sc->adapter_mtx, 0); TASK_INIT(&sc->adapter_link_task, 0, adapter_link_task, sc); /* * FIXME: Nice place for resources allocation. May be you'll need * SYS_RES_IOPORT for your driver */ /* Map control/status registers. */ sc->adapter_rid = 0; sc->adapter_res = bus_alloc_resource_any(dev, SYS_RES_MEMORY, &sc->adapter_rid, RF_ACTIVE); if (sc->adapter_res == NULL) { device_printf(dev, "couldn't map memory\n"); error = ENXIO; goto fail; } /* Allocate interrupts */ rid = 0; sc->adapter_irq = bus_alloc_resource_any(dev, SYS_RES_IRQ, &rid, RF_SHAREABLE | RF_ACTIVE); if (sc->adapter_irq == NULL) { device_printf(dev, "couldn't map interrupt\n"); error = ENXIO; goto fail; } /* Allocate ifnet structure. */ ifp = sc->adapter_ifp = if_alloc(IFT_ETHER); if (ifp == NULL) { device_printf(dev, "couldn't allocate ifnet structure\n"); error = ENOSPC; goto fail; } ifp->if_softc = sc; if_initname(ifp, device_get_name(dev), device_get_unit(dev)); ifp->if_flags = IFF_BROADCAST | IFF_SIMPLEX | IFF_MULTICAST; ifp->if_ioctl = adapter_ioctl; ifp->if_start = adapter_start; ifp->if_init = adapter_init; sc->adapter_if_flags = ifp->if_flags; IFQ_SET_MAXLEN(&ifp->if_snd, IFQ_MAXLEN); ifp->if_snd.ifq_maxlen = IFQ_MAXLEN; IFQ_SET_READY(&ifp->if_snd); ifp->if_capenable = ifp->if_capabilities; #ifdef DEVICE_POLLING ifp->if_capabilities |= IFCAP_POLLING; #endif if (adapter_dma_alloc(sc) != 0) { error = ENXIO; goto fail; } /* * FIXME: Get your hands dirty: mess with registers, setup * modes, MAC addresses, whatever */ if (arge_dma_alloc(sc) != 0) { error = ENXIO; goto fail; } /* Do MII setup. */ if (mii_phy_probe(dev, &sc->adapter_miibus, adapter_ifmedia_upd, adapter_ifmedia_sts)) { device_printf(dev, "MII without any phy!\n"); error = ENXIO; goto fail; } /* Call MI attach routine. */ ether_ifattach(ifp, eaddr); /* Hook interrupt last to avoid having to lock softc */ error = bus_setup_intr(dev, sc->adapter_irq, INTR_TYPE_NET | INTR_MPSAFE, adapter_intr_filter, adapter_intr, sc, &sc->adapter_intrhand); if (error) { device_printf(dev, "couldn't set up irq\n"); ether_ifdetach(ifp); goto fail; } fail: if (error) adapter_detach(dev); return (error); } static int adapter_detach(device_t dev) { struct adapter_softc *sc = device_get_softc(dev); struct ifnet *ifp = sc->adapter_ifp; KASSERT(mtx_initialized(&sc->adapter_mtx), ("adapter mutex not initialized")); /* These should only be active if attach succeeded */ if (device_is_attached(dev)) { ADAPTER_LOCK(sc); sc->adapter_detach = 1; #ifdef DEVICE_POLLING if (ifp->if_capenable & IFCAP_POLLING) ether_poll_deregister(ifp); #endif adapter_stop(sc); ADAPTER_UNLOCK(sc); taskqueue_drain(taskqueue_swi, &sc->adapter_link_task); ether_ifdetach(ifp); } bus_generic_detach(dev); if (sc->adapter_intrhand) bus_teardown_intr(dev, sc->adapter_irq, sc->adapter_intrhand); if (sc->adapter_res) bus_release_resource(dev, SYS_RES_MEMORY, sc->adapter_rid, sc->adapter_res); if (ifp) if_free(ifp); arge_dma_free(sc); mtx_destroy(&sc->adapter_mtx); return (0); } static int adapter_suspend(device_t dev) { /* * FIXME: Suspend your adapter here, or just panic */ panic("%s: unimplemented", __func__); return 0; } static int adapter_resume(device_t dev) { /* * FIXME: Wakeup and get to work... Or panic */ panic("%s", __func__); return 0; } static int adapter_shutdown(device_t dev) { struct adapter_softc *sc; sc = device_get_softc(dev); ADAPTER_LOCK(sc); adapter_stop(sc); ADAPTER_UNLOCK(sc); /* * XXX: Not sure what else could be here */ return (0); } static int adapter_miibus_readreg(device_t dev, int phy, int reg) { struct adapter_softc * sc = device_get_softc(dev); int i, result; uint32_t addr = ADAPTER_MII_MAKEADDR(phy, reg); mtx_lock(&miibus_mtx); /* * FIXME: read MII register. Return -1 if there are any issues */ mtx_unlock(&miibus_mtx); dprintf("%s: phy=%d, reg=%02x, value[%08x]=%04x\n", __func__, phy, reg, addr, result); return (result); } static int adapter_miibus_writereg(device_t dev, int phy, int reg, int data) { struct adapter_softc * sc = device_get_softc(dev); int i; uint32_t addr = ADAPTER_MII_MAKEADDR(phy, reg); dprintf("%s: phy=%d, reg=%02x, value=%04x\n", __func__, phy, reg, data); mtx_lock(&miibus_mtx); /* * FIXME: write MII register here */ mtx_unlock(&miibus_mtx); return (0); } static void adapter_miibus_statchg(device_t dev) { struct adapter_softc *sc; sc = device_get_softc(dev); taskqueue_enqueue(taskqueue_swi, &sc->adapter_link_task); } static void adapter_link_task(void *arg, int pending) { struct adapter_softc *sc; struct mii_data *mii; struct ifnet *ifp; uint32_t media, duplex; sc = (struct adapter_softc *)arg; ADAPTER_LOCK(sc); mii = device_get_softc(sc->adapter_miibus); ifp = sc->adapter_ifp; if (mii == NULL || ifp == NULL || (ifp->if_drv_flags & IFF_DRV_RUNNING) == 0) { ADAPTER_UNLOCK(sc); return; } if (mii->mii_media_status & IFM_ACTIVE) { media = IFM_SUBTYPE(mii->mii_media_active); if (media != IFM_NONE) { sc->adapter_link_status = 1; duplex = mii->mii_media_active & IFM_GMASK; /* * FIXME: write media/duplex configuration to registers */ } } else sc->adapter_link_status = 0; ADAPTER_UNLOCK(sc); } static void adapter_init(void *xsc) { struct adapter_softc *sc = xsc; ADAPTER_LOCK(sc); adapter_init_locked(sc); ADAPTER_UNLOCK(sc); } static void adapter_init_locked(struct adapter_softc *sc) { struct ifnet *ifp = sc->adapter_ifp; struct mii_data *mii; ADAPTER_LOCK_ASSERT(sc); adapter_stop(sc); /* Init circular RX list. */ if (adapter_rx_ring_init(sc) != 0) { device_printf(sc->adapter_dev, "initialization failed: no memory for rx buffers\n"); adapter_stop(sc); return; } /* Init tx descriptors. */ adapter_tx_ring_init(sc); /* * FIXME: reset DMA here */ sc->adapter_link_status = 0; mii = device_get_softc(sc->adapter_miibus); mii_mediachg(mii); ifp->if_drv_flags |= IFF_DRV_RUNNING; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; if (sc->adapter_miibus) callout_reset(&sc->adapter_stat_callout, hz, adapter_tick, sc); /* * FIXME: Write down start of RX/TX rings to respective registers */ /* * FIXME: Start listening / activate NIC */ /* * FIXME: Enable interrupts */ } /* * Encapsulate an mbuf chain in a descriptor by coupling the mbuf data * pointers to the fragment pointers. */ static int adapter_encap(struct adapter_softc *sc, struct mbuf **m_head) { struct adapter_txdesc *txd; struct adapter_desc *desc, *prev_desc; bus_dma_segment_t txsegs[ADAPTER_MAXFRAGS]; int error, i, nsegs, prod, prev_prod; struct mbuf *m; ADAPTER_LOCK_ASSERT(sc); #ifdef CHECK_YOUR_DATASHEET /* * Fix mbuf chain, all fragments should be 4 bytes aligned and * even 4 bytes */ m = *m_head; if((mtod(m, intptr_t) & 3) != 0) { m = m_defrag(*m_head, M_DONTWAIT); if (m == NULL) { *m_head = NULL; return (ENOBUFS); } *m_head = m; } #endif /* * FIXME: Get current TX descriptor int txd */ error = bus_dmamap_load_mbuf_sg(sc->adapter_cdata.adapter_tx_tag, txd->tx_dmamap, *m_head, txsegs, &nsegs, BUS_DMA_NOWAIT); if (error == EFBIG) { panic("EFBIG"); } else if (error != 0) return (error); if (nsegs == 0) { m_freem(*m_head); *m_head = NULL; return (EIO); } /* Check number of available descriptors. */ if (sc->adapter_cdata.adapter_tx_cnt + nsegs >= (ADAPTER_TX_RING_COUNT - 1)) { bus_dmamap_unload(sc->adapter_cdata.adapter_tx_tag, txd->tx_dmamap); return (ENOBUFS); } txd->tx_m = *m_head; bus_dmamap_sync(sc->adapter_cdata.adapter_tx_tag, txd->tx_dmamap, BUS_DMASYNC_PREWRITE); /* * FIXME: Assign TX desciptor for each segment */ for (i = 0; i < nsegs; i++) { } /* Sync descriptors. */ bus_dmamap_sync(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_cdata.adapter_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); /* * FIXME: start transmitting by writing some obscure flag to * particular register */ return (0); } static void adapter_start(struct ifnet *ifp) { struct adapter_softc *sc; sc = ifp->if_softc; ADAPTER_LOCK(sc); adapter_start_locked(ifp); ADAPTER_UNLOCK(sc); } static void adapter_start_locked(struct ifnet *ifp) { struct adapter_softc *sc; struct mbuf *m_head; int enq; sc = ifp->if_softc; ADAPTER_LOCK_ASSERT(sc); if ((ifp->if_drv_flags & (IFF_DRV_RUNNING | IFF_DRV_OACTIVE)) != IFF_DRV_RUNNING || sc->adapter_link_status == 0 ) return; for (enq = 0; !IFQ_DRV_IS_EMPTY(&ifp->if_snd) && sc->adapter_cdata.adapter_tx_cnt < ADAPTER_TX_RING_COUNT - 2; ) { IFQ_DRV_DEQUEUE(&ifp->if_snd, m_head); if (m_head == NULL) break; /* * Pack the data into the transmit ring. */ if (adapter_encap(sc, &m_head)) { if (m_head == NULL) break; IFQ_DRV_PREPEND(&ifp->if_snd, m_head); ifp->if_drv_flags |= IFF_DRV_OACTIVE; break; } enq++; /* * If there's a BPF listener, bounce a copy of this frame * to him. */ ETHER_BPF_MTAP(ifp, m_head); } } static void adapter_stop(struct adapter_softc *sc) { struct ifnet *ifp; ADAPTER_LOCK_ASSERT(sc); ifp = sc->adapter_ifp; ifp->if_drv_flags &= ~(IFF_DRV_RUNNING | IFF_DRV_OACTIVE); if (sc->adapter_miibus) callout_stop(&sc->adapter_stat_callout); /* * FIXME: mask interrupts, reset DMA */ } static int adapter_ioctl(struct ifnet *ifp, u_long command, caddr_t data) { struct adapter_softc *sc = ifp->if_softc; struct ifreq *ifr = (struct ifreq *) data; struct mii_data *mii; int error; #ifdef DEVICE_POLLING int mask; #endif switch (command) { case SIOCSIFFLAGS: ADAPTER_LOCK(sc); if ((ifp->if_flags & IFF_UP) != 0) { if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { if (((ifp->if_flags ^ sc->adapter_if_flags) & (IFF_PROMISC | IFF_ALLMULTI)) != 0) { /* FIXME: handle promisc & multi flags */ } } else { if (!sc->adapter_detach) adapter_init_locked(sc); } } else if ((ifp->if_drv_flags & IFF_DRV_RUNNING) != 0) { ifp->if_drv_flags &= ~IFF_DRV_RUNNING; adapter_stop(sc); } sc->adapter_if_flags = ifp->if_flags; ADAPTER_UNLOCK(sc); error = 0; break; case SIOCADDMULTI: case SIOCDELMULTI: /* FIXME: implement SIOCDELMULTI */ error = 0; break; case SIOCGIFMEDIA: case SIOCSIFMEDIA: mii = device_get_softc(sc->adapter_miibus); error = ifmedia_ioctl(ifp, ifr, &mii->mii_media, command); break; case SIOCSIFCAP: /* XXX: Check other capabilities */ #ifdef