Chapter 37 Image Processing Unit (IPU)

37.1 Overview

The IPU is planned to be a part of the video and graphics subsystem in an application processor.

The goal of the IPU is to provide comprehensive support for the flow of data from an image sensor and/or to a display device. This support covers all aspects of these activities:

- Connectivity to relevant devices cameras, displays, graphics accelerators, TV encoders and decoders.
- Related image processing and manipulation: sensor image signal processing, display processing, image conversions, etc.
- Synchronization and control capabilities (to avoid tearing artifacts).

This integrative approach leads to several significant advantages:

- Automation: The involvement of the ARM platform in image management is minimized. In particular, display refresh/update and a camera preview (displaying the input from an image sensor) can be performed completely autonomously. The resulting benefits are reducing the overhead due to SW-HW synchronization, freeing the ARM platform to perform other tasks and reduced power consumption (when the ARM core is idle and can be powered down).
- Optimal data path: Access to system memory is minimized. In particular, significant processing can be performed on-the-fly while receiving data from an image sensor and/or sending data to a display. System memory is used essentially only when a change in pixel order or frame rate is needed. The resulting benefits are reduced load on the system bus and further reduction of power consumption.
- Resource sharing: Maximal HW reuse for different applications, resulting with the support of a wide range of requirements with minimal HW.

The HW reuse mentioned above is enabled by a sophisticated configurability of each HW block. This configurability also allows the support of a wide range of external devices, data formats and operation modes. The resulting flexibility is important also because the support requirements are evolving significantly, so expected future changes need to be anticipated and accounted for.

The following further principles guided the choice of support provided by the IPU:

- For key applications that deserve and need HW support (for acceleration or low power), provide the best support (leading to an optimal implementation).
- For additional applications that can benefit from the HW, consider cost vs. benefit of making minor modifications/extensions to support them.
- For all other relevant applications (to be supported by SW), verify that their support is not degraded.
- Whenever possible, let the operating system (and its windowing system) act as it would without the IPU.

37.1.1 Architecture

A simplified block diagram of the IPU can be found here. The role of each block is described in IPU.

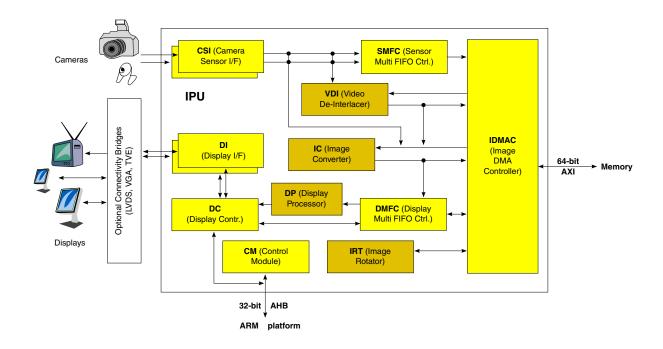


Figure 37-1. IPU Block Diagram

Table 37-1. IPU - Block Description

Block	Description
CSI - Camera Sensor Interface	Controls a camera port; provides interface to an image sensor or a related device. IPU includes 2 such blocks.
DI - Display Interface	Provides interface to displays, display controllers and related devices.
	IPU includes 2 such blocks.
DC - Display Controller	Controls the display ports.
DP - Display Processor	Performs the processing required for data sent to display.
IC - Image Converter	Performs resizing, color conversion/correction, combining with graphics, and horizontal inversion.
VDIC - Video De Interlacer	Performs video de interlacing (Interlaced -> progressive) or combining.
IRT - Image Rotator	Performs rotation (90 or 180 degrees) and inversion (vertical/horizontal).
IDMAC - Image DMA Controller	Controls the memory port; transfers data to/from system memory.
DMFC - Display Multi FIFO Controller	Controls FIFOs for IDMAC channels related to the display system.
CM - Control Module	Provides control and synchronization.

37.1.2 Features And Functionality

37.1.2.1 External Ports

IPU has the following ports:

- Two camera ports each controlled by a CSI sub-block, providing a connection to image sensors and related devices.
- Two display ports each controlled by a DI sub-block, providing a connection to displays and related devices.
- Memory port AXI (AHB V3.0) master, controlled by the IDMAC providing connection to the system memory.
- AHB-lite slave port, providing connection to the ARM Platform (and to any other master connected to the ARM's cross-bar switch).
- Additional ports for control and debug.

37.1.2.1.1 Camera Ports

The role of these ports is to receive input from image sensors (or TV decoders) and to provide support for time-sensitive control signals to the camera.

(Non-time-sensitive controls; configuration, reset are performed by the ARM platform through I2C I/F or GPIO signals).

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Each of the camera ports includes the following features:

- Direct connectivity to most relevant image sensors and to TV decoders.
- Interface types
 - Parallel interface
 - Up to 20-bit input data bus.
 - A single value in each cycle, except for special cases listed in the table below (comments column).
 - Programmable polarity.
 - High-speed serial interface MIPI (Mobile Industry Processor Interface) CSI-2 (Camera Serial Interface) (implemented partly in the IPU and partly in the HSC).
 - Up to four data lanes; up to 800 Mbps per lane
 - Class 1 compliancy (supporting all primary formats)
- The data formats
 - Interleaved color components, up to 16 bits per value (component).
 - The supported formats are listed in the table below.

Table 37-2. Data Formats Supported By The Camera Port

Format	Resolution	On-The-Fly Processing	Direct path to memory	Comments
Bayer RGB	8 bits/value	No	8- or 16-bit values	MIPI mandatory format
	9-10 bits/value No Written to the MSB of a 16-bit word			10 bits/value is a MIPI mandatory format
	16 bits/value	No		
Full RGB or YUV 4:4:4	444/555 mode	Yes, starting with color extension to 8 bits/ sample	Yes	MIPI optional formats In parallel I/F: through an 8-bit or 16-bit bus
	565 mode			MIPI mandatory format
				In parallel I/F: through an 8-bit or 16-bit bus
	8 bits/value (888 mode)	Yes	Yes	MIPI mandatory format
	8-16 bits/value	No	8- or 16-bit components are written to the MSB of a 16-bit word 10 bits/ value can also be packed in a 32-bit word	
YUV 4:2:2 Component order:	8 bits/value	Yes	Yes	MIPI mandatory format (UY1VY2) In parallel I/F: through an 8-bit
UY1VY2 or Y1UY2V				bus (such as BT.656) or 16-bit bus (such as BT.1120)

Table 37-2. Data Formats Supported By The Camera Port (continued)

Format	Resolution	On-The-Fly Processing	Direct path to memory	Comments
	9-10 bits/value	No	Written to the MSB of a 16-bit word	In parallel I/F: through a 10-bit bus (such as BT.656) or 20-bit bus (such as BT.1120)
	16 bits/value	No	Written to the MSB of a 16-bit word	
Gray scale	8 bits/value	No	Yes	
	16 bits/value	No	Written to the MSB of a 16-bit word	
Generic data		No	Yes	MIPI mandatory format
			In a parallel I/F, if wider than 8 bits, each bus word is written to the MSB of a 16-bit word	May be used for any other formant, such as JPEG/MPEG4

- Scan order: progressive or interlaced data (expected only for YUV 4:2:2) is sent directly to system memory, where it can be read back for further processing.
- Frame size: up to 8192 x 4096 pixels
- Synchronization: video mode
 - The sensor is the master of the pixel clock (PIXCLK) & synchronization signals
 - Synchronization signals are received using either of the following methods:
 - Dedicated control signals -VSYNC, HSYNC with programmable pulse width & polarity
 - Controls embedded in the data stream, following loosely the BT.656 protocol, with flexibility in code values and location.
- Synchronization : still image capture
 - The image capture is triggered by the ARM platform or by an external signal (such as a mechanical shutter).
 - Synchronized strobes are generated for up to 6 outputs the sensor and camera peripherals (such as flash, mechanical shutter).
- Additional features
 - Frame rate reduction, by the periodic skipping of frames
 - The supported reduction ratios are: m:n, where m,n<=5
 - This is supported independently for the different destinations IC, SMFC.
 - Window-of-interest selection
 - Pre-flash for red-eye reduction and for measurements (such as focus) in lowlight conditions

Several sensors can be connected to each of the CSIs. Simultaneous functionality (sending data) is supported as follows:

- Two sensors can send data independently, each through a different port, each using either parallel or fast serial interface.
- Several sensors can send data to the same port, using the MIPI interface (through a HUB), each sensor being identified by different ID's.
- Unpacking and companding capabilities are provided for up to two streams (either through same or different interfaces), while the other ones are treated as generic data.
- Only one of the (non-generic) streams can be transferred to the VDI C or IC for onthe-fly processing, while the others are sent directly to system memory.

The input rate supported by the camera port is as follows:

For parallel interface, the maximum speed of the interface is 240Mhz. The required operating frequency of the interface is calculated in the following way:

$$F = FH * FW * FPS * BI * DF$$

Where

- **FH** = frame height (in pixels)
- **FW** = Frame width (in pixels)
- **fps** = frame rate (frames per second)
- **BI** = typically 35% overhead, should be assumed as 1.35. The actual blanking intervals are a parameter of the attached device.
- **DF** = data format, defines the number of cycles needed to send a single pixel.

The number of cycles needed to send a single pixel depends on the interface and the data format.

Data format examples:

- YUV422 over 16 bit = 1 cycles/pixel
- RGB888 over 8 bit = 3 cycles/pixel
- RGB565 over 16 bit = 2 cycles/pixel
- Bayer/Generic data = 1 cycle/pixel
- YUV422 over 8 bit = 2 cycles/pixel
- BT.656, YUV422 format = 2 cycles/pixel
- BT.1120, YUV422 format = 1 cycle/pixel

Examples of supported interfaces:

- 3.2MP camera, 15fps, yuv422 format, 8 bit interface
- 1080P30, yuv422, 8 bit interface

Fast serial interface (MIPI-CSI2):

- IPU receives 2 components per cycle from the MIPI-CSI2 interface
- The maximum speed of the interface is:
 - 200Mhz for 4 data lanes configuration
 - 250Mhz for 2 data lanes configuration

The maximum bandwidth of the interface is as follows:

- 200Mhz for 4 data lanes configuration (800Mbps/lane, 400MByte/sec)
- 187.5Mhz for 3 data lanes configuration (1000Mbps/lane, 375MByte/sec)
- 125Mhz for 2 data lanes configuration (1000Mbps/lane, 250MByte/sec)
- 62.5Mhz for 1 data lane configuration (1000Mbps/lane, 125Mbyte/sec)

The required operating frequency of the interface is calculated in the same way as for parallel interface above. The DF parameter is different.

- YUV422 = 1 cycle/pixel
- RGB888 = 1.5 cycles/pixel
- Generic data = 2 bytes/pixel

Examples of supported interfaces:

- 3.2MP camera, 2 lanes configuration, 15fps, yuv422 format (~65Mhz)
- 6MP camera, 4 lanes configuration, 15fps, RGB888 format (~182Mhz)

37.1.2.1.2 Display Ports

The role of these ports is to communicate with display devices, either directly or through a controller (such as a graphics accelerator) or a bridge (such as a TV encoder or an LVDS interface bridge).

37.1.2.1.2.1 Access Modes

Two access modes are supported.

37.1.2.1.2.1.1 Synchronous Access

In this mode, the IPU transfers a two-dimensional block of pixels to the display device, in synchronization with the screen refresh cycle.

It is called "video mode" in the MIPI standards.

This mode has a dual role:

- For a RAM-less display or a TV screen, this mode is used to perform the screen refresh process from a display buffer in system memory.
- For a "smart" display, this mode is used to transfer a rectangular block of pixels to the display's screen and, in some cases, also to the display buffer
 - The transferred block may be only part of the screen (the rest of the screen being refreshed by the integrated controller, from the internal buffer). Moreover, a mask can be used to transfer to the display only parts of the block, such as a window partly hidden by other windows.
 - If the block is transferred only to the screen, the transfer rate must be equal to the refresh rate. If, however, the transfer is also to the display's memory, the rate can be reduced to the rate at which the input buffer is updated.

In all cases (including the last one), the IPU sends to the display all the synchronization signals controlling the screen refresh and the block transfer is synchronized with these signals. This synchronization means that tearing effects are avoided when using this mode.

37.1.2.1.2. Asynchronous Access

This is the main mode used for communicating with an external display controller (possibly in a smart display or a graphics accelerator).

It is called "command mode" in the MIPI standards. In this mode, the IPU performs random access - read/write - to the memory and registers of the controller.

Two types of addressing methods are supported

- Generic linear addressing of pixels and generic data
- 2-dimensional (X/Y) addressing of pixels

The following access types are provided:

- Data transfer to the external device, after on-the-fly processing in the IPU.
- Data transfer (DMA) read/write between the host's system memory and the external device, through the IPU's memory port (controlled by the IDMAC), such as the transfer of a rectangular block of pixels (possibly full screen).
- Host access read/write to an external device, through the AHB-slave port
 - Access types

- Direct access emulating a directly-addressed access (see below) This includes burst access (incremental; up to 8 words/burst)
- Low-level access leaving to the host the explicit generation of the access protocol
- The possible accessing modules include the ARM platform and the system DMA controller (as well as any other AHB master connected to the ARM's cross-bar switch).

Transfer of video/graphics data stream to controller's display buffer is performed using one of the first two modes above. Unlike in the synchronous mode, this process is not tightly-synchronized with the screen refresh cycle. However, a loose synchronization - to avoid tearing - is still possible: the appropriate timing for the transfer can be derived from the VSYNC signal of the screen refresh - either generated by the IPU's display controller or received from the external controller.

The asynchronous access requires the specification of an address. The display interface uses "indirect addressing", namely, there is no address bus, and the address, as well as control and configuration commands, are embedded in the data stream. The access procedure - including writing addresses and commands - is managed autonomously by the interface, in one of two ways:

- Automatic emulation of transparent access, following microcode ("access template") generated by the ARM Platform. This mechanism is very flexible, supporting a wide variety of devices.
- Streaming commands/addresses from a buffer stored (by the ARM Platform) in system memory.

Note that direct access requires the use of the first method - automatic emulation.

37.1.2.1.2.2 Display Interface

The display interface is very flexible and supports a wide variety of devices from major manufacturers. The following interface types are provided (in each of the two display ports)

- Parallel video interface (for synchronous access) up to 24-bit data bus.
 - Compatible with MIPI-DPI standard .
 - Control protocol follows Sharp HR and generic TFT definitions
 - Supports BT.656 (8-bit) and BT.1120 (16-bit) protocols
 - Supports HDTV standards SMPTE274 (1080i/p) and SMPTE296 (720p)
- A parallel bidirectional bus interface (for asynchronous access) up to 32-bit data bus.
 - Compatible with MIPI-DBI standard.

- Control protocol either system-80 or system-68K The timing and polarity of the signals are programmable.
- Byte-enable optional, for a 16-bit interface
- Burst access for direct access, the burst is determined by the corresponding signal in the AHB interface.
- A serial interface 3-wire, 4-wire and 5-wire (two flavors) (for asynchronous access)
- High-speed serial interface: MIPI (Mobile Industry Processor Interface) DSI (Display Serial Interface) full support, with up to 2 data lanes, up to 4 virtual channels (implemented party in the IPU and partly in the HSC).

The supported formats for pixel data are

- RGB color depth fully configurable; up to 8 bits/value (color component)
- YUV 4:2:2, 8 bits/value (for TV encoder)
- All mandatory formats in MIPI's DBI, DPI and DSI.

In the parallel interfaces, the data bus has up to 32 bits. Non-trivial mapping of pixels to the bus is restricted to the 24 LSB's. This mapping is fully configurable and very flexible. In the serial interfaces, the data is mapped in the same way as in the parallel interfaces and then serialized.

The interface also supports "generic data". Such data is transferred - byte-by-byte, without modification - between the system memory and the display device (through a serial interface or 8/16-bit parallel interface). Non-conventional pixel formats can be supported by considering them as "generic data".

For the interface clock, there are the following options (independently for each port)

- Derived from the IPU internal clock (master mode)
- Provided by an external source (slave mode)

The transfer rate supported:

- For single port (for on-chip interfaces):
 - 240 Mega-Accesses/Sec if the DI clock is derived from an external to IPU source (like another PLL)
 - 264 Mega-Accesses/Sec if the DI clock is derived from the IPU clock (HSP_CLK)
 - When off-chip interfaces are involved the rate may be limited by IO capabilities. Please refer to the device's data-sheet for exact numbers.

For synchronous access with one cycle/pixel, this enables, e.g (including 35% blanking intervals)

• 1080p (1920x1080) @ 60 fps

- WSXGA+ (1680x1050) @ 60 fps
- The combined rate for the two ports is up to 240 MP/sec

The interface includes the following additional features:

- Screen size: up to 4096 x 2048 pixels, programmable by software.
- Scan Order: progressive or interlaced
- Synchronization
 - Programmable horizontal and vertical synchronization output signals (for synchronous access)
 - Data enabling output signal
- Software contrast control using 8-bit programmable pulse-width modulation (PWM) Two dedicated PWM outputs are provided

Connecting To Display Devices

IPU allows the connectivity to multiple display devices. In particular, it supports the following setup:

- Primary LCD display; can be smart, dumb (RAM-less) or dual-port; may use fast serial, or the parallel interface or (through an integrated bridge) LVDS interface.
- Second LCD display; can be smart or dumb (RAM-less); may use fast serial, parallel or serial interface or (through an integrated bridge) LVDS interface.

Each of the above connections has independent settings - interface timing, access template, chip-select, etc.

Simultaneous functionality of the above devices is possible in each of the following ways:

- Two devices can be accessed (synchronously or asynchronously) independently, each through a different port: each using any of the available interfaces.
- Two devices can time-share asynchronous accesses through the legacy serial & parallel interfaces, using the CS signals.
- Two devices can be accessed synchronously or asynchronously through the same port, using the MIPI interface (through a HUB), each device being identified by different ID's.
- An asynchronous access can be performed during vertical blanking intervals of a synchronous access (screen refresh; to the same or other device).

The possibilities for simultaneous functionality by time-sharing the legacy interfaces in a single port are summarized in the following table.

Table 37-3. Simultaneous Functionality of Display Port By Time-Sharing Legacy Interfaces

	Second/Third Display Type				
Primary Display Type	Smart Display Serial Interface	Smart Display Parallel Interface Asynchronous access	RAM-less display or TV screen		
Smart Display Parallel Interface Asynchronous access	Yes	Yes	Yes; access to the smart display is restricted to blanking intervals		
Dual Port Smart Display Synchronous access	Yes	Yes, access to the secondary display is restricted to blanking intervals	Not Available		
TFT RAM-less Display Or TV screen	Yes	Yes, access to the smart display is restricted to blanking intervals	Not Available		
Graphics Accelerator	Yes	Yes, if the accelerator supports a chip select functionality	Not Available		

37.1.2.1.3 Memory Port

The memory port is an AXI (AHB V3.0) master port, used to read/write data - typically two-dimensional blocks from/to system memory.

The interface supports the following features

- Clock rate up to 264 MHz (equal to the internal clock)
- 64-bit data bus
- The supported data formats are listed in the table below.

Table 37-4. Data Formats Supported By The Memory Interface

Format	Resolution	Input/Output	Comments
Non-interleaved YUV	8 bits/value	both	4:4:4, 4:2:2, 4:2:0 formats
(in three separate buffers)			
Partially-interleaved YUV (in	8 bits/value	both	4:2:2, 4:2:0 formats
two separate buffers)			Y buffer and UV buffer
Interleaved YUV	8 bits/value	both	4:4:4 format (YUV)
(all color components in a single buffer)			4:2:2 format (UY1VY2 or UY2VY1 or Y1UY2Vor Y2UY1V)
Interleaved true color	8, 12,16, 18, 24, 32 bits/ pixel	both	Flexible component location A: translucency value

Table 37-4. Data Formats Supported By The Memory Interface (continued)

Format	Resolution	Input/Output	Comments
	0 - 8 bits per R/G/B/A value		(only in input)
Coded color	4,8 bits/pixel	input only	
(using a palette)			
Gray scale	8 bits/pixel	both	
	4 bits/pixel	input only	Transferred to display port
Generic data	8 bits/unit	both	E.g.:
(Transparent M)			From CSI to DI
			Compressed data to/from DP
			Translucency for combining

- The pixel formats are translated to/from a uniform internal format: RGBA/YUVA 8:8:8:8
- The supported ordering of bytes and pixels is little endian. For 4 bits/pixel, big endian is also supported.
- Addressing modes include:
 - Sequential access (to a contiguous memory buffer) for generic data.
 - Raster-scan within a two-dimensional window of a video/display buffer for both pixel and generic data.
 - Raster-scan of two-dimensional blocks within a two-dimensional window (for rotation of pixel data)
- Additional features
 - Scan order: progressive or interlaced Interlaced access is supported for fields which are stored either in separate memory buffers or with rows interleaved in a single buffer.
 - Reordered scan, implementing inversion and rotation.
 - Rotation and horizontal inversion only when transferring two-dimensional blocks (to/from the IRT)
 - Vertical inversion also in row-by-row raster-scan
 - Scrolling
 - Applications Panning within a frame Frame scrolling
 - Not supported for non-interleaved and partially-interleaved formats
 - Resolution Vertical: single pixel Horizontal: 18 BPP 4 pixels; 12, 4 BPP or YUV 422 - 2 pixels; other formats - one pixel
 - Conditional read (for combining): fully-transparent or hidden pixels are not read.
 - This is supported, for graphics. by reading the transparency (alpha) from a separate buffer
 - Input/output FIFOs (in the SMFC, DMFC and in the processing sub-blocks) size adjusted to provide resilience for latency of up to 1500 cycles.

37.1.2.1.4 Processing

The IPU processes rectangular blocks of pixels. The processing is performed in these sub-blocks - VDIC, DP, IC and IRT.

(see the IPU block diagram and Table 37-1).

37.1.2.1.4.1 Processing flows

Several time-shared data flows are supported, as described in the following table.

Table 37-5. Time-Shared Data Flows through the IPU

Name	Number	Туре	Flow	Target	Restrictions
Display Refresh/ 5 flows (at most two of them of type		DS1	Fmem -> DP -> Display	Synchronous Access (e.g. display refresh; controlled by the DI)	
	DS1)	DS2	Fmem -> DP -> Display	Asynchronous Access (e.g. display update)	
		DS3	Fmem <-> Display	Generic Data Transfer	
	1 flow	DS4	ARM Platform<-> Display	Direct Access	
Video Playback	flows	PL1	Bmem -> VDIC -> IC -> Bmem -> IRT -> Fmem + DSx	Main option	
		PL2	Fmem -> IRT -> Bmem ->	Low power	Large enough window
			IC -> DP	(branching to DSx, as a video plane)	No other video flows
		PL3	Fmem -> VDIC -> IC -> DP	Low power	Interlaced source
				(branching to DSx, as a	Large enough window
				video plane)	No other video flows
Camera Preview	1 flow (VF2 may be	VF1	Sensor -> IC -> Bmem -> IRT -> Fmem+DSx	main option	Single progressive input
	(VF2 may be used also as a playback flow)		Sensor -> Fmem -> VDIC - > IC -> Bmem -> IRT -> Fmem+ DSx	two inputs and/or interlaced input	When the VDIC is used, one of the three input fields can go directly from the sensor to the VDIC. In that case the sensor output goes to the memory via the VDIC and not the SMFC
		VF4	Sensor -> IC -> Fmem	Low power	Single progressive input
			+ DS1	RAM-less Display	Refresh rate = 2x sensor
				Single Display Buffer	frame rate
				(in internal memory)	Large enough window
				Tearing-less	No other video flows
Video Record	1 flow	RCx	IC -> Bmem -> IRT -> Fmem	(branching from VFx)	

Table 37-5. Time-Shared Data Flows through the IPU (continued)

Name	Number	Туре	Flow	Target	Restrictions
Graphic	2 flows	GF1	Fmem -> IC	(combining with the main	
Overlays	2 flow	GF2	Fmem -> DP	flow	

Comments

- System memory usage legend
 - Fmem: frame double-buffer (page-flip) in system memory (typically external memory: DDR DRAM [address 0x1000_0000 0xFFFF_FFFF])
 - Bmem: two possibilities
 - A frame double buffer, as above
 - A band (4-256 rows) double-buffer (page-flip) in system memory (could be internal memory: OCRAM [address 0x0900_0000 0x093F_FFFF])
 - Direct arrow between two processing stages represents an internal pipeline
- Time-sharing
 - IC can time-share tightly three flows: one VFx, one RCx and one PLx (with independent processing parameters)
 - DP can time-share one DS1 flow and a one DS2 flow (each with different destinations and independent processing parameters)
 - Direct access to display (DS4) time-shares tightly the display port with other active DSx flows.
 - Other time-sharing (between PLx flow and DS2 and DS3 flows in IRT) is frameby-frame
- Any of the processing stages in the above flows can be skipped.
- Triggering and synchronization
 - Flow segments starting from a sensor are triggered and synchronized by input from the sensor
 - Flow segments ending with display refresh are triggered and synchronized by the refresh control mechanism in the DI.
 - Flow segments starting and ending in system memory, are triggered either by the double buffering mechanism or by explicit configuration and are processed continuously without delay, at a rate determined by the available resources. These flow segments have a lower priority than the sensor/display-driven flows.

The functionality of each of the processing blocks is described below.

37.1.2.1.4.2 Display Processor (DP)

The Display Processor performs all the processing required for data sent to a display.

• Input: from the IC and/or from system memory

- Order: rows, progressive or interlaced
- Format: YUVA/RGBA, non-decimated, 8 bits/value
- Processing chain
 - Combining 2 video/graphics planes
 - Overlaying a simple HW cursor 32 x 32 pixels, uniform color; may be combined logically with the full plane.
 - Color conversion/correction linear (multiplicative & additive) programmable including:
 - YUV <-> RGB, YUV<->YUV conversions where YUV stands for any one of the color formats defined in the MPEG-4 standard
 - Adjustments: brightness, contrast, color saturation, etc.
 - Special effects: gray-scale, color inversion, sephia, blue-tone, etc.
 - Color-preserving clipping, for gamut mapping
 - Hue-preserving gamut mapping for minimal color distortion
 - Applied to the output of combining or to one of the inputs
 - Gamma correction and contrast stretching programmable piecewise-linear map
- Output: to display (through the DC)
 - Rate: up to 240M pixels/sec
 - Format: YUV/RGB, non-decimated, 8 bits/value

The DP processes a single data flow at any given time, but supports up to three data flows by time sharing.

- A Primary flow:
 - The input is loaded periodically using a timer (e.g. for a synchronous access)
 - Optionally, frames are skipped if the content has not changed (as appropriate for a smart display)
- Two secondary flows:
 - Asynchronous; processed when the DP is not needed for the primary flow (during blanking intervals or when a primary frame is skipped).
 - The two secondary flows are switched frame-by-frame.

37.1.2.1.5 Video De-Interlacer or Combiner (VDIC)

The Video De-Interlacer as well as the Combiner have two operation modes

- De-interlacing: converts an interlaced video stream to progressive order.
- Combining: combines two video/graphics planes and a background color

37.1.2.1.5.1 De-interlacing in the VDIC

The Video De-Interlacer converts an interlaced video stream to progressive order, using a high-quality 3-field motion-adaptive filter.

- Video source SDTV: 480i30 (720x480 @ 30 fps) or 576i25 (720x576 @ 25 fps) and HDTV: 1080i/30 (1920x1080 @ 30 fps)
- Input: -three consecutive fields
 - Source
 - The most recent field may come from the CSI or from system memory
 - The other two fields are read from memory
 - Field size: up to 968x1024 pixels (may be a vertical stripe of a wider field; e.g. 1920 pixels)
 - Pixel format: YUV 4:2:2/4:2:0, 8 bits/value
- Output: progressive frame
 - Destination: to system memory or to the Image Converter.
 - Frame size: up to 968x2048 pixels
 - Rate: up to 240 MP/sec (e.g., 1920x1080 @ 85 fps)
 - Format: same as input format

The de-interlacing is performed using a high-quality 3-field filter which is motion adaptive:

- For slow motion retains the full resolution (of both top and bottom fields)
- For fast motion prevents motion artifacts

The VDIC supports a single video stream at any given time.

37.1.2.1.5.2 Combining in the VDIC

- Input for combining: two progressive video/graphics planes
 - Source: system memory
 - Plane size: up to 1920x1200 pixels.
 - Pixel format: RGB/YUV 4:2:2, 8 bits/value

In this mode:

- The two input planes are read from system memory, using the previous field and next field input FIFOs.
- Their relative height, up/down is configurable
- Each of them may cover only part of the output frame. For the remaining part of the frame, the chip uses the following values:
 - Down plane: a 24-bit background color, stored in an internal register
 - Up plane: a transparent pixel
- The combining method is identical to the one in the DP, IC.

37.1.2.1.5.3 Image Converter (IC)

The Image Converter performs various operations on a video stream.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

- Input: from sensor or from system memory
 - Frame size: up to 4096x4096 pixels
 - Rate: up to 200M pixels/sec (e.g. 5 MP @ 30 fps + 35% blanking intervals)
 - Order: rows, progressive. If resizing is not used, interlaced order is also acceptable.
 - Pixel format: YUV/RGB, 8 bits/value
- Processing chain:
 - Resizing
 - Fully flexible resizing ratio Maximal downsizing ratio: 8:1. Subject to this limitation, any N->M resizing can be performed.
 - Independent horizontal and vertical resizing ratios.
 - Color conversion/correction linear (multiplicative & additive) programmable, including:
 - YUV <-> RGB, YUV<->YUV conversions where YUV stands for any one of the color formats defined in the MPEG-4 standard
 - Adjustments: brightness, contrast, color saturation...
 - Special effects: gray-scale, color inversion, sephia, blue-tone...
 - Combining with a graphics plane (e.g. application-specific overlay)
 - Horizontal inversion
- Output: to system memory or (for a single active flow) to a display device (through the DP).
 - Frame size: up to 1024x1024 pixels
 - Rate: up to 100Mpixels/sec (e.g. 1920x1080 @ 30 fps)
 - Order: rows, progressive. If resizing is not used, interlaced order is also acceptable.
 - Format: YUV/RGB, 8 bits/value

The IC supports three time-shared data flows: record, camera preview and playback (the first two share a common input).

37.1.2.1.5.4 Image Rotator (IRT)

- Input/output: from/to system memory
 - Rate
 - Up to 120M pixels/sec (when a single task is active).
 - Up to 100M pixels/sec (when more than one task is active).
 - Order: raster scan of 8x8-pixel blocks
 - Format: YUV/RGB, non-decimated, 8 bits/value
- Transformation: combination of the following
 - 90-degree rotation
 - Horizontal inversion
 - Vertical inversion

37.1.2.1.6 Automatic Procedures

The IPU is equipped with powerful control and synchronization capabilities to perform its tasks with minimal involvement of the ARM Core and minimal use of memory.

In particular, it includes:

- An integrated DMA controller with an AXI master port, allowing autonomous access to the system memory.
- An integrated display controller, performing screen refresh of a RAM-less display.
- A page-flip double buffering mechanism, synchronizing read and write access to system memory, to prevent tearing effects.
- A double/triple buffer synchronization mechanism with a video/graphics source.
- Internal synchronization, e.g., between input from sensor and output to display

As a result, in most cases, the ARM platform is involved only when it also performs part of the processing (e.g. video coding). In particular, the following procedures are performed by the IPU completely autonomously:

- Screen refresh for RAM-less displays
- Update of the ("partial plane") display buffer used for screen refresh (located either in system memory or in an external display controller, e.g. of a smart display or graphics accelerator), when the content is generated in a different ("full plane") buffer.

Typically, there are extended periods of times in which there is no other activity in the system. The ARM platform, being idle, can be put to a low-power mode, reducing the power consumption and extending significantly the battery life.

The IPU supports several techniques to reduce further the power consumption of the display system:

- Dynamically optimized screen refresh rate (see Screen Refresh below)
- Optimized update of the display buffer (see Update Of The Display Buffer below)
- Dynamic backlight control, with low-light compensation by image enhancement

Further features and capabilities of the automatic procedures are outlined below

37.1.2.1.6.1 Screen Refresh

- The refresh rate may vary within a predefined range. Within this range, the rate is dynamically adjusted to the content update rate.
- An indication about the availability of new content is obtained as follows:

External Signals

- If the page-flip double buffering is used, the mechanism provides this indication
- If only a single buffer is used (and incrementally updated), the IPU can receive an indication of a modification from the ARM platform (by setting an internal flag).
- The IPU counts the refresh cycles: the total and those with new content. The ARM platform can use these counters to optimize display management (e.g. switching display buffer compression on/off). The counters are reset by the ARM platform.
- The transferred data may be processed on the way, using the IC and DP.

37.1.2.1.6.2 Update Of The Display Buffer

- Conditional update The IPU can receive an external "snooping" signal indicating a modification of the full plane buffer (as during screen refresh above). It monitors the signal and, upon detection, it performs one of the following:
 - Performs an update, without any SW intervention
 - Interrupts the ARM core, that can initiate some more involved procedure (e.g. selective update)
- Automatic display of a changing image (animation) or moving image (scrolling) This
 is implemented by reading frames (from a full plane buffer) with incremental offset.
 When the IPU reaches the last programmed frame, it can perform one of the
 following:
 - Return to the first frame, without any SW intervention
 - Interrupt the ARM platform, to generate the next content.
- The timing of the update can be adjusted to avoid tearing.
- The transferred data may be processed on the way, using the IC and DP

37.1.2.1.6.3 Camera Preview

- Tearing artifacts can be prevented by (automatic) page-flip double buffering in system memory
- Alternatively, the video stream from an image sensor can be sent directly to the display buffer used for screen refresh. The significance of this option is that only a single frame buffer is needed (and not two). This buffer may be located either in system memory or in an external display controller.
 - This option is useful, e.g., in a low frame rate, when tearing is not visible.
 - When tearing must be prevented, the refresh cycle in the display can be synchronized with the timing signals from the sensor (two refresh cycles for each input frame): the IPU receives a VSYNC signal from the sensor and generates from it synchronization signals for the display.

37.2 External Signals

The table found here describes the external signals of IPU1.

Table 37-6. IPU1 External Signals

Signal	Description	Pad	Mode	Direction
IPU1_CSI0_DATA00	-	EIM_D27	ALT2	I
IPU1_CSI0_DATA01	-	EIM_D26	ALT2	I
IPU1_CSI0_DATA02	-	EIM_D31	ALT3	I
IPU1_CSI0_DATA03	-	EIM_D30	ALT3	I
IPU1_CSI0_DATA04	-	CSI0_DAT4	ALT0	I
IPU1_CSI0_DATA05	-	CSI0_DAT5	ALT0	I
IPU1_CSI0_DATA06	-	CSI0_DAT6	ALT0	I
IPU1_CSI0_DATA07	-	CSI0_DAT7	ALT0	I
IPU1_CSI0_DATA08	-	CSI0_DAT8	ALT0	I
IPU1_CSI0_DATA09	-	CSI0_DAT9	ALT0	I
IPU1_CSI0_DATA10	-	CSI0_DAT10	ALT0	I
IPU1_CSI0_DATA11	-	CSI0_DAT11	ALT0	I
IPU1_CSI0_DATA12	-	CSI0_DAT12	ALT0	I
IPU1_CSI0_DATA13	-	CSI0_DAT13	ALT0	I
IPU1_CSI0_DATA14	-	CSI0_DAT14	ALT0	I
IPU1_CSI0_DATA15	-	CSI0_DAT15	ALT0	I
IPU1_CSI0_DATA16	-	CSI0_DAT16	ALT0	I
IPU1_CSI0_DATA17	-	CSI0_DAT17	ALT0	I
IPU1_CSI0_DATA18	-	CSI0_DAT18	ALT0	I
IPU1_CSI0_DATA19	-	CSI0_DAT19	ALT0	I
IPU1_CSI0_DATA_EN	-	CSI0_DATA_EN	ALT0	I
IPU1_CSI0_HSYNC	-	CSI0_MCLK	ALT0	I
IPU1_CSI0_PIXCLK	-	CSI0_PIXCLK	ALT0	I
IPU1_CSI0_VSYNC	-	CSI0_VSYNC	ALT0	I
IPU1_DI0_D0_CS	-	EIM_D23	ALT1	0
IPU1_DI0_D1_CS	-	EIM_A25	ALT4	0
IPU1_DI0_DISP_CLK	-	DI0_DISP_CLK	ALT0	0
IPU1_DI0_PIN01	-	EIM_D22	ALT2	Ю
IPU1_DI0_PIN02	-	DI0_PIN2	ALT0	0
IPU1_DI0_PIN03	-	DI0_PIN3	ALT0	0
IPU1_DI0_PIN04	-	DI0_PIN4	ALT0	0
IPU1_DI0_PIN05	-	EIM_D16	ALT2	0
IPU1_DI0_PIN06	-	EIM_D17	ALT2	0
IPU1_DI0_PIN07	-	EIM_D18	ALT2	0
IPU1_DI0_PIN08	-	EIM_D19	ALT2	0
IPU1_DI0_PIN11	_	EIM_D30	ALT2	0

External Signals

Table 37-6. IPU1 External Signals (continued)

Signal	Description	Pad	Mode	Direction
IPU1_DI0_PIN12 -		EIM_D31	ALT2	0
IPU1_DI0_PIN13 -		EIM_D28	ALT7	0
IPU1_DI0_PIN14 -		EIM_D29	ALT7	0
IPU1_DI0_PIN15 -		DI0_PIN15	ALT0	0
IPU1_DI0_PIN16 -		EIM_D20	ALT2	0
IPU1_DI0_PIN17 -		EIM_D21	ALT2	0
IPU1_DI1_D0_CS		EIM_DA13	ALT1	0
		EIM_D18	ALT4	
IPU1_DI1_D1_CS -		EIM_DA14	ALT1	0
IPU1_DI1_DISP_CLK -		EIM_A16	ALT1	0
IPU1_DI1_PIN01 -		EIM_DA15	ALT1	Ю
IPU1_DI1_PIN02		EIM_DA11	ALT1	0
		EIM_D23	ALT6	
IPU1_DI1_PIN03		EIM_DA12	ALT1	0
		EIM_EB3	ALT6	
IPU1_DI1_PIN04 -		EIM_DA15	ALT2	0
IPU1_DI1_PIN05 -		EIM_CS0	ALT1	0
IPU1_DI1_PIN06 -		EIM_CS1	ALT1	0
IPU1_DI1_PIN07 -		EIM_OE	ALT1	0
IPU1_DI1_PIN08 -		EIM_RW	ALT1	0
IPU1_DI1_PIN11 -		EIM_D26	ALT1	0
IPU1_DI1_PIN12 -		EIM_A25	ALT3	0
IPU1_DI1_PIN13 -		EIM_D27	ALT1	0
IPU1_DI1_PIN14 -		EIM_D23	ALT7	0
IPU1_DI1_PIN15		EIM_DA10	ALT1	0
		EIM_D29	ALT1	
IPU1_DI1_PIN16 -		EIM_BCLK	ALT1	0
IPU1_DI1_PIN17 -		EIM_LBA	ALT1	0
IPU1_DISP0_DATA00 -		DISP0_DAT0	ALT0	IO
IPU1_DISP0_DATA01 -		DISP0_DAT1	ALT0	IO
IPU1_DISP0_DATA02 -		DISP0_DAT2	ALT0	IO
IPU1_DISP0_DATA03 -		DISP0_DAT3	ALT0	IO
IPU1_DISP0_DATA04 -		DISP0_DAT4	ALT0	IO
IPU1_DISP0_DATA05 -		DISP0_DAT5	ALT0	IO
IPU1_DISP0_DATA06 -		DISP0_DAT6	ALT0	IO
IPU1_DISP0_DATA07 -		DISP0_DAT7	ALT0	IO
IPU1_DISP0_DATA08 -		DISP0_DAT8	ALT0	IO
IPU1_DISP0_DATA09 -		DISP0_DAT9	ALT0	IO
IPU1_DISP0_DATA10 -		DISP0_DAT10	ALT0	IO

Table 37-6. IPU1 External Signals (continued)

Signal	Description	Pad	Mode	Direction
IPU1_DISP0_DATA11 -		DISP0_DAT11	ALT0	Ю
IPU1_DISP0_DATA12 -		DISP0_DAT12	ALT0	Ю
IPU1_DISP0_DATA13 -		DISP0_DAT13	ALT0	Ю
IPU1_DISP0_DATA14 -		DISP0_DAT14	ALT0	Ю
IPU1_DISP0_DATA15 -		DISP0_DAT15	ALT0	Ю
IPU1_DISP0_DATA16 -		DISP0_DAT16	ALT0	IO
IPU1_DISP0_DATA17 -		DISP0_DAT17	ALT0	Ю
IPU1_DISP0_DATA18 -		DISP0_DAT18	ALT0	IO
IPU1_DISP0_DATA19 -		DISP0_DAT19	ALT0	Ю
IPU1_DISP0_DATA20 -		DISP0_DAT20	ALT0	Ю
IPU1_DISP0_DATA21 -		DISP0_DAT21	ALT0	Ю
IPU1_DISP0_DATA22 -		DISP0_DAT22	ALT0	Ю
IPU1_DISP0_DATA23 -		DISP0_DAT23	ALT0	Ю
IPU1_DISP1_DATA00 -		EIM_DA9	ALT1	Ю
IPU1_DISP1_DATA01 -		EIM_DA8	ALT1	IO
IPU1_DISP1_DATA02 -		EIM_DA7	ALT1	Ю
IPU1_DISP1_DATA03 -		EIM_DA6	ALT1	Ю
IPU1_DISP1_DATA04 -		EIM_DA5	ALT1	Ю
IPU1_DISP1_DATA05 -		EIM_DA4	ALT1	Ю
IPU1_DISP1_DATA06 -		EIM_DA3	ALT1	IO
IPU1_DISP1_DATA07 -		EIM_DA2	ALT1	Ю
IPU1_DISP1_DATA08 -		EIM_DA1	ALT1	Ю
IPU1_DISP1_DATA09 -		EIM_DA0	ALT1	Ю
IPU1_DISP1_DATA10 -		EIM_EB1	ALT1	IO
IPU1_DISP1_DATA11 -		EIM_EB0	ALT1	IO
IPU1_DISP1_DATA12 -		EIM_A17	ALT1	IO
IPU1_DISP1_DATA13 -		EIM_A18	ALT1	Ю
IPU1_DISP1_DATA14 -		EIM_A19	ALT1	IO
IPU1_DISP1_DATA15 -		EIM_A20	ALT1	Ю
IPU1_DISP1_DATA16 -		EIM_A21	ALT1	IO
IPU1_DISP1_DATA17 -		EIM_A22	ALT1	Ю
IPU1_DISP1_DATA18 -		EIM_A23	ALT1	IO
IPU1_DISP1_DATA19 -		EIM_A24	ALT1	IO
IPU1_DISP1_DATA20 -		EIM_D31	ALT1	IO
IPU1_DISP1_DATA21 -		EIM_D30	ALT1	IO
IPU1_DISP1_DATA22 -		EIM_D26	ALT7	IO
IPU1_DISP1_DATA23 -		EIM_D27	ALT7	Ю
IPU1_EXT_TRIG -		EIM_D28	ALT6	I
IPU1_SISG0 -		NANDF_CS2	ALT1	0

External Signals

Table 37-6. IPU1 External Signals (continued)

Signal	Description	Pad	Mode	Direction
IPU1_SISG1	-	NANDF_CS3	ALT1	0
IPU1_SISG2		EIM_A24	ALT4	0
		EIM_D26	ALT6	
IPU1_SISG3		EIM_A23	ALT4	0
		EIM_D27	ALT6	
IPU1_SISG4	-	KEY_COL4	ALT1	0
IPU1_SISG5	-	KEY_ROW4	ALT1	0

Table 37-7. IPU2 External Signals

Signal	Description	Pad	Mode	Direction
IPU2_CSI1_DATA00	-	EIM_DA9	ALT2	I
IPU2_CSI1_DATA01	-	EIM_DA8	ALT2	I
IPU2_CSI1_DATA02	-	EIM_DA7	ALT2	I
IPU2_CSI1_DATA03	-	EIM_DA6	ALT2	I
IPU2_CSI1_DATA04	-	EIM_DA5	ALT2	I
IPU2_CSI1_DATA05	-	EIM_DA4	ALT2	I
IPU2_CSI1_DATA06	-	EIM_DA3	ALT2	I
IPU2_CSI1_DATA07	-	EIM_DA2	ALT2	I
IPU2_CSI1_DATA08	-	EIM_DA1	ALT2	I
IPU2_CSI1_DATA09	-	EIM_DA0	ALT2	I
IPU2_CSI1_DATA10		EIM_D22	ALT3	I
		EIM_EB1	ALT2	
IPU2_CSI1_DATA11		EIM_D21	ALT3	I
		EIM_EB0	ALT2	
IPU2_CSI1_DATA12		EIM_A17	ALT2	I
		EIM_D28	ALT3	
IPU2_CSI1_DATA13		EIM_A18	ALT2	I
		EIM_D27	ALT3	
IPU2_CSI1_DATA14		EIM_A19	ALT2	I
		EIM_D26	ALT3	
IPU2_CSI1_DATA15		EIM_A20	ALT2	I
		EIM_D20	ALT3	
IPU2_CSI1_DATA16		EIM_A21	ALT2	I
		EIM_D19	ALT3	
IPU2_CSI1_DATA17		EIM_A22	ALT2	I
		EIM_D18	ALT3	
IPU2_CSI1_DATA18		EIM_A23	ALT2	I
		EIM_D16	ALT3	

Table 37-7. IPU2 External Signals (continued)

Signal	Description	Pad	Mode	Direction
IPU2_CSI1_DATA19		EIM_A24	ALT2	ı
		EIM_EB2	ALT3	-
IPU2_CSI1_DATA_EN		EIM_DA10	ALT2	I
		EIM_D23	ALT4	-
IPU2_CSI1_HSYNC		EIM_DA11	ALT2	I
		EIM_EB3	ALT4	-
IPU2_CSI1_PIXCLK		EIM_A16	ALT2	I
		EIM_D17	ALT3	1
IPU2_CSI1_VSYNC		EIM_DA12	ALT2	I
		EIM_D29	ALT6	-
IPU2_DI0_DISP_CLK	-	DI0_DISP_CLK	ALT1	0
IPU2_DI0_PIN01	-	NANDF_RB0	ALT1	Ю
IPU2_DI0_PIN02	-	DI0_PIN2	ALT1	0
IPU2_DI0_PIN03	-	DI0_PIN3	ALT1	0
IPU2_DI0_PIN04	-	DI0_PIN4	ALT1	0
IPU2_DI0_PIN15	-	DI0_PIN15	ALT1	0
IPU2_DISP0_DATA00	-	DISP0_DAT0	ALT1	Ю
IPU2_DISP0_DATA01	-	DISP0_DAT1	ALT1	Ю
IPU2_DISP0_DATA02	-	DISP0_DAT2	ALT1	Ю
IPU2_DISP0_DATA03	-	DISP0_DAT3	ALT1	Ю
IPU2_DISP0_DATA04	-	DISP0_DAT4	ALT1	Ю
IPU2_DISP0_DATA05	-	DISP0_DAT5	ALT1	Ю
IPU2_DISP0_DATA06	-	DISP0_DAT6	ALT1	Ю
IPU2_DISP0_DATA07	-	DISP0_DAT7	ALT1	Ю
IPU2_DISP0_DATA08	-	DISP0_DAT8	ALT1	Ю
IPU2_DISP0_DATA09	-	DISP0_DAT9	ALT1	Ю
IPU2_DISP0_DATA10	-	DISP0_DAT10	ALT1	Ю
IPU2_DISP0_DATA11	-	DISP0_DAT11	ALT1	Ю
IPU2_DISP0_DATA12	-	DISP0_DAT12	ALT1	Ю
IPU2_DISP0_DATA13	-	DISP0_DAT13	ALT1	Ю
IPU2_DISP0_DATA14	-	DISP0_DAT14	ALT1	Ю
IPU2_DISP0_DATA15	-	DISP0_DAT15	ALT1	Ю
IPU2_DISP0_DATA16	-	DISP0_DAT16	ALT1	Ю
IPU2_DISP0_DATA17	-	DISP0_DAT17	ALT1	Ю
IPU2_DISP0_DATA18	-	DISP0_DAT18	ALT1	Ю
IPU2_DISP0_DATA19	-	DISP0_DAT19	ALT1	Ю
IPU2_DISP0_DATA20	-	DISP0_DAT20	ALT1	Ю
IPU2_DISP0_DATA21	-	DISP0_DAT21	ALT1	Ю
IPU2_DISP0_DATA22	-	DISP0_DAT22	ALT1	Ю

Clocks

Table 37-7. IPU2 External Signals (continued)

Signal	Description	Pad	Mode	Direction
IPU2_DISP0_DATA23	-	DISP0_DAT23	ALT1	Ю
IPU2_SISG0	-	NANDF_CS2	ALT6	0
IPU2_SISG1	-	NANDF_CS3	ALT6	0
IPU2_SISG2	-	EIM_A24	ALT3	0
IPU2_SISG3	-	EIM_A23	ALT3	0
IPU2_SISG4	-	NANDF_CLE	ALT1	0
IPU2_SISG5	-	NANDF_WP_B	ALT1	0

37.3 Clocks

The table found here describes the clock sources for IPU.

Please see Clock Controller Module (CCM) for clock setting, configuration and gating information.

Table 37-8. IPU Clocks

Clock name	Clock Root	Description
hsp_clk	ipu1_ipu_hsp_clk_root	HSP clock
ipp_di_0_ext_clk	ipu1_di0_clk_root	IPU DI0 interface pixel clock
ipp_di_1_ext_clk	ipu1_di1_clk_root	IPU DI1 interface pixel clock
ipu_master_hclk	ahb_clk_root	IPU master clock

37.4 Functional Description

This section provides a complete functional description of the block.

37.4.1 IPU detailed block diagram

The following figure is the IPU top level block diagram.

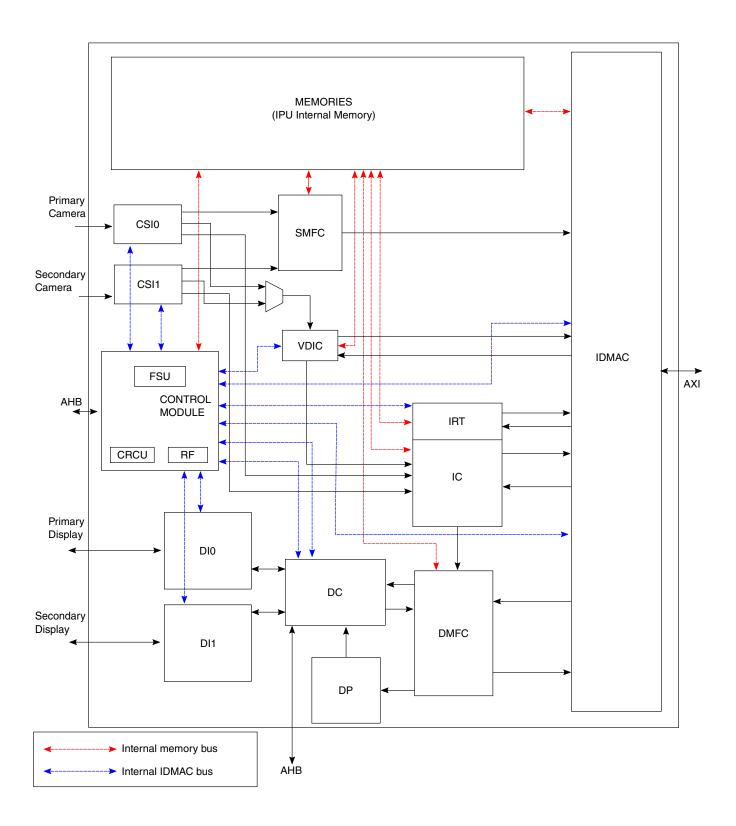


Figure 37-2. IPU Detailed Block Diagram

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.4.2 Image DMA Controller (IDMAC)

The following diagram is the IDMAC's block diagram.

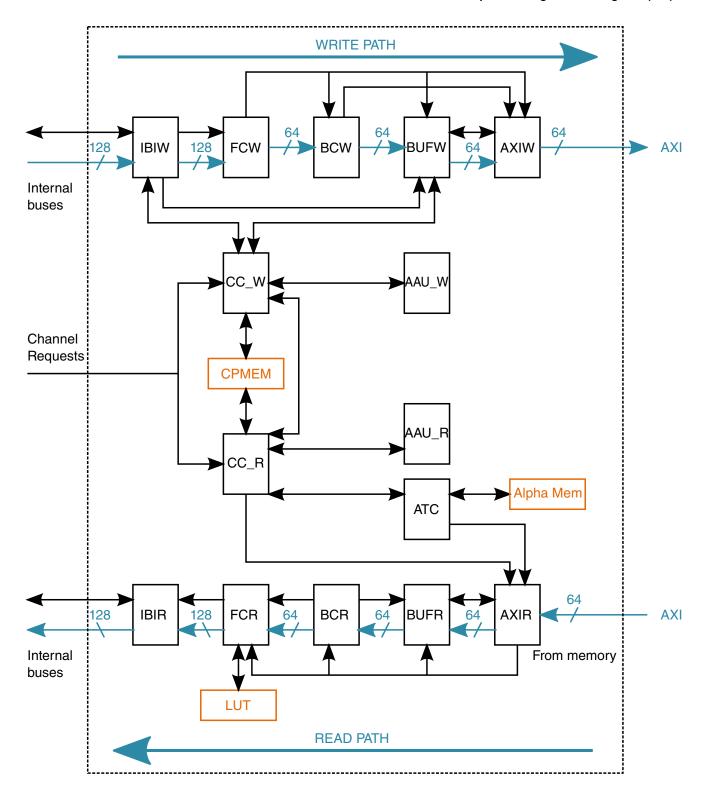


Figure 37-3. IDMAC Block Diagram

The following table describes the IDMAC's sub-block glossary

Functional Description

Table 37-9. IDMAC's sub modules glossary

Sub Module	Description
IBIW	Internal Bus Interface Write
IBIR	Internal Bus Interface Read
FCW	Format Converter Write
FCR	Format Converter Read
BCW	Buffer Controller Write
BCR	Buffer Controller Read
BUFW	Buffer Write
BUFR	Buffer Read
AXIW	AXI Write
AXIR	AXI Read
CC_W	Channel Control Write
CC_R	Channel Control Read
AAU_W	Address Arithmetic Unit Write
AAU_R	Address Arithmetic Unit Read
ATC	Alpha Transparency Controller
LUT	Look up table
СРМЕМ	Channel Parameter Memory

37.4.2.1 IDMAC's channels

The table below summarizes the IDMAC's channels.

Enabling a channel is done via the channel's corresponding IDMAC_CH_EN bit.

Table 37-10. IDMAC DMA channels list

Channel #	Source	Destination	Alternate Destination	Purpose	Data type
0	CSI (via SMFC)	Fmem		VF2 - Bayer; BPP>8; JPEG; MIPI additional channels	Generic or Pixel
1	CSI (via SMFC)	Fmem		VF2 - Bayer; BPP>8; JPEG; MIPI additional channels	Generic or Pixel
2	CSI (via SMFC)	Fmem		VF2 - Bayer; BPP>8; JPEG; MIPI additional channels	Generic or Pixel
3	CSI (via SMFC)	Fmem		VF2 - Bayer; BPP>8; JPEG; MIPI additional channels	Generic or Pixel
5	VDIC	Bmem	IC	VF1/VF2	Pixel
8	Fmem	VDIC		Previous field	Pixel
9	Fmem	VDIC		Current field	Pixel
10	Fmem	VDIC		Next field	Pixel

Table 37-10. IDMAC DMA channels list (continued)

Channel #	Source	Destination	Alternate Destination	Purpose	Data type
11	Bmem	IC		video plane for post processing task	Pixel
12	Bmem	IC		video plane for PrP tasks (view finder or encoding)	Pixel
13	VDIC	Fmem		Recent field from CSI	Pixel
14	Fmem	IC		graphics plane for PrP task (view finder or encoding)	Pixel
15	Fmem	IC		graphics plane for post processing task	Pixel
16	Reserved				
17	Fmem	IC		Transparency (alpha for channel 14)	Generic
18	Fmem	IC		Transparency (alpha for channel 15)	Generic
19	Fmem	VDIC		Transparency (alpha for channel 25)	Generic
20	IC	Bmem		Preprocessing data from IC (encoding task) to memory	Pixel
21	IC	Bmem	DMFC	Preprocessing data from IC (viewfinder task) to memory; This channel can be configured to send the data directly to the DMFC. This is done by programming the IC_DMFC_SEL bit.	Pixel
22	IC	Bmem		Postprocessing data from IC to memory	Pixel
23	Fmem	DP		DP primary flow - main plane	Pixel
24	Fmem	DP		DP secondary flow - main plane	Pixel
25	Fmem	VDIC		Plane #1 of the VDIC for combining	pixel
26	Fmem	VDIC		Plane #3 of the VDIC for combining	pixel
27	Fmem	DP		DP primary flow - auxiliary plane	Pixel
28	Fmem	DC		DC channel for both sync and async flows	Pixel
29	Fmem	DP		DP secondary flow - auxiliary plane	Pixel
30	Reserved		•		•
31	Fmem	DP		Transparency (alpha for channel 27)	Generic
32	Reserved		•		•
33	Fmem	DP		Transparency (alpha for channel 29)	Generic
34	Reserved				
35	Reserved				
36	Reserved				
37	Reserved				
38	Reserved				
39	Reserved				
40	DC	Fmem		DC read channel	Generic
41	Fmem	DC		DC async flow	Generic
42	Fmem	DC		DC command stream Gene	
43	Fmem	DC		DC command stream Generic	
44	Fmem	DC		DC output mask Generi	
45	Bmem	IRT		Rotation for post Encoding task Pixel	
46	Bmem	IRT		Rotation for viewfinder task	Pixel

Table 37-10. IDMAC DMA channels list (continued)

Channel #	Source	Destination	Alternate Destination	Purpose	Data type
47	Bmem	IRT		Rotation for post processing task	Pixel
48	IRT	Bmem		Rotation for Encoding task	Pixel
49	IRT	Bmem		Rotation for viewfinder task	Pixel
50	IRT	Bmem		Rotation for post processing task	Pixel
51	Fmem	DP		Transparency (alpha for channel 23)	Generic
52	Fmem	DP		Transparency (alpha for channel 24)	Generic
53-63	Reserved				•

37.4.2.2 IBIW & IBIR - Internal bus interface for write and read

The Internal Bus Interface handles the internal IPU protocol communicating between the IDMAC and the IPU's sub modules.

The IBIR handles channels that perform read from external memory. The IBIW handles channels that perform write accesses to external memory.

37.4.2.3 FCW & FCR - Format converter write and read

The format converter performs packing ("write direction") / unpacking ("read" direction) of pixels with programmable position and width of color components, decoding 4- or 8-bits coded pixels according to a loaded look-up table, panning of an image read from the system memory according to a panning offset (start pixel address).

The format converter supports formats with a pixel width of 4, 8, 12, 16, 18, 24 or 32 bits. The format converter unit handles two pixels simultaneously.

The IPU sub modules can handle only the formats, presented below. Each component is 8 bit:

Figure 37-4. IPU internal pixel formats

The pixel can be stored in the memory in the formats presented below. (R/G/B means that this could component can be R or G or B; A is the location of the alpha component).

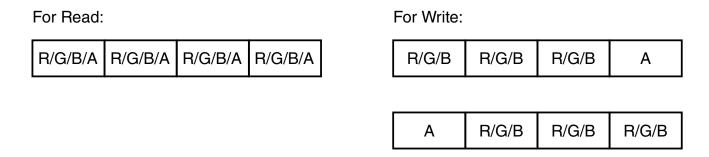


Figure 37-5. IPU external pixel formats

Formatting parameters are written in the channel parameter memory (CPMEM - Channel Parameter Memory). The following parameters are used:

- Offset OFS0 between MSB position of the color component 0 and MSB position of packed pixel. The color component 0 occupies the most significant bits of the unpacked pixel (mostly this is the R component). The OFS0 range is from 0 to 31.
- Color component 0 width (WID0 minus 1).
- Offset OFS1 between MSB position of the color component 1 and MSB position of packed pixel. The color component 1 occupies the middle left bits of the unpacked pixel (mostly this is the G component). The OFS1 range is from 0 to 31.
- Color component 1 width (WID1 minus 1).
- Offset OFS2 between MSB position of the color component 2 and MSB position of packed pixel. The color component 2 occupies the middle right bits of the unpacked pixel (mostly this is the B component). The OFS2 range is from 0 to 31.
- Color component 2 width (WID2 minus 1).
- Offset OFS3 between MSB position of the color component 3 and MSB position of packed pixel. The color component 3 occupies the least significant bits of the unpacked pixel (mostly this is the A component). The OFS3 range is from 0 to 31. For write specified DMA channels, the OFS3 value is set to 24 or 0 bits.
- In cases of read with separate alpha (alpha is located in a separate buffer in the system's memory than the pixel data), the alpha component size is defined according to WID3.

The figures below show examples of data packing and unpacking.

Functional Description Input data (32 bits) 31 24 23 16 15 8 7 В 15 12 5 0 G В Output data (16 bits) Byte 0 (red) OFS0 = 0 WID0 = 3 Byte 1 (green) OFS1 = 4 WID1 = 6 Byte 2 (blue) OFS2 = 11 WID2 = 4

Figure 37-6. Data Packing Example

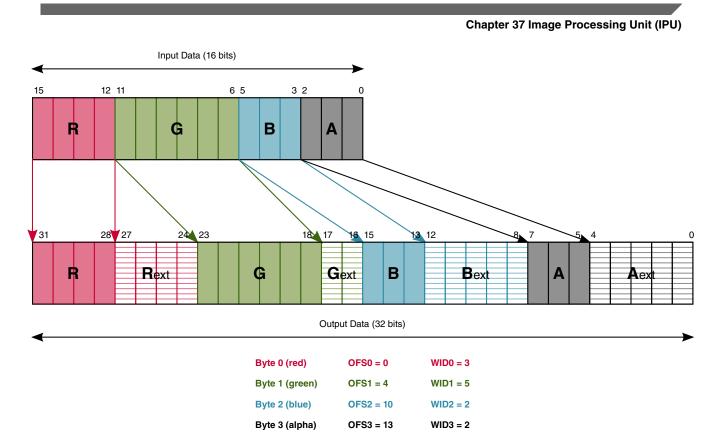


Figure 37-7. Data Unpacking Example

If read data has the coded format, it is decoded via the look-up table. The Look-Up Table Memory (LUT-Look Up Table) must be loaded at the IDMAC initialization step. The LUT output format must match the IPU internal format RGBA 8888 where R is placed in MSB and A is placed in LSB. The A field is used only for graphics data.

37.4.2.4 Buffering units

The buffering units (BUFW, BUFR) are used to store the data consisting of different coded color components.

- On write transactions (BUFW), before writing to memory & after the format has been coded.
- On read transactions (BUFR), after reading from memory & before the format has been decoded.

Each buffering unit includes 4 X 64 bytes buffers. Each buffer, for each direction, can handle any kind of color component (interleaved - Y / partial interleaved - Y, UV / non interleaved - Y, U, V).

Functional Description

The Write buffers are controlled by the buffer controller for write (BCW) and AXIW units.

The Read buffers are controlled by the buffer controller for read (BCR) and AXIR units.

37.4.2.4.1 Handling real time channels

The memory controller connected to the AXI bus of the IPU can use the AXI ID associated with each burst in order to distinguish between real time and non real time channels.

In order to do that, the user has to set the channel's ID according to the settings in the memory controller and set the priority of the channel according to its nature. The buffer controller (BCW/BCR) holds all the pending requests that won the arbitration. However, as the memory controller can distinguish between the real time channels and non real time channels within the IPU, there could be a situation where the real time requests are blocked as the IPU's queue is filled with non real time requests. To avoid that, the user can limit the number of non-real time requests in the queue.

The queue for read requests can handle up to 8 requests. The queue for write requests can handle up to 6 requests. The user can limit the number of non real time requests by setting the USED_BUFS_MAX_W for write requests and USED_BUFS_MAX_R for read requests. The feature that limits the number of requests is enabled by setting the USED_BUFS_EN_R bit for the read requests and USED_BUFS_EN_W for the write requests.

37.4.2.5 AXIW - AXI Write and AXIR - AXI Read

The AXI Master Interfaces are responsible for data transfer from/to the system memory. The Interface supports only 64-bits burst accesses of 1-8 words, with nonalignment of a byte resolution.

2 separate & independent AXI masters are used for "read" (AXIR) & "write" (AXIW), each can be programmed (via CPMEM) with 4 different IDs to support out-of-order accesses within bursts.

37.4.2.6 CC_W & CC_R - Channel Control Write and Read

The Channel Control unit is the main control unit of the IDMAC.

- It arbitrates the channels according to the priority.
- Controls the address arithmetic unit.

- Functions as a memory interface to the CPMEM. It reads the parameters from the CPMEM, prepares the controls accordingly and writes back updated parameters to the CPMEM.
- The read unit provides the parameters to the IBIR unit
- The write unit provides the parameters to the AXIW unit

The CC calculates all the parameters related to the access except the address and BS (burst size), which are calculated at the AAU.

The priority is set according to:

- The channel's corresponding bit in the IDMAC_CH_PRI_1 & IDMAC_CH_PRI_2 registers.
- The watermark signal generated from the sub module. The watermark signal is ignored unless the channel's corresponding IDMAC_WM_EN bit is set.
- Special priority for alpha channels

A priority value is calculated for each of the enabled channels according to the above conditions. Then, the CC unit selects between the channels with the same priority value in a round-robin fashion.

alpha channel	Channel's priority bit	watermark signal	Priority Value
0	0	0	0
0	0	1	1
0	1	0	2
0	1	1	3
1	0	0	1
1	0	1	2
1	1	0	3
1	1	1	4

Table 37-11. Calculated priority value

37.4.2.6.1 Locking the arbitration and reordering the AXI bursts

The performance of the overall system can be improved by sending AXI bursts of consecutive addresses. This can be done by reordering the AXI bursts in a way that accesses that belong to the same channel will be sent one after the other. This can be done by controlling the IDMAC_LOCK_# bits of the corresponding channel.

An IDMAC request that won the arbitration will be served for the next bursts according to the settings of the IDMAC_LOCK_# bits. The block that issued the request (DMFC on IPU) will assert the request only if it has enough room in its FIFO to accept the number

of bursts defined by the IDMAC_LOCK_# bits. IPU provides this capability to channels that serve real time screen refresh to synchronous display (23,27,28). In addition, it provides this capability to channels that may generate very short AXI bursts (IC and IRT)

37.4.2.7 AAU_W & AAU_R- Address Arithmetic Unit for Write and Read

The AAU_R & AAU_W units calculate the address in the system memory to be accessed by the IPU. These units also calculate the burst size (BS). The address calculation is done according to parameters stored in the CPMEM.

The following main addressing parameters are used:

- XB-Horizontal pixel position in frame
- YB-Vertical pixel position in frame
- SL-Stride line minus 1 (gap in bytes between two pixels in the same column in two consecutive rows).
- SX-Horizontal pixel scrolling offset
- SY-Vertical pixel scrolling offset
- EBA-Frame buffer base address in bytes (there are two such parameters to support double buffering)
- BPP-Bits per pixel
- FW-Frame width minus 1
- FH-Frame height minus 1

Relations between the addressing parameters and image frame are shown in the table below.

The system memory address in bytes is calculated as:

$$ADDR = EBA + (XB + SX) * BPP + (YB + SY) * (SL + 1)$$

with
$$0 < XB \le FW$$
 and $0 < YB \le FH$.

For non-interleaved formats the 4 LSB bits of SX are defined according to the IOX parameter.

When double buffering is used, the EBA0 is the base address of the buffer 0 and the EBA1 is the base address of the buffer 1. The IPU_CHA_CUR_BUF Register is a status register. It contains 1-bit pointers to the current working buffers for all IPU DMA channels. The IPU automatically toggles a pointer after completion of the current buffer processing. If the ARM platform is a data source for specific double-buffered channel, it should check this status bit in order to know what is the IPU current buffer. The ARM platform is allowed to write to the buffer only when a working DMA channel does not

use it. After the ARM platform has been fill the buffer, it has to set the corresponding bit in the IPU_CHA_BUF0_RDY and IPU_CHA_BUF1_RDY Registers. If needed, the ARM platform can only clear the pointer by writing 1 but not set it.

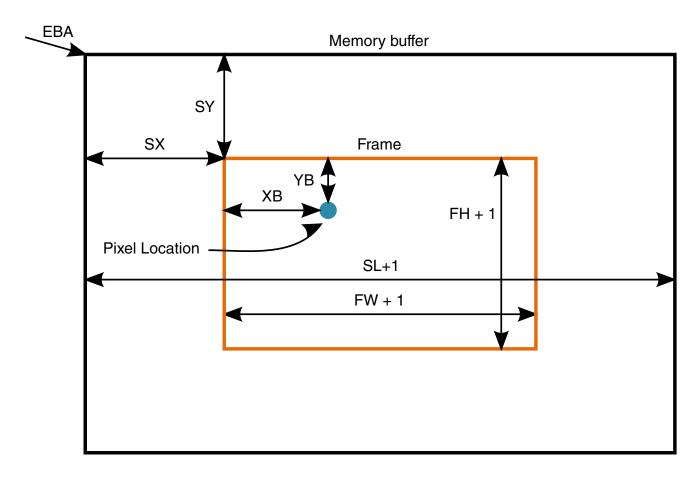


Figure 37-8. Addressing Parameters and Image Frame

The XB and YB coordinates are calculated according to addressing mode. There are two addressing modes:

- 2D mode
- · Block mode

In 2D mode the pixel data is transferred to the memory row-by-row. There are two ways to use 2D mode: start from YB = 0 and finish at YB <= FH (YB is incremented) or start from YB = FH and finish at YB <= 0 (YB is decremented). The second option provides vertical flip of the image.

In block mode the frame is divided into blocks. This is needed for rotation or postfiltering, where the order used for data transfers is block-by-block. The order of the block transfer is according to the VF,HF and ROT bits in the IDMAC Channel Parameter

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Memory. The order within the block is row-by-row where the block size is limited by the block width (BW) and block height (BH) parameters. The BW and BH parameters are set by IC rotation section and cannot be configured through the Channel Parameter Memory.

The Channel Control is responsible for the address calculation flow. It takes channel parameters from the Channel Parameter Memory, updates them and controls the Address Arithmetic Unit.

37.4.2.7.1 Scrolling support

Automatic display of a changing image (animation) or moving image (scrolling) is implemented by reading frames (from a background buffer) with incremental offset. Enabling the scrolling feature is done by setting the channel's corresponding SCE bit.

The scrolling step is controlled by channel's corresponding SDX and SDY parameters, and the scrolling direction is defined by the channel's corresponding SDRX and SDRY parameters. The maximum number of scrolled frames to be read is defined by the channel's corresponding SM parameter.

When the last programmed frame is reached (IDMAC's internal counter reached SM), IDMAC can perform one of the following (controlled by the SCC bit):

- Return to the first frame, without any SW intervention. The return point is defined by SX0 and SY0 parameters.
- Interrupt the ARM platform, to generate the next content.

37.4.2.8 ATC - Alpha Transparency Controller

The Alpha transparency controller (ATC) handles the alpha buffers on the external memory for cases where the pixel data and the alpha data are located on separate buffers (separate alpha mode).

In that case the IDMAC reads the alpha data and the pixel data, merge them together and provides a pixel that includes the alpha information to the relevant sub module. The ATC's main functions are:

- Generates requests for alpha channels, following a request to pixel data from the module.
- Maintain an internal alpha memory buffer for each channel.
- When there isn't enough alphas in the memory the ATC blocks the corresponding pixel channels.
- When there is a request of pixel channel the ATC load and accumulate its alphas in a register.

- ATC memory controller can manage 8 channels of alphas.
- ATC supports synchronous new frame before end of frame errors.

In order to configure the channel to use separate alpha the channel's corresponding IDMAC_SEP_AL bit should be set in addition to the ALU bit in the CPMEM of the corresponding channel.

The following figure is the ATC's block diagram.

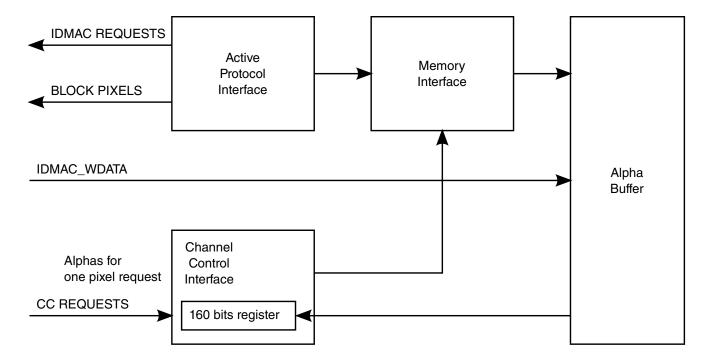


Figure 37-9. ATC block diagram

The ATC alpha buffer memory can hold up to 8 buffers of alphas. A pointer to a buffer in the ATC memory is defined according to the ALBM parameter in the CPMEM. The table below describes the relations between a data channel, an alpha channel and the pointer in the alpha buffer memory.

data channel number	associated alpha channel number	Alpha buffer memory (ALBM)
14	17	0
15	18	1
27	31	2
29	33	3
23	51	4
24	52	5
25	19	6

Table 37-12. Alpha channels mapping

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.4.2.8.1 Conditional read

The alpha data can be used to reduce reads from the memory of pixels that are going to be transparent (alpha = 0). The conditional read feature is enabled by the CRE bit in the CPMEM.

If all of the corresponding alpha values for a single burst of pixels are equal to zero, the IDMAC will block the access to the external memory and provide a data of all zeros to the corresponding channel. This way some of the accesses to the memory can be prevented, thus reducing the load on the memory.

37.4.2.9 LUT- Look Up Table

When working in coded pixel format, the data read from the memory is the decoded value of pixel according to address given. In case of 8 bit code, the data read from the memory is the decoded value of the pixel according to the address given.

In case of 4 bit code configuration, The address of the 4 bit decoded values is set according to DEC_SEL parameter in the CPMEM

00 = addresses 0 to 15

01 = addresses 64 to 79

10 = addresses 128 to 143

11 = addresses 192 to 207

Table 37-13. Look-Up Table Memory Structure

Address	Word	DEC_SEL	Description
0	Word0	4 BPP = 00	Decoded Pixels [15:0] for both 8 and 4 bit coded configuration
		8 BPP = don't care	
15	Word15		
16	Word16	don't care	Decoded Pixels [63:16] for 8 bit coded configuration only
63	Word63		
64	Word64	4 BPP = 01	Decoded Pixels [79:64] for both 8 and 4 bit coded configuration
		8 BPP = don't care	
79	Word79		
80	Word80	don't care	Decoded Pixels [127:80] for 8 bit coded configuration only
127	Word127		

Table 37-13. Look-Up Table Memory Structure (continued)

Address	Word	DEC_SEL	Description
128	Word128	4 BPP = 10	Decoded Pixels [143:128] for both 8 and 4 bit coded
		8 BPP = don't care	configuration
143	Word143		
144	Word144	don't care	Decoded Pixels [191:144] for 8 bit coded configuration only
191	Word191		
192	Word192	4 BPP = 11	Decoded Pixels [207:192] for both 8 and 4 bit coded
		8 BPP = don't care	configuration
207	Word207		
208	Word208	don't care	Decoded Pixels [255:208] for 8 bit coded configuration only
255	Word255		

37.4.2.10 CPMEM - Channel Parameter Memory

The CPMEM holds the configuration parameters for each IDMAC channel. The CPMEM can holds the settings of 80 channels.

Each channel's settings are defined by a two mega-words. Each mega-word is 160 bits wide. The following diagram illustrates the CPMEM's structure.

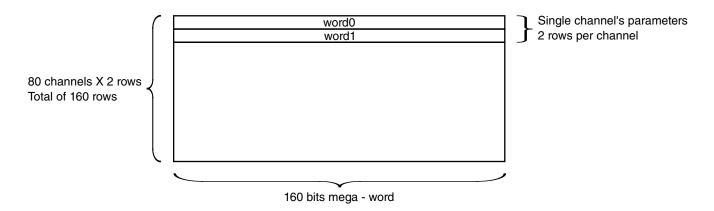


Figure 37-10. CPMEM structure

Each IDMAC channel can be configured to work in one of two different modes:

- Non Interleaved mode where the Y:U:V data is organized in 3 separate buffers in the system's memory
- Interleaved mode where the Y:U:V data is organized in a single buffer in the system's memory

The parameters and the way they are organized are different for each mode. The Pixel Format Select (PFS) value of the CPMEM words are used by the IPU to determine if the words should be interpreted as interleaved or non-interleaved format.

NOTE

CPMEM is "Memory Mapped" and can be accessed by the AHB bus through the Control Module (see Memory Access Unit).

The following tables describe the IDMAC parameters and their organization in each mode.

37.4.2.10.1 CPMEM's words' structure for non interleaved mode

The table below describes the CPMEM's words' structure for non interleaved mode. Each CPMEM word consist of 160 bits. The bits that are not listed in the table below are reserved bits.

Table 37-14. Channel Parameters Memory for non-interleaved

Name	Mnemonic	Size	Location	Description
Word 0	-		'	
XV Virtual Coordinate	XV	10 bits	W0[9:0]	Variable coordinates for determining next block
YV Virtual Coordinate	YV	9 bits	W0[18:10]	address. {X1,Y1} and {X2,Y2} coordinates will be determined according to {XV,YV} upon restart of channel. These coordinates are used for Y:U:V (Y pointer) and RGB formats.
XB inner Block Coordinate	XB	13 bits	W0[31:19]	Variable coordinates for determining address
YB inner Block Coordinate	YB	12 bits	W0[43:32]	within the block. These coordinates are used for Y:U:V (Y pointer) and RGB formats. Need 24 bits for 2D transfer support.
New Sub Block	NSB_B	1 bit	W0[44]	This bit determines if the next value for {XB,YB} should be taken from {XB,YB} saved in channel parameter memory or from new {x1,y1}/{x2,y2}.
Current Field	CF	1 bit	W0[45]	CF = 0 Current field is even
				CF = 1 Current field is odd
Mem U Buffer Offset	UBO	22 bits	W0[67:46]	Double buffer destination address offset for Y:U:V (U pointer) formats.The actual physical address value is divided by 8 (i.e. this parameter includes bits [24:3] of the actual address)

Table 37-14. Channel Parameters Memory for non-interleaved (continued)

Mem V Buffer Offset	VBO	22 bits	W0[89:68]	Double buffer destination address offset for Y:U:V (V pointer) format. The actual physical address value is divided by 8 (i.e. this parameter includes bits [24:3] of the actual address)
Initial Offset X	IOX	4 bits	W0[93:90]	The IOX parameter, is the offset in pixels for a frame that starts at a non aligned address.
				for 42x formats must be even.
Reduce Double Read or Writes	RDRW	1 bits	W0[94:94]	This bit is relevant for YUV4:2:0 formats.
				For read channels: U and V components are not read from odd rows. (read - supported only for the VDIC)
				For write channels: U and V components are not written to odd rows. (write - supported for all write channels)
Scan Order	so	1 bit	W0[113]	SO = 0 Scan order is progressive
				SO = 1 Scan order is interlaced
Band Mode	BNDM	3 bits	W0[116:11	BNDM = 000 bands disable.
			[4]	BNDM = 001 bands enable. Band height = 4 lines.
				BNDM = 010 bands enable. Band height = 8 lines.
				BNDM = 011 bands enable. Band height = 16 lines.
				BNDM = 100 bands enable. Band height = 32 lines.
				BNDM = 101 bands enable. Band height = 64 lines.
				BNDM = 110 bands enable. Band height = 128 lines.
				BNDM = 111 bands enable. Band height = 256
				When working in band mode, the channel's corresponding IDMAC_BNDM_EN bit has to be set.
Block Mode	ВМ	2 bits	W0[118:11	BM = 00 block mode disable. BW = FW, BH = FH
			[7]	BM = 01 block mode enable. BW = 8, BH = 8
				BM = 10 block mode enable. BW = 16, BH = 16 (this mode is reserved for future use)
				BM = 11 not used
Rotation	ROT	1 bit	W0[119]	ROT = 0 -> No rotation
				ROT = 1 -> 90 degree rotation clockwise
Horizontal Flip	HF	1 bit	W0[120]	HF = 0 -> No flip
				HF = 1 -> Horizontal flip enable
Vertical Flip	VF	1 bit	W0[121]	VF = 0 -> No flip
				VF = 1 -> Vertical flip enable

Table 37-14. Channel Parameters Memory for non-interleaved (continued)

Threshold Enable	THE	1 bit	W0[122]	THE = 0 -> Threshold disable
				THE = 1 -> Threshold enable
Conditional Access Polarity	CAP	1 bit	W0[123]	CAP = 0 -> If conditional bit in CM register is low skip the access
				CAP = 1 -> If conditional bit in CM register is high skip the access. This mode is reserved for future use.
Conditional Access Enable	CAE	1 bit	W0[124]	CAE = 0 -> Conditional access disable
				CAE = 1 -> Conditional access enable
				This mode is reserved for future use.
Frame Width	FW	13 bits	W0[137:12 5]	Number of pixels in one row, of the channel frame.
				FW
				00000000000 = 0001 pixels
				00000000001 = 0002 pixels
				11111111111 = 8192 pixels
Frame Height	FH	12 bits	W0[149:13	Number of pixels in one column, of the channel frame.
			-,	FH
				00000000000 = 0001 line
				00000000001 = 0002 lines
				11111111111 = 4096 lines
				For progressive YUV 4:2:0 (non interleaved and partial interleaved formats) the FH value should be a multiple of 2.
				For interlaced YUV 4:2:0 (non interleaved and partial interleaved formats) the FH value should be a multiple of 4.
End of Line interrupt	EOLI	1 bit	W0[150]	End of line interrupt enable. The end of line indication is asserted once the last data of the line has been written.
				1 - generate an end of line interrupt
				0 - no affect
Word 1				
Ext Mem Buffer 0 Address	EBA0	29 bits	W1[28:0]	1st double buffer destination address for RGB and Y:U:V (Y pointer) formats.
				This parameter must not be changed if the corresponding channel is enabled. The actual physical address value is divided by 8 (i.e. this parameter includes bits [31:3] of the actual address)

Table 37-14. Channel Parameters Memory for non-interleaved (continued)

Ext Mem Buffer 1 Address	EBA1	29 bits	W1[57:29]	2nd double buffer destination address for RGB
				and Y:U:V (Y pointer) formats. This parameter must not be changed if the corresponding channel is enabled. The actual physical address value is divided by 8 (i.e. this parameter includes bits [31:3] of the actual address)
Interlace Offset	ILO	20 bits	W1[77:58]	2nd double buffer destination address for RGB and Y:U:V (Y pointer) formats.
				An interlaced data stored in the memory can be read as a consecutive progressive only if FW*BPP is a multiplication of 8. The actual physical address value is divided by 8 (i.e. this parameter includes bits [22:3] of the actual address). For YUV420 formats, the ILO is relevant only to the Y component as the U and V components do not exist for the even lines.
				This value is signed
Number of Pixels in Whole Burst Access	NPB	7 bits	W1[84:78]	Number of pixels per burst access. The following are valid numbers of pixels in a memory burst access according to the BPP parameter:
				NPB
				0000111 = 08 pixels in each burst
				0001111 = 16 pixels in each burst
				0111111 = 64 pixels in each burst
				Range:
				16BPP => 1 -> 32 pixels (for YUV444 NI)
				08BPP => 1 -> 64 pixels (For YUV420 NI/PI and YUV422 NI/PI)
				In NI/PI formats the NPB has to be a multiplication of 8
Pixel Format Select	PFS	4 bits	W1[88:85]	4'h0 = non-interleaved 4:4:4
				4'h1 = non-interleaved 4:2:2
				4'h2 = non-interleaved 4:2:0
				4'h3 = partial interleaved 4:2:2
				4'h4 = partial interleaved 4:2:0
				4'h5 to 4'hF = NA
Alpha Used	ALU	1 bit	W1[89]	1 = the alpha associated with the data of this channel resides on another channel (separate buffer)
				0 = the alpha associated with the data of this channel resides along with the pixel data (same buffer)
				The corresponding alpha channel must be enabled to assure correct behavior.

Table 37-14. Channel Parameters Memory for non-interleaved (continued)

Alpha Channel Mapping	ALBM	2 bits	W1[92:90]	Alpha channel mapping - This parameter is a pointer to a buffer in the ATC memory. This parameter is relevant only to data channels that are associated with a separate alpha buffer (like graphic plane channels). The parameter should be programmed on the data channels' ALBM. Setting this parameter to any other channel has no meaning. See Table 37-12 for exact ALBM mapping.
AXI Id	ID	2 bits	W1[94:93]	AXI protocol id
Threshold	ТН	7 bits	W1[101:95	0000000 = 32 lines 0000001 = 64 lines
Stride Line	SLY	14 bits	W1[115:10 2]	Address vertical scaling factor in bytes for memory access. Also number of maximum bytes in the "Y" component row according to memory limitations. SLY 000000000000000 = 00001 bytes 00000000000001 = 00002 bytes
Width3	WID3	3 bits	W1[127:12 5]	Fourth color component size of the input-unpacking/ output-packing pixel. WID3 000 = 1 bits 001 = 2 bits
Stride Line	SLUV	14 bits	W1[141:12 8]	Address vertical scaling factor in bytes for memory access. Also number of maximum bytes in the "U" or "V" component row according to memory limitations. SLUV 000000000000000 = 00001 bytes 00000000000001 = 00002 bytes
Conditional Read Enable	CRE	1 bit	W1[149:14 9]	This bit enables the conditional read feature.

37.4.2.10.2 CPMEM's words' structure for interleaved mode

The table below describes the CPMEM's words' structure for interleaved mode. Each CPMEM word consist of 160 bits. The bits that are not listed in the table below are reserved bits

Table 37-15. Channel Parameters Memory for interleaved

Name	Mnemonic	Size	Location	Description
Word 0			•	
XV Virtual Coordinate	XV	10 bits	W0[9:0]	Variable coordinates for determining
YV Virtual Coordinate	YV	9 bits	W0[18:10]	next block address. {X1,Y1} and {X2,Y2} coordinates will be determined according to {XV,YV} upon restart of channel. These coordinates are used for Y:U:V (Y pointer) and RGB formats.
YB inner Block Coordinate	XB	13 bits	W0[31:19]	Variable coordinates for determining
XB inner Block Coordinate	ΥВ	12 bits	W0[43:32]	address within the block. These coordinates are used for Y:U:V (Y pointer) and RGB formats. Need 24 bits for 2D transfer support.
New Sub Block	NSB_B	1 bit	W0[44]	This bit determines if the next value for {XB,YB} should be taken from {XB,YB} saved in channel parameter memory or from new {x1,y1}/{x2,y2}.
Current Field	CF	1 bit	W0[45]	CF = 0 Current field is even
				CF = 1 Current field is odd
Scroll X counter	SX	12 bits	W0[57:46]	Holds the temporary count for the Scroll X in between frame
				For interleaved YUV4:2:2 formats the SX should be a multiple of 2.
Scroll Y counter	SY	11 bits	W0[68:58]	Holds the temporary count for the Scroll Y in between frame
Number of Scroll	NS	10 bits	W0[78:69]	This variable holds the total number of Scrolls
Scroll Delta X	SDX	7 bits	W0[85:79]	Frame start row offset, compared to last frame.
				SDX
				0000000 = 00 pixels
				0000001 = 01 pixels
				0000010 = 02 pixels
				1111110 = 126 pixels
				1111111 = 127 pixels
				For interleaved YUV4:2:2 formats the SDX should be a multiple of 2.

Table 37-15. Channel Parameters Memory for interleaved (continued)

Scroll Max	SM	10 bits	W0[95:86]	Frame maximum row and column increment offset in frame.
				SM
				000000000 = 0001
				000000001 = 0002
				111111111 = 1024
Scrolling Configuration	SCC	1 bit	W0[96]	Determines if scrolling will continue from zero when NS counter has reached SM or stop at the current value for SX and SY for the next frames to come.
				scc
				0 => Scrolling will stop at NS = SM
				1 => Scrolling will start from "0" at NS = SM
Scrolling Enable	SCE	1 bit	W0[97]	SCE = 0 Scrolling disable
				SCE = 1 Scrolling enable
Scroll Delta Y	SDY	7 bits	W0[104:98]	Frame start column offset, compared to last frame.
				SDY
				0000000 = 00 pixels
				0000001 = 01 pixels
				0000010 = 02 pixels
				1111110 = 30 pixels
				1111111 = 127 pixels
Scroll Horizontal Direction	SDRX	1 bit	W0[105]	Determines if the next frame will move right or left compared to the current frame.
				SDRX
				0 => Next frame will be right of current
				1 => Next frame will be left of current
Scroll Vertical Direction	SDRY	1 bit	W0[106]	Determines if the next frame will move down or up compared to the current frame.
				SDRY
				0 => Next frame will be down of current
				1 => Next frame will be up of current
Bits Per Pixel	BPP	3 bits	W0[109:107]	3'h0 = 32 Bits per pixel
				3'h1 = 24 Bits per pixel
				3'h2 = 18 Bits per pixel

Table 37-15. Channel Parameters Memory for interleaved (continued)

				,
				3'h3 = 16 Bits per pixel
				3'h4 = 12 Bits per pixel
				3'h5 = 08 Bits per pixel
				3'h6 = 04 Bits per pixel
Decode Address Select	DEC_SEL	2 bits	W0[111:110]	Upon 4BPP, selects between two look- up tables
				DEC_SEL
				00 = addresses 0 to 15
				01 = addresses 64 to 79
				10 = addresses 128 to 143
				11 = addresses 192 to 207
Access Dimension	DIM	1 bit	W0[112]	DIM = 0 Access Dimension is 2d
				DIM = 1 Access Dimension is 1d
Scan Order	so	1 bit	W0[113]	SO = 0 Scan order is progressive
				SO = 1 Scan order is interlaced
Band Mode	BNDM	3 bits	W0[116:114]	BNDM = 000 bands disable.
				BNDM = 001 bands enable. Band height = 4 lines.
				BNDM = 010 bands enable. Band height = 8 lines.
				BNDM = 011 bands enable. Band height = 16 lines.
				BNDM = 100 bands enable. Band height = 32 lines.
				BNDM = 101 bands enable. Band height = 64 lines.
				BNDM = 110 bands enable. Band height = 128 lines.
				BNDM = 111 bands enable. Band height = 256
				When working in band mode, the channel's corresponding IDMAC_BNDM_EN bit has to be set.
Block Mode	ВМ	2 bits	W0[118:117]	BM = 00 block mode disable. BW = FW, BH = FH
				BM = 01 block mode enable. BW = 8, BH = 8
				BM = 10 block mode enable. BW = 16, BH = 16 (this mode is reserved for future use)
				BM = 11 not used
Rotation	ROT	1 bit	W0[119]	ROT = 0 -> No rotation
				ROT = 1 -> 90 degree rotation clockwise

Table 37-15. Channel Parameters Memory for interleaved (continued)

Horizontal Flip	HF	1 bit	W0[120]	HF = 0 -> No flip
				HF = 1 -> Horizontal flip enable
Vertical Flip	VF	1 bit	W0[121]	VF = 0 -> No flip
				VF = 1 -> Vertical flip enable
Threshold Enable	THE	1 bit	W0[122]	THE = 0 -> Threshold disable
				THE = 1 -> Threshold flip enable
Conditional Access Polarity	CAP	1 bit	W0[123]	CAP = 0 -> If conditional bit in CM register is low skip the access
				CAP = 1 -> If conditional bit in CM register is high skip the access
Conditional Access Enable	CAE	1 bit	W0[124]	CAE = 0 -> Conditional access disable
				CAE = 1 -> Conditional access enable
Frame Width	FW	13 bits	W0[137:125]	Number of pixels in one row, of the channel frame.
				FW
				0000000000000 = 0001 pixels
				0000000000001 = 0002 pixels
				111111111111 = 8192 pixels
				For interleaved YUV4:2:2 formats the FW should be a multiple of 2.
Frame Height	FH	12 bits	W0[149:138]	Number of pixels in one column, of the channel frame.
				FH
				000000000000 = 0001 line
				000000000001 = 0002 lines
				111111111111 = 4096 lines
End of Line interrupt	EOLI	1 bit	W0[150]	End of line interrupt enable. The end of line indication is asserted once the last data of the line has been written.
				1 - generate an end of line interrupt
				0 - no affect
Word 1			<u>'</u>	
Ext Mem Buffer 0 Address	EBA0	29 bits	W1[28:0]	1st double buffer destination address for RGB and Y:U:V (Y pointer) formats.
				This parameter must not be changed if the corresponding channel is enabled. The actual physical address value is divided by 8 (i.e. this parameter includes bits [31:3] of the actual address)

Table 37-15. Channel Parameters Memory for interleaved (continued)

		1		<u> </u>
Ext Mem Buffer 1 Address	EBA1	29 bits	W1[57:29]	2nd double buffer destination address for RGB and Y:U:V (Y pointer) formats.
				This parameter must not be changed if the corresponding channel is enabled. The actual physical address value is divided by 8 (i.e. this parameter includes bits [31:3] of the actual address)
Interlace Offset	ILO	20 bits	W1[77:58]	2nd double buffer destination address for RGB and Y:U:V (Y pointer) formats.
				An interlaced data stored in the memory can be read as a consecutive progressive only if FW*BPP is a multiplication of 8.The actual physical address value is divided by 8 (i.e. this parameter includes bits [22:3] of the actual address).
				This value is signed
Number of Pixels in Whole Burst Access	NPB	7 bits	W1[84:78]	Number of pixels per burst access. The following are valid numbers of pixels in a memory burst access according to the BPP parameter:
				NPB
				0000000 = 01 pixels in each burst
				0000001 = 02 pixels in each burst
				1111111 = 128 pixels in each burst
				Range:
				32BPP => 1 -> 16 pixels
				24BPP => 1 -> 20 pixels
				16BPP => 1 -> 32 pixels
				12BPP => 1 -> 40 pixels
				08BPP => 1 -> 64 pixels
				04BPP => 1 -> 128 pixels
Pixel Format Select	PFS	4 bits	W1[88:85]	4'h0 to 4'h4 = NA
				4'h5 = Code (LUT)
				4'h6 = Generic data
				4'h7 = RGB (& also YUV interleaved 4:4:4)
				4'h8 = interleaved 4:2:2 Y1U1Y2V1 ¹
				4'h9 = interleaved 4:2:2 Y2U1Y1V1 ²
				4'hA = interleaved 4:2:2 U1Y1V1Y2 ³
				4'hB = interleaved 4:2:2 U1Y2V1Y1 ⁴
				4'hC to 4'hF = NA

Table 37-15. Channel Parameters Memory for interleaved (continued)

Alpha Used	ALU	1 bit	W1[89]	1 = the alpha associated with the data of this channel resides on another channel (separate buffer)
				0 = the alpha associated with the data of this channel resides along with the pixel data (same buffer)
				The corresponding alpha channel must be enabled to assure correct behavior.
Alpha Channel Mapping	ALBM	3 bits	W1[92:90]	Alpha channel mapping - This parameter is a pointer to a buffer in the ATC memory. This parameter is relevant only to data channels that are associated with a separate alpha buffer (like graphic plane channels). The parameter should be programmed on the data channels' ALBM. Setting this parameter to any other channel has no meaning. See Table 37-12 for exact ALBM mapping.
AXI Id	ID	2 bits	W1[94:93]	AXI protocol id;
				IPU is targeted to an AXI slave that can handle up to 2 requests with 2 different IDs + one request with a third ID. In case that IPU is going to be used on a system that can handle more than 2 requests with different IDs, the number of different IDs programmed in the CPMEM for different channels is limited for 2. This limitation is relevant for read channels only. For write channels there's no such limitation
Threshold	TH	7 bits	W1[101:95]	0000000 = 32 lines
				0000001 = 64 lines 1111111 = 4096 lines
Stride Line	SL	14 bits	W1[115:102]	Address vertical scaling factor in bytes for memory access. Also number of maximum bytes in row according to memory limitations.
				SL
				00000000000000 = 00001 bytes
				00000000000001 = 00002 bytes
				1111111111111 = 16384 bytes
Width0	WID0	3 bits	W1[118:116]	First color component size of the input- unpacking/ output-packing pixel.
				WID0
				000 = 1 bits

Table 37-15. Channel Parameters Memory for interleaved (continued)

	1		,	001 = 2 bits
				OUT = 2 DIES
				111 = 8 bits
				This field is relevant only for interleaved RGB format (PFS = 4'h7)
Width1	WID1	3 bits	W1[121:119]	Second color component size of the input-unpacking/ output-packing pixel.
				WID1
				000 = 1 bits
				001 = 2 bits
				111 = 8 bits
				This field is relevant only for interleaved RGB format (PFS = 4'h7)
Width2	WID2	3 bits	W1[124:122]	Third color component size of the input-unpacking/ output-packing pixel.
				WID2
				000 = 1 bits
				001 = 2 bits
				111 = 8 bits
				This field is relevant only for interleaved RGB format (PFS = 4'h7)
Width3	WID3	3 bits	W1[127:125]	Fourth color component size of the input-unpacking/ output-packing pixel.
				WID3
				000 = 1 bits
				001 = 2 bits
				111 = 8 bits
				This field is relevant only for interleaved RGB format (PFS = 4'h7)
Offset0	OFS0	5 bits	W1[132:128]	Number of bits between MSB of pixel and MSB of color component, on input. 1 states that the color component will be the first color component aligned to MSB of output pixel.
				OFS0
				00000 = No offset
				00001 = u => 1 bit sleft, p => 1 bit sright

Table 37-15. Channel Parameters Memory for interleaved (continued)

					incavea (oontinaea)
					11111 = u => 31 bit sleft, p => 31 bit sright
					* u = unpacking
					* p = packing
					* sleft = shift left
					* sright = shift right
					This field is relevant only for interleaved RGB format (PFS = 4'h7)
Offset1		OFS1	5 bits	W1[137:133]	Number of bits between MSB of pixel and MSB of color component on input. 2 states that the color component will be the second color component aligned to MSB output pixel.
					OFS1
					00000 = No offset
					00001 = u => 1 bit sleft, p => 1 bit sright
					11111 = u => 31 bit sleft, p => 31 bit sright
					* u = unpacking
					* p = packing
					* sleft = shift left
					* sright = shift right
					This field is relevant only for interleaved RGB format (PFS = 4'h7)
Offset2		OFS2	5 bits	W1[142:138]	Number of bits between MSB of pixel and MSB of color component on input. 3 states that the color component will be the third color component aligned to MSB output pixel.
					OFS2
					00000 = No offset
					00001 = u => 1 bit sleft, p => 1 bit sright
					11111 = u => 31 bit sleft, p => 31 bit sright
					* u = unpacking
					* p = packing
					* sleft = shift left
					* sright = shift right

Table 37-15. Channel Parameters Memory for interleaved (continued)

				This field is relevant only for interleaved RGB format (PFS = 4'h7)
Offset3	OFS3	5 bits	W1[147:143]	Number of bits between MSB of pixel and MSB of color component on input. 4 states that the color component will be the fourth color component aligned to MSB output pixel.
				OFS3
				00000 = No offset
				00001 = u => 1 bit sleft, p => 1 bit sright
				11111 = u => 31 bit sleft, p => 31 bit sright
				* u = unpacking
				* p = packing
				* sleft = shift left
				* sright = shift right
				This field is relevant only for interleaved RGB format (PFS = 4'h7)
Select SX SY Set	SXYS	1 bit	W1[148:148]	This bit selects between the settings on: SC_CORD and SC_CORD1
Conditional Read Enable	CRE	1 bit	W1[149:149]	This bit enables the conditional read feature.
Decode Address Select bit[2]	DEC_SEL2	1 bit	W1[150:150]	This field is reserved

^{1.} Y1U1Y2V1 means byte0 = bits [7:0] =Y1; byte1 = bits [15:8] =U1; byte2 = bits [23:16] =Y2; byte3 = bits [31:24] = V1

^{2.} Y2U1Y1V1 means byte0 =Y2; byte1 =U1; byte2 =Y1; byte3 = V1

^{3.} U1Y1V1Y2 means byte0 =U1; byte1 =Y1; byte2 =V1; byte3 = Y2

^{4.} U1Y2V1Y1 means byte0 =U1; byte1 =Y2; byte2 =V1;byte3 = Y1

37.4.2.10.3 Accessing the CPMEM for programming

Each IDMAC's channel's parameters are located on 2 CPMEM entries. Each Entry is 160 bit. The CPMEM is memory mapped and is accessible via the AHB bus. The AHB bus's accesses are 32bit wide. A CPMEM entry is composed of 5x32bit words. The next CPMEM entry starts at the next 8x32bit words (0x0, 0x20,0x40, etc.).

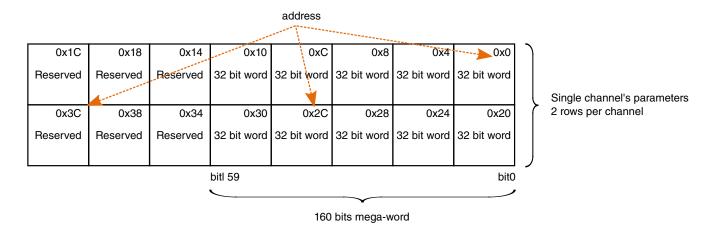


Figure 37-11. CPMEM's word structure

37.4.2.10.4 Alternate IDMAC settings

Some of the IDMAC channels support alternate flow. This means that a physical IDMAC channel can use alternate set of parameters. Switching between the flows is controlled by the CM.

The primary flow the IDMAC's settings are read from the channel's corresponding entry in the CPMEM. The alternate settings can be stored in another entry on the CPMEM. The pointer to the alternate entry on the CPMEM is stored on the physical channel's corresponding IDMAC_SUB_ADDR parameters.

37.4.2.11 IDMAC's modes of operation

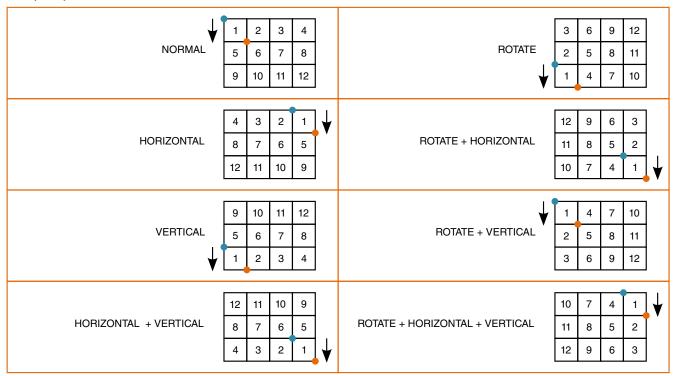
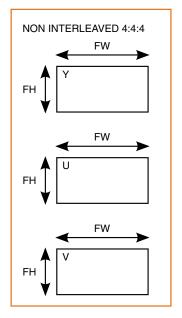
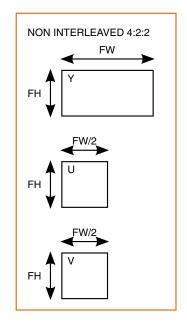
37.4.2.11.1 Rotation modes

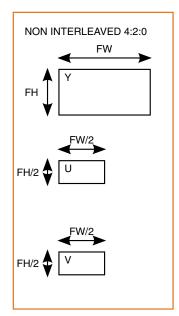
Rotation is performed by the IDMAC and the Rotation unit inside the IC.

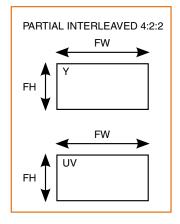
The frame is partitioned into 8X8 pixels blocks. The IC reorders the pixels within a block. The IDMAC reorders the block. The reordering is done according to the ROT, VF & HF parameters in the CPMEM.

The following diagram illustrate various options for reordering of blocks.

- ROTATE means that the ROT bit is set
- HORIZONTAL means that the HF bit is set
- VERTICAL means that the VF bit is set
- = {X₁, Y₁} BLOCK SCAN END POINT
- = {X₂, Y₂} BLOCK SCAN START POINT


Figure 37-12. Rotation options


37.4.2.11.2 Frame size

The IPU supports various non-interleaved modes; the Frame Height (FH) and Frame Width (FW).

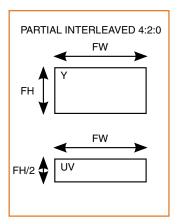


Figure 37-13. Frame size in various modes

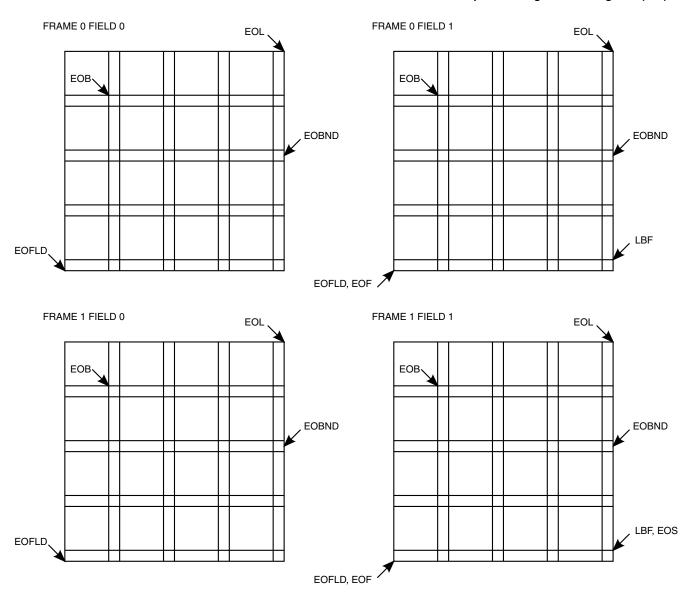


Figure 37-14. Frame's controls

37.4.2.12 IDMAC's restriction

The data must be received from the system's memory through the AXIR interface ("read" direction) "in-order" within a single burst. The entire burst can occur "out-of-order."

37.4.2.13 IDMAC's Endianness support

Byte Endianness - only LE (little endian) is supported

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Pixel Endianness - both LE & BE are supported, only for read direction (only 4 BPP case is meaningful, supported only for the "read" direction)

37.4.2.14 IDMAC's internal events

Some of the IDMAC's internal signals can be used for monitor the progress of flows. These bits can be polled by software. Some of these bits can be used to trigger an interrupt or an SDMA event.

The following table describes the available events and their meaning

Table 37-16. IDMAC's internal events

IDMAC event's type	Monitored on	Event's meaning
end of frame	IDMAC_EOF	This is the channel's end of frame indication. This indication is asserted once the entire frame was read/written via the IDMAC. This indication is normally used as an interrupt or SDMA event
new frame acknowledge	IDMAC_NFACK	This indication means that the IDMAC acknowledge the new frame's request from the module. It can be used to track the starting point of a flow or a frame.
new frame before end of frame error	IDMAC_NFB4EOF_ER	This error indication may indicate on data lost. This indication is asserted when a new frame starts before the completion of the previous frame. For example if a real time input (from camera) was not written properly to the memory due to FIFO full condition.
end of scroll	IDMAC_EOS	end of scroll; This indication is asserted when the scroll counter finished counting its pre defined value
end of band	IDMAC_EOBND	This is the end of band indication. Any time IDMAC complete reading/writing a band it will assert this indication. This is useful to manually control a flow via channels working in band mode.
treshold	IDMAC_TH	Threshold crossing indication. The treshold is defined according to the TH parameter in the IDMAC.
channel busy	IDMAC_CH_BUSY	This signal is asserted when a channel is between NFACK event to EOF event. Negation of these indications is one of the conditions for low power modes handshake.

37.4.3 Camera Sensor Interface (CSI)

The IPU has 2 identical camera sensor interfaces (CSI). The CSI description below refers to a single CSI.

37.4.3.1 CSI Block Diagram

The CSI consists of synchronizer, interface logic, Data packing unit and Sensor Interface Control.

The CSI is controlled via the peripheral bus registers. All programming parameters for the CSI are double buffered with synchronous change at the frame start.

The CSI gets data from the sensor, synchronizes the data and the control signals to the IPU clock (HSP_CLK), and transfer it according to configuration of DATA_DEST register to one or more of the following: IC, SMFC.

This figure shows the CSI Block Diagram.

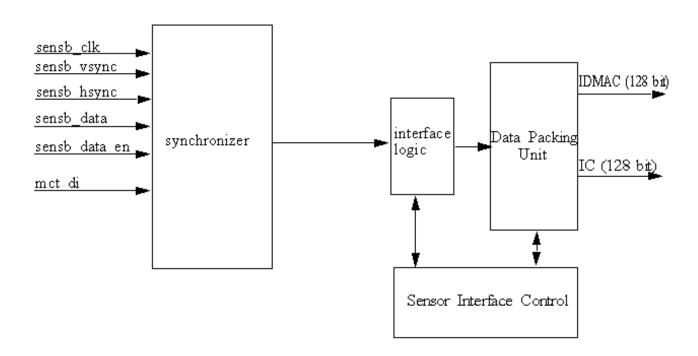


Figure 37-15. CSI Block Diagram

37.4.3.2 CSI Interface

CSI supports two types of interfaces. The interface is determined via the DATA_SOURCE register.

37.4.3.2.1 Parallel Interface

In parallel interface a single value arrives in each clock, except when working in BT.1120 mode, in which two values arrive in each cycle. Each value can be 8-16 bit wide according to configuration of DATA_WIDTH. If DATA_WIDTH is configured to N, then 20-N LSB bits are ignored.

CSI can work with several data formats according to SENS_DATA_FORMAT configuration. In case the data format is YUV, the output of the CSI is always YUV444 (even if the data arrives in YUV422 format).

The polarity of the inputs can be configured using the registers SENS_PIX_CLK_POL, DATA_POL, HSYNC_POL and VSYNC_POL.

37.4.3.2.2 High-speed serial interface - MIPI (Mobile Industry Processor Interface).

In MIPI interface two values arrive in each cycle. Each value is 8 bit wide, which means 16 MSB bits of the data bus input are treated, while 4 LSB bits are ignored.

When working in this mode, the CSI can handle up to 4 streams of data. Each stream is identified with DI (data identifier) that includes the virtual channel and the data type of this stream. Each stream that is handled is defined in registers MIPI_DI0-3. Only the main stream (MIPI_DI0) can be sent to all destination units while the other streams are sent only to the SMFC as generic data.

In this mode SENS_DATA_FORMAT and DATA_WIDTH registers are ignored, since this information is coming to the CSI via the MCT_DI bus.

37.4.3.3 Test Mode

When TEST_GEN_MODE register is configured to 1, the TEST MODE which is a debugging mode, is operated.

The CSI generates the frame by itself and sends it to one of the destination units. The sent frame is a chess board composed of black and configured color squares. The configured color is set with the registers PG_B_VALUE, PG_G_VALUE and PG_R_VALUE. The data can be sent in different frequencies according to the configuration of DIV_RATIO register.

CSI Test Mode requires the following CSIx_SENS_CONF settings:

CSIx_EXT_VSYNC = 0x1 (External VSYNC mode)

 $CSIx_DATA_WIDTH = 0x1$ (8 bits per color)

 $CSIx_SENS_DATA_FORMAT = 0x0$ (Full RGB or YUV444)

 $CSIx_PACK_TIGHT = 0x0$

 $CSIx_SENS_PRTCL = 0x1$ (Non-gated clock sensor timing/data mode)

 $CSIx_SENS_PIX_CLK_POL = 0x1$ Pixel clock is inverted before applied to internal circuitry

 $CSIx_DATA_POL = 0x0$ (Data lines are directly applied to internal circuitry.)

 $CSIx_HSYNC_POL = 0x0$ (HSYNC is directly applied to internal circuitry)

 $CSIx_VSYNC_POL = 0x0$ (VSYNC is directly applied to internal circuitry)

37.4.3.4 Sensor Image Frame Relations

The figure found here illustrates the generalized relations between image frames produced by a sensor and accepted by the CSI.

Generally, four frame definitions exist. The virtual frame A starts with the VSYNC signal. After vertical blanking starts frame B. The HSYNC signal indicates boundaries of the frame B. The frame B includes both the active sensor frame C and horizontal blanking intervals. A size of the blanking intervals depends on sensor type and programming. The size of the frame sent by the sensor (the actual pixels) has to be configured in the registers SENS_FRM_WIDTH and SENS_FRM_HEIGHT. The CSI selects a window (the frame D) inside the frame C by skipping rows and columns according to parameters defined in registers HSC, VSC, ACT_FRM_HEIGHT and ACT_FRM_WIDTH. frame D is sent to the rest of the IPU.

NOTE

The following limitation must exist:

SENS_FRM_HEIGHT >= VSC + ACT_FRM_HEIGHT

SENS_FRM_WIDTH >= HSC + ACT_FRM_WIDTH

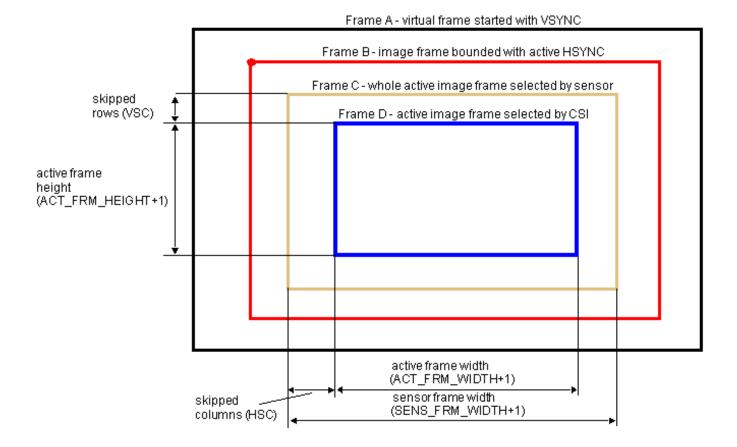


Figure 37-16. Sensor Image Frames

37.4.3.5 Companding

Companding is performed as follows:

input: 10-bit unsigned number. In case that component's size is bigger than 10 bit, 10 MSB bits are taken. In case that component's size is less than 10 bit, color extraction is performed.

First step: shift:

x -> clip(x + offset, 0, 1023)

where the offset is a 10 bit signed number that is configured in CPD_OFFSET1 and CPD_OFFSET2 registers.

second step - piecewise-linear map:

y = Min[255, (y1[k]+(((x-x1[k])*slope[k])>>6+1))>>1]

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

where:

- the input range 0..1023 is partitioned to 16 equal segments: x1[k] .. x1[k+1] 1 where x1[k] = 0, 64, 128, 192, 256, ... 960.
- The linear map, in each segment, is characterized by y1[k] (9-bit unsigned number) and slope[k] (8-bit unsigned number).

Each destination unit can get the data after being companded depending on the configuration of CPD register. If this register is configured to 3'h0, the compander units are disable in order to save power. Parameters of the companding are equal for all destinations and can be set in the CPD registers.

2 companding units are located in the CSI. This is because when working in MIPI orBT. 1120 modes 2 components arrive in each cycle and the companding for each 2 components has to be in parallel. When CSI works in other mode, only one compander is needed, so the other one is disabled to save power.

37.4.3.6 Timing/Data mode protocols

CSI can work in several timing/data mode protocols, according to SENS_PRTCL configuration.

37.4.3.6.1 Gated Mode

In this mode VSYNC is used to indicate beginning of a frame, HSYNC is used to indicate beginning of a row. Sensor clock is ticking all the time.

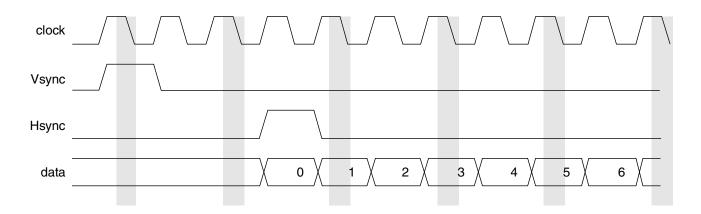


Figure 37-17. gated mode

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.4.3.6.2 Non-Gated Mode

In this mode VSYNC is used to indicate beginning of a frame. Sensor clock is ticking only when data is valid. HSYNC is not used.

When working with MIPI, the non-gated mode should be configured.

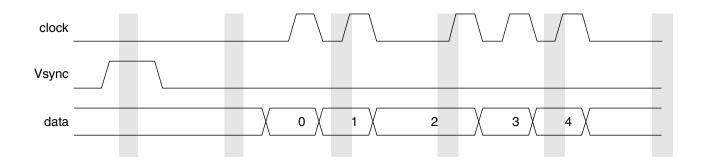


Figure 37-18. non-gated mode

37.4.3.6.3 BT.656 mode

In this mode the CSI works in compliance with recommendation ITU-R BT.656. The timing reference signals (frame start, frame end, line start, line end) are embedded in the data bus input. Each timing reference signal consists of a four word sequence. The first three words are fixed and configured in the CCIR_PRECOM register. The fourth word contains information defining field, the state of field blanking and the state of line blanking. these states are configured in registers CCIR_CODE_1 (for field 0) and CCIR_CODE_2 (for field 1).

In this mode in each cycle one value of data arrives

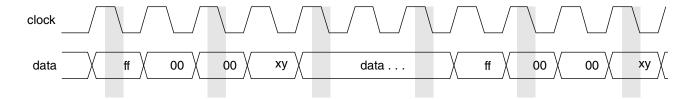


Figure 37-19. BT.656 mode

In this diagram the first three words are 0xff, 0x00, 0x00. The fourth word is XY and it includes the timing reference.

37.4.3.6.4 BT.1120 mode

In this mode the CSI works in compliance with recommendation ITU-R BT.1120. The timing reference signals (frame start, frame end, line start, line end) are embedded in the data bus input. Each timing reference signal consists of a four word sequence. The first three words are fixed and configured in the CCIR_PRECOM register. The fourth word contains information defining field, the state of field blanking and the state of line blanking. these states are configured in registers CCIR_CODE_1 (for field 0) and CCIR_CODE_2 (for field 1).

In this mode, the CSI can also work in DDR mode - data arrives on every edge of the clock. In addition, in each cycle two value of data arrive.

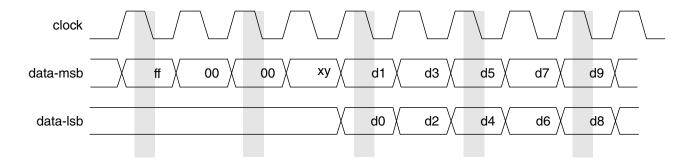


Figure 37-20. BT.1120 mode - SDR mode

In the above diagram each data arrives with the positive edge of the clock.

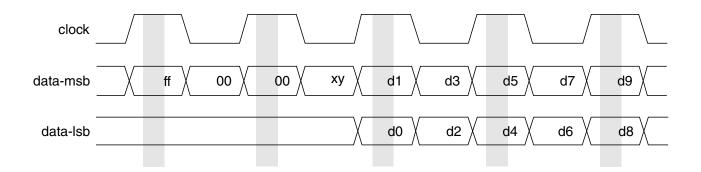


Figure 37-21. BT.1120 mode - DDR mode

In the above diagram, data arrives in the positive edge and the negative edge of the clock.

37.4.3.7 Packing to memory

The data bus output to the SMFC is 128-bit.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

The following table shows the how the CSI performs the packing before sending the data to the SMFC.

The data bus output to the SMFC is 128-bit. The following table shows the how the CSI performs the packing before sending the data to the SMFC.

Table 37-17.	Packing Unit
--------------	--------------

data format	component size	companded	regular packing	tight packing
Bayer, Generic	8	{8DC ¹ ,8DC,8DC,,8DC}	{8D,8D,8D,,8D ² }	NA
data, JPEG	9-16	{8DC,8DC,8DC,,8DC}	{16DE ³ ,16DE,,16DE}	NA
RGB, YUV	8	{8DC,8DC,8DC,8R}	{8D,8D,8D,8R}	NA
	9-10	{8DC,8DC,8DC,8R}	{16DE,16DE,16DE,16R4}	{10DE,10DE,10DE,2R}
	11-16	{8DC,8DC,8DC,8R}	{16DE,16DE,16DE,16R}	{10DT ⁵ ,10DT,10DT,2R}

- 1. DC data after being companded
- 2. D data arrived from sensor.
- 3. DE data after being extended.
- 4. R- reserved bits
- 5. DT data after being truncated.

The tight packing functionality is enabled when PACK_TIGHT register is set. It is only used when data format is RGB or YUV and the data width is bigger than 8.

37.4.3.8 Skipping frames

Some of the frames that are sent to the SMFC can be skipped. Skipped frames are ignore by the CSI and are not sent to the corresponding unit.

Using SKIP_SMFC and MAX_RATIO_SKIP_SMFC registers the user can define the frames for the SMFC that will be skipped.

37.4.3.9 16 bit camera support

Devices that support 16 bit data bus can be connected to the CSI. This can be done in one of the following ways.

16 bit YUV422

In this mode the CSI receives 2 components per cycle. The CSI is programmed to accept the data as 16 bit generic data. The captured data will be stored in the memory through the SMFC. The IDMAC needs to be programmed to store 16bit generic data. When the data is read back from the memory for further processing in the IPU it will be read as YUV422 data.

16 bit RGB as generic data

In this mode the CSI receives 3 components per cycle. If the external device is 24bit - the user can get connect a 16 bit sample of it (such as RGB565) The CSI is programmed to accept the data as 16 bit generic data. The captured data will be stored in the memory through the SMFC. The IDMAC needs to be programmed to store 16bit generic data. When the data is read back from the memory for further processing in the IPU it will be read as 16 bit RGB data. The IDMAC's mapping unit will be used to remap the 16 bit data to the internal 24bpp RGB format In this mode on the fly processing is can't be performed. The data has to be sent to the memory first and then further processed by the IPU.

16 bit RGB565

This is the only mode that allows on the fly processing of 16 bit data. In this mode the CSI is programmed to receive 16 bit generic data. In this mode the interface is restricted to be in "non-gated mode" and the CSI#_DATA_SOURCE bit has to be set If the external device is 24bit - the user can connect a 16 bit sample of it (RGB565 format). The IPU has to be configured in the same way as the case of CSI#_SENS_DATA_FORMAT=RGB565

37.4.3.10 CSI Restrictions

The frequency of the sensor clock must not be greater than the IPU clock (HSP_CLK)

SENS_FRM_HEIGHT >= VSC + ACT_FRM_HEIGHT

SENS_FRM_WIDTH >= HSC + ACT_FRM_WIDTH

37.4.4 Sensor Multi FIFO Controller (SMFC)

The Sensor Multifile Controller used as buffer between CSI and IDMAC. Two masters (CSIs) can be connected to SMFC. Both masters can be active simultaneously.

Each master can send up to 4 frames, distinguished by csi_id bus. The frame can be mapped to one of four IDMAC channels via SMFC mapping registers. Each DMA channel have dedicated FIFO.

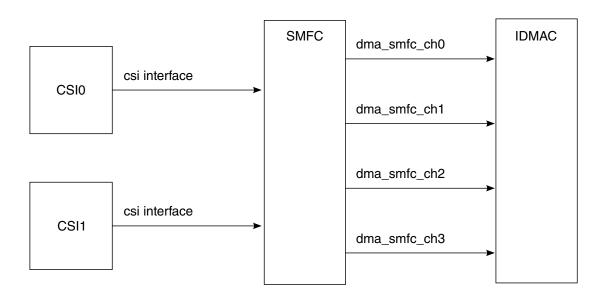


Figure 37-22. SMFC data flow

37.4.4.1 SMFC's Features

- Support two CSI masters and four DMA channels
- Automatic FIFO size calculation

37.4.4.2 SMFC's Functional description

SMFC supports up to four DMA channels. Each channel has a dedicated FIFO controller, as shown in the following figure. Sampled data and frame ID are kept in the buffers until the buffer is selected by Round Robin Priority Mechanism. Then, the content of ID buffer is compared to CH#_MAP bits and the corresponding FIFO controller is activated. As a result, the content of the buffer is copied to the RAM. The wptr and the "base" are used to calculate the location in the RAM. The rptr are following after wptr during dma_active signal, initiated by DMA.

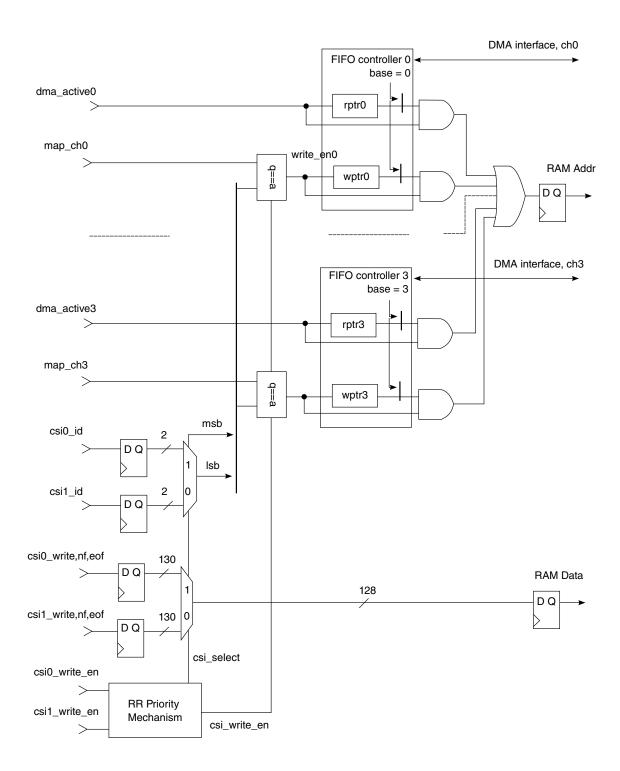


Figure 37-23. Sensor Multi FIFO Controller

Four FIFOs are implemented with single RAM due to the fact that the channels can't be active simultaneously. The memory space of SMFC is divided into four equal sectors. Each FIFO has a fixed base address - "base". The "base" used as MSB for corresponding pointer in order to calculate absolute address of the RAM. FIFO size of channels 1 and 3 are fixed and is equal to size of one sector. FIFO size of channels 0 and 2 depend from other channels as shown in the table below. Other configurations are not allowed.

Table 37-18. FIFO Channels

Number of DMA channels required	enable/disable of channels 3,2,1,0	FIFO size (sectors) per channels 3,2,1,0
1	0 0 0 1	0 0 0 4
2	0 1 0 1	0202
3	1 1 0 1	1102
4	1111	1111

NOTE

Channels should not be enabled after activation of channel 0 or/and channel This can cause to overlapping of FIFO areas and other malfunctions.

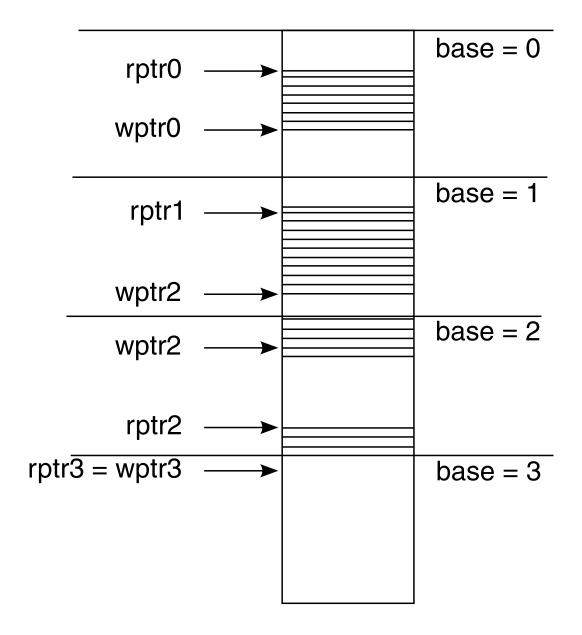


Figure 37-24. SMFC memory map when DMA channels 3,2,1,0 are enabled

37.4.4.2.1 SMFC Master interface.

SMFC Master interface is shown in the following figure.

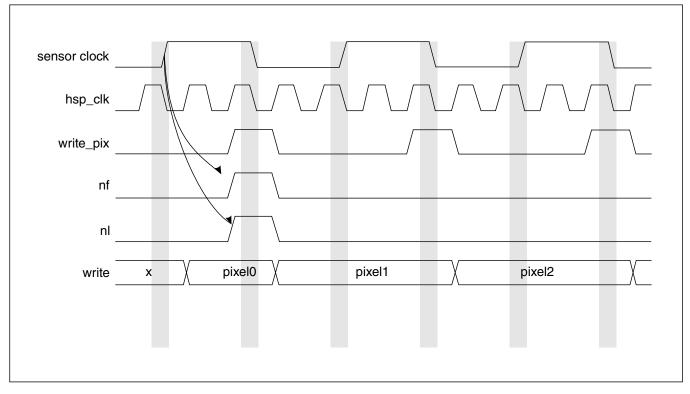


Figure 37-25. Timing diagram of SMFC slave interface

Sensor clock can be asynchronous to IPU clock (hsp_clk). The CSI synchronize data arrived from the sensor to hsp_clk. The csi_write signal indicates when data on csi_pix bus can be sampled by hsp_clk clock.

37.4.4.2.2 Restrictions

- 1. DMA channels should not be enabled after activation of channel 0 or/and channel 2. This can cause to overlapping of FIFO area and other malfunctions.
- 2. Watermark set value should be greater than watermark clear value.
- 3. One frame should not be mapped to few DMA channel.

37.4.5 Image Converter

37.4.5.1 IC Block Diagram

The IC contains three processing sections: downsizing, main processing and rotation.

The block is controlled via the peripheral bus registers. Some processing parameters should be written by the ARM core to the Task Parameter Memory. Writing to the memory is performed via the AHB bus.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

The IC Block Diagram is shown in the following figure.

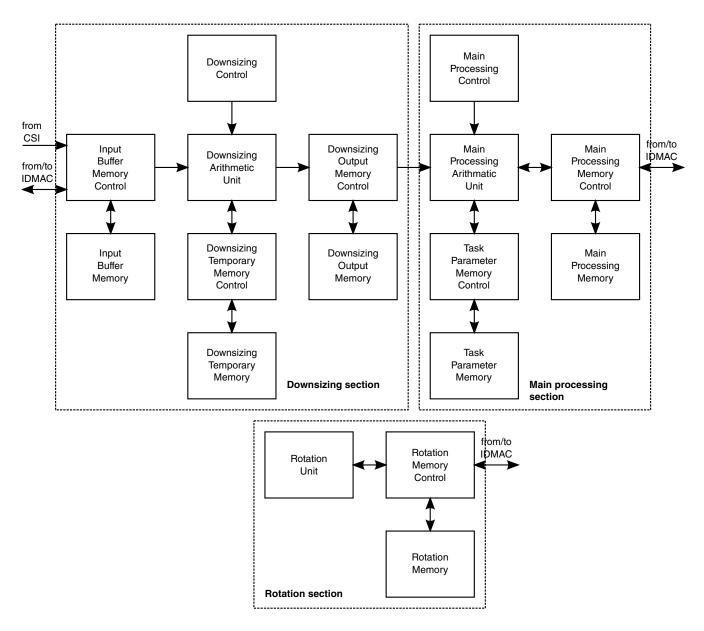


Figure 37-26. IC Block Diagram

37.4.5.2 Processing tasks

Each of the three processing sections performs up to three processing tasks with time sharing:

- 1. Preprocessing task for encoding.
- 2. Preprocessing task for displaying image from sensor (viewfinder).

3. Postprocessing task.

The tasks are performed by single hardware. The ARM platform configures each task before enabling it.

Tasks switching is transparent for the ARM platform. The time unit for task switching in the downsizing section corresponds to a processing time of one burst of eight pixels, in the main processing section - to a processing time of one image line, in the rotation section - to a processing time of one image frame.

All three tasks include similar operations controlled by commands. Task configuring consists in definition of commands for each task, as described in the following table.

Command code	Command	Processing unit	Command parameters	Description
EN	Task Enable	DSU,		Task will enabled from next frame.
		MPU		Task 1 is preprocessing for encoding.
				Task 2 is preprocessing for viewfinder.
				Task 3 is postprocessing.
	Downsizing	DSU	Downsizing ratio (GCR)	Downsizing ratio 1:1, 2:1, 4:1
	Resizing	MPU	Resizing ratio	Resizing ratio from 2:1 to 1:M
			(GCR)	Resizing ratio = N:M;
				M =2^13;
				N = floor(M*(SI-1)/(SO-1));
				SI - input size;
				SO - output size
CSC1	Color space conversion 1	MPU	Color conversion coefficients and offsets (TPM)	Color conversion matrix 1
GLOB_A	Global alpha	MPU		Used only for Task 2 and Task 3
СМВ	Combining	MPU		Combining video with graphics.
				Used only for Task2 and Task3.

Table 37-19. Task Commands

The ARM platform writes the commands to the IC_CONF Register. Because there is no double buffering for all the IC parameters, the ARM platform must disable a task before changing its parameters. After being disabled, the task is still allowed to complete its current frame execution. At frame finish, the IPU sends an interrupt to the ARM platform indicating that the ARM platform can change task parameters. The ARM platform enables the task again and task execution is resumed from start of the next frame.

37.4.5.3 Downsizing Section

The sensor data from the CSI is written into a FIFO located in the Input Buffer Memory. Depending on programmed processing flow, the FIFO data can be sent to the system memory via the IDMAC or straight forward to the Downsizing Unit.

In the first case, the data is processed by the ARM platform and returned by the IDMAC to another FIFO located in the Input Buffer Memory.

For postprocessing, the IDMAC transfers a data from the system memory to the third FIFO. The data is read by the Downsizing Unit when the postprocessing is performed.

Each or three FIFOs has 128 pages. Each page can store one burst of 2 or 4 words which corresponds to 8 or 16 pixels. The size of the burst is defined according to the channel's corresponding CB#_BURST_SIZE bit. The memory word width is 128 bits. Each memory word contains color components of four adjacent pixels or 16 bytes of generic data (e.g. Bayer). Access to the FIFOs is controlled by the Input Buffer Memory Control.

The Downsizing Unit performs averaging and decimation of image pixels both in horizontal and vertical directions according to the following equations:

$$HP_{R,c} = \frac{1}{DS_R - H} \sum_{k=0}^{DS_R - H - 1} IP_{r+k,c}$$

$$VP_{B,C} = \frac{1}{DS_{R}V} \sum_{I=0}^{DS_{R}V-1} HP_{B,c+I}$$

where IPr,c - the input pixel, HPR,c - the pixel after horizontal downsizing, VPR,C - the pixel after vertical downsizing, DS_R_H and DS_R_V - the horizontal and vertical downsizing ratios according to the IC_PRP_ENC_RSC, IC_PRP_VF_RSC and IC_PP_RSC Registers. The final calculation result is rounded to 8 bits.

Each of three downsizing tasks processes the data by bursts of 8 pixels. Normally, the current task runs until emptying the corresponding input FIFO. After finishing burst processing, the Downsizing Unit may switch between the current task and another task with higher priority, if the Input Buffer Memory has received a burst for this new task.

Averaging is performed firstly in the horizontal direction. All color components of a pixel are processed in parallel. After horizontal averaging has finished for a single output pixel, the new pixel value is added to the corresponding pixel value of a temporary row derived from previous averaging steps. This provides vertical averaging of the pixels. The temporary row is stored in the Downsizing Temporary Memory. The memory word width matches one accumulated pixel width (36 bits). There are three temporary rows stored in this memory - one per downsizing task.

After vertical averaging has been finished, the output row is written to the Downsizing Output Memory. The memory word of 48 bits includes two output pixels. For each task, the memory has a double buffer of one row. When the Downsizing Unit fills the foreground part of the double buffer, the Main Processing Unit takes pair or pixels from the background part. After the new downsized row has been ready, the foreground and background memory pointers are swapped.

37.4.5.4 Main Processing Section

The Main Processing Unit reads pairs of pixels from the Downsizing Output Memory background part. It processes the complete pixel row for the current task and after that switches to another task if the input data for this new task is ready.

For each task, the Main Processing Unit is able to perform the following sequence of operations:

- 1. Horizontal flipping the image (optional) performed with reading from the Downsizing Output Memory. Flipping is enabled via the VF, HF & ROT parameters of the corresponding DMA channels (Table 37-14 and Table 37-15) responsible for output of the task results. The preprocessing task for encoding uses the VF, HF & ROT parameters from IDMAC channel #20, the preprocessing task for viewfinder from the IDMAC channel #21, the postprocessing task from the IDMAC channel #22.
- 2. Horizontal resizing by bilinear interpolation between two adjacent pixels received from the Downsizing Output Memory according to the equation:

$$HP_{R,c} = IP_{r,c} + RS_C - H \cdot (IP_{r+1,c} - IP_{r,c})$$

where RS_C_H - the current horizontal resizing coefficient. The calculation result is rounded to 8 bits. The resizing coefficient is calculated as

Chapter 37 Image Processing Unit (IPU)

$$RS_C_H = \left(\sum_{k=0}^{R-1} RS_R_H\right) mod(8196)$$

where RS_R_H - the horizontal resizing ratio from the IC_PRP_ENC_RSC, IC_PRP_VF_RSC and IC_PP_RSC Registers. The RS_R_H parameter is equal to a numerator N of the resizing ratio N:M with $M = 2^13$.

The resulting row of the horizontal resizing is stored in the Task Parameter Memory.

3. Vertical resizing by bilinear interpolation between the current and previous results of horizontal resizing. Both current and previous results of horizontal resizing is stored in the Task Parameter Memory. Resizing is accomplished according to the equation:

$$VP_{B,C} = HP_{B,c} + RS_C_V \cdot (HP_{B,c+1} - HP_{B,c})$$

where RS_C_V - the current vertical resizing coefficient. The calculation result is rounded to 8 bits. The resizing coefficient is calculated as

$$RS_C_V = \left(\sum_{k=0}^{C-1} RS_R_V\right) \mod(8196)$$

where RS_R_V - the horizontal resizing ratio from the IC_PRP_ENC_RSC, IC_PRP_VF_RSC and IC_PP_RSC Registers. The RS_R_V parameter is equal to a numerator N of the resizing ratio N:M with M =2^13.

At completion of vertical resizing, this row is updated - the current result of horizontal resizing replaces the previous one.

4. First color space conversion YUV to RGB or RGB to YUV with the conversion matrix CSC1. The conversion matrix coefficients are programmable. They are stored in the Task Parameter Memory. The conversion equations are:

$$\begin{split} &Z_{0} = 2^{\text{SCALE}-1} \cdot (X_{0} \cdot C_{00} + X_{1} \cdot C_{01} + X_{2} \cdot C_{02} + A_{0}) \\ &Z_{1} = 2^{\text{SCALE}-1} \cdot (X_{0} \cdot C_{10} + X_{1} \cdot C_{11} + X_{2} \cdot C_{12} + A_{1}) \\ &Z_{2} = 2^{\text{SCALE}-1} \cdot (X_{0} \cdot C_{20} + X_{1} \cdot C_{21} + X_{2} \cdot C_{22} + A_{2}) \end{split}$$

where for YUV to RGB: $X_0=Y$, $X_1=U$, $X_2=V$, $Z_0=R$, $Z_1=G$, $Z_2=B$, for RGB to YUV: $X_0=R$, $X_1=G$, $X_2=B$, $Z_0=Y$, $Z_1=U$, $Z_2=V$.

All the parameters of the conversion matrix are written by the ARM platform to the Task Parameter Memory (IC Task Parameter Memory). The final calculation result is limited according to the SAT_MODE parameter and rounded to 8 bits.

- 5. Combining video with graphics. There are the following combining options:
 - local alpha blending,
 - global alpha blending,
 - use of key color.

If both alpha blending and color keying are enabled, color keying has higher priority (graphic pixels of the key color are fully transparent independently on the alpha value).

Combining mode is selected via the IC_CONF Register. The combining equation is:

$$OP = IGP \cdot \alpha + IVP \cdot (1 - \alpha)$$

where IGP - an input graphics pixel, IVP - an input video pixel, α =(A+floor(A/128))/256 - an alpha value, A - a global or local transparency parameter. The global A is written in the IC_CMBP_1 Register, the local A arrives together with the graphics pixel.

A graphics pixel becomes transparent when color keying is enabled and a pixel color matches a key color (independently on an alpha parameter).

The graphics data is read from a FIFO located in the Main Processing Memory. The FIFO contains 32 pages of size of 8 pixels. The size of the burst is defined according to the channel's corresponding CB#_BURST_SIZE bit. The graphics pixel format in the FIFO is RGBA or YUV 4:4:4 or YUVA. The graphics data is loaded by the IDMAC to the FIFO from the system memory.

All the operation are executed by an unified processing unit sequentially. Steps 1 and 2 cannot be interrupted by another task. All other steps can be interrupted by a task with higher priority if an input row is ready for this task. Preprocessing tasks priority is higher than postprocessing task priority.

The processing unit consists of three identical parts for each color component. All three color components are processed in parallel. Each of the processing operations can be enabled or disabled by an appropriate command according to.

The processing results are written to an output FIFO located in the Main Processing Output Memory row-by-row. The FIFO contains 32 pages, each page can include one burst of 8 or 16 pixels. The size of the burst is defined according to the channel's corresponding CB#_BURST_SIZE bit. The IDMAC transfers the output bursts to the system memory or to the display via DMFC (Channel 21only). The Main Processing Memory contains three buffers for each tasks: the temporary row buffer, the graphics FIFO and the output FIFO. Each memory word (128 bits) stores 4 adjacent pixels in formats RGB or RGBA or YUV 4:4:4.

37.4.5.5 Rotation Section

The rotation section includes the Rotation Memory, which stores an input rectangular block of 8x8 pixels and an output FIFO containing four pages of 8 pixels each one. The Rotation Memory word width corresponds to four adjacent pixels - 96 bits. The input block is loaded to the memory by the IDMAC like to a FIFO.

The Rotation Unit rewrites pixels from the input block to the output FIFO with corresponding relocation of a pixel inside the block. Rotation and/or left/right flipping and/or up/down flipping are enabled separately for each of three tasks. Configuring the rotation and flipping options is performed via the VF, HF & ROT parameters of the corresponding DMA channels (Table 37-14 and Table 37-15) responsible for task data input. The preprocessing task for encoding uses the VF, HF & ROT parameters from the IDMAC channel #45, the preprocessing task for viewfinder - from the IDMAC channel #46, the postprocessing task - from the IDMAC channel #47.

Rotation and flip options are shown in the following table.

Table 37-20. Rotation and Flip Options

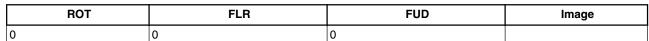


Table 37-20. Rotation and Flip Options (continued)

ROT	FLR	FUD	Image
0	0	1	
0	1	0	
0	1	1	
1	0	1	

Table 37-20. Rotation and Flip Options (continued)

ROT	FLR	FUD	Image
1	1	0	
1	1	1	
			LL_

After finishing the rotation task, the IDMAC returns the output FIFO content to the system memory. When writing to the system memory, the IDMAC changes a location of the block relative to an input block location in order to provide proper rotation of the whole frame. Rotation tasks switching is performed after completion of rotation of the whole frame.

37.4.5.6 IC Task Parameter Memory

The following table presents IC task parameter memory details.

Table 37-21. IC Parameters

Address ¹	Word ²	Parameter	Field	Description
x2008	3	C22	8:0	Coefficients of color conversion matrix1 for encoding task:
	word0 and word1	C11	17:9	Z0 = X0*C00 + X1*C01 +X2*C02+A0;
	Word	C00	26:18	Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 +X2*C22+A2;

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Table 37-21. IC Parameters (continued)

Address ¹	Word ²	Parameter	Field	Description
				Coefficients format is s.xxxxxxxxx ³ ;
		A0	39:27	Offset of color conversion matrix1 for encoding task:
				Offset format is sxxxxxxxxxxxxxxx
		SCALE	41:40	Scale of coefficients for color conversion matrix1 for encoding task:
				0> coefficients *0.5
				1> coefficients*1
				2> coefficients*2
				3> coefficients*4
		SAT_MODE	42:42	Saturation mode for color conversion matrix1 for encoding task:
				0> (min, max) = (0, 255)
				1> (min, max) = (16, 240) for Z1,Z2
				1> (min, max) = (16, 235) for Z0
x2010	Encoding CSC1	C20	8:0	Coefficients of color conversion matrix1 for encoding task:
	word2 and word3	C10	17:9	Z0 = X0*C00 + X1*C01 + X2*C02+A0;
		C01	26:18	Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 +X2*C22+A2;
				Coefficients format is s.xxxxxxxx;
		A1	39:27	Offset of color conversion matrix1 for encoding task:
				Offset format is sxxxxxxxxxxxxxxx
x2018	Encoding CSC1	C21	8:0	Coefficients of color conversion matrix1 for encoding task:
	word4 and word5	C12	17:9	Z0 = X0*C00 + X1*C01 + X2*C02+A0;
	Words	C02	26:18	Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 +X2*C22+A2;
				Coefficients format is s.xxxxxxxx;
		A2	39:27	Offset of color conversion matrix1 for encoding task:
				Offset format is sxxxxxxxxxxxxxxx
x4028	Viewfinder	C22	8:0	Coefficients of color conversion matrix1 for viewfinder
	CSC1 word0 and word1	C11	17:9	task:
	and Word?	C00	26:18	Z0 = X0*C00 + X1*C01 + X2*C02+A0;
				Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 + X2*C22 + A2;
				Coefficients format is s.xxxxxxxx;
		A0	39:27	Offset of color conversion matrix1 for viewfinder task:
				Offset format is sxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
		SCALE	41:40	Scale of coefficients for color conversion matrix1 for viewfinder task:
				0>coefficients *0.5

Table 37-21. IC Parameters (continued)

Address ¹	Word ²	Parameter	Field	Description
				1> coefficients*1
				2> coefficients*2
				3>coefficients*4
		SAT_MODE	42:42	Saturation mode for color conversion matrix1 for viewfinder task:
				0> (min, max) = (0, 255)
				1> (min, max) = (16, 240) for Z1,Z2
				1> (min, max) = (16, 235) for Z0
x4030	Viewfinder	C20	8:0	Coefficients of color conversion matrix1 for viewfinder
	CSC1 word2 and word3	C10	17:9	task:
		C01	26:18	Z0 = X0*C00 + X1*C01 + X2*C02+A0;
				Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 + X2*C22 + A2;
				Coefficients format is s.xxxxxxxx;
		A1	39:27	Offset of color conversion matrix1 for viewfinder task:
				Offset format is sxxxxxxxxxxxxxxx
x4028	Viewfinder	C21	8:0	Coefficients of color conversion matrix1 for viewfinder
	CSC1 word4 and word5	C12	17:9	task:
		C02	26:18	Z0 = X0*C00 + X1*C01 +X2*C02+A0;
				Z1 = X0*C10 + X1*C11 + X2*C12+A1;
				Z2 = X0*C20 + X1*C21 + X2*C22 + A2;
				Coefficients format is s.xxxxxxxx;
		A2	39:27	Offset of color conversion matrix1 for viewfinder task:
				Offset format is sxxxxxxxxxxxxxxxx
x6060	Postprocessing CSC1 word0	C22	8:0	Coefficients of color conversion matrix1 for viewfinder
	and word1	C11	17:9	task:
		C00	26:18	Z0 = X0*C00 + X1*C01 + X2*C02+A0;
				Z1 = X0*C10 + X1*C11 + X2*C12+A1;
				Z2 = X0*C20 + X1*C21 + X2*C22+A2;
				Coefficients format is s.xxxxxxxx;
		A0	39:27	Offset of color conversion matrix1 for viewfinder task:
				Offset format is sxxxxxxxxxxxxxxxx
		SCALE	41:40	Scale of coefficients for color conversion matrix1 for postprocessing task:
				0>coefficients *0.5
				1> coefficients*1
				2> coefficients*2
				3>coefficients*4
		SAT_MODE	42:42	Saturation mode for color conversion matrix1 for postprocessing task:

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Table 37-21. IC Parameters (continued)

Address ¹	Word ²	Parameter	Field	Description		
				0> (min, max) = (0, 255)		
				1> (min, max) = (16, 240) for Z1,Z2		
				1> (min, max) = (16, 235) for Z0		
x6068	Postprocessing	C20	8:0	Coefficients of color conversion matrix1 for		
	CSC1 word2 and word3	C10	17:9	postprocessing task:		
	and words	C01	26:18	Z0 = X0*C00 + X1*C01 + X2*C02+A0;		
				Z1 = X0*C10 + X1*C11 +X2*C12+A1;		
				Z2 = X0*C20 + X1*C21 +X2*C22+A2;		
				Coefficients format is s.xxxxxxxx;		
		A1	39:27	Offset of color conversion matrix1 for post-processing task:		
				Offset format is sxxxxxxxxxxxxxxx		
x6070	Postprocessing	C21	8:0	Coefficients of color conversion matrix1 for post-		
	CSC1 word4 and word5	C12	17:9	processing task:		
		C02	26:18	Z0 = X0*C00 + X1*C01 +X2*C02+A0;		
				Z1 = X0*C10 + X1*C11 + X2*C12+A1;		
				Z2 = X0*C20 + X1*C21 + X2*C22 + A2;		
				Coefficients format is s.xxxxxxxx;		
		A2	39:27	Offset of color conversion matrix1 for postprocessing task:		
				Offset format is sxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx		
x6078	Postprocessing CSC1 word0	C22	8:0	Coefficients of color conversion matrix2 for viewfinder task:		
	and word1	C11	17:9			
		C00	26:18	Z0 = X0*C00 + X1*C01 + X2*C02+A0;		
				Z1 = X0*C10 + X1*C11 + X2*C12+A1;		
				Z2 = X0*C20 + X1*C21 + X2*C22 + A2;		
		10	00.07	Coefficients format is s.xxxxxxxx;		
		A0	39:27	Offset of color conversion matrix2 for viewfinder task:		
		20415	11.10	Offset format is sxx.xxxxxxxxx		
		SCALE	41:40	Scale of coefficients for color conversion matrix1 for viewfinder task:		
				0>coefficients *2		
				1> coefficients*1		
				2> coefficients*0.5		
				3>coefficients*0.25		
		SAT_MODE		Saturation mode for color conversion matrix2 for viewfinder task:		
				0> (min, max) = (0, 255)		
				1> (min, max) = (16, 240) for Z1,Z2		
				1> (min, max) = (16, 235) for Z0		

Table 37-21. IC Parameters (continued)

Address ¹	Word ²	Parameter	Field	Description
x6080	Postprocessing	C20	8:0	Coefficients of color conversion matrix2 for viewfinder
	CSC1 word2 and word3	C10	17:9	Task:
	and words	C01	26:18	Z0 = X0*C00 + X1*C01 + X2*C02+A0;
				Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 +X2*C22+A2;
				Coefficients format is s.xxxxxxxx;
		A1	39:27	Offset of color conversion matrix2 for viewfinder task:
				Offset format is sxx.xxxxxxxxxx
x6088	Postprocessing	C21	8:0	Coefficients of color conversion matrix2 for viewfinder
	CSC1 word4 and word5	C12	17:9	task:
	and words	C02		Z0 = X0*C00 + X1*C01 + X2*C02+A0;
				Z1 = X0*C10 + X1*C11 +X2*C12+A1;
				Z2 = X0*C20 + X1*C21 +X2*C22+A2;
				Coefficients format is s.xxxxxxxx;
		A2	39:27	Offset of color conversion matrix2 for viewfinder task:
				Offset format is sxx.xxxxxxxxxx

^{1.} The address documented in this table is the relative address within the TPM. This is the address that should be accessed when writing or reading from this memory via the AHB bus.

37.4.5.7 IC's DMA channels

The table below mas the IDMAC channels of the IC and the IRT to the corresponding tasks.

The IC's channel name is the name of the channel at IC level. The IC channel name is referred on the IC's programming model.

Table 37-22. IC's DMA Channels

IDMAC's channel number	IC's channel name	Read/ Write	Source	Destination	Processing Flow Purpose
20	СВО	Write	IC ENC	Memory	Preprocessing data from IC (encoding task) to memory
21	CB1	Write	IC VF	Memory/DMFC	Preprocessing data from IC (viewfinder task) to memory; This channel can be configured to send the data directly to the DMFC. This is done by programming the ic_dmfc_sel bit.
22	CB2	Write	IC PP	Memory	Postprocessing data from IC to memory

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

^{2.} Each word is aligned to 64 bit accessible via the AHB bus in 2 separate 32bit accesses.

^{3.} s - sign position, x - binary digit position

Table 37-22. IC's DMA Channels (continued)

IDMAC's channel number	IC's channel name	Read/ Write	Source	Destination	Processing Flow Purpose
14	CB3	Read	Memory	IC VF	Graphics data for combining (viewfinder task)
15	CB4	Read	Memory	IC PP	Graphics data for combining (post-processing task)
11	CB5	Read	Memory	IC PP	Postprocessing data from memory
12	CB6	Read	Memory	IC VF	Preprocessing data from sensor stored in memory (for example Bayer)
5	CB7	Write	IC	Memory	Direct data from IC (sensor data) to memory
48	CB8	Write	ENC ROT	Memory	Preprocessing data after rotation (encoding task)
49	CB9	Write	VF ROT	Memory	Preprocessing data after rotation (viewfinder task)
45	CB10	Read	Memory	ENC ROT	Preprocessing data for rotation (encoding task)
46	CB11	Read	Memory	VF ROT	Preprocessing data for rotation (viewfinder task)
50	CB12	Write	PP ROT	Memory	Postprocessing data after rotation
47	CB13	Read	Memory	PP ROT	Postprocessing data for rotation

37.4.5.8 IC restrictions

- The input's frame width to the IC must be a multiplication of 8 pixels
- When performing resizing the frame width must be multiple of burst size 8 or 16 pixels as defined by CB#_BURST_16 parameter.

37.4.5.9 IC bridge

The IC sub-block utilizes a single memory to serve read and write channels. These memories are the IBM, RM and MPM. The IDMAC has separate mechanism to handle read and write channels. As a result, a contention between read and write channels may occur on each one of the memories. In order to resolve the contention, an IC bridge sub-block is connected between the channels associated with this memory.

The bridge prioritizes a read channel over a write channel. In order to avoid starvation of the write channels, the user can limit the maximum consecutive requests of the same channel that will be served. The limitation is done by programming the memory's corresponding <>_brdg_max_rq field.

37.4.6 Display port

The display port handles all the IPU features targeted for controlling and sending data to the display. The display port consists of 4 modules.

DC - a display controller,

DP - a display processor,

DMFC - a display multi-FIFO controller

DI - a display interface. The DI is instantiated twice to provide two symmetrical display interfaces.

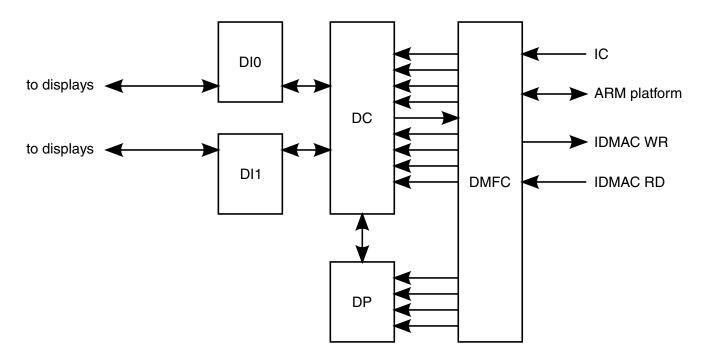


Figure 37-27. The display port

37.4.6.1 Display ports channels

The display port send data to the display over several channels. The data source may be the system's memory (via the IDMAC) the IC block and the ARM platform. The display port can read data from the display and send it to the ARM platform or IDMAC.

The data is routed over channels. The table below maps the IDMAC channels to DMFC, DC, DP channels and describes each channel.

Table 37-23. Display port channels

IDMAC's channel number	Display port's destination	DMFC channel number	DC channel number	Correspond ing alpha channel	channel usage
21	DC	Programmabl e using dmfc_ic_in_p ort	Programmabl e using dmfc_ic_in_p ort	NA	This channel is coming from the IC module. When data is coming from the IC, the IC channel replaces one of the IDMAC's channels connected to the DMFC. When the IC_DMFC_SEL bit is set the output of the IC is routed to the DMFC. This channel can be routed to the DC channels 1,2,5B,5F,6B,6F. Routing this channel to the DC channel is done with the dmfc_ic_in_port bits. The DC's channel allocated to the IC channel can't be used for data coming from other source.
23	DP	5B	5	51	This channel is for the DP's primary flow. When a single plane is used, the data should be sent over this channel. When 2 planes are combined in this flow, the second plane should come on channel 27.
24	DP	6B	6	52	This channel is for the DP's secondary flow. When a single plane is used, the data should be sent over this channel. When 2 planes are combined in this flow, the second plane should come on channel 29.
27	DP	5F	5	31	This channel is for the DP's main flow. When a single plane is used, the data should be sent over channel 23 and this channel should not be used. When 2 planes are combined in this flow, one plane should come on channel 23 and the other plane on this channel.
28	DC	1	1	NA	This channel can serve sync and async flows. When channel 28 is connected to DI0, channel 23 must be connected to DI1 even if ch23 is not used. This is done by programming the PROG_DISP_ID_5 field
29	DP	6F	6	33	This channel is for the DP's secondary flow. When a single plane is used, the data should be sent over channel 24 and this channel should not be used. When 2 planes are combined in this flow, one plane should come on channel 24 and the other plane on this channel.
40	DC	0	0	NA	This is a read channel
41	DC	2	2	NA	This channel can serve only async flow
42	DC	1C		NA	Command stream. See Display port's restrictions
43	DC	2C		NA	Command stream. See Display port's restrictions
44	DC	3		NA	Mask channel. This mask channel can be associated with channel 23 or channel 28

37.4.6.2 Supported display interfaces

• The display port has 2 DI interfaces. Each interface can handle up to 3 displays.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

- The total number of supported displays is 4.
- Each DI can handle up to 2 async interface only one of them can be serial interface.
- Each DI can handle one synchronous interface. Asynchronous displays that are accessed in synchronous mode are considered synchronous interface.

37.4.6.2.1 Synchronous Interfaces

The DI supports the following synchronous display interfaces.

- 1. Synchronous generic interfaces to TFT dumb displays or RGB interfaces of smart displays.
- 2. Synchronous interfaces to Sharp displays.
- 3. Synchronous interfaces to TV encoders:
 - PAL
 - NTSC

TV interfaces can operate in progressive or interlaced modes.

- 4. Synchronous interface to a graphic accelerator
- 5. BT.656
- 6. BT.1120

BT.1120 and BT.655 support

BT.1120 and BT.656 are supported. Only video data is supported, sending data during blanking intervals is not supported. The component size is always 8 bit.

37.4.6.2.2 Asynchronous Parallel Interfaces

The DI has a flexible asynchronous interface. The interface include 2 chip selects (CS) and 7 general purpose control signals.

The user can decide which of the 7 signals will be associated to each one of the asynchronous displays (up to 2 displays per DI). The using can configured some of the control signals to be shared by more than one display.

37.4.6.3 Display port's bandwidth

When the IPU clock (HSP_CLK) is equal to 264Mhz, the peak bandwidth supported by the display port is as follows

For on chip devices (like on chip MIPI-DPI bridge)

- 240 Mega-Accesses/Sec if the DI clock is derived from an external to IPU source (like another PLL)
- 264 Mega-Accesses/Sec if the DI clock is derived from the IPU clock (HSP_CLK)

For off chip devices (Like an external LCD)

- 170 Mega-Accesses/Sec if the DI clock is derived from an external to IPU source (like another PLL)
- 180 Mega-Accesses/Sec if the DI clock is derived from the IPU clock (HSP_CLK)

An access can be a pixel, component or generic data.

37.4.6.4 Display Dual Mode

This mode is useful for smart display with synchronous interface. The data is sent to the display only when the data has changed or when the display processor's settings are changed. The physical interface to this display has synchronous interface's characteristics.

37.4.6.5 Display Errors

There are a few types of errors that may impact the image sent to the display. The IPU provides some automatic mechanisms, which allow the system to overcome these errors.

37.4.6.5.1 Data starvation errors

These types of errors may happen for synchronous displays if the data is ready at the DI to be sent to the display at the time point it is required. This anomaly may happen if the system is very loaded and the IDMAC was not able to read data from the external memory and provide it to the DMFC.

Frame boundary errors

In case that a new frame should be sent to the display but the data of the previous frame was not sent completely, the IPU will reset the display modules and flush the internal buffers, as the IPU expects that the new frame indication will be triggered at least 2 lines (blanking interval) before the actual data is to be sent. The should recover and be ready with the data of the new frame within the blanking interval period.

Error within a frame

In case that a pixel was missed within a frame i.e. the pixel did not arrived to the DI on time. The IPU has 2 ways to handle the situation. The mode is selected by configuring the DI#_ERR_TREATMENT bit.

Redo the last access. The IPU will keep sending the last access to the display. The IPU will drop any pixel that arrive till the end of the line. If the data of the next line arrives correctly the IPU will continue working normally as overcame the problem. In case that the data of the next line is also incorrect the IPU will perform the same procedure as described on frame boundary errors.

Freeze the clock. In this mode, the IPU freezes the clock sent to the display till the correct data arrives. In order to avoid a case where the clock is frozen forever and the system is stuck: when the clock is frozen, a watchdog timer starts counting. When the timer completed counting the IPU will perform the same procedure as described on frame boundary errors. The number of cycles to be counted by the watchdog timer is defined according to the DI#_WATCHDOG_MODE bits.

37.4.6.5.2 Anti tearing errors

In case of anti tearing errors, the IPU indicates about the error by asserting the corresponding DC_TEARING_ERR_# bit.

See also Antitearing control.

37.4.6.6 Display port's restrictions

- In case where 2 synchronous flows are used and additional asynchronous flow via DP is used. The asynchronous flow via DP can be targeted to the same DI that the synchronous flow via DP is targeted.
- There are only 2 command channels (42 and 43). Command channels are associated with data channels (24,28,41).
 - When channel 28 is associated with a command, the command stream will come from channel 42
 - When channel 41 is associated with a command, the command stream will come from channel 43
 - Channel 24 can be associated with a command stream only if channel 28 or channel 41 do not use a command stream. If channel 28 is not associated with a command stream then channel 24 can be associated with channel 42. If channel 41 is not associated with a command stream and channel 28 is associated with a command stream then channel 24 can be associated with channel 43.

- A channel that uses an alternate flow, cannot be associated with a command stream (ch. 24 or ch. 41)
- In case of a synchronous display using external clock, The DI where the synchronous display is connected to can be connected to another async display. But, it can support only the write direction. Read via the asynchronous interface cannot be performed if this DI uses external clock

37.4.7 DC - Display Controller

IPU handles few display flows supporting few displays.

The IPU's flows' data sources can be the ARM platform, the system's memory, a camera or an external device connected on the display's port such as an external graphic accelerator.

The data's destination can be any device connected on one of the DI ports.

The DC controls the flows coming to and from the DI port. The DC manages the flows, decides which flows are currently active and when each flow is activated. The arbitrates between the active flows, gets the data from the predefined source and distribute it to the correct DI.

The DC's core is the microcode. The microcode contains a set of routine. A routine is built of a set of commands stored in the template's (microcode) memory. For each event (like new frame, end of frame etc.) a specific routine is executed. The user writes the routines and map them to a specific events. The routine contains instructions to the DC about the way of handling the data/address/commands associated with the display. The routine may contain information about the data's mapping, about waveform's characteristics, and more.

The figure below shows the micro architecture diagram for the DC block

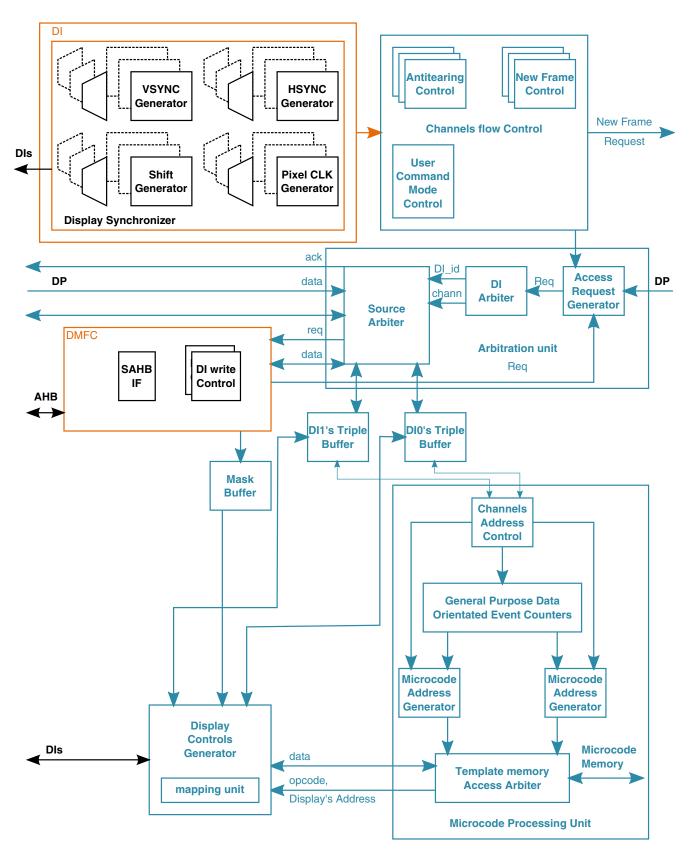


Figure 37-28. DC - Display Controller Block Diagram i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.4.7.1 Channels flow control

37.4.7.1.1 New Frame control

The channels flow control schedules the flows handled by the DC

For asynchronous flows the scheduling is done according to a request coming from the Frame Synchronization Unit (FSU) on the control sub-block (CM).

For synchronous flows the scheduling is done according to a trigger that is generated by a timer located on the one of the display's interface blocks (DI)

37.4.7.1.2 Antitearing control

Anti tearing mechanism uses a signal indicating on a display's refresh of a frame.

The supported tearing elimination triggers can be:

- An internally generated VSYNC signal
- A VSYNC signal generated by the display. The data source is the memory.
- A VSYNC signal coming from the CSI

The DC has the capability to avoid image tearing. For asynchronous flows where the source of the data is the system's memory or postprocessing, the DC monitors the position of a display's refresh pointer. Writing to the display is started only after crossing the window start point by the display refresh pointer. After that, writing to the display is allowed only when a write pointer does not advance beyond the refresh pointer. To provide anti-tearing mode, a window start time (in rows) must be defined in the PROG_START_TIME_1, PROG_START_TIME_2, PROG_START_TIME_5, PROG_START_TIME_6 registers for the corresponding channels.

The antitearing mechanism is limited to a case where only asynchronous flows are handle via the target DI.

In the case when tearing cannot be avoided (when the refresh rate is too high and the refresh pointer overtakes the write pointer after full refresh cycle), an error interrupt is generated. Tearing elimination mode can be disabled via the PROG_CHAN_TYP field for the corresponding channel.

37.4.7.1.3 User command mode control

A user may prepare in the system's memory a buffer that holds commends to be sent to the external device. The command buffer includes the same amount of lines as the data buffer. The line of commands are sent to the display line by line. A line of data is sent following each line of commands. This mode is activated by programming the PROG_CHAN_TYP of the corresponding channel.

The structure of the command is as follows:

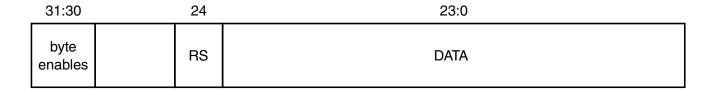


Figure 37-29. Structure of a command word

37.4.7.2 Arbitration Unit

This unit arbitrates the requests coming from the DMFC and from the DP and sends them to corresponding DI.

37.4.7.2.1 Access request generator

The requests coming from the DMFC or DP are sorted according to the target DI and then served according to a hard coded priority. The priority order is Sync flow, ARM platform access, IDMAC's Async flows.

37.4.7.2.2 DI arbiter

This units arbitrates between the DIs. The priority is hard coded. The priority order is Sync flow, ARM platform access, IDMAC's Async flows.

In case of 2 simultaneous requests to different DIs with the same priority the requests are served in a Round-Robin fashion. In case of 2 simultaneous Sync flow requests to different DI, the user can bypass the Round Robin mechanism and prioritize one DI on the other according to the SYNC_PRIORITY_1 & SYNC_PRIORITY_5 bits. Setting low priority to both of these channels is forbidden.

37.4.7.2.3 Source arbiter

Once the source of the request to be served was selected and the target DI was chosen, this unit routes the request and all the signals, associated with it, to the correct triple buffer and to the correct source of the data.

37.4.7.3 Microcode processing unit

The main control unit of the DC is the Microcode processing unit (MPU).

The data coming to the DC may be associated with some additional information like new frame, new line, new address etc. The information is processed in the MPU. The MPU executes the associated routine. The routine includes a set of instructions of the actions to be performed by the DC and DI.

37.4.7.3.1 Channels address control

This unit controls the display's address for each channel. This unit is responsible for defining the next address to be accessed (by incrementing or jumping). Stores special events flags (like EOF, EOL etc.). Based on the display's address and the special events, the type of the routines to be executed is defined.

37.4.7.3.2 General purpose Data oriented events counters

A user may define up to 4 general purpose events. The events are triggered by a standard event (NF, NL). The standard event restarts a counter, when the counter completes counting the user's general purpose event is asserted. This event activates a routine like any other events

37.4.7.3.3 Microcode address generator

This unit calculates the physical address of the template memory where the event associated routine resides. In addition, these unit arbitrates between simultaneous events and select the event to be served.

The arbitration is done according to a user defined priority. The priority of each event is set according to the #_CHAN_PRIORITY_CHAN_# bits of each channel. There are 2 modes of arbitration:

- Serving all the pending events according to the priority
- Serving only the highest priority event while ignoring all the other events

The arbitration mode is defined according to the CHAN_MASK_DEFAULT bit of each channel.

37.4.7.3.4 Template's Memory Access Arbiter

This unit gets memory access requests from the 2 microcode address generator units and arbitrates between them in a Round Robin fashion. In case that only one of the requests belongs to a synchronous flow, this request is selected.

37.4.7.4 DC's Template structure

The template memory contains 256 template words. Each template word is a 42 bits words. Accessing a template word require 2 accesses (32bit each).

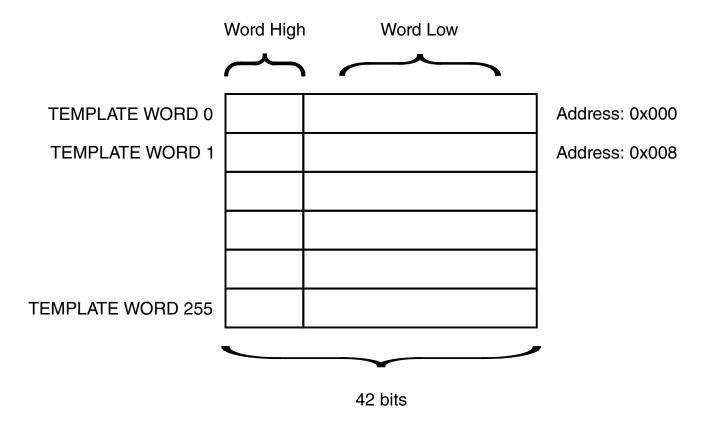


Figure 37-30. Template's structure

37.4.7.4.1 DC template's memory map Table 37-24. DC template's memory map

0x1F80	000 DC_	MICR	OCODE	E_W0_I	L											
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	OPER	AND	'	'	1		•		'	'		-	MAP	PING	'	'
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	MAP	WAV	EFORM	1		GLU	ELOGIC	•	<u>'</u>				SYN	С		
W	PING															
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
0x1F80	004 DC_	MICR	OCODE	W0_I	Н		•		'	'		1	<u> </u>	'	'	'
	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	0	0	0	0	0	0	STOP	OPC	ODE	I	L	T.		-1		
W																
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
		<u> L</u>						1								

DC template's fields description

Table 37-25. DC template's fields description

Field	Description
STOP	Stop bit - This bit should be set in order to indicate that the current command is the last command of the routine
OPCODE	The command's code
OPERAND	The command's operand - for some of the commands this field can hold a parameter associated with the command
MAPPING	The MAPPING field holds a pointer to a register holding 3 fields: MAPPING_PNTR_BYTE0_X, MAPPING_PNTR_BYTE1_X, MAPPING_PNTR_BYTE2_X.
	This pointers point to sets of OFFSET and MASK parameters that define the mapping scheme. MAPPING = 0 means that mapping is disabled.
	The value in this field should be incremented by 1 to get the correct X pointer value
	In order to point to MAPPING_PNTR_BYTE2_0, MAPPING_PNTR_BYTE1_0, MAPPING_PNTR_BYTE0_0 the user should write 1 to the MAPPING field
WAVEFORM	For data oriented output pins.
	The IPU has 4 waveform generator units.
	The IPU holds 12 sets of waveforms' configuration registers called DI0_DW_GEN_ <i> and DI1_DW_GEN_<i></i></i>

Table 37-25. DC template's fields description (continued)

Field	Description
	The WAVEFORM field defines which one of the 12 waveforms' configuration registers is used. The DI1_DW_GEN_X register holds a pointer to one of the 4 waveform generators units for each of the data oriented pins.
	0 - The waveform of the data oriented output pins is not affected
	1 -Points to DI0_DW_GEN_0 or DI1_DW_GEN_0
	2 - Points to DI0_DW_GEN_1 or DI1_DW_GEN_1
	12 - Points to DI0_DW_GEN_11 or DI1_DW_GEN_11
GLUELOGIC	For signals generated by waveform generator #3; This field provides extra flexibility on the signals waveform
	GLUELOGIC[6] - This bit defines if we are in clock mode (1) or CS mode(0).
	1- clock mode
	When the command is related to the display clock's pin then only if we are in clock mode, GLUELOGIC[5:4] are valid.
	0- CS mode
	When the command is related to the CS pin then only if we are in CS mode, GLUELOGIC[3:0] are valid.
	GLUELOGIC[5:4] - clock mode settings
	00 - Freeze the display clock following the execution of the current command
	01 - Freeze the display clock before the execution of the next command to be executed
	10 - Enable (unfreeze) the display clock following the execution of the current command
	11 - Enable (unfreeze) the display clock before the execution of the next command to be executed
	GLUELOGIC[3] - CS mode settings
	1 - Once the signal is asserted then it remains asserted (high or low according to the polarity)
	0 - No impact on the waveform
	GLUELOGIC[2] - CS mode settings
	1 - Once the signal is negated then it remains negated (high or low according to the polarity)
	0 - No impact on the waveform
	GLUELOGIC[1] - CS mode settings
	1- The current waveform can be attached to the previous waveform. If the previous waveform was asserted and the current waveform start asserted the two waveforms will be attached so the signals' waveforms will be consecutive. This impact the behavior of the previous waveform. This can be done only if GLUELOGIC[0] of the previous waveform is set to 1
	0 - No impact on the waveform
	GLUELOGIC[0] - CS mode settings
	1 - this bit allows the next waveform to be attached to the current waveform.
SYNC	The data associated with this command should be synchronized to the DI's one of gen_time_sync generators' output.
	0000 - No sync. The data is sent without any synchronization to any event
	0001 - Sync with unit #1
	0010 - Sync with unit #2

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Table 37-25. DC template's fields description

Field	Description
	1010 - Sync with unit #10
	1011 - 1111 Reserved

DC template's command description

The diagram below illustrates the command processing flow. The command is being fetched from the microcode memory. The Opcode is decoded. According to the decoding several controls are sent to the processing unit. In addition the processing unit gets the pixel's data and the display's address. The processed data/ address is stored in an internal register. There are 2 types of commands

HOLD - In this type of commands the data/address is stored in the register and not sent to the DI. The data/address is held in the register for further processing in the following commands.

WRITE - In this type of commands the data/address is stored in the register and also sent to the DI.

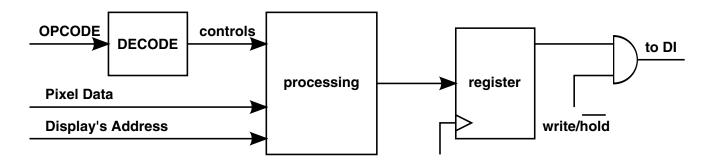


Figure 37-31. Opcode processing

The table below describes the DC's Commands.

Table 37-26. DC template's commands description

Com mand																			CO	IM	MA	NE)[4	1:0)]																	
	4 1	4 0	3 9	3 8	_	1 -	3 5	1 -	3 3	3 2	3 1	3		ı			-		1	2 2	2	2 0	1 9	1 8	1 7	1 6	1 5	1 4	1 3	1 2	1 1	1 0	9	8	7	6	5	4	3	2	1	0
HLG	s	0	0	0	0	D	ΑT	A						_										_												•	_	0	0	0	0	0
	Н	old	32	bit	wc	ord	in	an	int	ern	al ı	reg	iste	er f	or	fur	the	r p	roc	es	sin	g.																				
	D	٩T٨	A is	s a	ge	nei	ral	pu	rpc	se	da	ta t	o k	oe l	hel	d.																										