DEVICE_POLLING mask = ifp->if_capenable ^ ifr->ifr_reqcap; if (mask & IFCAP_POLLING) { if (ifr->ifr_reqcap & IFCAP_POLLING) { ADAPTER_WRITE(sc, AR71XX_DMA_INTR, 0); error = ether_poll_register(adapter_poll, ifp); if (error) return error; ADAPTER_LOCK(sc); ifp->if_capenable |= IFCAP_POLLING; ADAPTER_UNLOCK(sc); } else { ADAPTER_WRITE(sc, AR71XX_DMA_INTR, DMA_INTR_ALL); error = ether_poll_deregister(ifp); ADAPTER_LOCK(sc); ifp->if_capenable &= ~IFCAP_POLLING; ADAPTER_UNLOCK(sc); } } error = 0; break; #endif default: error = ether_ioctl(ifp, command, data); break; } return (error); } /* * Set media options. */ static int adapter_ifmedia_upd(struct ifnet *ifp) { struct adapter_softc *sc; struct mii_data *mii; struct mii_softc *miisc; int error; sc = ifp->if_softc; ADAPTER_LOCK(sc); mii = device_get_softc(sc->adapter_miibus); if (mii->mii_instance) { LIST_FOREACH(miisc, &mii->mii_phys, mii_list) mii_phy_reset(miisc); } error = mii_mediachg(mii); ADAPTER_UNLOCK(sc); return (error); } /* * Report current media status. */ static void adapter_ifmedia_sts(struct ifnet *ifp, struct ifmediareq *ifmr) { struct adapter_softc *sc = ifp->if_softc; struct mii_data *mii; mii = device_get_softc(sc->adapter_miibus); ADAPTER_LOCK(sc); mii_pollstat(mii); ADAPTER_UNLOCK(sc); ifmr->ifm_active = mii->mii_media_active; ifmr->ifm_status = mii->mii_media_status; } struct adapter_dmamap_arg { bus_addr_t adapter_busaddr; }; static void adapter_dmamap_cb(void *arg, bus_dma_segment_t *segs, int nseg, int error) { struct adapter_dmamap_arg *ctx; if (error != 0) return; ctx = arg; ctx->adapter_busaddr = segs[0].ds_addr; } static int adapter_dma_alloc(struct adapter_softc *sc) { struct adapter_dmamap_arg ctx; struct adapter_txdesc *txd; struct adapter_rxdesc *rxd; int error, i; /* Create parent DMA tag. */ error = bus_dma_tag_create( bus_get_dma_tag(sc->adapter_dev), /* parent */ 1, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR_32BIT, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ BUS_SPACE_MAXSIZE_32BIT, /* maxsize */ 0, /* nsegments */ BUS_SPACE_MAXSIZE_32BIT, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->adapter_cdata.adapter_parent_tag); if (error != 0) { device_printf(sc->adapter_dev, "failed to create parent DMA tag\n"); goto fail; } /* Create tag for Tx ring. */ error = bus_dma_tag_create( sc->adapter_cdata.adapter_parent_tag, /* parent */ ADAPTER_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ADAPTER_TX_DMA_SIZE, /* maxsize */ 1, /* nsegments */ ADAPTER_TX_DMA_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->adapter_cdata.adapter_tx_ring_tag); if (error != 0) { device_printf(sc->adapter_dev, "failed to create Tx ring DMA tag\n"); goto fail; } /* Create tag for Rx ring. */ error = bus_dma_tag_create( sc->adapter_cdata.adapter_parent_tag, /* parent */ ADAPTER_RING_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ ADAPTER_RX_DMA_SIZE, /* maxsize */ 1, /* nsegments */ ADAPTER_RX_DMA_SIZE, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->adapter_cdata.adapter_rx_ring_tag); if (error != 0) { device_printf(sc->adapter_dev, "failed to create Rx ring DMA tag\n"); goto fail; } /* Create tag for Tx buffers. */ error = bus_dma_tag_create( sc->adapter_cdata.adapter_parent_tag, /* parent */ sizeof(uint32_t), 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES * ADAPTER_MAXFRAGS, /* maxsize */ ADAPTER_MAXFRAGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->adapter_cdata.adapter_tx_tag); if (error != 0) { device_printf(sc->adapter_dev, "failed to create Tx DMA tag\n"); goto fail; } /* Create tag for Rx buffers. */ error = bus_dma_tag_create( sc->adapter_cdata.adapter_parent_tag, /* parent */ ADAPTER_RX_ALIGN, 0, /* alignment, boundary */ BUS_SPACE_MAXADDR, /* lowaddr */ BUS_SPACE_MAXADDR, /* highaddr */ NULL, NULL, /* filter, filterarg */ MCLBYTES, /* maxsize */ ADAPTER_MAXFRAGS, /* nsegments */ MCLBYTES, /* maxsegsize */ 0, /* flags */ NULL, NULL, /* lockfunc, lockarg */ &sc->adapter_cdata.adapter_rx_tag); if (error != 0) { device_printf(sc->adapter_dev, "failed to create Rx DMA tag\n"); goto fail; } /* Allocate DMA'able memory and load the DMA map for Tx ring. */ error = bus_dmamem_alloc(sc->adapter_cdata.adapter_tx_ring_tag, (void **)&sc->adapter_rdata.adapter_tx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->adapter_cdata.adapter_tx_ring_map); if (error != 0) { device_printf(sc->adapter_dev, "failed to allocate DMA'able memory for Tx ring\n"); goto fail; } ctx.adapter_busaddr = 0; error = bus_dmamap_load(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_cdata.adapter_tx_ring_map, sc->adapter_rdata.adapter_tx_ring, ADAPTER_TX_DMA_SIZE, adapter_dmamap_cb, &ctx, 0); if (error != 0 || ctx.adapter_busaddr == 0) { device_printf(sc->adapter_dev, "failed to load DMA'able memory for Tx ring\n"); goto fail; } sc->adapter_rdata.adapter_tx_ring_paddr = ctx.adapter_busaddr; /* Allocate DMA'able memory and load the DMA map for Rx ring. */ error = bus_dmamem_alloc(sc->adapter_cdata.adapter_rx_ring_tag, (void **)&sc->adapter_rdata.adapter_rx_ring, BUS_DMA_WAITOK | BUS_DMA_COHERENT | BUS_DMA_ZERO, &sc->adapter_cdata.adapter_rx_ring_map); if (error != 0) { device_printf(sc->adapter_dev, "failed to allocate DMA'able memory for Rx ring\n"); goto fail; } ctx.adapter_busaddr = 0; error = bus_dmamap_load(sc->adapter_cdata.adapter_rx_ring_tag, sc->adapter_cdata.adapter_rx_ring_map, sc->adapter_rdata.adapter_rx_ring, ADAPTER_RX_DMA_SIZE, adapter_dmamap_cb, &ctx, 0); if (error != 0 || ctx.adapter_busaddr == 0) { device_printf(sc->adapter_dev, "failed to load DMA'able memory for Rx ring\n"); goto fail; } sc->adapter_rdata.adapter_rx_ring_paddr = ctx.adapter_busaddr; /* Create DMA maps for Tx buffers. */ for (i = 0; i < ADAPTER_TX_RING_COUNT; i++) { txd = &sc->adapter_cdata.adapter_txdesc[i]; txd->tx_m = NULL; txd->tx_dmamap = NULL; error = bus_dmamap_create(sc->adapter_cdata.adapter_tx_tag, 0, &txd->tx_dmamap); if (error != 0) { device_printf(sc->adapter_dev, "failed to create Tx dmamap\n"); goto fail; } } /* Create DMA maps for Rx buffers. */ if ((error = bus_dmamap_create(sc->adapter_cdata.adapter_rx_tag, 0, &sc->adapter_cdata.adapter_rx_sparemap)) != 0) { device_printf(sc->adapter_dev, "failed to create spare Rx dmamap\n"); goto fail; } for (i = 0; i < ADAPTER_RX_RING_COUNT; i++) { rxd = &sc->adapter_cdata.adapter_rxdesc[i]; rxd->rx_m = NULL; rxd->rx_dmamap = NULL; error = bus_dmamap_create(sc->adapter_cdata.adapter_rx_tag, 0, &rxd->rx_dmamap); if (error != 0) { device_printf(sc->adapter_dev, "failed to create Rx dmamap\n"); goto fail; } } fail: return (error); } static void adapter_dma_free(struct adapter_softc *sc) { struct adapter_txdesc *txd; struct adapter_rxdesc *rxd; int i; /* Tx ring. */ if (sc->adapter_cdata.adapter_tx_ring_tag) { if (sc->adapter_cdata.adapter_tx_ring_map) bus_dmamap_unload(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_cdata.adapter_tx_ring_map); if (sc->adapter_cdata.adapter_tx_ring_map && sc->adapter_rdata.adapter_tx_ring) bus_dmamem_free(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_rdata.adapter_tx_ring, sc->adapter_cdata.adapter_tx_ring_map); sc->adapter_rdata.adapter_tx_ring = NULL; sc->adapter_cdata.adapter_tx_ring_map = NULL; bus_dma_tag_destroy(sc->adapter_cdata.adapter_tx_ring_tag); sc->adapter_cdata.adapter_tx_ring_tag = NULL; } /* Rx ring. */ if (sc->adapter_cdata.adapter_rx_ring_tag) { if (sc->adapter_cdata.adapter_rx_ring_map) bus_dmamap_unload(sc->adapter_cdata.adapter_rx_ring_tag, sc->adapter_cdata.adapter_rx_ring_map); if (sc->adapter_cdata.adapter_rx_ring_map && sc->adapter_rdata.adapter_rx_ring) bus_dmamem_free(sc->adapter_cdata.adapter_rx_ring_tag, sc->adapter_rdata.adapter_rx_ring, sc->adapter_cdata.adapter_rx_ring_map); sc->adapter_rdata.adapter_rx_ring = NULL; sc->adapter_cdata.adapter_rx_ring_map = NULL; bus_dma_tag_destroy(sc->adapter_cdata.adapter_rx_ring_tag); sc->adapter_cdata.adapter_rx_ring_tag = NULL; } /* Tx buffers. */ if (sc->adapter_cdata.adapter_tx_tag) { for (i = 0; i < ADAPTER_TX_RING_COUNT; i++) { txd = &sc->adapter_cdata.adapter_txdesc[i]; if (txd->tx_dmamap) { bus_dmamap_destroy(sc->adapter_cdata.adapter_tx_tag, txd->tx_dmamap); txd->tx_dmamap = NULL; } } bus_dma_tag_destroy(sc->adapter_cdata.adapter_tx_tag); sc->adapter_cdata.adapter_tx_tag = NULL; } /* Rx buffers. */ if (sc->adapter_cdata.adapter_rx_tag) { for (i = 0; i < ADAPTER_RX_RING_COUNT; i++) { rxd = &sc->adapter_cdata.adapter_rxdesc[i]; if (rxd->rx_dmamap) { bus_dmamap_destroy(sc->adapter_cdata.adapter_rx_tag, rxd->rx_dmamap); rxd->rx_dmamap = NULL; } } if (sc->adapter_cdata.adapter_rx_sparemap) { bus_dmamap_destroy(sc->adapter_cdata.adapter_rx_tag, sc->adapter_cdata.adapter_rx_sparemap); sc->adapter_cdata.adapter_rx_sparemap = 0; } bus_dma_tag_destroy(sc->adapter_cdata.adapter_rx_tag); sc->adapter_cdata.adapter_rx_tag = NULL; } if (sc->adapter_cdata.adapter_parent_tag) { bus_dma_tag_destroy(sc->adapter_cdata.adapter_parent_tag); sc->adapter_cdata.adapter_parent_tag = NULL; } } /* * Initialize the transmit descriptors. */ static int adapter_tx_ring_init(struct adapter_softc *sc) { struct adapter_ring_data *rd; struct adapter_txdesc *txd; bus_addr_t addr; int i; sc->adapter_cdata.adapter_tx_prod = 0; sc->adapter_cdata.adapter_tx_cons = 0; sc->adapter_cdata.adapter_tx_cnt = 0; sc->adapter_cdata.adapter_tx_pkts = 0; rd = &sc->adapter_rdata; bzero(rd->adapter_tx_ring, sizeof(rd->adapter_tx_ring)); for (i = 0; i < ADAPTER_TX_RING_COUNT; i++) { if (i == ADAPTER_TX_RING_COUNT - 1) addr = ADAPTER_TX_RING_ADDR(sc, 0); else addr = ADAPTER_TX_RING_ADDR(sc, i + 1); /* * FIXME: Write addr as an physical address to "next * descriptor's address" field */ txd = &sc->adapter_cdata.adapter_txdesc[i]; txd->tx_m = NULL; } bus_dmamap_sync(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_cdata.adapter_tx_ring_map, BUS_DMASYNC_PREREAD | BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize the RX descriptors and allocate mbufs for them. Note that * we arrange the descriptors in