Table 37-26. DC template's commands description (continued)

Com																		CC	M	MA	NI)[4	1:0)]			_			_					_						
mand	L																	_						,																	
	4 1	4		3 3		3 3				3 3	3	2 9	2	2	2	2	2 4	2	2	2	2	1 9	1	1		1		1		1		9	8	7	6	5	4	3	2	1	0
WRG			_	8 7 DA	_		4	1 3		2 1	U	9	8	/	ь	5	4	3	2	1	U	9	8		6	5	4 W	3			0	LU LU						6/	 ′N0	\Box	
Wha	3	١	'	DA	17																						RN		LI	O	G	LU	LL	OG	ai C			31	INC	,	
	W	rite	24	bit v	ΝO	rd to	o tl	he [ΟI	and	Н	old	the	e w	orc	l in	re	gis	ter																						
	D	ATA	\ is	a g	en	eral	р	urp	ose	e da	ata	to I	be	wri	tte	n.																									
				3 3		3 3				3 3			2	2	2	2	2	2	2	2	2	1	1	1		1	1	1	1	1	1	9	8	7	6	5	4	3	2	1	0
HLOA	1 S	\rightarrow	9	8 7	+	6 5 a D	_	⊦ З ГА	2	2 1	0	9	8	/	6	5	4	3	2	1	U	9 M		7	6 PINC	-	_		2	_	0	0	0	0	0	0	0	0	0	0	0
ITLOA	0	'	٥	'		a L	'A	IA														IVI	AF	ГГ	IINC	7	١	U	0	0	٥	١	U	١	0	0	U		١	١	U
	Н	old	the	dis	pla	ay's	ac	ldre	ss	in a	an	inte	erna	al r	egi	ste	er fo	or f	urt	her	pr	OC	ess	sing	j .						!						-				
	af	=0:	No	shi	ift																																				
	af=1: 8 bit right shift DATA is a 16bit general purpose data. This data is ORed with the 16 MSB of the mapped address. 4 4 3 3 3 3 3 3 3 3																																								
	D	AT/	\ is	a 1	6b	it ge	ene	eral	рι	urpo	se	da	ta.	Th	is	dat	a is	s C	Re	ed v	with	th	e 1	16	MS	Вс	of th	ne	ma	app	ed	ac	ldr	ess	S						
	4											2	2	2	2	2 5						1 9	1	1	1 1	1				1		9	8	7	6	5	4	3	2	1	0
WROA	-		_	-	+	_				- '				'						<u> </u>		-										LU LU	L EL	OG				S	 NO	\Box	
					- 1																																				
	af:	=0:	No	shi	ift																																				
			_	oit ri	_		_					1		1								1								1		_		_						_	
	1	4 0		3 3		- 1			2	3 3 2 1	0	9	8	7	6	5	4		2	1		9	1	7	1 6			1 3		1	0	9	8	7	6	5	4	3	2	1	0
HLOD	s	1	_	0 0	+	_		ΓA					_	ļ								├		_	NIC	-	_		0	-		0	0	0	0	0	0	0	0	0	0
	Н	old	da	ta in	re	gist	er																																		_
				a 1								da	ıta.	Th	is	dat	a is	s C	Re	ed v	vith	n th	e 1	16	MS	Вс	of th	ne	ma	app	ed	l da	ıta	COI	mir	ng f	ror	n th	ıe		
		_	_	ourc	_		_		-			0	0	0	0	0	0	0	0	0	0	4	4	4	4	4	4	4	4	4	4	_	0	- -	6	5	4		_	<u>.</u>	_
	1			3 3 8 7		3 3 6 5				3 3 2 1	3	9	8	7	6	5	4	3	2	2	0	9	8	1 7	1 6	1 5		1 3	2	1	0	9	8	7	О	5	4	3	2	'	U
WROD	s	1	1	0 0) (0 0	Α	TΑ				-		-								M	AP	PP	NIC	3	W		EF	0	G	LU	EL	OG	ilC			SY	'NC		_
		<u></u>	_	Ц.			_						_														R۱	Л													
				ita to									_								٠.,	. 11.		40		_															
				a 1 ourc								da	ita.	ır	IIS	dat	a ıs	s C	He	ed v	viti	n th	e 1	16	MS	Bo	of tr	те	ma	app	ed	da	ıta	COI	mır	ng t	ror	n tr	ıe		
	4			3 3		3 3				3 3	3	2	2	2	2	2	2	2	2	2	2	1	1	1		1	1	1	1	1		9	8	7	6	5	4	3	2	1	0
	├	0	-	-	+	6 5	+	+	+	_	+	9	+-	+-	+-	₩	4	-	+	1	-	-		_	\perp	_	\rightarrow	3	_	1		_	_	_		_	_		_	_	_
HLOA R	S	1	0	0 0	י ר	1 1	1	l a	. 0	0	0	0	0	0	0	0	0	0	0	0	0	M	ΑP	'PP	PINC	j	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0
	Ac	ldin	ıg l	 Map	 pe	d A	 dd		⊥ s t	o he	⊥ eld	dat	⊥ ta a	anc	⊥ I ho	∟ old	in a	⊥ an	int	⊥ ern	∟ al i	∟ reg	iste	er.														ш			_
				shi																		,																			
	af	=1:	8	oit ri	gh	t sh	ift																																		
	_				_																																				

Table 37-26. DC template's commands description (continued)

Com																	С	ОМ	MA	ANE	[41:	:0]															
Illaliu	1	4 3	, T	2 2	2	3	3	3	3	2	2	2 0	1	2 2	2	2	_	2 2	2	2	1 1	Π-	4 -	1	1	1	1	1	9	8	7	6	5	4	3 2	2 1	0
	1	0 9		3 3 8 7	3 6	5		3	2			2 2 9 8		2 2 7 6	2 5				1	0	1 1 9 8			- 1		1 2 3	1	0	9	0	'	0	5	4	ع ا	<u>'</u>	0
WROA R	s	1 1	1	0 0	1	1	1	a	0	0	0	0 0	(0	0	0	C	0	0	0	MA	PP	PING			VE		G	LUI	ΞL	OG	IC			SY	ИС	
	Ad	ddin	⊒ N	/lapi	 bed	Ac	ddre	ess	to	∟ hel	ld d	ata.	W	/rite	to	DI.	⊥ aı	nd h	L olo	l d in	reai	ste	r														
		1 :0=																			- 3																
	af:	=1: 8	3 b	it ric	ht:	shi	ft																														
	4	4 3	3	3 3	3	3	3		3			2 2		2 2	2	2		2 2		2	1 1			1	1	1	1	1	9	8	7	6	5	4	3 2	2 1	0
0.0	1	0 8	+	8 7	+	5	+	-	2	\rightarrow	-+	9 8	+	_	5	+	+	-	₩	+	9 8			_	+	2	-	0		_						_	1
HLOD R	S	1 (0 0		1	0	0	0			0 0	II.		0		C		0	0	MA	PP	PING	0	0	0	0	0	0	0	0	0	0	0	0 (0 0	0
	4	4 3	_		<i>з</i> еа	_	_	3	3	_	_	2 2	_	old i	2	_	_		2	2	1 1	1	1 1	1	1	1	1	1	9	8	7	6	5	4	3 2	2 1	0
	1	0 9	- 1	8 7		5			2			9 8		6	5						9 8					1 3 2		0	9	O	'	١	٦	4	ے ا	<u> </u>	
WROD R	s	1 -	1	0 0	1	1	0	0	M 2		M 0	0 0	(0	0	0	C	0	0	0	MA	PP	PING		VA RM	VE	O	G	LUI	ΞL	OG	IC			SY	ИĊ	
	Ad	dding	g N	Лар	oed	Da	ata	to	hel	d d	ata	. Wı	ite	to [)I	and	ı ı	nold	in	reg	ister			_				-									
	Adding Mapped Data to held data. Write to DI and hold in register. M0: 0: a new data[7:0] before mapping																																				
	0: a new data[7:0] before mapping 1: a previous access data [7:0] before mapping																																				
	M	1:																																			
	0:	a ne	ew	dat	a[1	5:8] be	efo	re r	nap	pir	ng																									
	1:	a pr	ev	ious	ac	ces	ss (dat	a [1	15:8	3] b	efor	e ı	map	pir	ng																					
	M	2:																																			
	0:	a ne	ew	dat	a[3	1:1	6] k	oef	ore	ma	app	ing																									
	1:	a pr	ev	ious	ac	ces	ss (dat	a [3	31:1	16]	befo	re	ma	pp	ing																					
	lf ((M2	= 1	M1 :	= M	0 =	= 0)	th	an	the	со	mm	an	d pe	rfc	rm	s:																				
	СО		ne	d fro	m a	a n	ew	da	ıta a	and	l pr												write he co														
	E>	amı	ole	s:																																	
	pr	evio	us.	_da	ta =	· 0>	(89	ΑB	CD	EF																											
	ne	w_c	lat	a =	0x1	23	456	378	3																												
	he	ld_c	dat	а (р	rev	iou	s_c	dat	a a	fter	ma	appi	ng) = C)x(000	OE	ΞF																			
	Сι	ırrer	nt I	MAF	PII	٧G	mo	ode	e: n	ew_	_da	ta 8	0	x00f	fff(00																					
	Oı	utpu	t:																																		
	lf I	M2 =	= N	/11 =	MC) =	0)	tha	ın:																												
	Oı	utpu	t =	nev	v_d	lata	a O	Rŀ	nelo	d_d	ata	= 0	хЗ	456l	EF	:																					
	lf I	M0 =	= 0	, M	1= 1	1,M	12 =	= 1	tha	n:																											
	Oı	utpu	t =	MA	PP	INC	G ({	(pre	evic	ous _.	_da	ıta[3	1:	8], n	ev	v_d	lat	ta[7:	0]]	}) =	MAF	PI	NG(0	x89	ΑE	3CE)78) =	0x(00/	AB(CD	00)				
	Oı	utpu	t =	MA	PP	INC	G ({	(pre	evic	ous _.	_da	ta[3	:1	8], n	ev	v_d 	lat	ta[7:	0]]	}) =	MAF	PI	NG(0	x89	ΑE	3CE	78) =	0x(00/	AB(CD	00)				

Table 37-26. DC template's commands description (continued)

If M0 = 0, M1= 1,M2 = 0 than: Output = MAPPING ({new_data[31:16], previous_data[15:8], new_data[7:0]}) = MAPPING(0x1234CD7 0x0034CD00) if M0 = 1, M1= 0, M2 = 0 than: Output = MAPPING ({new_data[31:8], previous_data[7:0]}) = MAPPING(0x123456EF) = 0x00345600) d	4 3 2 1 0
Output = MAPPING ({new_data[31:16], previous_data[15:8], new_data[7:0]}) = MAPPING(0x1234CD7 0x0034CD00) if M0 = 1, M1= 0, M2 = 0 than: Output = MAPPING ({new_data[31:8], previous_data[7:0]}) = MAPPING(0x123456EF) = 0x00345600) 4 4 3 3 3 3 3 3 3 3	4 3 2 1 0
0x0034CD00) if M0 = 1, M1= 0, M2 = 0 than: Output = MAPPING ({new_data[31:8], previous_data[7:0]}) = MAPPING(0x123456EF) = 0x00345600) 4 4 3 3 3 3 3 3 3 3	4 3 2 1 0
Output = MAPPING ((new_data[31:8], previous_data[7:0])) = MAPPING(0x123456EF) = 0x00345600) 4 4 3 3 3 3 3 3 3 3	
4 4 3 2 2 2 2 2 2 2 2 2 2 1	
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0	
Merge 1 bit mask channel with mapped data. Hold in register and write to DI.	SYNC
Mask data is coming from the DC's mask channel.	
4 4 3 3 3 3 3 3 3 3	4 3 2 1 0
WCLK S 1 1 0 0 1 0 0 1 N_CLK_OPERAND 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0
Wait N_CLK_OPERAND clocks.	
N_CLK_OPERNAD is the number of DI_CLK cycles to wait.	
4 4 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2	4 3 2 1 0
1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 MARPENIA WAYEE OF TAKE	CYNIC
WSTS- 0 1 0 0 0 1 0 0 1 N_CLK_OPERAND MAPPPING WAVEFO GLUELOGIC	SYNC
Wait for Status I	
Read from the display and compare to a predefined PASSWORD. If the read data is equal to the PASS continue. If not, redo the read & compare cycle.	SWORD, then
N_CLK_OPERAND is the number of DI_CLK cycles to wait before latching the data coming from the D	l.
DI_READ_DATA_ACK_VALUE_0 DI_READ_DATA_MASK_0	
4 4 3 3 3 3 3 3 3 3	4 3 2 1 0
WSTS- 0 1 0 0 0 1 0 1 0 N_CLK_OPERAND MAPPPING WAVEFO GLUELOGIC	SYNC
II	
Wait for Status II	
Read from the display and compare to a predefined PASSWORD. If the read data is equal to the PASS continue. If not, redo the read & compare cycle.	WORD, then
N_CLK_OPERAND is the number of DI_CLK cycles to wait before latching the data coming from the D command must be followed by a WSTS-I command.	I. WSTS-II
This command is useful in case that the PASSWORD is read in 2 accesses.	
The comparison will be done only after the execution of the WSTS-I command.	
4 4 3 3 3 3 3 3 3 3	4 3 2 1 0
WSTS- S 1 0 0 0 1 0 1 1 N_CLK_OPERAND MAPPPING WAVEFO GLUELOGIC	SYNC
Wait for Status III	

Table 37-26. DC template's commands description (continued)

Com																		С	OI	MM	ANI	D[4	11:0	0]																			\neg
manu						e dis												ined	Р	ASS	SW	OF	RD.	lf	the	e r	ead	d d	ata	is	eq	ua	al t	o t	he	P.	AS	SS	WC	DR	D, 1	he	n
	N	С	LK	С	PE	RAN	۱D) is t	he	e nu	ım	be	r o	f DI		LK	C١	/cles	s to	o wa	ait k	ef	ore	la	itch	nin	g t	he	da	ta	cor	nir	ng	fro	om	th	ie	DI.					
						nma											-										Ū						Ŭ										
	Tł	nis	СО	mr	nar	ıd is	us	sefu	Lii	n ca	as	e th	nat	the	P	AS	S۷	VOF	۱D	is r	eac	l in	3 8	ac	ces	SS	es.																
	Tł	ne	cor	np	aris	son v	νil	ll be	d	one	9 0	nly	af	ter	the	e ex	ec	cutio	n	of th	ie V	٧S	TS	-1	COI	mr	naı	nd.															
					a F	PASS I.	SV	VOF	RD) mi	isr	nat	ch	the	re	ead	is	don	e	agai	n. ⁻	Γhe	e ei	nti	re	су	cle	(V	/ST	rs.	-111	->	V	/S	TS	i-II	->	· W	/ST	ΓS-	l) v	vill	
		4 0	3 9	3 8	3 7	3 3	3	3 3	3	3 3		3								2 2 1			1 8		1 1	- 1	- 1	1 4	- 1		1 1	1 0	9	8	7	7	6	5	4	3	2	1	0
RD	S	1	0	0	0	1 ()	0 0)	N_	CL	_K_	<u></u> O	PEF	RA	ND		•		•	•	N	1AF	P	PII	NG	- 1	W.	AVE 1	ΞF	0	GI	ĹŲ	JEI	0	GI	С			S	ΥN	0	
	R	ea	d d	ata	fro	m D)I																																				
	N_CLK_OPERAND - means delay value in DI_CLK for display's data latching by DI, defined by user For serial display the N_CLK_OPERAND is fixed and should be set to 1 value.																																										
	Fo	or :	seri	al	dis	play	th	e N	_(CLK	_(ЭP	EF	RAN	D	is fi	хе	d ar	nd	sho	uld	be	se	et 1	to 1	1 v	αlι	ıe.															
	4	ı			3			3 3							2	2	2	2 2	2	2 2	2	1	1		1 1			1			- 1	1	9	8	3 7	7	6	5	4	3	2	1	0
WACK	1 S	Ľ	_	_		1 -	_	4 3	_	_				8	_		_		5	2 1	U	9	8	+	_	\rightarrow	\rightarrow	_	3 : W <i>F</i>	\rightarrow	_			\ \ \	<u> </u>	LC		10			C)	/N(\sqsubseteq
WACK	3			١			'	١		ן י	IN_	_01	-r_	_OF		ΠAI	ΝL	,						1			١	٥	RM			U	٦	ıLC) <u>_</u>	LC	JG	IC			3	INV	٦
	W	ait	for	a	ckn	owle	ed	ge																																			
	N.	_C	LK	_C	PE	RAN	۱D) - N	ur	mbe	er	of I	DI_	CL	Κı	cycl	es	s to o	co	unt l	oef	ore	m	on	ito	rin	g t	he	AC	K	rec	ei	ve	d f	ro	m	the	e d	isp	olay	<i>/</i> .		
	1	4			3	3 3	3	3 3	3	3		3		2	2	2				2 2					1 1			1				1	9	8	7	7 (6	5	4	3	2	1	0
MOK	1	Ľ	+	-	7	+	\dashv	4 3	-	-	_			8	_	6	-	4 3	+	2 1	+	+	+	+	+	\rightarrow	\rightarrow	_	\rightarrow	_	1		Ļ	_		+		_	_	_	_	_	
MSK	5	1	1	0	0	1 ()	0 0)	0	0	0	U		0	1 3	2	e r 3 f m r		n n I fl m d	0	0 	o fl	r	r k		d m	0	0	0	0	0	0	0		ן נ	0	0	0	0	0	0	0
						a sp ers a										nore	e tl	han	or	ne po	enc	ling			nts	th	ne i	use	er c	an	m	as	k s	sor	ne	of	f th	ne	eve	ent	an	d	
	eC)m	- е	ve	nt () ma	sk	k, de	efir	ned	Ιb	y u	se	r																													
	e1	lm	- е	ve	nt 1	l ma	sk	k, de	efir	ned	Ιb	y u	se	r																													
						2 ma																																					
						3 ma																																					
						me ı																																					
						e ma																																					
						ield i						-																															
						frar										r																											
						line								•																													
	ec	oflo	dm	- е	nd	of fie	elc	d ma	ısl	k, d	ef	ine	d k	y u	se	r																											
						addre																																					
																																											. '

Table 37-26. DC template's commands description (continued)

Com	COMMAND[41:0]				
	ncm - new channel mask, defined by user				
	dm - data mask, defined by user				
	4 4 3 3 3 3 3 3 3 3				
НМА	S 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	HOLD_MICROCODE_ADDRESS - hold operand in special Microcode address register 0.				
	This register is used to store a pointer in the microcode to be used by the BMA command				
	ADDRESS is a microcode address in the microcode memory defined by the user.				
	4 4 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2 2 2 2 2 1				
HMA1	S 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0				
	HOLD_MICROCODE_ADDRESS - hold operand in special Microcode address register 1.				
	This register is used to store a pointer in the microcode to be used by the BMA command				
	ADDRESS is a microcode address in the microcode memory defined by the user.				
	4 4 3 3 3 3 3 3 3 3 3 3 3 3 3 3 2 2 2 2				
DNAA	1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 9 8 7 6 5 4 3 2 1 0 0 0 0 0 0 0 0 0				
BMA	S O O 1 1 L A O O O O O O O O O				
	BRANCH_MICROCODE_ADDRESS jump to Microcode address which is stored at an internal Microcode address				
	register. The branch will be done to the ADDRESS stored with the HMA/HMA1 command.				
	The BMA command manages the repeat cycles by one of the auto decrement counters (internal counters), the counter's id is defined by LF-bit (0/1)				
	The N operand defines the N-number of routine's repetitions.				
	In case of N=0. The BMA command functions as a JUMP command.				
	As long as the internal counter didn't reached its predefined value, the microcode will branch to the pre defined address stored by the HMA/HMA1 commands. Selecting between HMA and HMA1 is done by the AF bit (it is calculated according to the "1 - AF" value) That's the subroutine's microcode start address				
	When the counter reached its predefined value, the microcode will branch to the pre defined address stored by the HMA/HMA1 commands. Selecting between HMA and HMA1 is done by the AF bit (it is calculated according to the "AF" value) That's the subroutine's microcode return address				
	BMA synchronization (SYNC field): The BMA command can be used for context switching between 2-channels.				
	When switching between flows the user can run a routine for a new channel, which actually affects the previous flow This feature is useful when a new flow breaks the current flow (post command for example): SYNC is used for display_id selection // 0 0 0 - current display // 0 0 1 - previous display // 1 0 0 - display 0 // 1 0 1 - display 1 // 1 1 0 display 2 // 1 1 1 - display 3				

37.4.7.5 Display controls' generator

This unit generates the control signals associated with the data that are sent to the DI block.

37.4.7.5.1 Bus Mapping Unit

The Bus Mapping Unit is responsible for programmable mapping of the input data and commands to the display interface format and vice versa. Address mapping is done by this unit as well (programmable via micro code).

The internal DI format for data and commands is a 24-bits word divided into three byte components (eight zeroes are added to MSB for 16-bits words from the DC). This word can be output or input in one, two, three or four cycles of the display clock.

The word coming from the memory is a 32bit word. The mapping operation is done on 24 bits only. The 24 bit are selected from the received 32 bit according to the W_SIZE_# field. The 24 bit input word is partitioned to a 3 bytes (3X8bits). Each byte can be mapped to any position at the 24bit output word. The exact position is set according to the MD_MASK & MD_OFFSET fields.

The MAPPING_PNTR_BYTE0_X, MAPPING_PNTR_BYTE1_X, MAPPING_PNTR_BYTE2_X fields holds the pointers for the MD_MASK & MD_OFFSET for each byte.

The MAPPING field holds a pointer to a register holding 3 fields: MAPPING_PNTR_BYTE0_X, MAPPING_PNTR_BYTE1_X, MAPPING_PNTR_BYTE2_X.

0 - no mapping i.e. 32 bits are sent as is.

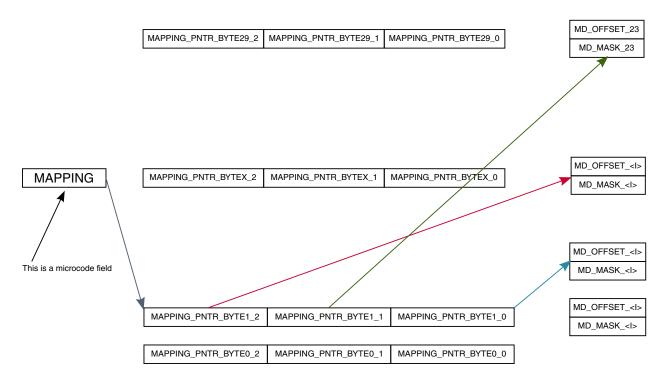
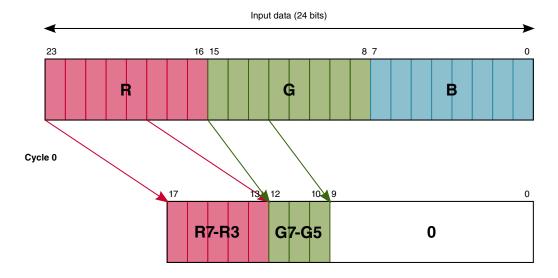
1 - points to MAPPING_PNTR_BYTE0_0, MAPPING_PNTR_BYTE1_0, MAPPING_PNTR_BYTE2_0

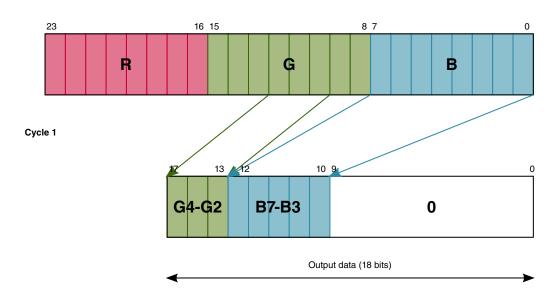
2 - points to MAPPING_PNTR_BYTE0_1, MAPPING_PNTR_BYTE1_1, MAPPING_PNTR_BYTE2_1

. . .

30 - points to MAPPING_PNTR_BYTE0_29, MAPPING_PNTR_BYTE1_29, MAPPING_PNTR_BYTE2_29

Chapter 37 Image Processing Unit (IPU)


Figure 37-32. Mapping scheme

The mapping rule written in each of the Registers defines two types of parameters for the specific byte component and display:

- 1. Offsets of the byte component MSB relative to the output word LSB. Because the offsets can change dynamically, they are defined separately for the display clock cycles zero, one and two.
- 2. Numbers of the display clock cycles at which every bit of the byte component should be valid on the display bus. There are eight such 2-bit numbers in the Register.

Figure 37-33 presents an example of programming data packing for one of displays. Cycle 0 and Cycle 1 in the diagram represent two separate atomic operations performed by the microcode template.

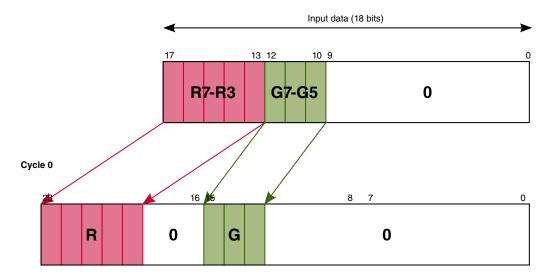
Cycle 0

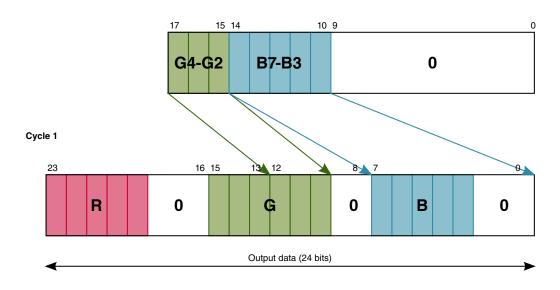
```
MD_OFFSET_[R] - 0x11; MD_MASK_[R] - 0xF8

MD_OFFSET_[G] - 0xC; MD_MASK_[G] - 0xE0

MD_OFFSET[B] = 0x0; MD_MASK_[B] = 0x0
```

Cycle 1


```
\begin{split} & MD\_OFFSET\_[R] = 0x0; MD\_MASK\_[R] = 0x0 \\ & MD\_OFFSET\_[G] = 0x14; MD\_MASK\_[G] = 0x1C \\ & MD\_OFFSET\_[B] = 0XE; MD\_MASK\_[B] = 0xF8 \end{split}
```


Figure 37-33. Example of Data Packing for Writing Data to the Display

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Chapter 37	' Image	Processing	Unit	(IPU
------------	---------	-------------------	------	------

The following figure presents an example of programming data packing for one of displays. Cycle 0 and Cycle1 in the diagram represent two separate atomic operations performed by the microcode template.

Cycle 0

MD_OFFSET_[R] - 0x11; MD_MASK_[R] - 0xF8

MD_OFFSET_[G] - 0xC; MD_MASK_[G] - 0xE0

MD_OFFSET[B] = 0x0; MD_MASK_[B] = 0x0

Cycle 1

MD_OFFSET_[R] = 0x0; MD_MASK_[R] = 0x0

MD_OFFSET_[G] = 0x14; MD_MASK_[G] = 0x1C

MD_OFFSET_[B] = 0XE; MD_MASK_[B] = 0xF8

Figure 37-34. Example of Data Unpacking for Reading Data from the Display

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

The same packing/unpacking registers are used for parallel and serial interface.

37.4.8 DMFC - Display Multi FIFO Controller

The following figure shows the block diagram for the DMFC block.

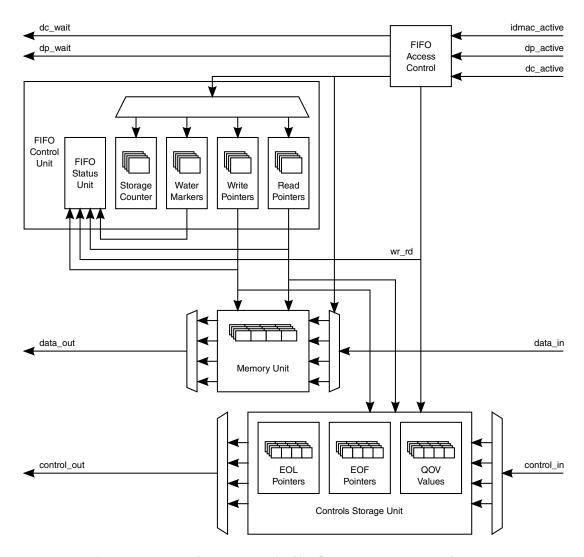


Figure 37-35. Display Multi Fifo Controller Block Diagram

The Display Multi Fifo Control manages Multi channels FIFOs. The DMFC serves the following clients:

- IDMAC both read and write
- DP read only
- DC both read and write

- IC write only
- AHB both read and write

The DP and the DC read channels are physically attached to an IDMAC or an IC channel. As the IC has only one output channel connected to the DMFC. When the input is coming from the IC it replaces a channel that was physically attached to the IDMAC. The DMFC uses a single physical memory that serves the DP and DC read channels. The AHB accesses to the DC and the DC's write channel (read from display) use a separate physical memory.

The DMFC's write FIFO is built of 1024 entries of 128-bits each.

37.4.8.1 DP and DC read channels

Each one of the DP and the DC read (read from memory) channels is physically attached to an IDMAC read channel. A portion of the physical memory is allocated for each channel. The DMFC arbitrates between channels according to a predefined priority.

The DMFC controls each of the FIFOs

- Assert a request any time there's available place on the FIFO.
- Make sure that there's available place on the FIFO to accept the coming data.
- Optionally assert a watermark indication to avoid starvation

37.4.8.1.1 FIFO allocation to channels

The physical memory is partitioned to 8 segments. For each channel the user has to define the start address at a segment's boundary using the DMFC_ST_ADDR parameter.

The size of the FIFO allocated to a channel is defined by the DMFC_FIFO_SIZE parameter. The user must allocate the FIFO and avoid overlapping between FIFOs.

The DMFC hold few special indications like EOF, EOL, EOFILD. The most important one is end of line (EOL). If the size of the FIFO is shorter than or equal to the IDMAC line's length (FW) than no special restrictions on the DMFC usage.

If the size of the FIFO is greater than the IDMAC line's length (FW) than the user has to be aware to the following restriction for each channel.

The DMFC has two operation modes which are distinguished by the wait4eot bit. For each channel the DMFC can store a maximum number of EOL indication. The maximum number of EOL indications of EOL is given in the table below.

Table 37-27. DMFC's number of EOL indications

IDMAC's Channel	Maximum lines on the FIFO
23	Up to 3 lines
27	Up to 2 lines
28	Up to 2 lines
Other	Up to 1 line

If the use case is that the number of EOL indications cannot exceed the maximum number of EOL indications than the user should have the wait4eot cleared.

If the use case is that the number of EOL indication can exceed the maximum number of EOL indications than the user should have the wait4eot set.

Having the wait4eot bit set has performance impact as the DMFC analyzes the data prior to sending it to the destination. In addition the DMFC cannot utilize the entire FIFO allocated to this channel.

The user need to specify the burst size of the IDMAC by setting the DMFC_BURST_SIZE field. This field must match the IDMAC settings. In case that the IDMAC's burst size is not a power-of-2 number, the value of this field should be rounded up to the nearest power-of-2 number. The burst size must not be greater than the FIFO's size.

37.4.8.1.2 Arbitration between channels

The arbitration between channels is fully hardware controlled. IDMAC has the highest priority. Then the synchronous channels. Then the asynchronous channels.

37.4.8.1.3 Watermark

The DMFC can generate a water mark signal for each channel. The watermark signal is sent to the IDMAC and dynamically increases the channels priority on the IDMAC's arbitration.

The watermark feature is enabled by the DMFC_WM_EN bit. The FIFO is partitioned to bursts. The user can set the watermark level at a burst boundary.

The watermark signal is set when the number of bursts on the FIFO + the number of already requested burst is smaller than the value specified on DMFC_WM_SET bit.

The watermark signal is cleared when the number of bursts on the FIFO + the number of already requested burst is greater than the value specified on DMFC_WM_CLR bit.

DMFC_WM_SET must be smaller than DMFC_WM_CLR.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.4.8.2 IC interface

One of the IDMAC channels can be replaced by a flow coming from the IC using the DMFC_IC_IN_PORT. The user has to provide the IC's setting to the DMFC by programming the DMFC_IC_FRAME_WIDTH_RD,

DMFC_IC_FRAME_HEIGHT_RD and DMFC_IC_FRAME_PPW_C fields. The burst size of the channel coming from the IC should always be programmed to 4 words.

37.4.8.3 DC write channel and AHB accesses

The second physical memory of the DMFC serves the

- IDMAC write channel (read from display)
- 2 AHB channels that can be read or write

The IDMAC write channel is programmed using the DMFC_RD_CHAN register in a similar way to the DC and DP read channels described above. The user has to provide the frame width and height for this channel and the pixel per word parameter.

The AHB channels are used from accesses via the AHB port to the display. The accesses are distributed between channels according to the MCU_T parameter.

37.4.9 DP - Display Processor

The display processor processes the image prior to sending it to the display. The main task performed by the DP is combining between 2 planes.

The DP has 2 input FIFOs holding the data of full plane and the partial plane. In addition the DP performs some image enhancement functions like gamma correction, Color space conversion including Gamut mapping.

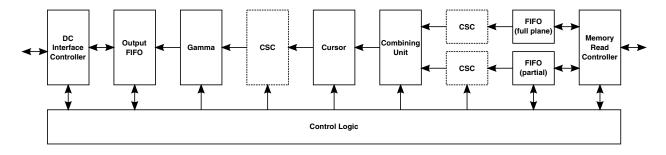


Figure 37-36. DP Micro architecture diagram

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.4.9.1 The DP programming model

The DP supports 3 flows. One sync flow and 2 Async flows. The DP holds 3 sets of registers. one set for each flow. Hence when referring to a register in this section the information is applicable to all the 3 sets. for example when referring to DP_COM_CONF, the information is applicable to DP_COM_CONF_SYNC, DP_COM_CONF_ASYNC0 and DP_COM_CONF_ASYNC1.

37.4.9.2 Displayed Planes

The following figure shows the planes displayed on a display.

There are full and partial planes. The partial plane's position is defined relatively to the upper left corner of the full plane (FGXP and FGYP parameters on the corresponding IPU_DP_FG_POS register). The size of the partial and full planes is defined on the corresponding IDMAC's channels' FW and FH parameters. The cursor position and parameters are set in the DP_CUR_POS register.

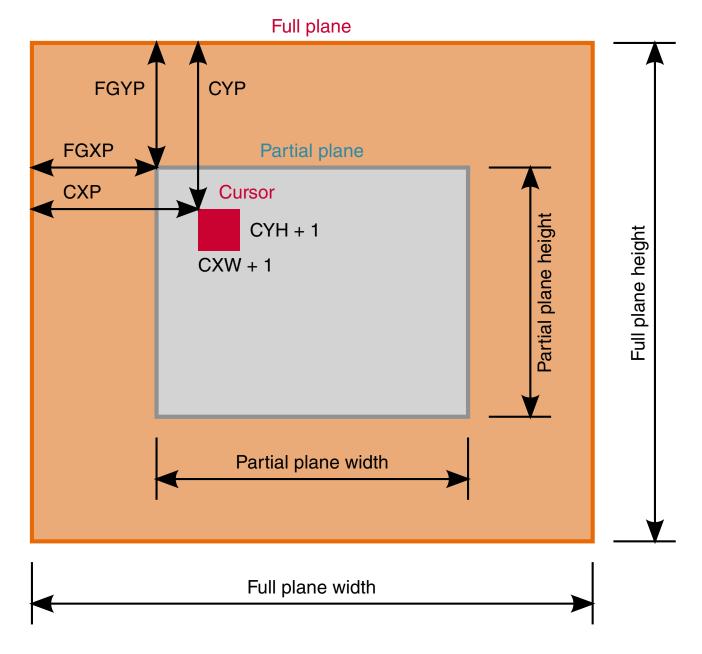


Figure 37-37. Displayed Planes

37.4.9.3 Combining Unit

The Combining Unit performs combining between the full and the partial planes. Each one of the planes may be graphics or video plane.

There are the following combining options:

- local alpha blending,
- global alpha blending,
- use of key color.
- order of the planes (full is presented over the partial plane and vice versa)

Combining mode is selected via the DP_COM_CONF Register. The combining equation is:

$$OP = BG*(1 - a) + FG*a$$

Where BG and FG are 2 input pixels; The DP_GWSEL bit defines if the BG is the pixel coming from the full plane or the partial plane.

a = (A + floor(A/128))/256 - an alpha value

A - a global or local transparency parameter.

The global A is written in the DP_GWAV field, the local A arrives together with the pixel.

A pixel becomes transparent when color keying is enabled and a pixel color matches a key color (independently on an alpha parameter). The color keying is defined on:DP_GWCKR, DP_GWCKG, DP_GWCKB

Combining takes 1 cycle per pixel. The Combining Unit outputs 24-bit words in the RGB/YUV format.

37.4.9.4 Cursor Generator

The Combining Unit output is passes through the Cursor Generator. The cursor's size and position are set via the DP_CUR_POS Register, a cursor color - via the DP_CUR_MAP Register. Different logic functions of combining the cursor with the image are supported as defined by the DP_COC field.

The cursor can be blinking. The blinking mechanism resides on the display controller sub-block. The blinking parameters are defined on the DC_BK_EN and DC_BKDVIV fields.

37.4.9.5 Color Space Conversion unit - CSC

The DP can get 2 input pixels from 2 different color spaces (YUV or RGB) and convert one of them to a common color space (YUV or RGB). In addition the 2 inputs can be of the same color space where the result is converted to another color space (YUV or RGB).

The DP has a single CSC unit that can be placed on one of 3 locations:

- At the output of one of the 2 input FIFOs
- At the output of the cursor generator.

Placing is done according to the DP_CSC_DEF field.

The color conversion implements a 3x3 matrix multiplication between the full RGB pixels and the color conversion constants, in order to obtain a YCC format image.

The conversion formula is:

$$x \rightarrow Clip(Round(S* 2^E)), S=Ax+B$$

where

A is a 3x3-dimensional matrix of weights, each a 10-bit signed number with 8 fractional digits

B is a 3-dimensional vector of offsets, each a 14-bit signed number with 2 fractional digits

S is a 3 dimensional vector of sums, each a 16-bit signed number with 4 fractional digits S=Ax+B

E is an exponent, assuming one of the following values: -1,0,1,2 (allowing weights up to 8). The CSC_S parameters are encoded by 2 bits, please refer to the CSC_S parameter description.

$$E = [CSC_S0 CSC_S1 CSC_S2]$$

A more explicit formula:

$$S[i] = (sum(A[i][j]*In[j]) >> 4) + (B[i] << 2) + (1 << (3-E[i]))$$

 $Out[i] = Clip(S[i] >> 4-E[i])$

Where Clip() performs clipping to the range 0..255 (either per-component clipping or more sophisticated clipping that preserves the hue of the pixel)

37.4.9.5.1 Gamut mapping

When the color transformation produces colors outside the allowed range, they must be mapped back. This is called gamut mapping. The DP supports 2 clipping algorithms. (controlled by GAMUT_SAT_EN bit)

Hue preserving clipping algorithm is suitable only for RGB components. For YUV components, the per-component clipping algorithm is used.

Per component Clipping

This mapping is performed by clipping each of the components independently to its allowed range of values (the final value being uint8):

- •Y: to 0..255 or 16..235 according to the SAT_MODE bit
- •U/V: to 0.255 or 16..240 according to the SAT_MODE bit

Hue Preserving Clipping

Hue Preserving clipping is done in the following way

•First stage - eliminating negative values

```
N = min(R,G,B)
if (N<0) X-> X-N, where X=R,G,B
```

- •At this stage, all components are non-negative and the MSB's beyond d=11 bits are ignored (assumed 0).
- •Second stage eliminating large values

```
M = max(R,G,B) (d-bit integer) if (M>255)
```

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

```
M' = M >> (m-7), where m=8..d-1 is the index of the most-significant non-zero bit in M D' = Ceil(256*255/M') = 256..510 (since M' = 128..255) Ceil(x) = the smallest integer which is not smaller than x Implemented by a hard-wired 128x9-bit LUT X -> min(255, (X*D')>>(m+1)), where X=R,G,B (8x9 multiplier) else X -> X
```

37.4.9.6 Gamma correction

The DP includes a gamma correction function. It is approximated by the piece-wise polynomial:

```
gammar = GAMMA\_C < i > + ((R[4:0] * GAMMA\_S < i >) >> 4 + 1) >> 1
```

Where R is the input red component, that's a 9 bit input composed pixel_in*2+pixel_in[7].

Single approximation slope is used for Gamma Correction of red, green and blue color components. However the Gamma Correction block instantiated three times since processing for color components should be done in parallel. The gamma transform is also available for changing the contrast of the luminance component only.

The required Gamma correction slope for a specific display should by provided by the display manufacture. This information can be provided in various forms, as graph or formula. The gamma correction input pixel level (Gin) should be normalized to a maximum of 383. The gamma correction output pixel level (Gout) should be normalized to a maximum of 255. Then a following data should be collected:

Gin Gout 0 Gout0 2 Gout1 4 Gout2 8 Gout3 16 Gout4 32 Gout5 64 Gout6 96 Gout7 128 Gout8 160 Gout9 192 Gout10 224 Gout11 256 Gout12

Table 37-28. Gamma correction values

Table continues on the next page...

Table 37-28. Gamma correction values (continued)

Gin	Gout
288	Gout13
320	Gout14
352	Gout15

Based on the table above the values of DP_GAMMA_S_SYNC<i> and DP_GAMMA_C_SYNC<i> fields for gamma correction control registers are calculated as following:

Table 37-29. Gamma correction values

i	DP_GAMMA_C_SYNC <i></i>	DP_GAMMA_S_SYNC <i></i>
0	Gout0	16*(Gout1-Gout0)
1	2*Gout1-Gout2	16*(Gout2-Gout1)
2	2*Gout2-Gout3	8*(Gout3-Gout2)
3	2*Gout3-Gout4	4*(Gout4-Gout3)
4	2*Gout4-Gout5	2*(Gout5-Gout4)
5	Gout5	Gout6-Gout5
6	Gout6	Gout7-Gout6
7	Gout7	Gout8-Gout7
8	Gout8	Gout9-Gout8
9	Gout9	Gout10-Gout9
10	Gout10	Gout11-Gout10
11	Gout11	Gout12-Gout11
12	Gout12	Gout13-Gout12
13	Gout13	Gout14-Gout13
14	Gout14	Gout15-Gout14
15	Gout15	255-Gout15

37.4.9.7 DC interface

The DC interface unit performs 2 tasks.

- Starts the flow via the DP by getting a request from the DC and once the DP is ready send the new frame request to the IDMAC.
- Control the DP's output FIFO and send the data to the DC using an handshake mechanism.

37.4.9.8 DP's flows management

The DP can manage up to 3 flows: one synchronous flow and 2 asynchronous flows. However the DP can handle only one flow simultaneously. The DP has an automatic mechanism to control and switch between flows.

The DP's highest priority flow is the sync flow. An async flow can be executed during the blanking interval of the sync flow. An async flow can be stopped in order to serve the sync flow. The sync flow cannot be broken. The DP holds 3 sets of registers, one set for each flow. The registers are located in the SRM memory. According to the flow that needs to be executed the correct set of registers is loaded to the DP.

The figure below illustrates the flow management done by the DP.

A flow starts when a request from the DC arrives and the internal pipe is empty. For sync flows, the full frame NF (new frame) indication arrives immediately. In case that a partial frame is also used the NF indication will be sent one row before the row that the partial plane is actually positioned.

In case of ASYNC flow the DP first check if the previous async flow was broken. If yes, the DP restores the last settings of the previous flow. If this is a new async flow the DP will first reload the flow's parameters from the SRM. In case that a partial frame is also used the NF indication will be sent one row before the row that the partial plane is actually positioned.

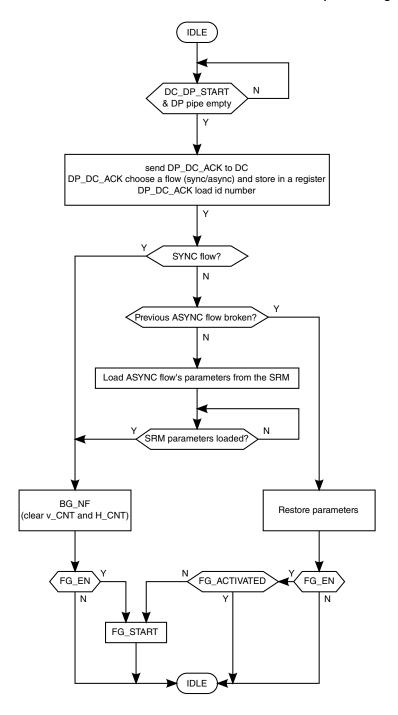


Figure 37-38. DP flow management chart

37.4.9.9 **DP** debug unit

The DP supports synchronous and asynchronous flows using the same hardware. The asynchronous flow can be broken by the synchronous flow. The DP's debug unit provides the ability to know on which row exactly the async flow has been broken. This is done by providing an interrupt (with DP_DEBUG_CNT register) and providing row status flags (on DP_DEBUG_STAT register).

As the async flow can broken multiple times within a specific frame The user can control the breaking point the issues the debug event by programming BRAKE_CNT field.

37.4.9.10 Restriction

When both full and partial planes are processed, the full plane's minimal frame width is 13 pixels.

The Minimum frame height supported by the DP is 2 lines.

37.4.10 Display Interface (DI)

The DI provides arbitrates access to up to three displays with time multiplexing. It converts a data from the DC or the ARM platform (low level access for serial interface only) to a format suitable for the specific display interface.

The DI generates display clocks and other display control signals with programmable timings. The DI outputs data to or inputs from parallel and/or serial interfaces.

This block generates all the control signals sent to the display. The DC sends to the DI; the data for the display and a set of control signals. The controls coming from the DC are used in order to generate the control signals sent to the display. One exception is serial low level access (LLA), where the DC is bypassed and the data is coming directly from the ARM platform. The figure below is the DI's block diagram.

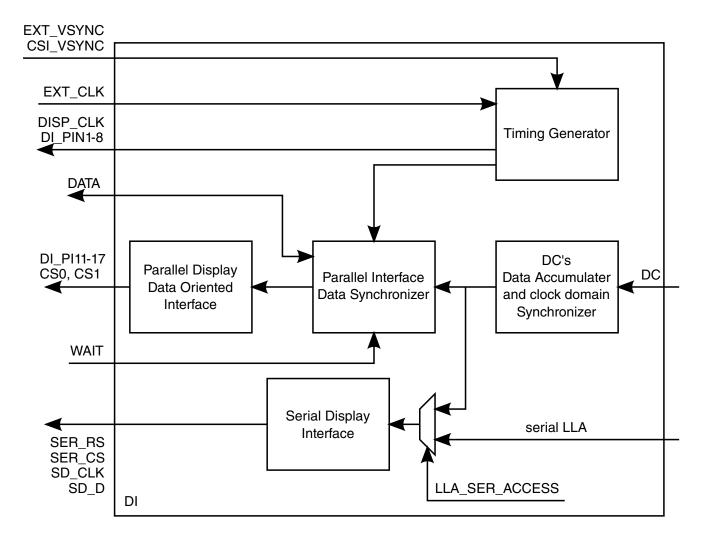


Figure 37-39. DI's block diagram

NOTE

The Serial Display Interface is not supported on this product.

The display interface includes 2 groups of control signals:

- Time oriented signals These type of signals are generated according to the DI's internal timers. These are free running signals that change their state according to a pre-defined waveform. For example VSYNC, HSYNC, display's clock (pixel clock) etc.
- Data oriented signals The DC may add markers to data sent to the DI. These markers are used to indicate a specific attribute of the data (for example: end-of-line, end-of-frame, chip-select etc.). The marker coming from the DC triggers a specific waveform of one or more signals on the display's interface. The specific waveform will be seen on the bus along with the associated data. The markers may be synced to

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

a time oriented signal. For example: attach the end-of-frame signal to the next VSYNC.

37.4.10.1 DC interface, data accumulator and clock domain synchronizer

The data accumulator is the DI's input buffer. It receives the data from the DC along with a set of control signals. The data accumulator receives the data from the DC's clock domain and synchronize it to the DI's clock domain.

37.4.10.2 Parallel interface data synchronizer and data oriented interface

The data accumulated in the DI's input buffer will be sent to the display according to the DI's internal events. Each event is generated by a counter. A tag is attached to each data by the DC's microcode using the SYNC field in the DC's microcode. The tag selects the event that the data will be synced to.

Once the corresponding event is generated, the data will be sent to the display. A data can be a pixel or a component (part of a pixel). The data synchronization occurs separately for each component. For asynchronous displays the tag will be equal to 0 i.e. the data is not synchronized to any event. The data will be sent out of the buffer immediately.

37.4.10.3 Timing generator

The timing generator is used for generating the waveforms' of each pin of the display's interface.

The timing generator is built of 10 counters. One counter functions as a time base This timer is called the BASE TIMER (BS). The other 9 counters are used in order to generate the control signals' waveforms. The last counter (counter #9) is special see Counter number 9.

The DI clock can be derived from IPU's clock (HSP_CLK) or from an external source (via the DIn_DISP_CLK - ipp_di_#_ext_clk pin). The clock's source is statically selected by configuring the DI#_CLK_EXT bit.

Figure 37-41 illustrates the main parameters of a waveform. A waveform's segment is built of 5 parameters. Each segment can be has 2 phase "ACTIVE PHASE" and "OFFSET PHASE".

• TIMEBASE - this is the base timer (fundamental timebase); all the other parameters are derived from this timer. The timebase is generated by counting DI clock cycles. The amount of cycles is defined according to DI#_DISP_CLK_PERIOD. This field defines the Display interface clock period, This parameter contains an integer part (bits 11:4) and a fractional part (bits 3:0). It defines a fractional division ratio of the Di's source clock for generation of the display's interface clock. The timebase is generated from edge aligned pulses of the DI clock. The user can delay the timebase starting point by defining an offset to the timebase. This is done by configuring the DI#_DISP_CLK_OFFSET field. The offset is calculated from the point where the DI is enabled to the point where the timebase starts ticking. The display clock waveform is generated between 2 edges of the timebase. The waveform is defined according to the DI#_DISP_CLK_UP and DI#_DISP_CLK_DOWN. Each pin has a specific timebase that is derived from the fundamental timebase. The following figure illustrates the relations between the TIMEBASE and the DI's clock

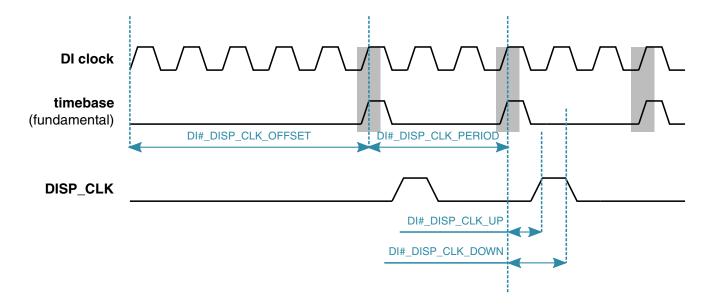


Figure 37-40. Timebase, DI's clock and display's clock relations

- OFFSET this parameter defines when the length of the "OFFSET PHASE" it is defined by di#_offset_value_<N> field, where N is the counter's index.
- STEP This parameter defines the length of the "ACTIVE PHASE"; it is defined by the di#_step_repeat_<N> field, where N is the counter's index. If the counter is in auto reload mode (di#_cnt_auto_reload_<N> bit is set) then the counter will be automatically reloaded forever. The value of di#_step_repeat_<N> is ignored in that case.

- RUN The "ACTIVE PHASE" is partitioned to several "RUN sections"; this parameter defines the length of the "RUN section"; it is defined by the di#_run_value_m1_<N> field, where N is the counter's index.
- UP Each "RUN section" contains the waveform of a single pulse. This parameter defines the offset from the beginning of the "RUN section" to the assertion of the signal; it is defined by the di#_cnt_up_<N> field, where N is the counter's index.
- DOWN This parameter defines the offset from the beginning of the "RUN section" to the negation of the signal; it is defined by the di#_cnt_down_<N> field, where N is the counter's index. In case where DOWN < UP the waveform will have a 50% duty cycle.

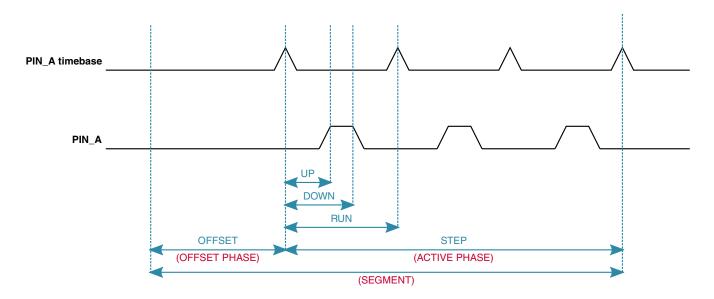


Figure 37-41. DI waveform's main parameters

37.4.10.3.1 Waveform concatenation

The DI provides the ability to derive the waveform from the fundamental timebase or from another PIN. In that case, one pin's waveform is used as another pin's timebase.

The following figure provides an example. PIN_A and PIN_C are derived from the fundamental timebase. However, PIN_B is derived from PIN_A's wavefore. The trigger is selected by DI#_RUN_RESOLUTION_<N>, where <N> is the index of the counter. A counter can be triggered by a counter with lowered index. For example: counter #5 can be triggered by counter #3 but can't be triggered by counter #7.

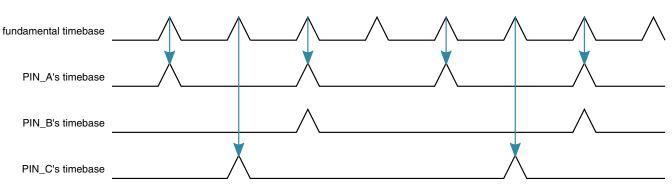


Figure 37-42. DI pins - Waveform's time bases concatenation

37.4.10.3.2 The basic counter

The DI has 9 counters. A counter is built of 3 units: timebase generator, waveform generator and polarity generator.

Figure 37-43 illustrates the counter's structure.

The timebase generator

The timebase generator gets 3 triggers. Clear, offset and run trigger. The Clear is the trigger that resets the counter. It is selected by programming the DI# CNT_CLR_SEL_<N>.

The Offset trigger is the trigger used for counting the OFFSET_PHASE. The user can select the source of the trigger by programming the DI#_OFFSET_RESOLUTION_<N>. The offset's value is defined by programming the DI#_OFFSET_VALUE_<N>

The RUN trigger is the trigger used for counting the RUN period. The user can select the source of the trigger by programming the DI#_RUN_RESOLUTION_<N>. The RUN's value is defined by programming the DI#_RUN_VALUE_<N>

The timebase generator counts according to the DI_CLK or according to another counter's output. In order to use a source different than DI_CLK, the user should set the POLARITY_GEN_EN bits to 01.

Waveform generator

This unit generates the waveform. It gets the values of RUN, UP, DOWN and STEP and build the waveform accordingly. The waveform is counted according to the signal generated by the timebase generator.

Polarity generator

The waveform's polarity is controlled by 2 units. The static polarity is changed according to the POLARITY_<#> bit of each pin. This bit defines if the waveform of the pin is active high or active low.

The other unit controlling the polarity is the polarity generator. This unit is enabled by setting the POLARITY_GEN_EN[1] to 1. The polarity generator has 2 modes: "toggle mode" and "normal polarity mode". The mode is defined according to POLARITY_GEN_EN[0].

- Normal polarity mode In this mode the polarity is changed according to 2 other counters. The counter selected by POLARITY_TRIGGER_SEL define the sampling point. The counter selected by POLARITY_CLR_SEL defines the polarity value. At the sampling point the polarity value is defined. The current polarity value defines the current polarity of the waveform.
- Toggle mode In this mode, the output of the timebase generator's output causes the
 polarity to toggle. Any tick of the timebase generator inverts the polarity. When this
 mode is enabled the ticks generated by the counter selected by
 POLARITY_TRIGGER_SEL initialize the polarity generator and the timebase
 generator causes the polarity to toggle.

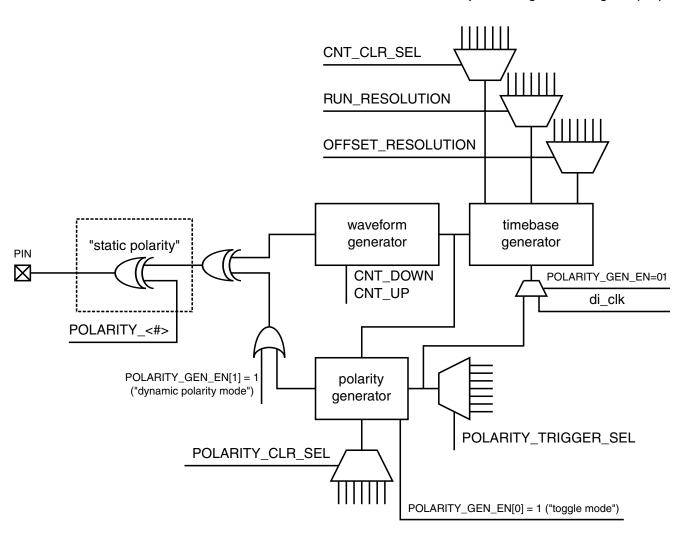


Figure 37-43. DI's counter's structure

The following figure provides an example for waveform generation using different trigger sources. The waveform is generated for PIN_D. PIN_D counter is cleared by the PIN_C's timebase. The offset period is calculated by counting cycles of PIN_B's timebase. The RUN period is calculated by counting cycles of PIN_A's timebase. The UP and DOWN periods of the waveform are calculated by counting cycles of PIN_D's timebase.

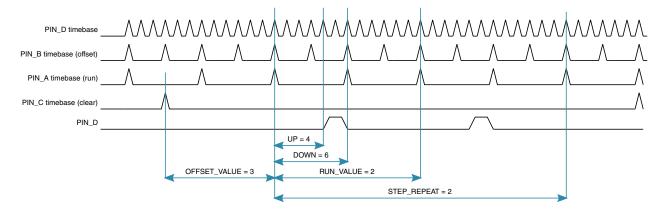


Figure 37-44. Clear, offset and run triggers and values - Example

37.4.10.3.3 Counter number 9

The last counter (counter #9) is an auxiliary counter and it is not used for generating a waveform for a specific pin. It can be used in order to attach another waveform to an existing one.

The user define the waveform for a specific pin (main pin). The user defines the auxiliary waveform using counter #9. The 2 waveforms are logically ORed. The combined waveform will be routed to the main pin. The main waveform that this counter is attached to is defined according to DI#_GENTIME_SEL_9.

The tag of counter #9 can be generated from counter #9 or from the main waveform. This is selected according to the DI#_TAG_SEL_9.

37.4.10.3.4 DI's active window

The DI provides an alternative way to define the synchronous display setting by using an active window and thus, needs to program less counters. The synchronous display's active window is a rectangle on the display where IPU sends data. It is set by programming the parameters defined on DI#_AW0 and DI#_AW1 registers.

The following figure illustrates the different parameters defining the active window. The display's vertical and horizontal position are defined according to counters. The DI#_AW_HCOUNT_SEL selects the counter which the horizontal position is calculated according to. DI#_AW_VCOUNT_SEL selects the counter which the vertical position is calculated according to. The Active data is sent according to a trigger. DI#_AW_TRIG_SEL selects the counter which calculates this trigger. This trigger usually functions as a data enable signal.

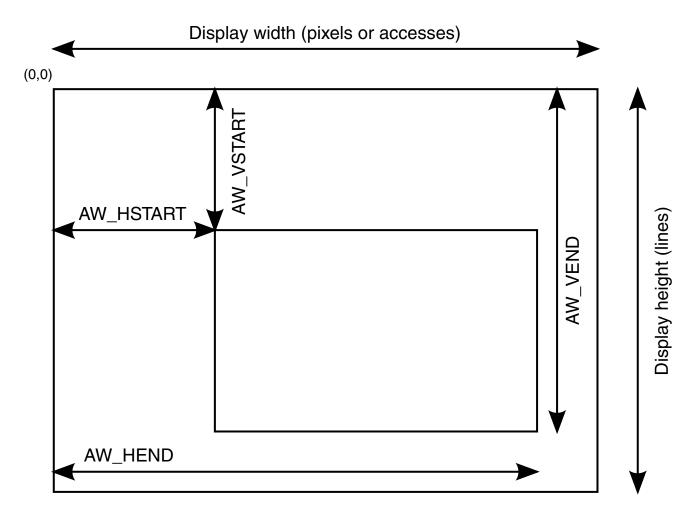


Figure 37-45. DI's Active Window

37.4.10.4 Waveform settings for asynchronous interface pins

The DI provides 8 signals that are used for asynchronous interface. These signals are PIN11 through PIN17 (ipp_di_#_pin_11 through ipp_di_0_pin_17) and the CS (ipp_di_0_do_dispb_d0_cs).

The DI holds 12 wave set quartets. Each quartet includes 4 registers (DI#_DW_SET<j>_<i>). Each DW_SET register holds the UP and DOWN values of the waveform. The DW_SET register is selected in the following way. The WAVEFORM field in the DC template is a pointer that points to one of the 12 quartets. In addition the WAVEFORM field points to one of 12 DI#_DW_GEN_<i> registers. The DI#_DW_GEN_<i> holds 9 pointers. The pointers are 2 bits field that points to one of the registers from the DI#_DW_SET<j>_<i> quartet. Each one of the 8 pointers in the

DI#_DW_GEN_<i> registers is related to a specific pin of the DI's asynchronous interface. The following figure illustrates the relations between the registers controlling the asynchronous interface's signals.

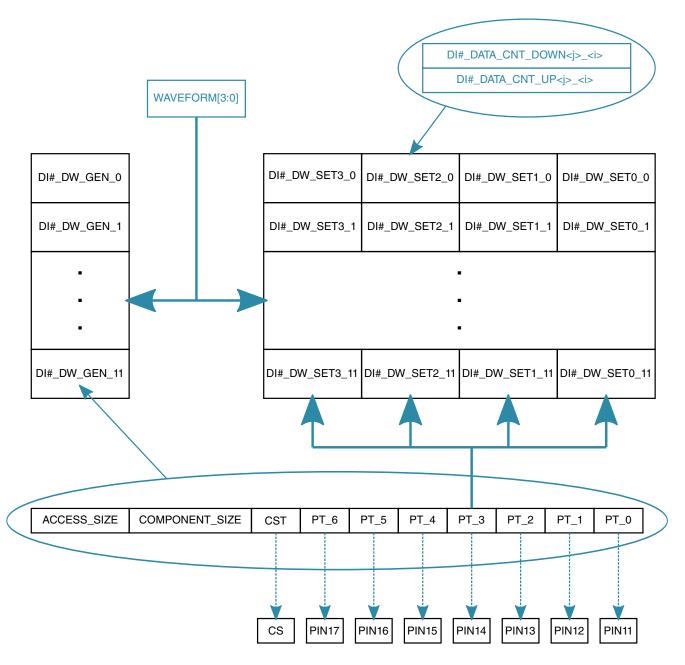


Figure 37-46. Waveform settings for asynchronous interface pins - parallel interface

The DI#_DW_GEN_<i> register includes the data's waveform settings as well. ACCESS_SIZE defines the amount of DI clock cycles that a pixel is valid on the bus. When generic data is sent, this field defines the amount of cycles that the generic data is

valid on the bus. A pixel may be broken into few components. The COMPONNENT_SIZE field defines the amount of cycles that each component is valid on the bus.

The COMPONNENT_SIZE is always smaller or equal to ACCESS_SIZE. For synchronous interface COMPONNENT_SIZE is always equal to ACCESS_SIZE. In case that there's a need for some gap between one type of accesses to another having the COMPONNENT_SIZE smaller than ACCESS_SIZE can be useful (for example read after write accesses that require some gap between them).

37.4.10.5 Low Level Access - LLA

LLA is a ARM platform direct access to the display. For parallel displays the DI's behavior for LLA is the same as any other access to a parallel display. For serial displays the DI allows a DI arbitration bypass. This is done if the DI#_LLA_SER_ACCESS bit is set.

In that case there is a direct access from the DMFC to the DI which bypasses the DC allowing simultaneous access to both serial and parallel interfaces. When DI#_LLA_SER_ACCESS bit is set, the user must not do any other kind of accesses to the serial interface except LLA. When DI#_LLA_SER_ACCESS bit is set the corresponding DI#_WAIT4SERIAL must be clear.

37.4.10.6 Using a mask channel

The IPU is able to provide the windowing function on displays that have data enable control. This is achieved by masking of some screen regions according to a 1-bit/pixel mask read from the memory via IDMAC through channel #44.

When the mask value is zero, the pixel is not displayed. This feature can be used for dual-port smart displays.

37.4.11 Video De Interlacing or Combining Block (VDIC)

The Video De-Interlacer as well as the Combiner have two operation modes:

- De-interlacing: converts an interlaced video stream to progressive order.
- Combining: combines two video/graphics planes and a background color.

The Video De-interlace block (VDIC) deinterlaces standard interlaced video to produce progressive video, that is used for upsizing to HD formats or for display on progressive displays. For VDIC operation three fields are necessary F(n-1),F(n),F(n+1). The F(n-1) field arrived through CSI interface in real time mode or through channel 1 and then stored in FIFO1. The F(n) arrived through channel 2. At least three lines of F(n) are stored in Line Store memory. The F(n+1) arrived through channel 3 and stored in FIFO3. FIFO controllers read data from FIFOs and then data aligned in pixels buffers. From the buffers the data arrived to Line Padding Controller (LPC). The LPC padding missing line at the beginning and end of the frame. The DeInterlacing sub-block (DI) perform the processing. Then data send to IC sub-block for processing or for transferring to external memory.

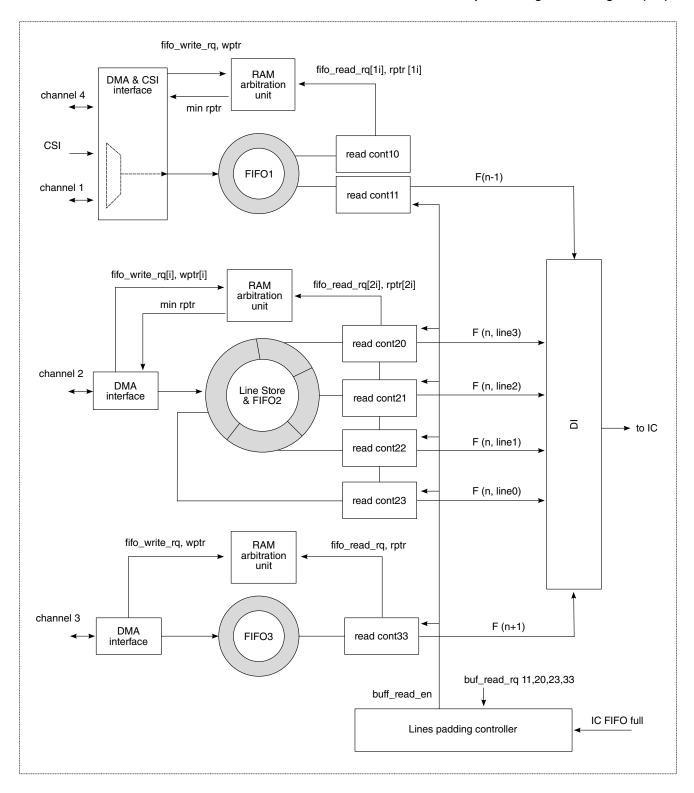


Figure 37-47. VDIC Block Diagram

37.4.11.1 VDIC Features

Key features of the VDIC block include:

- Deintarlacing
 - maximum horizontal resolution 968 pixels
 - maximum pixel rate 75100MP/s
 - Support YUV422 and YUV420 formats
- CSI FIFO mode
- Combining

37.4.11.2 De interlacer (DI) sub-block

The block diagram of the DI block is shown in figure below.

Pipelining is inserted at all stages, so that the design may run at a fast clock speed, if needed.

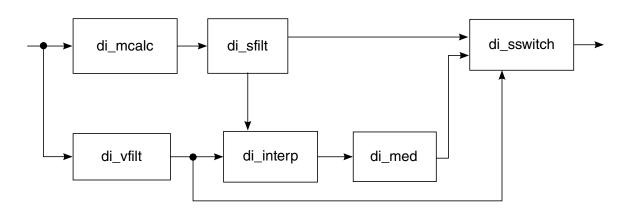


Figure 37-48. DI block diagram

37.4.11.2.1 Vertical Filter Block (di_vfilt)

The di_vfilt block performs spatial vertical filtering of pixels.

It is a four tap vertical filter:

$$vfilt_out = (-3.0*pix1 + 19.0*pix2 + 19.0*pix3 - 3.0*pix4)/32.0$$

Where pix1, pix2, pix3, pix4 are four pixels in same horizontal location on four consecutive lines of a field.

vfilt_out is pixel being predicted (between pix2 and pix3)

37.4.11.2.2 Motion Calculator Block (di_mcalc)

The meale block estimates the amount of motion for any given pixel by looking at pixel values in current, previous and next fields.

The generic formula used to calculate the estimated motion is:

 $m = SAT(Ks*(le-w|/(le-w|+ln-s|+SPA_DETAIL)))$

- Where, n is the pixel above the pixel being predicted
- s is the pixel below the pixel being predicted
- e is the pixel in previous field at same spatial location as the pixel being predicted
- w is the pixel in next field at same spatial location as the pixel being predicted
- m is motion estimation for the pixel being predicted (range from 0 to 1)
- Ks is slope control and decides how quickly the algorithm switches from no motion (m=0) to full motion (m=1)
- SPA_DETAIL is a constant (50) that is added to ln-sl.
- SAT() is saturate at 1 function

The motion calculator block is simplified in a certain respect, by removing the need for a divider, while providing a degree of flexibility. The main motivators for this are the following observations:

- 1. the above equation defines a set of curves based on the value of ln-sl, but the curves are fairly closely spaced, so that using a granularity of 8 in ln-sl to define specific curves to use gives pretty much the same quality of picture as using all of the curves; and once ln-sl reaches about 120, the effect of an increased ln-sl value is hard to observe
- 2. once le-wl gets to about 15, the motion is usually saturated to a value of 1

Based on the above observations, the motion calculator is now implemented with the use of two "ROM"s, using the 4 LSBs of le-wl and bits 6:3 of ln-sl.

The motion calculator has 3 modes of operation. These modes are defined by the VDI_MOT_SEL field. In case that the user has an information about the motion (For example SW analyzing motion vectors provided by a video decoder) he can select one of the modes listed below. Changing the value of the VDI_MOT_SEL has an affect only on the next frame.

• When VDI_MOT_SEL==2'b01, m_calc is 0 (no motion - use weave)

- When VDI_MOT_SEL==2'b10, We assume high motion and use min(15,delta_t).
- When VDI_MOT_SEL==2'b00, We assume low motion and use sat([0,15],delta_t-8) (delta_t-8 is signed operation).

37.4.11.2.3 Spatial Motion Filter (di_sfilt)

The di_sfilt block spreads motion signal over five pixels:

Mspread = MAX(m3, (0.5*m1 + m2 + m3 + m4 + 0.5*m5)/4.0)

- Where, m3 is motion estimate for current pixel
- m2 is motion estimate for previous pixel
- m4 is motion estimate for next pixel
- m1 is motion estimate for pixel before previous pixel
- m5 is motion estimate for pixel after next pixel

37.4.11.2.4 Interpolated Pixel Calculator Block (di_interp)

The di_interp block uses the motion estimated by the di_sfilt block and computes an interpolated pixel that is weighted sum of the surrounding four pixels (n, s, e, w).

The block performs the following calculations:

Where, i is the interpolated pixel

n, s, e, w are surrounding pixels as explained earlier

37.4.11.2.5 Median Filter Block (di_med)

The di_med block performs a 5-point median of n, s, e, w and i pixels.

It should be noted that the median required here is not a true 5-point, but can be implemented more efficiently as a 3-point median:

```
med = MEDIAN(min(max(n,s),max(e,w)), max(min(n,s),min(e,w)), i)
```

37.4.11.2.6 Soft Switch Block (di_sswitch)

The final output of the deinterlacer is a blend of the median value and the vertical filter, assuming that the pixel data n,s are uncorrelated with the pixel data e,w. By uncorrelated, we mean $(\max(n,s) < \min(e,w))$ or $(\min(n,s) > \max(e,w))$.

```
if (Mspread <= 0.5 || not(F)) {
pix_out = med
} else { /* Mspread > 0.5 */
pix_out = (1-2*(Mspread-0.5))*med + 2*(Mspread-0.5)*vfilt_out
}
```

37.4.11.3 DMA only Mode

In DMA only mode the data is coming from IDMAC only.

37.4.11.4 Real Time Mode

In Real Time Mode the F(n-1) are coming from CSI. The CSI write to FIFO1. The DI sub-block read F(n-1) from processing. In addition IDMAC read the field from FIFO1 and store in external memory. Then stored frames are used as F(n) and F(n+1).

37.4.11.5 CSI only Mode

In CSI only mode VDIC do not perform any processing and used as FIFO only. The data arrived from CSI written to FIFO1. The IDMAC read data from the FIFO1. The FIFO3 and Line store memory are not used. The ID sub-blocks are turned OFF. The CSI only mode can be used as alternative to SMFC, when appropriate.

37.4.11.6 Using Combining in the VDIC

As an alternate function to the de interacing function, the VDIC can perform combining of two planes.

- Both planes have to be at the same color space.
- Overlaying of a single plane over a unified background is supported.
- The planes can be at a different sizes one plane can be smaller than the other.
- Combining requires a single cycle per output pixel.
- Alpha blending (global or local) is supported.
- Color keying is supported.

The plane's location and size is programmable as shown in the following figure.

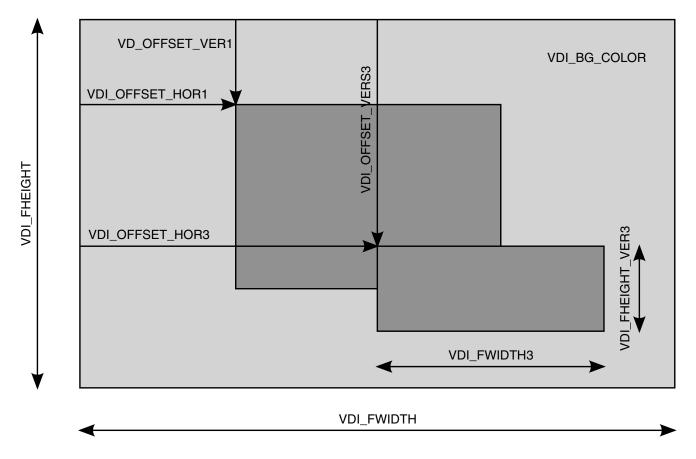


Figure 37-49. The relations between planes of the combining unit

When local alpha is used it should be arrived through channel of the VDIC.

The combining equation is:

$$OP = BG*(1 - alpha) + FG*alpha$$

Where "OP" is output pixel, "FG" is input pixel of foreground plan arrived thought channel3, BG is input pixel of background plan arrived thought channel1, "alpha" is global or local transparency.

37.4.11.7 VDIC Restrictions

- Maximum output pixel rate is 100 MP/s.
- The output pixel format (YUV422 or YUV420) are equal to input format.
- The VDIC can perform combining or de interlacing. It cannnot perform both functions at the same time.

37.4.12 Control Module (CM)

37.4.12.1 Block Diagram

The CM Block Diagram is shown in the figure below.

Figure 37-50. CM Block Diagram

The CM consists of the Frame Synchronization Unit (FSU), the Interrupt Generator (IG), the General Configuration Registers (GCR), the Clock and Reset Control Unit (CRCU) and the Shadow Registers Block (SRM).

37.4.12.2 Frame Synchronization Unit

This section details the frame synchronization unit.

37.4.12.2.1 General Description

The FSU provides synchronization of tasks performed by different IPU sub-blocks and ARM platform tasks. This allows to build complex processing flows which are performed automatically (without ARM platform involvement in synchronization of the IPU's tasks).

The FSU supports double buffering of image frames stored in the external memory and allows chaining IPU processing flows in automatic mode.

37.4.12.2.2 Frame Synchronization Flow

1. Initialization

The ARM platform initializes all the parameters for a task by writing to the GCR and to the parameters memories of each IPU sub-blocks. The initialization must occur before the ARM platform enables the task.

2. Enabling

After the initialization step has been completed, the ARM platform enables the task by setting its enable bit in an appropriate register.

3. Triggering

After the task is enabled, the FSU waits for triggering signal. The triggering signals is a combination of the enable bit and the buffer ready signal which can be driven by the ARM platform (DMA_CH_BUF<0/1>_RDY_<#>) and/or by the preceding task (IDMAC_EOF_# or Frame Complete signal from the DC).

The trigger causes the FSU to invoke the relevant unit to start by assertion of the NEW_FRM_RDY signal. In some cases triggering occurs at the enabling step (when the enable bit is the trigger for the task).

4. Operating

The triggering step cause the task to move to active mode, this is the operating step. In this step, the FSU monitors the synchronization signals from ARM platform, IDMAC and the corresponding processing units, and controls the units operation. The FSU also controls the IDMAC buffer toggling when double buffer page flipping is used.

The FSU checks at end of each frame if the next frame can be served. If the answer is yes, the FSU stays in active mode with re-sending the <TASK>_NEW_FRM_RDY signal and updating the relevant flags (e.g. DMA<BL>_<#>_CUR_BUF and DMA<BL>_<#>_BUF_RDY). If the answer is no, the FSU moves to pause mode and pauses the task waiting until the next frame can be served.

5. Disabling

When the task is disabled by the ARM platform (by negating the enable bit), it moves back to non-active mode.

37.4.12.2.3 FSU's fundamentals

Trigger source select

A flow is triggered by a trigger. The trigger may be asserted manually by the ARM platform or may be a result of the completion of the preceding task. Trigger's source select choose the source of the trigger. The trigger means that the data is ready to be processed by the sub-blocks. The trigger source select is defined by the corresponding SRC_SEL bits of the block or task.

Trigger destination select

A block or task that process data needs to know that the following task in the chain is ready to receive the processed data. The user needs to specify what is the destination of the processed data. This is done by setting the corresponding DEST_SEL bits of the block or task.

Double buffering

The IPU supports double buffering in the system's memory. When a flow is processed frame by frame the first frame will be read from one location (BUF0) in the memory, the next frame will be read from another location in the memory (BUF1). The location in the memory of the buffers is defined by the EBA0 and EBA1 parameters of the corresponding channel in the CPMEM. The IDMAC use the correct buffer according to the DMA_CH_CUR_BUF_# signal. The FSU automatically toggles the DMA_CH_CUR_BUF_# to point on the correct buffer to be used by the channel. In order to work in double buffer mode the corresponding DMA_CH_DB_MODE_SEL_# needs to be set.

Alternative flow

Some of the IPU sub-blocks can handle 2 flows via them one is the main flow and the other is the alt flow. In order to support an alternate flow via the same sub-block an alternative configuration should be used by the sub-block. This includes

- Alternate registers including an alternative sub-block's setup this is handled by the SRM
- Alternate IDMAC settings: parameters in the CPMEM, separate alpha
- Alternate SRC_SEL as the source of the trigger may come from a different function.
- Alternate FSU settings (CUR_BUF, BUF_RDY, DB_MODE_SEL)
- Some of the display sub-blocks alternate settings are handled by programming an alternative set of registers.

The FSU handles the switch to the alternate flow, it controls the update of the alternate configuration and send the appropriate signals to other sub-blocks in the IPU indicating about a need to switch to the alternate configuration.

Once a frame is completed there is a chance that there are 2 buffers ready. One is the next buffer of the current flow and the other is the a buffer in an alternate flow. The FSU will automatically select between the next buffer to handle in a round-robin fashion.

IPU task chaining - Single flow

The diagram below illustrates task chaining in the In this example a single flow is handled

The Frames are coming from the same camera sub-block. The frames are handled frame by Frame. The first frame arriving Frame0 is stored in BUF0 of the "INPUT BUFFER". Once the Frame0 is ready in BUF0, the processing sub-block is triggered and data is read from BUF0 to the processing sub-block. In the meantime, Frame1 coming from the camera is written to BUF1 of the "INPUT BUFFER". The processing sub-block processes the data and stores the first frame on BUF0 of the "OUTPUT BUFFER". Once the processing is done and the frame is ready, the display sub-block is triggered to pick the data and send it to the display. The processing sub-block will start working on the next frame once the data is ready in the "INPUT_BUFFER" and there's a free buffer in the "OUTPUT_BUFFER".

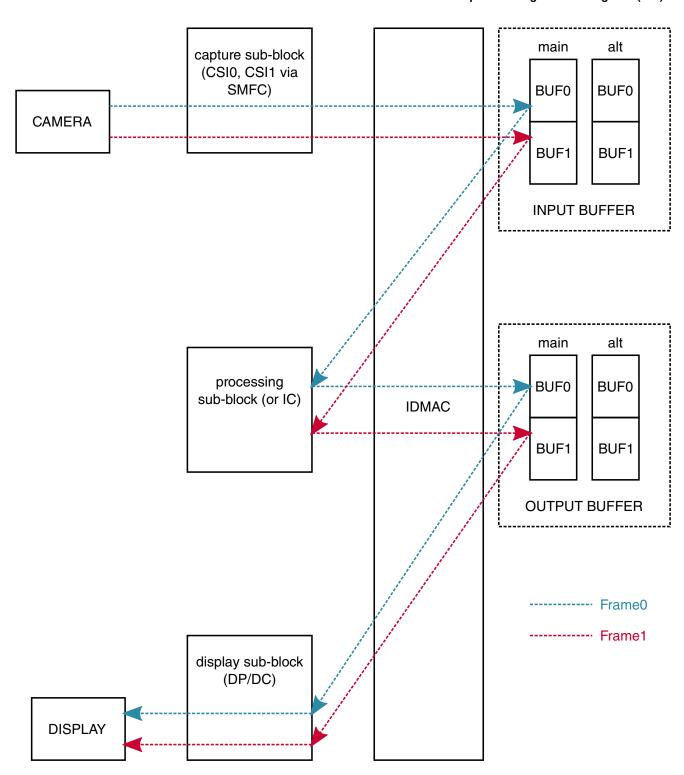


Figure 37-51. IPU tasks' chaining illustration - single flow

IPU task chaining - double flow

The diagram below illustrates task chaining in the In this example double flow is handled. In addition to the flow described on the previous example, another flow is handled via the display sub-blocks. In that case the DC will handle 2 flows. Once sending Frame0 to the display is complete, the FSU will decide in whether to handle Frame1 or Frame0_ALT. The decision is made according the readiness of the other buffers in the memory, in case of 2 ready buffers (main flow and alternate) the FSU will switch between them in a round robin fashion.

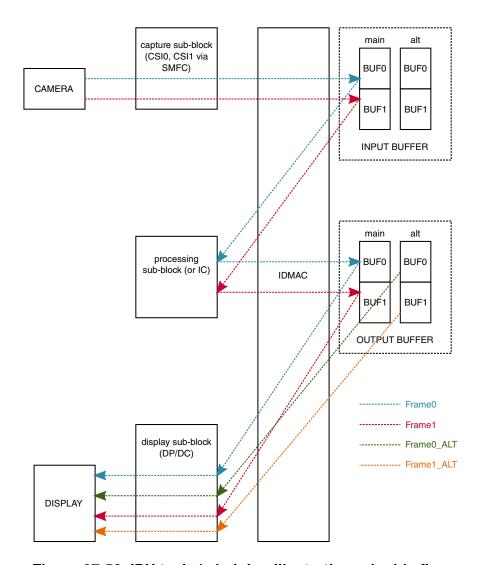


Figure 37-52. IPU tasks' chaining illustration - double flow

37.4.12.2.4 IPU main flows

IPU's flows can be partitioned into 5 groups.

• CF - capture flows

- PF processing flows
- SF synchronous display flows
- AF Asynchronous display flows
- DF Direct flow from IC to the display

Tasks from different groups can be chained as illustrated below.

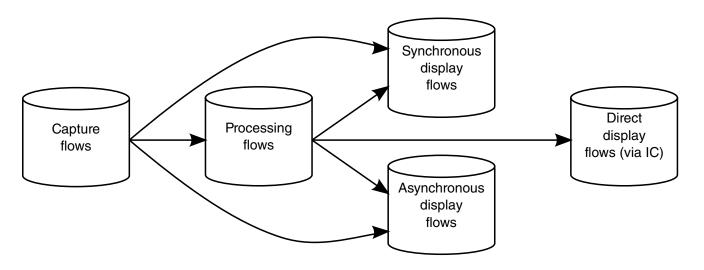


Figure 37-53. IPU task flows chaining

The tables below describe the most important use cases of chaining the IPU tasks. The tables show the main task for each group.

The physical DMA channel is the DMA channel that is used for the main flow - this is the IDMAC channel that is physically connected to the block - the CPMEM parameters should be configured according to the physical channel number. In case of an alternate flow then an alternate entry in the CPMEM should be configured as well

The following table describes capturing flows where data is captured from the sensor and sent to the memory without processing. This flows can be chained to the processing and display flows described on: Table 37-31, Table 37-32, Table 37-33 and on Table 37-34.

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Capturing image from sensor and storing it in the memory (via SMFC) without processing	CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3

Table 37-30. IPU's capture flows

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Table 37-30. IPU's capture flows (continued)

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Capturing image from	CSI0 or CSI1> MEM			IDMAC_CH_5
sensor and storing it in the memory (via IC) without processing				
Capturing interlaced input and storing it in the memory	CSI0 or CSI1 -> VDIC> MEM		IDMAC_CH_9 IDMAC_CH_10	IDMAC_CH_5 IDMAC_CH_13
(via VDIC) while performing video de-interlacing in the VDIC.				

NOTE

Register IPUx_SMFC_MAP is used to map CSI0 and CSI1 inputs to one of the four IDMAC channels. See Sensor Multi FIFO Controller (SMFC) for additional information.

The following table describe processing flows via the IC. This flows can start from the memory, can be chained to a capturing flow described on Table 37-30. The target of this flow can be chained to the display flows described on Table 37-32 and on Table 37-33.

Table 37-31. IPU's Processing flows

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Preprocessing image from sensor for encoding	CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
	MEM> IC (PRP ENC)> MEM	IDMAC_CH_12		IDMAC_CH_20
Preprocessing image from memory for encoding	MEM> IC (PRP ENC)> MEM	IDMAC_CH_12		IDMAC_CH_20
Preprocessing image from sensor for encoding	CSI0 or CSI1> IC (PRP ENC)> MEM			IDMAC_CH_20
Preprocessing + rotation of image from sensor for encoding	CSI0 or CSI1>SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
	MEM> IC (PRP ENC)> MEM	IDMAC_CH_12		IDMAC_CH_20
	MEM> IC (ROT ENC)> MEM	IDMAC_CH_45		IDMAC_CH_48

Table 37-31. IPU's Processing flows (continued)

Flow	1	Tasks chain	Phy	ysical DMA Chan	nels
			Video	Other	Output
			Input	Input	
Preprocessing +		MEM> IC (PRP ENC)> MEM	IDMAC_CH_12		IDMAC_CH_20
image from mem encoding	ory for	MEM> IC (ROT ENC)> MEM	IDMAC_CH_45		IDMAC_CH_48
Rotation and preporting from seconding		CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
		MEM> IC (ROT ENC)> MEM	IDMAC_CH_45		IDMAC_CH_48
		MEM> IC (PRP ENC)> MEM	IDMAC_CH_12		IDMAC_CH_20
Preprocessing im sensor for viewfir		CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
		MEM> IC (PRP VF)> MEM	IDMAC_CH_12	IDMAC_CH_14	IDMAC_CH_21
Preprocessing im	•	MEM> IC (PRP VF)> MEM	IDMAC_CH_12	IDMAC_CH_14	IDMAC_CH_21
	Preprocessing and rotation of image from sensor for	CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
		MEM> IC (PRP VF)> MEM	IDMAC_CH_12	IDMAC_CH_14	IDMAC_CH_21
		MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
Rotation and prep of image from serviewfinder		CSI0 or CSI1>SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
		MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
		MEM> IC (PRP VF)> MEM	IDMAC_CH_12	IDMAC_CH_14	IDMAC_CH_21
Preprocessing ar		MEM> IC (PRP VF)> MEM	IDMAC_CH_12	IDMAC_CH_14	IDMAC_CH_21
of image from ser viewfinder	nsor for	MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
Preprocessing im sensor	nage from	CSI0 or CSI1> IC (PRP VF)> MEM		IDMAC_CH_14	IDMAC_CH_21
Preprocessing ar of image from se		CSI0 or CSI1> IC (PRP VF)> MEM		IDMAC_CH_14	IDMAC_CH_21
		MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
Postprocessing in	mage	MEM> IC (PP)> MEM	IDMAC_CH_11	IDMAC_CH_15	IDMAC_CH_22
Postprocessing a	and rotation	MEM> IC (PP)> MEM	IDMAC_CH_11	IDMAC_CH_15	IDMAC_CH_22
of image		MEM> IC (ROT PP)>MEM	IDMAC_CH_47		IDMAC_CH_50

Table 37-31. IPU's Processing flows (continued)

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Rotation and postprocessing	MEM> IC (ROT PP)>MEM	IDMAC_CH_47		IDMAC_CH_50
of image	MEM> IC (PP)> MEM	IDMAC_CH_11	IDMAC_CH_15	IDMAC_CH_22
Postprocessing image from sensor	CSI0 or CSI1>SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
	MEM> IC (PP)> MEM	IDMAC_CH_11	IDMAC_CH_15	IDMAC_CH_22
video de-interlacing in the VDIC.	MEM -> VDIC> MEM	IDMAC_CH_8 IDMAC_CH_9 IDMAC_CH_10		IDMAC_CH_5
	Interlaced input coming from the mei image is written to the memory via c			ne processed
video de-interlacing in the VDIC. Then processing in the IC.	MEM -> VDIC> IC (PRP VF)> MEM	IDMAC_CH_8 IDMAC_CH_9 IDMAC_CH_10	IDMAC_CH_14	IDMAC_CH_21
	Interlaced input coming from the me image is sent to the IC for further pro			
video de-interlacing in the VDIC, then preprocessing and rotation of image	MEM> VDIC> IC (PRP VF)> MEM	IDMAC_CH_8 IDMAC_CH_9 IDMAC_CH_10	IDMAC_CH_14	IDMAC_CH_21
coming from memory	MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
video de-interlacing in the VDIC, then preprocessing	CSI0 or CSI1> VDIC> IC (PRP VF)> MEM	IDMAC_CH_9 IDMAC_CH_10	IDMAC_CH_14	IDMAC_CH_13 IDMAC_CH_21
and rotation of image coming from CSI	MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
Combining in the VDIC.	MEM -> VDIC> MEM	IDMAC_CH_25I DMAC_CH_26		IDMAC_CH_5
	Plane3 is coming on IDMAC_CH_25 IDMAC_CH_26.	; Additional plane	(plane1) may cor	me from
Combining in the VDIC. Then processing in the IC.	MEM -> VDIC> IC (PRP VF)> MEM	IDMAC_CH_25I DMAC_CH_26	IDMAC_CH_14	IDMAC_CH_21
	Plane3 is coming on IDMAC_CH_25 IDMAC_CH_26.	; Additional plane	(plane1) may cor	me from
Combining in the VDIC, then preprocessing and rotation	MEM> VDIC> IC (PRP VF)> MEM	IDMAC_CH_25I DMAC_CH_26	IDMAC_CH_14	IDMAC_CH_21
	MEM> IC (ROT VF)> MEM			IDMAC_CH_49
	Plane3 is coming on IDMAC_CH_25 IDMAC_CH_26.	; Additional plane	(plane1) may cor	me from
Rotation of an image and	MEM> IC (ROT VF)>MEM	IDMAC_CH_46		IDMAC_CH_49
Combining in the VDIC	MEM -> VDIC> MEM	IDMAC_CH_25I DMAC_CH_26		IDMAC_CH_5

Table 37-31. IPU's Processing flows (continued)

	Flow	Tasks chain	Phy	sical DMA Chan	nels	
			Video	Other	Output	
			Input	Input		
		Plane3 is rotated on the VF task. The plane (plane1) may come from IDMA		DIC IDMAC_CH_	25; Additional	
	Rotation of an image and	MEM> IC (ROT ENC)>MEM	IDMAC_CH_45		IDMAC_CH_48	
	Combining in the VDIC	MEM -> VDIC> MEM	IDMAC_CH_25I DMAC_CH_26		IDMAC_CH_5	
		Plane1 is rotated on the ENC task. Then it sent to the VDIC IDMAC_CH_26; In additional plane3 is coming from IDMAC_CH_25				
	Rotation of two images and	MEM> IC (ROT VF)>MEM	IDMAC_CH_46		IDMAC_CH_49	
	Combining in the VDIC	MEM> IC (ROT ENC)>MEM	IDMAC_CH_45		IDMAC_CH_48	
		MEM -> VDIC> MEM	IDMAC_CH_25I DMAC_CH_26		IDMAC_CH_5	
		Plane3 is rotated on the VF task. Pla	ne1 is rotated on	the ENC task.		
	Rotation of two images and	MEM> IC (ROT VF)>MEM	IDMAC_CH_46		IDMAC_CH_49	
	Combining in the VDIC. Then processing in the IC.	MEM> IC (ROT ENC)>MEM	IDMAC_CH_45		IDMAC_CH_48	
		MEM -> VDIC> IC (PRP VF)> MEM	IDMAC_CH_25I DMAC_CH_26	IDMAC_CH_14	IDMAC_CH_21	
		Plane3 is rotated on the VF task. Pla	ane1 is rotated on	the ENC task.	·	

The following table describes the synchronous display flows, this flows can be chained to the capture, processing and direct flows described on Table 37-30, Table 37-30 and on Table 37-34

Table 37-32. IPU synchronous display flows

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Synchronous display refresh	MEM> DC	IDMAC_CH_28		
via DC		•	•	
Synchronous display refresh	MEM> DP	IDMAC_CH_23		
via DP				
Synchronous display refresh	MEM> DC	IDMAC_CH_28	IDMAC_CH_44	
via DC	Comment: IDMAC_CH_44 is an option	onal mask Chann	el	
Synchronous display refresh	MEM> DP	IDMAC_CH_23	IDMAC_CH_44	
via DP	Comment: IDMAC_CH_44 is an optional mask Channel			
Synchronous display refresh	MEM> DP SYNC(BG/FG)	IDMAC_CH_23	IDMAC_CH_27	
via DP + combining in the DP	Comment: IDMAC_CH_23 is the main channel; IDMAC_CH_27 is used for combining of another plane.			

Table 37-32. IPU synchronous display flows (continued)

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Synchronous display refresh via DP	` ,	IDMAC_CH_23/ IDMAC_CH_27	IDMAC_CH_44 (mask)	
	Comment: IDMAC_CH_23 is the ma used for combining of another plane.	,		

The following table describes the asynchronous display flows, this flows can be chained to the capture, processing and direct flows described on Table 37-30, Table 37-30 and on Table 37-34

Table 37-33. IPU Asynchronous display flows

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Asynchronous display refresh via DP	MEM> DC	IDMAC_CH_24		
Asynchronous display refresh via DP	MEM> DC	IDMAC_CH_24/ IDMAC_CH_29		
	Comment: IDMAC_CH_29 is another from IDMAC_CH_24	input to the DP to	be combined with	h data coming
Asynchronous display refresh via DP in command buffer mode	MEM> DC	IDMAC_CH_24/ IDMAC_CH_29	IDMAC_CH_42 (command)	
Sommand Baner mode	Comment: IDMAC_CH_29 is another input to the DP to be combined with da from IDMAC_CH_24			
Asynchronous display refresh via DC	MEM> DC	IDMAC_CH_28		
Asynchronous display refresh via DC	MEM> DC	IDMAC_CH_41		
Asynchronous display refresh via DC	MEM> DC	IDMAC_CH_28	IDMAC_CH_42(command)	
	Comment: IDMAC_CH_42 can be op IDMAC_CH_28	tionally used as c	ommand channel	associated with
Asynchronous display refresh via DC	MEM> DC	IDMAC_CH_41	IDMAC_CH_43(command)	
	Comment: IDMAC_CH_43 can be op IDMAC_CH_41	tionally used as c	ommand channel	associated with
Asynchronous display refresh via DP	MEM> DP ASYNC	IDMAC_CH_24	IDMAC_CH_42(command)	
	Comment: IDMAC_CH_42 can be op IDMAC_CH_24	tionally used as c	ommand channel	associated with

Table 37-33. IPU Asynchronous display flows (continued)

Flow	Tasks chain	Physical DMA Channels		
		Video	Other	Output
		Input	Input	
Asynchronous display refresh via DP	MEM> DC	IDMAC_CH_24	IDMAC_CH_43 (command)	
	Comment: IDMAC_CH_43 can be optionally used as command channel associated IDMAC_CH_24			
Reading data from	DC> MEM			IDMAC_CH_40
asynchronous display				

The table below describes direct flows via the IC. These are processing flows via the IC where the output is sent directly to the DMFC. Direct camera to display flow is possible when the frame rate of the source and the destination is the same (typically the target display will be asynchronous display, where the display is updated at the rate of the source). From that point, any of the display flows described on Table 37-32 and on Table 37-33 can be chained.

Table 37-34. IPU direct flows to the display via the IC

	Flow	Tasks chain	Physical DMA Channels		
			Video	Other	Output
			Input	Input	
	Rotation and preprocessing of image from sensor for viewfinder and displaying it on	CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
	synchronous display via DP	MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
	DP	MEM> IC (PRP VF)> DMFC	IDMAC_CH_12	IDMAC_CH_14	Direct to the DMFC
		MEM> DP SYNC (BG/FG)	IDMAC_CH_23/ IDMAC_CH_27	IDMAC_CH_44 (mask)	
	Rotation and preprocessing of image from sensor for viewfinder and displaying it on	CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3
	asynchronous display via DP	MEM> IC (ROT VF)> MEM	IDMAC_CH_46		IDMAC_CH_49
		MEM> IC (PRP VF)> DMFC	IDMAC_CH_12	IDMAC_CH_14	Direct to the DMFC
		MEM> DP SYNC (BG/FG)	IDMAC_CH_24/ IDMAC_CH_29	command chan- nel	
	Preprocessing image from sensor for viewfinder and direct displaying it on asynchronous display	CSI0 or CSI1> SMFC> MEM			IDMAC_CH_0 IDMAC_CH_1 IDMAC_CH_2 IDMAC_CH_3

Table 37-34. IPU direct flows to the display via the IC (continued)

Flow	Tasks chain	Physical DMA Channels			
		Video	Other	Output	
		Input	Input		
	MEM> IC (PRP VF)> DC	IDMAC_CH_12	IDMAC_CH_14		
Preprocessing image from sensor for viewfinder and direct displaying it on	CSI0 or CSI1> IC (PRP VF)> DC		IDMAC_CH_14	IDMAC_CH_21	
asynchronous display					
Preprocessing image from sensor for viewfinder and	CSI0 or CSI1> IC (PRP VF)> DP ASYNC		IDMAC_CH_14	IDMAC_CH_21	
direct displaying it on asynchronous display via DP					
Capturing interlaced input via CSI, then perform video de-interlacing in the	CSI0 or CSI1 -> VDIC> IC (PRP VF)> DP ASYNC		IDMAC_CH_9 IDMAC_CH_10 IDMAC_CH_14	IDMAC_CH_13 IDMAC_CH_21	
VDIC. Then processing in the IC and direct displaying it on asynchronous display via DP	Interlaced input coming from one of the CSIs is sent to the memory without processing via channel #13. In addition 2 more inputs are read from the memory via channels 9 and 10. The processed image is sent to the IC for further processing then it is sent to the display				
Capturing interlaced input via CSI, then perform video de-interlacing in the	CSI0 or CSI1 -> VDIC> IC (PRP VF)> DC		IDMAC_CH_9 IDMAC_CH_10 IDMAC_CH_14	IDMAC_CH_13 IDMAC_CH_21	
VDIC. Then processing in the IC and direct displaying it on asynchronous display	Interlaced input coming from one of the CSIs is sent to the memory without processing via channel #13. In addition 2 more inputs are read from the memory via channels 9 and 10. The processed image is sent to the IC for further processing then it is sent to the display				

37.4.12.2.5 Sub-Frame Double-Buffering (Band Mode)

Page-flip double buffering is performed using full-frame buffers.

In addition IPU supports also page-flip double buffering using smaller buffers, each containing 4/8/16/32/64/128/256 rows of pixels. This allows the use of internal memory for buffering.

This mode can be supported by the following modifications (relative to full-frame buffers):

The address in system memory is generated by the same formula, but inserting the full row number, only k LSB's (for a band of 2^k rows) are inserted (e.g. [2:0] for 8 rows).

Page flip is triggered at the end of each band (when the k LSB's are all 1) and not only at the end of the frame. This flip may be accompanied by an ARM/SDMA interrupt, if synchronization with other modules (e.g. VPU or ARM) is needed.

The channels that can work in this mode are controlled by the corresponding IDMAC_BNDM_EN_<i>

bit. The BNDM parameter of the corresponding IDMAC channel has to be set as well.

37.4.12.2.6 Automatic Window Refresh

By programming the <>_SRC_SEL bits of the corresponding flow to autoref mode, automatic refresh of a window on the smart display is enabled. This means that the flow is triggered any time the refresh counter completes its counting. The refresh period is defined via the AUTOREF_PER field (the time unit is 2¹⁷ periods of the HSP_CLK clock).

The actual value of refresh period is equal to:

 $T_{HSP}*2^{17}*(AUTO_REF_PER+1).$

37.4.12.2.7 IPU VDOA synchronization

IPU can interact to a companion block called VDOA.

VDOA (Video Data Order Adapter) is used to re-order video data from the "tiled" order used by the VPU to the conventional raster-scan order needed by the IPU.

The VDOA can transfer its output to the IPU through internal memory, containing a band double buffer.

This tight double-buffering synchronization is performed without MCU involvement, using dedicated signals between the VDOA and IPU and the same protocol as used between two IPU DMA channels.

VDOA notifies the IPU which is the current band to read. IPU notifies the VDOA when the current band is read.

This synchronization is supported for VDI and IC(PP). The target destination of the VDOA data is defined by VDOA_DEST_SEL parameter. The PP_SRC_SEL or VDI_SRC_SEL has to be programmed as well to select VDOA as the source of the task.

For more details about IDMAC's band mode support Sub-Frame Double-Buffering (Band Mode).

The IPU settings and the VDOA settings has to be the same. In particular

- The band height defined at the IPU and at the VDOA must match
- The Number of Frames used by the VDI as defined by the VDI_MOT_SEL has to match the VDOA settings.

37.4.12.3 Interrupt Generator

The IG produces two interrupts to the ARM platform - the functional interrupt and the error interrupt. All of the interrupts are maskable.

The following table describes the functional interrupts.

Table 37-35. Functional Interrupts Summary

Location	Sub-blocks	Interrupt status bit name	Description
IPU_INT_STAT_1[0]	IDMAC	IDMAC_EOF_0	-
IPU_INT_STAT_1[1]	IDMAC	IDMAC_EOF_1	-
IPU_INT_STAT_1[2]	IDMAC	IDMAC_EOF_2	-
IPU_INT_STAT_1[3]	IDMAC	IDMAC_EOF_3	-
IPU_INT_STAT_1[5]	IDMAC	IDMAC_EOF_5	-
IPU_INT_STAT_1[11]	IDMAC	IDMAC_EOF_11	-
IPU_INT_STAT_1[12]	IDMAC	IDMAC_EOF_12	-
IPU_INT_STAT_1[14]	IDMAC	IDMAC_EOF_14	-
IPU_INT_STAT_1[15]	IDMAC	IDMAC_EOF_15	-
IPU_INT_STAT_1[17]	IDMAC	IDMAC_EOF_17	-
IPU_INT_STAT_1[18]	IDMAC	IDMAC_EOF_18	-
IPU_INT_STAT_1[20]	IDMAC	IDMAC_EOF_20	-
IPU_INT_STAT_1[21]	IDMAC	IDMAC_EOF_21	-
IPU_INT_STAT_1[22]	IDMAC	IDMAC_EOF_22	-
IPU_INT_STAT_1[23]	IDMAC	IDMAC_EOF_23	-
IPU_INT_STAT_1[24]	IDMAC	IDMAC_EOF_24	-
IPU_INT_STAT_1[27]	IDMAC	IDMAC_EOF_27	-
IPU_INT_STAT_1[28]	IDMAC	IDMAC_EOF_28	-
IPU_INT_STAT_1[29]	IDMAC	IDMAC_EOF_29	-
IPU_INT_STAT_1[31]	IDMAC	IDMAC_EOF_31	-
IPU_INT_STAT_2[1]	IDMAC	IDMAC_EOF_33	-
IPU_INT_STAT_2[8]	IDMAC	IDMAC_EOF_40	-
IPU_INT_STAT_2[9]	IDMAC	IDMAC_EOF_41	-
IPU_INT_STAT_2[10]	IDMAC	IDMAC_EOF_42	-
IPU_INT_STAT_2[11]	IDMAC	IDMAC_EOF_43	-
IPU_INT_STAT_2[12]	IDMAC	IDMAC_EOF_44	-
IPU_INT_STAT_2[13]	IDMAC	IDMAC_EOF_45	-
IPU_INT_STAT_2[14]	IDMAC	IDMAC_EOF_46	-
IPU_INT_STAT_2[15]	IDMAC	IDMAC_EOF_47	-
IPU_INT_STAT_2[16]	IDMAC	IDMAC_EOF_48	-
IPU_INT_STAT_2[17]	IDMAC	IDMAC_EOF_49	-

Table 37-35. Functional Interrupts Summary (continued)

Location	Sub-blocks	Interrupt status bit name	Description
IPU_INT_STAT_2[18]	IDMAC	IDMAC_EOF_50	-
IPU_INT_STAT_2[19]	IDMAC	IDMAC_EOF_51	-
IPU_INT_STAT_2[20]	IDMAC	IDMAC_EOF_52	-
IPU_INT_STAT_3[0]	IDMAC	IDMAC_NFACK_0	-
IPU_INT_STAT_3[1]	IDMAC	IDMAC_NFACK_1	-
IPU_INT_STAT_3[2]	IDMAC	IDMAC_NFACK_2	-
IPU_INT_STAT_3[3]	IDMAC	IDMAC_NFACK_3	-
IPU_INT_STAT_3[5]	IDMAC	IDMAC_NFACK_5	-
IPU_INT_STAT_3[8]	IDMAC	IDMAC_NFACK_8	-
IPU_INT_STAT_3[9]	IDMAC	IDMAC_NFACK_9	-
IPU_INT_STAT_3[10]	IDMAC	IDMAC_NFACK_10	-
IPU_INT_STAT_3[11]	IDMAC	IDMAC_NFACK_11	-
IPU_INT_STAT_3[12]	IDMAC	IDMAC_NFACK_12	-
IPU_INT_STAT_3[13]	IDMAC	IDMAC_NFACK_13	-
IPU_INT_STAT_3[14]	IDMAC	IDMAC_NFACK_14	-
IPU_INT_STAT_3[15]	IDMAC	IDMAC_NFACK_15	-
IPU_INT_STAT_3[17]	IDMAC	IDMAC_NFACK_17	-
IPU_INT_STAT_3[18]	IDMAC	IDMAC_NFACK_18	-
IPU_INT_STAT_3[20]	IDMAC	IDMAC_NFACK_20	-
IPU_INT_STAT_3[21]	IDMAC	IDMAC_NFACK_21	-
IPU_INT_STAT_3[22]	IDMAC	IDMAC_NFACK_22	-
IPU_INT_STAT_3[23]	IDMAC	IDMAC_NFACK_23	-
IPU_INT_STAT_3[24]	IDMAC	IDMAC_NFACK_24	-
IPU_INT_STAT_3[27]	IDMAC	IDMAC_NFACK_27	-
IPU_INT_STAT_3[28]	IDMAC	IDMAC_NFACK_28	-
IPU_INT_STAT_3[29]	IDMAC	IDMAC_NFACK_29	-
IPU_INT_STAT_3[31]	IDMAC	IDMAC_NFACK_31	-
IPU_INT_STAT_4[1]	IDMAC	IDMAC_NFACK_33	-
IPU_INT_STAT_4[8]	IDMAC	IDMAC_NFACK_40	-
IPU_INT_STAT_4[9]	IDMAC	IDMAC_NFACK_41	-
IPU_INT_STAT_4[10]	IDMAC	IDMAC_NFACK_42	-
IPU_INT_STAT_4[11]	IDMAC	IDMAC_NFACK_43	-
IPU_INT_STAT_4[12]	IDMAC	IDMAC_NFACK_44	-
IPU_INT_STAT_4[13]	IDMAC	IDMAC_NFACK_45	-
IPU_INT_STAT_4[14]	IDMAC	IDMAC_NFACK_46	-
IPU_INT_STAT_4[15]	IDMAC	IDMAC_NFACK_47	-
IPU_INT_STAT_4[16]	IDMAC	IDMAC_NFACK_48	-
IPU_INT_STAT_4[17]	IDMAC	IDMAC_NFACK_49	-
IPU_INT_STAT_4[18]	IDMAC	IDMAC_NFACK_50	-

Table 37-35. Functional Interrupts Summary (continued)

Location	Sub-blocks	Interrupt status bit name	Description
IPU_INT_STAT_4[19]	IDMAC	IDMAC_NFACK_51	-
IPU_INT_STAT_4[20]	IDMAC	IDMAC_NFACK_52	-
IPU_INT_STAT_7[23]	IDMAC	IDMAC_EOS_23	-
IPU_INT_STAT_7[24]	IDMAC	IDMAC_EOS_24	-
IPU_INT_STAT_7[27]	IDMAC	IDMAC_EOS_27	-
IPU_INT_STAT_7[28]	IDMAC	IDMAC_EOS_28	-
IPU_INT_STAT_7[29]	IDMAC	IDMAC_EOS_29	-
IPU_INT_STAT_7[31]	IDMAC	IDMAC_EOS_31	-
IPU_INT_STAT_8[2]	IDMAC	IDMAC_EOS_33	-
IPU_INT_STAT_8[9]	IDMAC	IDMAC_EOS_41	-
IPU_INT_STAT_8[10]	IDMAC	IDMAC_EOS_42	-
IPU_INT_STAT_8[11]	IDMAC	IDMAC_EOS_43	-
IPU_INT_STAT_8[12]	IDMAC	IDMAC_EOS_44	-
IPU_INT_STAT_8[19]	IDMAC	IDMAC_EOS_51	-
IPU_INT_STAT_8[20]	IDMAC	IDMAC_EOS_52	-
IPU_INT_STAT_11[0]	IDMAC	IDMAC_EOBND_0	-
IPU_INT_STAT_11[1]	IDMAC	IDMAC_EOBND_1	-
IPU_INT_STAT_11[2]	IDMAC	IDMAC_EOBND_2	-
IPU_INT_STAT_11[3]	IDMAC	IDMAC_EOBND_3	-
IPU_INT_STAT_11[5]	IDMAC	IDMAC_EOBND_5	-
IPU_INT_STAT_11[11]	IDMAC	IDMAC_EOBND_11	-
IPU_INT_STAT_11[12]	IDMAC	IDMAC_EOBND_12	-
IPU_INT_STAT_11[20]	IDMAC	IDMAC_EOBND_20	-
IPU_INT_STAT_11[21]	IDMAC	IDMAC_EOBND_21	-
IPU_INT_STAT_11[22]	IDMAC	IDMAC_EOBND_22	-
IPU_INT_STAT_12[13]	IDMAC	IDMAC_EOBND_45	-
IPU_INT_STAT_12[14]	IDMAC	IDMAC_EOBND_46	-
IPU_INT_STAT_12[15]	IDMAC	IDMAC_EOBND_47	-
IPU_INT_STAT_12[16]	IDMAC	IDMAC_EOBND_48	-
IPU_INT_STAT_12[17]	IDMAC	IDMAC_EOBND_49	-
IPU_INT_STAT_12[18]	IDMAC	IDMAC_EOBND_50	-
IPU_INT_STAT_13[0]	IDMAC	IDMAC_TH_0	-
IPU_INT_STAT_13[1]	IDMAC	IDMAC_TH_1	-
IPU_INT_STAT_13[2]	IDMAC	IDMAC_TH_2	-
IPU_INT_STAT_13[3]	IDMAC	IDMAC_TH_3	-
IPU_INT_STAT_13[5]	IDMAC	IDMAC_TH_5	-
IPU_INT_STAT_13[8]	IDMAC	IDMAC_TH_8	-
IPU_INT_STAT_13[9]	IDMAC	IDMAC_TH_9	-
IPU_INT_STAT_13[10]	IDMAC	IDMAC_TH_10	-

Table 37-35. Functional Interrupts Summary (continued)

Location	Sub-blocks	Interrupt status bit name	Description
IPU_INT_STAT_13[11]	IDMAC	IDMAC_TH_11	-
IPU_INT_STAT_13[12]	IDMAC	IDMAC_TH_12	-
IPU_INT_STAT_13[13]	IDMAC	IDMAC_TH_13	-
IPU_INT_STAT_13[14]	IDMAC	IDMAC_TH_14	-
IPU_INT_STAT_13[15]	IDMAC	IDMAC_TH_15	-
IPU_INT_STAT_13[17]	IDMAC	IDMAC_TH_17	-
IPU_INT_STAT_13[18]	IDMAC	IDMAC_TH_18	-
IPU_INT_STAT_13[20]	IDMAC	IDMAC_TH_20	-
IPU_INT_STAT_13[21]	IDMAC	IDMAC_TH_21	-
IPU_INT_STAT_13[22]	IDMAC	IDMAC_TH_22	-
IPU_INT_STAT_13[23]	IDMAC	IDMAC_TH_23	-
IPU_INT_STAT_13[24]	IDMAC	IDMAC_TH_24	-
IPU_INT_STAT_13[27]	IDMAC	IDMAC_TH_27	-
IPU_INT_STAT_13[28]	IDMAC	IDMAC_TH_28	-
IPU_INT_STAT_13[29]	IDMAC	IDMAC_TH_29	-
IPU_INT_STAT_13[31]	IDMAC	IDMAC_TH_31	-
IPU_INT_STAT_14[1]	IDMAC	IDMAC_TH_33	-
IPU_INT_STAT_14[8]	IDMAC	IDMAC_TH_40	-
IPU_INT_STAT_14[9]	IDMAC	IDMAC_TH_41	-
IPU_INT_STAT_14[10]	IDMAC	IDMAC_TH_42	-
IPU_INT_STAT_14[11]	IDMAC	IDMAC_TH_43	-
IPU_INT_STAT_14[12]	IDMAC	IDMAC_TH_44	-
IPU_INT_STAT_14[13]	IDMAC	IDMAC_TH_45	-
IPU_INT_STAT_14[14]	IDMAC	IDMAC_TH_46	-
IPU_INT_STAT_14[15]	IDMAC	IDMAC_TH_47	-
IPU_INT_STAT_14[16]	IDMAC	IDMAC_TH_48	-
IPU_INT_STAT_14[17]	IDMAC	IDMAC_TH_49	-
IPU_INT_STAT_14[18]	IDMAC	IDMAC_TH_50	-
IPU_INT_STAT_14[19]	IDMAC	IDMAC_TH_51	-
IPU_INT_STAT_14[20]	IDMAC	IDMAC_TH_52	-
IPU_INT_STAT_15[0]	СМ	IPU_SNOOPING1_INT	-
IPU_INT_STAT_15[1]	СМ	IPU_SNOOPING2_INT	-
IPU_INT_STAT_15[2]	DP	DP_SF_START	-
IPU_INT_STAT_15[3]	DP	DP_SF_END	-
IPU_INT_STAT_15[4]	DP	DP_ASF_START	-
IPU_INT_STAT_15[5]	DP	DP_ASF_END	-
IPU_INT_STAT_15[6]	DP	DP_SF_BRAKE	-
IPU_INT_STAT_15[7]	DP	DP_ASF_BRAKE	-
IPU_INT_STAT_15[8]	DC	DC_FC_0	-

Table 37-35. Functional Interrupts Summary (continued)

Location	Sub-blocks	Interrupt status bit name	Description
IPU_INT_STAT_15[9]	DC	DC_FC_1	-
IPU_INT_STAT_15[10]	DC	DC_FC_2	-
IPU_INT_STAT_15[11]	DC	DC_FC_3	-
IPU_INT_STAT_15[12]	DC	DC_FC_4	-
IPU_INT_STAT_15[13]	DC	DC_FC_6	-
IPU_INT_STAT_15[14]	DC	DI_VSYNC_PRE_0	-
IPU_INT_STAT_15[15]	DC	DI_VSYNC_PRE_1	-
IPU_INT_STAT_15[16]	DC	DC_DP_START	-
IPU_INT_STAT_15[17]	DC	DC_ASYNC_STOP	-
IPU_INT_STAT_15[18]	DI0	DI0_DISP_CLK_EN_PRE	-
IPU_INT_STAT_15[19]	DI0	DI0_CNT_EN_PRE_1	-
IPU_INT_STAT_15[20]	DI0	DI0_CNT_EN_PRE_2	-
IPU_INT_STAT_15[21]	DI0	DI0_CNT_EN_PRE_3	-
IPU_INT_STAT_15[22]	DI0	DI0_CNT_EN_PRE_4	-
IPU_INT_STAT_15[23]	DI0	DI0_CNT_EN_PRE_5	-
IPU_INT_STAT_15[24]	DI0	DI0_CNT_EN_PRE_6	-
IPU_INT_STAT_15[25]	DI0	DI0_CNT_EN_PRE_7	-
IPU_INT_STAT_15[26]	DI0	DI0_CNT_EN_PRE_8	-
IPU_INT_STAT_15[27]	DI0	DI0_CNT_EN_PRE_9	-
IPU_INT_STAT_15[28]	DI0	DI0_CNT_EN_PRE_10	-
IPU_INT_STAT_15[29]	DI1	DI1_DISP_CLK_EN_PRE	-
IPU_INT_STAT_15[30]	DI1	DI1_CNT_EN_PRE_3	-
IPU_INT_STAT_15[31]	DI1	DI1_CNT_EN_PRE_8	-

The table below describes the error interrupts. The panic column indicates if this signal is part of the logic generating the ipu_panic signal. The ipu_panic signal can be used for indicating about errors that are result of data rate problems. Such problems may be a result of the IPU running in slower clock then required by the use case. This signal can be used in order to indicate the system that the IPU can't handle the desired data rate. In that case the system may need to increase the clock to the IPU or simplify the use case.

Table 37-36. Error Interrupts Summary (continued)

Location	Sub-blocks	Interrupt Status name	panic	Description
IPU_INT_STAT_5[0]	IDMAC	IDMAC_NFB4EOF_ERR_0	YES	-
IPU_INT_STAT_5[1]	IDMAC	IDMAC_NFB4EOF_ERR_1	YES	-
IPU_INT_STAT_5[2]	IDMAC	IDMAC_NFB4EOF_ERR_2	YES	-
IPU_INT_STAT_5[3]	IDMAC	IDMAC_NFB4EOF_ERR_3	YES	-
IPU_INT_STAT_5[5]	IDMAC	IDMAC_NFB4EOF_ERR_5	YES	-

Table 37-36. Error Interrupts Summary (continued) (continued)

Location	Sub-blocks	Interrupt Status name	panic	Description
IPU_INT_STAT_5[8]	IDMAC	IDMAC_NFB4EOF_ERR_8	YES	-
IPU_INT_STAT_5[9]	IDMAC	IDMAC_NFB4EOF_ERR_9	YES	-
IPU_INT_STAT_5[10]	IDMAC	IDMAC_NFB4EOF_ERR_10	YES	-
IPU_INT_STAT_5[11]	IDMAC	IDMAC_NFB4EOF_ERR_11	YES	-
IPU_INT_STAT_5[12]	IDMAC	IDMAC_NFB4EOF_ERR_12	YES	-
IPU_INT_STAT_5[13]	IDMAC	IDMAC_NFB4EOF_ERR_13	YES	-
IPU_INT_STAT_5[14]	IDMAC	IDMAC_NFB4EOF_ERR_14	YES	-
IPU_INT_STAT_5[15]	IDMAC	IDMAC_NFB4EOF_ERR_15	YES	-
IPU_INT_STAT_5[17]	IDMAC	IDMAC_NFB4EOF_ERR_17	YES	-
IPU_INT_STAT_5[18]	IDMAC	IDMAC_NFB4EOF_ERR_18	YES	-
IPU_INT_STAT_5[20]	IDMAC	IDMAC_NFB4EOF_ERR_20	YES	-
IPU_INT_STAT_5[21]	IDMAC	IDMAC_NFB4EOF_ERR_21	YES	-
IPU_INT_STAT_5[22]	IDMAC	IDMAC_NFB4EOF_ERR_22	YES	-
IPU_INT_STAT_5[23]	IDMAC	IDMAC_NFB4EOF_ERR_23	YES	-
IPU_INT_STAT_5[24]	IDMAC	IDMAC_NFB4EOF_ERR_24	YES	-
IPU_INT_STAT_5[27]	IDMAC	IDMAC_NFB4EOF_ERR_27	YES	-
IPU_INT_STAT_5[28]	IDMAC	IDMAC_NFB4EOF_ERR_28	YES	-
IPU_INT_STAT_5[29]	IDMAC	IDMAC_NFB4EOF_ERR_29	YES	-
IPU_INT_STAT_5[31]	IDMAC	IDMAC_NFB4EOF_ERR_31	YES	-
IPU_INT_STAT_6[1]	IDMAC	IDMAC_NFB4EOF_ERR_33	YES	-
IPU_INT_STAT_6[8]	IDMAC	IDMAC_NFB4EOF_ERR_40	YES	-
IPU_INT_STAT_6[9]	IDMAC	IDMAC_NFB4EOF_ERR_41	YES	-
IPU_INT_STAT_6[10]	IDMAC	IDMAC_NFB4EOF_ERR_42	YES	-
IPU_INT_STAT_6[11]	IDMAC	IDMAC_NFB4EOF_ERR_43	YES	-
IPU_INT_STAT_6[12]	IDMAC	IDMAC_NFB4EOF_ERR_44	YES	-
IPU_INT_STAT_6[13]	IDMAC	IDMAC_NFB4EOF_ERR_45	YES	-
IPU_INT_STAT_6[14]	IDMAC	IDMAC_NFB4EOF_ERR_46	YES	-
IPU_INT_STAT_6[15]	IDMAC	IDMAC_NFB4EOF_ERR_47	YES	-
IPU_INT_STAT_6[16]	IDMAC	IDMAC_NFB4EOF_ERR_48	YES	-
IPU_INT_STAT_6[17]	IDMAC	IDMAC_NFB4EOF_ERR_49	YES	-
IPU_INT_STAT_6[18]	IDMAC	IDMAC_NFB4EOF_ERR_50	YES	-
IPU_INT_STAT_6[19]	IDMAC	IDMAC_NFB4EOF_ERR_51	YES	-
IPU_INT_STAT_6[20]	IDMAC	IDMAC_NFB4EOF_ERR_52	YES	-
IPU_INT_STAT_9[0]	IC	VDI_FIFO1_OVF	YES	-
IPU_INT_STAT_9[26]	IC	IC_BAYER_BUF_OVF	YES	-
IPU_INT_STAT_9[27]	IC	IC_ENC_BUF_OVF	YES	-
IPU_INT_STAT_9[28]	IC	IC_VF_BUF_OVF	YES	-
IPU_INT_STAT_9[30]	CSI0	CSI0_PUPE	YES	-
IPU_INT_STAT_9[31]	CSI0	CSI1_PUPE	YES	-

Table 37-36. Error Interrupts Summary (continued) (continued)

Location	Sub-blocks	Interrupt Status name	panic	Description
IPU_INT_STAT_10[0]	SMFC	SMFC0_FRM_LOST	YES	-
IPU_INT_STAT_10[1]	SMFC	SMFC1_FRM_LOST	YES	-
IPU_INT_STAT_10[2]	SMFC	SMFC2_FRM_LOST	YES	-
IPU_INT_STAT_10[3]	SMFC	SMFC3_FRM_LOST	YES	-
IPU_INT_STAT_10[16]	DC	DC_TEARING_ERR_1	YES	-
IPU_INT_STAT_10[17]	DC	DC_TEARING_ERR_2	YES	-
IPU_INT_STAT_10[18]	DC	DC_TEARING_ERR_6	YES	-
IPU_INT_STAT_10[19]	DI0	DI0_SYNC_DISP_ERR	YES	-
IPU_INT_STAT_10[20]	DI1	DI1_SYNC_DISP_ERR	YES	-
IPU_INT_STAT_10[21]	DI0	DI0_TIME_OUT_ERR	YES	-
IPU_INT_STAT_10[22]	DI1	DI1_TIME_OUT_ERR	YES	-
IPU_INT_STAT_10[24]	IC	IC_VF_FRM_LOST_ERR	YES	-
IPU_INT_STAT_10[25]	IC	IC_ENC_FRM_LOST_ERR	YES	-
IPU_INT_STAT_10[26]	IC	IC_BAYER_FRM_LOST_ERR	YES	-
IPU_INT_STAT_10[28]	СМ	NON_PRIVILEGED_ACC_ERR	NO	-
IPU_INT_STAT_10[29]	IDMAC	AXIW_ERR	NO	-
IPU_INT_STAT_10[30]	IDMAC	AXIR_ERR	NO	-

37.4.12.4 SDMA event generator

The IPU provides an SDMA event signal that can be used as trigger to the SoC's SDMA. IPU routes an internal event to the SDMA event signal. The internal event causing the assertion of the SDMA signal is enabled by setting the corresponding bit on the SDMA_EVENT_# registers.

The user is allowed to enable multiple events. When one of these events occurs the ipu_sdma_event signal will be asserted. Similar to interrupts, the ipu_sdma_event signal is cleared by writing one to the corresponding bit in the INT_STAT_# registers.

It is not recommended to use the same internal event for a simultaneous generation of an interrupt signal and an SDMA event. This will require special software care when clearing the corresponding bit in the INT_STAT_# registers.

37.4.12.5 General Configuration Registers

The GCR contains a set of control/status/data registers. It provides IPU interface to the AHB slave bus.

The HCLK rate is equal to the HSP_CLK rate. The detail description of the registers is found in the Programmable Registers section.

37.4.12.6 Shadow Registers Module (SRM)

IPU supports frame by frame task switching. This means that a sub-block can handle a frame with one configuration and handle the following frame with different configuration. Changing the configuration is done by updating the sub-block's parameters.

In order to allow automatic flow without a need of the SW to update all the parameters at the frame boundaries. A Register of a sub-block that has the shadowing capabilities has a shadow register file that resides in the Shadow Register Memory.

The sub-blocks supporting this function may use it in one of the following ways:

37.4.12.6.1 Switching between 2 flows

Upon request from the FSU the SRM switches between the registers and the content in the Shadow Register Memory. When a sub-block uses one of the configuration SW, it is allowed to update the parameters in the memory. This is normally used when 2 flows are supported via one module.

- The current flow's configuration is stored in the module's registers
- The alternate flow configuration is stored in the SRM.
- When switching between flows the current flow's configuration is stored in the SRM. The alternate flow's configuration is written to the module's registers. When the alternate flow ends the configurations are swapped again.

This process is fully controlled by the FSU

37.4.12.6.2 Updating parameters between frames

This mode is used when the user needs to update the parameters of the current task being processed by the module. The updates can't affect the frame that is currently being processed. The update is effective only on the next frame. The SRM performs the parameters update only when there's a specific request by the user.

- The current frame's configuration is stored in the sub-block's registers
- The next frame's configuration is stored in the SRM.
- On frame's boundary the SRM reads the new configuration from the SRM and writes it to the sub-block's registers. The old configuration is lost.

37.4.12.6.3 Updating the memory

In order to avoid data coherency problems, the user should set a flag indicating that he is currently updating the memory region of a specific sub-block. When the flag is set the SRM will not attempt to replace the parameters relevant to the specific sub-block currently being updated by the user.

The user should clear this flag when he completes the update, and the parameters are ready to be used.

The flag is the corresponding **SRM_MODE** field for each sub-block. This field controls the SRM logic that handles the sub-blocks registers

- 00 ARM platform is allowed to access the sub-block's region in the RAM; The automatic swapping mechanism is disabled.
- 01 The SRM logic is controlled by the FSU. The update will be done of the next frame.
- 10 The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame
- 11 Update now. The SRM is controlled by the ARM platform. The Register will be update now

Each sub-block uses the SRM mechanism according to the sub-block's behavior, the table below summarizes the SRM support for each sub-block

Sub-block	Switching between 2 flows support	Updating parameters between frames	Comment
CSI1, CSI0	NO	YES	SRM_MODE can be 00 or 01. The update will happen only once.
			When set to 01: after the update the state machine is automatically moved to 00 mode. It is recommended to make sure that the first frame has started by polling the corresponding NFACK bit before setting the SRM_MODE
DI1, DI0	NO	YES	DI0, DI1 parameters are needed when clock change is performed (Clock Change procedure).
			SRM_MODE can be 00 or 01. The update will happen only once.
			When set to 01: after the update the state machine is automatically moved to 00 mode
DC	YES	NO	SRM_MODE can be 00 or 10.
DP	YES	NO	SRM_MODE can be 00, 10 or 11.
			When set to 11: after the update the state machine is automatically moved to 10 mode

Table 37-37. SRM support per Sub-block

Table 37-37. SRM support per Sub-block

Sub-block	Switching between 2 flows support	Updating parameters between frames	Comment
			10 is not supported for SYNC flows

In order to update parameters the user should monitor the SRM_BUSY bit of the corresponding sub-block. When the SRM is not busy the user should set the SRM_MODE to 00. The user will now update the register file in the memory. When done the user should switch the SRM MODE field to the desired mode.

37.4.12.6.4 SRM priority

The SRM updates the registers according to a pre defined priority. The priority is set according to the SRM_PRI bits of each sub-block. The user must set a unique value for each sub-block.

37.4.12.6.5 SRM entries mapping

The table below maps any IPU register to an address in the SRM. The registers marked as NONE do not have an SRM entry

PG column indicates if this register is saved during power gating mode

LPSR column indicates if this register is swapped during low power screen refresh mode (LPSR)

Table 37-38. IPU SRM entries mapping

Register's name	Register's address	SRM entry	PG	LPSR
IPU_CONF	0x0000_0000	NONE	YES	NO
IPU_SISG_CTRL0	0x0000004	NONE	YES	NO
IPU_SISG_CTRL1	0x00000008	NONE	YES	NO
IPU_SISG_SET_1	0x000000C	NONE	YES	NO
IPU_SISG_SET_2	0x00000010	NONE	YES	NO
IPU_SISG_SET_3	0x0000014	NONE	YES	NO
IPU_SISG_SET_4	0x00000018	NONE	YES	NO
IPU_SISG_SET_5	0x000001C	NONE	YES	NO
IPU_SISG_SET_6	0x00000020	NONE	YES	NO
IPU_SISG_CLR_1	0x00000024	NONE	YES	NO
IPU_SISG_CLR_2	0x00000028	NONE	YES	NO
IPU_SISG_CLR_3	0x0000002C	NONE	YES	NO
IPU_SISG_CLR_4	0x00000030	NONE	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_SISG_CLR_5	0x00000034	NONE	YES	NO
IPU_SISG_CLR_6	0x00000038	NONE	YES	NO
IPU_INT_CTRL_1	0x000003C	NONE	YES	NO
IPU_INT_CTRL_2	0x0000040	NONE	YES	NO
IPU_INT_CTRL_3	0x00000044	NONE	YES	NO
IPU_INT_CTRL_4	0x00000048	NONE	YES	NO
IPU_INT_CTRL_5	0x000004C	NONE	YES	NO
IPU_INT_CTRL_6	0x0000050	NONE	YES	NO
IPU_INT_CTRL_7	0x0000054	NONE	YES	NO
IPU_INT_CTRL_8	0x0000058	NONE	YES	NO
IPU_INT_CTRL_9	0x000005C	NONE	YES	NO
IPU_INT_CTRL_10	0x0000060	NONE	YES	NO
IPU_INT_CTRL_11	0x0000064	NONE	YES	NO
IPU_INT_CTRL_12	0x0000068	NONE	YES	NO
IPU_INT_CTRL_13	0x000006C	NONE	YES	NO
IPU_INT_CTRL_14	0x0000070	NONE	YES	NO
IPU_INT_CTRL_15	0x00000074	NONE	YES	NO
IPU_SDMA_EVENT_1	0x0000078	NONE	YES	NO
IPU_SDMA_EVENT_2	0x000007C	NONE	YES	NO
IPU_SDMA_EVENT_3	0x00000080	NONE	YES	NO
IPU_SDMA_EVENT_4	0x00000084	NONE	YES	NO
IPU_SDMA_EVENT_7	0x00000088	NONE	YES	NO
IPU_SDMA_EVENT_8	0x0000008C	NONE	YES	NO
IPU_SDMA_EVENT_11	0x0000090	NONE	YES	NO
IPU_SDMA_EVENT_12	0x0000094	NONE	YES	NO
IPU_SDMA_EVENT_13	0x0000098	NONE	YES	NO
IPU_SDMA_EVENT_14	0x000009C	NONE	YES	NO
IPU_SRM_PRI1	0x00000A0	NONE	YES	NO
IPU_SRM_PRI2	0x00000A4	NONE	YES	NO
IPU_FS_PROC_FLOW1	0x000000A8	NONE	YES	NO
IPU_FS_PROC_FLOW2	0x00000AC	NONE	YES	NO
IPU_FS_PROC_FLOW3	0x00000B0	NONE	YES	NO
IPU_FS_DISP_FLOW1	0x00000B4	NONE	YES	NO
IPU_FS_DISP_FLOW2	0x000000B8	NONE	YES	NO
IPU_SKIP	0x000000BC	NONE	YES	NO
IPU_DISP_ALT_CONF	0x00000C0	NONE	YES	NO
IPU_DISP_GEN	0x00000C4	NONE	YES	NO
IPU_DISP_ALT1	0x000000C8	NONE	YES	NO
IPU_DISP_ALT2	0x000000CC	NONE	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DISP_ALT3	0x00000D0	NONE	YES	NO
IPU_DISP_ALT4	0x000000D4	NONE	YES	NO
IPU_SNOOP	0x000000D8	NONE	YES	NO
IPU_MEM_RST	0x00000DC	NONE	YES	NO
IPU_PM	0x000000E0	NONE	YES	NO
IPU_GPR	0x000000E4	NONE	YES	NO
IPU_CH_DB_MODE_SEL_0	0x00000150	NONE	YES	NO
IPU_CH_DB_MODE_SEL_1	0x00000154	NONE	YES	NO
IPU_ALT_CH_DB_MODE_SEL_0	0x00000168	NONE	YES	NO
IPU_ALT_CH_DB_MODE_SEL_1	0x0000016C	NONE	YES	NO
IPU_CH_TRB_MODE_SEL_0	0x00000178	NONE	YES	NO
IPU_CH_TRB_MODE_SEL_1	0x0000017C	NONE	YES	NO
IPU_INT_STAT_1	0x00000200	NONE	NO	NO
IPU_INT_STAT_2	0x00000204	NONE	NO	NO
IPU_INT_STAT_3	0x00000208	NONE	NO	NO
IPU_INT_STAT_4	0x0000020C	NONE	NO	NO
IPU_INT_STAT_5	0x00000210	NONE	NO	NO
IPU_INT_STAT_6	0x00000214	NONE	NO	NO
IPU_INT_STAT_7	0x00000218	NONE	NO	NO
IPU_INT_STAT_8	0x0000021C	NONE	NO	NO
IPU_INT_STAT_9	0x00000220	NONE	NO	NO
IPU_INT_STAT_10	0x00000224	NONE	NO	NO
IPU_INT_STAT_11	0x00000228	NONE	NO	NO
IPU_INT_STAT_12	0x0000022C	NONE	NO	NO
IPU_INT_STAT_13	0x00000230	NONE	NO	NO
IPU_INT_STAT_14	0x00000234	NONE	NO	NO
IPU_INT_STAT_15	0x00000238	NONE	NO	NO
IPU_CUR_BUF_0	0x0000023C	NONE	NO	NO
IPU_CUR_BUF_1	0x00000240	NONE	NO	NO
IPU_ALT_CUR_BUF_0	0x00000244	NONE	NO	NO
IPU_ALT_CUR_BUF_1	0x00000248	NONE	NO	NO
IPU_SRM_STAT	0x0000024C	NONE	NO	NO
IPU_PROC_TASKS_STAT	0x00000250	NONE	NO	NO
IPU_DISP_TASKS_STAT	0x00000254	NONE	NO	NO
IPU_TRIPLE_CUR_BUF_0	0x00000258	NONE	NO	NO
IPU_TRIPLE_CUR_BUF_1	0x0000025C	NONE	NO	NO
IPU_TRIPLE_CUR_BUF_2	0x00000260	NONE	NO	NO
IPU_TRIPLE_CUR_BUF_3	0x00000264	NONE	NO	NO
IPU_CH_BUF0_RDY0	0x00000268	NONE	NO	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_CH_BUF0_RDY1	0x0000026C	NONE	NO	NO
IPU_CH_BUF1_RDY0	0x00000270	NONE	NO	NO
IPU_CH_BUF1_RDY1	0x00000274	NONE	NO	NO
IPU_ALT_CH_BUF0_RDY0	0x00000278	NONE	NO	NO
IPU_ALT_CH_BUF0_RDY1	0x0000027C	NONE	NO	NO
IPU_ALT_CH_BUF1_RDY0	0x00000280	NONE	NO	NO
IPU_ALT_CH_BUF1_RDY1	0x00000284	NONE	NO	NO
IPU_CH_BUF2_RDY0	0x00000288	NONE	NO	NO
IPU_CH_BUF2_RDY1	0x0000028C	NONE	NO	NO
IPU_IDMAC_CONF	0x00008000	NONE	YES	NO
IPU_IDMAC_CH_EN_1	0x00008004	NONE	YES	NO
IPU_IDMAC_CH_EN_2	0x00008008	NONE	YES	NO
IPU_IDMAC_SEP_ALPHA	0x0000800C	NONE	YES	NO
IPU_IDMAC_ALT_SEP_ALPHA	0x00008010	NONE	YES	NO
IPU_IDMAC_CH_PRI_1	0x00008014	NONE	YES	NO
IPU_IDMAC_CH_PRI_2	0x00008018	NONE	YES	NO
IIPU_DMAC_WM_EN_1	0x0000801C	NONE	YES	NO
IPU_IDMAC_WM_EN_2	0x00008020	NONE	YES	NO
IPU_IDMAC_LOCK_EN_1	0x00008024	NONE	YES	NO
IPU_IDMAC_LOCK_EN_2	0x00008028	NONE	YES	NO
IPU_IDMAC_SUB_ADDR_0	0x0000802C	NONE	YES	NO
IPU_IDMAC_SUB_ADDR_1	0x00008030	NONE	YES	NO
IPU_IDMAC_SUB_ADDR_2	0x00008034	NONE	YES	NO
IPU_IDMAC_SUB_ADDR_3	0x00008038	NONE	YES	NO
IPU_IDMAC_SUB_ADDR_4	0x0000803C	NONE	YES	NO
IPU_IDMAC_BNDM_EN_1	0x00008040	NONE	YES	NO
IPU_IDMAC_BNDM_EN_2	0x00008044	NONE	YES	NO
IPU_IDMAC_SC_CORD	0x00008048	NONE	YES	NO
IPU_IDMAC_SC_CORD1	0x0000804C	NONE	YES	NO
IPU_IDMAC_CH_BUSY_1	0x00008100	NONE	NO	NO
IPU_IDMAC_CH_BUSY_2	0x00008104	NONE	NO	NO
IPU_DP_COM_CONF_SYNC	0x1F40000	0x1F40000	YES	YES
IPU_DP_GRAPH_WIND_CTRL_SYNC	0x1F40004	0x1F40004	YES	YES
IPU_DP_FG_POS_SYNC	0x1F40008	0x1F40008	YES	YES
IPU_DP_CUR_POS_SYNC	0x1F4000C	0x1F4000C	YES	YES
IPU_DP_CUR_MAP_SYNC	0x1F40010	0x1F40010	YES	YES
IPU_DP_GAMMA_C_SYNC_0	0x1F40014	0x1F40014	YES	YES
IPU_DP_GAMMA_C_SYNC_1	0x1F40018	0x1F40018	YES	YES
IPU_DP_GAMMA_C_SYNC_2	0x1F4001C	0x1F4001C	YES	YES

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DP_GAMMA_C_SYNC_3	0x1F40020	0x1F40020	YES	YES
IPU_DP_GAMMA_C_SYNC_4	0x1F40024	0x1F40024	YES	YES
IPU_DP_GAMMA_C_SYNC_5	0x1F40028	0x1F40028	YES	YES
IPU_DP_GAMMA_C_SYNC_6	0x1F4002C	0x1F4002C	YES	YES
IPU_DP_GAMMA_C_SYNC_7	0x1F40030	0x1F40030	YES	YES
IPU_DP_GAMMA_S_SYNC_0	0x1F40034	0x1F40034	YES	YES
IPU_DP_GAMMA_S_SYNC_1	0x1F40038	0x1F40038	YES	YES
IPU_DP_GAMMA_S_SYNC_2	0x1F4003C	0x1F4003C	YES	YES
IPU_DP_GAMMA_S_SYNC_3	0x1F40040	0x1F40040	YES	YES
IPU_DP_CSCA_SYNC_0	0x1F40044	0x1F40044	YES	YES
IPU_DP_CSCA_SYNC_1	0x1F40048	0x1F40048	YES	YES
IPU_DP_CSCA_SYNC_2	0x1F4004C	0x1F4004C	YES	YES
IPU_DP_CSCA_SYNC_3	0x1F40050	0x1F40050	YES	YES
IPU_DP_CSC_SYNC_0	0x1F40054	0x1F40054	YES	YES
IPU_DP_CSC_SYNC_1	0x1F40058	0x1F40058	YES	YES
IPU_DP_CUR_POS_ALT	0x1F4005C	0x1F4005C	YES	YES
IPU_DP_COM_CONF_ASYNC0	0x1F40060	0x1F40060	YES	YES
IPU_DP_GRAPH_WIND_CTRL_ASYNC0	0x1F40064	0x1F40064	YES	YES
IPU_DP_FG_POS_ASYNC0	0x1F40068	0x1F40068	YES	YES
IPU_DP_CUR_POS_ASYNC0	0x1F4006C	0x1F4006C	YES	YES
IPU_DP_CUR_MAP_ASYNC0	0x1F40070	0x1F40070	YES	YES
IPU_DP_GAMMA_C_ASYNC0_0	0x1F40074	0x1F40074	YES	YES
IPU_DP_GAMMA_C_ASYNC0_1	0x1F40078	0x1F40078	YES	YES
IPU_DP_GAMMA_C_ASYNC0_2	0x1F4007C	0x1F4007C	YES	YES
IPU_DP_GAMMA_C_ASYNC0_3	0x1F40080	0x1F40080	YES	YES
IPU_DP_GAMMA_C_ASYNC0_4	0x1F40084	0x1F40084	YES	YES
IPU_DP_GAMMA_C_ASYNC0_5	0x1F40088	0x1F40088	YES	YES
IPU_DP_GAMMA_C_ASYNC0_6	0x1F4008C	0x1F4008C	YES	YES
IPU_DP_GAMMA_C_ASYNC0_7	0x1F40090	0x1F40090	YES	YES
IPU_DP_GAMMA_S_ASYNC0_0	0x1F40094	0x1F40094	YES	YES
IPU_DP_GAMMA_S_ASYNC0_1	0x1F40098	0x1F40098	YES	YES
IPU_DP_GAMMA_S_ASYNC0_2	0x1F4009C	0x1F4009C	YES	YES
IPU_DP_GAMMA_S_ASYNC0_3	0x1F400A0	0x1F400A0	YES	YES
IPU_DP_CSCA_ASYNC0_0	0x1F400A4	0x1F400A4	YES	YES
IPU_DP_CSCA_ASYNC0_1	0x1F400A8	0x1F400A8	YES	YES
IPU_DP_CSCA_ASYNC0_2	0x1F400AC	0x1F400AC	YES	YES
IPU_DP_CSCA_ASYNC0_3	0x1F400B0	0x1F400B0	YES	YES
IPU_DP_CSC_ASYNC0_0	0x1F400B4	0x1F400B4	YES	YES
IPU_DP_CSC_ASYNC0_1	0x1F400B8	0x1F400B8	YES	YES

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DP_COM_CONF_ASYNC1	0x1F400BC	0x1F400BC	YES	YES
IPU_DP_GRAPH_WIND_CTRL_ASYNC1	0x1F400C0	0x1F400C0	YES	YES
IPU_DP_FG_POS_ASYNC1	0x1F400C4	0x1F400C4	YES	YES
IPU_DP_CUR_POS_ASYNC1	0x1F400C8	0x1F400C8	YES	YES
IPU_DP_CUR_MAP_ASYNC1	0x1F400CC	0x1F400CC	YES	YES
IPU_DP_GAMMA_C_ASYNC1_0	0x1F400D0	0x1F400D0	YES	YES
IPU_DP_GAMMA_C_ASYNC1_1	0x1F400D4	0x1F400D4	YES	YES
IPU_DP_GAMMA_C_ASYNC1_2	0x1F400D8	0x1F400D8	YES	YES
IPU_DP_GAMMA_C_ASYNC1_3	0x1F400DC	0x1F400DC	YES	YES
IPU_DP_GAMMA_C_ASYNC1_4	0x1F400E0	0x1F400E0	YES	YES
IPU_DP_GAMMA_C_ASYNC1_5	0x1F400E4	0x1F400E4	YES	YES
IPU_DP_GAMMA_C_ASYNC1_6	0x1F400E8	0x1F400E8	YES	YES
IPU_DP_GAMMA_C_ASYNC1_7	0x1F400EC	0x1F400EC	YES	YES
IPU_DP_GAMMA_S_ASYNC1_0	0x1F400F0	0x1F400F0	YES	YES
IPU_DP_GAMMA_S_ASYNC1_1	0x1F400F4	0x1F400F4	YES	YES
IPU_DP_GAMMA_S_ASYNC1_2	0x1F400F8	0x1F400F8	YES	YES
IPU_DP_GAMMA_S_ASYNC1_3	0x1F400FC	0x1F400FC	YES	YES
IPU_DP_CSCA_ASYNC1_0	0x1F40100	0x1F40100	YES	YES
IPU_DP_CSCA_ASYNC1_1	0x1F40104	0x1F40104	YES	YES
IPU_DP_CSCA_ASYNC1_2	0x1F40108	0x1F40108	YES	YES
IPU_DP_CSCA_ASYNC1_3	0x1F4010C	0x1F4010C	YES	YES
IPU_DP_CSC_ASYNC1_0	0x1F40110	0x1F40110	YES	YES
IPU_DP_CSC_ASYNC1_1	0x1F40114	0x1F40114	YES	YES
IPU_DP_DEBUG_CNT	0x000180BC	NONE	NO	NO
IPU_DP_DEBUG_STAT	0x000180C0	NONE	NO	NO
IPU_IC_CONF	0x00020000	NONE	YES	NO
IPU_IC_PRP_ENC_RSC	0x00020004	NONE	YES	NO
IPU_IC_PRP_VF_RSC	0x00020008	NONE	YES	NO
IPU_IC_PP_RSC	0x0002000C	NONE	YES	NO
IPU_IC_CMBP_1	0x00020010	NONE	YES	NO
IPU_IC_CMBP_2	0x00020014	NONE	YES	NO
IPU_IC_IDMAC_1	0x00020018	NONE	YES	NO
IPU_IC_IDMAC_2	0x0002001C	NONE	YES	NO
IPU_IC_IDMAC_3	0x00020020	NONE	YES	NO
IPU_IC_IDMAC_4	0x00020024	NONE	YES	NO
IPU_CSI0_SENS_CONF	0x00030000	NONE	YES	NO
IPU_CSI0_SENS_FRM_SIZE	0x00030004	NONE	YES	NO
IPU_CSI0_ACT_FRM_SIZE	0x00030008	NONE	YES	NO
IPU_CSI0_OUT_FRM_CTRL	0x0003000C	NONE	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_CSI0_TST_CTRL	0x00030010	NONE	YES	NO
IPU_CSI0_CCIR_CODE_1	0x00030014	NONE	YES	NO
IPU_CSI0_CCIR_CODE_2	0x00030018	NONE	YES	NO
IPU_CSI0_CCIR_CODE_3	0x0003001C	NONE	YES	NO
IPU_CSI0_DI	0x00030020	NONE	YES	NO
IPU_CSI0_SKIP	0x00030024	NONE	YES	NO
IPU_CSI0_CPD_CTRL	0x00030028	0x1F40314	YES	NO
IPU_CSI0_CPD_RC_0	0x0003002C	0x1F40318	YES	NO
IPU_CSI0_CPD_RC_1	0x00030030	0x1F4031C	YES	NO
IPU_CSI0_CPD_RC_2	0x00030034	0x1F40320	YES	NO
IPU_CSI0_CPD_RC_3	0x00030038	0x1F40324	YES	NO
IPU_CSI0_CPD_RC_4	0x0003003C	0x1F40328	YES	NO
IPU_CSI0_CPD_RC_5	0x00030040	0x1F4032C	YES	NO
IPU_CSI0_CPD_RC_6	0x00030044	0x1F40330	YES	NO
IPU_CSI0_CPD_RC_7	0x00030048	0x1F40334	YES	NO
IPU_CSI0_CPD_RS_0	0x0003004C	0x1F40338	YES	NO
IPU_CSI0_CPD_RS_1	0x00030050	0x1F4033C	YES	NO
IPU_CSI0_CPD_RS_2	0x00030054	0x1F40340	YES	NO
IPU_CSI0_CPD_RS_3	0x00030058	0x1F40344	YES	NO
IPU_CSI0_CPD_GRC_0	0x0003005C	0x1F40348	YES	NO
IPU_CSI0_CPD_GRC_1	0x00030060	0x1F4034C	YES	NO
IPU_CSI0_CPD_GRC_2	0x00030064	0x1F40350	YES	NO
IPU_CSI0_CPD_GRC_3	0x00030068	0x1F40354	YES	NO
IPU_CSI0_CPD_GRC_4	0x0003006C	0x1F40358	YES	NO
IPU_CSI0_CPD_GRC_5	0x00030070	0x1F4035C	YES	NO
IPU_CSI0_CPD_GRC_6	0x00030074	0x1F40360	YES	NO
IPU_CSI0_CPD_GRC_7	0x00030078	0x1F40364	YES	NO
IPU_CSI0_CPD_GRS_0	0x0003007C	0x1F40368	YES	NO
IPU_CSI0_CPD_GRS_1	0x00030080	0x1F4036C	YES	NO
IPU_CSI0_CPD_GRS_2	0x00030084	0x1F40370	YES	NO
IPU_CSI0_CPD_GRS_3	0x00030088	0x1F40374	YES	NO
IPU_CSI0_CPD_GBC_0	0x0003008C	0x1F40378	YES	NO
IPU_CSI0_CPD_GBC_1	0x00030090	0x1F4037C	YES	NO
IPU_CSI0_CPD_GBC_2	0x00030094	0x1F40380	YES	NO
IPU_CSI0_CPD_GBC_3	0x00030098	0x1F40384	YES	NO
IPU_CSI0_CPD_GBC_4	0x0003009C	0x1F40388	YES	NO
IPU_CSI0_CPD_GBC_5	0x000300A0	0x1F4038C	YES	NO
IPU_CSI0_CPD_GBC_6	0x000300A4	0x1F40390	YES	NO
IPU_CSI0_CPD_GBC_7	0x000300A8	0x1F40394	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_CSI0_CPD_GBS_0	0x000300AC	0x1F40398	YES	NO
IPU_CSI0_CPD_GBS_1	0x000300B0	0x1F4039C	YES	NO
IPU_CSI0_CPD_GBS_2	0x000300B4	0x1F403A0	YES	NO
IPU_CSI0_CPD_GBS_3	0x000300B8	0x1F403A4	YES	NO
IPU_CSI0_CPD_BC_0	0x000300BC	0x1F403A8	YES	NO
IPU_CSI0_CPD_BC_1	0x000300C0	0x1F403AC	YES	NO
IPU_CSI0_CPD_BC_2	0x000300C4	0x1F403B0	YES	NO
IPU_CSI0_CPD_BC_3	0x000300C8	0x1F403B4	YES	NO
IPU_IPU_CSI0_CPD_BC_4	0x000300CC	0x1F403B8	YES	NO
IPU_CSI0_CPD_BC_5	0x000300D0	0x1F403BC	YES	NO
IPU_CSI0_CPD_BC_6	0x000300D4	0x1F403C0	YES	NO
IPU_CSI0_CPD_BC_7	0x000300D8	0x1F403C4	YES	NO
IPU_CSI0_CPD_BS_0	0x000300DC	0x1F403C8	YES	NO
IPU_CSI0_CPD_BS_1	0x000300E0	0x1F403CC	YES	NO
IPU_CSI0_CPD_BS_2	0x000300E4	0x1F403D0	YES	NO
IPU_CSI0_CPD_BS_3	0x000300E8	0x1F403D4	YES	NO
IPU_CSI0_CPD_OFFSET1	0x000300EC	0x1F403D8	YES	NO
IPU_CSI0_CPD_OFFSET2	0x000300F0	0x1F403DC	YES	NO
IPU_CSI1_SENS_CONF	0x00038000	NONE	YES	NO
IPU_CSI1_SENS_FRM_SIZE	0x00038004	NONE	YES	NO
IPU_CSI1_ACT_FRM_SIZE	0x00038008	NONE	YES	NO
IPU_CSI1_OUT_FRM_CTRL	0x0003800C	NONE	YES	NO
IPU_CSI1_TST_CTRL	0x00038010	NONE	YES	NO
IPU_CSI1_CCIR_CODE_1	0x00038014	NONE	YES	NO
IPU_CSI1_CCIR_CODE_2	0x00038018	NONE	YES	NO
IPU_CSI1_CCIR_CODE_3	0x0003801C	NONE	YES	NO
IPU_CSI1_DI	0x00038020	NONE	YES	NO
IPU_CSI1_SKIP	0x00038024	NONE	YES	NO
IPU_CSI1_CPD_CTRL	0x00038028	0x1F403E0	YES	NO
IPU_CSI1_CPD_RC_0	0x0003802C	0x1F403E4	YES	NO
IPU_CSI1_CPD_RC_1	0x00038030	0x1F403E8	YES	NO
IPU_CSI1_CPD_RC_2	0x00038034	0x1F403EC	YES	NO
IPU_CSI1_CPD_RC_3	0x00038038	0x1F403F0	YES	NO
IPU_CSI1_CPD_RC_4	0x0003803C	0x1F403F4	YES	NO
IPU_CSI1_CPD_RC_5	0x00038040	0x1F403F8	YES	NO
IPU_CSI1_CPD_RC_6	0x00038044	0x1F403FC	YES	NO
IPU_CSI1_CPD_RC_7	0x00038048	0x1F40400	YES	NO
IPU_CSI1_CPD_RS_0	0x0003804C	0x1F40404	YES	NO
IPU_CSI1_CPD_RS_1	0x00038050	0x1F40408	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_CSI1_CPD_RS_2	0x00038054	0x1F4040C	YES	NO
IPU_CSI1_CPD_RS_3	0x00038058	0x1F40410	YES	NO
IPU_CSI1_CPD_GRC_0	0x0003805C	0x1F40414	YES	NO
IPU_CSI1_CPD_GRC_1	0x00038060	0x1F40418	YES	NO
IPU_CSI1_CPD_GRC_2	0x00038064	0x1F4041C	YES	NO
IPU_CSI1_CPD_GRC_3	0x00038068	0x1F40420	YES	NO
IPU_CSI1_CPD_GRC_4	0x0003806C	0x1F40424	YES	NO
IPU_CSI1_CPD_GRC_5	0x00038070	0x1F40428	YES	NO
IPU_CSI1_CPD_GRC_6	0x00038074	0x1F4042C	YES	NO
IPU_CSI1_CPD_GRC_7	0x00038078	0x1F40430	YES	NO
IPU_CSI1_CPD_GRS_0	0x0003807C	0x1F40434	YES	NO
IPU_CSI1_CPD_GRS_1	0x00038080	0x1F40438	YES	NO
IPU_CSI1_CPD_GRS_2	0x00038084	0x1F4043C	YES	NO
IPU_CSI1_CPD_GRS_3	0x00038088	0x1F40440	YES	NO
IPU_CSI1_CPD_GBC_0	0x0003808C	0x1F40444	YES	NO
IPU_CSI1_CPD_GBC_1	0x00038090	0x1F40448	YES	NO
IPU_CSI1_CPD_GBC_2	0x00038094	0x1F4044C	YES	NO
IPU_CSI1_CPD_GBC_3	0x00038098	0x1F40450	YES	NO
IPU_CSI1_CPD_GBC_4	0x0003809C	0x1F40454	YES	NO
IPU_CSI1_CPD_GBC_5	0x000380A0	0x1F40458	YES	NO
IPU_CSI1_CPD_GBC_6	0x000380A4	0x1F4045C	YES	NO
IPU_CSI1_CPD_GBC_7	0x000380A8	0x1F40460	YES	NO
IPU_CSI1_CPD_GBS_0	0x000380AC	0x1F40464	YES	NO
IPU_CSI1_CPD_GBS_1	0x000380B0	0x1F40468	YES	NO
IPU_CSI1_CPD_GBS_2	0x000380B4	0x1F4046C	YES	NO
IPU_CSI1_CPD_GBS_3	0x000380B8	0x1F40470	YES	NO
IPU_CSI1_CPD_BC_0	0x000380BC	0x1F40474	YES	NO
IPU_CSI1_CPD_BC_1	0x000380C0	0x1F40478	YES	NO
IPU_CSI1_CPD_BC_2	0x000380C4	0x1F4047C	YES	NO
IPU_CSI1_CPD_BC_3	0x000380C8	0x1F40480	YES	NO
IPU_CSI1_CPD_BC_4	0x000380CC	0x1F40484	YES	NO
IPU_CSI1_CPD_BC_5	0x000380D0	0x1F40488	YES	NO
IPU_CSI1_CPD_BC_6	0x000380D4	0x1F4048C	YES	NO
IPU_CSI1_CPD_BC_7	0x000380D8	0x1F40490	YES	NO
IPU_CSI1_CPD_BS_0	0x000380DC	0x1F40494	YES	NO
IPU_CSI1_CPD_BS_1	0x000380E0	0x1F40498	YES	NO
IPU_CSI1_CPD_BS_2	0x000380E4	0x1F4049C	YES	NO
IPU_CSI1_CPD_BS_3	0x000380E8	0x1F404A0	YES	NO
IPU_CSI1_CPD_OFFSET1	0x000380EC	0x1F404A4	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_CSI1_CPD_OFFSET2	0x000380F0	0x1F404A8	YES	NO
IPU_DI0_GENERAL	0x00040000	0x1F404E4	YES	YES
IPU_DI0_BS_CLKGEN0	0x00040004	0x1F404E8	YES	YES
IPU_DI0_BS_CLKGEN1	0x00040008	0x1F404EC	YES	YES
IPU_DI0_SW_GEN0_1	0x0004000C	0x1F404F0	YES	YES
IPU_DI0_SW_GEN0_2	0x00040010	0x1F404F4	YES	YES
IPU_DI0_SW_GEN0_3	0x00040014	0x1F404F8	YES	YES
IPU_DI0_SW_GEN0_4	0x00040018	0x1F404FC	YES	YES
IPU_DI0_SW_GEN0_5	0x0004001C	0x1F40500	YES	YES
IPU_DI0_SW_GEN0_6	0x00040020	0x1F40504	YES	YES
IPU_DI0_SW_GEN0_7	0x00040024	0x1F40508	YES	YES
IPU_DI0_SW_GEN0_8	0x00040028	0x1F4050C	YES	YES
IPU_DI0_SW_GEN0_9	0x0004002C	0x1F40510	YES	YES
IPU_DI0_SW_GEN1_1	0x00040030	0x1F40514	YES	YES
IPU_DI0_SW_GEN1_2	0x00040034	0x1F40518	YES	YES
IPU_DI0_SW_GEN1_3	0x00040038	0x1F4051C	YES	YES
IPU_DI0_SW_GEN1_4	0x0004003C	0x1F40520	YES	YES
IPU_DI0_SW_GEN1_5	0x00040040	0x1F40524	YES	YES
IPU_DI0_SW_GEN1_6	0x00040044	0x1F40528	YES	YES
IPU_DI0_SW_GEN1_7	0x00040048	0x1F4052C	YES	YES
IPU_DI0_SW_GEN1_8	0x0004004C	0x1F40530	YES	YES
IPU_DI0_SW_GEN1_9	0x00040050	0x1F40534	YES	YES
IPU_DI0_SYNC_AS_GEN	0x00040054	0x1F40538	YES	YES
IPU_DI0_DW_GEN_0	0x00040058	0x1F4053C	YES	YES
IPU_DI0_DW_GEN_1	0x0004005C	0x1F40540	YES	YES
IPU_DI0_DW_GEN_2	0x00040060	0x1F40544	YES	YES
IPU_DI0_DW_GEN_3	0x00040064	0x1F40548	YES	YES
IPU_DI0_DW_GEN_4	0x00040068	0x1F4054C	YES	YES
IPU_DI0_DW_GEN_5	0x0004006C	0x1F40550	YES	YES
IPU_DI0_DW_GEN_6	0x00040070	0x1F40554	YES	YES
IPU_DI0_DW_GEN_7	0x00040074	0x1F40558	YES	YES
IPU_DI0_DW_GEN_8	0x00040078	0x1F4055C	YES	YES
IPU_DI0_DW_GEN_9	0x0004007C	0x1F40560	YES	YES
IPU_DI0_DW_GEN_10	0x00040080	0x1F40564	YES	YES
IPU_DI0_DW_GEN_11	0x00040084	0x1F40568	YES	YES
IPU_DI0_DW_SET0_0	0x00040088	0x1F4056C	YES	YES
IPU_DI0_DW_SET0_1	0x0004008C	0x1F40570	YES	YES
IPU_DI0_DW_SET0_2	0x00040090	0x1F40574	YES	YES
IPU_DI0_DW_SET0_3	0x00040094	0x1F40578	YES	YES

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DI0_DW_SET0_4	0x00040098	0x1F4057C	YES	YES
IPU_DI0_DW_SET0_5	0x0004009C	0x1F40580 YES		YES
IPU_DI0_DW_SET0_6	0x000400A0	0x1F40584	YES	YES
IPU_DI0_DW_SET0_7	0x000400A4	0x1F40588	YES	YES
IPU_DI0_DW_SET0_8	0x000400A8	0x1F4058C	YES	YES
IPU_DI0_DW_SET0_9	0x000400AC	0x1F40590	YES	YES
IPU_DI0_DW_SET0_10	0x000400B0	0x1F40594	YES	YES
IPU_DI0_DW_SET0_11	0x000400B4	0x1F40598	YES	YES
IPU_DI0_DW_SET1_0	0x000400B8	0x1F4059C	YES	YES
IPU_DI0_DW_SET1_1	0x000400BC	0x1F405A0	YES	YES
IPU_DI0_DW_SET1_2	0x000400C0	0x1F405A4	YES	YES
IPU_DI0_DW_SET1_3	0x000400C4	0x1F405A8	YES	YES
IPU_DI0_DW_SET1_4	0x000400C8	0x1F405AC	YES	YES
IPU_DI0_DW_SET1_5	0x000400CC	0x1F405B0	YES	YES
IPU_DI0_DW_SET1_6	0x000400D0	0x1F405B4	YES	YES
IPU_DI0_DW_SET1_7	0x000400D4	0x1F405B8	YES	YES
IPU_DI0_DW_SET1_8	0x000400D8	0x1F405BC	YES	YES
IPU_DI0_DW_SET1_9	0x000400DC	0x1F405C0	YES	YES
IPU_DI0_DW_SET1_10	0x000400E0	0x1F405C4	YES	YES
IPU_DI0_DW_SET1_11	0x000400E4	0x1F405C8	YES	YES
IPU_DI0_DW_SET2_0	0x000400E8	0x1F405CC	YES	YES
IPU_DI0_DW_SET2_1	0x000400EC	0x1F405D0	YES	YES
IPU_DI0_DW_SET2_2	0x000400F0	0x1F405D4	YES	YES
IPU_DI0_DW_SET2_3	0x000400F4	0x1F405D8	YES	YES
IPU_DI0_DW_SET2_4	0x000400F8	0x1F405DC	YES	YES
IPU_DI0_DW_SET2_5	0x000400FC	0x1F405E0	YES	YES
IPU_DI0_DW_SET2_6	0x00040100	0x1F405E4	YES	YES
IPU_DI0_DW_SET2_7	0x00040104	0x1F405E8	YES	YES
IPU_DI0_DW_SET2_8	0x00040108	0x1F405EC	YES	YES
IPU_DI0_DW_SET2_9	0x0004010C	0x1F405F0	YES	YES
IPU_DI0_DW_SET2_10	0x00040110	0x1F405F4	YES	YES
IPU_DI0_DW_SET2_11	0x00040114	0x1F405F8	YES	YES
IPU_DI0_DW_SET3_0	0x00040118	0x1F405FC	YES	YES
IPU_DI0_DW_SET3_1	0x0004011C	0x1F40600	YES	YES
IPU_DI0_DW_SET3_2	0x00040120	0x1F40604	YES	YES
IPU_DI0_DW_SET3_3	0x00040124	0x1F40608	YES	YES
IPU_DI0_DW_SET3_4	0x00040128	0x1F4060C	YES	YES
IPU_DI0_DW_SET3_5	0x0004012C	0x1F40610	YES	YES
IPU_DI0_DW_SET3_6	0x00040130	0x1F40614	YES	YES

Functional Description

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DI0_DW_SET3_7	0x00040134	0x1F40618	YES	YES
IPU_DI0_DW_SET3_8	0x00040138	0x1F4061C YES		YES
IPU_DI0_DW_SET3_9	0x0004013C	0x1F40620	YES	YES
IPU_DI0_DW_SET3_10	0x00040140	0x1F40624	YES	YES
IPU_DI0_DW_SET3_11	0x00040144	0x1F40628	YES	YES
IPU_DI0_STP_REP_1	0x00040148	0x1F4062C	YES	YES
IPU_DI0_STP_REP_2	0x0004014C	0x1F40630	YES	YES
IPU_DI0_STP_REP_3	0x00040150	0x1F40634	YES	YES
IPU_DI0_STP_REP_4	0x00040154	0x1F40638	YES	YES
IPU_DI0_STP_REP_9	0x00040158	0x1F4063C	YES	YES
IPU_DI0_SER_CONF	0x0004015C	0x1F40640	YES	YES
IPU_DI0_SSC	0x00040160	0x1F40644	YES	YES
IPU_DI0_POL	0x00040164	0x1F40648	YES	YES
IPU_DI0_AW0	0x00040168	0x1F4064C	YES	YES
IPU_DI0_AW1	0x0004016C	0x1F40650	YES	YES
IPU_DI0_SCR_CONF	0x00040170	0x1F40654	YES	YES
IPU_DI0_STAT	0x00040174	NONE	NO	NO
IPU_DI1_GENERAL	0x00048000	0x1F40658	YES	YES
IPU_DI1_BS_CLKGEN0	0x00048004	0x1F4065C	YES	YES
IPU_DI1_BS_CLKGEN1	0x00048008	0x1F40660	YES	YES
IPU_DI1_SW_GEN0_1	0x0004800C	0x1F40664	YES	YES
IPU_DI1_SW_GEN0_2	0x00048010	0x1F40668	YES	YES
IPU_DI1_SW_GEN0_3	0x00048014	0x1F4066C	YES	YES
IPU_DI1_SW_GEN0_4	0x00048018	0x1F40670	YES	YES
IPU_DI1_SW_GEN0_5	0x0004801C	0x1F40674	YES	YES
IPU_DI1_SW_GEN0_6	0x00048020	0x1F40678	YES	YES
IPU_DI1_SW_GEN0_7	0x00048024	0x1F4067C	YES	YES
IPU_DI1_SW_GEN0_8	0x00048028	0x1F40680	YES	YES
IPU_DI1_SW_GEN0_9	0x0004802C	0x1F40684	YES	YES
IPU_DI1_SW_GEN1_1	0x00048030	0x1F40688	YES	YES
IPU_DI1_SW_GEN1_2	0x00048034	0x1F4068C	YES	YES
IPU_DI1_SW_GEN1_3	0x00048038	0x1F40690	YES	YES
IPU_DI1_SW_GEN1_4	0x0004803C	0x1F40694	YES	YES
IPU_DI1_SW_GEN1_5	0x00048040	0x1F40698	YES	YES
IPU_DI1_SW_GEN1_6	0x00048044	0x1F4069C	YES	YES
IPU_DI1_SW_GEN1_7	0x00048048	0x1F406A0	YES	YES
IPU_DI1_SW_GEN1_8	0x0004804C	0x1F406A4	YES	YES
IPU_DI1_SW_GEN1_9	0x00048050	0x1F406A8	YES	YES
IPU_DI1_SYNC_AS_GEN	0x00048054	0x1F406AC	YES	YES

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DI1_DW_GEN_0	0x00048058	0x1F406B0	YES	YES
IPU_DI1_DW_GEN_1	0x0004805C	0x1F406B4 YES		YES
IPU_DI1_DW_GEN_2	0x00048060	0x1F406B8	YES	YES
IPU_DI1_DW_GEN_3	0x00048064	0x1F406BC	YES	YES
IPU_DI1_DW_GEN_4	0x00048068	0x1F406C0	YES	YES
IPU_DI1_DW_GEN_5	0x0004806C	0x1F406C4	YES	YES
IPU_DI1_DW_GEN_6	0x00048070	0x1F406C8	YES	YES
IPU_DI1_DW_GEN_7	0x00048074	0x1F406CC	YES	YES
IPU_DI1_DW_GEN_8	0x00048078	0x1F406D0	YES	YES
IPU_DI1_DW_GEN_9	0x0004807C	0x1F406D4	YES	YES
IPU_DI1_DW_GEN_10	0x00048080	0x1F406D8	YES	YES
IPU_DI1_DW_GEN_11	0x00048084	0x1F406DC	YES	YES
IPU_DI1_DW_SET0_0	0x00048088	0x1F406E0	YES	YES
IPU_DI1_DW_SET0_1	0x0004808C	0x1F406E4	YES	YES
IPU_DI1_DW_SET0_2	0x00048090	0x1F406E8	YES	YES
IPU_DI1_DW_SET0_3	0x00048094	0x1F406EC	YES	YES
IPU_DI1_DW_SET0_4	0x00048098	0x1F406F0	YES	YES
IPU_DI1_DW_SET0_5	0x0004809C	0x1F406F4	YES	YES
IPU_DI1_DW_SET0_6	0x000480A0	0x1F406F8	YES	YES
IPU_DI1_DW_SET0_7	0x000480A4	0x1F406FC	YES	YES
IPU_DI1_DW_SET0_8	0x000480A8	0x1F40700	YES	YES
IPU_DI1_DW_SET0_9	0x000480AC	0x1F40704	YES	YES
IPU_DI1_DW_SET0_10	0x000480B0	0x1F40708	YES	YES
IPU_DI1_DW_SET0_11	0x000480B4	0x1F4070C	YES	YES
IPU_DI1_DW_SET1_0	0x000480B8	0x1F40710	YES	YES
IPU_DI1_DW_SET1_1	0x000480BC	0x1F40714	YES	YES
IPU_DI1_DW_SET1_2	0x000480C0	0x1F40718	YES	YES
IPU_DI1_DW_SET1_3	0x000480C4	0x1F4071C	YES	YES
IPU_DI1_DW_SET1_4	0x000480C8	0x1F40720	YES	YES
IPU_DI1_DW_SET1_5	0x000480CC	0x1F40724	YES	YES
IPU_DI1_DW_SET1_6	0x000480D0	0x1F40728	YES	YES
IPU_DI1_DW_SET1_7	0x000480D4	0x1F4072C	YES	YES
IPU_DI1_DW_SET1_8	0x000480D8	0x1F40730	YES	YES
IPU_DI1_DW_SET1_9	0x000480DC	0x1F40734	YES	YES
IPU_DI1_DW_SET1_10	0x000480E0	0x1F40738	YES	YES
IPU_DI1_DW_SET1_11	0x000480E4	0x1F4073C	YES	YES
IPU_DI1_DW_SET2_0	0x000480E8	0x1F40740	YES	YES
IPU_DI1_DW_SET2_1	0x000480EC	0x1F40744	YES	YES
IPU_DI1_DW_SET2_2	0x000480F0	0x1F40748	YES	YES

Functional Description

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DI1_DW_SET2_3	0x000480F4	0x1F4074C	YES	YES
IPU_DI1_DW_SET2_4	0x000480F8	0x1F40750 YES		YES
IPU_DI1_DW_SET2_5	0x000480FC	0x1F40754 YES		YES
IPU_DI1_DW_SET2_6	0x00048100	0x1F40758	YES	YES
IPU_DI1_DW_SET2_7	0x00048104	0x1F4075C	YES	YES
IPU_DI1_DW_SET2_8	0x00048108	0x1F40760	YES	YES
IPU_DI1_DW_SET2_9	0x0004810C	0x1F40764	YES	YES
IPU_DI1_DW_SET2_10	0x00048110	0x1F40768	YES	YES
IPU_DI1_DW_SET2_11	0x00048114	0x1F4076C	YES	YES
IPU_DI1_DW_SET3_0	0x00048118	0x1F40770	YES	YES
IPU_DI1_DW_SET3_1	0x0004811C	0x1F40774	YES	YES
IPU_DI1_DW_SET3_2	0x00048120	0x1F40778	YES	YES
IPU_DI1_DW_SET3_3	0x00048124	0x1F4077C	YES	YES
IPU_DI1_DW_SET3_4	0x00048128	0x1F40780	YES	YES
IPU_DI1_DW_SET3_5	0x0004812C	0x1F40784	YES	YES
IPU_DI1_DW_SET3_6	0x00048130	0x1F40788	YES	YES
IPU_DI1_DW_SET3_7	0x00048134	0x1F4078C	YES	YES
IPU_DI1_DW_SET3_8	0x00048138	0x1F40790	YES	YES
IPU_DI1_DW_SET3_9	0x0004813C	0x1F40794	YES	YES
IPU_DI1_DW_SET3_10	0x00048140	0x1F40798	YES	YES
IPU_DI1_DW_SET3_11	0x00048144	0x1F4079C	YES	YES
IPU_DI1_STP_REP_1	0x00048148	0x1F407A0	YES	YES
IPU_DI1_STP_REP_2	0x0004814C	0x1F407A4	YES	YES
IPU_DI1_STP_REP_3	0x00048150	0x1F407A8	YES	YES
IPU_DI1_STP_REP_4	0x00048154	0x1F407AC	YES	YES
IPU_DI1_STP_REP_9	0x00048158	0x1F407B0	YES	YES
IPU_DI1_SER_CONF	0x0004815C	0x1F407B4	YES	YES
IPU_DI1_SSC	0x00048160	0x1F407B8	YES	YES
IPU_DI1_POL	0x00048164	0x1F407BC	YES	YES
IPU_DI1_AW0	0x00048168	0x1F407C0	YES	YES
IPU_DI1_AW1	0x0004816C	0x1F407C4	YES	YES
IPU_DI1_SCR_CONF	0x00048170	0x1F407C8	YES	YES
IPU_DI1_STAT	0x00048174	NONE	NO	NO
IPU_SMFC_MAP	0x00050000	NONE	YES	NO
IPU_SMFC_WMC	0x00050004	NONE	YES	NO
IPU_SMFC_BS	0x00050008	NONE	YES	NO
IPU_DC_READ_CH_CONF	0x00058000	NONE	YES	NO
IPU_DC_READ_CH_ADDR	0x00058004	NONE	YES	NO
IPU_DC_RL0_CH_0	0x00058008	NONE	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DC_RL1_CH_0	0x0005800C	NONE	YES	NO
IPU_DC_RL2_CH_0	0x00058010	NONE	YES	NO
IPU_DC_RL3_CH_0	0x00058014	NONE YES		NO
IPU_DC_RL4_CH_0	0x00058018	NONE	YES	NO
IPU_DC_WR_CH_CONF_1	0x0005801C	NONE	YES	NO
IPU_DC_WR_CH_ADDR_1	0x00058020	NONE	YES	NO
IPU_DC_RL0_CH_1	0x00058024	NONE	YES	NO
IPU_DC_RL1_CH_1	0x00058028	NONE	YES	NO
IPU_DC_RL2_CH_1	0x0005802C	NONE	YES	NO
IPU_DC_RL3_CH_1	0x00058030	NONE	YES	NO
IPU_DC_RL4_CH_1	0x00058034	NONE	YES	NO
IPU_DC_WR_CH_CONF_2	0x00058038	0x1F404AC	YES	NO
IPU_DC_WR_CH_ADDR_2	0x0005803C	0x1F404B0	YES	NO
IPU_DC_RL0_CH_2	0x00058040	0x1F404B4	YES	NO
IPU_DC_RL1_CH_2	0x00058044	0x1F404B8	YES	NO
IPU_DC_RL2_CH_2	0x00058048	0x1F404BC	YES	NO
IPU_DC_RL3_CH_2	0x0005804C	0x1F404C0	YES	NO
IPU_DC_RL4_CH_2	0x00058050	0x1F404C4	YES	NO
IPU_DC_CMD_CH_CONF_3	0x00058054	NONE	YES	NO
IPU_DC_CMD_CH_CONF_4	0x00058058	NONE	YES	NO
IPU_DC_WR_CH_CONF_5	0x0005805C	NONE	YES	NO
IPU_DC_WR_CH_ADDR_5	0x00058060	NONE	YES	NO
IPU_DC_RL0_CH_5	0x00058064	NONE	YES	NO
IPU_DC_RL1_CH_5	0x00058068	NONE	YES	NO
IPU_DC_RL2_CH_5	0x0005806C	NONE	YES	NO
IPU_DC_RL3_CH_5	0x00058070	NONE	YES	NO
IPU_DC_RL4_CH_5	0x00058074	NONE	YES	NO
IPU_DC_WR_CH_CONF_6	0x00058078	0x1F404C8	YES	NO
IPU_DC_WR_CH_ADDR_6	0x0005807C	0x1F404CC	YES	NO
IPU_DC_RL0_CH_6	0x00058080	0x1F404D0	YES	NO
IPU_DC_RL1_CH_6	0x00058084	0x1F404D4	YES	NO
IPU_DC_RL2_CH_6	0x00058088	0x1F404D8	YES	NO
IPU_DC_RL3_CH_6	0x0005808C	0x1F404DC	YES	NO
IPU_DC_RL4_CH_6	0x00058090	0x1F404E0 YES		NO
IPU_DC_WR_CH_CONF1_8	0x00058094	NONE	YES	NO
IPU_DC_WR_CH_CONF2_8	0x00058098	NONE YES		NO
IPU_DC_RL1_CH_8	0x0005809C	NONE	YES	NO
IPU_DC_RL2_CH_8	0x000580A0	NONE	YES	NO
IPU_DC_RL3_CH_8	0x000580A4	NONE	YES	NO

Functional Description

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DC_RL4_CH_8	0x000580A8	NONE	YES	NO
IPU_DC_RL5_CH_8	0x000580AC	NONE	YES	NO
IPU_DC_RL6_CH_8	0x000580B0	NONE YES		NO
IPU_DC_WR_CH_CONF1_9	0x000580B4	NONE	YES	NO
IPU_DC_WR_CH_CONF2_9	0x000580B8	NONE	YES	NO
IPU_DC_RL1_CH_9	0x000580BC	NONE	YES	NO
IPU_DC_RL2_CH_9	0x000580C0	NONE	YES	NO
IPU_DC_RL3_CH_9	0x000580C4	NONE	YES	NO
IPU_DC_RL4_CH_9	0x000580C8	NONE	YES	NO
IPU_DC_RL5_CH_9	0x000580CC	NONE	YES	NO
IPU_DC_RL6_CH_9	0x000580D0	NONE	YES	NO
IPU_DC_GEN	0x000580D4	NONE	YES	NO
IPU_DC_DISP_CONF1_0	0x000580D8	NONE	YES	NO
IPU_DC_DISP_CONF1_1	0x000580DC	NONE	YES	NO
IPU_DC_DISP_CONF1_2	0x000580E0	NONE	YES	NO
IPU_DC_DISP_CONF1_3	0x000580E4	NONE	YES	NO
IPU_DC_DISP_CONF2_0	0x000580E8	NONE	YES	NO
IPU_DC_DISP_CONF2_1	0x000580EC	NONE	YES	NO
IPU_DC_DISP_CONF2_2	0x000580F0	NONE	YES	NO
IPU_DC_DISP_CONF2_3	0x000580F4	NONE	YES	NO
IPU_DC_DI0_CONF_1	0x000580F8	NONE	YES	NO
IPU_DC_DI0_CONF_2	0x000580FC	NONE	YES	NO
IPU_DC_DI1_CONF_1	0x00058100	NONE	YES	NO
IPU_DC_DI1_CONF_2	0x00058104	NONE	YES	NO
IPU_DC_MAP_CONF_0	0x00058108	NONE	YES	NO
IPU_DC_MAP_CONF_1	0x0005810C	NONE	YES	NO
IPU_DC_MAP_CONF_2	0x00058110	NONE	YES	NO
IPU_DC_MAP_CONF_3	0x00058114	NONE	YES	NO
IPU_DC_MAP_CONF_4	0x00058118	NONE	YES	NO
IPU_DC_MAP_CONF_5	0x0005811C	NONE	YES	NO
IPU_DC_MAP_CONF_6	0x00058120	NONE	YES	NO
IPU_DC_MAP_CONF_7	0x00058124	NONE	YES	NO
IPU_DC_MAP_CONF_8	0x00058128	NONE	YES	NO
IPU_DC_MAP_CONF_9	0x0005812C	NONE	YES	NO
IPU_DC_MAP_CONF_10	0x00058130	NONE	YES	NO
IPU_DC_MAP_CONF_11	0x00058134	NONE	YES	NO
IPU_DC_MAP_CONF_12	0x00058138	NONE	YES	NO
IPU_DC_MAP_CONF_13	0x0005813C	NONE	YES	NO
IPU_DC_MAP_CONF_14	0x00058140	NONE	YES	NO

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DC_MAP_CONF_15	0x00058144	NONE	YES	NO
IPU_DC_MAP_CONF_16	0x00058148	NONE	YES	NO
IPU_DC_MAP_CONF_17	0x0005814C	NONE	YES	NO
IPU_DC_MAP_CONF_18	0x00058150	NONE	YES	NO
IPU_DC_MAP_CONF_19	0x00058154	NONE	YES	NO
IPU_DC_MAP_CONF_20	0x00058158	NONE	YES	NO
IPU_DC_MAP_CONF_21	0x0005815C	NONE	YES	NO
IPU_DC_MAP_CONF_22	0x00058160	NONE	YES	NO
IPU_DC_MAP_CONF_23	0x00058164	NONE	YES	NO
IPU_DC_MAP_CONF_24	0x00058168	NONE	YES	NO
IPU_DC_MAP_CONF_25	0x0005816C	NONE	YES	NO
IPU_DC_MAP_CONF_26	0x00058170	NONE	YES	NO
IPU_DC_UGDE0_0	0x00058174	NONE	YES	NO
IPU_DC_UGDE0_1	0x00058178	NONE	YES	NO
IPU_DC_UGDE0_2	0x0005817C	NONE	YES	NO
IPU_DC_UGDE0_3	0x00058180	NONE	YES	NO
IPU_DC_UGDE1_0	0x00058184	NONE	YES	NO
IPU_DC_UGDE1_1	0x00058188	NONE	YES	NO
IPU_DC_UGDE1_2	0x0005818C	NONE	YES	NO
IPU_DC_UGDE1_3	0x00058190	NONE	YES	NO
IPU_DC_UGDE2_0	0x00058194	NONE	YES	NO
IPU_DC_UGDE2_1	0x00058198	NONE	YES	NO
IPU_DC_UGDE2_2	0x0005819C	NONE	YES	NO
IPU_DC_UGDE2_3	0x000581A0	NONE	YES	NO
IPU_DC_UGDE3_0	0x000581A4	NONE	YES	NO
IPU_DC_UGDE3_1	0x000581A8	NONE	YES	NO
IPU_DC_UGDE3_2	0x000581AC	NONE	YES	NO
IPU_DC_UGDE3_3	0x000581B0	NONE	YES	NO
IPU_DC_LLA0	0x000581B4	NONE	YES	NO
IPU_DC_LLA1	0x000581B8	NONE	YES	NO
IPU_DC_R_LLA0	0x000581BC	NONE	YES	NO
IPU_DC_R_LLA1	0x000581C0	NONE	YES	NO
IPU_DC_WR_CH_ADDR_5_ALT	0x000581C4	NONE	YES	NO
IPU_DC_STAT	0x000581C8	NONE	NO	NO
IPU_DMFC_RD_CHAN	0x00060000	NONE	YES	NO
IPU_DMFC_WR_CHAN	0x00060004	NONE	YES	NO
IPU_DMFC_WR_CHAN_DEF	0x00060008	NONE	YES	NO
IPU_DMFC_DP_CHAN	0x0006000C	NONE	YES	NO
IPU_DMFC_DP_CHAN_DEF	0x00060010	NONE	YES	NO

Functional Description

Table 37-38. IPU SRM entries mapping (continued)

Register's name	Register's address	SRM entry	PG	LPSR
IPU_DMFC_GENERAL1	0x00060014	NONE	YES	NO
IPU_DMFC_GENERAL2	0x00060018	NONE	YES	NO
IPU_DMFC_IC_CTRL	0x0006001C	NONE	YES	NO
IPU_DMFC_WR_CHAN_ALT	0x00060020	NONE	YES	NO
IPU_DMFC_WR_CHAN_DEF_ALT	0x00060024	NONE	YES	NO
IPU_DMFC_DP_CHAN_ALT	0x00060028	NONE	YES	NO
IPU_DMFC_DP_CHAN_DEF_ALT	0x0006002C	NONE	YES	NO
IPU_DMFC_GENERAL1_ALT	0x00060030	NONE	YES	NO
IPU_DMFC_STAT	0x00060034	NONE	NO	NO
IPU_VDI_FSIZE	0x00068000	NONE	YES	NO
IPU_VDI_C	0x00068004	NONE	YES	NO
IPU_VDI_C2	0x00068008	NONE	YES	NO
IPU_VDI_CMBP_1	0x0006800C	NONE	YES	NO
IPU_VDI_CMBP_2	0x00068010	NONE	YES	NO
IPU_VDI_PS_1	0x00068014	NONE	YES	NO
IPU_VDI_PS_2	0x00068018	NONE	YES	NO
IPU_VDI_PS_3	0x0006801C	NONE	YES	NO
IPU_VDI_PS_4	0x00068020	NONE	YES	NO

37.4.12.7 Memory Access Unit

The Memory Access Unit (MA) supports ARM platform access to the IPU internal memories.