a closed ring, so that the last descriptor * points back to the first. */ static int adapter_rx_ring_init(struct adapter_softc *sc) { struct adapter_ring_data *rd; struct adapter_rxdesc *rxd; bus_addr_t addr; int i; sc->adapter_cdata.adapter_rx_cons = 0; rd = &sc->adapter_rdata; bzero(rd->adapter_rx_ring, sizeof(rd->adapter_rx_ring)); for (i = 0; i < ADAPTER_RX_RING_COUNT; i++) { rxd = &sc->adapter_cdata.adapter_rxdesc[i]; rxd->rx_m = NULL; rxd->desc = &rd->adapter_rx_ring[i]; if (i == ADAPTER_RX_RING_COUNT - 1) addr = ADAPTER_RX_RING_ADDR(sc, 0); else addr = ADAPTER_RX_RING_ADDR(sc, i + 1); /* * FIXME: Write addr as an physical address to "next * descriptor's address" field */ if (adapter_newbuf(sc, i) != 0) { return (ENOBUFS); } } bus_dmamap_sync(sc->adapter_cdata.adapter_rx_ring_tag, sc->adapter_cdata.adapter_rx_ring_map, BUS_DMASYNC_PREWRITE); return (0); } /* * Initialize an RX descriptor and attach an MBUF cluster. */ static int adapter_newbuf(struct adapter_softc *sc, int idx) { struct adapter_desc *desc; struct adapter_rxdesc *rxd; struct mbuf *m; bus_dma_segment_t segs[1]; bus_dmamap_t map; int nsegs; m = m_getcl(M_DONTWAIT, MT_DATA, M_PKTHDR); if (m == NULL) return (ENOBUFS); m->m_len = m->m_pkthdr.len = MCLBYTES; m_adj(m, sizeof(uint64_t)); if (bus_dmamap_load_mbuf_sg(sc->adapter_cdata.adapter_rx_tag, sc->adapter_cdata.adapter_rx_sparemap, m, segs, &nsegs, 0) != 0) { m_freem(m); return (ENOBUFS); } KASSERT(nsegs == 1, ("%s: %d segments returned!", __func__, nsegs)); rxd = &sc->adapter_cdata.adapter_rxdesc[idx]; if (rxd->rx_m != NULL) { bus_dmamap_unload(sc->adapter_cdata.adapter_rx_tag, rxd->rx_dmamap); } map = rxd->rx_dmamap; rxd->rx_dmamap = sc->adapter_cdata.adapter_rx_sparemap; sc->adapter_cdata.adapter_rx_sparemap = map; rxd->rx_m = m; desc = rxd->desc; if (segs[0].ds_addr & 3) panic("RX packet address unaligned"); /* * FIXME: segs[0].ds_addr is address of receiving space and * segs[0].ds_len is its space. Write them to respectve fields * of descriptor */ bus_dmamap_sync(sc->arge_cdata.arge_rx_ring_tag, sc->adapter_cdata.adapter_rx_ring_map, BUS_DMASYNC_PREWRITE); return (0); } #ifdef DEVICE_POLLING static int adapter_poll(struct ifnet *ifp, enum poll_cmd cmd, int count) { struct adapter_softc *sc = ifp->if_softc; int rx_npkts = 0; if (ifp->if_drv_flags & IFF_DRV_RUNNING) { ADAPTER_LOCK(sc); adapter_tx_locked(sc); rx_npkts = adapter_rx_locked(sc); ADAPTER_UNLOCK(sc); } return (rx_npkts); } #endif /* DEVICE_POLLING */ static void adapter_tx_locked(struct adapter_softc *sc) { struct ifnet *ifp; ADAPTER_LOCK_ASSERT(sc); /* * FIXME: check if there is enough space in TX ring */ bus_dmamap_sync(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_cdata.adapter_tx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); ifp = sc->adapter_ifp; /* * Go through our tx list and free mbufs for those * frames that have been transmitted. */ for (; cons != prod; ADAPTER_INC(cons, ADAPTER_TX_RING_COUNT)) { cur_tx = &sc->adapter_rdata.adapter_tx_ring[cons]; /* * FIXME: Check if descriptor has "finished" flag */ if (FIXME) break; sc->adapter_cdata.adapter_tx_cnt--; ifp->if_drv_flags &= ~IFF_DRV_OACTIVE; txd = &sc->adapter_cdata.adapter_txdesc[cons]; ifp->if_opackets++; bus_dmamap_sync(sc->adapter_cdata.adapter_tx_tag, txd->tx_dmamap, BUS_DMASYNC_POSTWRITE); bus_dmamap_unload(sc->adapter_cdata.adapter_tx_tag, txd->tx_dmamap); /* Free