Some of the IPU internal memories are memory mapped. This unit handles accessing these memories. The table below describe the accessible memories and their limitations.

Table 37-41. Internal Memories Access Support and Limitations

Memory	Function	Support and Limitations
lut	IDMAC's look up table	Accessible only when All the IDMAC channels that use the LUT are disabled
cpmem	IDMAC's Channel parameter Memory	This memory can be accessed while tasks are enabled. Must be configured before enabling processing tasks.

Table 37-41. Internal Memories Access Support and Limitations (continued)

Memory	Function	Support and Limitations
		IDMAC channel parameters must not be changed in the CPM when the corresponding DMA channel is enabled excluding the base addresses (EBA0 and EBA1). One of these parameters can be changed during channel operation if it relates to the non-active double buffer.
tpm	IC's task parameter memory	Must be configured before enabling processing tasks. This memory can be accessed while tasks are enabled. IC task parameters must not be changed in the TPM when the corresponding task is active.
dc_template	DC's template memory	Can be configured before enabling tasks. Must not be accessed while operation. Both read and write access to the DC's template memory are forbidden when there is any enabled channel which can use the template

37.4.12.8 SISG - Still Image Synchronization Generator

The IPU incudes a "Still Image Synchronization Generator" (SISG), providing timesensitive control signals synchronizing the image sensor with camera peripherals, such as a flash lamp and a mechanical shutter.

The SISG is implemented using a single time base counter, and six Time Compare Units - as described in the following figure.

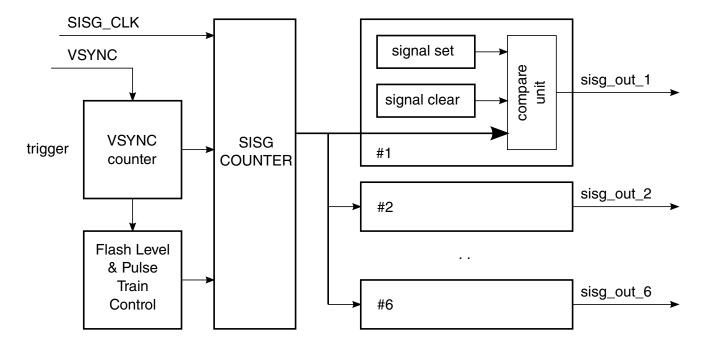


Figure 37-54. Still Image Signal Generator

The SISG inputs are:

Functional Description

- Activation trigger
- VSYNC: the frame-boundary signal from the sensor

The SISG is activated by one of the following triggers:

- The ARM platform by setting the MCU_ACTV_TRIG bit
- A signal generated by an appropriate short packet received through the MIPI/CSI-2 I/F
- An external signal (GPIO pin)

Upon activation, the counter is reset and then there are the following two possibilities:

- Counting starts immediately
- Counting start is delayed until one of the next 7 VSYNC signals (programmable via the NO_OF_VSYNC bits)

During the counting period, the SISG can generate up to 6 output strobes:

- Each strobe can be individually enabled or disabled and has a programmable polarity
- The edges of the strobes are generated at specified counter values to achieve pixellevel resolution - as specified by programmable SISG_SET& SISG_CLR time tag registers
- The clock has 25 bits, to allow strobe generation during a time period of up to two 12M pixel frames

The SISG can repeat the above sequence for up to 32 cycles (this is provided to generate a train of flash pulses, for anti-red-eye or for measurements in low-light conditions). The repetition is implemented by resetting the counter, which can be triggered by one of the following events:

- A VSYNC signal
- A pre-defined value reached by the counter

After the last sequence, when the counter reaches its maximal value, it stops counting and the SISG remains in idle mode until the next activation.

37.4.12.9 Clock Change procedure

The IPU supports dynamic clock rate changes.

Types of change:

- DVFS transitions: frequent, initiated by the SoC's power modes controller (GPC) and the SoC's clock controller module (CCM)
- Other: infrequent, initiated by SW.

IPU may have on-going activities at this stage.

The display interface clocks may either change or remain unchanged. During screen refresh, the display clock would typically not change. During asynchronous access, it may be appropriate to change also the display interface clock. The choice between these options would be made in advance by the user

If the IPU display interface uses the external clock (DI0_DISP_CLK - ipp_di_0_ext_clk or DI1_DISP_CLK - ipp_di_1_ext_clk) source, it remains unchanged. A change in the rate of this clock is performed fully by SW, without the special HW support described below. In particular, the SW may have to stop explicitly any interaction with the display (e.g. screen refresh) before performing the change.

The user is responsible to make sure that the lowest planned clock (in DVFS transitions) is still high enough to support the expected activities (e.g. data rate through the display bus)

The procedure below describes the IPU handshaking with the CCM.

- 1. The user prepares 2 sets of clock modes CLOCK_MODE_0 is the default clock mode, CLOCK_MODE_1 is the alternate clock mode. The IPU toggles between these two settings following the next assertion of ipg_clk_change_rq. If the user sets the SRM_CLOCK_CHANGE_MODE bit then he should also prepare the registers in the SRM for each of the DIs. These registers include all the DI settings adjusted to the new clock.
- 2. CCM asserts the ipg_clk_change_rq signal when a clock change is needed
- 3. The CM calculates the new clock frequency and send it to the DI (signals are di0_clk_freq, and di1_clk_freq). These signals should be sent to the DI only after getting the di_clk_change_ack signal from the DIs. The values of this field could be.
 - 00 1/4 of full frequency
 - 01 1/2 of full frequency
 - 10 full frequency
 - 11 illegal
- 4. The CM sends a cm_clk_change_rq signal to the DIs.
- 5. The DI stops the clock to the display (freeze mode) according to DI0_CLOCK_STOP_MODE & DI1_CLOCK_STOP_MODE bits. If the DI is disable, the ACK from the DI is not needed and the CM will assume that the DI sent an ACK.
- 6. Once the clock to the display is stopped, the DI sends a signal to the CM called di_clk_change_ack
- 7. The CM wait for the clock change signals from both of the DIs
- 8. If the SRM_CLOCK_CHANGE_MODE bit is set the CM should read the new DI settings from the SRM and override the previous DI settings. Then the CM clears the SRM_CLOCK_CHANGE_MODE bit

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Functional Description

- 9. Once the above is complete the CM asserts the ipg_clk_change_ack signal to the CCM
- 10. The CM sends the signals di0_clk_freq, and di1_clk_freq to the DIs.
- 11. The CCM will negate the cm_clk_change_rq
- 12. The CCM will now change the clocks
- 13. When the new clock arrives the ipu_clk_changed signal will be asserted.
- 14. The state machine on each DI will now move out of freeze mode and continue working with the new clock.

37.4.12.10 Low Power Modes

IPU supports the following low power modes.

- STOP: on this mode the clock to the IPU is stopped
- LPSR: low power screen refresh. The clock to the IPU is changed to a slower frequency, the IPU performs only screen refresh.

The user should not request LPSR. at the same time. This case is not supported and the results are not predictable.

The CCM may assert one of the 2 signals: stop_clk_at_stop_req OR stop_clk_at_wait_req

The IPU OR them internally as there's no difference between them with regards to IPU's behavior.

In all these modes the clock to the IPU is going to be stopped (assertion of stop_clk_at_stop_req).

IPU should complete all his tasks:

- CSIs complete transferring the last frame. Wait for csi_busy = 0
- IDMAC completes all the flows (all CH_BUSY = 0)
- All the flows in the FSU are complete. New ones do not start.
- CM sends stop request to the DIs
- Once the DI sent all the data to the display, it asserts an ACK signal

Only when all the above occurs, the CM can assert an internal signal called "IPU_IDLE"

IPU_IDLE is the starting point for any of the low power modes.

Note that if the VDIC was in use prior to entrance the low power mode the viewfinder task of the IC will be in WAIT_FOR_READY state (the task's status is reflected in the VF_TSTAT field). The user will need to manually switch that task to IDLE. This is done by performing the following steps:

- Wait for EOF of the viewfinder output channel (IDMAC_EOF_21)
- Set RSW EN bit
- resume one frame via the viewfinder task.
- Disable the VDI and IC and the corresponding IDMAC channels

37.4.12.10.1 STOP Mode

In this mode the IPU sends the ipu_stby_ack after getting to IPU_IDLE state. The CCM will gate off the clock to the IPU.

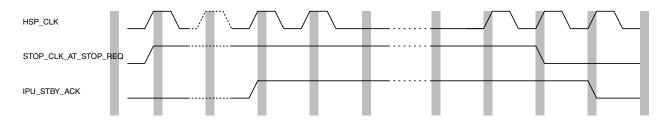


Figure 37-55. Entering and Exiting STOP Mode

Wake up from STOP mode

When the SoC decides to wake up from STOP mode it should:

- Resume the clock to the IPU.
- Negate the stop_clk_at_stop_req or stop_clk_at_wait_req signal.
- The IPU will then negate the ipu_stby_ack signal.
- The IPU will resume screen refresh.

37.4.12.10.2 Low Power Screen Refresh mode - LPSR

In Low Power Screen Refresh mode, the clock to the IPU is changed to a slower frequency, the IPU performs only screen refresh to a single display via the DP (channels 23 & 27).

Preparations

- 1. The user sets the LPSR_MODE bit indicating that the next assertion of stop_clk_at_stop_req OR stop_clk_at_wait_req activates the LPSR procedure.
- 2. The user moves the IPU to screen refresh flow. This means that if other tasks are active (flows via CSI or multiple flows to multiple displays) this tasks needs to be complete and disabled. This is step is fully done by the user (SW). The only flow that remains active is screen refresh to a single display done via the DP (channels 23 & 27)

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

Functional Description

- 3. The user stores in the SRM the planned configuration for the sub-blocks involved in the LPSR flow. These configuration will e switched with the active registers' settings on later stage. The relevant sub-blocks are:
 - DI0 & DI1
 - DC
 - DP
 - DMFC
 - IDMAC
 - CM

Entering LPSR

The flow for entering LPSR is the same as stop mode.

- 1. The IPU follows the same procedure as on STOP mode till getting into IPU_IDLE state.
- 2. IPU swaps the registers of the relevant blocks with the pre stored content from the SRM. The content of the registers of the current flow is stored in the SRM. The IPU will switch back to this configuration after exiting from LPSR.
- 3. The IPU sends the ipu_stby_ack
- 4. The CCM will gate off the clock to the IPU.
- 5. The CCM will switch to the new clock
- 6. After changing the clock, the CCM asserts ccm_lpsr_ipu, this signal is synched inside the IPU to the hsp_clk
- 7. The IPU will resume screen refresh with the new settings.

Exit from LPSR

- 1. The CCM negates ccm_lpsr_ipu
- 2. The CM sends standby request to the DI
- 3. The DI should complete processing the current frame and stop the clock to the display and send an acknowledge signal to the CM.
- 4. The SRM swaps the registers' configuration. current configuration (LPSR) is saved in the SRM, the previous (original) configuration is stored in the blocks' registers.
- 5. IPU asserts the ipu_wakeup_ack signal indicating that it is now safe to leave LPSR mode.
- 6. CCM stops the clocks to IPU
- 7. CCM resumes the clock to the IPU This clock is the same clock used prior to entering the LPSR mode.
- 8. CCM negates the stop_clk_at_stop_req (or stop_clk_at_wait_req)
- 9. IPU negates the ipu_stby_ack and the ipu_wakeup_ack signals
- 10. The IPU resumes screen refresh with the original settings.

The diagram below illustrates the procedure for entering and leaving LPSR mode

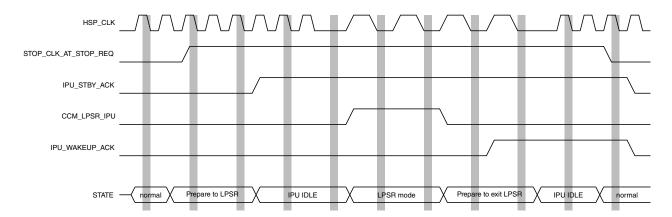


Figure 37-56. Entering and Exiting LPSR mode

37.5 IPU Memory Map/Register Definition

The address space for accesses through the AHB-lite slave port is 4 MB and it is split internally (with 2MB resolution) according to bit [21] of the address. Using the following notation

 $Address = (IPU_ID[31:25], 1,1,1,MSB[21], LSB[20:0])$

the address is used as follows:

- 1. MSB=0: Low-level access to an external device, with LSB[3:0] = (Lock, CS, RS[1:0])
- LSB[5:4] = RS[1:0] (the address on the display interface)
- LSB[6] = Choice of display's channel (0=channel 8, 1=channel 9)
- LSB[7] = Lock (Lock=1 prevents the use of the display port until the next ARM platform access)
- 1. MSB=1: access to internal IPU registers, with address LSB

NOTE

The addresses given in the table are relative to the IPU base address defined at SoC's level.

IPU Memory Map/Register Definition

IPU memory map

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
260_0000	Configuration Register (IPU1_CONF)	32	R/W	0000_0000h	37.5.1/2959
260_0004	SISG Control 0 Register (IPU1_SISG_CTRL0)	32	R/W	0000_0000h	37.5.2/2962
260_0008	SISG Control 1 Register (IPU1_SISG_CTRL1)	32	R/W	0000_0000h	37.5.3/2963
260_000C	SISG Set <i> Register (IPU1_SISG_SET_i)</i>	32	R/W	0000_0000h	37.5.4/2963
260_0024	SISG Clear <i> Register (IPU1_SISG_CLR_i)</i>	32	R/W	0000_0000h	37.5.5/2964
260_003C	Interrupt Control Register 1 (IPU1_INT_CTRL_1)	32	R/W	0000_0000h	37.5.6/2964
260_0040	Interrupt Control Register 2 (IPU1_INT_CTRL_2)	32	R/W	0000_0000h	37.5.7/2968
260_0044	Interrupt Control Register 3 (IPU1_INT_CTRL_3)	32	R/W	0000_0000h	37.5.8/2971
260_0048	Interrupt Control Register 4 (IPU1_INT_CTRL_4)	32	R/W	0000_0000h	37.5.9/2975
260_004C	Interrupt Control Register 5 (IPU1_INT_CTRL_5)	32	R/W	0000_0000h	37.5.10/ 2978
260_0050	Interrupt Control Register 6 (IPU1_INT_CTRL_6)	32	R/W	0000_0000h	37.5.11/ 2983
260_0054	Interrupt Control Register 7 (IPU1_INT_CTRL_7)	32	R/W	0000_0000h	37.5.12/ 2986
260_0058	Interrupt Control Register 8 (IPU1_INT_CTRL_8)	32	R/W	0000_0000h	37.5.13/ 2988
260_005C	Interrupt Control Register 9 (IPU1_INT_CTRL_9)	32	R/W	0000_0000h	37.5.14/ 2990
260_0060	Interrupt Control Register 10 (IPU1_INT_CTRL_10)	32	R/W	0000_0000h	37.5.15/ 2992
260_0064	Interrupt Control Register 11 (IPU1_INT_CTRL_11)	32	R/W	0000_0000h	37.5.16/ 2994
260_0068	Interrupt Control Register 12 (IPU1_INT_CTRL_12)	32	R/W	0000_0000h	37.5.17/ 2997
260_006C	Interrupt Control Register 13 (IPU1_INT_CTRL_13)	32	R/W	0000_0000h	37.5.18/ 2999
260_0070	Interrupt Control Register 14 (IPU1_INT_CTRL_14)	32	R/W	0000_0000h	37.5.19/ 3003
260_0074	Interrupt Control Register15 (IPU1_INT_CTRL_15)	32	R/W	0000_0000h	37.5.20/ 3006
260_0078	SDMA Event Control Register 1 (IPU1_SDMA_EVENT_1)	32	R/W	0000_0000h	37.5.21/ 3010
260_007C	SDMA Event Control Register 2 (IPU1_SDMA_EVENT_2)	32	R/W	0000_0000h	37.5.22/ 3014
260_0080	SDMA Event Control Register 3 (IPU1_SDMA_EVENT_3)	32	R/W	0000_0000h	37.5.23/ 3017
260_0084	SDMA Event Control Register 4 (IPU1_SDMA_EVENT_4)	32	R/W	0000_0000h	37.5.24/ 3022
260_0088	SDMA Event Control Register 7 (IPU1_SDMA_EVENT_7)	32	R/W	0000_0000h	37.5.25/ 3025
260_008C	SDMA Event Control Register 8 (IPU1_SDMA_EVENT_8)	32	R/W	0000_0000h	37.5.26/ 3027

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
260_0090	SDMA Event Control Register 11 (IPU1_SDMA_EVENT_11)	32	R/W	0000_0000h	37.5.27/ 3028
260_0094	SDMA Event Control Register 12 (IPU1_SDMA_EVENT_12)	32	R/W	0000_0000h	37.5.28/ 3031
260_0098	SDMA Event Control Register 13 (IPU1_SDMA_EVENT_13)	32	R/W	0000_0000h	37.5.29/ 3033
260_009C	SDMA Event Control Register 14 (IPU1_SDMA_EVENT_14)	32	R/W	0000_0000h	37.5.30/ 3037
260_00A0	Shadow Registers Memory Priority 1 Register (IPU1_SRM_PRI1)	32	R/W	0000_0100h	37.5.31/ 3040
260_00A4	Shadow Registers Memory Priority 2 Register (IPU1_SRM_PRI2)	32	R/W	0605_0803h	37.5.32/ 3041
260_00A8	FSU Processing Flow 1 Register (IPU1_FS_PROC_FLOW1)	32	R/W	0000_0000h	37.5.33/ 3043
260_00AC	FSU Processing Flow 2 Register (IPU1_FS_PROC_FLOW2)	32	R/W	0000_0000h	37.5.34/ 3047
260_00B0	FSU Processing Flow 3 Register (IPU1_FS_PROC_FLOW3)	32	R/W	0000_0000h	37.5.35/ 3050
260_00B4	FSU Displaying Flow 1 Register (IPU1_FS_DISP_FLOW1)	32	R/W	0000_0000h	37.5.36/ 3053
260_00B8	FSU Displaying Flow 2 Register (IPU1_FS_DISP_FLOW2)	32	R/W	0000_0000h	37.5.37/ 3056
260_00BC	SKIP Register (IPU1_SKIP)	32	R/W	0000_0000h	37.5.38/ 3058
260_00C4	Display General Control Register (IPU1_DISP_GEN)	32	R/W	0040_0000h	37.5.39/ 3060
260_00C8	Display Alternate Flow Control Register 1 (IPU1_DISP_ALT1)	32	R/W	0040_0000h	37.5.40/ 3063
260_00CC	Display Alternate Flow Control Register 2 (IPU1_DISP_ALT2)	32	R/W	0000_0000h	37.5.41/ 3064
260_00D0	Display Alternate Flow Control Register 3 (IPU1_DISP_ALT3)	32	R/W	0040_0000h	37.5.42/ 3065
260_00D4	Display Alternate Flow Control Register 4 (IPU1_DISP_ALT4)	32	R/W	0000_0000h	37.5.43/ 3067
260_00DC	Memory Reset Control Register (IPU1_MEM_RST)	32	R/W	0000_0000h	37.5.44/ 3068
260_00E0	Power Modes Control Register (IPU1_PM)	32	R/W	0810_0810h	37.5.45/ 3070
260_00E4	General Purpose Register (IPU1_GPR)	32	R/W	0000_0000h	37.5.46/ 3073
260_0150	Channel Double Buffer Mode Select 0 Register (IPU1_CH_DB_MODE_SEL0)	32	R/W	0000_0000h	37.5.47/ 3075
260_0154	Channel Double Buffer Mode Select 1 Register (IPU1_CH_DB_MODE_SEL1)	32	R/W	0000_0000h	37.5.48/ 3079

IPU Memory Map/Register Definition

IPU memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
260_0168	Alternate Channel Double Buffer Mode Select 0 Register (IPU1_ALT_CH_DB_MODE_SEL0)	32	R/W	0000_0000h	37.5.49/ 3082
260_016C	Alternate Channel Double Buffer Mode Select1 Register (IPU1_ALT_CH_DB_MODE_SEL1)	32	R/W	0000_0000h	37.5.50/ 3084
260_0178	Alternate Channel Triple Buffer Mode Select 0 Register (IPU1_ALT_CH_TRB_MODE_SEL0)	32	R/W	0000_0000h	37.5.51/ 3085
260_0200	Interrupt Status Register 1 (IPU1_INT_STAT_1)	32	w1c	0000_0000h	37.5.52/ 3088
260_0204	Interrupt Status Register2 (IPU1_INT_STAT_2)	32	w1c	0000_0000h	37.5.53/ 3093
260_0208	Interrupt Status Register 3 (IPU1_INT_STAT_3)	32	w1c	0000_0000h	37.5.54/ 3096
260_020C	Interrupt Status Register 4 (IPU1_INT_STAT_4)	32	w1c	0000_0000h	37.5.55/ 3100
260_0210	Interrupt Status Register 5 (IPU1_INT_STAT_5)	32	w1c	0000_0000h	37.5.56/ 3103
260_0214	Interrupt Status Register 6 (IPU1_INT_STAT_6)	32	w1c	0000_0000h	37.5.57/ 3108
260_0218	Interrupt Status Register7 1 (IPU1_INT_STAT_7)	32	w1c	0000_0000h	37.5.58/ 3111
260_021C	Interrupt Status Register 8 (IPU1_INT_STAT_8)	32	w1c	0000_0000h	37.5.59/ 3114
260_0220	Interrupt Status Register 9 (IPU1_INT_STAT_9)	32	w1c	0000_0000h	37.5.60/ 3117
260_0224	Interrupt Status Register 10 (IPU1_INT_STAT_10)	32	w1c	0000_0000h	37.5.61/ 3119
260_0228	Interrupt Status Register 11 (IPU1_INT_STAT_11)	32	w1c	0000_0000h	37.5.62/ 3122
260_022C	Interrupt Status Register 12 (IPU1_INT_STAT_12)	32	w1c	0000_0000h	37.5.63/ 3126
260_0230	Interrupt Status Register 13 (IPU1_INT_STAT_13)	32	w1c	0000_0000h	37.5.64/ 3128
260_0234	Interrupt Status Register 14 (IPU1_INT_STAT_14)	32	w1c	0000_0000h	37.5.65/ 3133
260_0238	Interrupt Status Register 15 (IPU1_INT_STAT_15)	32	w1c	0000_0000h	37.5.66/ 3136
260_023C	Current Buffer Register 0 (IPU1_CUR_BUF_0)	32	R	0000_0000h	37.5.67/ 3140
260_0240	Current Buffer Register 1 (IPU1_CUR_BUF_1)	32	R	0000_0000h	37.5.68/ 3145
260_0244	Alternate Current Buffer Register 0 (IPU1_ALT_CUR_0)	32	R	0000_0000h	37.5.69/ 3149
260_0248	Alternate Current Buffer Register 1 (IPU1_ALT_CUR_1)	32	R	0000_0000h	37.5.70/ 3151

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
260_024C	Shadow Registers Memory Status Register (IPU1_SRM_STAT)	32	R	0000_0000h	37.5.71/ 3154
260_0250	Processing Status Tasks Register (IPU1_PROC_TASKS_STAT)	32	R	0000_0000h	37.5.72/ 3156
260_0254	Display Tasks Status Register (IPU1_DISP_TASKS_STAT)	32	R	0000_0000h	37.5.73/ 3158
260_0258	Triple Current Buffer Register 0 (IPU1_TRIPLE_CUR_BUF_0)	32	R	0000_0000h	37.5.74/ 3160
260_025C	Triple Current Buffer Register 1 (IPU1_TRIPLE_CUR_BUF_1)	32	R	0000_0000h	37.5.75/ 3162
260_0268	IPU Channels Buffer 0 Ready 0 Register (IPU1_CH_BUF0_RDY0)	32	R/W	0000_0000h	37.5.76/ 3163
260_026C	IPU Channels Buffer 0 Ready 1 Register (IPU1_CH_BUF0_RDY1)	32	R/W	0000_0000h	37.5.77/ 3167
260_0270	IPU Channels Buffer 1 Ready 0 Register (IPU1_CH_BUF1_RDY0)	32	R/W	0000_0000h	37.5.78/ 3169
260_0274	IPU Channels Buffer 1 Ready 1Register (IPU1_CH_BUF1_RDY1)	32	R/W	0000_0000h	37.5.79/ 3172
260_0278	IPU Alternate Channels Buffer 0 Ready 0 Register (IPU1_ALT_CH_BUF0_RDY0)	32	R/W	0000_0000h	37.5.80/ 3175
260_027C	IPU Alternate Channels Buffer 0 Ready 1 Register (IPU1_ALT_CH_BUF0_RDY1)	32	R/W	0000_0000h	37.5.81/ 3176
260_0280	IPU Alternate Channels Buffer1 Ready 0 Register (IPU1_ALT_CH_BUF1_RDY0)	32	R/W	0000_0000h	37.5.82/ 3177
260_0284	IPU Alternate Channels Buffer 1 Ready 1 Register (IPU1_ALT_CH_BUF1_RDY1)	32	R/W	0000_0000h	37.5.83/ 3178
260_0288	IPU Channels Buffer 2 Ready 0 Register (IPU1_CH_BUF2_RDY0)	32	R/W	0000_0000h	37.5.84/ 3179
260_028C	IPU Channels Buffer 2 Ready 1 Register (IPU1_CH_BUF2_RDY1)	32	R/W	0000_0000h	37.5.85/ 3181
260_8000	IDMAC Configuration Register (IPU1_IDMAC_CONF)	32	R/W	0000_002Fh	37.5.86/ 3182
260_8004	IDMAC Channel Enable 1 Register (IPU1_IDMAC_CH_EN_1)	32	R/W	0000_0000h	37.5.87/ 3184
260_8008	IDMAC Channel Enable 2 Register (IPU1_IDMAC_CH_EN_2)	32	R/W	0000_0000h	37.5.88/ 3187
260_800C	IDMAC Separate Alpha Indication Register (IPU1_IDMAC_SEP_ALPHA)	32	R/W	0000_0000h	37.5.89/ 3189
260_8010	IDMAC Alternate Separate Alpha Indication Register (IPU1_IDMAC_ALT_SEP_ALPHA)	32	R/W	0000_0000h	37.5.90/ 3191
260_8014	IDMAC Channel Priority 1 Register (IPU1_IDMAC_CH_PRI_1)	32	R/W	0000_0000h	37.5.91/ 3193
260_8018	IDMAC Channel Priority 2 Register (IPU1_IDMAC_CH_PRI_2)	32	R/W	0000_0000h	37.5.92/ 3196

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
260_801C	IDMAC Channel Watermark Enable 1 Register (IPU1_IDMAC_WM_EN_1)	32	R/W	0000_0000h	37.5.93/ 3198
260_8020	IDMAC Channel Watermark Enable 2 Register (IPU1_IDMAC_WM_EN_2)	32	R/W	0000_0000h	37.5.94/ 3200
260_8024	IDMAC Channel Lock Enable 1Register (IPU1_IDMAC_LOCK_EN_1)	32	R/W	0000_0000h	37.5.95/ 3201
260_8028	IDMAC Channel Lock Enable 2Register (IPU1_IDMAC_LOCK_EN_2)	32	R/W	0000_0000h	37.5.96/ 3203
260_802C	IDMAC Channel Alternate Address 0 Register (IPU1_IDMAC_SUB_ADDR_0)	32	R/W	0000_0000h	37.5.97/ 3204
260_8030	IDMAC Channel Alternate Address 1 Register (IPU1_IDMAC_SUB_ADDR_1)	32	R/W	0000_0000h	37.5.98/ 3205
260_8034	IDMAC Channel Alternate Address 2 Register (IPU1_IDMAC_SUB_ADDR_2)	32	R/W	0000_0000h	37.5.99/ 3206
260_8038	IDMAC Channel Alternate Address 3 Register (IPU1_IDMAC_SUB_ADDR_3)	32	R/W	0000_0000h	37.5.100/ 3207
260_803C	IDMAC Channel Alternate Address 4 Register (IPU1_IDMAC_SUB_ADDR_4)	32	R/W	0000_0000h	37.5.101/ 3209
260_8040	IDMAC Band Mode Enable 1 Register (IPU1_IDMAC_BNDM_EN_1)	32	R/W	0000_0000h	37.5.102/ 3210
260_8044	IDMAC Band Mode Enable 2 Register (IPU1_IDMAC_BNDM_EN_2)	32	R/W	0000_0000h	37.5.103/ 3213
260_8048	IDMAC Scroll Coordinations Register (IPU1_IDMAC_SC_CORD)	32	R/W	0000_0000h	37.5.104/ 3214
260_804C	IDMAC Scroll Coordinations Register 1 (IPU1_IDMAC_SC_CORD_1)	32	R/W	0000_0000h	37.5.105/ 3215
260_8100	IDMAC Channel Busy 1 Register (IPU1_IDMAC_CH_BUSY_1)	32	R	0000_0000h	37.5.106/ 3216
260_8104	IDMAC Channel Busy 2 Register (IPU1_IDMAC_CH_BUSY_2)	32	R	0000_0000h	37.5.107/ 3222
261_8000	DP Common Configuration Sync Flow Register (IPU1_DP_COM_CONF_SYNC)	32	R/W	0000_0000h	37.5.108/ 3226
261_8004	DP Graphic Window Control Sync Flow Register (IPU1_DP_Graph_Wind_CTRL_SYNC)	32	R/W	0000_0000h	37.5.109/ 3228
261_8008	DP Partial Plane Window Position Sync Flow Register (IPU1_DP_FG_POS_SYNC)	32	R/W	0000_0000h	37.5.110/ 3229
261_800C	DP Cursor Position and Size Sync Flow Register (IPU1_DP_CUR_POS_SYNC)	32	R/W	0000_0000h	37.5.111/ 3229
261_8010	DP Color Cursor Mapping Sync Flow Register (IPU1_DP_CUR_MAP_SYNC)	32	R/W	0000_0000h	37.5.112/ 3230
261_8014	DP Gamma Constants Sync Flow Register i (IPU1_DP_GAMMA_C_SYNC_i)	32	R/W	0000_0000h	37.5.113/ 3231
261_8034	DP Gamma Correction Slope Sync Flow Register i (IPU1_DP_GAMMA_S_SYNC_i)	32	R/W	0000_0000h	37.5.114/ 3231

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
261_8044	DP Color Space Conversion Control Sync Flow Registers (IPU1_DP_CSCA_SYNC_i)	32	R/W	0000_0000h	37.5.115/ 3232
261_8054	DP Color Conversion Control Sync Flow Register 0 (IPU1_DP_SCS_SYNC_0)	32	R/W	0000_0000h	37.5.116/ 3233
261_8058	DP Color Conversion Control Sync Flow Register 1 (IPU1_DP_SCS_SYNC_1)	32	R/W	0000_0000h	37.5.117/ 3233
261_805C	DP Cursor Position and Size Alternate Register (IPU1_DP_CUR_POS_ALT)	32	R/W	0000_0000h	37.5.118/ 3234
261_8060	DP Common Configuration Async 0 Flow Register (IPU1_DP_COM_CONF_ASYNC0)	32	R/W	0000_0000h	37.5.119/ 3235
261_8064	DP Graphic Window Control Async 0 Flow Register (IPU1_DP_GRAPH_WIND_CTRL_ASYNC0)	32	R/W	0000_0000h	37.5.120/ 3237
261_8068	DP Partial Plane Window Position Async 0 Flow Register (IPU1_DP_FG_POS_ASYNC0)	32	R/W	0000_0000h	37.5.121/ 3238
261_806C	DP Cursor Position and Size Async 0 Flow Register (IPU1_DP_CUR_POS_ASYNC0)	32	R/W	0000_0000h	37.5.122/ 3239
261_8070	DP Color Cursor Mapping Async 0 Flow Register (IPU1_DP_CUR_MAP_ASYNC0)	32	R/W	0000_0000h	37.5.123/ 3239
261_8074	DP Gamma Constant Async 0 Flow Register i (IPU1_DP_GAMMA_C_ASYNC0_i)	32	R/W	0000_0000h	37.5.124/ 3240
261_8094	DP Gamma Correction Slope Async 0 Flow Register i (IPU1_DP_GAMMA_S_ASYNC0_i)	32	R/W	0000_0000h	37.5.125/ 3241
261_80A4	DP Color Space Conversion Control Async 0 Flow Register i (IPU1_DP_CSCA_ASYNC0_i)	32	R/W	0000_0000h	37.5.126/ 3241
261_80B4	DP Color Conversion Control Async 0 Flow Register 0 (IPU1_DP_CSC_ASYNC0_0)	32	R/W	0000_0000h	37.5.127/ 3242
261_80B8	DP Color Conversion Control Async 1 Flow Register (IPU1_DP_CSC_ASYNC_1)	32	R/W	0000_0000h	37.5.128/ 3243
261_80BC	DP Common Configuration Async 1 Flow Register (IPU1_DP_COM_CONF_ASYNC1)	32	R/W	0000_0000h	37.5.129/ 3244
261_80BC	DP Debug Control Register (IPU1_DP_DEBUG_CNT)	32	R/W	0000_0000h	37.5.130/ 3246
261_80C0	DP Graphic Window Control Async 1 Flow Register (IPU1_DP_GRAPH_WIND_CTRL_ASYNC1)	32	R/W	0000_0000h	37.5.131/ 3247
261_80C0	DP Debug Status Register (IPU1_DP_DEBUG_STAT)	32	R	0000_0000h	37.5.132/ 3248
261_80C4	DP Partial Plane Window Position Async 1 Flow Register (IPU1_DP_FG_POS_ASYNC1)	32	R/W	0000_0000h	37.5.133/ 3250
261_80C8	DP Cursor Postion and Size Async 1 Flow Register (IPU1_DP_CUR_POS_ASYNC1)	32	R/W	0000_0000h	37.5.134/ 3250
261_80CC	DP Color Cursor Mapping Async 1 Flow Register (IPU1_DP_CUR_MAP_ASYNC1)	32	R/W	0000_0000h	37.5.135/ 3251
261_80D0	DP Gamma Constants Async 1 Flow Register i (IPU1_DP_GAMMA_C_ASYNC1_i)	32	R/W	0000_0000h	37.5.136/ 3252

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
261_80F0	DP Gamma Correction Slope Async 1 Flow Register i (IPU1_DP_GAMMA_S_ASYN1_i)	32	R/W	0000_0000h	37.5.137/ 3253
261_8100	DP Color Space Converstion Control Async 1 Flow Register i (IPU1_DP_CSCA_ASYNC1_i)	32	R/W	0000_0000h	37.5.138/ 3253
261_8110	DP Color Conversion Control Async 1 Flow Register 0 (IPU1_DP_CSC_ASYNC1_0)	32	R/W	0000_0000h	37.5.139/ 3254
261_8114	DP Color Conversion Control Async 1 Flow Register 1 (IPU1_DP_CSC_ASYNC1_1)	32	R/W	0000_0000h	37.5.140/ 3255
262_0000	IC Configuration Register (IPU1_IC_CONF)	32	R/W	0000_0000h	37.5.141/ 3256
262_0004	IC Preprocessing Encoder Resizing Coefficients Register (IPU1_IC_PRP_ENC_RSC)	32	R/W	2000_2000h	37.5.142/ 3258
262_0008	IC Preprocessing View-Finder Resizing Coefficients Register (IPU1_IC_PRP_VF_RSC)	32	R/W	2000_2000h	37.5.143/ 3259
262_000C	IC Postprocessing Encoder Resizing Coefficients Register (IPU1_IC_PP_RSC)	32	R/W	2000_2000h	37.5.144/ 3260
262_0010	IC Combining Parameters Register 1 (IPU1_IC_CMBP_1)	32	R/W	0000_0000h	37.5.145/ 3261
262_0014	IC Combining Parameters Register 2 (IPU1_IC_CMBP_2)	32	R/W	0000_0000h	37.5.146/ 3261
262_0018	IC IDMAC Parameters 1 Register (IPU1_IC_IDMAC_1)	32	R/W	0000_0000h	37.5.147/ 3262
262_001C	IC IDMAC Parameters 2 Register (IPU1_IC_IDMAC_2)	32	R/W	0000_0000h	37.5.148/ 3265
262_0020	IC IDMAC Parameters 3Register (IPU1_IC_IDMAC_3)	32	R/W	0000_0000h	37.5.149/ 3266
262_0024	IC IDMAC Parameters 4 Register (IPU1_IC_IDMAC_4)	32	R/W	0000_0000h	37.5.150/ 3266
263_0000	CSI0 Sensor Configuration Register (IPU1_CSI0_SENS_CONF)	32	R/W	0000_0000h	37.5.151/ 3267
263_0004	CSI0 Sense Frame Size Register (IPU1_CSI0_SENS_FRM_SIZE)	32	R/W	0000_0000h	37.5.152/ 3270
263_0008	CSI0 Actual Frame Size Register (IPU1_CSI0_ACT_FRM_SIZE)	32	R/W	0000_0000h	37.5.153/ 3270
263_000C	CSI0 Output Control Register (IPU1_CSI0_OUT_FRM_CTRL)	32	R/W	0000_0000h	37.5.154/ 3271
263_0010	CSIO Test Control Register (IPU1_CSI0_TST_CTRL)	32	R/W	0000_0000h	37.5.155/ 3272
263_0014	CSIO CCIR Code Register 1 (IPU1_CSI0_CCIR_CODE_1)	32	R/W	0000_0000h	37.5.156/ 3273
263_0018	CSIO CCIR Code Register 2 (IPU1_CSI0_CCIR_CODE_2)	32	R/W	0000_0000h	37.5.157/ 3274
263_001C	CSIO CCIR Code Register 3 (IPU1_CSI0_CCIR_CODE_3)	32	R/W	0000_0000h	37.5.158/ 3275

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
263_0020	CSI0 Data Identifier Register (IPU1_CSI0_DI)	32	R/W	FFFF_FFFFh	37.5.159/ 3275
263_0024	CSI0 SKIP Register (IPU1_CSI0_SKIP)	32	R/W	0000_0000h	37.5.160/ 3276
263_0028	CSI0 Compander Control Register (IPU1_CSIO_CPD_CTRL)	32	R/W	0000_0000h	37.5.161/ 3277
263_002C	CSI0 Red Component Compander Constants Register <i>(IPU1_CSI0_CPD_RC_i)</i>	32	R/W	0000_0000h	37.5.162/ 3278
263_004C	CSI0 Red Component Compander SLOPE Register <i>(IPU1_CSIO_CPD_RS_i)</i>	32	R/W	0000_0000h	37.5.163/ 3279
263_005C	CSI0 GR Component Compander Constants Register <i>(IPU1_CSI0_CPD_GRC_i)</i>	32	R/W	0000_0000h	37.5.164/ 3279
263_007C	CSI0 GR Component Compander SLOPE Register <i>(IPU1_CSI0_CPD_GRS_i)</i>	32	R/W	0000_0000h	37.5.165/ 3280
263_008C	CSI0 GB Component Compander Constants Register <i>(IPU1_CSI0_CPD_GBC_i)</i>	32	R/W	0000_0000h	37.5.166/ 3281
263_00AC	CSI0 GB Component Compander SLOPE Register <i>(IPU1_CSI0_CPD_GBS_i)</i>	32	R/W	0000_0000h	37.5.167/ 3281
263_00BC	CSI0 Blue Component Compander Constants Register <i>(IPU1_CSI0_CPD_BC_i)</i>	32	R/W	0000_0000h	37.5.168/ 3282
263_00DC	CSI0 Blue Component Compander SLOPE Register <i>(IPU1_CSI0_CPD_BS_i)</i>	32	R/W	0000_0000h	37.5.169/ 3283
263_00EC	CSI0 Compander Offset Register 1 (IPU1_CSI0_CPD_OFFSET1)	32	R/W	0000_0000h	37.5.170/ 3283
263_00F0	CSI0 Compander Offset Register 2 (IPU1_CSI0_CPD_OFFSET2)	32	R/W	0000_0000h	37.5.171/ 3284
263_8000	CSI1 Sensor Configuration Register (IPU1_CSI1_SENS_CONF)	32	R/W	0000_0000h	37.5.172/ 3285
263_8004	CSI1 Sense Frame Size Register (IPU1_CSI1_SENS_FRM_SIZE)	32	R/W	0000_0000h	37.5.173/ 3287
263_8008	CSI1 Actual Frame Size Register (IPU1_CSI1_ACT_FRM_SIZE)	32	R/W	0000_0000h	37.5.174/ 3288
263_800C	CSI1 Output Control Register (IPU1_CSI1_OUT_FRM_CTRL)	32	R/W	0000_0000h	37.5.175/ 3289
263_8010	CSI1 Test Control Register (IPU1_CSI1_TST_CTRL)	32	R/W	0000_0000h	37.5.176/ 3290
263_8014	CSI1 CCIR Code Register 1 (IPU1_CSI1_CCIR_CODE_1)	32	R/W	0000_0000h	37.5.177/ 3291
263_8018	CSI1 CCIR Code Register 2 (IPU1_CSI1_CCIR_CODE_2)	32	R/W	0000_0000h	37.5.178/ 3292
263_801C	CSI1 CCIR Code Register 3 (IPU1_CSI1_CCIR_CODE_3)	32	R/W	0000_0000h	37.5.179/ 3293
263_8020	CSI1 Data Identifier Register (IPU1_CSI1_DI)	32	R/W	FFFF_FFFFh	37.5.180/ 3293

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
263_8024	CSI1 SKIP Register (IPU1_CSI1_SKIP)	32	R/W	0000_0000h	37.5.181/ 3294
263_8028	CSI1 Compander Control Register (IPU1_CSI1_CPD_CTRL)	32	R/W	0000_0000h	37.5.182/ 3295
263_802C	CSI1 Red Component Compander Constants Register <i>(IPU1_CSI1_CPD_RC_i)</i>	32	R/W	0000_0000h	37.5.183/ 3296
263_804C	CSI1 Red Component Compander SLOPE Register <i>(IPU1_CSI1_CPD_RS_i)</i>	32	R/W	0000_0000h	37.5.184/ 3296
263_805C	CSI1 GR Component Compander Constants Register <i>(IPU1_CSI1_CPD_GRC_i)</i>	32	R/W	0000_0000h	37.5.185/ 3297
263_807C	CSI1 GR Component Compander SLOPE Register <i>(IPU1_CSI1_CPD_GRS_i)</i>	32	R/W	0000_0000h	37.5.186/ 3298
263_808C	CSI1 GB Component Compander Constants Register <i>(IPU1_CSI1_CPD_GBC_i)</i>	32	R/W	0000_0000h	37.5.187/ 3298
263_80AC	CSI1 GB Component Compander SLOPE Register <i>(IPU1_CSI1_CPD_GBS_i)</i>	32	R/W	0000_0000h	37.5.188/ 3299
263_80BC	CSI1 Blue Component Compander Constants Register <i>(IPU1_CSI1_CPD_BC_i)</i>	32	R/W	0000_0000h	37.5.189/ 3300
263_80DC	CSI1 Blue Component Compander SLOPE Register <i>(IPU1_CSI1_CPD_BS_i)</i>	32	R/W	0000_0000h	37.5.190/ 3300
263_80EC	CSI1 Compander Offset Register 1 (IPU1_CSI1_CPD_OFFSET1)	32	R/W	0000_0000h	37.5.191/ 3301
263_80F0	CSI1 Compander Offset Register 2 (IPU1_CSI1_CPD_OFFSET2)	32	R/W	0000_0000h	37.5.192/ 3302
264_0000	DI0 General Register (IPU1_DI0_GENERAL)	32	R/W	0020_0000h	37.5.193/ 3303
264_0004	DI0 Base Sync Clock Gen 0 Register (IPU1_DI0_BS_CLKGEN0)	32	R/W	0000_0000h	37.5.194/ 3305
264_0008	DI0 Base Sync Clock Gen 1 Register (IPU1_DI0_BS_CLKGEN1)	32	R/W	0000_0000h	37.5.195/ 3306
264_000C	DI0 Sync Wave Gen 1 Register 0 (IPU1_DI0_SW_GEN0_1)	32	R/W	0000_0000h	37.5.196/ 3306
264_0010	DI0 Sync Wave Gen 2 Register 0 (IPU1_DI0_SW_GEN0_2)	32	R/W	0000_0000h	37.5.197/ 3308
264_0014	DI0 Sync Wave Gen 3 Register 0 (IPU1_DI0_SW_GEN0_3)	32	R/W	0000_0000h	37.5.198/ 3309
264_0018	DI0 Sync Wave Gen 4 Register 0 (IPU1_DI0_SW_GEN0_4)	32	R/W	0000_0000h	37.5.199/ 3310
264_001C	DI0 Sync Wave Gen 5 Register 0 (IPU1_DI0_SW_GEN0_5)	32	R/W	0000_0000h	37.5.200/ 3311
264_0020	DI0 Sync Wave Gen 6 Register 0 (IPU1_DI0_SW_GEN0_6)	32	R/W	0000_0000h	37.5.201/ 3313
264_0024	DI0 Sync Wave Gen 7 Register 0 (IPU1_DI0_SW_GEN0_7)	32	R/W	0000_0000h	37.5.202/ 3314

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
264_0028	DI0 Sync Wave Gen 8 Register 0 (IPU1_DI0_SW_GEN0_8)	32	R/W	0000_0000h	37.5.203/ 3315
264_002C	DI0 Sync Wave Gen 9 Register 0 (IPU1_DI0_SW_GEN0_9)	32	R/W	0000_0000h	37.5.204/ 3316
264_0030	DI0 Sync Wave Gen 1 Register 1 (IPU1_DI0_SW_GEN1_1)	32	R/W	0000_0000h	37.5.205/ 3318
264_0034	DI0 Sync Wave Gen 2 Register 1 (IPU1_DI0_SW_GEN1_2)	32	R/W	0000_0000h	37.5.206/ 3320
264_0038	DI0 Sync Wave Gen 3 Register 1 (IPU1_DI0_SW_GEN1_3)	32	R/W	0000_0000h	37.5.207/ 3322
264_003C	DI0 Sync Wave Gen 4 Register 1 (IPU1_DI0_SW_GEN1_4)	32	R/W	0000_0000h	37.5.208/ 3324
264_0040	DI0 Sync Wave Gen 5 Register 1 (IPU1_DI0_SW_GEN1_5)	32	R/W	0000_0000h	37.5.209/ 3326
264_0044	DI0 Sync Wave Gen 6 Register 1 (IPU1_DI0_SW_GEN1_6)	32	R/W	0000_0000h	37.5.210/ 3328
264_0048	DI0 Sync Wave Gen 7 Register 1 (IPU1_DI0_SW_GEN1_7)	32	R/W	0000_0000h	37.5.211/ 3330
264_004C	DI0 Sync Wave Gen 8 Register 1 (IPU1_DI0_SW_GEN1_8)	32	R/W	0000_0000h	37.5.212/ 3332
264_0050	DI0 Sync Wave Gen 9 Register 1 (IPU1_DI0_SW_GEN1_9)	32	R/W	0000_0000h	37.5.213/ 3334
264_0054	DI0 Sync Assistance Gen Register (IPU1_DI0_SYNC_AS_GEN)	32	R/W	0000_0000h	37.5.214/ 3335
264_0058	DI0 Data Wave Gen <i> Register (IPU1_DI0_DW_GEN_i)</i>	32	R/W	0000_0000h	37.5.215/ 3336
264_0088	DI0 Data Wave Set 0 <i> Register (IPU1_DI0_DW_SET0_i)</i>	32	R/W	0000_0000h	37.5.216/ 3339
264_00B8	DI0 Data Wave Set 1 <i> Register (IPU1_DI0_DW_SET1_i)</i>	32	R/W	0000_0000h	37.5.217/ 3339
264_00E8	DI0 Data Wave Set 2 <i> Register (IPU1_DI0_DW_SET2_i)</i>	32	R/W	0000_0000h	37.5.218/ 3340
264_0118	DI0 Data Wave Set 3 <i> Register (IPU1_DI0_DW_SET3_i)</i>	32	R/W	0000_0000h	37.5.219/ 3341
264_0148	DI0 Step Repeat <i> Registers (IPU1_DI0_STP_REP_i)</i>	32	R/W	0000_0000h	37.5.220/ 3341
264_0158	DI0 Step Repeat 9 Registers (IPU1_DI0_STP_REP_9)	32	R/W	0000_0000h	37.5.221/ 3342
264_015C	DI0 Serial Display Control Register (IPU1_DI0_SER_CONF)	32	R/W	0000_0000h	37.5.222/ 3342
264_0160	DI0 Special Signals Control Register (IPU1_DI0_SSC)	32	R/W	0000_0000h	37.5.223/ 3345
264_0164	DI0 Polarity Register (IPU1_DI0_POL)	32	R/W	0000_0000h	37.5.224/ 3347

IPU Memory Map/Register Definition

IPU memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
264_0168	DI0 Active Window 0 Register (IPU1_DI0_AW0)	32	R/W	0000_0000h	37.5.225/ 3348
264_016C	DI0 Active Window 1 Register (IPU1_DI0_AW1)	32	R/W	0000_0000h	37.5.226/ 3349
264_0170	DI0 Screen Configuration Register (IPU1_DI0_SCR_CONF)	32	R/W	0000_0000h	37.5.227/ 3350
264_0174	DI0 Status Register (IPU1_DI0_STAT)	32	R	0000_0005h	37.5.228/ 3351
264_8000	DI1General Register (IPU1_DI1_GENERAL)	32	R/W	0020_0000h	37.5.229/ 3353
264_8004	DI1 Base Sync Clock Gen 0 Register (IPU1_DI1_BS_CLKGEN0)	32	R/W	0000_0000h	37.5.230/ 3355
264_8008	DI1 Base Sync Clock Gen 1 Register (IPU1_DI1_BS_CLKGEN1)	32	R/W	0000_0000h	37.5.231/ 3356
264_800C	DI1 Sync Wave Gen 1 Register 0 (IPU1_DI1_SW_GEN0_1)	32	R/W	0000_0000h	37.5.232/ 3356
264_8010	DI1 Sync Wave Gen 2 Register 0 (IPU1_DI1_SW_GEN0_2)	32	R/W	0000_0000h	37.5.233/ 3358
264_8014	DI1 Sync Wave Gen 3 Register 0 (IPU1_DI1_SW_GEN0_3)	32	R/W	0000_0000h	37.5.234/ 3359
264_8018	DI1 Sync Wave Gen 4 Register 0 (IPU1_DI1_SW_GEN0_4)	32	R/W	0000_0000h	37.5.235/ 3360
264_801C	DI1 Sync Wave Gen 5 Register 0 (IPU1_DI1_SW_GEN0_5)	32	R/W	0000_0000h	37.5.236/ 3361
264_8020	DI1 Sync Wave Gen 6 Register 0 (IPU1_DI1_SW_GEN0_6)	32	R/W	0000_0000h	37.5.237/ 3363
264_8024	DI1 Sync Wave Gen 7 Register 0 (IPU1_DI1_SW_GEN0_7)	32	R/W	0000_0000h	37.5.238/ 3364
264_8028	DI1 Sync Wave Gen 8 Register 0 (IPU1_DI1_SW_GEN0_8)	32	R/W	0000_0000h	37.5.239/ 3365
264_802C	DI1Sync Wave Gen 9 Register 0 (IPU1_DI1_SW_GEN0_9)	32	R/W	0000_0000h	37.5.240/ 3366
264_8030	DI1 Sync Wave Gen 1 Register 1 (IPU1_DI1_SW_GEN1_1)	32	R/W	0000_0000h	37.5.241/ 3368
264_8034	DI1 Sync Wave Gen 2 Register 1 (IPU1_DI1_SW_GEN1_2)	32	R/W	0000_0000h	37.5.242/ 3370
264_8038	DI1 Sync Wave Gen 3 Register 1 (IPU1_DI1_SW_GEN1_3)	32	R/W	0000_0000h	37.5.243/ 3372
264_803C	DI1 Sync Wave Gen 4 Register 1 (IPU1_DI1_SW_GEN1_4)	32	R/W	0000_0000h	37.5.244/ 3374
264_8040	DI1 Sync Wave Gen 5 Register 1 (IPU1_DI1_SW_GEN1_5)	32	R/W	0000_0000h	37.5.245/ 3376
264_8044	DI1 Sync Wave Gen 6 Register 1 (IPU1_DI1_SW_GEN1_6)	32	R/W	0000_0000h	37.5.246/ 3378

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
264_8048	DI1Sync Wave Gen 7 Register 1 (IPU1_DI1_SW_GEN1_7)	32	R/W	0000_0000h	37.5.247/ 3380
264_804C	DI1 Sync Wave Gen 8 Register 1 (IPU1_DI1_SW_GEN1_8)	32	R/W	0000_0000h	37.5.248/ 3382
264_8050	DI1 Sync Wave Gen 9 Register 1 (IPU1_DI1_SW_GEN1_9)	32	R/W	0000_0000h	37.5.249/ 3384
264_8054	DI1 Sync Assistance Gen Register (IPU1_DI1_SYNC_AS_GEN)	32	R/W	0000_0000h	37.5.250/ 3385
264_8058	DI1 Data Wave Gen <i> Register (IPU1_DI1_DW_GEN_i)</i>	32	R/W	0000_0000h	37.5.251/ 3386
264_8088	DI1 Data Wave Set 0 <i> Register (IPU1_DI1_DW_SET0_i)</i>	32	R/W	0000_0000h	37.5.252/ 3389
264_80B8	DI1 Data Wave Set 1 <i> Register (IPU1_DI1_DW_SET1_i)</i>	32	R/W	0000_0000h	37.5.253/ 3389
264_80E8	DI1 Data Wave Set 2 <i> Register (IPU1_DI1_DW_SET2_i)</i>	32	R/W	0000_0000h	37.5.254/ 3390
264_8118	DI1 Data Wave Set 3 <i> Register (IPU1_DI1_DW_SET3_i)</i>	32	R/W	0000_0000h	37.5.255/ 3391
264_8148	DI1 Step Repeat <i> Registers (IPU1_D1_STP_REP_i)</i>	32	R/W	0000_0000h	37.5.256/ 3391
264_8158	DI1Step Repeat 9 Registers (IPU1_DI1_STP_REP_9)	32	R/W	0000_0000h	37.5.257/ 3392
264_815C	DI1 Serial Display Control Register (IPU1_DI1_SER_CONF)	32	R/W	0000_0000h	37.5.258/ 3392
264_8160	DI1 Special Signals Control Register (IPU1_DI1_SSC)	32	R/W	0000_0000h	37.5.259/ 3395
264_8164	DI1 Polarity Register (IPU1_DI1_POL)	32	R/W	0000_0000h	37.5.260/ 3397
264_8168	DI1Active Window 0 Register (IPU1_DI1_AW0)	32	R/W	0000_0000h	37.5.261/ 3398
264_816C	DI1 Active Window 1 Register (IPU1_DI1_AW1)	32	R/W	0000_0000h	37.5.262/ 3399
264_8170	DI1 Screen Configuration Register (IPU1_DI1_SCR_CONF)	32	R/W	0000_0000h	37.5.263/ 3400
264_8174	DI1 Status Register (IPU1_DI1_STAT)	32	R	0000_0005h	37.5.264/ 3401
265_0000	SMFC Mapping Register (IPU1_SMFC_MAP)	32	R/W	0000_0000h	37.5.265/ 3402
265_0004	SMFC Watermark Control Register (IPU1_SMFC_WMC)	32	R/W	0000_09A6h	37.5.266/ 3403
265_0008	SMFC Burst Size Register (IPU1_SMFC_BS)	32	R/W	0000_0000h	37.5.267/ 3405
265_8000	DC Read Channel Configuration Register (IPU1_DC_READ_CH_CONF)	32	R/W	FFFF_0000h	37.5.268/ 3406

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
265_8004	DC Read Channel Start Address Register (IPU1_DC_READ_SH_ADDR)	32	R/W	0000_0000h	37.5.269/ 3407
265_8008	DC Routine Link Register 0 Channel 0 (IPU1_DC_RL0_CH_0)	32	R/W	0000_0000h	37.5.270/ 3408
265_800C	DC Routine Link Register 1 Channel 0 (IPU1_DC_RL1_CH_0)	32	R/W	0000_0000h	37.5.271/ 3409
265_8010	DC Routine Link Register2 Channel 0 (IPU1_DC_RL2_CH_0)	32	R/W	0000_0000h	37.5.272/ 3410
265_8014	DC Routine Link Registe3 Channel 0 (IPU1_DC_RL3_CH_0)	32	R/W	0000_0000h	37.5.273/ 3411
265_8018	DC Routine Link Register 4 Channel 0 (IPU1_DC_RL4_CH_0)	32	R/W	0000_0000h	37.5.274/ 3412
265_801C	DC Write Channel 1 Configuration Register (IPU1_DC_WR_CH_CONF_1)	32	R/W	0000_0000h	37.5.275/ 3413
265_8020	DC Write Channel 1 Address Configuration Register (IPU1_DC_WR_CH_ADDR_1)	32	R/W	0000_0000h	37.5.276/ 3414
265_8024	DC Routine Link Register 0 Channel 1 (IPU1_DC_RL0_CH_1)	32	R/W	0000_0000h	37.5.277/ 3415
265_8028	DC Routine Link Register 1 Channel 1 (IPU1_DC_RL1_CH_1)	32	R/W	0000_0000h	37.5.278/ 3416
265_8030	DC Routine Link Register 2 Channel 1 (IPU1_DC_RL2_CH_1)	32	R/W	0000_0000h	37.5.279/ 3417
265_8032	DC Routine Link Register 3 Channel 1 (IPU1_DC_RL3_CH_1)	32	R/W	0000_0000h	37.5.280/ 3418
265_8034	DC Routine Link Register 4 Channel 1 (IPU1_DC_RL4_CH_1)	32	R/W	0000_0000h	37.5.281/ 3419
265_8038	DC Write Channel 2 Configuration Register (IPU1_DC_WR_CH_CONF_2)	32	R/W	0000_0000h	37.5.282/ 3420
265_803C	DC Write Channel 2 Address Configuration Register (IPU1_DC_WR_CH_ADDR_2)	32	R/W	0000_0000h	37.5.283/ 3421
265_8040	DC Routine Link Register 0 Channel 2 (IPU1_DC_RL0_CH_2)	32	R/W	0000_0000h	37.5.284/ 3422
265_8044	DC Routine Link Register 1 Channel 2 (IPU1_DC_RL1_CH_2)	32	R/W	0000_0000h	37.5.285/ 3423
265_8048	DC Routine Link Register 2 Channel 2 (IPU1_DC_RL2_CH_2)	32	R/W	0000_0000h	37.5.286/ 3424
265_804C	DC Routine Link Register 3 Channel 2 (IPU1_DC_RL3_CH_2)	32	R/W	0000_0000h	37.5.287/ 3425
265_8050	DC Routine Link Register 4 Channel 2 (IPU1_DC_RL4_CH_2)	32	R/W	0000_0000h	37.5.288/ 3426
265_8054	DC Command Channel 3 Configuration Register (IPU1_DC_CMD_CH_CONF_3)	32	R/W	0000_0000h	37.5.289/ 3426
265_8058	DC Command Channel 4 Configuration Register (IPU1_DC_CMD_CH_CONF_4)	32	R/W	0000_0000h	37.5.290/ 3427

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
265_805C	DC Write Channel 5Configuration Register (IPU1_DC_WR_CH_CONF_5)	32	R/W	0000_0000h	37.5.291/ 3428
265_8060	DC Write Channel 5Address Configuration Register (IPU1_DC_WR_CH_ADDR_5)	32	R/W	0000_0000h	37.5.292/ 3430
265_8064	DC Routine Link Register 0 Channel 5 (IPU1_DC_RL0_CH_5)	32	R/W	0000_0000h	37.5.293/ 3430
265_8068	DC Routine Link Register 1 Channel 5 (IPU1_DC_RL1_CH_5)	32	R/W	0000_0000h	37.5.294/ 3431
265_806C	DC Routine Link Register 2 Channel 5 (IPU1_DC_RL2_CH_5)	32	R/W	0000_0000h	37.5.295/ 3432
265_8070	DC Routine Link Register3 Channel 5 (IPU1_DC_RL3_CH_5)	32	R/W	0000_0000h	37.5.296/ 3433
265_8074	DC Routine Link Register 4 Channel 5 (IPU1_DC_RL4_CH_5)	32	R/W	0000_0000h	37.5.297/ 3434
265_8078	DC Write Channel 6 Configuration Register (IPU1_DC_WR_CH_CONF_6)	32	R/W	0000_0000h	37.5.298/ 3435
265_807C	DC Write Channel 6 Address Configuration Register (IPU1_DC_WR_CH_ADDR_6)	32	R/W	0000_0000h	37.5.299/ 3436
265_8080	DC Routine Link Register 0Channel 6 (IPU1_DC_RL0_CH_6)	32	R/W	0000_0000h	37.5.300/ 3437
265_8084	DC Routine Link Register 1 Channel 6 (IPU1_DC_RL1_CH_6)	32	R/W	0000_0000h	37.5.301/ 3438
265_8088	DC Routine Link Register 2 Channel 6 (IPU1_DC_RL2_CH_6)	32	R/W	0000_0000h	37.5.302/ 3439
265_808C	DC Routine Link Register 3 Channel 6 (IPU1_DC_RL3_CH_6)	32	R/W	0000_0000h	37.5.303/ 3440
265_8090	DC Routine Link Register 4 Channel 6 (IPU1_DC_RL4_CH_6)	32	R/W	0000_0000h	37.5.304/ 3441
265_8094	DC Write Channel 8 Configuration 1Register (IPU1_DC_WR_CH_CONF1_8)	32	R/W	0000_0000h	37.5.305/ 3442
265_8098	DC Write Channel 8 Configuration 2 Register (IPU1_DC_WR_CH_CONF2_8)	32	R/W	0000_0000h	37.5.306/ 3443
265_809C	DC Routine Link Register 1 Channel 8 (IPU1_DC_RL1_CH_8)	32	R/W	0000_0000h	37.5.307/ 3443
265_80A0	DC Routine Link Register 2 Channel 8 (IPU1_DC_RL2_CH_8)	32	R/W	0000_0000h	37.5.308/ 3444
265_80A4	DC Routine Link Register 3 Channel 8 (IPU1_DC_RL3_CH_8)	32	R/W	0000_0000h	37.5.309/ 3445
265_80A8	DC Routine Link Register 4 Channel 8 (IPU1_DC_RL4_CH_8)	32	R/W	0000_0000h	37.5.310/ 3445
265_80AC	DC Routine Link Register 5 Channel 8 (IPU1_DC_RL5_CH_8)	32	R/W	0000_0000h	37.5.311/ 3446
265_80B0	DC Routine Link Register 6 Channel 8 (IPU1_DC_RL6_CH_8)	32	R/W	0000_0000h	37.5.312/ 3447

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
265_80B4	DC Write Channel 9 Configuration 1Register (IPU1_DC_WR_CH_CONF1_9)	32	R/W	0000_0000h	37.5.313/ 3447
265_80B8	DC Write Channel 9Configuration 2Register (IPU1_DC_WR_CH_CONF2_9)	32	R/W	0000_0000h	37.5.314/ 3448
265_80BC	DC Routine Link Register 1 Channel 9 (IPU1_DC_RL1_CH_9)	32	R/W	0000_0000h	37.5.315/ 3449
265_80C0	DC Routine Link Register 2 Channel 9 (IPU1_DC_RL2_CH_9)	32	R/W	0000_0000h	37.5.316/ 3449
265_80C4	DC Routine Link Register 3Channel 9 (IPU1_DC_RL3_CH_9)	32	R/W	0000_0000h	37.5.317/ 3450
265_80C8	DC Routine Link Register 4 Channel 9 (IPU1_DC_RL4_CH_9)	32	R/W	0000_0000h	37.5.318/ 3451
265_80CC	DC Routine Link Register 5 Channel 9 (IPU1_DC_RL5_CH_9)	32	R/W	0000_0000h	37.5.319/ 3452
265_80D0	DC Routine Link Register 6 Channel 9 (IPU1_DC_RL6_CH_9)	32	R/W	0000_0000h	37.5.320/ 3452
265_80D4	DC General Register (IPU1_DC_GEN)	32	R/W	0000_0060h	37.5.321/ 3453
265_80D8	DC Display Configuration 1 Register 0 (IPU1_DC_DISP_CONF1_0)	32	R/W	0000_0042h	37.5.322/ 3455
265_80DC	DC Display Configuration 1 Register 1 (IPU1_DC_DISP_CONF1_1)	32	R/W	0000_0042h	37.5.323/ 3456
265_80E0	DC Display Configuration 1 Register 2 (IPU1_DC_DISP_CONF1_2)	32	R/W	0000_0042h	37.5.324/ 3458
265_80E4	DC Display Configuration 1 Register 3 (IPU1_DC_DISP_CONF1_3)	32	R/W	0000_0042h	37.5.325/ 3459
265_80E8	DC Display Configuration 2 Register 0 (IPU1_DC_DISP_CONF2_0)	32	R/W	0000_0000h	37.5.326/ 3460
265_80EC	DC Display Configuration 2 Register 1 (IPU1_DC_DISP_CONF2_1)	32	R/W	0000_0000h	37.5.327/ 3461
265_80F0	DC Display Configuration 2 Register 2 (IPU1_DC_DISP_CONF2_2)	32	R/W	0000_0000h	37.5.328/ 3461
265_80F4	DC Display Configuration 2 Register 3 (IPU1_DC_DISP_CONF2_3)	32	R/W	0000_0000h	37.5.329/ 3461
265_80F8	DC DI0Configuration Register 1 (IPU1_DC_DI0_CONF_1)	32	R/W	0000_0000h	37.5.330/ 3462
265_80FC	DC DI0Configuration Register 2 (IPU1_DC_DI0_CONF_2)	32	R/W	0000_0000h	37.5.331/ 3462
265_8100	DC DI1Configuration Register 1 (IPU1_DC_DI1_CONF_1)	32	R/W	0000_0000h	37.5.332/ 3462
265_8104	DC DI1Configuration Register 2 (IPU1_DC_DI1_CONF_2)	32	R/W	0000_0000h	37.5.333/ 3463
265_8108	DC Mapping Configuration Register 0 (IPU1_DC_MAP_CONF_0)	32	R/W	0000_0000h	37.5.334/ 3463

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
265_810C	DC Mapping Configuration Register 1 (IPU1_DC_MAP_CONF_1)	32	R/W	0000_0000h	37.5.335/ 3464
265_8110	DC Mapping Configuration Register 2 (IPU1_DC_MAP_CONF_2)	32	R/W	0000_0000h	37.5.336/ 3465
265_8114	DC Mapping Configuration Register 3 (IPU1_DC_MAP_CONF_3)	32	R/W	0000_0000h	37.5.337/ 3466
265_8118	DC Mapping Configuration Register 4 (IPU1_DC_MAP_CONF_4)	32	R/W	0000_0000h	37.5.338/ 3467
265_811C	DC Mapping Configuration Register 5 (IPU1_DC_MAP_CONF_5)	32	R/W	0000_0000h	37.5.339/ 3468
265_8120	DC Mapping Configuration Register 6 (IPU1_DC_MAP_CONF_6)	32	R/W	0000_0000h	37.5.340/ 3469
265_8124	DC Mapping Configuration Register 7 (IPU1_DC_MAP_CONF_7)	32	R/W	0000_0000h	37.5.341/ 3470
265_8128	DC Mapping Configuration Register 8 (IPU1_DC_MAP_CONF_8)	32	R/W	0000_0000h	37.5.342/ 3471
265_812C	DC Mapping Configuration Register 9 (IPU1_DC_MAP_CONF_9)	32	R/W	0000_0000h	37.5.343/ 3472
265_8130	DC Mapping Configuration Register 10 (IPU1_DC_MAP_CONF_10)	32	R/W	0000_0000h	37.5.344/ 3473
265_8134	DC Mapping Configuration Register 11 (IPU1_DC_MAP_CONF_11)	32	R/W	0000_0000h	37.5.345/ 3474
265_8138	DC Mapping Configuration Register 12 (IPU1_DC_MAP_CONF_12)	32	R/W	0000_0000h	37.5.346/ 3475
265_813C	DC Mapping Configuration Register 13 (IPU1_DC_MAP_CONF_13)	32	R/W	0000_0000h	37.5.347/ 3476
265_8140	DC Mapping Configuration Register 14 (IPU1_DC_MAP_CONF_14)	32	R/W	0000_0000h	37.5.348/ 3477
265_8144	DC Mapping Configuration Register 15 (IPU1_DC_MAP_CONF_15)	32	R/W	0000_0000h	37.5.349/ 3478
265_8148	DC Mapping Configuration Register 16 (IPU1_DC_MAP_CONF_16)	32	R/W	0000_0000h	37.5.350/ 3478
265_814C	DC Mapping Configuration Register 17 (IPU1_DC_MAP_CONF_17)	32	R/W	0000_0000h	37.5.351/ 3479
265_8150	DC Mapping Configuration Register 18 (IPU1_DC_MAP_CONF_18)	32	R/W	0000_0000h	37.5.352/ 3480
265_8154	DC Mapping Configuration Register 19 (IPU1_DC_MAP_CONF_19)	32	R/W	0000_0000h	37.5.353/ 3480
265_8158	DC Mapping Configuration Register 20 (IPU1_DC_MAP_CONF_20)	32	R/W	0000_0000h	37.5.354/ 3481
265_815C	DC Mapping Configuration Register 21 (IPU1_DC_MAP_CONF_21)	32	R/W	0000_0000h	37.5.355/ 3482
265_8160	DC Mapping Configuration Register 22 (IPU1_DC_MAP_CONF_22)	32	R/W	0000_0000h	37.5.356/ 3482

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
265_8164	DC Mapping Configuration Register 23 (IPU1_DC_MAP_CONF_23)	32	R/W	0000_0000h	37.5.357/ 3483
265_8168	DC Mapping Configuration Register 24 (IPU1_DC_MAP_CONF_24)	32	R/W	0000_0000h	37.5.358/ 3484
265_816C	DC Mapping Configuration Register 25 (IPU1_DC_MAP_CONF_25)	32	R/W	0000_0000h	37.5.359/ 3484
265_8170	DC Mapping Configuration Register 26 (IPU1_DC_MAP_CONF_26)	32	R/W	0000_0000h	37.5.360/ 3485
265_8174	DC User General Data Event 0 Register 0 (IPU1_DC_UGDE0_0)	32	R/W	0000_0000h	37.5.361/ 3486
265_8178	DC User General Data Event 0 Register 1 (IPU1_DC_UGDE0_1)	32	R/W	0000_0000h	37.5.362/ 3487
265_817C	DC User General Data Event 0 Register2 (IPU1_DC_UGDE0_2)	32	R/W	0000_0000h	37.5.363/ 3488
265_8180	DC User General Data Event 0 Register 3 (IPU1_DC_UGDE0_3)	32	R/W	0000_0000h	37.5.364/ 3488
265_8184	DC User General Data Event 1Register0 (IPU1_DC_UGDE1_0)	32	R/W	0000_0000h	37.5.365/ 3489
265_8188	DC User General Data Event 1 Register 1 (IPU1_DC_UGDE1_1)	32	R/W	0000_0000h	37.5.366/ 3490
265_818C	DC User General Data Event 1Register 2 (IPU1_DC_UGDE1_2)	32	R/W	0000_0000h	37.5.367/ 3491
265_8190	DC User General Data Event 1Register 3 (IPU1_DC_UGDE1_3)	32	R/W	0000_0000h	37.5.368/ 3491
265_8194	DC User General Data Event 2 Register 0 (IPU1_DC_UGDE2_0)	32	R/W	0000_0000h	37.5.369/ 3492
265_8198	DC User General Data Event 2 Register 1 (IPU1_DC_UGDE2_1)	32	R/W	0000_0000h	37.5.370/ 3493
265_819C	DC User General Data Event 2Register 2 (IPU1_DC_UGDE2_2)	32	R/W	0000_0000h	37.5.371/ 3494
265_81A0	DC User General Data Event 2Register 3 (IPU1_DC_UGDE2_3)	32	R/W	0000_0000h	37.5.372/ 3494
265_81A4	DC User General Data Event 3Register 0 (IPU1_DC_UGDE3_0)	32	R/W	0000_0000h	37.5.373/ 3495
265_81A8	DC User General Data Event 3Register 1 (IPU1_DC_UGDE3_1)	32	R/W	0000_0000h	37.5.374/ 3496
265_81AC	DC User General Data Event 3Register 2 (IPU1_DC_UGDE3_2)	32	R/W	0000_0000h	37.5.375/ 3497
265_81B0	DC User General Data Event 3Register 2 (IPU1_DC_UGDE3_3)	32	R/W	0000_0000h	37.5.376/ 3497
265_81B4	DC Low Level Access Control Register 0 (IPU1_DC_LLA0)	32	R/W	0000_0000h	37.5.377/ 3497
265_81B8	DC Low Level Access Control Register 1 (IPU1_DC_LLA1)	32	R/W	0000_0000h	37.5.378/ 3498

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
265_81BC	DC Read Low Level Read Access Control Register 0 (IPU1_DC_R_LLA0)	32	R/W	0000_0000h	37.5.379/ 3498
265_81C0	DC Read Low Level Read Access Control Register1 (IPU1_DC_R_LLA1)	32	R/W	0000_0000h	37.5.380/ 3499
265_81C4	DC Write Channel 5 Configuration Register (IPU1_DC_WR_CH_ADDR_5_ALT)	32	R/W	0000_0000h	37.5.381/ 3499
265_81C8	DC Status Register (IPU1_DC_STAT)	32	R	0000_00AAh	37.5.382/ 3501
266_0000	DMFC Read Channel Register (IPU1_DMFC_RD_CHAN)	32	R/W	0000_0200h	37.5.383/ 3503
266_0004	DMFC Write Channel Register (IPU1_DMFC_WR_CHAN)	32	R/W	0000_0000h	37.5.384/ 3505
266_0008	DMFC Write Channel Definition Register (IPU1_DMFC_WR_CHAN_DEF)	32	R/W	2020_2020h	37.5.385/ 3508
266_000C	DMFC Display Processor Channel Register (IPU1_DMFC_DP_CHAN)	32	R/W	0000_0000h	37.5.386/ 3510
266_0010	DMFC Display Processor Channel Definition Register (IPU1_DMFC_DP_CHAN_DEF)	32	R/W	2020_2020h	37.5.387/ 3513
266_0014	DMFC General 1 Register (IPU1_DMFC_GENERAL_1)	32	R/W	0000_0003h	37.5.388/ 3515
266_0018	DMFC General 2 Register (IPU1_DMFC_GENERAL_2)	32	R/W	0000_0000h	37.5.389/ 3517
266_001C	DMFC IC Interface Control Register (IPU1_DMFC_IC_CTRL)	32	R/W	0000_0002h	37.5.390/ 3518
266_0020	DMFC Write Channel Alternate Register (IPU1_DMFC_WR_CHAN_ALT)	32	R/W	0000_0000h	37.5.391/ 3519
266_0024	DMFC Write Channel Definition Alternate Register (IPU1_DMFC_WR_CHAN_DEF_ALT)	32	R/W	0000_2000h	37.5.392/ 3520
266_0028	DMFC MFC Display Processor Channel Alternate Register (IPU1_DMFC_DP_CHAN_ALT)	32	R/W	0000_0000h	37.5.393/ 3521
266_002C	DMFC Display Channel Definition Alternate Register (IPU1_DMFC_DP_CHAN_DEF_ALT)	32	R/W	2020_0020h	37.5.394/ 3524
266_0030	DMFC General 1 Alternate Register (IPU1_DMFC_GENERAL1_ALT)	32	R/W	0000_0000h	37.5.395/ 3526
266_0034	DMFC Status Register (IPU1_DMFC_STAT)	32	R	02FF_F000h	37.5.396/ 3528
266_8000	VDI Field Size Register (IPU1_VDI_FSIZE)	32	R/W	0000_0000h	37.5.397/ 3529
266_8004	VDI Control Register (IPU1_VDI_C)	32	R/W	0000_0000h	37.5.398/ 3530
266_8008	VDI Control Register 2 (IPU1_VDI_C2_)	32	R/W	0000_0000h	37.5.399/ 3532
266_800C	VDI Combining Parameters Register 1 (IPU1_VDI_CMDP_1)	32	R/W	0000_0000h	37.5.400/ 3533

IPU Memory Map/Register Definition

IPU memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
266_8010	VDI Combining Parameters Register 2 (IPU1_VDI_CMDP_2)	32	R/W	0000_0000h	37.5.401/ 3534
266_8014	VDI Plane Size Register 1 (IPU1_VDI_PS_1)	32	R/W	0000_0000h	37.5.402/ 3534
266_8018	VDI Plane Size Register 2 (IPU1_VDI_PS_2)	32	R/W	0000_0000h	37.5.403/ 3535
266_801C	VDI Plane Size Register 3 (IPU1_VDI_PS_3)	32	R/W	0000_0000h	37.5.404/ 3536
266_8020	VDI Plane Size Register 4 (IPU1_VDI_PS_4)	32	R/W	0000_0000h	37.5.405/ 3536
2A0_0000	Configuration Register (IPU2_CONF)	32	R/W	0000_0000h	37.5.1/2959
2A0_0004	SISG Control 0 Register (IPU2_SISG_CTRL0)	32	R/W	0000_0000h	37.5.2/2962
2A0_0008	SISG Control 1 Register (IPU2_SISG_CTRL1)	32	R/W	0000_0000h	37.5.3/2963
2A0_000C	SISG Set <i> Register (IPU2_SISG_SET_i)</i>	32	R/W	0000_0000h	37.5.4/2963
2A0_0024	SISG Clear <i> Register (IPU2_SISG_CLR_i)</i>	32	R/W	0000_0000h	37.5.5/2964
2A0_003C	Interrupt Control Register 1 (IPU2_INT_CTRL_1)	32	R/W	0000_0000h	37.5.6/2964
2A0_0040	Interrupt Control Register 2 (IPU2_INT_CTRL_2)	32	R/W	0000_0000h	37.5.7/2968
2A0_0044	Interrupt Control Register 3 (IPU2_INT_CTRL_3)	32	R/W	0000_0000h	37.5.8/2971
2A0_0048	Interrupt Control Register 4 (IPU2_INT_CTRL_4)	32	R/W	0000_0000h	37.5.9/2975
2A0_004C	Interrupt Control Register 5 (IPU2_INT_CTRL_5)	32	R/W	0000_0000h	37.5.10/ 2978
2A0_0050	Interrupt Control Register 6 (IPU2_INT_CTRL_6)	32	R/W	0000_0000h	37.5.11/ 2983
2A0_0054	Interrupt Control Register 7 (IPU2_INT_CTRL_7)	32	R/W	0000_0000h	37.5.12/ 2986
2A0_0058	Interrupt Control Register 8 (IPU2_INT_CTRL_8)	32	R/W	0000_0000h	37.5.13/ 2988
2A0_005C	Interrupt Control Register 9 (IPU2_INT_CTRL_9)	32	R/W	0000_0000h	37.5.14/ 2990
2A0_0060	Interrupt Control Register 10 (IPU2_INT_CTRL_10)	32	R/W	0000_0000h	37.5.15/ 2992
2A0_0064	Interrupt Control Register 11 (IPU2_INT_CTRL_11)	32	R/W	0000_0000h	37.5.16/ 2994
2A0_0068	Interrupt Control Register 12 (IPU2_INT_CTRL_12)	32	R/W	0000_0000h	37.5.17/ 2997
2A0_006C	Interrupt Control Register 13 (IPU2_INT_CTRL_13)	32	R/W	0000_0000h	37.5.18/ 2999
2A0_0070	Interrupt Control Register 14 (IPU2_INT_CTRL_14)	32	R/W	0000_0000h	37.5.19/ 3003
2A0_0074	Interrupt Control Register15 (IPU2_INT_CTRL_15)	32	R/W	0000_0000h	37.5.20/ 3006
2A0_0078	SDMA Event Control Register 1 (IPU2_SDMA_EVENT_1)	32	R/W	0000_0000h	37.5.21/ 3010

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A0_007C	SDMA Event Control Register 2 (IPU2_SDMA_EVENT_2)	32	R/W	0000_0000h	37.5.22/ 3014
2A0_0080	SDMA Event Control Register 3 (IPU2_SDMA_EVENT_3)	32	R/W	0000_0000h	37.5.23/ 3017
2A0_0084	SDMA Event Control Register 4 (IPU2_SDMA_EVENT_4)	32	R/W	0000_0000h	37.5.24/ 3022
2A0_0088	SDMA Event Control Register 7 (IPU2_SDMA_EVENT_7)	32	R/W	0000_0000h	37.5.25/ 3025
2A0_008C	SDMA Event Control Register 8 (IPU2_SDMA_EVENT_8)	32	R/W	0000_0000h	37.5.26/ 3027
2A0_0090	SDMA Event Control Register 11 (IPU2_SDMA_EVENT_11)	32	R/W	0000_0000h	37.5.27/ 3028
2A0_0094	SDMA Event Control Register 12 (IPU2_SDMA_EVENT_12)	32	R/W	0000_0000h	37.5.28/ 3031
2A0_0098	SDMA Event Control Register 13 (IPU2_SDMA_EVENT_13)	32	R/W	0000_0000h	37.5.29/ 3033
2A0_009C	SDMA Event Control Register 14 (IPU2_SDMA_EVENT_14)	32	R/W	0000_0000h	37.5.30/ 3037
2A0_00A0	Shadow Registers Memory Priority 1 Register (IPU2_SRM_PRI1)	32	R/W	0000_0100h	37.5.31/ 3040
2A0_00A4	Shadow Registers Memory Priority 2 Register (IPU2_SRM_PRI2)	32	R/W	0605_0803h	37.5.32/ 3041
2A0_00A8	FSU Processing Flow 1 Register (IPU2_FS_PROC_FLOW1)	32	R/W	0000_0000h	37.5.33/ 3043
2A0_00AC	FSU Processing Flow 2 Register (IPU2_FS_PROC_FLOW2)	32	R/W	0000_0000h	37.5.34/ 3047
2A0_00B0	FSU Processing Flow 3 Register (IPU2_FS_PROC_FLOW3)	32	R/W	0000_0000h	37.5.35/ 3050
2A0_00B4	FSU Displaying Flow 1 Register (IPU2_FS_DISP_FLOW1)	32	R/W	0000_0000h	37.5.36/ 3053
2A0_00B8	FSU Displaying Flow 2 Register (IPU2_FS_DISP_FLOW2)	32	R/W	0000_0000h	37.5.37/ 3056
2A0_00BC	SKIP Register (IPU2_SKIP)	32	R/W	0000_0000h	37.5.38/ 3058
2A0_00C4	Display General Control Register (IPU2_DISP_GEN)	32	R/W	0040_0000h	37.5.39/ 3060
2A0_00C8	Display Alternate Flow Control Register 1 (IPU2_DISP_ALT1)	32	R/W	0040_0000h	37.5.40/ 3063
2A0_00CC	Display Alternate Flow Control Register 2 (IPU2_DISP_ALT2)	32	R/W	0000_0000h	37.5.41/ 3064
2A0_00D0	Display Alternate Flow Control Register 3 (IPU2_DISP_ALT3)	32	R/W	0040_0000h	37.5.42/ 3065
2A0_00D4	Display Alternate Flow Control Register 4 (IPU2_DISP_ALT4)	32	R/W	0000_0000h	37.5.43/ 3067

IPU Memory Map/Register Definition

IPU memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A0_00DC	Memory Reset Control Register (IPU2_MEM_RST)	32	R/W	0000_0000h	37.5.44/ 3068
2A0_00E0	Power Modes Control Register (IPU2_PM)	32	R/W	0810_0810h	37.5.45/ 3070
2A0_00E4	General Purpose Register (IPU2_GPR)	32	R/W	0000_0000h	37.5.46/ 3073
2A0_0150	Channel Double Buffer Mode Select 0 Register (IPU2_CH_DB_MODE_SEL0)	32	R/W	0000_0000h	37.5.47/ 3075
2A0_0154	Channel Double Buffer Mode Select 1 Register (IPU2_CH_DB_MODE_SEL1)	32	R/W	0000_0000h	37.5.48/ 3079
2A0_0168	Alternate Channel Double Buffer Mode Select 0 Register (IPU2_ALT_CH_DB_MODE_SEL0)	32	R/W	0000_0000h	37.5.49/ 3082
2A0_016C	Alternate Channel Double Buffer Mode Select1 Register (IPU2_ALT_CH_DB_MODE_SEL1)	32	R/W	0000_0000h	37.5.50/ 3084
2A0_0178	Alternate Channel Triple Buffer Mode Select 0 Register (IPU2_ALT_CH_TRB_MODE_SEL0)	32	R/W	0000_0000h	37.5.51/ 3085
2A0_0200	Interrupt Status Register 1 (IPU2_INT_STAT_1)	32	w1c	0000_0000h	37.5.52/ 3088
2A0_0204	Interrupt Status Register2 (IPU2_INT_STAT_2)	32	w1c	0000_0000h	37.5.53/ 3093
2A0_0208	Interrupt Status Register 3 (IPU2_INT_STAT_3)	32	w1c	0000_0000h	37.5.54/ 3096
2A0_020C	Interrupt Status Register 4 (IPU2_INT_STAT_4)	32	w1c	0000_0000h	37.5.55/ 3100
2A0_0210	Interrupt Status Register 5 (IPU2_INT_STAT_5)	32	w1c	0000_0000h	37.5.56/ 3103
2A0_0214	Interrupt Status Register 6 (IPU2_INT_STAT_6)	32	w1c	0000_0000h	37.5.57/ 3108
2A0_0218	Interrupt Status Register7 1 (IPU2_INT_STAT_7)	32	w1c	0000_0000h	37.5.58/ 3111
2A0_021C	Interrupt Status Register 8 (IPU2_INT_STAT_8)	32	w1c	0000_0000h	37.5.59/ 3114
2A0_0220	Interrupt Status Register 9 (IPU2_INT_STAT_9)	32	w1c	0000_0000h	37.5.60/ 3117
2A0_0224	Interrupt Status Register 10 (IPU2_INT_STAT_10)	32	w1c	0000_0000h	37.5.61/ 3119
2A0_0228	Interrupt Status Register 11 (IPU2_INT_STAT_11)	32	w1c	0000_0000h	37.5.62/ 3122
2A0_022C	Interrupt Status Register 12 (IPU2_INT_STAT_12)	32	w1c	0000_0000h	37.5.63/ 3126
2A0_0230	Interrupt Status Register 13 (IPU2_INT_STAT_13)	32	w1c	0000_0000h	37.5.64/ 3128
2A0_0234	Interrupt Status Register 14 (IPU2_INT_STAT_14)	32	w1c	0000_0000h	37.5.65/ 3133

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A0_0238	Interrupt Status Register 15 (IPU2_INT_STAT_15)	32	w1c	0000_0000h	37.5.66/ 3136
2A0_023C	Current Buffer Register 0 (IPU2_CUR_BUF_0)	32	R	0000_0000h	37.5.67/ 3140
2A0_0240	Current Buffer Register 1 (IPU2_CUR_BUF_1)	32	R	0000_0000h	37.5.68/ 3145
2A0_0244	Alternate Current Buffer Register 0 (IPU2_ALT_CUR_0)	32	R	0000_0000h	37.5.69/ 3149
2A0_0248	Alternate Current Buffer Register 1 (IPU2_ALT_CUR_1)	32	R	0000_0000h	37.5.70/ 3151
2A0_024C	Shadow Registers Memory Status Register (IPU2_SRM_STAT)	32	R	0000_0000h	37.5.71/ 3154
2A0_0250	Processing Status Tasks Register (IPU2_PROC_TASKS_STAT)	32	R	0000_0000h	37.5.72/ 3156
2A0_0254	Display Tasks Status Register (IPU2_DISP_TASKS_STAT)	32	R	0000_0000h	37.5.73/ 3158
2A0_0258	Triple Current Buffer Register 0 (IPU2_TRIPLE_CUR_BUF_0)	32	R	0000_0000h	37.5.74/ 3160
2A0_025C	Triple Current Buffer Register 1 (IPU2_TRIPLE_CUR_BUF_1)	32	R	0000_0000h	37.5.75/ 3162
2A0_0268	IPU Channels Buffer 0 Ready 0 Register (IPU2_CH_BUF0_RDY0)	32	R/W	0000_0000h	37.5.76/ 3163
2A0_026C	IPU Channels Buffer 0 Ready 1 Register (IPU2_CH_BUF0_RDY1)	32	R/W	0000_0000h	37.5.77/ 3167
2A0_0270	IPU Channels Buffer 1 Ready 0 Register (IPU2_CH_BUF1_RDY0)	32	R/W	0000_0000h	37.5.78/ 3169
2A0_0274	IPU Channels Buffer 1 Ready 1Register (IPU2_CH_BUF1_RDY1)	32	R/W	0000_0000h	37.5.79/ 3172
2A0_0278	IPU Alternate Channels Buffer 0 Ready 0 Register (IPU2_ALT_CH_BUF0_RDY0)	32	R/W	0000_0000h	37.5.80/ 3175
2A0_027C	IPU Alternate Channels Buffer 0 Ready 1 Register (IPU2_ALT_CH_BUF0_RDY1)	32	R/W	0000_0000h	37.5.81/ 3176
2A0_0280	IPU Alternate Channels Buffer1 Ready 0 Register (IPU2_ALT_CH_BUF1_RDY0)	32	R/W	0000_0000h	37.5.82/ 3177
2A0_0284	IPU Alternate Channels Buffer 1 Ready 1 Register (IPU2_ALT_CH_BUF1_RDY1)	32	R/W	0000_0000h	37.5.83/ 3178
2A0_0288	IPU Channels Buffer 2 Ready 0 Register (IPU2_CH_BUF2_RDY0)	32	R/W	0000_0000h	37.5.84/ 3179
2A0_028C	IPU Channels Buffer 2 Ready 1 Register (IPU2_CH_BUF2_RDY1)	32	R/W	0000_0000h	37.5.85/ 3181
2A0_8000	IDMAC Configuration Register (IPU2_IDMAC_CONF)	32	R/W	0000_002Fh	37.5.86/ 3182
2A0_8004	IDMAC Channel Enable 1 Register (IPU2_IDMAC_CH_EN_1)	32	R/W	0000_0000h	37.5.87/ 3184

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A0_8008	IDMAC Channel Enable 2 Register (IPU2_IDMAC_CH_EN_2)	32	R/W	0000_0000h	37.5.88/ 3187
2A0_800C	IDMAC Separate Alpha Indication Register (IPU2_IDMAC_SEP_ALPHA)	32	R/W	0000_0000h	37.5.89/ 3189
2A0_8010	IDMAC Alternate Separate Alpha Indication Register (IPU2_IDMAC_ALT_SEP_ALPHA)	32	R/W	0000_0000h	37.5.90/ 3191
2A0_8014	IDMAC Channel Priority 1 Register (IPU2_IDMAC_CH_PRI_1)	32	R/W	0000_0000h	37.5.91/ 3193
2A0_8018	IDMAC Channel Priority 2 Register (IPU2_IDMAC_CH_PRI_2)	32	R/W	0000_0000h	37.5.92/ 3196
2A0_801C	IDMAC Channel Watermark Enable 1 Register (IPU2_IDMAC_WM_EN_1)	32	R/W	0000_0000h	37.5.93/ 3198
2A0_8020	IDMAC Channel Watermark Enable 2 Register (IPU2_IDMAC_WM_EN_2)	32	R/W	0000_0000h	37.5.94/ 3200
2A0_8024	IDMAC Channel Lock Enable 1Register (IPU2_IDMAC_LOCK_EN_1)	32	R/W	0000_0000h	37.5.95/ 3201
2A0_8028	IDMAC Channel Lock Enable 2Register (IPU2_IDMAC_LOCK_EN_2)	32	R/W	0000_0000h	37.5.96/ 3203
2A0_802C	IDMAC Channel Alternate Address 0 Register (IPU2_IDMAC_SUB_ADDR_0)	32	R/W	0000_0000h	37.5.97/ 3204
2A0_8030	IDMAC Channel Alternate Address 1 Register (IPU2_IDMAC_SUB_ADDR_1)	32	R/W	0000_0000h	37.5.98/ 3205
2A0_8034	IDMAC Channel Alternate Address 2 Register (IPU2_IDMAC_SUB_ADDR_2)	32	R/W	0000_0000h	37.5.99/ 3206
2A0_8038	IDMAC Channel Alternate Address 3 Register (IPU2_IDMAC_SUB_ADDR_3)	32	R/W	0000_0000h	37.5.100/ 3207
2A0_803C	IDMAC Channel Alternate Address 4 Register (IPU2_IDMAC_SUB_ADDR_4)	32	R/W	0000_0000h	37.5.101/ 3209
2A0_8040	IDMAC Band Mode Enable 1 Register (IPU2_IDMAC_BNDM_EN_1)	32	R/W	0000_0000h	37.5.102/ 3210
2A0_8044	IDMAC Band Mode Enable 2 Register (IPU2_IDMAC_BNDM_EN_2)	32	R/W	0000_0000h	37.5.103/ 3213
2A0_8048	IDMAC Scroll Coordinations Register (IPU2_IDMAC_SC_CORD)	32	R/W	0000_0000h	37.5.104/ 3214
2A0_804C	IDMAC Scroll Coordinations Register 1 (IPU2_IDMAC_SC_CORD_1)	32	R/W	0000_0000h	37.5.105/ 3215
2A0_8100	IDMAC Channel Busy 1 Register (IPU2_IDMAC_CH_BUSY_1)	32	R	0000_0000h	37.5.106/ 3216
2A0_8104	IDMAC Channel Busy 2 Register (IPU2_IDMAC_CH_BUSY_2)	32	R	0000_0000h	37.5.107/ 3222
2A1_8000	DP Common Configuration Sync Flow Register (IPU2_DP_COM_CONF_SYNC)	32	R/W	0000_0000h	37.5.108/ 3226
2A1_8004	DP Graphic Window Control Sync Flow Register (IPU2_DP_Graph_Wind_CTRL_SYNC)	32	R/W	0000_0000h	37.5.109/ 3228

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A1_8008	DP Partial Plane Window Position Sync Flow Register (IPU2_DP_FG_POS_SYNC)	32	R/W	0000_0000h	37.5.110/ 3229
2A1_800C	DP Cursor Position and Size Sync Flow Register (IPU2_DP_CUR_POS_SYNC)	32	R/W	0000_0000h	37.5.111/ 3229
2A1_8010	DP Color Cursor Mapping Sync Flow Register (IPU2_DP_CUR_MAP_SYNC)	32	R/W	0000_0000h	37.5.112/ 3230
2A1_8014	DP Gamma Constants Sync Flow Register i (IPU2_DP_GAMMA_C_SYNC_i)	32	R/W	0000_0000h	37.5.113/ 3231
2A1_8034	DP Gamma Correction Slope Sync Flow Register i (IPU2_DP_GAMMA_S_SYNC_i)	32	R/W	0000_0000h	37.5.114/ 3231
2A1_8044	DP Color Space Conversion Control Sync Flow Registers (IPU2_DP_CSCA_SYNC_i)	32	R/W	0000_0000h	37.5.115/ 3232
2A1_8054	DP Color Conversion Control Sync Flow Register 0 (IPU2_DP_SCS_SYNC_0)	32	R/W	0000_0000h	37.5.116/ 3233
2A1_8058	DP Color Conversion Control Sync Flow Register 1 (IPU2_DP_SCS_SYNC_1)	32	R/W	0000_0000h	37.5.117/ 3233
2A1_805C	DP Cursor Position and Size Alternate Register (IPU2_DP_CUR_POS_ALT)	32	R/W	0000_0000h	37.5.118/ 3234
2A1_8060	DP Common Configuration Async 0 Flow Register (IPU2_DP_COM_CONF_ASYNC0)	32	R/W	0000_0000h	37.5.119/ 3235
2A1_8064	DP Graphic Window Control Async 0 Flow Register (IPU2_DP_GRAPH_WIND_CTRL_ASYNC0)	32	R/W	0000_0000h	37.5.120/ 3237
2A1_8068	DP Partial Plane Window Position Async 0 Flow Register (IPU2_DP_FG_POS_ASYNC0)	32	R/W	0000_0000h	37.5.121/ 3238
2A1_806C	DP Cursor Position and Size Async 0 Flow Register (IPU2_DP_CUR_POS_ASYNC0)	32	R/W	0000_0000h	37.5.122/ 3239
2A1_8070	DP Color Cursor Mapping Async 0 Flow Register (IPU2_DP_CUR_MAP_ASYNC0)	32	R/W	0000_0000h	37.5.123/ 3239
2A1_8074	DP Gamma Constant Async 0 Flow Register i (IPU2_DP_GAMMA_C_ASYNC0_i)	32	R/W	0000_0000h	37.5.124/ 3240
2A1_8094	DP Gamma Correction Slope Async 0 Flow Register i (IPU2_DP_GAMMA_S_ASYNC0_i)	32	R/W	0000_0000h	37.5.125/ 3241
2A1_80A4	DP Color Space Conversion Control Async 0 Flow Register i (IPU2_DP_CSCA_ASYNC0_i)	32	R/W	0000_0000h	37.5.126/ 3241
2A1_80B4	DP Color Conversion Control Async 0 Flow Register 0 (IPU2_DP_CSC_ASYNC0_0)	32	R/W	0000_0000h	37.5.127/ 3242
2A1_80B8	DP Color Conversion Control Async 1 Flow Register (IPU2_DP_CSC_ASYNC_1)	32	R/W	0000_0000h	37.5.128/ 3243
2A1_80BC	DP Common Configuration Async 1 Flow Register (IPU2_DP_COM_CONF_ASYNC1)	32	R/W	0000_0000h	37.5.129/ 3244
2A1_80BC	DP Debug Control Register (IPU2_DP_DEBUG_CNT)	32	R/W	0000_0000h	37.5.130/ 3246
2A1_80C0	DP Graphic Window Control Async 1 Flow Register (IPU2_DP_GRAPH_WIND_CTRL_ASYNC1)	32	R/W	0000_0000h	37.5.131/ 3247

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A1_80C0	DP Debug Status Register (IPU2_DP_DEBUG_STAT)	32	R	0000_0000h	37.5.132/ 3248
2A1_80C4	DP Partial Plane Window Position Async 1 Flow Register (IPU2_DP_FG_POS_ASYNC1)	32	R/W	0000_0000h	37.5.133/ 3250
2A1_80C8	DP Cursor Postion and Size Async 1 Flow Register (IPU2_DP_CUR_POS_ASYNC1)	32	R/W	0000_0000h	37.5.134/ 3250
2A1_80CC	DP Color Cursor Mapping Async 1 Flow Register (IPU2_DP_CUR_MAP_ASYNC1)	32	R/W	0000_0000h	37.5.135/ 3251
2A1_80D0	DP Gamma Constants Async 1 Flow Register i (IPU2_DP_GAMMA_C_ASYNC1_i)	32	R/W	0000_0000h	37.5.136/ 3252
2A1_80F0	DP Gamma Correction Slope Async 1 Flow Register i (IPU2_DP_GAMMA_S_ASYN1_i)	32	R/W	0000_0000h	37.5.137/ 3253
2A1_8100	DP Color Space Converstion Control Async 1 Flow Register i (IPU2_DP_CSCA_ASYNC1_i)	32	R/W	0000_0000h	37.5.138/ 3253
2A1_8110	DP Color Conversion Control Async 1 Flow Register 0 (IPU2_DP_CSC_ASYNC1_0)	32	R/W	0000_0000h	37.5.139/ 3254
2A1_8114	DP Color Conversion Control Async 1 Flow Register 1 (IPU2_DP_CSC_ASYNC1_1)	32	R/W	0000_0000h	37.5.140/ 3255
2A2_0000	IC Configuration Register (IPU2_IC_CONF)	32	R/W	0000_0000h	37.5.141/ 3256
2A2_0004	IC Preprocessing Encoder Resizing Coefficients Register (IPU2_IC_PRP_ENC_RSC)	32	R/W	2000_2000h	37.5.142/ 3258
2A2_0008	IC Preprocessing View-Finder Resizing Coefficients Register (IPU2_IC_PRP_VF_RSC)	32	R/W	2000_2000h	37.5.143/ 3259
2A2_000C	IC Postprocessing Encoder Resizing Coefficients Register (IPU2_IC_PP_RSC)	32	R/W	2000_2000h	37.5.144/ 3260
2A2_0010	IC Combining Parameters Register 1 (IPU2_IC_CMBP_1)	32	R/W	0000_0000h	37.5.145/ 3261
2A2_0014	IC Combining Parameters Register 2 (IPU2_IC_CMBP_2)	32	R/W	0000_0000h	37.5.146/ 3261
2A2_0018	IC IDMAC Parameters 1 Register (IPU2_IC_IDMAC_1)	32	R/W	0000_0000h	37.5.147/ 3262
2A2_001C	IC IDMAC Parameters 2 Register (IPU2_IC_IDMAC_2)	32	R/W	0000_0000h	37.5.148/ 3265
2A2_0020	IC IDMAC Parameters 3Register (IPU2_IC_IDMAC_3)	32	R/W	0000_0000h	37.5.149/ 3266
2A2_0024	IC IDMAC Parameters 4 Register (IPU2_IC_IDMAC_4)	32	R/W	0000_0000h	37.5.150/ 3266
2A3_0000	CSI0 Sensor Configuration Register (IPU2_CSI0_SENS_CONF)	32	R/W	0000_0000h	37.5.151/ 3267
2A3_0004	CSI0 Sense Frame Size Register (IPU2_CSI0_SENS_FRM_SIZE)	32	R/W	0000_0000h	37.5.152/ 3270
2A3_0008	CSI0 Actual Frame Size Register (IPU2_CSI0_ACT_FRM_SIZE)	32	R/W	0000_0000h	37.5.153/ 3270

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A3_000C	CSI0 Output Control Register (IPU2_CSI0_OUT_FRM_CTRL)	32	R/W	0000_0000h	37.5.154/ 3271
2A3_0010	CSIO Test Control Register (IPU2_CSI0_TST_CTRL)	32	R/W	0000_0000h	37.5.155/ 3272
2A3_0014	CSIO CCIR Code Register 1 (IPU2_CSI0_CCIR_CODE_1)	32	R/W	0000_0000h	37.5.156/ 3273
2A3_0018	CSIO CCIR Code Register 2 (IPU2_CSI0_CCIR_CODE_2)	32	R/W	0000_0000h	37.5.157/ 3274
2A3_001C	CSIO CCIR Code Register 3 (IPU2_CSI0_CCIR_CODE_3)	32	R/W	0000_0000h	37.5.158/ 3275
2A3_0020	CSI0 Data Identifier Register (IPU2_CSI0_DI)	32	R/W	FFFF_FFFFh	37.5.159/ 3275
2A3_0024	CSI0 SKIP Register (IPU2_CSI0_SKIP)	32	R/W	0000_0000h	37.5.160/ 3276
2A3_0028	CSI0 Compander Control Register (IPU2_CSIO_CPD_CTRL)	32	R/W	0000_0000h	37.5.161/ 3277
2A3_002C	CSI0 Red Component Compander Constants Register <i>(IPU2_CSI0_CPD_RC_i)</i>	32	R/W	0000_0000h	37.5.162/ 3278
2A3_004C	CSI0 Red Component Compander SLOPE Register <i>(IPU2_CSI0_CPD_RS_i)</i>	32	R/W	0000_0000h	37.5.163/ 3279
2A3_005C	CSI0 GR Component Compander Constants Register <i>(IPU2_CSI0_CPD_GRC_i)</i>	32	R/W	0000_0000h	37.5.164/ 3279
2A3_007C	CSI0 GR Component Compander SLOPE Register <i>(IPU2_CSI0_CPD_GRS_i)</i>	32	R/W	0000_0000h	37.5.165/ 3280
2A3_008C	CSI0 GB Component Compander Constants Register <i>(IPU2_CSI0_CPD_GBC_i)</i>	32	R/W	0000_0000h	37.5.166/ 3281
2A3_00AC	CSI0 GB Component Compander SLOPE Register <i>(IPU2_CSI0_CPD_GBS_i)</i>	32	R/W	0000_0000h	37.5.167/ 3281
2A3_00BC	CSI0 Blue Component Compander Constants Register <i>(IPU2_CSI0_CPD_BC_i)</i>	32	R/W	0000_0000h	37.5.168/ 3282
2A3_00DC	CSI0 Blue Component Compander SLOPE Register <i>(IPU2_CSI0_CPD_BS_i)</i>	32	R/W	0000_0000h	37.5.169/ 3283
2A3_00EC	CSI0 Compander Offset Register 1 (IPU2_CSI0_CPD_OFFSET1)	32	R/W	0000_0000h	37.5.170/ 3283
2A3_00F0	CSI0 Compander Offset Register 2 (IPU2_CSI0_CPD_OFFSET2)	32	R/W	0000_0000h	37.5.171/ 3284
2A3_8000	CSI1 Sensor Configuration Register (IPU2_CSI1_SENS_CONF)	32	R/W	0000_0000h	37.5.172/ 3285
2A3_8004	CSI1 Sense Frame Size Register (IPU2_CSI1_SENS_FRM_SIZE)	32	R/W	0000_0000h	37.5.173/ 3287
2A3_8008	CSI1 Actual Frame Size Register (IPU2_CSI1_ACT_FRM_SIZE)	32	R/W	0000_0000h	37.5.174/ 3288
2A3_800C	CSI1 Output Control Register (IPU2_CSI1_OUT_FRM_CTRL)	32	R/W	0000_0000h	37.5.175/ 3289

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A3_8010	CSI1 Test Control Register (IPU2_CSI1_TST_CTRL)	32	R/W	0000_0000h	37.5.176/ 3290
2A3_8014	CSI1 CCIR Code Register 1 (IPU2_CSI1_CCIR_CODE_1)	32	R/W	0000_0000h	37.5.177/ 3291
2A3_8018	CSI1 CCIR Code Register 2 (IPU2_CSI1_CCIR_CODE_2)	32	R/W	0000_0000h	37.5.178/ 3292
2A3_801C	CSI1 CCIR Code Register 3 (IPU2_CSI1_CCIR_CODE_3)	32	R/W	0000_0000h	37.5.179/ 3293
2A3_8020	CSI1 Data Identifier Register (IPU2_CSI1_DI)	32	R/W	FFFF_FFFFh	37.5.180/ 3293
2A3_8024	CSI1 SKIP Register (IPU2_CSI1_SKIP)	32	R/W	0000_0000h	37.5.181/ 3294
2A3_8028	CSI1 Compander Control Register (IPU2_CSI1_CPD_CTRL)	32	R/W	0000_0000h	37.5.182/ 3295
2A3_802C	CSI1 Red Component Compander Constants Register <i>(IPU2_CSI1_CPD_RC_i)</i>	32	R/W	0000_0000h	37.5.183/ 3296
2A3_804C	CSI1 Red Component Compander SLOPE Register <i>(IPU2_CSI1_CPD_RS_i)</i>	32	R/W	0000_0000h	37.5.184/ 3296
2A3_805C	CSI1 GR Component Compander Constants Register <i>(IPU2_CSI1_CPD_GRC_i)</i>	32	R/W	0000_0000h	37.5.185/ 3297
2A3_807C	CSI1 GR Component Compander SLOPE Register <i>(IPU2_CSI1_CPD_GRS_i)</i>	32	R/W	0000_0000h	37.5.186/ 3298
2A3_808C	CSI1 GB Component Compander Constants Register <i>(IPU2_CSI1_CPD_GBC_i)</i>	32	R/W	0000_0000h	37.5.187/ 3298
2A3_80AC	CSI1 GB Component Compander SLOPE Register <i>(IPU2_CSI1_CPD_GBS_i)</i>	32	R/W	0000_0000h	37.5.188/ 3299
2A3_80BC	CSI1 Blue Component Compander Constants Register <i>(IPU2_CSI1_CPD_BC_i)</i>	32	R/W	0000_0000h	37.5.189/ 3300
2A3_80DC	CSI1 Blue Component Compander SLOPE Register <i>(IPU2_CSI1_CPD_BS_i)</i>	32	R/W	0000_0000h	37.5.190/ 3300
2A3_80EC	CSI1 Compander Offset Register 1 (IPU2_CSI1_CPD_OFFSET1)	32	R/W	0000_0000h	37.5.191/ 3301
2A3_80F0	CSI1 Compander Offset Register 2 (IPU2_CSI1_CPD_OFFSET2)	32	R/W	0000_0000h	37.5.192/ 3302
2A4_0000	DI0 General Register (IPU2_DI0_GENERAL)	32	R/W	0020_0000h	37.5.193/ 3303
2A4_0004	DI0 Base Sync Clock Gen 0 Register (IPU2_DI0_BS_CLKGEN0)	32	R/W	0000_0000h	37.5.194/ 3305
2A4_0008	DI0 Base Sync Clock Gen 1 Register (IPU2_DI0_BS_CLKGEN1)	32	R/W	0000_0000h	37.5.195/ 3306
2A4_000C	DI0 Sync Wave Gen 1 Register 0 (IPU2_DI0_SW_GEN0_1)	32	R/W	0000_0000h	37.5.196/ 3306
2A4_0010	DI0 Sync Wave Gen 2 Register 0 (IPU2_DI0_SW_GEN0_2)	32	R/W	0000_0000h	37.5.197/ 3308

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A4_0014	DI0 Sync Wave Gen 3 Register 0 (IPU2_DI0_SW_GEN0_3)	32	R/W	0000_0000h	37.5.198/ 3309
2A4_0018	DI0 Sync Wave Gen 4 Register 0 (IPU2_DI0_SW_GEN0_4)	32	R/W	0000_0000h	37.5.199/ 3310
2A4_001C	DI0 Sync Wave Gen 5 Register 0 (IPU2_DI0_SW_GEN0_5)	32	R/W	0000_0000h	37.5.200/ 3311
2A4_0020	DI0 Sync Wave Gen 6 Register 0 (IPU2_DI0_SW_GEN0_6)	32	R/W	0000_0000h	37.5.201/ 3313
2A4_0024	DI0 Sync Wave Gen 7 Register 0 (IPU2_DI0_SW_GEN0_7)	32	R/W	0000_0000h	37.5.202/ 3314
2A4_0028	DI0 Sync Wave Gen 8 Register 0 (IPU2_DI0_SW_GEN0_8)	32	R/W	0000_0000h	37.5.203/ 3315
2A4_002C	DI0 Sync Wave Gen 9 Register 0 (IPU2_DI0_SW_GEN0_9)	32	R/W	0000_0000h	37.5.204/ 3316
2A4_0030	DI0 Sync Wave Gen 1 Register 1 (IPU2_DI0_SW_GEN1_1)	32	R/W	0000_0000h	37.5.205/ 3318
2A4_0034	DI0 Sync Wave Gen 2 Register 1 (IPU2_DI0_SW_GEN1_2)	32	R/W	0000_0000h	37.5.206/ 3320
2A4_0038	DI0 Sync Wave Gen 3 Register 1 (IPU2_DI0_SW_GEN1_3)	32	R/W	0000_0000h	37.5.207/ 3322
2A4_003C	DI0 Sync Wave Gen 4 Register 1 (IPU2_DI0_SW_GEN1_4)	32	R/W	0000_0000h	37.5.208/ 3324
2A4_0040	DI0 Sync Wave Gen 5 Register 1 (IPU2_DI0_SW_GEN1_5)	32	R/W	0000_0000h	37.5.209/ 3326
2A4_0044	DI0 Sync Wave Gen 6 Register 1 (IPU2_DI0_SW_GEN1_6)	32	R/W	0000_0000h	37.5.210/ 3328
2A4_0048	DI0 Sync Wave Gen 7 Register 1 (IPU2_DI0_SW_GEN1_7)	32	R/W	0000_0000h	37.5.211/ 3330
2A4_004C	DI0 Sync Wave Gen 8 Register 1 (IPU2_DI0_SW_GEN1_8)	32	R/W	0000_0000h	37.5.212/ 3332
2A4_0050	DI0 Sync Wave Gen 9 Register 1 (IPU2_DI0_SW_GEN1_9)	32	R/W	0000_0000h	37.5.213/ 3334
2A4_0054	DI0 Sync Assistance Gen Register (IPU2_DI0_SYNC_AS_GEN)	32	R/W	0000_0000h	37.5.214/ 3335
2A4_0058	DI0 Data Wave Gen <i> Register (IPU2_DI0_DW_GEN_i)</i>	32	R/W	0000_0000h	37.5.215/ 3336
2A4_0088	DI0 Data Wave Set 0 <i> Register (IPU2_DI0_DW_SET0_i)</i>	32	R/W	0000_0000h	37.5.216/ 3339
2A4_00B8	DI0 Data Wave Set 1 <i> Register (IPU2_DI0_DW_SET1_i)</i>	32	R/W	0000_0000h	37.5.217/ 3339
2A4_00E8	DI0 Data Wave Set 2 <i> Register (IPU2_DI0_DW_SET2_i)</i>	32	R/W	0000_0000h	37.5.218/ 3340
2A4_0118	DI0 Data Wave Set 3 <i> Register (IPU2_DI0_DW_SET3_i)</i>	32	R/W	0000_0000h	37.5.219/ 3341

IPU memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A4_0148	DI0 Step Repeat <i> Registers (IPU2_DI0_STP_REP_i)</i>	32	R/W	0000_0000h	37.5.220/ 3341
2A4_0158	DI0 Step Repeat 9 Registers (IPU2_DI0_STP_REP_9)	32	R/W	0000_0000h	37.5.221/ 3342
2A4_015C	DI0 Serial Display Control Register (IPU2_DI0_SER_CONF)	32	R/W	0000_0000h	37.5.222/ 3342
2A4_0160	DI0 Special Signals Control Register (IPU2_DI0_SSC)	32	R/W	0000_0000h	37.5.223/ 3345
2A4_0164	DI0 Polarity Register (IPU2_DI0_POL)	32	R/W	0000_0000h	37.5.224/ 3347
2A4_0168	DI0 Active Window 0 Register (IPU2_DI0_AW0)	32	R/W	0000_0000h	37.5.225/ 3348
2A4_016C	DI0 Active Window 1 Register (IPU2_DI0_AW1)	32	R/W	0000_0000h	37.5.226/ 3349
2A4_0170	DI0 Screen Configuration Register (IPU2_DI0_SCR_CONF)	32	R/W	0000_0000h	37.5.227/ 3350
2A4_0174	DI0 Status Register (IPU2_DI0_STAT)	32	R	0000_0005h	37.5.228/ 3351
2A4_8000	DI1General Register (IPU2_DI1_GENERAL)	32	R/W	0020_0000h	37.5.229/ 3353
2A4_8004	DI1 Base Sync Clock Gen 0 Register (IPU2_DI1_BS_CLKGEN0)	32	R/W	0000_0000h	37.5.230/ 3355
2A4_8008	DI1 Base Sync Clock Gen 1 Register (IPU2_DI1_BS_CLKGEN1)	32	R/W	0000_0000h	37.5.231/ 3356
2A4_800C	DI1 Sync Wave Gen 1 Register 0 (IPU2_DI1_SW_GEN0_1)	32	R/W	0000_0000h	37.5.232/ 3356
2A4_8010	DI1 Sync Wave Gen 2 Register 0 (IPU2_DI1_SW_GEN0_2)	32	R/W	0000_0000h	37.5.233/ 3358
2A4_8014	DI1 Sync Wave Gen 3 Register 0 (IPU2_DI1_SW_GEN0_3)	32	R/W	0000_0000h	37.5.234/ 3359
2A4_8018	DI1 Sync Wave Gen 4 Register 0 (IPU2_DI1_SW_GEN0_4)	32	R/W	0000_0000h	37.5.235/ 3360
2A4_801C	DI1 Sync Wave Gen 5 Register 0 (IPU2_DI1_SW_GEN0_5)	32	R/W	0000_0000h	37.5.236/ 3361
2A4_8020	DI1 Sync Wave Gen 6 Register 0 (IPU2_DI1_SW_GEN0_6)	32	R/W	0000_0000h	37.5.237/ 3363
2A4_8024	DI1 Sync Wave Gen 7 Register 0 (IPU2_DI1_SW_GEN0_7)	32	R/W	0000_0000h	37.5.238/ 3364
2A4_8028	DI1 Sync Wave Gen 8 Register 0 (IPU2_DI1_SW_GEN0_8)	32	R/W	0000_0000h	37.5.239/ 3365
2A4_802C	DI1Sync Wave Gen 9 Register 0 (IPU2_DI1_SW_GEN0_9)	32	R/W	0000_0000h	37.5.240/ 3366
2A4_8030	DI1 Sync Wave Gen 1 Register 1 (IPU2_DI1_SW_GEN1_1)	32	R/W	0000_0000h	37.5.241/ 3368

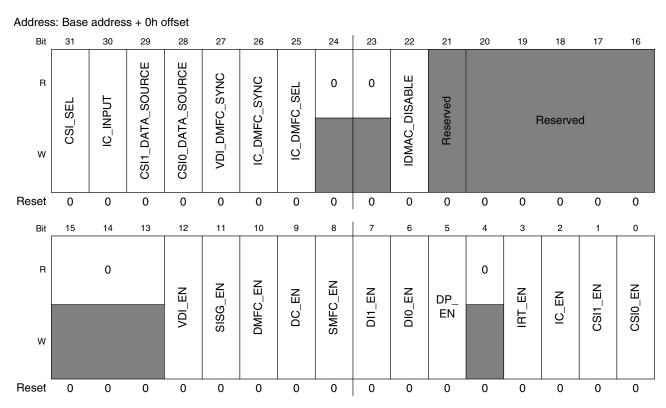
Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A4_8034	DI1 Sync Wave Gen 2 Register 1 (IPU2_DI1_SW_GEN1_2)	32	R/W	0000_0000h	37.5.242/ 3370
2A4_8038	DI1 Sync Wave Gen 3 Register 1 (IPU2_DI1_SW_GEN1_3)	32	R/W	0000_0000h	37.5.243/ 3372
2A4_803C	DI1 Sync Wave Gen 4 Register 1 (IPU2_DI1_SW_GEN1_4)	32	R/W	0000_0000h	37.5.244/ 3374
2A4_8040	DI1 Sync Wave Gen 5 Register 1 (IPU2_DI1_SW_GEN1_5)	32	R/W	0000_0000h	37.5.245/ 3376
2A4_8044	DI1 Sync Wave Gen 6 Register 1 (IPU2_DI1_SW_GEN1_6)	32	R/W	0000_0000h	37.5.246/ 3378
2A4_8048	DI1Sync Wave Gen 7 Register 1 (IPU2_DI1_SW_GEN1_7)	32	R/W	0000_0000h	37.5.247/ 3380
2A4_804C	DI1 Sync Wave Gen 8 Register 1 (IPU2_DI1_SW_GEN1_8)	32	R/W	0000_0000h	37.5.248/ 3382
2A4_8050	DI1 Sync Wave Gen 9 Register 1 (IPU2_DI1_SW_GEN1_9)	32	R/W	0000_0000h	37.5.249/ 3384
2A4_8054	DI1 Sync Assistance Gen Register (IPU2_DI1_SYNC_AS_GEN)	32	R/W	0000_0000h	37.5.250/ 3385
2A4_8058	DI1 Data Wave Gen <i> Register (IPU2_DI1_DW_GEN_i)</i>	32	R/W	0000_0000h	37.5.251/ 3386
2A4_8088	DI1 Data Wave Set 0 <i> Register (IPU2_DI1_DW_SET0_i)</i>	32	R/W	0000_0000h	37.5.252/ 3389
2A4_80B8	DI1 Data Wave Set 1 <i> Register (IPU2_DI1_DW_SET1_i)</i>	32	R/W	0000_0000h	37.5.253/ 3389
2A4_80E8	DI1 Data Wave Set 2 <i> Register (IPU2_DI1_DW_SET2_i)</i>	32	R/W	0000_0000h	37.5.254/ 3390
2A4_8118	DI1 Data Wave Set 3 <i> Register (IPU2_DI1_DW_SET3_i)</i>	32	R/W	0000_0000h	37.5.255/ 3391
2A4_8148	DI1 Step Repeat <i> Registers (IPU2_D1_STP_REP_i)</i>	32	R/W	0000_0000h	37.5.256/ 3391
2A4_8158	DI1Step Repeat 9 Registers (IPU2_DI1_STP_REP_9)	32	R/W	0000_0000h	37.5.257/ 3392
2A4_815C	DI1 Serial Display Control Register (IPU2_DI1_SER_CONF)	32	R/W	0000_0000h	37.5.258/ 3392
2A4_8160	DI1 Special Signals Control Register (IPU2_DI1_SSC)	32	R/W	0000_0000h	37.5.259/ 3395
2A4_8164	DI1 Polarity Register (IPU2_DI1_POL)	32	R/W	0000_0000h	37.5.260/ 3397
2A4_8168	DI1Active Window 0 Register (IPU2_DI1_AW0)	32	R/W	0000_0000h	37.5.261/ 3398
2A4_816C	DI1 Active Window 1 Register (IPU2_DI1_AW1)	32	R/W	0000_0000h	37.5.262/ 3399
2A4_8170	DI1 Screen Configuration Register (IPU2_DI1_SCR_CONF)	32	R/W	0000_0000h	37.5.263/ 3400

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A4_8174	DI1 Status Register (IPU2_DI1_STAT)	32	R	0000_0005h	37.5.264/ 3401
2A5_0000	SMFC Mapping Register (IPU2_SMFC_MAP)	32	R/W	0000_0000h	37.5.265/ 3402
2A5_0004	SMFC Watermark Control Register (IPU2_SMFC_WMC)	32	R/W	0000_09A6h	37.5.266/ 3403
2A5_0008	SMFC Burst Size Register (IPU2_SMFC_BS)	32	R/W	0000_0000h	37.5.267/ 3405
2A5_8000	DC Read Channel Configuration Register (IPU2_DC_READ_CH_CONF)	32	R/W	FFFF_0000h	37.5.268/ 3406
2A5_8004	DC Read Channel Start Address Register (IPU2_DC_READ_SH_ADDR)	32	R/W	0000_0000h	37.5.269/ 3407
2A5_8008	DC Routine Link Register 0 Channel 0 (IPU2_DC_RL0_CH_0)	32	R/W	0000_0000h	37.5.270/ 3408
2A5_800C	DC Routine Link Register 1 Channel 0 (IPU2_DC_RL1_CH_0)	32	R/W	0000_0000h	37.5.271/ 3409
2A5_8010	DC Routine Link Register2 Channel 0 (IPU2_DC_RL2_CH_0)	32	R/W	0000_0000h	37.5.272/ 3410
2A5_8014	DC Routine Link Registe3 Channel 0 (IPU2_DC_RL3_CH_0)	32	R/W	0000_0000h	37.5.273/ 3411
2A5_8018	DC Routine Link Register 4 Channel 0 (IPU2_DC_RL4_CH_0)	32	R/W	0000_0000h	37.5.274/ 3412
2A5_801C	DC Write Channel 1 Configuration Register (IPU2_DC_WR_CH_CONF_1)	32	R/W	0000_0000h	37.5.275/ 3413
2A5_8020	DC Write Channel 1 Address Configuration Register (IPU2_DC_WR_CH_ADDR_1)	32	R/W	0000_0000h	37.5.276/ 3414
2A5_8024	DC Routine Link Register 0 Channel 1 (IPU2_DC_RL0_CH_1)	32	R/W	0000_0000h	37.5.277/ 3415
2A5_8028	DC Routine Link Register 1 Channel 1 (IPU2_DC_RL1_CH_1)	32	R/W	0000_0000h	37.5.278/ 3416
2A5_8030	DC Routine Link Register 2 Channel 1 (IPU2_DC_RL2_CH_1)	32	R/W	0000_0000h	37.5.279/ 3417
2A5_8032	DC Routine Link Register 3 Channel 1 (IPU2_DC_RL3_CH_1)	32	R/W	0000_0000h	37.5.280/ 3418
2A5_8034	DC Routine Link Register 4 Channel 1 (IPU2_DC_RL4_CH_1)	32	R/W	0000_0000h	37.5.281/ 3419
2A5_8038	DC Write Channel 2 Configuration Register (IPU2_DC_WR_CH_CONF_2)	32	R/W	0000_0000h	37.5.282/ 3420
2A5_803C	DC Write Channel 2 Address Configuration Register (IPU2_DC_WR_CH_ADDR_2)	32	R/W	0000_0000h	37.5.283/ 3421
2A5_8040	DC Routine Link Register 0 Channel 2 (IPU2_DC_RL0_CH_2)	32	R/W	0000_0000h	37.5.284/ 3422
2A5_8044	DC Routine Link Register 1 Channel 2 (IPU2_DC_RL1_CH_2)	32	R/W	0000_0000h	37.5.285/ 3423

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A5_8048	DC Routine Link Register 2 Channel 2 (IPU2_DC_RL2_CH_2)	32	R/W	0000_0000h	37.5.286/ 3424
2A5_804C	DC Routine Link Register 3 Channel 2 (IPU2_DC_RL3_CH_2)	32	R/W	0000_0000h	37.5.287/ 3425
2A5_8050	DC Routine Link Register 4 Channel 2 (IPU2_DC_RL4_CH_2)	32	R/W	0000_0000h	37.5.288/ 3426
2A5_8054	DC Command Channel 3 Configuration Register (IPU2_DC_CMD_CH_CONF_3)	32	R/W	0000_0000h	37.5.289/ 3426
2A5_8058	DC Command Channel 4 Configuration Register (IPU2_DC_CMD_CH_CONF_4)	32	R/W	0000_0000h	37.5.290/ 3427
2A5_805C	DC Write Channel 5Configuration Register (IPU2_DC_WR_CH_CONF_5)	32	R/W	0000_0000h	37.5.291/ 3428
2A5_8060	DC Write Channel 5Address Configuration Register (IPU2_DC_WR_CH_ADDR_5)	32	R/W	0000_0000h	37.5.292/ 3430
2A5_8064	DC Routine Link Register 0 Channel 5 (IPU2_DC_RL0_CH_5)	32	R/W	0000_0000h	37.5.293/ 3430
2A5_8068	DC Routine Link Register 1 Channel 5 (IPU2_DC_RL1_CH_5)	32	R/W	0000_0000h	37.5.294/ 3431
2A5_806C	DC Routine Link Register 2 Channel 5 (IPU2_DC_RL2_CH_5)	32	R/W	0000_0000h	37.5.295/ 3432
2A5_8070	DC Routine Link Register3 Channel 5 (IPU2_DC_RL3_CH_5)	32	R/W	0000_0000h	37.5.296/ 3433
2A5_8074	DC Routine Link Register 4 Channel 5 (IPU2_DC_RL4_CH_5)	32	R/W	0000_0000h	37.5.297/ 3434
2A5_8078	DC Write Channel 6 Configuration Register (IPU2_DC_WR_CH_CONF_6)	32	R/W	0000_0000h	37.5.298/ 3435
2A5_807C	DC Write Channel 6 Address Configuration Register (IPU2_DC_WR_CH_ADDR_6)	32	R/W	0000_0000h	37.5.299/ 3436
2A5_8080	DC Routine Link Register 0Channel 6 (IPU2_DC_RL0_CH_6)	32	R/W	0000_0000h	37.5.300/ 3437
2A5_8084	DC Routine Link Register 1 Channel 6 (IPU2_DC_RL1_CH_6)	32	R/W	0000_0000h	37.5.301/ 3438
2A5_8088	DC Routine Link Register 2 Channel 6 (IPU2_DC_RL2_CH_6)	32	R/W	0000_0000h	37.5.302/ 3439
2A5_808C	DC Routine Link Register 3 Channel 6 (IPU2_DC_RL3_CH_6)	32	R/W	0000_0000h	37.5.303/ 3440
2A5_8090	DC Routine Link Register 4 Channel 6 (IPU2_DC_RL4_CH_6)	32	R/W	0000_0000h	37.5.304/ 3441
2A5_8094	DC Write Channel 8 Configuration 1Register (IPU2_DC_WR_CH_CONF1_8)	32	R/W	0000_0000h	37.5.305/ 3442
2A5_8098	DC Write Channel 8 Configuration 2 Register (IPU2_DC_WR_CH_CONF2_8)	32	R/W	0000_0000h	37.5.306/ 3443
2A5_809C	DC Routine Link Register 1 Channel 8 (IPU2_DC_RL1_CH_8)	32	R/W	0000_0000h	37.5.307/ 3443

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A5_80A0	DC Routine Link Register 2 Channel 8 (IPU2_DC_RL2_CH_8)	32	R/W	0000_0000h	37.5.308/ 3444
2A5_80A4	DC Routine Link Register 3 Channel 8 (IPU2_DC_RL3_CH_8)	32	R/W	0000_0000h	37.5.309/ 3445
2A5_80A8	DC Routine Link Register 4 Channel 8 (IPU2_DC_RL4_CH_8)	32	R/W	0000_0000h	37.5.310/ 3445
2A5_80AC	DC Routine Link Register 5 Channel 8 (IPU2_DC_RL5_CH_8)	32	R/W	0000_0000h	37.5.311/ 3446
2A5_80B0	DC Routine Link Register 6 Channel 8 (IPU2_DC_RL6_CH_8)	32	R/W	0000_0000h	37.5.312/ 3447
2A5_80B4	DC Write Channel 9 Configuration 1Register (IPU2_DC_WR_CH_CONF1_9)	32	R/W	0000_0000h	37.5.313/ 3447
2A5_80B8	DC Write Channel 9Configuration 2Register (IPU2_DC_WR_CH_CONF2_9)	32	R/W	0000_0000h	37.5.314/ 3448
2A5_80BC	DC Routine Link Register 1 Channel 9 (IPU2_DC_RL1_CH_9)	32	R/W	0000_0000h	37.5.315/ 3449
2A5_80C0	DC Routine Link Register 2 Channel 9 (IPU2_DC_RL2_CH_9)	32	R/W	0000_0000h	37.5.316/ 3449
2A5_80C4	DC Routine Link Register 3Channel 9 (IPU2_DC_RL3_CH_9)	32	R/W	0000_0000h	37.5.317/ 3450
2A5_80C8	DC Routine Link Register 4 Channel 9 (IPU2_DC_RL4_CH_9)	32	R/W	0000_0000h	37.5.318/ 3451
2A5_80CC	DC Routine Link Register 5 Channel 9 (IPU2_DC_RL5_CH_9)	32	R/W	0000_0000h	37.5.319/ 3452
2A5_80D0	DC Routine Link Register 6 Channel 9 (IPU2_DC_RL6_CH_9)	32	R/W	0000_0000h	37.5.320/ 3452
2A5_80D4	DC General Register (IPU2_DC_GEN)	32	R/W	0000_0060h	37.5.321/ 3453
2A5_80D8	DC Display Configuration 1 Register 0 (IPU2_DC_DISP_CONF1_0)	32	R/W	0000_0042h	37.5.322/ 3455
2A5_80DC	DC Display Configuration 1 Register 1 (IPU2_DC_DISP_CONF1_1)	32	R/W	0000_0042h	37.5.323/ 3456
2A5_80E0	DC Display Configuration 1 Register 2 (IPU2_DC_DISP_CONF1_2)	32	R/W	0000_0042h	37.5.324/ 3458
2A5_80E4	DC Display Configuration 1 Register 3 (IPU2_DC_DISP_CONF1_3)	32	R/W	0000_0042h	37.5.325/ 3459
2A5_80E8	DC Display Configuration 2 Register 0 (IPU2_DC_DISP_CONF2_0)	32	R/W	0000_0000h	37.5.326/ 3460
2A5_80EC	DC Display Configuration 2 Register 1 (IPU2_DC_DISP_CONF2_1)	32	R/W	0000_0000h	37.5.327/ 3461
2A5_80F0	DC Display Configuration 2 Register 2 (IPU2_DC_DISP_CONF2_2)	32	R/W	0000_0000h	37.5.328/ 3461
2A5_80F4	DC Display Configuration 2 Register 3 (IPU2_DC_DISP_CONF2_3)	32	R/W	0000_0000h	37.5.329/ 3461

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A5_80F8	DC DI0Configuration Register 1 (IPU2_DC_DI0_CONF_1)	32	R/W	0000_0000h	37.5.330/ 3462
2A5_80FC	DC DI0Configuration Register 2 (IPU2_DC_DI0_CONF_2)	32	R/W	0000_0000h	37.5.331/ 3462
2A5_8100	DC DI1Configuration Register 1 (IPU2_DC_DI1_CONF_1)	32	R/W	0000_0000h	37.5.332/ 3462
2A5_8104	DC DI1Configuration Register 2 (IPU2_DC_DI1_CONF_2)	32	R/W	0000_0000h	37.5.333/ 3463
2A5_8108	DC Mapping Configuration Register 0 (IPU2_DC_MAP_CONF_0)	32	R/W	0000_0000h	37.5.334/ 3463
2A5_810C	DC Mapping Configuration Register 1 (IPU2_DC_MAP_CONF_1)	32	R/W	0000_0000h	37.5.335/ 3464
2A5_8110	DC Mapping Configuration Register 2 (IPU2_DC_MAP_CONF_2)	32	R/W	0000_0000h	37.5.336/ 3465
2A5_8114	DC Mapping Configuration Register 3 (IPU2_DC_MAP_CONF_3)	32	R/W	0000_0000h	37.5.337/ 3466
2A5_8118	DC Mapping Configuration Register 4 (IPU2_DC_MAP_CONF_4)	32	R/W	0000_0000h	37.5.338/ 3467
2A5_811C	DC Mapping Configuration Register 5 (IPU2_DC_MAP_CONF_5)	32	R/W	0000_0000h	37.5.339/ 3468
2A5_8120	DC Mapping Configuration Register 6 (IPU2_DC_MAP_CONF_6)	32	R/W	0000_0000h	37.5.340/ 3469
2A5_8124	DC Mapping Configuration Register 7 (IPU2_DC_MAP_CONF_7)	32	R/W	0000_0000h	37.5.341/ 3470
2A5_8128	DC Mapping Configuration Register 8 (IPU2_DC_MAP_CONF_8)	32	R/W	0000_0000h	37.5.342/ 3471
2A5_812C	DC Mapping Configuration Register 9 (IPU2_DC_MAP_CONF_9)	32	R/W	0000_0000h	37.5.343/ 3472
2A5_8130	DC Mapping Configuration Register 10 (IPU2_DC_MAP_CONF_10)	32	R/W	0000_0000h	37.5.344/ 3473
2A5_8134	DC Mapping Configuration Register 11 (IPU2_DC_MAP_CONF_11)	32	R/W	0000_0000h	37.5.345/ 3474
2A5_8138	DC Mapping Configuration Register 12 (IPU2_DC_MAP_CONF_12)	32	R/W	0000_0000h	37.5.346/ 3475
2A5_813C	DC Mapping Configuration Register 13 (IPU2_DC_MAP_CONF_13)	32	R/W	0000_0000h	37.5.347/ 3476
2A5_8140	DC Mapping Configuration Register 14 (IPU2_DC_MAP_CONF_14)	32	R/W	0000_0000h	37.5.348/ 3477
2A5_8144	DC Mapping Configuration Register 15 (IPU2_DC_MAP_CONF_15)	32	R/W	0000_0000h	37.5.349/ 3478
2A5_8148	DC Mapping Configuration Register 16 (IPU2_DC_MAP_CONF_16)	32	R/W	0000_0000h	37.5.350/ 3478
2A5_814C	DC Mapping Configuration Register 17 (IPU2_DC_MAP_CONF_17)	32	R/W	0000_0000h	37.5.351/ 3479


Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A5_8150	DC Mapping Configuration Register 18 (IPU2_DC_MAP_CONF_18)	32	R/W	0000_0000h	37.5.352/ 3480
2A5_8154	DC Mapping Configuration Register 19 (IPU2_DC_MAP_CONF_19)	32	R/W	0000_0000h	37.5.353/ 3480
2A5_8158	DC Mapping Configuration Register 20 (IPU2_DC_MAP_CONF_20)	32	R/W	0000_0000h	37.5.354/ 3481
2A5_815C	DC Mapping Configuration Register 21 (IPU2_DC_MAP_CONF_21)	32	R/W	0000_0000h	37.5.355/ 3482
2A5_8160	DC Mapping Configuration Register 22 (IPU2_DC_MAP_CONF_22)	32	R/W	0000_0000h	37.5.356/ 3482
2A5_8164	DC Mapping Configuration Register 23 (IPU2_DC_MAP_CONF_23)	32	R/W	0000_0000h	37.5.357/ 3483
2A5_8168	DC Mapping Configuration Register 24 (IPU2_DC_MAP_CONF_24)	32	R/W	0000_0000h	37.5.358/ 3484
2A5_816C	DC Mapping Configuration Register 25 (IPU2_DC_MAP_CONF_25)	32	R/W	0000_0000h	37.5.359/ 3484
2A5_8170	DC Mapping Configuration Register 26 (IPU2_DC_MAP_CONF_26)	32	R/W	0000_0000h	37.5.360/ 3485
2A5_8174	DC User General Data Event 0 Register 0 (IPU2_DC_UGDE0_0)	32	R/W	0000_0000h	37.5.361/ 3486
2A5_8178	DC User General Data Event 0 Register 1 (IPU2_DC_UGDE0_1)	32	R/W	0000_0000h	37.5.362/ 3487
2A5_817C	DC User General Data Event 0 Register2 (IPU2_DC_UGDE0_2)	32	R/W	0000_0000h	37.5.363/ 3488
2A5_8180	DC User General Data Event 0 Register 3 (IPU2_DC_UGDE0_3)	32	R/W	0000_0000h	37.5.364/ 3488
2A5_8184	DC User General Data Event 1Register0 (IPU2_DC_UGDE1_0)	32	R/W	0000_0000h	37.5.365/ 3489
2A5_8188	DC User General Data Event 1 Register 1 (IPU2_DC_UGDE1_1)	32	R/W	0000_0000h	37.5.366/ 3490
2A5_818C	DC User General Data Event 1Register 2 (IPU2_DC_UGDE1_2)	32	R/W	0000_0000h	37.5.367/ 3491
2A5_8190	DC User General Data Event 1Register 3 (IPU2_DC_UGDE1_3)	32	R/W	0000_0000h	37.5.368/ 3491
2A5_8194	DC User General Data Event 2 Register 0 (IPU2_DC_UGDE2_0)	32	R/W	0000_0000h	37.5.369/ 3492
2A5_8198	DC User General Data Event 2 Register 1 (IPU2_DC_UGDE2_1)	32	R/W	0000_0000h	37.5.370/ 3493
2A5_819C	DC User General Data Event 2Register 2 (IPU2_DC_UGDE2_2)	32	R/W	0000_0000h	37.5.371/ 3494
2A5_81A0	DC User General Data Event 2Register 3 (IPU2_DC_UGDE2_3)	32	R/W	0000_0000h	37.5.372/ 3494
2A5_81A4	DC User General Data Event 3Register 0 (IPU2_DC_UGDE3_0)	32	R/W	0000_0000h	37.5.373/ 3495

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A5_81A8	DC User General Data Event 3Register 1 (IPU2_DC_UGDE3_1)	32	R/W	0000_0000h	37.5.374/ 3496
2A5_81AC	DC User General Data Event 3Register 2 (IPU2_DC_UGDE3_2)	32	R/W	0000_0000h	37.5.375/ 3497
2A5_81B0	DC User General Data Event 3Register 2 (IPU2_DC_UGDE3_3)	32	R/W	0000_0000h	37.5.376/ 3497
2A5_81B4	DC Low Level Access Control Register 0 (IPU2_DC_LLA0)	32	R/W	0000_0000h	37.5.377/ 3497
2A5_81B8	DC Low Level Access Control Register 1 (IPU2_DC_LLA1)	32	R/W	0000_0000h	37.5.378/ 3498
2A5_81BC	DC Read Low Level Read Access Control Register 0 (IPU2_DC_R_LLA0)	32	R/W	0000_0000h	37.5.379/ 3498
2A5_81C0	DC Read Low Level Read Access Control Register1 (IPU2_DC_R_LLA1)	32	R/W	0000_0000h	37.5.380/ 3499
2A5_81C4	DC Write Channel 5 Configuration Register (IPU2_DC_WR_CH_ADDR_5_ALT)	32	R/W	0000_0000h	37.5.381/ 3499
2A5_81C8	DC Status Register (IPU2_DC_STAT)	32	R	0000_00AAh	37.5.382/ 3501
2A6_0000	DMFC Read Channel Register (IPU2_DMFC_RD_CHAN)	32	R/W	0000_0200h	37.5.383/ 3503
2A6_0004	DMFC Write Channel Register (IPU2_DMFC_WR_CHAN)	32	R/W	0000_0000h	37.5.384/ 3505
2A6_0008	DMFC Write Channel Definition Register (IPU2_DMFC_WR_CHAN_DEF)	32	R/W	2020_2020h	37.5.385/ 3508
2A6_000C	DMFC Display Processor Channel Register (IPU2_DMFC_DP_CHAN)	32	R/W	0000_0000h	37.5.386/ 3510
2A6_0010	DMFC Display Processor Channel Definition Register (IPU2_DMFC_DP_CHAN_DEF)	32	R/W	2020_2020h	37.5.387/ 3513
2A6_0014	DMFC General 1 Register (IPU2_DMFC_GENERAL_1)	32	R/W	0000_0003h	37.5.388/ 3515
2A6_0018	DMFC General 2 Register (IPU2_DMFC_GENERAL_2)	32	R/W	0000_0000h	37.5.389/ 3517
2A6_001C	DMFC IC Interface Control Register (IPU2_DMFC_IC_CTRL)	32	R/W	0000_0002h	37.5.390/ 3518
2A6_0020	DMFC Write Channel Alternate Register (IPU2_DMFC_WR_CHAN_ALT)	32	R/W	0000_0000h	37.5.391/ 3519
2A6_0024	DMFC Write Channel Definition Alternate Register (IPU2_DMFC_WR_CHAN_DEF_ALT)	32	R/W	0000_2000h	37.5.392/ 3520
2A6_0028	DMFC MFC Display Processor Channel Alternate Register (IPU2_DMFC_DP_CHAN_ALT)	32	R/W	0000_0000h	37.5.393/ 3521
2A6_002C	DMFC Display Channel Definition Alternate Register (IPU2_DMFC_DP_CHAN_DEF_ALT)	32	R/W	2020_0020h	37.5.394/ 3524
2A6_0030	DMFC General 1 Alternate Register (IPU2_DMFC_GENERAL1_ALT)	32	R/W	0000_0000h	37.5.395/ 3526

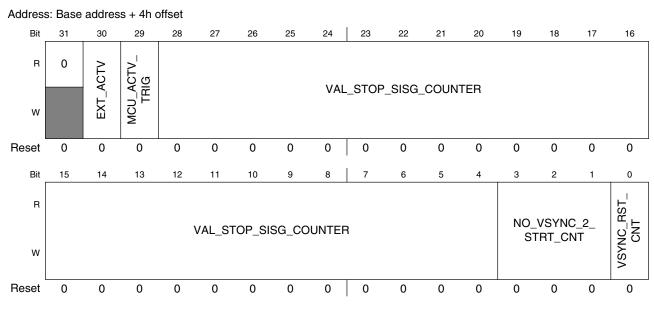
IPU memory map (continued)

Absolute address (hex)	Register name	Width (in bits)	Access	Reset value	Section/ page
2A6_0034	DMFC Status Register (IPU2_DMFC_STAT)	32	R	02FF_F000h	37.5.396/ 3528
2A6_8000	VDI Field Size Register (IPU2_VDI_FSIZE)	32	R/W	0000_0000h	37.5.397/ 3529
2A6_8004	VDI Control Register (IPU2_VDI_C)	32	R/W	0000_0000h	37.5.398/ 3530
2A6_8008	VDI Control Register 2 (IPU2_VDI_C2_)	32	R/W	0000_0000h	37.5.399/ 3532
2A6_800C	VDI Combining Parameters Register 1 (IPU2_VDI_CMDP_1)	32	R/W	0000_0000h	37.5.400/ 3533
2A6_8010	VDI Combining Parameters Register 2 (IPU2_VDI_CMDP_2)	32	R/W	0000_0000h	37.5.401/ 3534
2A6_8014	VDI Plane Size Register 1 (IPU2_VDI_PS_1)	32	R/W	0000_0000h	37.5.402/ 3534
2A6_8018	VDI Plane Size Register 2 (IPU2_VDI_PS_2)	32	R/W	0000_0000h	37.5.403/ 3535
2A6_801C	VDI Plane Size Register 3 (IPU2_VDI_PS_3)	32	R/W	0000_0000h	37.5.404/ 3536
2A6_8020	VDI Plane Size Register 4 (IPU2_VDI_PS_4)	32	R/W	0000_0000h	37.5.405/ 3536

37.5.1 Configuration Register (IPUx_CONF)

IPUx_CONF field descriptions

Field	Description
31 CSI_SEL	CSI select bit; This bit selects manually between the 2 CSI's. This bit defines which CSI is the input to the IC. This bit is effective only if IC_INPUT is bit cleared
	0 CSI0 is selected
	1 CSI1 is selected
30 IC_INPUT	IC Input select bit. This bit selects manually between the 2 inputs to the IC
	0 CSI0/1 is selected; In order to select between the CSIs use the CSI_SEL bit.
	1 VDI
29	CSI1 data Source
CSI1_DATA_ SOURCE	This bit selects what is the data source for the CSI1. This is a static mux that should not be changed while CSI1 is working. Data is handles differently if the source is MCT (MIPI) or parallel interface.
	0 Parallel interface is connected to CSI1
	1 MCT (MIPI) is connected to CSI1
28	CSI0 data Source
CSI0_DATA_ SOURCE	This bit selects what is the data source for the CSI0. This is a static mux that should not be changed while CSI0 is working. Data is handles differently if the source is MCT (MIPI) or parallel interface.

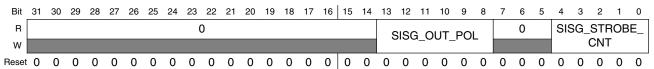

IPUx_CONF field descriptions (continued)

Field	Description
	Parallel interface is connected to CSI0
	1 MCT (MIPI) is connected to CSI0
27 VDI_DMFC_ SYNC	This bit enables the direct path VDIC -> IC_VF -> DMFC for sync flow. If this bit is set IC_DMFC_SEL must be set. 0 the flow is disabled
	1 the flow is enabled
26	IC to DMFC Sync flow
IC_DMFC_SYNC	This bit defines if the direct flow between IC to DMFC is synchronous or asynchronous
	0 async flow 1 Sync flow
25	IC to DMFC select
IC_DMFC_SEL	Selects the DMAIC_1 (channel 21) channel's connectivity between the IC and the DMFC
	0 DMAIC_1 (channel 21) is routed to the IDMAC
	1 DMAIC_1 (channel 21) is routed to DMFC
	In case DMFC was selected the IDMAC_CH_EN[21] must be clear.
24 Reserved	This read-only field is reserved and always has the value 0.
23 Reserved	This read-only field is reserved and always has the value 0.
22 IDMAC_ DISABLE	Image DMA controller (IDMAC) disable bit. This bit allows the user to turn off the clock of the IDMAC if the use case permits it. By default the IDMAC is enabled.
	0 IDMAC is enabled
	1 IDMAC is disabled
21	This field is reserved. Reserved.
20–16 -	This field is reserved. Reserved
15–13 Reserved	This read-only field is reserved and always has the value 0.
12 VDI_EN	VDI enable bit. This bit must be cleared if the ISP_EN bit is set.
	0 VDIC is disabled
	1 VDIC is enabled
11 SISG_EN	Still Image Synchronization Generator (SISG) Enable bit
JIGG_LIV	0 SISG is disabled
	1 SISG is enabled
10 DMFC_EN	Display's Multi FIFO Controller sub-block (DMFC) Enable bit
	0 DMFC is disabled
_	1 DMFC is enabled
9 DC_EN	Display Controller sub-block (DC) Enable bit

IPUx_CONF field descriptions (continued)

Field	Description
	0 DC is disabled
	1 DC is enabled
8 SMFC_EN	Sensor's Multi FIFO Controller Sub-block (SMFC) Enable bit
	0 SMFC is disabled
	1 SMFC is enabled
7 DI1_EN	Display Interface Sub-block 1 Enable bit
	0 DI1 is disabled
	1 DI1 is enabled
6 DI0_EN	Display interface Sub-block 0 Enable bit
	0 DI0 is disabled
	1 DI0 is enabled
5 DP_EN	Display processor Sub-block Enable bit
	0 DP is disabled
	1 DP is enabled
4 Reserved	This read-only field is reserved and always has the value 0.
3 IRT_EN	Image Rotation Sub-Block Enable bit
	0 IRT is disabled
	1 IRT is enabled
2 IC_EN	Image Conversion Sub-Block Enable bit
	0 IC is disabled
	1 IC is enabled
1 CSI1_EN	Camera Sensor Interface 1 Enable bit
	0 CSI1 is disabled
	1 CSI1 is enabled
0 CSI0_EN	Camera Sensor Interface 0 Enable bit
	0 CSI0 is disabled
	1 CSI0 is enabled

37.5.2 SISG Control 0 Register (IPUx_SISG_CTRL0)



IPUx_SISG_CTRL0 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30 EXT_ACTV	External Active Define if an external active trigger will start the counters. The external active trigger is an input signal to the IPU called ext_actv_trig
29 MCU_ACTV_ TRIG	Reserved, should be cleared.
28–4	SISG Stop Counters value.
VAL_STOP_ SISG COUNTER	This is a predefined value that stops the SISG counters.
	The user should write to this field the N-1 value of the desired value.
3–1	VSYCs to Start Counter
NO_VSYNC_2_ STRT_CNT	This bits define how many VSYNCs signals will be counter before activating the SISG counters. If set to 0 starts immediately. If set to N (17) starts after N VSYNCs.
0	VSYNC Resets counters
VSYNC_RST_ CNT	Defines if the counters are stooped following VSYNC or when the counters reach a pre defined value (VAL_STOP_SISG_COUNTER)
	1 The counters are stopped at VSYNC
	0 The counters are stooped when the counters reach the VAL_STOP_SISG_COUNTER value.

37.5.3 SISG Control 1 Register (IPUx_SISG_CTRL1)

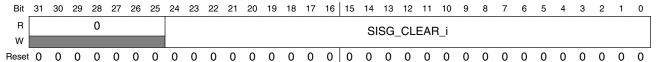
Address: Base address + 8h offset

IPUx_SISG_CTRL1 field descriptions

Field	Description
31–14 Reserved	This read-only field is reserved and always has the value 0.
13–8 SISG_OUT_POL	SISG_OUT_POL This bits defines the polarity of the SISG output signals 1 active high 0 active low
7–5 Reserved	This read-only field is reserved and always has the value 0.
SISG_STROBE_ CNT	SISG Strobe Count The SISG can repeat the sequence for up to 32 cycles; this is used for generating a train of pulses.

37.5.4 SISG Set<i> Register (IPUx_SISG_SET_i)

Address: Base address + Ch offset

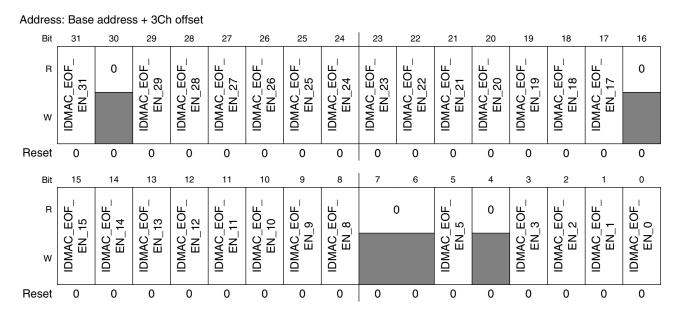


IPUx_SISG_SET_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
SISG_SET_i	SISG SET <i> value</i>
	These bits define the set value of the SISG counter # <i></i>

37.5.5 SISG Clear <i> Register (IPUx_SISG_CLR_i)

Address: Base address + 24h offset



IPUx_SISG_CLR_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
SISG_CLEAR_i	SISG CLR <i> value</i>
	These bits define the clear value of the SISG counter # <i></i>

37.5.6 Interrupt Control Register 1 (IPUx_INT_CTRL_1)

This register contains part of IPU interrupts controls. The controls of EOF (end of frame) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_CTRL_1 field descriptions

Field	Description
31	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_31	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
29	1 Interrupt is enabled.
IDMAC_EOF_ EN_29	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n. n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
28	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_28	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
27 IDMAC_EOF_ EN_27	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n. n Indicates the corresponding DMA channel number.
_	0 Interrupt is disabled.
	1 Interrupt is enabled.
26	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
25	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
24	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_24	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
23 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_23	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
22 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_22	n Indicates the corresponding DMA channel number.

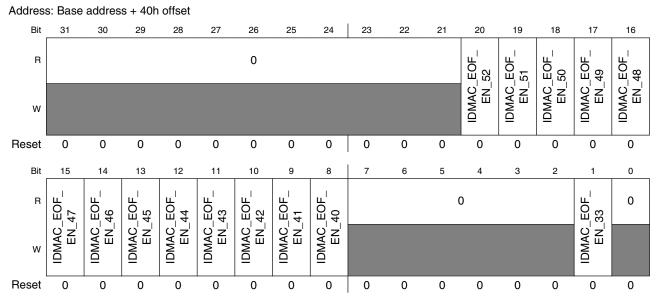
Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_1 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
21	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_21	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_20	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_19	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_18	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_17	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_15	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_14	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_13	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

IPUx_INT_CTRL_1 field descriptions (continued)


Field	Description
12	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_12	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_11	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_10	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_9	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
_	1 Interrupt is enabled.
8 IDMAC_EOF_ EN_8	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n. n Indicates the corresponding DMA channel number.
211_0	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–6	This read-only field is reserved and always has the value 0.
Reserved	
	0 Interrupt is disabled.
	1 Interrupt is enabled.
5 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_5	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.1 Interrupt is enabled.
3	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_3	n Indicates the corresponding DMA channel number.
_	0 Interrupt is disabled.
	1 Interrupt is enabled.
2	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_2	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_1 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_1	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_0	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

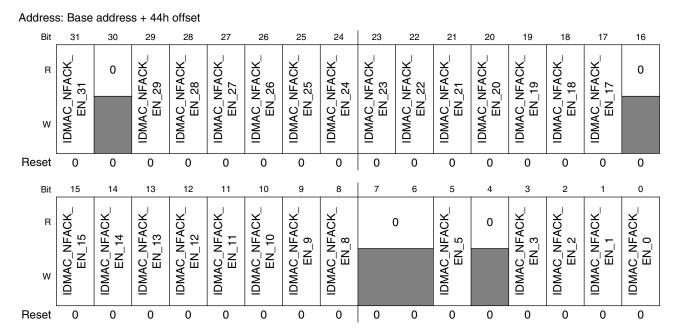
37.5.7 Interrupt Control Register 2 (IPUx_INT_CTRL_2)

This register contains part of IPU interrupts controls. The controls of EOF (end of frame) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_CTRL_2 field descriptions

	Field	Description
Ī	31–21 Reserved	This read-only field is reserved and always has the value 0.

IPUx_INT_CTRL_2 field descriptions (continued)


Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_52	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_51	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_50	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_49	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_48	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15 IDMAC_EOF_	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
EN_47	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_46	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_45	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
12	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_44	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_2 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_43	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_42	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_41	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_40	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	Enable End of Frame of Channel interrupt. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ EN_33	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.8 Interrupt Control Register 3 (IPUx_INT_CTRL_3)

This register contains part of IPU interrupts controls. The controls of NFACK (New Frame Ack) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_CTRL_3 field descriptions

Field	Description
31	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_31	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
29	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_29	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
28	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_28	n Indicates the corresponding DMA channel number.

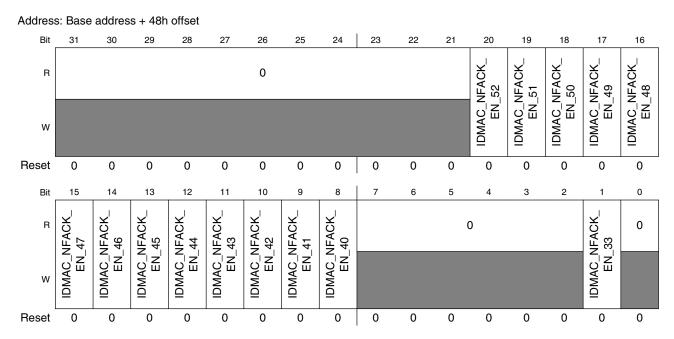
IPUx_INT_CTRL_3 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
27	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_27	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
26	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
25	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
24	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_24	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
23	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_23	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
22	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_22	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
21	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_21	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_20	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_19	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_3 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_18	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_17	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15 IDMAC NIFACK	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_15	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14 IDMAC_NFACK_ EN_14	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n. n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_13	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
12	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_12	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_11	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_10	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_3 field descriptions (continued)

Field	Description
9	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_9	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8 IDMAC NEACK	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_8	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–6 Reserved	This read-only field is reserved and always has the value 0.
rieserveu	0 Interrupt is disabled.
	1 Interrupt is enabled.
5	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_5	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
_	1 Interrupt is enabled.
3 IDMAC_NFACK_	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n. n Indicates the corresponding DMA channel number.
EN_3	
	0 Interrupt is disabled.1 Interrupt is enabled.
2	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_2	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_1	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_0	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

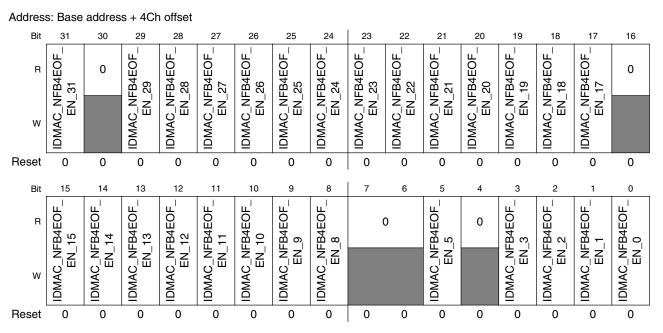
37.5.9 Interrupt Control Register 4 (IPUx_INT_CTRL_4)

This register contains part of IPU interrupts controls. The controls of NFACK (New Frame Ack) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_CTRL_4 field descriptions

Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	O Later at the affinishment
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_52	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_51	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_50	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_4 field descriptions (continued)


Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_49	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_48	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_47	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_46	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_45	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
12	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_44	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_43	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_42	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_41	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_4 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_40	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	Enable New Frame Ack of Channel interrupt. This bit is the control of New Frame Ack of Channel #n.
IDMAC_NFACK_ EN_33	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0	This read-only field is reserved and always has the value 0.
Reserved	On the second the Provident
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.10 Interrupt Control Register 5 (IPUx_INT_CTRL_5)

This register contains part of IPU interrupts controls. The controls of the New-frame before end-of-frame indication (NFB4EOF) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_CTRL_5 field descriptions

Field	Description
31 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 31	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
30	This read-only field is reserved and always has the value 0.
Reserved	
	0 Interrupt is disabled.
	1 Interrupt is enabled.
29	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame
IDMAC_	before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 29	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

IPUx_INT_CTRL_5 field descriptions (continued)

Field	Description
28 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 28	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
27 IDMAC_ NFB4EOF_EN_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
27	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
26 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 26	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
25 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 25	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
0.4	1 Interrupt is enabled.
IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 24	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
23 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 23	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 22	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 21	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

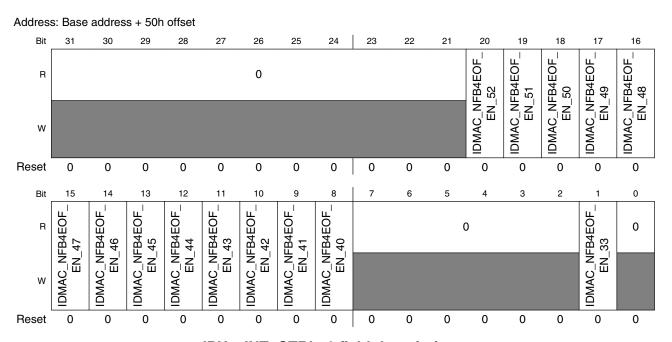
IPUx_INT_CTRL_5 field descriptions (continued)

Field	Description
20 IDMAC_ NFB4EOF_EN_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
20	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19 IDMAC_ NFB4EOF_EN_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
19	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 18	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 17	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15 IDMAC_ NFB4EOF_EN_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
15	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 14	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 13	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

IPUx_INT_CTRL_5 field descriptions (continued)

Field	Description
12 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 12	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_ NFB4EOF_EN_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
11	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 10	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_9	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_8	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
5 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_5	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
3 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_3	n Indicates the corresponding DMA channel number.

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_5 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
2 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_2	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1 IDMAC_ NFB4EOF_EN_1	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0 IDMAC_ NFB4EOF_EN_0	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

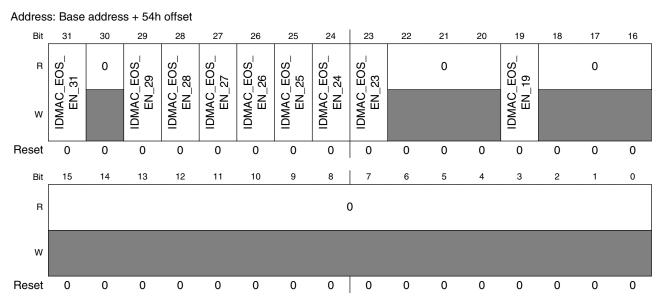
37.5.11 Interrupt Control Register 6 (IPUx_INT_CTRL_6)

This register contains part of IPU interrupts controls. The controls of the New-frame before end-of-frame indication (NFB4EOF_ERR) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_CTRL_6 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 52	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 51	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

IPUx_INT_CTRL_6 field descriptions (continued)


Field	Description
18 IDMAC_ NFB4EOF_EN_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
50	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.1 Interrupt is enabled.
17	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame
IDMAC_ NFB4EOF_EN_	before end-of-frame error interrupt of Channel #n.
49	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.1 Interrupt is enabled.
16	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame
IDMAC_ NFB4EOF_EN_	before end-of-frame error interrupt of Channel #n.
48	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
45	1 Interrupt is enabled.
15 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 47	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 46	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 45	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
12 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 44	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 43	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

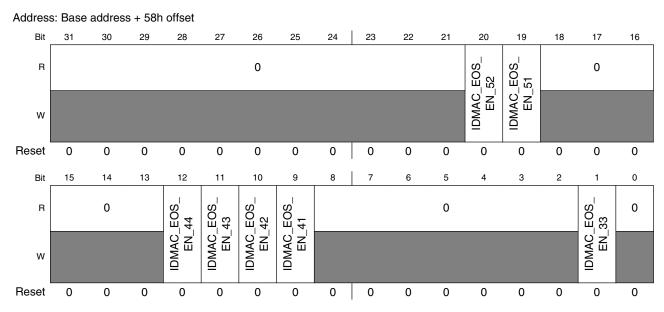
IPUx_INT_CTRL_6 field descriptions (continued)

Field	Description
10 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 42	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 41	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 40	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the control of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_EN_ 33	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.12 Interrupt Control Register 7 (IPUx_INT_CTRL_7)

This register contains part of IPUIPU interrupts controls. The controls of the End-of-Scroll indication (EOS) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_CTRL_7 field descriptions


Field	Description
31	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_31	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
29	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_29	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
28	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_28	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

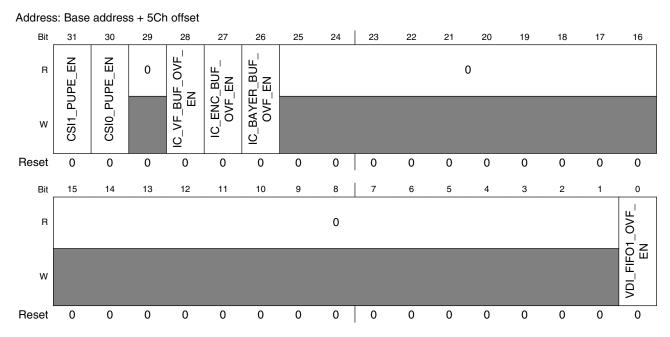
IPUx_INT_CTRL_7 field descriptions (continued)

Field	Description
27	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_27	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
26	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
25	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
24	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_24	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
23	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_23	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
22–20 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the control of End of Scroll interrupt of Channel #n.
EN_19	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.13 Interrupt Control Register 8 (IPUx_INT_CTRL_8)

This register contains part of IPU interrupts controls. The controls of the End of Scroll indication (EOS) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_CTRL_8 field descriptions


Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_52	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_51	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18–13	This read-only field is reserved and always has the value 0.
Reserved	
	0 Interrupt is disabled.
	1 Interrupt is enabled.

IPUx_INT_CTRL_8 field descriptions (continued)

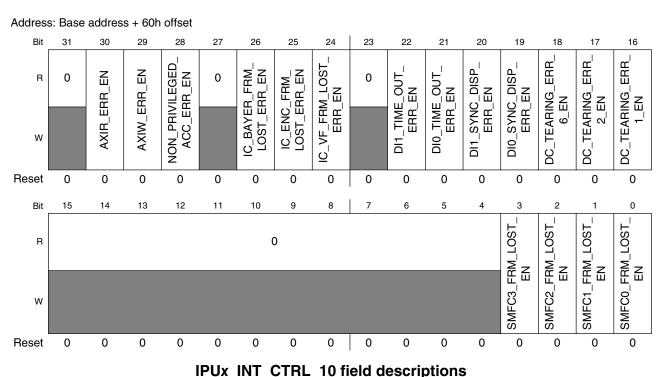
Field	Description
12	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_44	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_43	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_42	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_41	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8–2	This read-only field is reserved and always has the value 0.
Reserved	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	End of Scroll of Channel interrupt. This bit is the control of End Of Scroll interrupt of Channel #n.
IDMAC_EOS_ EN_33	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.14 Interrupt Control Register 9 (IPUx_INT_CTRL_9)

This register contains part of IPU interrupts controls. This register controls error interrupt signals coming from different sub-blocks within

IPUx_INT_CTRL_9 field descriptions

Field	Description
31	CSI1_PUPE_EN - CSI1 parameters update error interrupt enable.
CSI1_PUPE_EN	This bit enables an interrupt that is a result of an error generated by the CSI1. The error is generated in case where new frame arrived from the CSI1 before the completion of the CSI1's parameters update by the SRM
	0 Interrupt is disabled.
	1 Interrupt is enabled.
30	CSI0_PUPE_EN - CSI0 parameters update error interrupt enable.
CSI0_PUPE_EN	This bit enables an interrupt that is a result of an error generated by the CSI0. The error is generated in case where new frame arrived from the CSI0 before the completion of the CSI0's parameters update by the SRM
	0 Interrupt is disabled.
	1 Interrupt is enabled.
29 Reserved	This read-only field is reserved and always has the value 0.


Chapter 37 Image Processing Unit (IPU)

IPUx_INT_CTRL_9 field descriptions (continued)

Field	Description
28 IC_VF_BUF_ OVF_EN	This bit enables an interrupt that is a result of the IC Buffer overflow for view finder coming from the IC. The user needs to write 1 to this bit in order to clear it.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
27 IC_ENC_BUF_ OVF_EN	This bit enables an interrupt that is a result of the IC Buffer overflow for encoding coming from the IC. The user needs to write 1 to this bit in order to clear it.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
26 IC_BAYER_ BUF_OVF_EN	This bit enables an interrupt that is a result of the IC Buffer overflow for bayer coming from the IC. The user needs to write 1 to this bit in order to clear it.
201 _011 _211	0 Interrupt is disabled.
	1 Interrupt is enabled.
25–1 Reserved	This read-only field is reserved and always has the value 0.
0	FIFO1 overflow Interrupt1 Enable
VDI_FIFO1_ OVF_EN	The VDIC generates FIFO1 overflow interrupt1 when the write pointer of FIFO1 overruns read pointer.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.15 Interrupt Control Register 10 (IPUx_INT_CTRL_10)

This register contains part of IPU interrupts controls. This register controls error interrupt signals coming from different modules within

Field Description 31 This read-only field is reserved and always has the value 0. Reserved This bit enables an interrupt that is a result of AXI read access resulted with error response. 30 AXIR_ERR_EN Interrupt is disabled. Interrupt is enabled. 29 This bit enables an interrupt that is a result of AXI write access resulted with error response. AXIW_ERR_EN Interrupt is disabled. Interrupt is enabled. 28 Non Privileged Access Error interrupt enable. NON The CPMEM and the DP can be accessed by the ARM platform in privileged mode only HPROT[1] =1. An **PRIVILEGED** attempt to access these regions in user mode will issue an interrupt. This bit enables the interrupt. ACC_ERR_EN Interrupt is disabled.

Table continues on the next page...

Interrupt is enabled.

IPUx_INT_CTRL_10 field descriptions (continued)

Field	Description
27 Reserved	This read-only field is reserved and always has the value 0.
26 IC_BAYER_ FRM_LOST_ ERR_EN	This bit enables an interrupt that is a result of IC's Bayer frame lost. O Interrupt is disabled. Interrupt is enabled.
25 IC_ENC_FRM_ LOST_ERR_EN	This bit enables an interrupt that is a result of IC's encoding frame lost. Unterrupt is disabled. Interrupt is enabled.
24 IC_VF_FRM_ LOST_ERR_EN	This bit enables an interrupt that is a result of IC's view finder frame lost. 1 Interrupt is enabled.
23 Reserved	This read-only field is reserved and always has the value 0.
22 DI1_TIME_OUT_ ERR_EN	DI1 time out error interrupt enable This bit enables the interrupt that is a result of a time out error during a read access via DI1
	Interrupt is disabled. Interrupt is enabled.
21 DI0_TIME_OUT_ ERR_EN	DI0 time outwore interrupt enable This bit enables the interrupt that is a result of a time out error during a read access via DI0
	0 Interrupt is disabled.1 Interrupt is enabled.
20 DI1_SYNC_ DISP_ERR_EN	DI1 Synchronous display error enable This bit enables the interrupt that is a result of an error during access to a synchronous display via DI1 0 Interrupt is disabled.
19	Interrupt is enabled. DI0 Synchronous display error enable
DIO_SYNC_ DISP_ERR_EN	This bit enables the interrupt that is a result of an error during access to a synchronous display via DIO On Interrupt is disabled.
	1 Interrupt is enabled.
18 DC_TEARING_ ERR_6_EN	Tearing Error #6 enable This bit enables the interrupt that is a result of tearing error while the anti tearing mechanism is activated for DC channel 6
	Interrupt is disabled. Interrupt is enabled.
17	Tearing Error #2 enable
DC_TEARING_ ERR_2_EN	This bit enables the interrupt that is a result of tearing error while the anti tearing mechanism is activated for DC channel 2

IPUx_INT_CTRL_10 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16	Tearing Error #1 enable
DC_TEARING_ ERR_1_EN	This bit enables the interrupt that is a result of tearing error while the anti tearing mechanism is activated for DC channel 1
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15–4	This read-only field is reserved and always has the value 0.
Reserved	
3	Frame Lost of SMFC channel 3 interrupt enable bit
SMFC3_FRM_ LOST_EN	This bit enables an interrupt that is a result of a Frame Lost of SMFC channel 3.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
2	Frame Lost of SMFC channel 2 interrupt enable bit
SMFC2_FRM_ LOST_EN	This bit enables an interrupt that is a result of a Frame Lost of SMFC channel 2.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	Frame Lost of SMFC channel 1 interrupt enable bit
SMFC1_FRM_ LOST_EN	This bit enables an interrupt that is a result of a Frame Lost of SMFC channel 1.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0	Frame Lost of SMFC channel 0 interrupt enable bit
SMFC0_FRM_ LOST_EN	This bit enables an interrupt that is a result of a Frame Lost of SMFC channel 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.16 Interrupt Control Register 11 (IPUx_INT_CTRL_11)

This register contains part of IPU interrupts controls. The controls of the end-of-band indication (EOBND) of DMA Channels interrupts [31:0] can be found in this register.

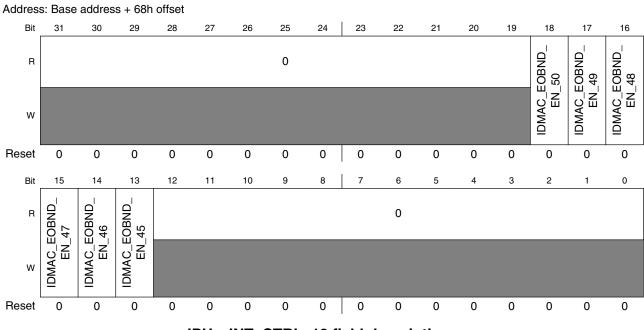
- Hide VDOA SYNC for all versions
- Show VDOA_SYNC for IPUv3H version.
- The table below tagged with other settings (like IPU3M_only) should be hidden in IPUv3H version.

Chapter 37 Image Processing Unit (IPU)

IPUx_INT_CTRL_11 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
1.000.700	0 Interrupt is disabled.
	1 Interrupt is enabled.
26	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
25	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
24–23 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
22	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_22	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
21	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_21	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_11 field descriptions (continued)


Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_20	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
19–13 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
12	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_12	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_11	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10–6 Reserved	This read-only field is reserved and always has the value 0.
neserveu	0 Interrupt is disabled.
	1 Interrupt is enabled.
5	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_5	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
110001100	0 Interrupt is disabled.
	1 Interrupt is enabled.
3 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n. n Indicates the corresponding DMA channel number.
EN_3	Thindicates the corresponding DMA charmer number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
2 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
EN_2	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_1	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_11 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
	end-of-band indication of Channel interrupt. This bit is the control of end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_0	$\it n$ Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

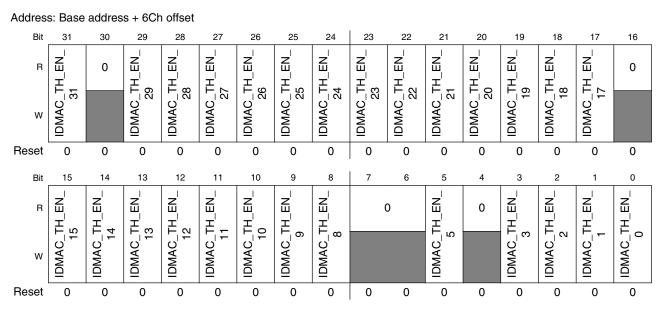
37.5.17 Interrupt Control Register 12 (IPUx_INT_CTRL_12)

This register contains part of IPU interrupts controls. The controls of the end-of-band indication (EOBND) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_CTRL_12 field descriptions

Field	Description
31–19 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
	end-of-band indication of Channel interrupt. This bit is the control end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_50	n Indicates the corresponding DMA channel number.

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_12 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17	end-of-band indication of Channel interrupt. This bit is the control end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_49	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16	end-of-band indication of Channel interrupt. This bit is the control end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_48	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
15	end-of-band indication of Channel interrupt. This bit is the control end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_47	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
14	end-of-band indication of Channel interrupt. This bit is the control end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_46	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
13	end-of-band indication of Channel interrupt. This bit is the control end-of-band interrupt of Channel #n.
IDMAC_EOBND_ EN_45	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.18 Interrupt Control Register 13 (IPUx_INT_CTRL_13)

This register contains part of IPU interrupts controls. The controls of the threshold crossing indication (TH) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_CTRL_13 field descriptions

Field	Description
31	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of
IDMAC_TH_EN_	Channel #n.
31	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
neserveu	0 Interrupt is disabled.
	1 Interrupt is enabled.
29 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
29	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
28 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
28	n Indicates the corresponding DMA channel number.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_13 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
27 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
27	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
26 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
26	n Indicates the corresponding DMA channel number.
	O Interrupt is disabled.
	1 Interrupt is enabled.
25 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
25	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
0.4	1 Interrupt is enabled.
24 IDMAC_TH_EN_ 24	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
24	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
23 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
23	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
22 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
22	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
21 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
21	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
20 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
20	n Indicates the corresponding DMA channel number.

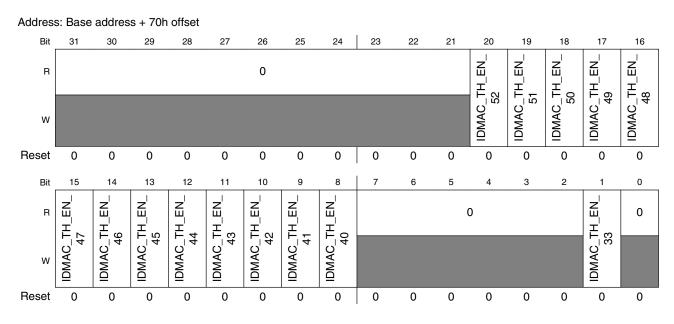
IPUx_INT_CTRL_13 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
19	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_TH_EN_ (Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
''	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
15	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
14	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
13	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
12	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_13 field descriptions (continued)


Field	Description
11 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
11	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
10	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
9	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8 IDMAC_TH_EN_ 8	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
0	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
5 IDMAC_TH_EN_ 5	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
5	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
1.0001404	0 Interrupt is disabled.
	1 Interrupt is enabled.
3 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
3	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
2 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of Channel #n.
2	n Indicates the corresponding DMA channel number.

IPUx_INT_CTRL_13 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
1	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of
IDMAC_TH_EN_	Channel #n.
1	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
0	Threshold crossing indication of Channel interrupt. This bit is the control of Threshold crossing interrupt of
IDMAC_TH_EN_	Channel #n.
0	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.19 Interrupt Control Register 14 (IPUx_INT_CTRL_14)

This register contains part of IPU interrupts controls. The controls of the Threshold crossing indication (TH) of DMA Channels interrupts [63:32] can be found in this register.