only if it's first descriptor in list */ if (txd->tx_m) m_freem(txd->tx_m); txd->tx_m = NULL; /* * FIXME: mark desciptor as unused repective to NIC's specs */ } sc->adapter_cdata.adapter_tx_cons = cons; bus_dmamap_sync(sc->adapter_cdata.adapter_tx_ring_tag, sc->adapter_cdata.adapter_tx_ring_map, BUS_DMASYNC_PREWRITE); } static int adapter_rx_locked(struct adapter_softc *sc) { struct adapter_rxdesc *rxd; struct ifnet *ifp = sc->adapter_ifp; int cons, prog, packet_len, i; struct adapter_desc *cur_rx; struct mbuf *m; int rx_npkts = 0; ADAPTER_LOCK_ASSERT(sc); bus_dmamap_sync(sc->adapter_cdata.adapter_rx_ring_tag, sc->adapter_cdata.adapter_rx_ring_map, BUS_DMASYNC_POSTREAD | BUS_DMASYNC_POSTWRITE); for (FIXME;FIXME;ADAPTER_INC(cons, ADAPTER_RX_RING_COUNT)) { cur_rx = &sc->adapter_rdata.adapter_rx_ring[cons]; rxd = &sc->adapter_cdata.adapter_rxdesc[cons]; m = rxd->rx_m; /* * FIXME: if descriptor contains no received data, stop * right there */ if (FIXME) break; bus_dmamap_sync(sc->adapter_cdata.adapter_rx_tag, rxd->rx_dmamap, BUS_DMASYNC_POSTREAD); m = rxd->rx_m; /* * FIXME: fixup_rx? ????? */ m->m_pkthdr.rcvif = ifp; /* Skip 4 bytes of CRC */ m->m_pkthdr.len = m->m_len = packet_len - ETHER_CRC_LEN; ifp->if_ipackets++; rx_npkts++; ADAPTER_UNLOCK(sc); (*ifp->if_input)(ifp, m); ADAPTER_LOCK(sc); /* * FIXME: mark descriptor unused */ } /* * FIXME: Allocate new buffers for handled descriptors */ for (FIXME) { if (adapter_newbuf(sc, i) != 0) { device_printf(sc->adapter_dev, "Failed to allocate buffer\n"); break; } ADAPTER_INC(i, ADAPTER_RX_RING_COUNT); } bus_dmamap_sync(sc->adapter_cdata.adapter_rx_ring_tag, sc->adapter_cdata.adapter_rx_ring_map, BUS_DMASYNC_PREWRITE); return (rx_npkts); } static int adapter_intr_filter(void *arg) { struct adapter_softc *sc = arg; uint32_t status, ints; status = FIXME; /* FIXME: get status register, TX? RX? Overflow? */ /* * FIXME: If there is anything - remember it and schedule ithread */ if (status & DMA_INTR_FIXME) { sc->adapter_intr_status |= status; /* FIXME: disable interrupts */ return (FILTER_SCHEDULE_THREAD); } sc->adapter_intr_status = 0; return (FILTER_STRAY); } static void adapter_intr(void *arg) { struct adapter_softc *sc = arg; uint32_t status; status = FIXME; /* FIXME: get current status and some it with the one captured by intr filter */ status |= sc->adapter_intr_status; /* * Is it our interrupt at all? */ if (status == 0) return; if (status & DMA_INTR_FIXME_RX_ERROR) { /* FIXME: handle RX error */ device_printf(sc->adapter_dev, "RX bus error"); return; } if (status & DMA_INTR_FIXME_TX_ERROR) { /* FIXME: handle TX error */ device_printf(sc->adapter_dev, "TX error"); return; } ADAPTER_LOCK(sc); if (status & DMA_INTR_FIXME_RX_GOT_A_PACKET) adapter_rx_locked(sc); if (status & DMA_INTR_FIXME_TX_HAS_SENT_A_PACKET) adapter_tx_locked(sc); /* * FIXME: handle other weird interrupts */ /* * We handled all bits, clear status */ sc->adapter_intr_status = 0; ADAPTER_UNLOCK(sc); /* * FIXME: re-enable all interrupts */ } static void adapter_tick(void *xsc) { struct adapter_softc *sc = xsc; struct mii_data *mii; ADAPTER_LOCK_ASSERT(sc); if (sc->adapter_miibus) { mii = device_get_softc(sc->adapter_miibus); mii_tick(mii); callout_reset(&sc->adapter_stat_callout, hz, adapter_tick, sc); } }