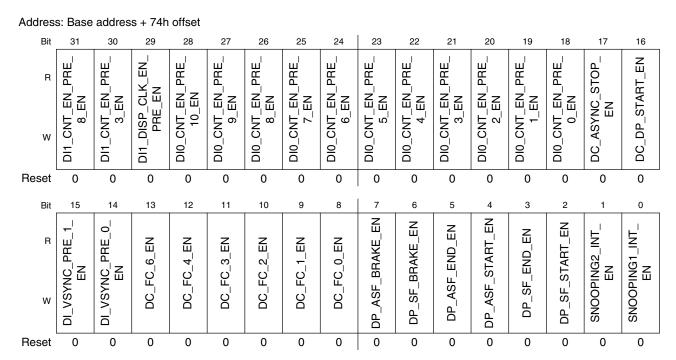
IPUx_INT_CTRL_14 field descriptions

This read-only field is reserved and always has the value 0. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is enabled. Interrupt is enabled. Interrupt is disabled.	Field	Description
1 Interrupt is enabled. 20 Interrupt is disabled. 1 Interrupt is enabled. 1 Interrupt is	_	This read-only field is reserved and always has the value 0.
IDMAC_TH_EN_ Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.	Reserved	0 Interrupt is disabled.
IDMAC_TH_EN_ 52		1 Interrupt is enabled.
Indicates the corresponding DMA channel number.		
19		
1 Interrupt is enabled. IDMAC_TH_EN_51 An Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. An Indicates the corresponding DMA channel number. 18 IDMAC_TH_EN_50 An Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. 17 IDMAC_TH_EN_49 An Indicates the corresponding DMA channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. An Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. 16 IDMAC_TH_EN_48 Al Indicates the corresponding DMA channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. An Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is enabled. 15 IDMAC_TH_EN_47 An Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. 15 IDMAC_TH_EN_47 An Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. 1 Interrupt is disabled. 1 Interrupt is enabled.		
Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Interrupt is enabled. Indicates the corresponding DMA channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is disabled. Interrupt is enabled. Interrupt is enabled. Interrupt is disabled.		·
IDMAC_TH_EN_ 51	19	·
Interrupt is disabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. IDMAC_TH_EN_500 Interrupt is disabled. Interrupt is enabled. Interrupt is disabled.	IDMAC_TH_EN_	
1 Interrupt is enabled. IDMAC_TH_EN_50 Indicates the corresponding DMA channel number. 0 Interrupt is enabled. IThreshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 1 Indicates the corresponding DMA channel number. 0 Interrupt is enabled. IThreshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 1 Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. IThreshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 1 Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. IThreshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 1 Indicates the corresponding DMA channel number. 0 Interrupt is enabled. Indicates the corresponding DMA channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 1 Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is enabled.	51	n Indicates the corresponding DMA channel number.
Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. In Indicates the corresponding DMA channel number. Interrupt is disabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Interrupt is enabled. Interrupt is disabled. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number.		0 Interrupt is disabled.
IDMAC_TH_EN_ 50 Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is enabled.		1 Interrupt is enabled.
n Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is disabled. Interrupt is enabled.		
0 Interrupt is disabled. 1 Interrupt is enabled. 17 IDMAC_TH_EN_49 Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 15 IDMAC_TH_EN_47 Indicates the corresponding DMA channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is enabled.		
1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. ### Indicates the corresponding DMA channel number. Interrupt is disabled.		
Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. ###		
n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is disabled. 1 Interrupt is enabled.	17	·
Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled.		Channel #n.
1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. ### ### ### ### ### ### ### ### ### #	40	n Indicates the corresponding DMA channel number.
Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. ### ### ### ### ### ### ### ### ### #		·
IDMAC_TH_EN_ 48		·
n Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled.	-	
0 Interrupt is disabled. 1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 47 Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled.		n Indicates the corresponding DMA channel number.
1 Interrupt is enabled. Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n. 47 Indicates the corresponding DMA channel number. 0 Interrupt is disabled. 1 Interrupt is enabled.		0 Interrupt is disabled
IDMAC_TH_EN_ Channel #n. ### A Indicates the corresponding DMA channel number. 0		
 n Indicates the corresponding DMA channel number. Interrupt is disabled. Interrupt is enabled. 		
0 Interrupt is disabled. 1 Interrupt is enabled.		
1 Interrupt is enabled.		n Indicates the corresponding DMA channel number.
·		·
14 Intreshold crossing indication of Charine interrupt. This bit is the control intershold crossing interrupt of	1.4	·
IDMAC_TH_EN_ Channel #n.		
n Indicates the corresponding DMA channel number.		n Indicates the corresponding DMA channel number.
0 Interrupt is disabled.		0 Interrupt is disabled.
1 Interrupt is enabled.		

IPUx_INT_CTRL_14 field descriptions (continued)

Field	Description
13 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.
45	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
12 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.
44	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
11 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.
43	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
10 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.
42	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
9 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.
41	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
8 IDMAC_TH_EN_	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of Channel #n.
40	n Indicates the corresponding DMA channel number.
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7–2	This read-only field is reserved and always has the value 0.
Reserved	0 Interrupt is disabled.
	1 Interrupt is enabled.
1 IDMAC_TH_EN_ 33	Threshold crossing indication of Channel interrupt. This bit is the control Threshold crossing interrupt of
	Channel #n. n Indicates the corresponding DMA channel number.
	Interrupt is disabled.
	1 Interrupt is enabled.
0	This read-only field is reserved and always has the value 0.
Reserved	This road only hold to rocorvod and aimayo had the value of

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_14 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.20 Interrupt Control Register15 (IPUx_INT_CTRL_15)

This register contains part of IPU interrupts controls. The controls of general purpose interrupts can be found in this register.

IPUx_INT_CTRL_15 field descriptions

Field	Description
31	This bit enables the interrupt that is a result of a trigger generated by counter #8 of DI1
DI1_CNT_EN_ PRE 8 EN	0 Interrupt is disabled.
1112_0_211	1 Interrupt is enabled.
30	This bit enables the interrupt that is a result of a trigger generated by counter #3 of DI1
DI1_CNT_EN_	
PRE_3_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
29	DI1_DISP_CLK_EN_PRE_EN
DI1_DISP_CLK_	
EN_PRE_EN	

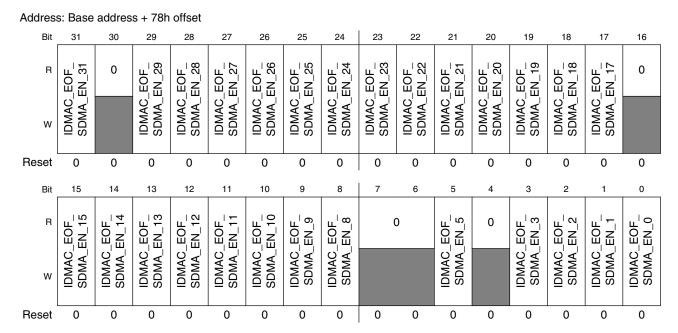
IPUx_INT_CTRL_15 field descriptions (continued)

Field	Description
	O Interrupt is disabled.
00	1 Interrupt is enabled.
28 DI0_CNT_EN_	This bit enables the interrupt that is a result of a trigger generated by counter #10 of DI0
PRE_10_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
27 DI0_CNT_EN_	This bit enables the interrupt that is a result of a trigger generated by counter #9 of DI0
PRE_9_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
26 DI0_CNT_EN_	This bit enables the interrupt that is a result of a trigger generated by counter #8 of DI0
PRE_8_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
25 DI0_CNT_EN_	This bit enables the interrupt that is a result of a trigger generated by counter #7 of DI0
PRE_7_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
24 DI0_CNT_EN_	This bit enables the interrupt that is a result of a trigger generated by counter #6 of DI0
PRE_6_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
23	This bit enables the interrupt that is a result of a trigger generated by counter #5 of DI0
DI0_CNT_EN_ PRE_5_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
22	This bit enables the interrupt that is a result of a trigger generated by counter #4 of DIO
DI0_CNT_EN_ PRE_4_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
21	This bit enables the interrupt that is a result of a trigger generated by counter #3 of DI0
DI0_CNT_EN_ PRE_3_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
20	This bit enables the interrupt that is a result of a trigger generated by counter #2 of DI0
DI0_CNT_EN_ PRE_2_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
19 DIO_CNT_EN_ PRE_1_EN	This bit enables the interrupt that is a result of a trigger generated by counter #1 of DI0
	0 Interrupt is disabled.
	1 Interrupt is enabled.
18 DI0_CNT_EN_ PRE_0_EN	This bit enables the interrupt that is a result of a trigger generated by counter #0 of DI0
	0 Interrupt is disabled.
	1 Interrupt is enabled.
17	This bit enables the interrupt asserted anytime the DP stops an async flow and moves to a sync flow
DC_ASYNC_ STOP_EN	

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_CTRL_15 field descriptions (continued)


Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
16 DC_DP_START_ EN	This bit enables the interrupt asserted anytime the DP start a new sync or async flow or when an async flow is interrupted by a sync flow
LIV	0 Interrupt is disabled.
	1 Interrupt is enabled.
15 DI_VSYNC_ PRE_1_EN	This bit enables the DI1 interrupt indicating of a VSYNC signal asserted 2 rows before the VSYNC sent to the display
	0 Interrupt is disabled.1 Interrupt is enabled.
14 DI_VSYNC_	This bit enables the DI0 interrupt indicating of a VSYNC signal asserted 2 rows before the VSYNC sent to the display
PRE_0_EN	0 Interrupt is disabled.1 Interrupt is enabled.
13 DC_FC_6_EN	This bit enables the DC Frame Complete on channel #6 interrupt
	0 Interrupt is disabled.1 Interrupt is enabled.
12 DC_FC_4_EN	This bit enables the DC Frame Complete on channel #4 interrupt
	0 Interrupt is disabled.1 Interrupt is enabled.
11 DC_FC_3_EN	This bit enables the DC Frame Complete on channel #3 interrupt
	0 Interrupt is disabled.
10	Interrupt is enabled. This bit enables the DC Frame Complete on channel #2 interrupt
DC_FC_2_EN	0 Interrupt is disabled.
	1 Interrupt is enabled.
9 DC_FC_1_EN	This bit enables they'd Frame Complete on channel #1 interrupt
20_1 0_1_211	0 Interrupt is disabled.
	1 Interrupt is enabled.
8 DC_FC_0_EN	This bit enables they'd Frame Complete on channel #0 interrupt
	0 Interrupt is disabled.
	1 Interrupt is enabled.
7 DP_ASF_ BRAKE_EN	DP Async Flow Brake enable bit. This bit enables the interrupt that is a result of the async flow brake at the DP
	0 Interrupt is disabled.
	1 Interrupt is enabled.
6 DP_SF_BRAKE_ EN	DP Sync Flow Brake enable bit. This bit enables the interrupt that is a result of the Sync flow brake at the DP

IPUx_INT_CTRL_15 field descriptions (continued)

Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
5 DP_ASF_END_ EN	DP Async Flow End enable bit. This bit enables the interrupt that is a result of the Async flow end at the DP
	0 Interrupt is disabled.
	1 Interrupt is enabled.
4 DP_ASF_ START EN	DP Async Flow Start enable bit. This bit enables the interrupt that is a result of the Async flow start at the DP
	0 Interrupt is disabled.
	1 Interrupt is enabled.
3 DP_SF_END_EN	DP Sync Flow End enable bit. This bit enables the interrupt that is a result of the Sync flow end at the DP
	0 Interrupt is disabled.
	1 Interrupt is enabled.
2	DP Sync Flow Start enable bit. This bit enables the interrupt that is a result of the Sync flow start at the DP
DP_SF_START_ EN	0 Interrupt is disabled.
LIN	1 Interrupt is enabled.
1 SNOOPING2_ INT_EN	IPU snooping 2 interrupt enable bit. This bit enables the interrupt that is a result of the detection of a snooping 2 signal assertion coming to the IPU
"""_=""	0 Interrupt is disabled.
	1 Interrupt is enabled.
0 SNOOPING1_ INT_EN	IPU snooping 1 interrupt enable bit. This bit enables the interrupt that is a result of the detection of a snooping 1 signal assertion coming to the IPU
	0 Interrupt is disabled.
	1 Interrupt is enabled.

37.5.21 SDMA Event Control Register 1 (IPUx_SDMA_EVENT_1)

This register contains part of IPU SDMA events controls. The controls of EOF (end of frame) of DMA Channels SDMA events [31:0] can be found in this register.

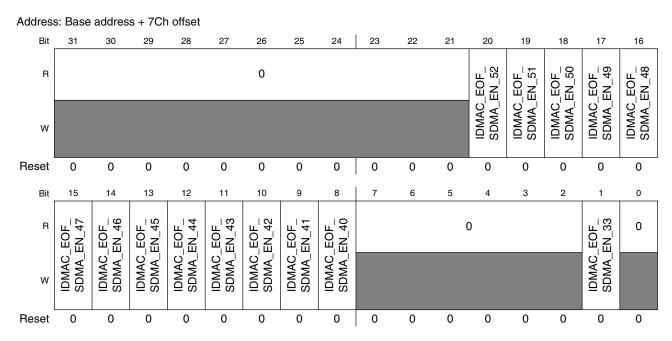
IPUx_SDMA_EVENT_1 field descriptions

Field	Description
31	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_31	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
29	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_29	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
28	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_28	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_1 field descriptions (continued)

Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
27	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_27	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
26 IDMAC_EOF_	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
SDMA_EN_26	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
25	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_25	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
24	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_24	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
23	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_23	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
22	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_22	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
21	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_21	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
20	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_20	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_19	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_1 field descriptions (continued)


Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
18	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_18	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
17	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_17	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
15 IDMAC_EOF_	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
SDMA_EN_15	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
14 IDMAC_EOF_ SDMA_EN_14	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
13	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_13	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
12	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_12	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
11	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_11	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
10	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_10	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

IPUx_SDMA_EVENT_1 field descriptions (continued)

Field	Description
9	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_9	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
8	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_8	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
7–6 Reserved	This read-only field is reserved and always has the value 0.
110001100	0 SDMA event is disabled.
	1 SDMA event is enabled.
5	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_5	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
3 IDMAC_EOF_ SDMA_EN_3	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
2	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_2	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
1	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_1	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
0	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_0	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

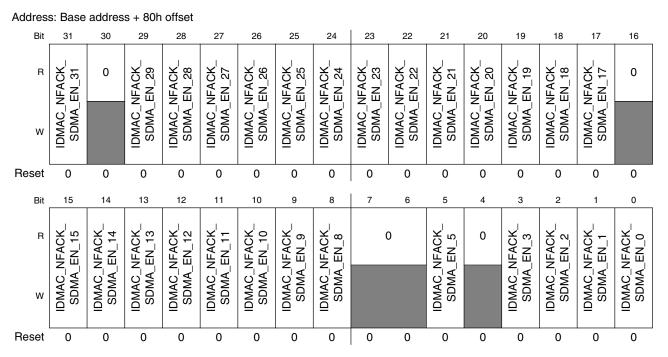
37.5.22 SDMA Event Control Register 2 (IPUx_SDMA_EVENT_2)

This register contains part of IPU SDMA events controls. The controls of EOF (end of frame) of DMA Channels SDMA events [63:32] can be found in this register.

IPUx_SDMA_EVENT_2 field descriptions

Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	0 SDMA event is disabled.
	1 SDMA event is enabled.
20	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_52	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_51	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
18	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_50	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_2 field descriptions (continued)


Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
17	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_49	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
16	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_48	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
15	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_47	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
14	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_46	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
13	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_45	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
12	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_44	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
11	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_43	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
10	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_42	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
9	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_41	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_2 field descriptions (continued)

Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
8	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_40	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
1	Enable End of Frame of Channel SDMA event. This bit is the control of End Of Frame of Channel #n.
IDMAC_EOF_ SDMA_EN_33	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
0	This read-only field is reserved and always has the value 0.
Reserved	O CDMA arrest is disabled
	0 SDMA event is disabled.
	1 SDMA event is enabled.

37.5.23 SDMA Event Control Register 3 (IPUx_SDMA_EVENT_3)

This register contains part of IPU SDMA events controls. The controls of NFACK (New Frame Acknowledge) of DMA Channels SDMA events [31:0] can be found in this register.

IPUx_SDMA_EVENT_3 field descriptions

Field	Description
SDMA EN 31	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
30 Reserved	This read-only field is reserved and always has the value 0. SDMA event is disabled. SDMA event is enabled.
29 IDMAC_NFACK_ SDMA_EN_29	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.1 SDMA event is enabled.

Table continues on the next page...

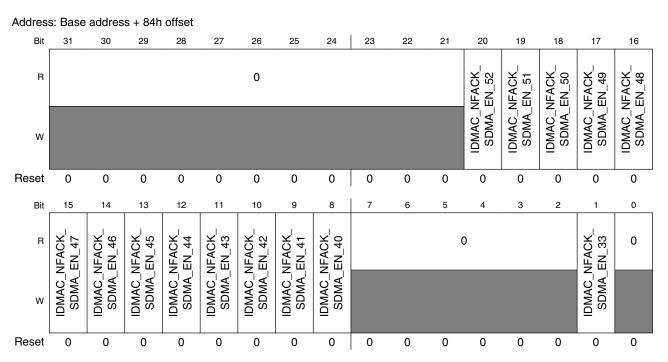
IPUx_SDMA_EVENT_3 field descriptions (continued)

Field	Description
28 IDMAC_NFACK_ SDMA_EN_28	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
	n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
27 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_27	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.1 SDMA event is enabled.
26 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_26	n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
25 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame
SDMA_EN_25	Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
24 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_24	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
23 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_23	n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
22	SDMA event is enabled. Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame
IDMAC_NFACK_ SDMA_EN_22	Acknowledge of Channel #n.
ODIVIA_LIN_22	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
0.1	1 SDMA event is enabled.
21 IDMAC_NFACK_ SDMA_EN_21	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	SDMA event is enabled.

IPUx_SDMA_EVENT_3 field descriptions (continued)

Field	Description
20 IDMAC_NFACK_ SDMA_EN_20	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	SDMA event is disabled.
	1 SDMA event is enabled.
19 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_19	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
18 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_18	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
17 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_17	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
45	1 SDMA event is enabled.
15 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_15	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
14 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_14	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
13 IDMAC_NFACK_ SDMA_EN_13	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame
	Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

IPUx_SDMA_EVENT_3 field descriptions (continued)


Field	Description
12 IDMAC_NFACK_ SDMA_EN_12	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
11 IDMAC_NFACK_ SDMA_EN_11	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
35	O SDMA event is disabled. SDMA event is enabled.
10 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_10	n Indicates the corresponding DMA channel number. SDMA event is disabled.
	1 SDMA event is enabled.
9 IDMAC_NFACK_ SDMA_EN_9	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
ODWA_EN_0	n Indicates the corresponding DMA channel number. O SDMA event is disabled.
	1 SDMA event is enabled.
8 IDMAC_NFACK_ SDMA_EN_8	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled. 1 SDMA event is enabled.
7–6 Reserved	This read-only field is reserved and always has the value 0. O SDMA event is disabled.
5	SDMA event is enabled. Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame
	Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
4	SDMA event is enabled. This read-only field is reserved and always has the value 0.
Reserved	
	SDMA event is disabled.SDMA event is enabled.
3 IDMAC_NFACK_ SDMA_EN_3	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_3 field descriptions (continued)

Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_2	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
1	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame
IDMAC_NFACK_	Acknowledge of Channel #n.
SDMA_EN_1	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
0 IDMAC_NFACK_ SDMA_EN_0	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

37.5.24 SDMA Event Control Register 4 (IPUx_SDMA_EVENT_4)

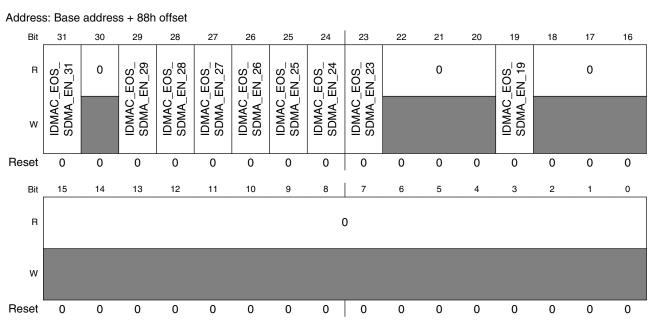
This register contains part of IPU SDMA events controls. The controls of NFACK (New Frame Acknowledge) of DMA Channels SDMA events [63:32] can be found in this register.

IPUx_SDMA_EVENT_4 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_52	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19 IDMAC_NFACK_ SDMA_EN_51	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

IPUx_SDMA_EVENT_4 field descriptions (continued)

Field	Description
18 IDMAC_NFACK_ SDMA_EN_50	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.1 SDMA event is enabled.
17 IDMAC_NFACK_ SDMA_EN_49	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. SDMA event is disabled.
16 IDMAC_NFACK_ SDMA_EN_48	 1 SDMA event is enabled. Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. 0 SDMA event is disabled. 1 SDMA event is enabled.
15 IDMAC_NFACK_ SDMA_EN_47	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. SDMA event is disabled. SDMA event is enabled.
14 IDMAC_NFACK_ SDMA_EN_46	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. SDMA event is disabled. SDMA event is enabled.
13 IDMAC_NFACK_ SDMA_EN_45	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. SDMA event is disabled. SDMA event is enabled.
12 IDMAC_NFACK_ SDMA_EN_44	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. SDMA event is disabled. SDMA event is enabled.
11 IDMAC_NFACK_ SDMA_EN_43	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number. SDMA event is disabled. SDMA event is enabled.


Table continues on the next page...

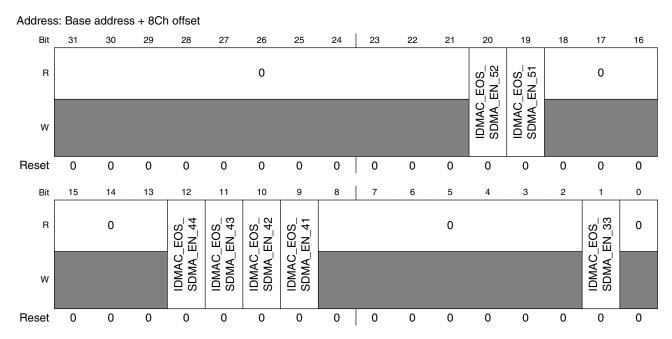
IPUx_SDMA_EVENT_4 field descriptions (continued)

Field	Description
10 IDMAC_NFACK_ SDMA_EN_42	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n. n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
9 IDMAC_NFACK_ SDMA_EN_41	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDIVIA_EN_41	n Indicates the corresponding DMA channel number.SDMA event is disabled.
	1 SDMA event is enabled.
8 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_40	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.1 SDMA event is enabled.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.1 SDMA event is enabled.
1 IDMAC_NFACK_	Enable New Frame Acknowledge of Channel SDMA event. This bit is the control of New Frame Acknowledge of Channel #n.
SDMA_EN_33	n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
0 Reserved	This read-only field is reserved and always has the value 0.
neserved	SDMA event is disabled. SDMA event is enabled.
	. Committee of the state of the

37.5.25 SDMA Event Control Register 7 (IPUx_SDMA_EVENT_7)

This register contains part of IPU SDMA events controls. The controls of EOS (End of Scroll) of DMA Channels SDMA events [31:0] can be found in this register.

IPUx_SDMA_EVENT_7 field descriptions


Field	Description
31	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_31	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
29	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_29	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
28	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_28	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_7 field descriptions (continued)

Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
27	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_27	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
26	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_26	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
25	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_25	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
24	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_24	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
23	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_23	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
22–20 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_19	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

37.5.26 SDMA Event Control Register 8 (IPUx_SDMA_EVENT_8)

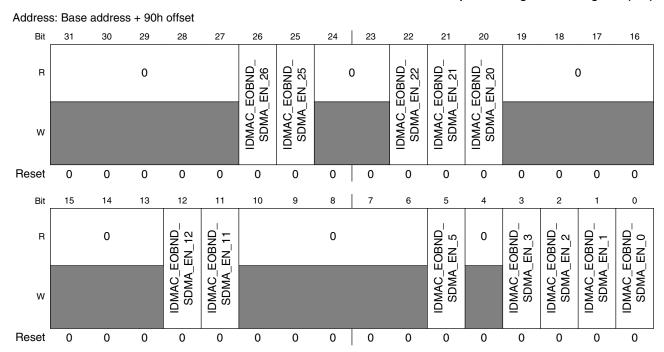
This register contains part of IPU SDMA events controls. The controls of EOS (End of Scroll) of DMA Channels SDMA events [63:32] can be found in this register.

IPUx_SDMA_EVENT_8 field descriptions

Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	SDMA event is disabled.
	1 SDMA event is disabled.
20	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_52	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_51	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
18–13 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

Table continues on the next page...

IPUx_SDMA_EVENT_8 field descriptions (continued)


Field	Description
12	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_44	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
11	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_43	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
10	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_42	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
9	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_41	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
8–2	This read-only field is reserved and always has the value 0.
Reserved	0 SDMA event is disabled.
	1 SDMA event is enabled.
1	Enable End of Scroll of Channel SDMA event. This bit is the control of End Of Scroll of Channel #n.
IDMAC_EOS_ SDMA_EN_33	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

37.5.27 SDMA Event Control Register 11 (IPUx_SDMA_EVENT_11)

This register contains part of IPU SDMA events controls. The controls of EOBND (End of Band) of DMA Channels SDMA events [31:0] can be found in this register.

- Hide VDOA_SYNC for all versions
- Show VDOA_SYNC for IPUv3H version.
- The table below tagged with other settings (like IPU3M_only) should be hidden in IPUv3H version.

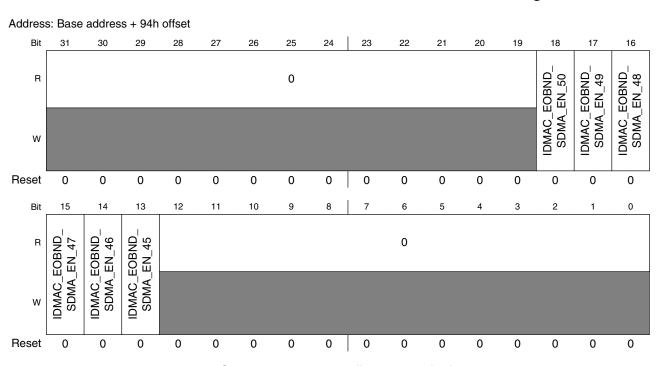
Chapter 37 Image Processing Unit (IPU)

IPUx_SDMA_EVENT_11 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
26	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_26	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
25	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_25	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
24–23 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
22	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_22	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
21	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_21	n Indicates the corresponding DMA channel number.

Table continues on the next page...

IPUx_SDMA_EVENT_11 field descriptions (continued)


Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
20	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_20	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19–13 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
12	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_12	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
11	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_11	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
10–6 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
5 IDMAC_EOBND_	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
SDMA_EN_5	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
rieserveu	0 SDMA event is disabled.
	1 SDMA event is enabled.
3	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_3	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
2	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_2	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
1	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_1	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_11 field descriptions (continued)

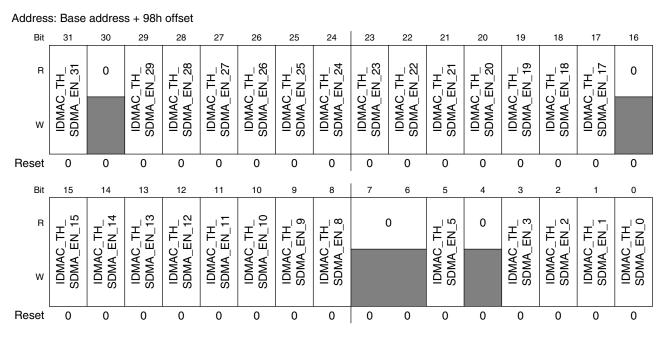
Field	Description
	SDMA event is disabled. SDMA event is enabled.
0 IDMAC_EOBND_ SDMA_EN_0	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n. n Indicates the corresponding DMA channel number.
SDIVIA_EN_0	0 SDMA event is disabled.1 SDMA event is enabled.

37.5.28 SDMA Event Control Register 12 (IPUx_SDMA_EVENT_12)

This register contains part of IPU SDMA events controls. The controls of EOBND (End of Band) of DMA Channels SDMA events [63:32] can be found in this register.

IPUx_SDMA_EVENT_12 field descriptions

Field	Description
31–19 Reserved	This read-only field is reserved and always has the value 0.
rieserveu	0 SDMA event is disabled.
	1 SDMA event is enabled.


Table continues on the next page...

IPUx_SDMA_EVENT_12 field descriptions (continued)

Field	Description
18 IDMAC_EOBND_ SDMA_EN_50	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n. n Indicates the corresponding DMA channel number.
SDIVIA_LIV_30	SDMA event is disabled. SDMA event is enabled.
17	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n.
IDMAC_EOBND_ SDMA_EN_49	n Indicates the corresponding DMA channel number.
	SDMA event is disabled.SDMA event is enabled.
16 IDMAC_EOBND_ SDMA_EN_48	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n. n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
15 IDMAC_EOBND_ SDMA_EN_47	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n. n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
14 IDMAC_EOBND_ SDMA_EN_46	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n. n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.1 SDMA event is enabled.
13 IDMAC_EOBND_ SDMA_EN_45	Enable End of Band of Channel SDMA event. This bit is the control of End Of Band of Channel #n. n Indicates the corresponding DMA channel number.
	SDMA event is disabled. SDMA event is enabled.
Reserved	This read-only field is reserved and always has the value 0.
	SDMA event is disabled. SDMA event is enabled.

37.5.29 SDMA Event Control Register 13 (IPUx_SDMA_EVENT_13)

This register contains part of IPU SDMA events controls. The controls of TH (Threshold) of DMA Channels SDMA events [31:0] can be found in this register.

IPUx SDMA EVENT 13 field descriptions

Field	Description
31	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_31	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
29	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_29	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
28	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_28	n Indicates the corresponding DMA channel number.

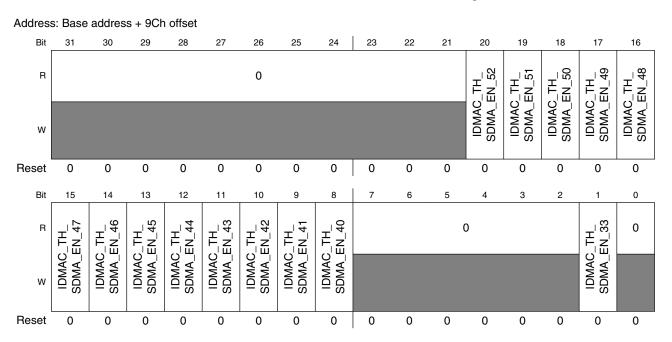
Table continues on the next page...

IPUx_SDMA_EVENT_13 field descriptions (continued)

Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
27	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_27	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
26 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_26	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
25 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_25	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
24 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_24	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
23 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_23	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
22 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_22	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
21	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_21	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
20	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_20	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_19	n Indicates the corresponding DMA channel number.

IPUx_SDMA_EVENT_13 field descriptions (continued)

Field	Description
	0 SDMA event is disabled.
	1 SDMA event is enabled.
18	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_18	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
17	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_17	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
15 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_15	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
14 IDMAC_TH_ SDMA_EN_14	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
05//// (0 SDMA event is disabled.
	1 SDMA event is disabled.
13	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_13	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
12	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_12	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
11	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_11	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
10	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_10	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.


Table continues on the next page...

IPUx_SDMA_EVENT_13 field descriptions (continued)

Field	Description
9	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_9	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
8	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_8	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
5	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_5	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
3 IDMAC_TH_	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
SDMA_EN_3	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
2	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_2	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
1	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_1	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
0	Enable Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n.
IDMAC_TH_ SDMA_EN_0	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

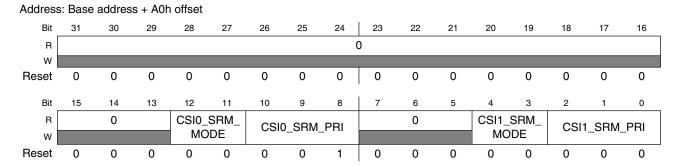
37.5.30 SDMA Event Control Register 14 (IPUx_SDMA_EVENT_14)

This register contains part of IPU SDMA events controls. The controls of TH (Threshold) of DMA Channels SDMA events [63:32] can be found in this register.

IPUx SDMA EVENT 14 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
20 IDMAC_TH_	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
SDMA_EN_52	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
19 IDMAC_TH_ SDMA_EN_51	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

IPUx_SDMA_EVENT_14 field descriptions (continued)

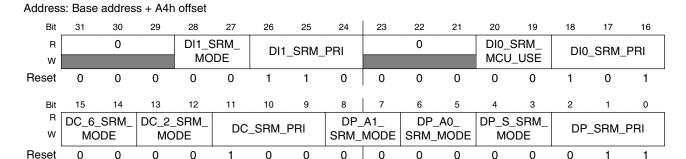

Field	Description									
18 IDMAC_TH_ SDMA_EN_50	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number.									
	0 SDMA event is disabled.1 SDMA event is enabled.									
17 IDMAC_TH_ SDMA_EN_49	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number.									
	0 SDMA event is disabled.1 SDMA event is enabled.									
16 IDMAC_TH_ SDMA_EN_48	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number.									
	O SDMA event is disabled. SDMA event is enabled.									
15 IDMAC_TH_ SDMA_EN_47	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number.									
	SDMA event is disabled. SDMA event is enabled.									
14 IDMAC_TH_ SDMA_EN_46	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number.									
	0 SDMA event is disabled.1 SDMA event is enabled.									
13 IDMAC_TH_ SDMA_EN_45	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number.									
	SDMA event is disabled. SDMA event is enabled.									
12 IDMAC_TH_	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.									
SDMA_EN_44	 n Indicates the corresponding DMA channel number. SDMA event is disabled. SDMA event is enabled. 									
11 IDMAC_TH_ SDMA_EN_43	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.									
SDIVIA_EN_43	n Indicates the corresponding DMA channel number.SDMA event is disabled.									
	1 SDMA event is enabled.									

IPUx_SDMA_EVENT_14 field descriptions (continued)

Field	Description
10 IDMAC_TH_	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
SDMA_EN_42	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
9 IDMAC_TH_	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
SDMA_EN_41	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
8 IDMAC_TH_	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
SDMA_EN_40	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
1 IDMAC_TH_	Threshold of Channel SDMA event. This bit is the control of Threshold of Channel #n. n Indicates the corresponding DMA channel number.
SDMA_EN_33	n Indicates the corresponding DMA channel number.
	0 SDMA event is disabled.
	1 SDMA event is enabled.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 SDMA event is disabled.
	1 SDMA event is enabled.

37.5.31 Shadow Registers Memory Priority 1 Register (IPUx_SRM_PRI1)

The register controls the priority of SRM updates. The priority level for each block that has a shadow of its registers in the SRM should be unique. The priority level defines the order of SRM updates. A block with priority set to 010 will be updated before a block with priority set to 001.



IPUx_SRM_PRI1 field descriptions

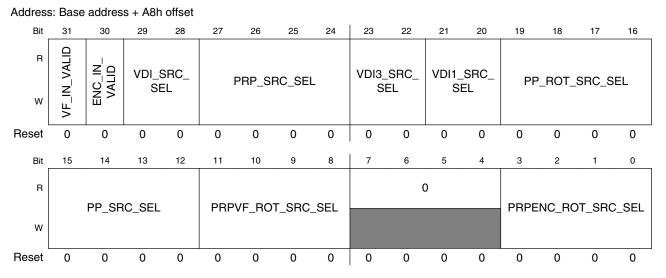
Field	Description								
31–13 Reserved	This read-only field is reserved and always has the value 0.								
12-11 CSI0_SRM_ MODE	CSI0 SRM Mode This field controls the SRM logic that handles the CSI0 registers O Automatic swapping is disabled; ARM platform is allowed to access the CSI1's region in the RAM								
	 The SRM logic is controlled by the FSU. The update will be done of the next frame. The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame Update now. The SRM is controlled by the ARM Platform. The Register will be update now 								
10-8 CSI0_SRM_PRI	CSI0 SRM priority This bits define the priority of the CSI1 block								
7–5 Reserved	This read-only field is reserved and always has the value 0.								
4-3 CSI1_SRM_ MODE	CSI1 SRM Mode This field controls the SRM logic that handles the CSI1 registers								
	OO Automatic swapping is disabled; ARM platform is allowed to access the CSI0's region in the RAM O1 The SRM logic is controlled by the FSU. The update will be done of the next frame. The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame Update now. The SRM is controlled by the ARM platform. The Register will be update now								
CSI1_SRM_PRI	CSI1 SRM priority This bits define the priority of the CSI0 module								

37.5.32 Shadow Registers Memory Priority 2 Register (IPUx_SRM_PRI2)

The register controls the priority of SRM updates. The priority level for each block that has a shadow of its registers in the SRM should be unique. The priority level defines the order of SRM updates. a block with priority set to 010 will be updated before a block with priority set to 001.

IPUx_SRM_PRI2 field descriptions

Field	Description									
31–29 Reserved	This read-only field is reserved and always has the value 0.									
28–27 DI1_SRM_MODE	DCI1 SRM Mode This field controls the SRM logic that handles the DI1 registers O Automatic swapping is disabled; ARM platform is allowed to access the DI1 region in the RAM The SRM logic is controlled by the FSU. The update will be done of the next frame. The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame Update now. The SRM is controlled by the ARM platform. The Register will be update now									
26–24 DI1_SRM_PRI	DI1 SRM priority This bits define the priority of the DI1 module									
23–21 Reserved	This read-only field is reserved and always has the value 0.									
20-19 DIO_SRM_MCU_ USE	DIO SRM is used by ARM platform This bit indicates that the registers of the DIO are currently being updated by the ARM platform. The ARM platform should set this bit before accessing the SRM part that is relevant to the DIO. The ARM platform should clear this bit when the update procedure is finished. When this bit is set the SRM mechanism will not update the DIO's registers to avoid data coherency problems. 1 DIO SRM is currently updated by the ARM platform 0 DIO SRM s currently not updated by the ARM platform									
18-16 DI0_SRM_PRI	DI0 SRM priority This bits define the priority of the DI0 module									


Table continues on the next page...

IPUx_SRM_PRI2 field descriptions (continued)

Field	Description								
15–14	DC Group #6 SRM Mode								
DC_6_SRM_ MODE	This field controls the SRM logic that handles the DC Group #6 registers								
	Automatic swapping is disabled; ARM platform is allowed to access the DC Group #6's region in the RAM								
	01 The SRM logic is controlled by the FSU. The update will be done of the next frame.								
	O The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame								
	11 Update now. The SRM is controlled by the ARM platform. The Register will be update now								
13–12	DC Group #2 SRM Mode								
DC_2_SRM_ MODE	This field controls the SRM logic that handles the DC Group #2 registers								
	OO Automatic swapping is disabled; ARM platform is allowed to access the DC Group #2's region in the RAM								
	01 The SRM logic is controlled by the FSU. The update will be done of the next frame.								
	10 The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame								
	11 Update now. The SRM is controlled by the ARM platform. The Register will be update now								
11–9	DC SRM priority								
DC_SRM_PRI	This bits define the priority of the DC module								
8–7	DP Async flow #1 SRM Mode								
DP_A1_SRM_ MODE	This field controls the SRM logic that handles the DP Async flow #1 registers								
	00 Automatic swapping is disabled; ARM platform is allowed to access the DP Async flow #1 region in the RAM								
	01 The SRM logic is controlled by the FSU. The update will be done of the next frame.								
	10 The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame								
	11 Update now. The SRM is controlled by the ARM platform. The Register will be update now								
6–5	DP Async flow #0 SRM Mode								
DP_A0_SRM_ MODE	This field controls the SRM logic that handles the DP Async flow #0 registers								
	OO Automatic swapping is disabled; ARM platform is allowed to access the DP Async flow #0 region in the RAM								
	01 The SRM logic is controlled by the FSU. The update will be done of the next frame.								
	10 The SRM logic is controlled by the FSU. Registers are swapped continuously frame by frame								
	11 Update now. The SRM is controlled by the ARM platform. The Register will be update now								
4–3	DP sync flow SRM Mode								
DP_S_SRM_ MODE	This field controls the SRM logic that handles the DP sync flow registers								
	OO Automatic swapping is disabled; ARM platform is allowed to access the DP sync flow region in the RAM								
	01 The SRM logic is controlled by the FSU. The update will be done on the next frame.								
	10 Reserved								
	11 Update now. The SRM is controlled by the ARM platform. The Register will be update now								
DP_SRM_PRI	DP SRM priority								
	This bits define the priority of the DP module								

37.5.33 FSU Processing Flow 1 Register (IPUx_FS_PROC_FLOW1)

This register contain controls for IPU's tasks.

IPUx_FS_PROC_FLOW1 field descriptions

Field	Description									
31 VF_IN_VALID	View-finder Input valid. Setting this bit indicates that the buffer in memory for viewfinder is validated by the ARM platform (valid only when RWS_EN is '1').									
	0 View-finder should skip buffer in memory.									
	1 View-finder should use buffer in memory.									
30 ENC_IN_VALID	Encoding Input valid. Setting this bit indicates that the buffer in memory for encoding is validated by the ARM platform (valid only when RWS_EN is '1').									
	0 Encoding should skip buffer in memory.									
	1 Encoding should use buffer in memory.									
29–28	Source select for the VDIC									
VDI_SRC_SEL	This field is relevant if the VDIC works in de-interlacing mode (when VDI_CMB_EN bit is clear)									
	00 ARM platform									
	01 CSI direct (cb7)									
	10 Reserved									
	10 VDOA									
	11 Reserved									
27–24	Source select for the Pre Processing Task									
PRP_SRC_SEL	0000 ARM platform									

IPUx_FS_PROC_FLOW1 field descriptions (continued)

Field	Description
	0001 capture0 (smfc0)
	_
	_
	_
	0011 capture2 (smfc2)
	-
	_
	-
	0101 IC direct (cb7)
	0110 IRT Encoding 0111 IRT viewfinder
	1000 Reserved
	1001 Reserved
	1010 Reserved
	1011 autoref
	1100 autoref+snoop1
	1101 autoref+snoop2
	1110 snoop1
	1111 snoop2
23–22	Source select for the VDIC plane #3 (IDMAC's CH 25)
VDI3_SRC_SEL	
	00 ARM platform
	This field is relevant only if the VDIC works in combining mode (VDI_CMB_EN bit is set)
	01 IRT viewfinder (ch 49)
	10 IRT playback (ch 50)
	11 post-processing (ch 22)
21–20	Source select for the VDIC plane #1 (IDMAC's CH26)
VDI1_SRC_SEL	This field is relevant only if the VDIC works in combining mode (VDI_CMB_EN bit is set)
	00 ARM platform
	01 IRT viewfinder
	10 IRT playback
	11 post-processing
19–16	Source select for the pre processing task of the IRT (CH 50)
PP_ROT_SRC_	
SEL	0000 ARM platform
	0001 capture0 (smfc0)
	O010 Percented
	0010 Reserved 0011 capture2 (smfc2)
	0011 capture2 (smfc2) —
	0100 Reserved
	0101 Post-processing
	0110 Reserved
	0111 Reserved
	_

IPUx_FS_PROC_FLOW1 field descriptions (continued)

Field		Description
	1000	Reserved
		_
	1001	Reserved
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2
15-12 PP_SRC_SEL		e select for the pre processing task of the IC
	0000	ARM platform
	0001	capture0 (smfc0)
		_
	0010	Reserved
	0011	capture2 (smfc2)
		-
	0100	Reserved
	0101	Reserved
	0110	Rotation for post-processing
	0111	Reserved
	4000	
	1000	Reserved
	1000	VDOA
	1001	— Decembed
	1001	Reserved
	1010 1011	Reserved
		autoref
	1100 1101	autoref+snoop1 autoref+snoop2
	1110	snoop1
	1111	snoop2
11–8		e select for the view finder task of the IRT
PRPVF_ROT_ SRC_SEL		ARM platform
	0001	capture0 (smfc0)
	0010	capture1 (smfc1)
	0011	capture2 (smfc2)
	0100	capture3 (smfc3)
	0101	IC direct (cb7)
	0110	— Reserved
	0111	Reserved

Table continues on the next page...

IPUx_FS_PROC_FLOW1 field descriptions (continued)

Field		Description
	1000	View-finder
	1001	Reserved
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2
7–4 Reserved	This re	ead-only field is reserved and always has the value 0.
PRPENC_ROT_ SRC_SEL		e select for the encoding task of the IRT
	0000	ARM platform
	0001	capture0 (smfc0)
		_
	0010	capture1 (smfc1)
	0011	capture2 (smfc2)
	0011	— (Silicz)
	0100	capture3 (smfc3)
		-
	0101	IC direct (cb7)
		_ ` `
	0110	Reserved
	0111	encoding
	1000	Reserved
	1001	Reserved
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2

37.5.34 FSU Processing Flow 2 Register (IPUx_FS_PROC_FLOW2)

This register contains controls for IPU's tasks.

Address: Base address + ACh offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		()		PF	RP [DES	т		RPE		_	Р	P F	ROT		PI	P D	ES1	Γ	1	PRP	_	_	F	PRP	VF		PF	RP I	ENC	;
W						_	EL	_	RC	SI SE	DES EL	1_		_	_SE	ĒL		SE		_	RC	ا_ا(SE	DES EL	1_	DI	EST	_SE	L	DI	EST	SE	Ē
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_FS_PROC_FLOW2 field descriptions

Field	Description								
31–28 Reserved	This read-only field is reserved and always has the value 0.								
27–24	Pre processing destination select (for channel DMAIC_7)								
PRP_DEST_SEL	COCC. ADM dates								
	0000 ARM platform								
	0001 IC input buffer (ch12)								
	0010 PP (ch11) 0011 PP_ROT (ch47)								
	0011 PP_ROT (ch47) 0100 DC1 (ch28)								
	0101 DC2 (ch41)								
	0110 DP_ASYNC1 (ch24)								
	0111 DP_ASYNC0 (ch29)								
	1000 DP_SYNC1 (ch27)								
	1001 DP_SYNC0 (ch23)								
	1010 Alt DC2 (ch41)								
	1011 Alt DP_ASYNC1 (ch24)								
	1100 Alt DP_ASYNC0 (ch29)								
	1111 Reserved								
23–20	Destination select for Rotation task coming from the Encoding input								
PRPENC_ROT_									
DEST_SEL	0000 ARM platform								
	0001 Reserved								
	0010 Reserved								
	Ontal Brown of								
	0011 Reserved								
	Oddo Barrand								
	0100 Reserved								
	0101 IC Pre Processing								
	0110 Reserved								
	0111 DC1 (ch28)								
	1000 DC2 (ch41)								

Table continues on the next page...

IPUx_FS_PROC_FLOW2 field descriptions (continued)

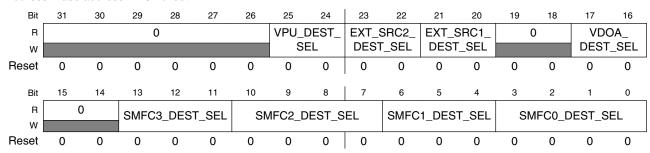
Field		Description
	1001	DP_SYNC0 (ch23)
	1010	DP_SYNC1 (ch27)
	1011	DP_ASYNC1 (ch24)
	1100	DP_ASYNC0 (ch29)
	1101	Alt DC2 (ch41)
	1110	Alt DP_ASYNC1 (ch24)
	1111	Alt DP_ASYNC0 (ch29)
19–16	Destin	ation select for Rotation task coming from the Post Processing input
PP_ROT_DEST_		
SEL	0000	ARM platform
	0001	Reserved
	0010	Reserved
	0011	Reserved
	0100	IC Playback (Post Processing)
		_
	0.4.0.4	
	0101	VDI_PLANE3 (Ch 25)
		_
	0440	- VIDL DI ANIEL (OL CO)
	0110	VDI_PLANE1 (Ch 26)
	0111	DC1 (ch28)
	1000	DC2 (ch41)
	1001	DP_SYNC0 (ch23)
	1010	DP_SYNC1 (ch27)
	1011	DP_ASYNC1 (ch24)
	1100	DP_ASYNC0 (ch29)
	1101	Alt DC2 (ch41)
	1110	Alt DP_ASYNC1 (ch24)
15 10	1111	Alt DP_ASYNC0 (ch29)
15–12 PP_DEST_SEL	Destin	ation select for post processing task
5251_622	0000	ARM platform
	0001	Reserved
	0010	Reserved
	0011	IRT playback
		_
	0100	VDI_PLANE3 (Ch 25)
		_
	0101	VDI_PLANE1 (Ch 26)
	0110	Reserved
	0111	DC1 (ch28)
	1000	DC2 (ch41)
	1001	DP_SYNC0 (ch23)
	1010	DP_SYNC1 (ch27)
	1011	DP_ASYNC1 (ch24)
	1100	DP_ASYNC0 (ch29)
	1101	Alt DC2 (ch41)

IPUx_FS_PROC_FLOW2 field descriptions (continued)

Field		Description
	1110	Alt DP_ASYNC1 (ch24)
	1111	Alt DP_ASYNC0 (ch29)
11–8	Destin	ation select for Rotation task coming from the View finder input
PRPVF_ROT_		
DEST_SEL	0000	ARM platform
	0001	Reserved
	0010	Reserved
		-
	0011	VDI_PLANE3 (Ch 25)
		_
	0400	
	0100	VDI_PLANE1 (Ch 26)
	0101	IC Pre Processing
	0110	Reserved
	0111	DC1 (ch28)
	1000	DC2 (ch41)
	1001	DP_SYNC0 (ch23)
	1010	DP_SYNC1 (ch27) DP_ASYNC1 (ch24)
	1100	DP_ASYNC0 (ch29)
	1101	Alt DC2 (ch41)
	1110	Alt DP_ASYNC1 (ch24)
	1111	Alt DP_ASYNC0 (ch29)
7–4		nation select for View finder task
PRPVF_DEST_	Destin	ation selection view initial task
SEL	0000	ARM platform
	0001	IRT viewfinder
	0010	Reserved
	0011	Reserved
	0100	Reserved
	0101	Reserved
	0110	Reserved
	0111	DC1 (ch28)
	1000	DC2 (ch41)
	1001	DP_SYNC0 (ch23)
	1010	DP_SYNC1 (ch27)
	1011	DP_ASYNC1 (ch24)
	1100	DP_ASYNC0 (ch29)
	1101	Alt DC2 (ch41)
	1110	Alt DP_ASYNC1 (ch24)
DDD	1111	Alt DP_ASYNC0 (ch29)
PRP_ENC_ DEST_SEL	Destin	ation select for Encoding task
DLU1_GLL	0000	ARM platform
	0001	IRT Encoding
	0010	Reserved
1	•	

Table continues on the next page...

IPUx_FS_PROC_FLOW2 field descriptions (continued)


Field		Description
0	0011	Reserved
0	0100	Reserved
0	0101	Reserved
0	0110	Reserved
0	0111	DC1 (ch28)
1	1000	DC2 (ch41)
1	1001	DP_SYNC0 (ch23)
1	1010	DP_SYNC1 (ch27)
1	1011	DP_ASYNC1 (ch24)
1	1100	DP_ASYNC0 (ch29)
1	1101	Alt DC2 (ch41)
1	1110	Alt DP_ASYNC1 (ch24)
1	1111	Alt DP_ASYNC0 (ch29)

37.5.35 FSU Processing Flow 3 Register (IPUx_FS_PROC_FLOW3)

This register contains controls for IPU's tasks.

- Hide VPU_SUB_FRAME_SYNC for all versions
- Show VPU_SUB_FRAME_SYNC for IPUv3H version.
- The table below tagged with other settings (like IPU3M_only) should be hidden in IPUv3H version.
- This requires some sophisticated conditional tag settings

Address: Base address + B0h offset

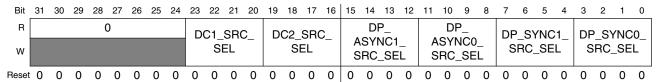
IPUx_FS_PROC_FLOW3 field descriptions

Field	Description
31–26 Reserved	This read-only field is reserved and always has the value 0.
VPU_DEST_SEL	This bits selects the corresponding IDMAC channel's EOL indication to be used for sub frame synchronization with the VPU. The corresponding IDMAC channel's EOLI bit at the CPMEM has to be set as well.

IPUx_FS_PROC_FLOW3 field descriptions (continued)

Field	Description
	00 disabled
	01 capture0 (smfc0) (ch0)
	10 capture2 (smfc2) (ch2)
	11 IC viewfinder (ch21)
23–22	Destination select for External Source 2
EXT_SRC2_ DEST_SEL	00 disabled
DEST_SEL	01 DP_SYNC0 (ch23)
	10 DP_SYNC1 (ch27)
	11 DC1 (ch28)
21–20	Destination select for External Source 1
EXT_SRC1_	
DEST_SEL	00 disabled
	01 DP_SYNC0 (ch23)
	10 DP_SYNC1 (ch27) 11 DC1 (ch28)
10.10	
19–18 Reserved	This read-only field is reserved and always has the value 0.
17–16	Destination select for VDOA
VDOA_DEST_	OO Parklad
SEL	00 disabled
	10 IC Playback (Post Processing)10 VDI (ch8,ch9 & ch10 or ch9 according to VDI_MOT_SEL settings)
	11 Reserved
15–14	This read-only field is reserved and always has the value 0.
Reserved	
13–11	Destination select for SMFC3
SMFC3_DEST_ SEL	000 ARM platform
SLL	001 IRT Encoding
	010 IRT viewfinder
	011 IRT playback
	100 IC Playback (Post Processing)
	101 IC Pre Processing
	_
	111 Reserved
10–7	Destination select for SMFC2
SMFC2_DEST_ SEL	0000 ARM platform
OLL	0001 IRT Encoding
	0010 IRT viewfinder
	0011 IRT playback
	0100 IC Playback (Post Processing)
	0101 IC Pre Processing
	_
	0111 DC1 (ch28)
	1000 DC2 (ch41)
	1001 DP_SYNC0 (ch23)

Table continues on the next page...


IPUx_FS_PROC_FLOW3 field descriptions (continued)

Field	Description
	1010 DP_SYNC1 (ch27)
	1011 DP_ASYNC1 (ch24)
	1100 DP_ASYNC0 (ch29)
	1101 Alt DC2 (ch41)
	1110 Alt DP_ASYNC1 (ch24)
	1111 Alt DP_ASYNC0 (ch29)
6–4	Destination select for SMFC1
SMFC1_DEST_	202 ADM 1 1
SEL	000 ARM platform
	001 IRT Encoding
	010 IRT viewfinder
	011 IRT playback
	100 IC Playback (Post Processing)
	101 IC Pre Processing
	—
	111 Reserved
SMFC0_DEST_	Destination select for SMFC0
SEL	0000 ARM platform
	0001 IRT Encoding
	0010 IRT viewfinder
	0011 IRT playback
	0100 IC Playback (Post Processing)
	0101 IC Pre Processing
	0111 DC1 (ch28)
	1000 DC2 (ch41)
	1001 DP_SYNC0 (ch23)
	1010 DP_SYNC1 (ch27)
	1011 DP_ASYNC1 (ch24)
	1100 DP_ASYNC0 (ch29)
	1101 Alt DC2 (ch41)
	1110 Alt DP_ASYNC1 (ch24)
	1111 Alt DP_ASYNC0 (ch29)

37.5.36 FSU Displaying Flow 1 Register (IPUx_FS_DISP_FLOW1)

This register contains controls for IPU's tasks.

Address: Base address + B4h offset

IPUx_FS_DISP_FLOW1 field descriptions

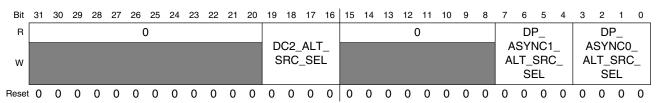
Field	Description		
31–24	his read-only field is reserved and always has the value 0.		
Reserved			
23–20	Source select for DS1/DS2 - MG (graphics) plane (ch28)		
DC1_SRC_SEL	0000 ARM platform		
	0000 ARM platform		
	0001 capture0 (smfc0)		
	0010		
	0010 capture2 (smfc2)		
	— — — — — — — — — — — — — — — — — — —		
	0011 IC encoding		
	0100 IC viewfinder		
	0101 IC playback		
	0110 IRT Encoding		
	0111 IRT viewfinder		
	1000 IRT playback		
	1001 Decembed		
	1001 Reserved		
	1010 Decembed		
	1010 Reserved		
	1011 autoref		
	1100 autoref+snoop1		
	1101 External source #1 (e.g. an external block like GPU)		
	,		
	1110 snoop1		
	1111 External course #2 (e.g. on external block like CDLI)		
	1111 External source #2 (e.g. an external block like GPU)		
19–16	Source select for DS3 (ch41)		
DC2_SRC_SEL	0000 ARM platform		
	0001 capture0 (smfc0)		
	0010 capture2 (smfc2)		
I .	jos o outraine (ormae)		

IPUx_FS_DISP_FLOW1 field descriptions (continued)

C encoding	Field	Description
0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — 1001 Reserved — 1010 Reserved 1011 autoref 1100 autoref+snoop1 1110 snoop1 1111 snoop2 DP_ASYNC1_ SRC_SEL DOUG ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback 0111 IRT viewfinder 1000 IRT playback — 0011 IRT playback — 0011 IRT viewfinder 1000 IRT playback — 0111 IRT viewfinder 1000 IRT playback —		_
0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — 1001 Reserved — 1010 Reserved 1011 autoref 1100 autoref+snoop1 1101 snoop2 1110 snoop1 1111 snoop2 DP_ASYNC1_ SRC_SEL DP_ASYNC1_ SRC_SEL 0000 ARM platform 0001 capture0 (smfc0) — 0010 iC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback - URL Playback 0110 IRT playback		
0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — 1001 Reserved — 1010 Reserved 1011 autoref 1100 autoref+snoop1 1101 snoop1 1111 snoop2 15–12 DP_ASYNC1_ SRC_SEL DOUG ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0110 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback - URL PROVINCE 1000 IRT playback 0111 IRT viewfinder 1000 IRT playback - URL PROVINCE 1000 IRT playba		
0111 IRT viewfinder 1000 IRT playback — 1001 Reserved — 1010 Reserved 1011 autoref 1100 autoref+snoop1 1101 snoop2 1110 snoop1 1111 snoop2 Source select for DS1/DS2 - Vx (video) plane (ch24) DP_ASYNC1_SRC_SEL O000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — IRT playback — IRT playback — IRT playback — IRT playback — IRT playback — IRT playback — IRT playback — IRT playback		· ·
1000 IRT playback		_
1010 Reserved 1011 autoref 1100 autoref+snoop1 1101 snoop1 1111 snoop2 1110 snoop2 1111 snoop2 1111 snoop2 1111 snoop2 1111 snoop2 1111 snoop2 source select for DS1/DS2 - Vx (video) plane (ch24) O000 ARM platform O001 capture0 (smfc0)		1000 IRT playback
1010 Reserved 1011 autoref 1100 autoref+snoop1 1101 snoop1 1111 snoop2 1110 snoop2 1111 snoop2 1111 snoop2 1111 snoop2 1111 snoop2 1111 snoop2 source select for DS1/DS2 - Vx (video) plane (ch24) O000 ARM platform O001 capture0 (smfc0)		
1011 autoref 1100 autoref+snoop1 1101 autoref+snoop2 1110 snoop1 1111 snoop2 15–12 DP_ASYNC1_ SRC_SEL 0000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — 1001 IRT playback — 1001 IRT playback — 1000 IRT playback —		1001 Reserved
1011 autoref 1100 autoref+snoop1 1101 autoref+snoop2 1110 snoop1 1111 snoop2 15–12 DP_ASYNC1_ SRC_SEL 0000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — 1001 IRT playback — 1001 IRT playback — 1000 IRT playback —		
1100 autoref+snoop1 1101 autoref+snoop2 1110 snoop1 1111 snoop2		
1101 autoref+snoop2 1110 snoop1 1111 snoop2 15–12 DP_ASYNC1_ SRC_SEL 0000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		
1110 snoop1 1111 snoop2		·
15–12 DP_ASYNC1_ SRC_SEL 0000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback — 1111 snoop2 ARM platform 0001 (ch24) 0000 ARM platform 0001 capture0 (smfc0) — 0011 C encoding 0100 IC viewfinder 0101 IRT playback — 1000 IRT playback —		· ·
Source select for DS1/DS2 - Vx (video) plane (ch24) DP_ASYNC1_ SRC_SEL O000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		·
DP_ASYNC1_ SRC_SEL 0000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		·
0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —	DP_ASYNC1_	
— 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —	_	
— 0011 IC encoding 0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		
0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		0010 capture2 (smfc2)
0100 IC viewfinder 0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		0011 IC encoding
0101 IC playback 0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		
0110 IRT Encoding 0111 IRT viewfinder 1000 IRT playback —		
0111 IRT viewfinder 1000 IRT playback —		
1000 IRT playback —		
_		
1001 Reserved —		_
_		1001 Reserved
		_
1010 Reserved		1010 Reserved
1011 autoref		
1100 autoref+snoop1		
1101 autoref+snoop2		·
1110 snoop1		
1111 snoop2		
11–8 Source select for DS2 - MG (graphics) plane (ch29)		Source select for DS2 - MG (graphics) plane (ch29)
DP_ASYNCO_		2000 AFM days
SRC_SEL 0000 ARM platform	_	
0001 capture0 (smfc0) —		CaptureU (smfc0)
0010 capture2 (smfc2)		0010 capture2 (smfc2)
0011 IC encoding		
0100 IC viewfinder		0100 IC viewfinder

IPUx_FS_DISP_FLOW1 field descriptions (continued)

Field		Description
	0101	IC playback
	0110	IRT Encoding
	0111	IRT viewfinder
	1000	IRT playback
	1001	_
	1001	Reserved
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2
7–4 DP_SYNC1_	Source	e select for DS1/DS2 - Vx (video) plane (ch27)
SRC_SEL	0000	ARM platform
	0001	capture0 (smfc0)
		-
	0010	capture2 (smfc2)
	0011	— IC anadding
	0011	IC encoding IC viewfinder
	0100	IC playback
	0110	IRT Encoding
	0111	IRT viewfinder
	1000	IRT playback
	1000	
	1001	Reserved
		_
	1010	Reserved
		_
		_
		_
		_
		_
	1110	
	1110 1111	snoop1 snoop2
DP_SYNC0_		e select for DS2 - MG (graphics) plane (ch23)
SRC_SEL		
	0000	ARM platform
	0001	capture0 (smfc0)
	0010	— contured (cmfcd)
	0010	capture2 (smfc2)
	0011	IC encoding
	0100	IC viewfinder
	1	


IPUx_FS_DISP_FLOW1 field descriptions (continued)

Field		Description
	0101	IC playback
	0110	IRT Encoding
	0111	IRT viewfinder
	1000	IRT playback
		_
	1001	Reserved
		_
	1010	Reserved
		_
		_
		_
		_
		_
		_
	1110	snoop1
	1111	snoop2

37.5.37 FSU Displaying Flow 2 Register (IPUx_FS_DISP_FLOW2)

This register contains controls for IPU's tasks.

Address: Base address + B8h offset

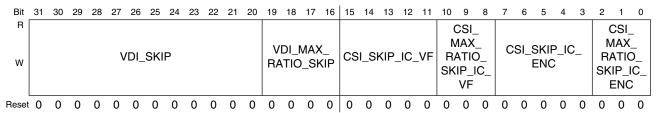
IPUx_FS_DISP_FLOW2 field descriptions

Field	Description		
31–20 Reserved	his read-only field is reserved and always has the value 0.		
19–16 DC2_ALT_SRC_ SEL	Source select for Alternate DS3 (ch41) 0000 ARM platform 0001 capture0 (smfc0) — 0010 capture2 (smfc2) — 0011 IC encoding 0100 IC viewfinder		

IPUx_FS_DISP_FLOW2 field descriptions (continued)

Field		Description
	0101	IC playback
	0110	IRT Encoding
	0111	IRT viewfinder
	1000	IRT playback
		_
	1001	Reserved
		_
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2
15–8	This re	ead-only field is reserved and always has the value 0.
Reserved		
7–4	Source	e select for alternate DS1/DS2 - Vx (video) plane (ch24)
DP_ASYNC1_ ALT_SRC_SEL	0000	ARM platform
	0001	capture0 (smfc0)
		<u> </u>
	0010	capture2 (smfc2)
		<u> </u>
	0011	IC encoding
	0100	IC viewfinder
	0101	IC playback
	0110	IRT Encoding
	0111	IRT viewfinder
	1000	IRT playback
		-
	1001	Reserved
		_
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2
DP_ASYNC0_ ALT_SRC_SEL		e select for alternate DS2 - MG (graphics) plane (ch29)
	0000	ARM platform
	0001	capture0 (smfc0)
	0010	capture2 (smfc2)
	0044	— IO annualing
	0011	IC encoding
	0100	IC viewfinder
	0101	IC playback

Table continues on the next page...


IPUx_FS_DISP_FLOW2 field descriptions (continued)

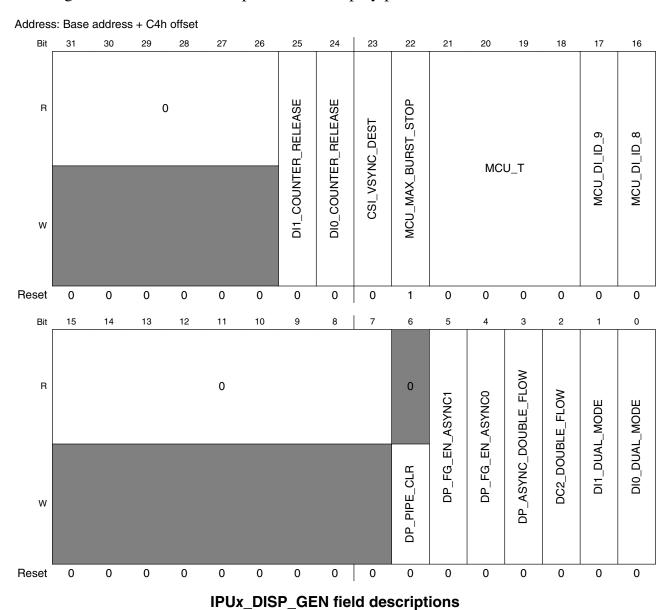
Field		Description
	0110	IRT Encoding
	0111	IRT viewfinder
	1000	IRT playback
		_
	1001	Reserved
		_
	1010	Reserved
	1011	autoref
	1100	autoref+snoop1
	1101	autoref+snoop2
	1110	snoop1
	1111	snoop2

37.5.38 SKIP Register (IPUx_SKIP)

This register controls the different frame skipping supported by the IPU.

Address: Base address + BCh offset

IPUx_SKIP field descriptions


Field	Description
31–20	VDI_SKIP
VDI_SKIP	These 12 bits define the skipping pattern of the frames send from the VDIC. The VDIC avoids reading fields from the memory if the output frame is skipped. Skipping is relevant only if the source to the VDIC is coming from the CSI. Skipping is done for a set of frames. The number of frames in a set is defined at VDI_MAX_RATIO_SKIP.
	when VDI_MAX_RATIO_SKIP = 1 => VDI_SKIP[1:0] is used; other bits are ignored
	when VDI_MAX_RATIO_SKIP = 2 => VDI_SKIP[2:0] are used; other bits are ignored
	when VDI_MAX_RATIO_SKIP = 11 => VDI_SKIP[11:0] are used;
19–16 VDI_MAX_ RATIO_SKIP	Maximum Ratio Skip for VDIC

IPUx_SKIP field descriptions (continued)

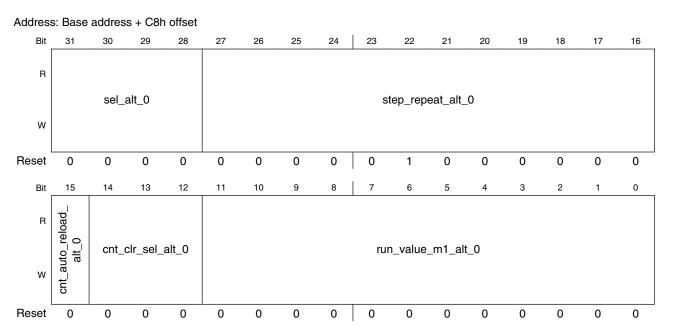
Field	Description	
	These bits define the number of frames in a skipping set. The maximum value of this bits is 11. When set to 0 the skipping is disabled.	
15–11	CSI SKIP IC_VF	
CSI_SKIP_IC_VF	These 5 bits define the skipping pattern of the frames send to the IC for view finder task from one of the CSIs as defined on the CSI_SEL and IC_INPUT bits Skipping is done for a set of frames. The number of frames in a set is defined at CSI_MAX_RATIO_SKIP_IC_VF.	
	when CSI_MAX_RATIO_SKIP_IC_VF = 1 => CSI_SKIP_IC_VF[1:0] are used; other bits are ignored	
	when CSI_MAX_RATIO_SKIP_IC_VF = 2 => CSI_SKIP_IC_VF[2:0] are used; other bits are ignored	
	when CSI_MAX_RATIO_SKIP_IC_VF =3 => CSI_SKIP_IC_VF[3:0] are used; other bits are ignored	
	when CSI_MAX_RATIO_SKIP_IC_VF = 4 => CSI_SKIP_IC_VF[4:0] are used;	
	Setting bit #n of CSI_SKIP_IC_VF means that the #n frame in the set is skipped.	
	For example: if CSI_MAX_RATIO_SKIP_IC_VF = 4 and CSI_SKIP_IC_VF = 11010	
	Frames #0 & Frame #2 will not be skipped as bit0 and bit2 are cleared	
	Frames #1 & Frame #3 will be skipped as bit1 and bit3 are set	
	bit #4 is ignored as CSI_MAX_RATIO_SKIP_IC_VF is set to 4	
10-8 CSI_MAX_ RATIO_SKIP_ IC_VF	CSI Maximum Ratio Skip for IC (view finder task)	
	These bits define the number of frames in a skipping set. The maximum value of this bits is 4. When set to 0 the skipping is disabled.	
7–3	CSI SKIP IC_ENC	
CSI_SKIP_IC_ ENC	These 5 bits define the skipping pattern of the frames send to the IC for encoding task from one of the CSIs as defined on the CSI_SEL and IC_INPUT bits Skipping is done for a set of frames. The number of frames in a set is defined at CSI_MAX_RATIO_SKIP_IC_ENC.	
	when CSI_MAX_RATIO_SKIP_IC_ENC = 1 => CSI_SKIP_IC_ENC[1:0] are used; other bits are ignored	
	when CSI_MAX_RATIO_SKIP_IC_ENC = 2 => CSI_SKIP_IC_ENC[2:0] are used; other bits are ignored	
	when CSI_MAX_RATIO_SKIP_IC_ENC = 3 => CSI_SKIP_IC_ENC[3:0] are used; other bits are ignored	
	when CSI_MAX_RATIO_SKIP_IC_ENC = 4 => CSI_SKIP_IC_ENC[4:0] are used;	
	Setting bit #n of CSI_SKIP_IC_ENC means that the #n frame in the set is skipped.	
	For example: if CSI_MAX_RATIO_SKIP_IC_ENC = 4 and CSI_SKIP_IC_ENC = 11010	
	Frames #0 & Frame #2 will not be skipped as bit0 and bit2 are cleared	
	Frames #1 & Frame #3 will be skipped as bit1 and bit3 are set	
	bit #4 is ignored as CSI_MAX_RATIO_SKIP_IC_ENC is set to 4	
CSI_MAX_	CSI Maximum Ratio Skip for IC (encoding task)	
RATIO_SKIP_ IC_ENC	These bits define the number of frames in a skipping set. The maximum value of this bits is 4. When set to 0 the skipping is disabled.	

37.5.39 Display General Control Register (IPUx_DISP_GEN)

This register controls various aspects of the display port.

	·
Field	Description
31–26 Reserved	This read-only field is reserved and always has the value 0.

IPUx_DISP_GEN field descriptions (continued)


Field	Description
25	DI1 Counter release
DI1_COUNTER_ RELEASE	By default the DI0 counters responsible for waveform generation for sync flow are frozen. For the first attempt to use the DI in sync flow the user should set this bit
	1 counter is released and running
	0 counter is cleared and stopped
24	DI1 Counter release
DI0_COUNTER_ RELEASE	By default the DI0 counters responsible for waveform generation for sync flow are frozen. For the first attempt to use the DI in sync flow the user should set this bit
	1 counter is released and running
	0 counter is cleared and stopped
23	CSI_VSYNC destination
CSI_VSYNC_ DEST	This bit defines the destination of the VSYNC coming from the CSI's
	1 csi1_vsync is connected to DI0; csi0_vsync is connected to DI1
	0 csi0_vsync is connected to DI0; csi1_vsync is connected to DI1
22 MCU_MAX_ BURST_STOP	ARM platform Maximal burst This bit limit the maximal unspecified length burst.
	1 The maximum unspecified burst length is 8-beat
	0 The unspecified burst length is unlimited
21–18 MCU_T	The address space for accesses through the AHB-lite slave port is MB and it is split internally (with 32MB resolution) according to bits [28:25] of the address. Using the following notation:
	Address = (ID[31:29], MSB[28:25], LSB[24:0])
	The address is used as follows ("T" is a configurable integer between 0 and 13):
	MSB <t: access="" address="(MSB," an="" device,="" external="" lsb)<="" td="" to="" with=""></t:>
	T<=MSB<14: access to an external device, with address (MSB-T, LSB)
17	MCU_DI_ID_9 - DI ID via DC channel 9.
MCU_DI_ID_9	This bit defines the DI that the ARM platform DC's access via channel #9
	ARM platform accesses DC's channel #9 via DI1.
	0 ARM platform accesses DC's channel #9 via DI0.
16	MCU_DI_ID_8 - DI ID via DC channel 8.
MCU_DI_ID_8	This bit defines the DI that the ARM platform DC's access via channel #8
	ARM platform accesses DC's channel #8 via DI1.
	0 ARM platform accesses DC's channel #8 via DI0.
15–7 Reserved	This read-only field is reserved and always has the value 0.
6	DP Pipe Clear
DP_PIPE_CLR	This bit clears the internal pipe of the DP. The user may use this bit in case of an error condition
	This is a self clear bit

IPUx_DISP_GEN field descriptions (continued)

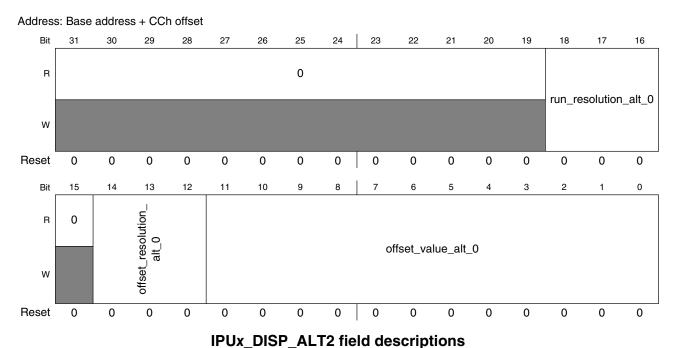
Field	Description
	1 Clear the internal pipe of the DP
	0 Idle - does nothing
5	FG_EN - partial plane Enable for async flow 1.
DP_FG_EN_ ASYNC1	This bit enables the partial plane channel.
	1 partial plane channel is enabled.
	0 partial plane channel is disabled.
4	FG_EN - partial plane Enable for async flow 0.
DP_FG_EN_ ASYNC0	This bit enables the partial plane channel.
	1 partial plane channel is enabled.
	0 partial plane channel is disabled.
3 DP_ASYNC_ DOUBLE FLOW	DP Async Double Flow. This bit define how many async flows are currently handles via DP channel (ch24+29)
DOODLL_I LOW	1 2 flows are handled via DP
	0 single flow is handled via DP
2 DC2_DOUBLE_	DC2 Double Flow. This bit define how many flows are currently handles via DC2 channel (ch41)
FLOW	1 2 flows are handled via DC2
	0 single flow is handled via DC2
1 DI1_DUAL_	DI1 dual mode control
MODE	1 DI1 operates in dual mode
	0 DI1 is not in dual mode
0 DI0_DUAL_	DI0 dual mode control
MODE	1 DI0 operates in dual mode
	0 DI0 is not in dual mode

37.5.40 Display Alternate Flow Control Register 1 (IPUx_DISP_ALT1)

This register controls various aspects of the display port.

IPUx_DISP_ALT1 field descriptions

Field	Description
31–28 sel_alt_0	Select alternative parameters instead of DI Sync Wave Gen counter#. The DI is selected according to DP's synchronous channel destination 0000-disable
	0001 instead of counter 1
	0010 instead of counter 2
	1000 instead of counter 8
27–16 step_repeat_alt_ 0	This fields defines the amount of repetitions that will be performed by the counter
15	Counter auto reload mode
cnt_auto_reload_	The counter will automatically be reloaded forever, ignoring the value of the step_repeat_alt_0 field
alt_0	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the step_repeat_alt_0 field The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the step_repeat_alt_0 field
14–12	Counter Clear select
cnt_clr_sel_alt_0	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.


Table continues on the next page...

IPUx_DISP_ALT1 field descriptions (continued)

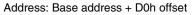
Field	Description
	010 Reserved
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	_
	110 External VSYNC
	111 Counter is always on.
run_value_m1_	Counter pre defined value
alt_0	This fields defines the counter pre defines value. real value- 1

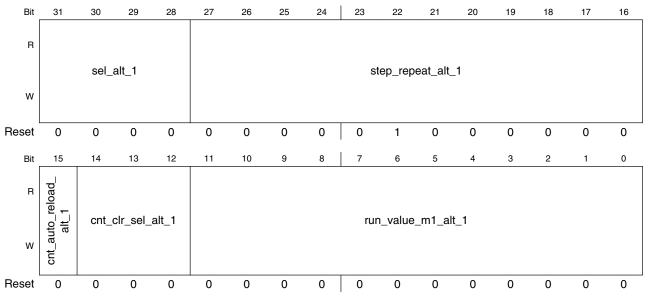
37.5.41 Display Alternate Flow Control Register 2 (IPUx_DISP_ALT2)

This register controls various aspects of the display port.

Field Description

31–19 This read-only field is reserved and always has the value 0.


Reserved


IPUx_DISP_ALT2 field descriptions (continued)

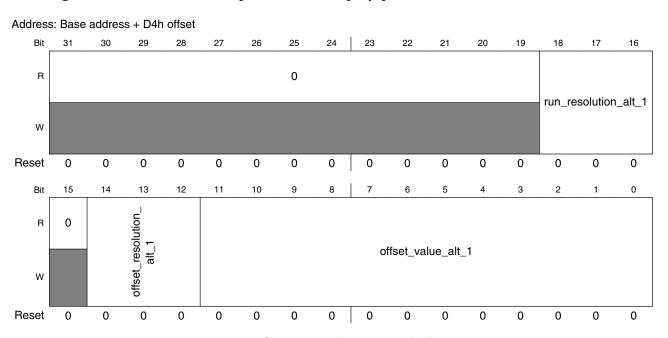
Field	Description
18–16	Counter Run Resolution
run_resolution_ alt_0	This field defines the trigger causing the counter to increment.
	The counter run resolution should be defined in the same way as in original DI's counter#
15	This read-only field is reserved and always has the value 0.
Reserved	
14–12	Counter offset Resolution
offset_resolution_ alt_0	This field defines the trigger causing the offset counter to increment
	The counter offset resolution should be defined in the same way as in original DI's counter#
	Counter offset value
0	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by

37.5.42 Display Alternate Flow Control Register 3 (IPUx_DISP_ALT3)

This register controls various aspects of the display port.

IPUx_DISP_ALT3 field descriptions

Field	Description
	Select alternative parameters instead of DI Sync Wave Gen counter#. The DI is selected according to DP's synchronous channel destination

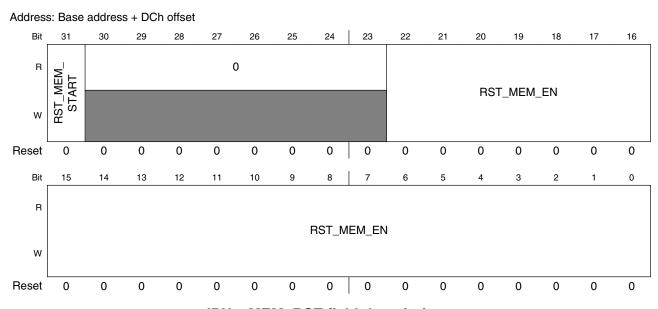

Table continues on the next page...

IPUx_DISP_ALT3 field descriptions (continued)

Field	Description
	0000 disable
	0001 instead of counter 1
	0010 instead of counter 2
	1000 instead of counter 8
27–16 step_repeat_alt_ 1	This fields defines the amount of repetitions that will be performed by the counter
15	Counter auto reload mode
cnt_auto_reload_ alt_1	The counter will automatically be reloaded forever, ignoring the value of the step_repeat_alt_0 field
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the step_repeat_alt_0 field
14–12	Counter Clear select
cnt_clr_sel_alt_1	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 Reserved
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	_
	110 External VSYNC
	111 Counter is always on.
run_value_m1_	Counter pre defined value
alt_1	This fields defines the counter pre defines value. real value- 1

37.5.43 Display Alternate Flow Control Register 4 (IPUx_DISP_ALT4)

This register controls various aspects of the display port.



IPUx_DISP_ALT4 field descriptions

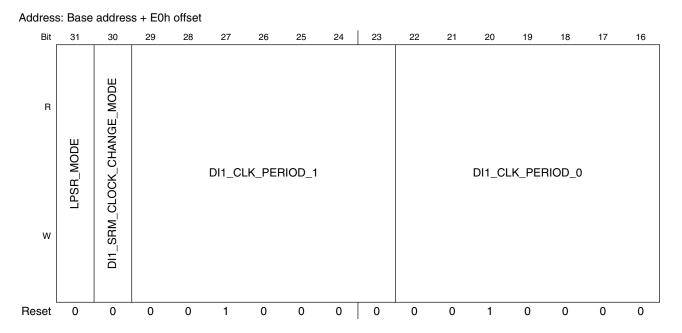
Field	Description
31–19 Reserved	This read-only field is reserved and always has the value 0.
18–16	Counter Run Resolution
run_resolution_ alt_1	This field defines the trigger causing the counter to increment.
_	The counter run resolution should be defined in the same way as in original DI's counter#
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	Counter offset Resolution
offset_resolution_ alt_1	This field defines the trigger causing the offset counter to increment
	The counter offset resolution should be defined in the same way as in original DI's counter#
offset_value_alt_	Counter offset value
1	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by

37.5.44 Memory Reset Control Register (IPUx_MEM_RST)

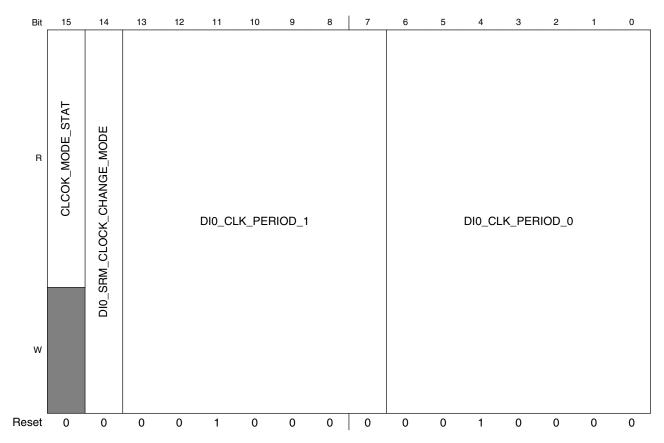
This register controls the memory reset mechanism. IPU has a hardware mechanism for clearing the content of the internal memories. This allows the user to clear the content of or more of the internal memories without the need to perform write accesses to the memories.

IPUx_MEM_RST field descriptions

Field	Description
31 RST_MEM_ START	Memory Reset Start
	Writing one to this bit activate the memory reset mechanism. The memories that their corresponding RST_MEM_EN bit is set will be cleared. When the memory reset mechanism completes the memory clearing procedure this bit will be automatically cleared.
	1 The memory reset mechanism is activated and busy
	0 Idle, the memory reset mechanism is not working.
30–23 Reserved	This read-only field is reserved and always has the value 0.
RST_MEM_EN	Reset Memory Enable
	Each bit on this field enables the memory reset mechanism for a specific memory. The user should set the relevant bits for the memories that need to be cleared. Below is the list of memories and their corresponding bit.
	srm = rst_mem_en[0]
	alpha = rst_mem_en[1]
	cpmem = rst_mem_en[2]


Chapter 37 Image Processing Unit (IPU)

IPUx_MEM_RST field descriptions (continued)


Field	Description
	tpm = rst_mem_en[3]
	mpm = rst_mem_en[4]
	bm = rst_mem_en[5]
	rm = rst_mem_en[6]
	dstm = rst_mem_en[7]
	dsom = rst_mem_en[8]
	lut0 = rst_mem_en[9]
	lut1 = rst_mem_en[10]
	ram_smfc = rst_mem_en[11]
	vdi_fifo2 = rst_mem_en[12]
	vdi_fifo3 = rst_mem_en[13]
	icb = rst_mem_en[14]
	vdi_fifo1 = rst_mem_en[15]
	dc_template = rst_mem_en[20]
	dmfc_rd = rst_mem_en[21]
	dmfc_wr = rst_mem_en[22]

37.5.45 Power Modes Control Register (IPUx_PM)

This register controls the automatic transitions of the IPU between different power modes of the SoC and handles the clock change modes.

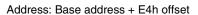
Chapter 37 Image Processing Unit (IPU)

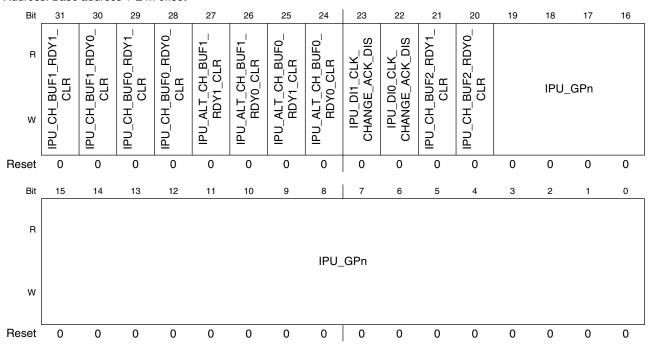
IPUx_PM field descriptions

Field	Description
31	LPSR Mode
LPSR_MODE	This bit indicates that the next attempt for entering low power mode is an attempt to move to LPST mode. Setting this bit by the user is essential in order to assure proper response of the IPU to the assertion of the stop request from the CCM.
	1 Next low power mode will be LPSR
	0 Next low power mode is not LPSR
30	SRM clock change mode
DI1_SRM_ CLOCK_ CHANGE MODE	When the clock is going to be changed to any new ratio other then 1:1, 1:2. 1:4. The user needs to prepare an alternate set of DI setting in the SRM.
_	This bit enable this mode. This bit is self cleared.
	1 SRM clock change mode is enabled; the next clock change will be done by updating the DI settings from the SRM
	0 SRM clock change mode is disabled.
29–23	DI1_CLK period option 1.
DI1_CLK_ PERIOD_1	This parameter defines the period of the clock that the DI1 works with. This parameter contains integer part (bits [6:4]) and fractional part (bits [3:0]).
	Setting this value to 1.0 (default) means that the DI1 works on the fastest possible clock.
	Setting a value smaller than 1.0 is not allowed.

Table continues on the next page...

IPUx_PM field descriptions (continued)


Field	Description
	The value to be programmed to the DI1_CLK_PERIOD_1 field is equal to:
	Fast_freq/Target_freq
	Where:
	Target_freq = The frequency that the DI clock works with
	Fast_freq = fastest possible clock that the DI can work with
22–16	DI1_CLK period option 0.
DI1_CLK_ PERIOD_0	This parameter defines the period of the clock that the DI1 works with. This parameter contains integer part (bits [6:4]) and fractional part (bits [3:0]).
	Setting this value to 1.0 (default) means that the DI1 works on the fastest possible clock.
	Setting a value smaller than 1.0 is not allowed.
	The value to be programmed to the DI1_CLK_PERIOD_1 field is equal to:
	Fast_freq/Target_freq
	Where:
	Target_freq = The frequency that the DI clock works with
	Fast_freq = fastest possible clock that the DI can work with
15	Clock mode status
CLCOK_MODE_ STAT	This is a read only bit indicating what is the current clock mode
	1 current clock mode is 1
	0 current clock mode is 0
14 DI0_SRM_	SRM clock change mode
CLOCK_ CHANGE_MODE	When the clock is going to be changed to any new ratio other then 1:1, 1:2. 1:4. The user needs to prepare an alternate set of DI setting in the SRM.
	This bit enable this mode. This bit is self cleared.
	1 SRM clock change mode is enabled; the next clock change will be done by updating the DI settings from the SRM
	0 SRM clock change mode is disabled.
13–7	DI0_CLK period option 1.
DI0_CLK_ PERIOD_1	This parameter defines the period of the clock that the DI0 works with. This parameter contains integer part (bits [6:4]) and fractional part (bits [3:0]).
	Setting this value to 1.0 (default) means that the DI0 works on the fastest possible clock.
	Setting a value smaller than 1.0 is not allowed.
	The value to be programmed to the DI0_CLK_PERIOD_1 field is equal to:
	Fast_freq/Target_freq
	Where:
	Target_freq = The frequency that the DI clock works with
	Fast_freq = fastest possible clock that the DI can work with
DI0_CLK_	DI0_CLK period option 0.
PERIOD_0	This parameter defines the period of the clock that the DI0 works with. This parameter contains integer part (bits [6:4]) and fractional part (bits [3:0]).


IPUx_PM field descriptions (continued)

Field	Description
	Setting this value to 1.0 (default) means that the DIO works on the fastest possible clock.
	Setting a value smaller than 1.0 is not allowed.
	The value to be programmed to the DI0_CLK_PERIOD_1 field is equal to:
	Fast_freq/Target_freq
	Where:
	Target_freq = The frequency that the DI clock works with
	Fast_freq = fastest possible clock that the DI can work with

37.5.46 General Purpose Register (IPUx_GPR)

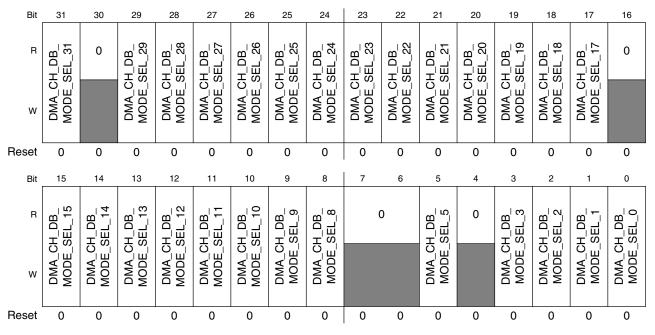
The register contains general purpose bits.

IPUx_GPR field descriptions

Field	Description
31	This bit defines the IPU_CH_BUF1_RDY1 properties. This register can be a write one to clear OR write
IPU_CH_BUF1_	one to set.
RDY1_CLR	

IPUx_GPR field descriptions (continued)

Field	Description
	1 writing one to a bit of this register clears this bit; IPU_CH_BUF1_RDY1 is w1c register
	0 writing one to a bit of this register sets this bit IPU_CH_BUF1_RDY1 is w1s register
30 IPU_CH_BUF1_ RDY0_CLR	This bit defines the IPU_CH_BUF1_RDY0 properties. This register can be a write one to clear OR write one to set.
	writing one to a bit of this register clears this bit; IPU_CH_BUF1_RDY0 is w1c register writing one to a bit of this register sets this bit IPU_CH_BUF1_RDY0 is w1s register
29 IPU_CH_BUF0_ RDY1_CLR	This bit defines the IPU_CH_BUF0_RDY1 properties. This register can be a write one to clear OR write one to set.
	writing one to a bit of this register clears this bit; IPU_CH_BUF0_RDY1 is w1c register writing one to a bit of this register sets this bit IPU_CH_BUF0_RDY1 is w1s register
28 IPU_CH_BUF0_ RDY0_CLR	This bit defines the IPU_CH_BUF0_RDY0 properties. This register can be a write one to clear OR write one to set.
TID TO_OLIT	writing one to a bit of this register clears this bit; IPU_CH_BUF0_RDY0 is w1c register writing one to a bit of this register sets this bit IPU_CH_BUF0_RDY0 is w1s register
27 IPU_ALT_CH_ BUF1_RDY1_	This bit defines the IPU_ALT_CH_BUF1_RDY1 properties. This register can be a write one to clear OR write one to set.
CLR	writing one to a bit of this register clears this bit; IPU_ALT_CH_BUF1_RDY1 is w1c register writing one to a bit of this register sets this bit IPU_ALT_CH_BUF1_RDY1 is w1s register
26 IPU_ALT_CH_ BUF1_RDY0_	This bit defines the IPU_ALT_CH_BUF1_RDY0 properties. This register can be a write one to clear OR write one to set.
CLR	writing one to a bit of this register clears this bit; IPU_ALT_CH_BUF1_RDY0 is w1c register writing one to a bit of this register sets this bit IPU_ALT_CH_BUF1_RDY0 is w1s register
25 IPU_ALT_CH_ BUF0_RDY1_	This bit defines the IPU_ALT_CH_BUF0_RDY1 properties. This register can be a write one to clear OR write one to set.
CLR	writing one to a bit of this register clears this bit; IPU_ALT_CH_BUF0_RDY1 is w1c register writing one to a bit of this register sets this bit IPU_ALT_CH_BUF0_RDY1 is w1s register
24 IPU_ALT_CH_	This bit defines the IPU_ALT_CH_BUF0_RDY0 properties. This register can be a write one to clear OR write one to set.
BUF0_RDY0_ CLR	writing one to a bit of this register clears this bit; IPU_ALT_CH_BUF0_RDY0 is w1c register writing one to a bit of this register sets this bit IPU_ALT_CH_BUF0_RDY0 is w1s register
23 IPU_DI1_CLK_	Disable DI1's clock change mechanism.
CHANGE_ACK_ DIS	 clock change mechanism is disabled. DI automatically acknowledges a clock change request clock change mechanism is disabled. DI performs the clock change procedure
22 IPU_DI0_CLK_	Disable DI0's clock change mechanism.
CHANGE_ACK_ DIS	1 clock change mechanism is disabled. DI automatically acknowledges a clock change request 0 clock change mechanism is disabled. DI performs the clock change procedure
21 IPU_CH_BUF2_ RDY1_CLR	This bit defines the IPU_CH_BUF2_RDY1 properties. This register can be a write one to clear OR write one to set.
	writing one to a bit of this register clears this bit; IPU_CH_BUF2_RDY1 is w1c register
	0 writing one to a bit of this register sets this bit IPU_CH_BUF2_RDY1 is w1s register


IPUx_GPR field descriptions (continued)

Field	Description
20	This bit defines the IPU_CH_BUF2_RDY0 properties. This register can be a write one to clear OR write
IPU_CH_BUF2_	one to set.
RDY0_CLR	
	1 writing one to a bit of this register clears this bit; IPU_CH_BUF2_RDY0 is w1c register
	0 writing one to a bit of this register sets this bit IPU_CH_BUF2_RDY0 is w1s register
IPU_GPn	IPU General Purpose bit.
	n Indicates the corresponding DMA channel number.
	This bits are general Read/Write bits, reserved for future use

37.5.47 Channel Double Buffer Mode Select 0 Register (IPUx_CH_DB_MODE_SEL0)

The register contains double buffer mode select control information for 32 IPU's DMA channels.

IPUx_CH_DB_MODE_SEL0 field descriptions

Field	Description
_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_31	n Indicates the corresponding DMA channel number.

Table continues on the next page...

IPUx_CH_DB_MODE_SEL0 field descriptions (continued)

Field	Description
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
30 Reserved	This read-only field is reserved and always has the value 0.
	Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
29 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_29	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
28	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_28	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
27	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_27	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
26 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_26	 n Indicates the corresponding DMA channel number. Double buffer is not used for this channel.
	Double buffer is not used for this channel. Double buffer is used for this channel.
25	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_25	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
24	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_24	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
23	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_23	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
22	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_22	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
	•

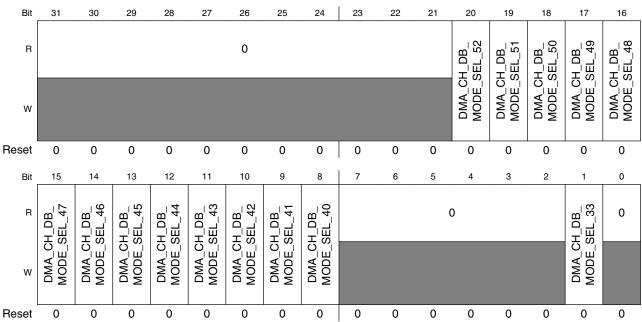
IPUx_CH_DB_MODE_SEL0 field descriptions (continued)

Field	Description
21	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_21	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
20	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_20	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
19	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_19	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
18	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_18	n Indicates the corresponding DMA channel number.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
17 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_17	n Indicates the corresponding DMA channel number.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
15	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_15	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
14	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_14	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
13	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_13	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
12	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_12	n Indicates the corresponding DMA channel number.

Table continues on the next page...

IPUx_CH_DB_MODE_SEL0 field descriptions (continued)

Field	Description
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
11	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_11	n Indicates the corresponding DMA channel number.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
10 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_10	n Indicates the corresponding DMA channel number.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
9 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_9	n Indicates the corresponding DMA channel number.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
8 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_8	n Indicates the corresponding DMA channel number.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
7–6 Reserved	This read-only field is reserved and always has the value 0.
110001100	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
5	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_5	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
4 Reserved	This read-only field is reserved and always has the value 0.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
3 DMA_CH_DB_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
MODE_SEL_3	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
2 DMA_CH_DB	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_2	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.


IPUx_CH_DB_MODE_SEL0 field descriptions (continued)

Field	Description
1	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_1	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
0	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_0	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.

37.5.48 Channel Double Buffer Mode Select 1 Register (IPUx CH DB MODE SEL1)

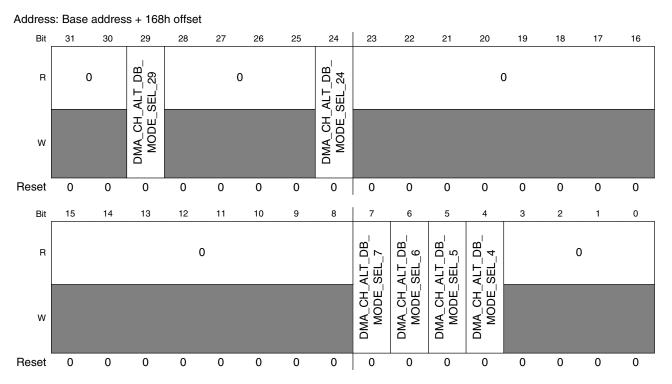
The register contains double buffer mode select control information for 32 IPU's DMA channels.

IPUx_CH_DB_MODE_SEL1 field descriptions

Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	

Table continues on the next page...

IPUx_CH_DB_MODE_SEL1 field descriptions (continued)


Double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this ch	Field	Description
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer		0 Double buffer is not used for this channel.
DMA_CH_DB_ MODE_SEL_52 n Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 2 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 3 n Indicates the corresponding DMA channel number. 0 Double buffer is used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Double buffer is used for this channel. 4 Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 2 Double buffer is not used for this channel. 3 Double buffer is used for this channel. 4 Indicates the corresponding DMA channel number. 0 Double buffer is used for this channel. 2 Double buffer is not used for this channel. 3 Indicates the corresponding DMA channel number. 0 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Indicates the corresponding DMA channel number. 0 Double buffer is used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Indicates the corresponding DMA channel number. 0 Double buffer is used for this channel. 2 Double buffer is not used for this channel. 3 Double buffer is used for this channel. 4 Double buffer is used for this channel. 5 DMA_CH_DB_MODE_SEL_46 6 DOUBLE Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 6 Double buffer is not used for this channel. 7 Double buffer is not used for this channel. 8 Double buffer is not used for this channel. 9 Double buffer is not used for this channel. 1 Double buffer is used for thi		1 Double buffer is used for this channel.
MODE_SEL_52 Double buffer is not used for this channel.	-	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
1 Double buffer is used for this channel. 19 10MA_CH_DB_MODE_SEL_51 1 Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for		n Indicates the corresponding DMA channel number.
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.		
DMA_CH_DB_MODE_SEL_51 Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Double buffer is used for this channel. 4 Double buffer is used for this channel. 5 Double buffer is used for this channel. 6 DMA_CH_DB_MODE_SEL_48 7 Indicates the corresponding DMA channel number. 9 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Double buffer is used for this channel. 4 Double buffer is used for this channel. 5 Double buffer is used for this channel. 6 Double buffer is used for this channel. 7 Double buffer is used for this channel. 8 Double buffer is used for this channel. 9 Double buffer is used for this channel. 1 Double buffer is used for		1 Double buffer is used for this channel.
MODE_SEL_51 0 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Double buffer is used for this channel. 4 Double buffer is used for this channel. 5 Double buffer is used for this channel. 6 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is not used for this channel. 2 Double buffer is used for this channel. 3 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 2 Double buffer is used for this channel. 3 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 3 Double buffer is not used for this channel. 3 Double buffer is not used for this channel. 3 Double buffer is not used for this channel. 4 Double buffer is not used for this channel. 5 Double buffer is not used for this channel. 6 Double buffer is not used for this channel. 7 Double buffer is not used for this channel. 8 Double buffer is used for this channel. 9 Double buffer is used for this channel. 1 Double buffer is used for this channel.		Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
1 Double buffer is used for this channel. 18 DMA_CH_DB_MODE_SEL_50 10 Double buffer is not used for this channel. 17 DMA_CH_DB_MODE_SEL_49 18 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 17 DMA_CH_DB_MODE_SEL_49 18 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 19 Double buffer is not used for this channel. 10 Double buffer is not used for this channel. 10 Double buffer is not used for this channel. 11 Double buffer is used for this channel. 12 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 10 Double buffer is used for this channel. 11 Double buffer is not used for this channel. 12 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 13 DMA_CH_DB_MODE_SEL_47 14 DMA_CH_DB_MODE_SEL_46 14 DMA_CH_DB_MODE_SEL_46 15 Double buffer is not used for this channel. 16 Double buffer is used for this channel. 17 Double buffer is not used for this channel. 18 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 19 Double buffer is not used for this channel. 10 Double buffer is not used for this channel. 11 Double buffer is not used for this channel. 12 Double buffer is not used for this channel. 13 DMA_CH_DB_MODE_SEL_45 14 Double buffer is not used for this channel. 15 Double buffer is not used for this channel. 16 Double buffer is not used for this channel. 17 Double buffer is not used for this channel. 18 Double buffer is not used for this channel. 19 Double buffer is used for this channel. 20 Double buffer is not used for this channel. 20 Double buffer is used for this channel. 20 Double buffer is not used for this channel. 21 Double buffer is used for this channel. 22 Double buffer is used for this channel. 23 DMA_CH_DB_MODE_SEL_45 24 Double buffer is not used for this channel. 25 Double buffer is used for this channel. 26 Double buffer is used for this channel. 27 Double bu		n Indicates the corresponding DMA channel number.
18 DNA_CH_DB_MODE_SEL_50 Nobelege buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 2 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 2 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 3 DMA_CH_DB_MODE_SEL_45 4 Double Buffer is not used for this channel. 5 Double Buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is not used for this channel. 2 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel.		
DMA_CH_DB_MODE_SEL_50 Double buffer is not used for this channel.		Double buffer is used for this channel.
MODE_SEL_50 O Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. O Double buffer is not used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. I Double buffer is not used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer is not used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel.	_	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
1 Double buffer is used for this channel. 17 DMA_CH_DB_MODE_SEL_49 0 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel.		n Indicates the corresponding DMA channel number.
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is not used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double buffer is not used for this channel.		
DMA_CH_DB_MODE_SEL_49 n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel number. Double buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel number. Double buffer is used for this channel. Double buffer is not used for this channel.		Double buffer is used for this channel.
MODE_SEL_49 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 15 DMA_CH_DB_MODE_SEL_47 10 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 2 Double buffer is not used for this channel. 3 DMA_CH_DB_MODE_SEL_46 13 DMA_CH_DB_MODE_SEL_45 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 2 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 3 DMA_CH_DB_MODE_SEL_45 O Double buffer is not used for this channel number. 0 Double buffer is used for this channel number. 0 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is not used for this channel.		Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
1 Double buffer is used for this channel. 16 DMA_CH_DB_MODE_SEL_48 1 Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer is not used for this channel number. 0 Double buffer is not used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel.		
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is used for this channel. Double buffer is not used for this channel number. Double buffer is not used for this channel.		
DMA_CH_DB_ MODE_SEL_48 n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel number. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel.		1 Double buffer is used for this channel.
MODE_SEL_48 Mode_Sel_48 Mode_Sel_48 Mode_Select This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.	-	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel.		n Indicates the corresponding DMA channel number.
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. DMA_CH_DB_MODE_SEL_47 Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is not used for this channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel.		
DMA_CH_DB_MODE_SEL_47 n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel number. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel.		1 Double buffer is used for this channel.
MODE_SEL_47 Mindcates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. In Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. MODE_SEL_45 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel.		Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
1 Double buffer is used for this channel. 14 DMA_CH_DB_ MODE_SEL_46 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. 1 Double buffer is used for this channel. 1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 1 Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.		n Indicates the corresponding DMA channel number.
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.		
DMA_CH_DB_ MODE_SEL_46 n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double buffer Mode Select. This bit indicates if a double buffer is used for this channel.		1 Double buffer is used for this channel.
O Double buffer is not used for this channel. 1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.	DMA_CH_DB_	
1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. DMA_CH_DB_ MODE_SEL_45 n Indicates the corresponding DMA channel number. Double buffer is not used for this channel. Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.	MODE_SEL_46	
DMA_CH_DB_ MODE_SEL_45 n Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.		
DMA_CH_DB_ MODE_SEL_45 n Indicates the corresponding DMA channel number. 0 Double buffer is not used for this channel. 1 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.	13	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
 Double buffer is used for this channel. Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel. 	DMA_CH_DB_	
Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.		0 Double buffer is not used for this channel.
		1 Double buffer is used for this channel.
	12	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_44 n Indicates the corresponding DMA channel number.	DMA_CH_DB_	

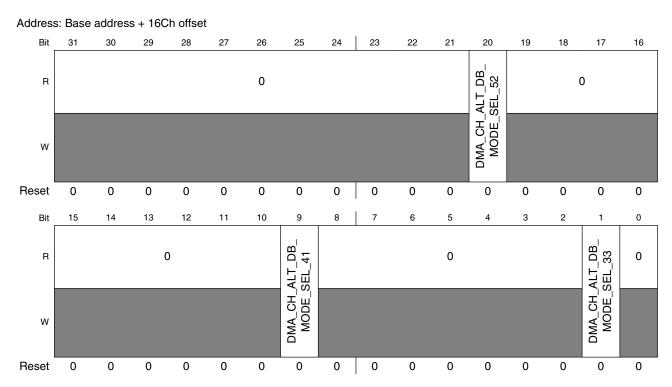
IPUx_CH_DB_MODE_SEL1 field descriptions (continued)

Field	Description
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
11	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_43	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
10	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_42	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
9	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_41	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
8	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_40	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
1	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_DB_ MODE_SEL_33	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.

37.5.49 Alternate Channel Double Buffer Mode Select 0 Register (IPUx_ALT_CH_DB_MODE_SEL0)

The register contains double buffer mode select control information for 32 IPU's DMA channels.

IPUx_ALT_CH_DB_MODE_SEL0 field descriptions


Field	Description
31–30	This read-only field is reserved and always has the value 0.
Reserved	Double buffer is not used for this channel.
	Double buffer is not used for this channel.
29	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_	n Indicates the corresponding DMA channel number.
SEL_29	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
28–25	This read-only field is reserved and always has the value 0.
Reserved	
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.

IPUx_ALT_CH_DB_MODE_SEL0 field descriptions (continued)

Field	Description
24	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_ SEL_24	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
23–8 Reserved	This read-only field is reserved and always has the value 0.
	O Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
7 DMA_CH_ALT_ DB_MODE_ SEL_7	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
6	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_	n Indicates the corresponding DMA channel number.
SEL_6	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
5	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_ SEL_5	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
4 DMA_CH_ALT_ DB_MODE_ SEL_4	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
	n Indicates the corresponding DMA channel number.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
Reserved	This read-only field is reserved and always has the value 0.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.

37.5.50 Alternate Channel Double Buffer Mode Select1 Register (IPUx_ALT_CH_DB_MODE_SEL1)

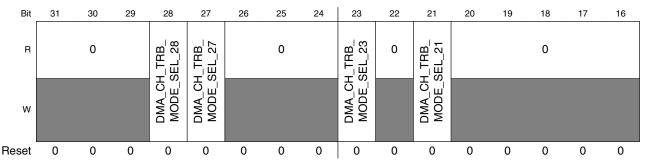
The register contains double buffer mode select control information for 32 IPU's DMA channels.

IPUx_ALT_CH_DB_MODE_SEL1 field descriptions

Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
20	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_	n Indicates the corresponding DMA channel number.
SEL_52	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
19–10	This read-only field is reserved and always has the value 0.
Reserved	
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.

IPUx_ALT_CH_DB_MODE_SEL1 field descriptions (continued)

Field	Description
9	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_	n Indicates the corresponding DMA channel number.
SEL_41	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
8–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
1	Double Buffer Mode Select. This bit indicates if a double buffer is used for this channel.
DMA_CH_ALT_ DB_MODE_	n Indicates the corresponding DMA channel number.
SEL_33	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.
0 Reserved	This read-only field is reserved and always has the value 0.
ricserveu	0 Double buffer is not used for this channel.
	1 Double buffer is used for this channel.


37.5.51 Alternate Channel Triple Buffer Mode Select 0 Register (IPUx ALT CH TRB MODE SEL0)

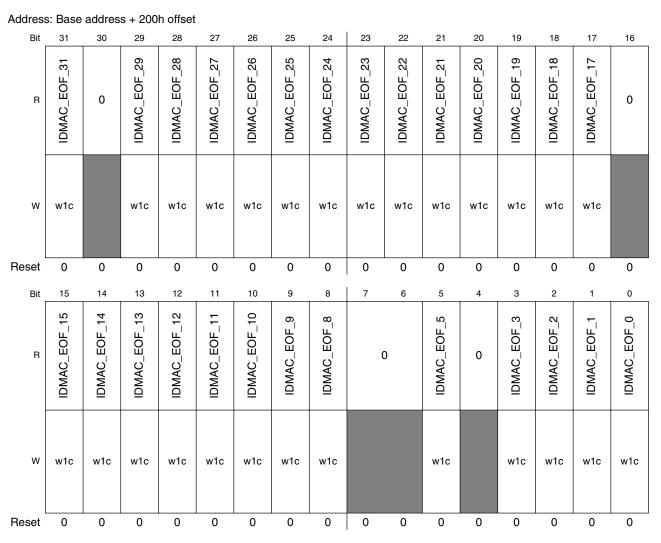
The register contains triple buffer mode select control information for 32 IPU's DMA channels.


When the channel is configured for triple buffer mode. The double buffer mode settings configured on the corresponding DB_MODE_SEL bit are overridden.

- Hide VPU_SUB_FRAME_SYNC for all versions
- Show VPU_SUB_FRAME_SYNC for IPUv3H version.
- The table below tagged with other settings (like IPU3M_only) should be hidden in IPUv3H version.
- This requires some sophisticated conditional tag settings

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_ALT_CH_TRB_MODE_SEL0 field descriptions


Field	Description
31–29	This read-only field is reserved and always has the value 0.
Reserved	Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
28	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
DMA_CH_TRB_ MODE_SEL_28	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
27	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
DMA_CH_TRB_ MODE_SEL_27	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
26–24 Reserved	This read-only field is reserved and always has the value 0.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
23 DMA_CH_TRB_	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
MODE_SEL_23	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
22 Reserved	This read-only field is reserved and always has the value 0.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
DMA_CH_TRB_	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel. n Indicates the corresponding DMA channel number.
MODE_SEL_21	
	0 Triple buffer is not used for this channel.
00.11	1 Triple buffer is used for this channel.
20–14 Reserved	This read-only field is reserved and always has the value 0.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.

IPUx_ALT_CH_TRB_MODE_SEL0 field descriptions (continued)

Field	Description
13	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
DMA_CH_TRB_ MODE_SEL_13	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
12–11 Reserved	This read-only field is reserved and always has the value 0.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
10	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
DMA_CH_TRB_ MODE_SEL_10	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
9	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
DMA_CH_TRB_ MODE_SEL_9	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
8	Triple Buffer Mode Select. This bit indicates if a triple buffer is used for this channel.
DMA_CH_TRB_ MODE_SEL_8	n Indicates the corresponding DMA channel number.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.
Reserved	This read-only field is reserved and always has the value 0.
	0 Triple buffer is not used for this channel.
	1 Triple buffer is used for this channel.

37.5.52 Interrupt Status Register 1 (IPUx_INT_STAT_1)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of EOF (end of frame) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_STAT_1 field descriptions

Field	Description
	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_31	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_1 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
29 IDMAC_EOF_29	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
.5	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
28	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_28	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
27	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_27	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
26	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
25	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
24	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_24	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
23 IDMAC_EOF_23	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
22	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_22	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
L	

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

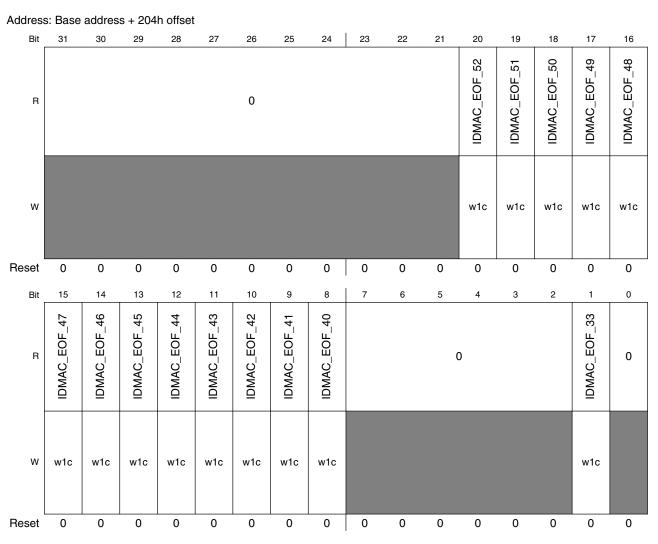
IPUx_INT_STAT_1 field descriptions (continued)

Field	Description
21	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_21	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is decired.
20	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_20	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
19	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_19	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18 IDMAC_EOF_18	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOI_10	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
17 IDMAC_EOF_17	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
10	1 Interrupt is requested.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
15	Interrupt is requested. End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_15	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
14	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_14	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is dealed.
13	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_13	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC FOE 12	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_12	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_1 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
11	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_11	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_10	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_9	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_8	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
5	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_5	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
4 Reserved	This read-only field is reserved and always has the value 0.
rieserveu	0 Interrupt is cleared.
	1 Interrupt is requested.
3	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_3	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
2	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_2	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
1	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_1	

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_STAT_1 field descriptions (continued)

Field	Description
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_0	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.53 Interrupt Status Register2 (IPUx_INT_STAT_2)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of EOF (end of frame) of DMA Channels interrupts [63:32] can be found in this register.

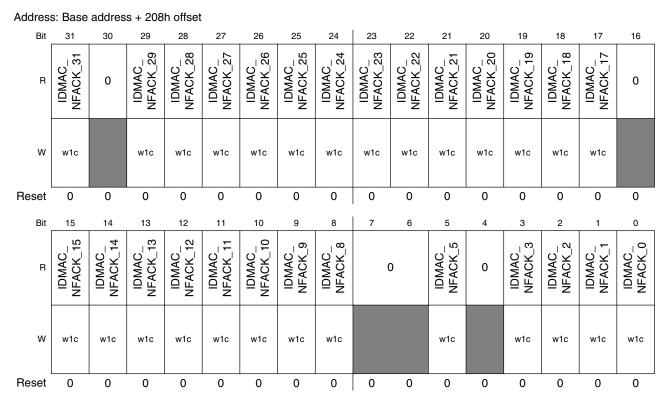
IPUx_INT_STAT_2 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
Neserveu	0 Interrupt is cleared.1 Interrupt is requested.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_STAT_2 field descriptions (continued)


Field	Description
20	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_52	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
19	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_51	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18 IDMAC_EOF_50	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_50	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
17 IDMAC_EOF_49	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDWAO_LOI _49	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
16 IDMAC_EOF_48	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
4-	1 Interrupt is requested.
15 IDMAC_EOF_47	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
1.4	1 Interrupt is requested.
14 IDMAC_EOF_46	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n. n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
13	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_45	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
12	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_44	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
	l to the transfer of the trans

IPUx_INT_STAT_2 field descriptions (continued)

Field	Description
11	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_43	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_42	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_41	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_40	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–2	This read-only field is reserved and always has the value 0.
Reserved	0 Interrupt is cleared.
	1 Interrupt is requested.
1	End of Frame of Channel interrupt. This bit is the status bit of End Of Frame of Channel #n.
IDMAC_EOF_33	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0 Reserved	This read-only field is reserved and always has the value 0.
neserved	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.54 Interrupt Status Register 3 (IPUx_INT_STAT_3)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of NFACK (New Frame Ack) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_STAT_3 field descriptions

Field	Description
31	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 31	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
29	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 29	n Indicates the corresponding DMA channel number.

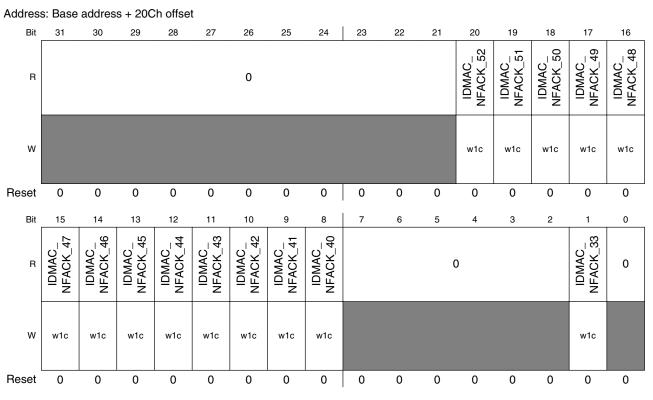
IPUx_INT_STAT_3 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
28	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 28	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
27	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 27	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
26	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 26	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
25	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 25	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
24	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 24	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
23	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 23	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
22	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 22	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
21	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 21	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
20	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 20	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_3 field descriptions (continued)

Field	Description
C) Interrupt is cleared.
1	1 Interrupt is requested.
	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 19	n Indicates the corresponding DMA channel number.
1	1 Interrupt is requested.
	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 18	n Indicates the corresponding DMA channel number.
0	Interrupt is cleared.
1	1 Interrupt is requested.
	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ n	n Indicates the corresponding DMA channel number.
0	Interrupt is cleared.
1	1 Interrupt is requested.
16 T Reserved	This read-only field is reserved and always has the value 0.
0	
1	Interrupt is requested.
IDMAC NEACK	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n. Indicates the corresponding DMA channel number.
	O Interrupt is cleared.
	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC NEACK	Indicates the corresponding DMA channel number.
	O Interrupt is cleared.
1	
13 E	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC NEACK	n Indicates the corresponding DMA channel number.
c	O Interrupt is cleared.
1	
	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ n	n Indicates the corresponding DMA channel number.
0	Interrupt is cleared.
1	1 Interrupt is requested.
	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ n	n Indicates the corresponding DMA channel number.
0	Interrupt is cleared.
1	1 Interrupt is requested.

IPUx_INT_STAT_3 field descriptions (continued)


Field	Description
10	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 10	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 9	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8 IDMAC_NFACK_	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
8	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
5 IDMAC_NFACK_	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
5	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
4	1 Interrupt is requested.
Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.1 Interrupt is requested.
3	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_	n Indicates the corresponding DMA channel number.
3	0 Interrupt is cleared.
	1 Interrupt is requested.
2	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 2	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
1	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 1	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 0	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_3 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.55 Interrupt Status Register 4 (IPUx_INT_STAT_4)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of NFACK (New Frame Ack) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_STAT_4 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
20	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 52	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_4 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
19	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 51	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 50	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
17	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 49	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
16	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 48	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
15	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 47	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
14	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 46	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
13	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 45	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 44	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
11	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 43	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_4 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
10	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 42	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 41	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 40	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
1	Enable New Frame Ack of Channel interrupt. This bit is the status bits of New Frame Ack of Channel #n.
IDMAC_NFACK_ 33	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.56 Interrupt Status Register 5 (IPUx_INT_STAT_5)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the New-frame before end-of-frame indication (NFB4EOF_ERR) of DMA Channels interrupts [31:0] can be found in this register.

Addres	Address: Base address + 210h offset															
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	IDMAC_NFB4EOF_ERR_ 31	0	IDMAC_NFB4EOF_ERR_ 29	IDMAC_NFB4EOF_ERR_ 28	IDMAC_NFB4EOF_ERR_ 27	IDMAC_NFB4EOF_ERR_ 26	IDMAC_NFB4EOF_ERR_ 25	IDMAC_NFB4EOF_ERR_ 24	IDMAC_NFB4EOF_ERR_ 23	IDMAC_NFB4EOF_ERR_ 22	IDMAC_NFB4EOF_ERR_ 21	IDMAC_NFB4EOF_ERR_ 20	IDMAC_NFB4EOF_ERR_ 19	IDMAC_NFB4EOF_ERR_ 18	IDMAC_NFB4EOF_ERR_ 17	0
w	w1c		w1c													
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	IDMAC_NFB4EOF_ERR_ 15	IDMAC_NFB4EOF_ERR_ 14	IDMAC_NFB4EOF_ERR_ 13	IDMAC_NFB4EOF_ERR_ 12	IDMAC_NFB4EOF_ERR_ 11	IDMAC_NFB4EOF_ERR_ 10	IDMAC_NFB4EOF_ERR_ 9	IDMAC_NFB4EOF_ERR_ 8	()	IDMAC_NFB4EOF_ERR_ 5	0	IDMAC_NFB4EOF_ERR_ 3	IDMAC_NFB4EOF_ERR_ 2	IDMAC_NFB4EOF_ERR_ 1	IDMAC_NFB4EOF_ERR_ 0
W	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c			w1c		w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

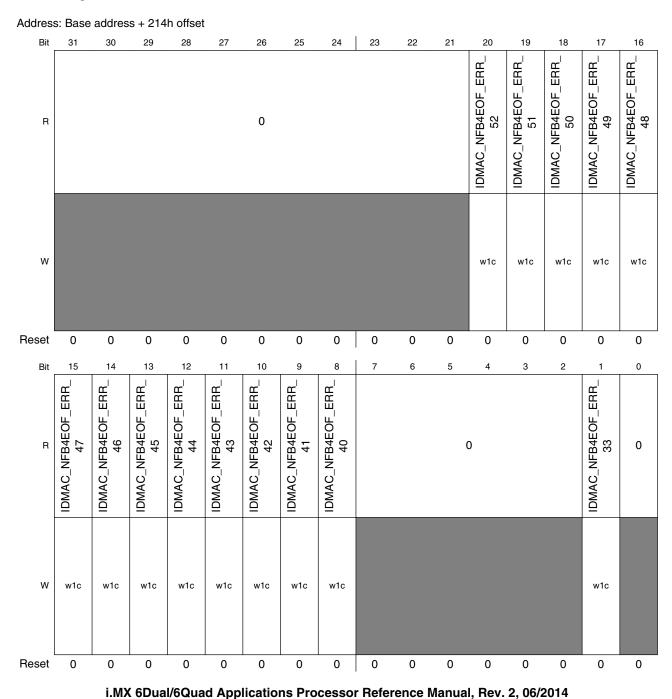
IPUx_INT_STAT_5 field descriptions

Field	Description
31 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 31	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
29 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 29	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
	and the second second
28 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 28	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
27 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 27	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
26 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 26	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
25	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New
IDMAC_ NFB4EOF_ERR_	Frame before end-of-frame error interrupt of Channel #n.
25	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
24 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 24	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.

IPUx_INT_STAT_5 field descriptions (continued)

Field	Description
23 IDMAC_ NFB4EOF_ERR_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
23	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
22 IDMAC_ NFB4EOF_ERR_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
22	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 21	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
20 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 20	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
19 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 19	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 18	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
17 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 17	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.

IPUx_INT_STAT_5 field descriptions (continued)


Field	Description
15 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 15	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
14 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 14	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
13 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 13	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 12	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
11 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 11	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 10	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 9	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 8	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.

IPUx_INT_STAT_5 field descriptions (continued)

Field	Description
7–6	This read-only field is reserved and always has the value 0.
Reserved	0 Interrupt is cleared.
	1 Interrupt is elected.
5	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New
IDMAC_	Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 5	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
3 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 3	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
2 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 2	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
1 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 1	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 0	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.

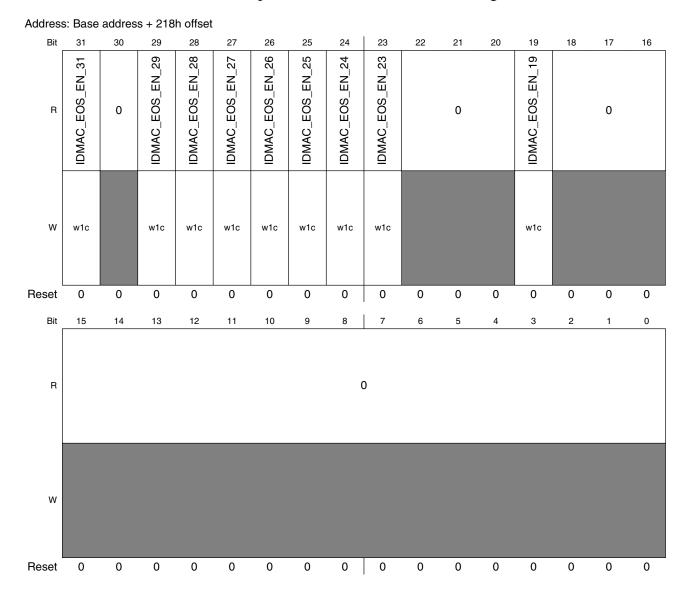
37.5.57 Interrupt Status Register 6 (IPUx_INT_STAT_6)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the New-frame before end-of-frame indication (NFB4EOF_ERR) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_STAT_6 field descriptions

This read-only field is reserved and always has the value 0. O Interrupt is cleared. Interrupt is cleared. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error in	Field	Description
Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame err	_	This read-only field is reserved and always has the value 0.
NPB4EOF_ERR 52 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. In Indicates the corresponding DMA channel number. Interrupt is cleared. Interru	rieserveu	0 Interrupt is cleared.
NFB4EOF_ERR 52 0 Interrupt is cleared. 1 Interrupt is requested. NFB4EOF_ERR 51 19 IDMAC_ NFB4EOF_ERR 51 10 Interrupt is requested. NFB4EOF_ERR 51 10 Interrupt is requested. NFB4EOF_ERR 51 10 Interrupt is requested. NFB4EOF_ERR 51 11 Interrupt is requested. NFB4EOF_ERR 51 12 Interrupt is requested. NFB4EOF_ERR 51 13 Interrupt is requested. NFB4EOF_ERR 50 14 Interrupt is requested. NFB4EOF_ERR 50 15 Interrupt is requested. NFB4EOF_ERR 50 16 Interrupt is requested. NFB4EOF_ERR 50 17 Indicates the corresponding DMA channel number. 0 Interrupt is requested. NFB4EOF_ERR 50 17 Indicates the corresponding DMA channel number. 0 Interrupt is requested. NFB4EOF_ERR 50 18 IDMAC_ NFB4EOF_ERR 50 19 Interrupt is requested. NFB4EOF_ERR 50 10 Interrupt is requested. NFB4EOF_ERR 50 10 Interrupt is requested. NFB4EOF_ERR 50 10 Interrupt is requested. 1 Interrupt is requested. 2 Interrupt		1 Interrupt is requested.
1		
1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. 18 IDMAC_ NFB4EOF_ERR		n Indicates the corresponding DMA channel number.
New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error interrupt of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. Indicates the corresponding DMA channel number. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. Indicates the corresponding DMA channel number.		
Frame before end-of-frame error interrupt of Channel #n.		1 Interrupt is requested.
18 IDMAC_NFB4EOF_ERR-49 16 Interrupt is cleared. 1 Interrupt is requested. 1 Interrupt is requested. 1 Interrupt is requested. 1 Interrupt is requested. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is requested. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is requested. 1 Interrupt is cleared. 1 Interrupt is requested. 2 Interrupt is requested. 3 Interrupt is requested. 4 Interrupt is requested. 5 Interrupt is requested. 6 Interrupt is requested. 7 Interrupt is requested. 8 Interr	IDMAC_	·
1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. New Frame before end-of-frame error indication of Chann		n Indicates the corresponding DMA channel number.
18		·
IDMAC_ NFB4EOF_ERR_ 50 Interrupt is cleared. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is cleared. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number.		1 Interrupt is requested.
17 17 18 18 18 19 19 10 19 10 10 10 10 10 10 10 10 10 10 10 10 10	IDMAC_	
1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. Indicates the corresponding DMA channel number. 0 Interrupt is cleared. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number.		n Indicates the corresponding DMA channel number.
New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		•
IDMAC_NFB4EOF_ERR_49 Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared. 1 Interrupt is cleared.		· · ·
16 IDMAC_NFB4EOF_ERRA47 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERRA47 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n.	IDMAC_	
1 Interrupt is requested. 16 IDMAC_ NFB4EOF_ERR_ 48 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. 1 Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 47 1 Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number.		n Indicates the corresponding DMA channel number.
New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. **NFB4EOF_ERR_48** **Indicates the corresponding DMA channel number.** **O Interrupt is cleared.** 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. **NFB4EOF_ERR_47** **O Interrupt is cleared.** 1 Interrupt is cleared.** 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. **NFB4EOF_ERR_46** **O Interrupt is cleared.** **O Interrupt is cleare		0 Interrupt is cleared.
IDMAC_ NFB4EOF_ERR_ 48 Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. n Indicates the corresponding DMA channel number. 14 IDMAC_ NFB4EOF_ERR_ 46 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 0 Interrupt is cleared.		1 Interrupt is requested.
15 IDMAC_ NFB4EOF_ERRA 47 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Interrupt is cleared. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. Indicates the corresponding DMA channel number.	IDMAC_	
1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 47 New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is cleared. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 46 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 40 Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number. Indicates the corresponding DMA channel number.		n Indicates the corresponding DMA channel number.
NEB4EOF_ERR 47 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. Indicates the corresponding DMA channel number. Interrupt is cleared. Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. In Indicates the corresponding DMA channel number. In Indicates the corresponding DMA channel number. In Indicates the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt.		
IDMAC_ NFB4EOF_ERR_ 47 Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 46 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		1 Interrupt is requested.
NFB4EOF_ERR_ 47 n Indicates the corresponding DMA channel number. 0 Interrupt is cleared. 1 Interrupt is requested. New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 46 n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		
14 IDMAC_ NFB4EOF_ERR_ 46 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.	_	·
1 Interrupt is requested. 14 IDMAC_ NFB4EOF_ERR_ 46 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		
New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n. NFB4EOF_ERR_ 46 New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error indication of Channel #n. NFB4EOF_ERR_ 46 N Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		
IDMAC_ NFB4EOF_ERR_ 46 Frame before end-of-frame error interrupt of Channel #n. n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		
NFB4EOF_ERR_ n Indicates the corresponding DMA channel number. 0 Interrupt is cleared.		·
0 Interrupt is cleared.	NFB4EOF_ERR_	·
		0 Interrupt is cleared.

IPUx_INT_STAT_6 field descriptions (continued)


Field	Description
13 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 45	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 44	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
11 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 43	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 42	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 41	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 40	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
1 IDMAC_	New Frame before end-of-frame error indication of Channel interrupt. This bit is the status bit of New Frame before end-of-frame error interrupt of Channel #n.
NFB4EOF_ERR_ 33	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0	This read-only field is reserved and always has the value 0.
Reserved	

IPUx_INT_STAT_6 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.

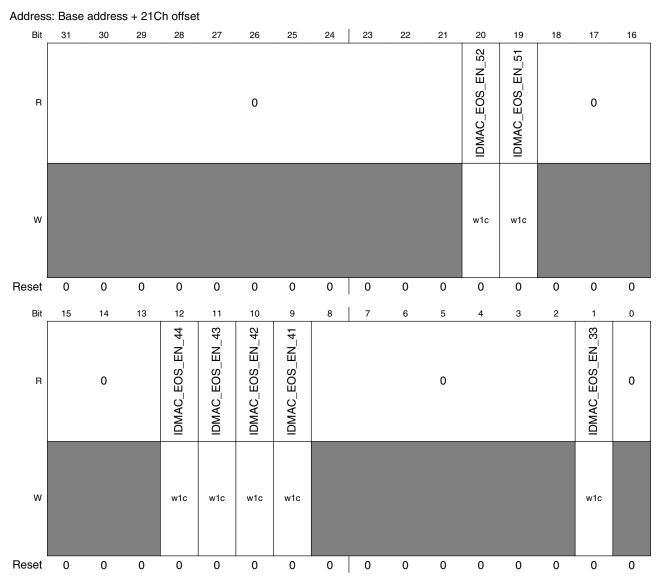
37.5.58 Interrupt Status Register7 1 (IPUx_INT_STAT_7)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the End-of-Scroll indication (EOS) of DMA Channels interrupts [31:0] can be found in this register.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_STAT_7 field descriptions

Field	Description
31 IDMAC_EOS_ EN_31	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
30	1 Interrupt is requested.
Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.1 Interrupt is requested.
29 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_29	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
28 IDMAC_EOS_ EN_28	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	Interrupt is cleared. Interrupt is requested.
27	Interrupt is requested.End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel
IDMAC_EOS_ EN_27	#n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
26 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
25 IDMAC_EOS_ EN_25	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
LIN_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
0.4	1 Interrupt is requested.
24 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_24	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.


Chapter 37 Image Processing Unit (IPU)

IPUx_INT_STAT_7 field descriptions (continued)

Field	Description
23 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_23	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
22–20 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
19 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_19	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.

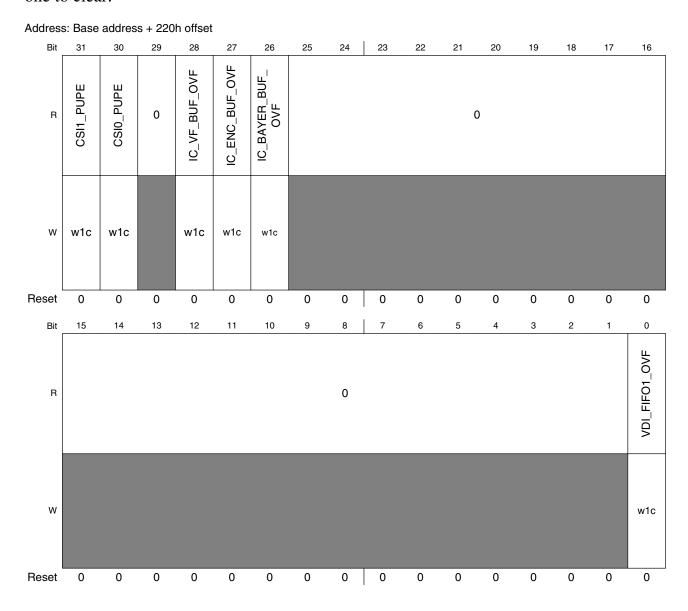
37.5.59 Interrupt Status Register 8 (IPUx_INT_STAT_8)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. All the status bits of the End of Scroll indication (EOS) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_STAT_8 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.

IPUx_INT_STAT_8 field descriptions (continued)

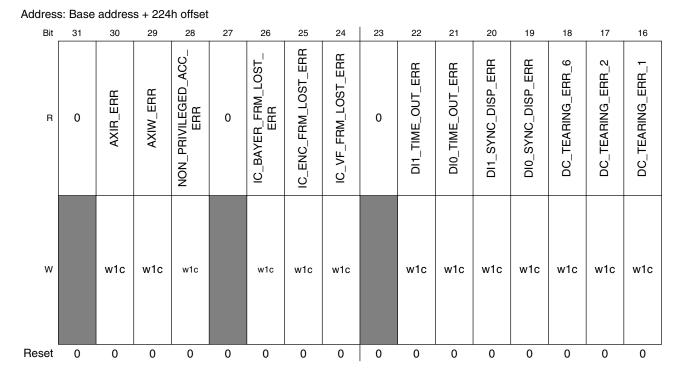

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
20 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_52	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
19 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_51	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18–13 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_44	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
11 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_43	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_42	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_41	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.

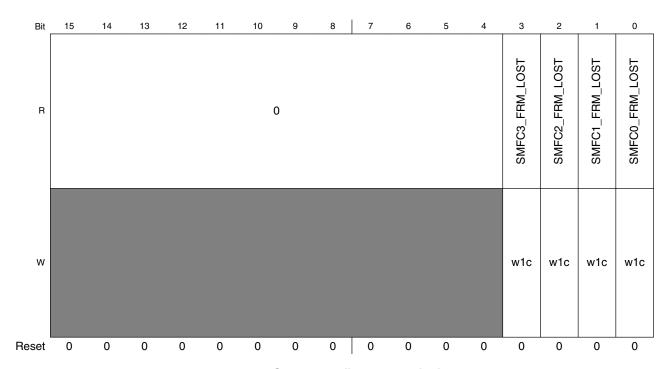
IPUx_INT_STAT_8 field descriptions (continued)

Field	Description
1 IDMAC_EOS_	End of Scroll indication of Channel interrupt. This bit is the status bit of End of Scroll interrupt of Channel #n.
EN_33	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0	This read-only field is reserved and always has the value 0.
Reserved	
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.60 Interrupt Status Register 9 (IPUx_INT_STAT_9)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. This register holds the error interrupt indications coming from different modules within All the bits in this register are write one to clear.




IPUx_INT_STAT_9 field descriptions

Field	Description
31 CSI1_PUPE	CSI1_PUPE - CSI1 parameters update error interrupt.
	This bit indicates on an interrupt that is a result of an error generated by the CSI1. The error is generated in case where new frame arrived from the CSI1 before the completion of the CSI1's parameters update by the SRM
	Interrupt is cleared. Interrupt is requested.
30	CSI0_PUPE - CSI0 parameters update error interrupt.
CSI0_PUPE	This bit indicates on an interrupt that is a result of an error generated by the CSI0. The error is generated in case where new frame arrived from the CSI0 before the completion of the CSI0's parameters update by the SRM
	Interrupt is cleared. Interrupt is requested.
29 Reserved	This read-only field is reserved and always has the value 0.
28 IC_VF_BUF_ OVF	This bit indicates on an interrupt that is a result of the IC Buffer overflow for view finder coming from the IC. The user needs to write 1 to this bit in order to clear it.
	0 Interrupt is cleared.1 Interrupt is requested.
27 IC_ENC_BUF_ OVF	This bit indicates on an interrupt that is a result of the IC Buffer overflow for encoding coming from the IC. The user needs to write 1 to this bit in order to clear it.
OVI	0 Interrupt is cleared.
	1 Interrupt is requested.
26 IC_BAYER_ BUF_OVF	This bit indicates on an interrupt that is a result of the IC Buffer overflow for Bayer coming from the IC. The user needs to write 1 to this bit in order to clear it.
B01_011	0 Interrupt is cleared.
	1 Interrupt is requested.
25–1 Reserved	This read-only field is reserved and always has the value 0.
0 VDI_FIFO1_OVF	FIFO1 overflow Interrupt1
	The VDIC generate FIFO1 overflow interrupt1 when write pointer of FIFO1 overrun read pointer.
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.61 Interrupt Status Register 10 (IPUx_INT_STAT_10)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. This register holds error interrupt indications coming from different modules within All the bits in this register are write one to clear.

IPUx_INT_STAT_10 field descriptions

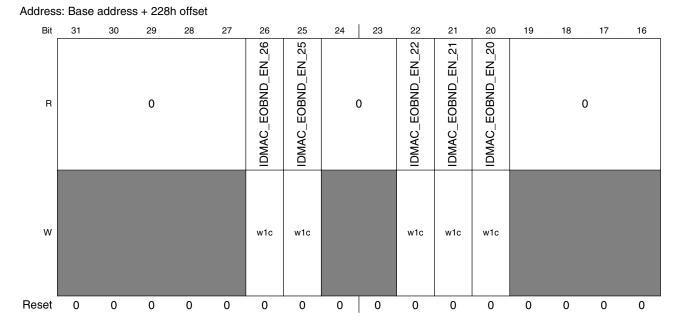
Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30 AXIR_ERR	This bit indicates on an interrupt that is a result of AXI read access resulted with error response. The user needs to write 1 to this bit in order to clear it.
	0 Interrupt is cleared.1 Interrupt is requested.
29 AXIW_ERR	This bit indicates on an interrupt that is a result of AXI write access resulted with error response. The user needs to write 1 to this bit in order to clear it.
	Interrupt is cleared. Interrupt is requested.
28 NON_ PRIVILEGED_ ACC_ERR	Non Privileged Access Error interrupt. This bit indicates on an interrupt that is a result of access the CPMEM or the DP memory in user mode 1 Interrupt is cleared. 1 Interrupt is requested.
27 Reserved	This read-only field is reserved and always has the value 0.
26 IC_BAYER_ FRM_LOST_ ERR	This bit indicates on an interrupt that is a result of IC's Bayer frame lost. O Interrupt is disabled. Interrupt is enabled.
25 IC_ENC_FRM_ LOST_ERR	This bit indicates on an interrupt that is a result of IC's encoding frame lost.

IPUx_INT_STAT_10 field descriptions (continued)

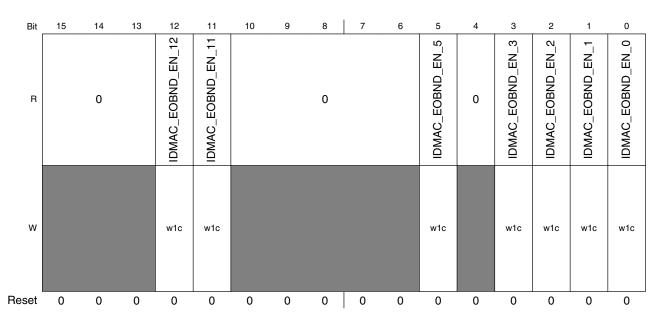
Field	Description
	0 Interrupt is disabled.
	1 Interrupt is enabled.
24 IC_VF_FRM_	This bit indicates on an interrupt that is a result of IC's view finder frame lost.
LOST_ERR	0 Interrupt is disabled.
	1 Interrupt is enabled.
23 Reserved	This read-only field is reserved and always has the value 0.
22	DI1 time out error interrupt
DI1_TIME_OUT_ ERR	This bit indicates on the interrupt that is a result of a time out error during a read access via DI1
21	DI0 time out error interrupt
DI0_TIME_OUT_ ERR	This bit indicates on the interrupt that is a result of a time out error during a read access via DI0
20	DI1 Synchronous display error interrupt
DI1_SYNC_ DISP_ERR	This bit indicates on the interrupt that is a result of an error during access to a synchronous display via DI1
19 DIO CYNIC	DI0 Synchronous display error interrupt
DI0_SYNC_ DISP_ERR	This bit indicates on the interrupt that is a result of an error during access to a synchronous display via DIO
18	Tearing Error #6 interrupt
DC_TEARING_ ERR_6	This bit indicates on the interrupt that is a result of tearing error while the anti tearing mechanism is activated for DC channel 6
17	Tearing Error #2 interrupt
DC_TEARING_ ERR_2	This bit indicates on the interrupt that is a result of tearing error while the anti tearing mechanism is activated for DC channel 2
16	Tearing Error #1 interrupt
DC_TEARING_ ERR_1	This bit indicates on the interrupt that is a result of tearing error while the anti tearing mechanism is activated for DC channel 1
15–4 Reserved	This read-only field is reserved and always has the value 0.
3	Frame Lost of SMFC channel 3 interrupt.
SMFC3_FRM_ LOST	This bit indicates on an interrupt that is a result of a result of a Frame Lost of SMFC channel 3
	0 Interrupt is cleared.
	1 Interrupt is requested.
2 SMFC2_FRM_	Frame Lost of SMFC channel 2 interrupt.
LOST	This bit indicates on an interrupt that is a result of a result of a Frame Lost of SMFC channel 2
	0 Interrupt is cleared.
	1 Interrupt is requested.
1 SMFC1_FRM_	Frame Lost of SMFC channel 1 interrupt.
LOST	This bit indicates on an interrupt that is a result of a Frame Lost of SMFC channel 1
	0 Interrupt is cleared.
	1 Interrupt is requested.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014


IPUx_INT_STAT_10 field descriptions (continued)

Field	Description
	Frame Lost of SMFC channel 0 interrupt.
SMFC0_FRM_ LOST	This bit indicates on an interrupt that is a result of a result of a Frame Lost of SMFC channel 0
	0 Interrupt is cleared.
	1 Interrupt is requested.


37.5.62 Interrupt Status Register 11 (IPUx_INT_STAT_11)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the end-of-band indication (EOBND) of DMA Channels interrupts [31:0] can be found in this register.

- Hide VDOA_SYNC for all versions
- Show VDOA_SYNC for IPUv3H version.
- The table below tagged with other settings (like IPU3M_only) should be hidden in IPUv3H version.

Chapter 37 Image Processing Unit (IPU)

IPUx_INT_STAT_11 field descriptions

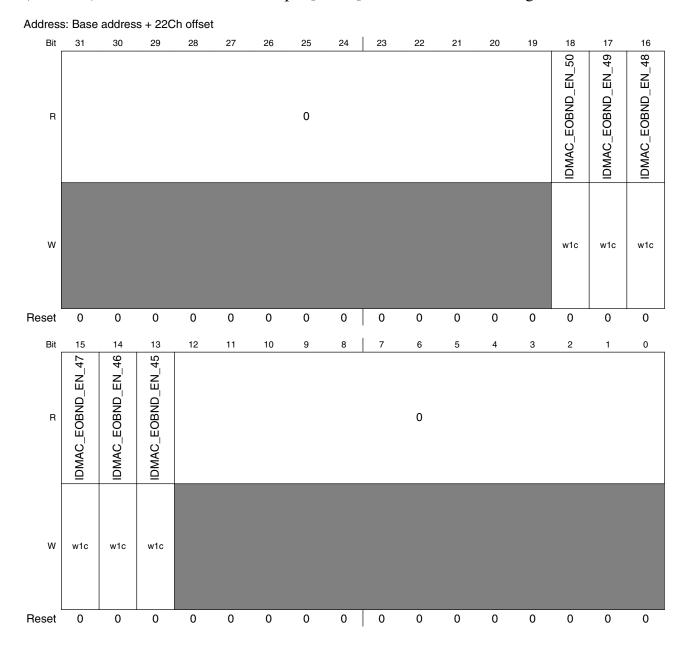
Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
26 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_26	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
25 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_25	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
24–23 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
22 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_22	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
21 IDMAC_EOBND_ EN_21	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_STAT_11 field descriptions (continued)

Field	Description
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
20 IDMAC_EOBND_ EN_20	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
_	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
19–13 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_12	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
11 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_11	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
5 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_5	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
3 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_3	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.

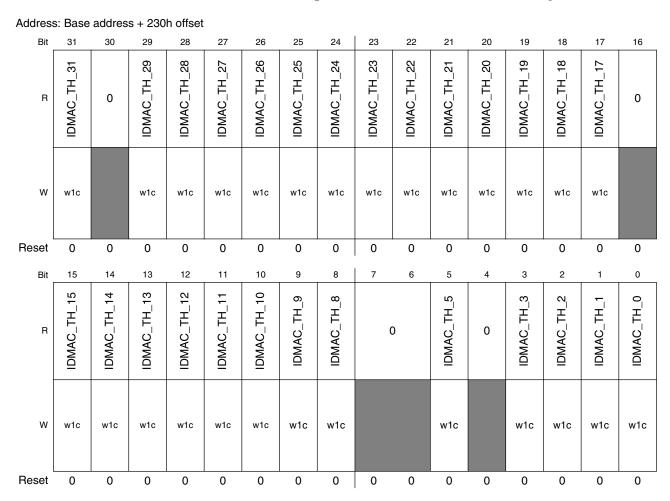

Chapter 37 Image Processing Unit (IPU)

IPUx_INT_STAT_11 field descriptions (continued)

Field	Description
2 IDMAC_EOBND_ EN_2	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n. n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
1 IDMAC_EOBND_ EN_1	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n. n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
0 IDMAC_EOBND_ EN_0	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n. n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.

37.5.63 Interrupt Status Register 12 (IPUx_INT_STAT_12)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the end-of-band indication (EOBND) of DMA Channels interrupts [63:32] can be found in this register.



IPUx_INT_STAT_12 field descriptions

Field	Description
31–19 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_50	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
17 IDMAC_EOBND_ EN_49	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_49	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
16 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_48	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
15 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_47	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
14 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_46	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
13 IDMAC_EOBND_	end-of-band indication of Channel interrupt. This bit is the status bit of end-of-band interrupt of Channel #n.
EN_45	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.64 Interrupt Status Register 13 (IPUx_INT_STAT_13)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the Threshold crossing indication (TH) of DMA Channels interrupts [31:0] can be found in this register.

IPUx_INT_STAT_13 field descriptions

Field	Description
31 IDMAC_TH_31	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.

IPUx_INT_STAT_13 field descriptions (continued)

Field	Description
30	This read-only field is reserved and always has the value 0.
Reserved	0 Interrupt is cleared.
	1 Interrupt is requested.
29 IDMAC_TH_29	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
28 IDMAC_TH_28	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
27 IDMAC_TH_27	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
26 IDMAC_TH_26	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
25 IDMAC_TH_25	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
24 IDMAC_TH_24	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
23 IDMAC_TH_23	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
22 IDMAC TH 22	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n
IDMAC_TH_22	of Channel #n.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

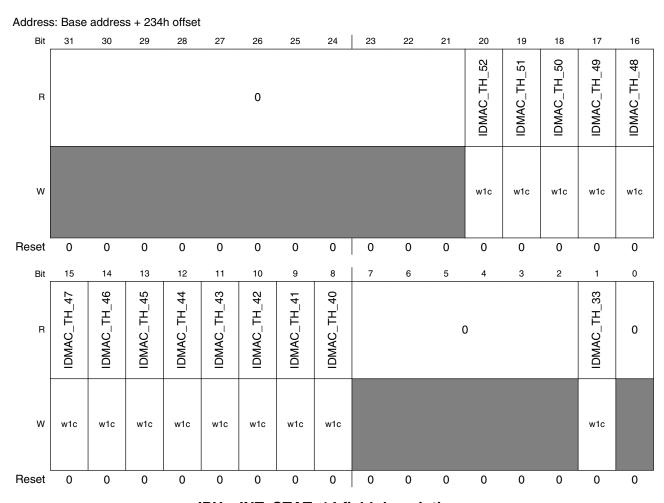
IPUx_INT_STAT_13 field descriptions (continued)

Field	Description
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
21 IDMAC_TH_21	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared. 1 Interrupt is requested.
20 IDMAC_TH_20	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared. 1 Interrupt is requested.
19 IDMAC_TH_19	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18 IDMAC_TH_18	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
4-	1 Interrupt is requested.
17 IDMAC_TH_17	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
16 Reserved	This read-only field is reserved and always has the value 0.
	O Interrupt is cleared.
	1 Interrupt is requested.
15 IDMAC_TH_15	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
14 IDMAC_TH_14	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_13 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
13 IDMAC_TH_13	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC_TH_12	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.1 Interrupt is requested.
11 IDMAC_TH_11	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
IDMAC_III_II	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10 IDMAC_TH_10	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9 IDMAC_TH_9	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8 IDMAC_TH_8	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
5 IDMAC_TH_5	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_STAT_13 field descriptions (continued)

Description
This read-only field is reserved and always has the value 0.
0 Interrupt is cleared.
1 Interrupt is requested.
Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
n Indicates the corresponding DMA channel number.
0 Interrupt is cleared.
1 Interrupt is requested.
Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
n Indicates the corresponding DMA channel number.
0 Interrupt is cleared.
1 Interrupt is requested.
Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
n Indicates the corresponding DMA channel number.
0 Interrupt is cleared.
1 Interrupt is requested.
Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
n Indicates the corresponding DMA channel number.
0 Interrupt is cleared.
1 Interrupt is requested.

37.5.65 Interrupt Status Register 14 (IPUx_INT_STAT_14)

IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of the Threshold crossing indication (TH) of DMA Channels interrupts [63:32] can be found in this register.

IPUx_INT_STAT_14 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.1 Interrupt is requested.
20 IDMAC_TH_52	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_INT_STAT_14 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
19 IDMAC_TH_51	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
18 IDMAC_TH_50	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
17 IDMAC_TH_49	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
16 IDMAC_TH_48	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
15 IDMAC_TH_47	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
14 IDMAC_TH_46	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
13 IDMAC_TH_45	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
12 IDMAC_TH_44	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.

IPUx_INT_STAT_14 field descriptions (continued)

Field	Description
	0 Interrupt is cleared.
	1 Interrupt is requested.
11 IDMAC_TH_43	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
10 IDMAC_TH_42	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
9 IDMAC_TH_41	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
8 IDMAC_TH_40	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.
1 IDMAC_TH_33	Threshold crossing indication of Channel interrupt. This bit is the status bit of Threshold crossing interrupt of Channel #n.
	n Indicates the corresponding DMA channel number.
	0 Interrupt is cleared.
	1 Interrupt is requested.
0 Reserved	This read-only field is reserved and always has the value 0.
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.66 Interrupt Status Register 15 (IPUx_INT_STAT_15)

IPU status registers are not stored in the SRM during power gating mode. IPU status registers are not stored in the SRM during power gating mode. This register contains part of IPU interrupts status bits. The status bits of general purpose interrupts can be found in this register.

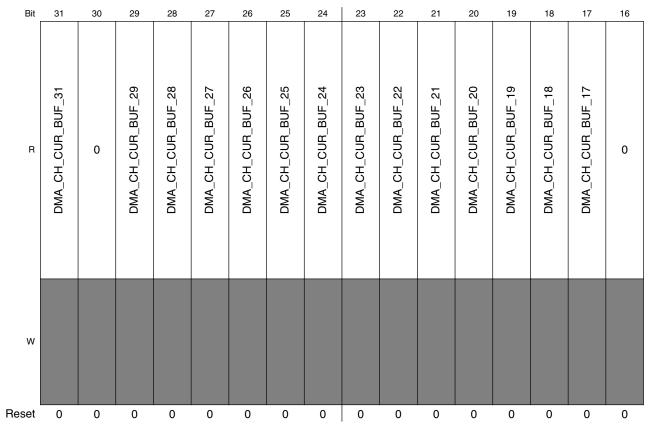
Address: Base address + 238h offset																
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	DI1_CNT_EN_PRE_8	DI1_CNT_EN_PRE_3	DI1_DISP_CLK_EN_ PRE	DIO_CNT_EN_PRE_10	DI0_CNT_EN_PRE_9	DI0_CNT_EN_PRE_8	DIO_CNT_EN_PRE_7	DI0_CNT_EN_PRE_6	DIO_CNT_EN_PRE_5	DI0_CNT_EN_PRE_4	DI0_CNT_EN_PRE_3	DIO_CNT_EN_PRE_2	DI0_CNT_EN_PRE_1	DI0_CNT_EN_PRE_0	DC_ASYNC_STOP	DC_DP_START
W	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	DI_VSYNC_PRE_1	DI_VSYNC_PRE_0	DC_FC_6	DC_FC_4	DC_FC_3	DC_FC_2	DC_FC_1	DC_FC_0	DP_ASF_BRAKE	DP_SF_BRAKE	DP_ASF_END	DP_ASF_START	DP_SF_END	DP_SF_START	SNOOPING2_INT	SNOOPING1_INT
W	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c	w1c
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_INT_STAT_15 field descriptions

Field	Description
31	This bit indicates on the interrupt that is a result of a trigger generated by counter #8 of DI1
DI1_CNT_EN_ PRE_8	0 Interrupt is cleared.
	1 Interrupt is requested.
30	This bit indicates on the interrupt that is a result of a trigger generated by counter #3 of DI1
DI1_CNT_EN_ PRE_3	0 Interrupt is cleared.
	1 Interrupt is requested.
29	DI1_DISP_CLK_EN_PRE
DI1_DISP_CLK_ EN_PRE	0 Interrupt is cleared.
	1 Interrupt is requested.
28	This bit indicates on the interrupt that is a result of a trigger generated by counter #10 of DI0
DI0_CNT_EN_ PRE_10	0 Interrupt is cleared.
1112_10	1 Interrupt is requested.
27	This bit indicates on the interrupt that is a result of a trigger generated by counter #9 of DI0
DI0_CNT_EN_ PRE_9	0 Interrupt is cleared.
1112_0	1 Interrupt is requested.
26	This bit indicates on the interrupt that is a result of a trigger generated by counter #8 of DI0
DI0_CNT_EN_ PRE_8	0 Interrupt is cleared.
1112_0	1 Interrupt is requested.
25	This bit indicates on the interrupt that is a result of a trigger generated by counter #7 of DI0
DI0_CNT_EN_ PRE_7	0 Interrupt is cleared.
1112_7	1 Interrupt is requested.
24	This bit indicates on the interrupt that is a result of a trigger generated by counter #6 of DI0
DI0_CNT_EN_ PRE_6	0 Interrupt is cleared.
1112_0	1 Interrupt is requested.
23	This bit indicates on the interrupt that is a result of a trigger generated by counter #5 of DI0
DI0_CNT_EN_ PRE_5	0 Interrupt is cleared.
1112_5	1 Interrupt is requested.
22	This bit indicates on the interrupt that is a result of a trigger generated by counter #4 of DI0
DI0_CNT_EN_ PRE_4	0 Interrupt is cleared.
1116_4	1 Interrupt is requested.
21	This bit indicates on the interrupt that is a result of a trigger generated by counter #3 of DI0
DI0_CNT_EN_ PRE_3	0 Interrupt is cleared.
1116_3	1 Interrupt is requested.
20	This bit indicates on the interrupt that is a result of a trigger generated by counter #2 of DI0
DI0_CNT_EN_ PRE_2	0 Interrupt is cleared.
FNE_4	1 Interrupt is requested.

IPUx_INT_STAT_15 field descriptions (continued)

Field	Description
19	This bit indicates on the interrupt that is a result of a trigger generated by counter #1 of DI0
DI0_CNT_EN_ PRE_1	0 Interrupt is cleared.
FILE_I	1 Interrupt is requested.
18	This bit indicates on the interrupt that is a result of a trigger generated by counter #0 of DI0
DI0_CNT_EN_	
PRE_0	Interrupt is cleared. Interrupt is requested.
17	This bit indicates on an interrupt asserted anytime the DP stops an async flow and moves to a sync flow
DC_ASYNC_	
STOP	0 Interrupt is cleared.
	1 Interrupt is requested.
16 DC_DP_START	This bit indicates on an interrupt asserted anytime the DP start a new sync or async flow or when an async flow is interrupted by a sync flow
	0 Interrupt is cleared.
	1 Interrupt is requested.
15 DI_VSYNC_	DI1 interrupt indicating of a VSYNC signal asserted 2 rows before the VSYNC sent to the display
PRE_1	0 Interrupt is cleared.
	1 Interrupt is requested.
14 DI_VSYNC_	DI0 interrupt indicating of a VSYNC signal asserted 2 rows before the VSYNC sent to the display
PRE_0	0 Interrupt is cleared.
	1 Interrupt is requested.
13	DC Frame Complete on channel #6 interrupt indication
DC_FC_6	0 Interrupt is cleared.
	1 Interrupt is requested.
12	DC Frame Complete on channel #4 interrupt indication
DC_FC_4	0 Interrupt is cleared.
	1 Interrupt is requested.
11 DC_FC_3	DC Frame Complete on channel #3 interrupt indication
00_10_0	0 Interrupt is cleared.
	1 Interrupt is requested.
10 DC_FC_2	DC Frame Complete on channel #2 interrupt indication
	0 Interrupt is cleared.
	1 Interrupt is requested.
9 DC_FC_1	DC Frame Complete on channel #1 interrupt indication
	0 Interrupt is cleared.
_	1 Interrupt is requested.
8 DC_FC_0	DC Frame Complete on channel #0 interrupt indication
	0 Interrupt is cleared.1 Interrupt is requested.
	i interrupt is requested.


IPUx_INT_STAT_15 field descriptions (continued)

Field	Description
7 DP_ASF_BRAKE	DP Async Flow Brake indication interrupt. This bit indicates on the interrupt that is a result of the async flow brake at the DP
	0 Interrupt is cleared.
	1 Interrupt is requested.
6 DP_SF_BRAKE	DP Sync Flow Brake indication interrupt. This bit indicates on the interrupt that is a result of the Sync flow brake at the DP
	0 Interrupt is cleared.
	1 Interrupt is requested.
5 DP_ASF_END	DP Async Flow End indication interrupt. This bit indicates on the interrupt that is a result of the Async flow end at the DP
	0 Interrupt is cleared.
	1 Interrupt is requested.
4 DP_ASF_START	DP Async Flow Start indication interrupt. This bit indicates on the interrupt that is a result of the Async flow start at the DP
	0 Interrupt is cleared.
	1 Interrupt is requested.
3 DP_SF_END	DP Sync Flow End indication interrupt. This bit indicates on the interrupt that is a result of the Sync flow end at the DP
	0 Interrupt is cleared.
	1 Interrupt is requested.
2 DP_SF_START	DP Sync Flow Start indication interrupt. This bit indicates on the interrupt that is a result of the Sync flow start at the DP
	0 Interrupt is cleared.
	1 Interrupt is requested.
1 SNOOPING2_ INT	IPU snooping 2 event indication interrupt. This bit indicates on the interrupt that is a result of the detection of a snooping 2 signal assertion coming to the IPU
""	0 Interrupt is cleared.
	1 Interrupt is requested.
0 SNOOPING1_ INT	IPU snooping 1 event indication interrupt. This bit indicates on the interrupt that is a result of the detection of a snooping 1 signal assertion coming to the
	0 Interrupt is cleared.
	1 Interrupt is requested.

37.5.67 Current Buffer Register 0 (IPUx_CUR_BUF_0)

This register contains the current buffer status information bit for each DMA channel.

Address: Base address + 23Ch offset

Chapter 37 Image Processing Unit (IPU)

Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	DMA_CH_CUR_BUF_15	DMA_CH_CUR_BUF_14	DMA_CH_CUR_BUF_13	DMA_CH_CUR_BUF_12	DMA_CH_CUR_BUF_11	DMA_CH_CUR_BUF_10	DMA_CH_CUR_BUF_9	DMA_CH_CUR_BUF_8		0	DMA_CH_CUR_BUF_5	0	DMA_CH_CUR_BUF_3	DMA_CH_CUR_BUF_2	DMA_CH_CUR_BUF_1	DMA_CH_CUR_BUF_0
w	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_CUR_BUF_0 field descriptions

Field	Description
31	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_31	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
30 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
29	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_29	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
28	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_28	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

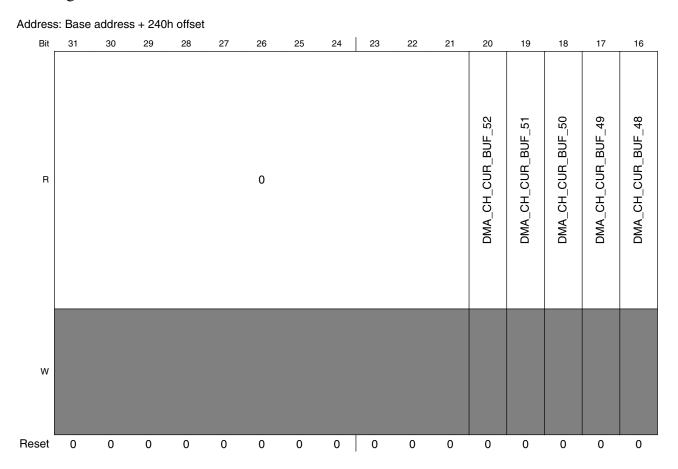
IPUx_CUR_BUF_0 field descriptions (continued)

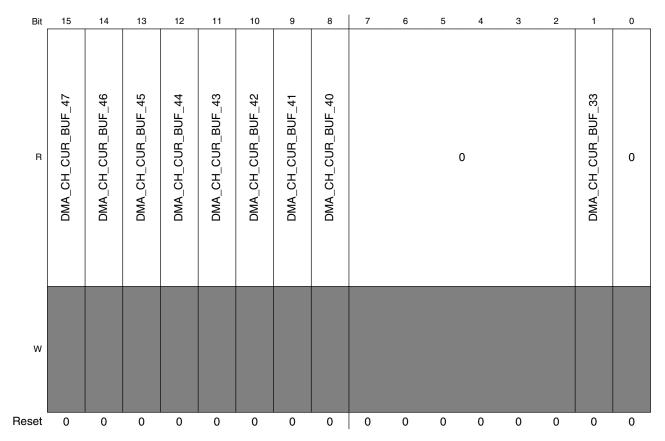
Field	Description
27	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_27	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
26	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_26	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
25 DMA_CH_CUR_	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
BUF_25	O Commant buffer wood by DNAA is buffer O
	Current buffer used by DMA is buffer 0. Current buffer used by DMA is buffer 1.
24	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_24	n Indicates the corresponding DMA channel number.
- <u>-</u>	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
23	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_23	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
22	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_22	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
21	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_21	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
20	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_20	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
19 DMA_CH_CUR_	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
BUF_19	O Command by War ward by DNA in by War 2
l	O Current buffer used by DMA is buffer 0. Current buffer used by DMA is buffer 1.
L	1 Current buffer used by DMA is buffer 1.

IPUx_CUR_BUF_0 field descriptions (continued)

Field	Description
18	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_18	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
17 DMA_CH_CUR_ BUF_17	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
	Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
16 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
45	1 Current buffer used by DMA is buffer 1.
15 DMA_CH_CUR_ BUF_15	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
201_10	Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
14 DMA_CH_CUR_	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
BUF_14	
	0 Current buffer used by DMA is buffer 0.1 Current buffer used by DMA is buffer 1.
13	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_13	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
12	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_12	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
11	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_11	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
10	1 Current buffer used by DMA is buffer 1.
DMA_CH_CUR_ BUF_10	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
9	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_9	n Indicates the corresponding DMA channel number.

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014


IPUx_CUR_BUF_0 field descriptions (continued)

Field	Description
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
8	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_8	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
7–6 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
5	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_5	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
4 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
3	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_3	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
2	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_2	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
1	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_1	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
0	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_0	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
L	

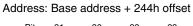
37.5.68 Current Buffer Register 1 (IPUx_CUR_BUF_1)

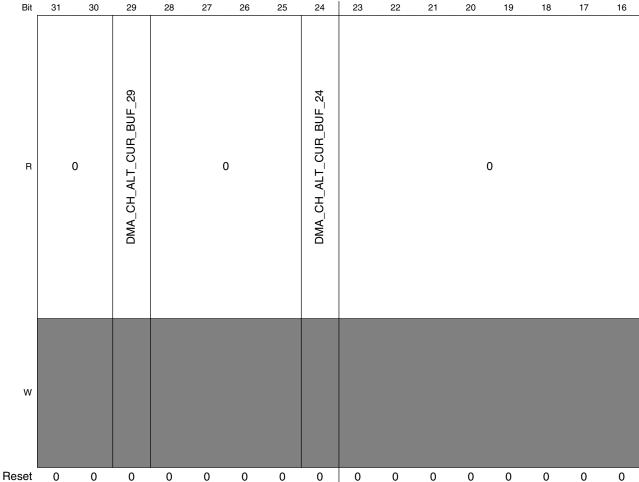
This register contains the current buffer status information bit for each DMA channel.

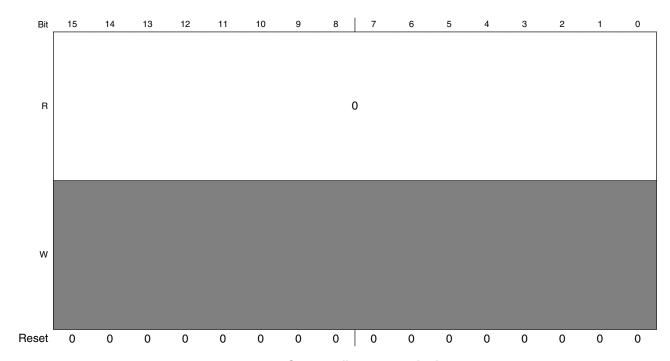
IPUx_CUR_BUF_1 field descriptions

Field	Description
31–21	This read-only field is reserved and always has the value 0.
Reserved	Current buffer used by DMA is buffer 0.
	· · · · · · · · · · · · · · · · · · ·
	1 Current buffer used by DMA is buffer 1.
20	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_52	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
19	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_51	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
18	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_50	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.

IPUx_CUR_BUF_1 field descriptions (continued)

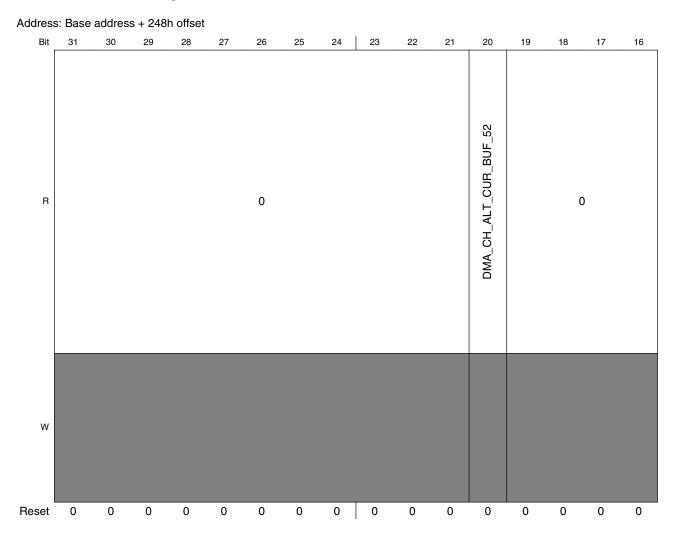

Field	Description
17	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_49	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
16	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_48	n Indicates the corresponding DMA channel number.
	O Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
15 DMA_CH_CUR_ BUF_47	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
14	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_46	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
13 DMA_CH_CUR_ BUF_45	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected. n Indicates the corresponding DMA channel number.
BOF_45	Current buffer used by DMA is buffer 0.
	O Current buffer used by DMA is buffer 0. Current buffer used by DMA is buffer 1.
12	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_44	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
11	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_43	n Indicates the corresponding DMA channel number.
	O Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
10 DMA_CH_CUR_	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
BUF_42	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
9	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_41	n Indicates the corresponding DMA channel number.
	O Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.

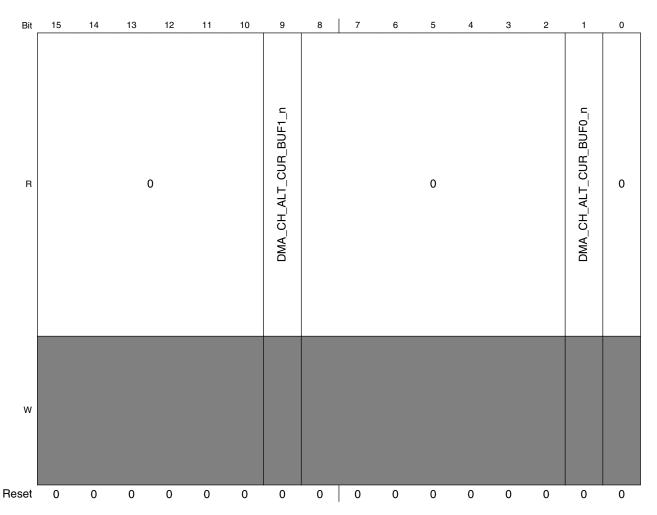

IPUx_CUR_BUF_1 field descriptions (continued)


Field	Description
8	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_40	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
7–2 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
1	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_CUR_ BUF_33	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
0	This read-only field is reserved and always has the value 0.
Reserved	O O worth ffee and h DMA in h ffee O
	O Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.

37.5.69 Alternate Current Buffer Register 0 (IPUx_ALT_CUR_0)

This register contains the current buffer status information bit for each DMA channel.




IPUx_ALT_CUR_0 field descriptions

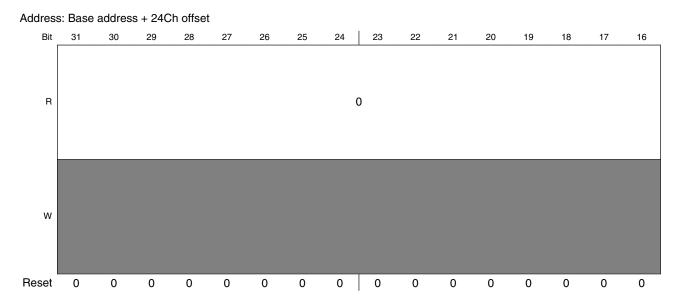
Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
29	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_ALT_ CUR_BUF_29	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
28–25 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
24	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_ALT_ CUR_BUF_24	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.

37.5.70 Alternate Current Buffer Register 1 (IPUx_ALT_CUR_1)

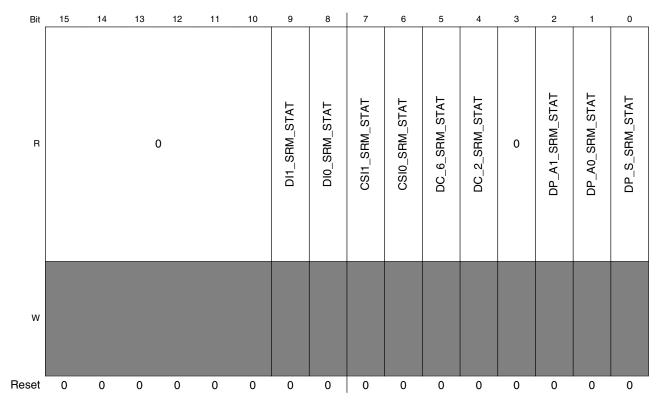
This register contains the current buffer status information bit for each DMA channel. The register is shown in VDI Plane Size Register 4, and the register fields are described in VDI Plane Size Register 4.

IPUx_ALT_CUR_1 field descriptions

Field	Description
31–21 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
20	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_ALT_ CUR_BUF_52	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
19–10 Reserved	This read-only field is reserved and always has the value 0.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
9	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_ALT_ CUR_BUF1_n	n Indicates the corresponding DMA channel number.


Chapter 37 Image Processing Unit (IPU)

IPUx_ALT_CUR_1 field descriptions (continued)

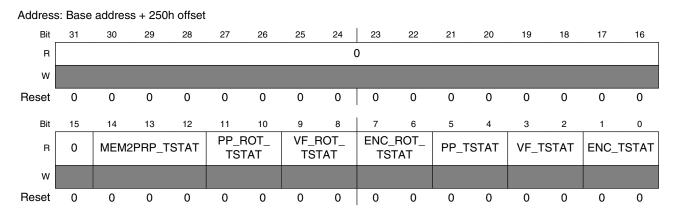

Field	Description
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
8–2	This read-only field is reserved and always has the value 0.
Reserved	
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
1	Current Buffer. This bit indicates which buffer is in use by DMA when double buffer mode is selected.
DMA_CH_ALT_ CUR_BUF0_n	n Indicates the corresponding DMA channel number.
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.
0	This read-only field is reserved and always has the value 0.
Reserved	
	0 Current buffer used by DMA is buffer 0.
	1 Current buffer used by DMA is buffer 1.

37.5.71 Shadow Registers Memory Status Register (IPUx_SRM_STAT)

The register contains status bits of SRM updates. There is a bit for each block. The bit is set when the SRM is currently updating the module's registers. When the SRM completes updating the registers of the block the bit is cleared. SW should not update the block's registers while it is being updated by the SRM.

Chapter 37 Image Processing Unit (IPU)

IPUx_SRM_STAT field descriptions

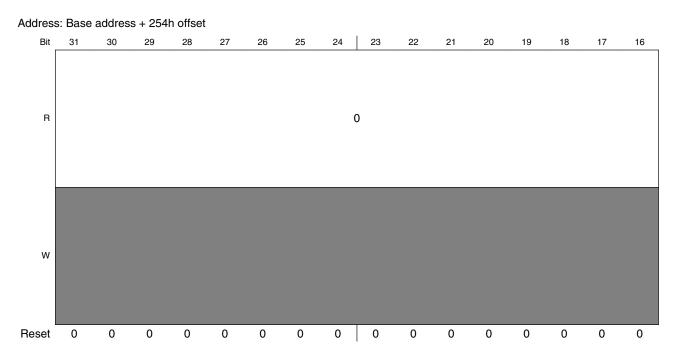

Field	Description
31–10 Reserved	This read-only field is reserved and always has the value 0.
9 DI1_SRM_STAT	DI1 SRM STAT This bit indicates that the SRM is currently updating the DI1 registers 1 SRM is busy updating the DI1 registers 0 SRM is not updating the DI1 registers
8 DIO_SRM_STAT	DI0 SRM STAT This bit indicates that the SRM is currently updating the DI0 registers 1 SRM is busy updating the DI0 registers 0 SRM is not updating the DI0 registers
7 CSI1_SRM_ STAT	CSI1_SRM_STAT
6 CSIO_SRM_ STAT	CSI1_SRM_STAT
5 DC_6_SRM_ STAT	DC group #6 SRM STAT This bit indicates that the SRM is currently updating the DC group #6 registers

IPUx_SRM_STAT field descriptions (continued)

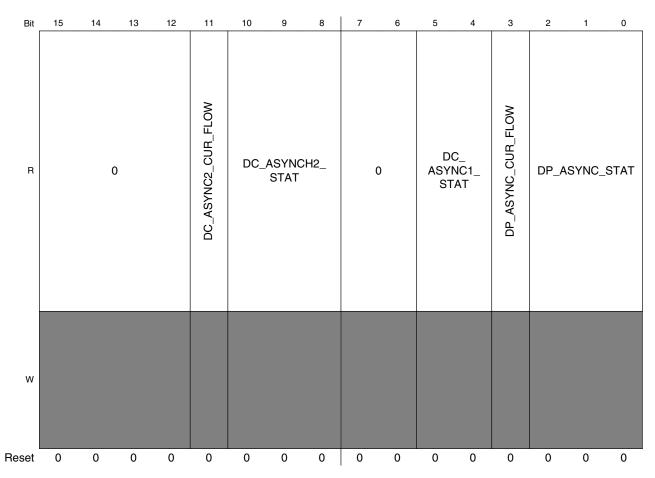
Field	Description
	1 SRM is busy updating the DC registers
	0 SRM is not updating the DC registers
4	DC group #2 SRM STAT
DC_2_SRM_ STAT	This bit indicates that the SRM is currently updating the DC group #2 registers
	1 SRM is busy updating the DC group #6 registers
	0 SRM is not updating the DC group #2 registers
3	This read-only field is reserved and always has the value 0.
Reserved	
2	DP ASYNC1 FLOW SRM STAT
DP_A1_SRM_ STAT	This bit indicates that the SRM is currently updating the DP async flow 1 registers
	1 SRM is busy updating the DP sync flow registers
	0 SRM is not updating the DP sync flow registers
1	DP ASYNC0 FLOW SRM STAT
DP_A0_SRM_ STAT	This bit indicates that the SRM is currently updating the DP async flow 0 registers
	1 SRM is busy updating the DP async flow 0 registers
	0 SRM is not updating the DP async flow 0 registers
0	DP SYNC FLOW SRM STAT
DP_S_SRM_ STAT	This bit indicates that the SRM is currently updating the DP sync flow registers
	1 SRM is busy updating the DP sync flow registers
	0 SRM is not updating the DP sync flow registers

37.5.72 Processing Status Tasks Register (IPUx_PROC_TASKS_STAT)

This register contains status bits for IPU's tasks.


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_PROC_TASKS_STAT field descriptions


Field	Description
31–15 Reserved	This read-only field is reserved and always has the value 0.
14–12 MEM2PRP_	Status of the pre processing tasks (viewfinder and encoding) when the source is coming from the memory.
TSTAT	000 IDLE - Both pre processing tasks are idle
	001 BOTH_ACTIVE - Both pre processing tasks are idle
	010 ENC_ACTIVE - Encoding task is active
	011 VF_ACTIVE - View finder task is active
	100 BOTH_PAUSE - both tasks are paused
	101 Reserved
	110 Reserved
	111 Reserve
11–10 PP_ROT_TSTAT	Status of the rotation for post processing task
	00 IDLE - The task is idle
	01 ACTIVE - The primary flow of this task is currently active
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready
9–8 VF_ROT_TSTAT	Status of the rotation for viewfinder task
VI_IIOI_IOIAI	00 IDLE - The task is idle
	01 ACTIVE - The primary flow of this task is currently active
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready
7–6 ENC_ROT_	Status of the rotation for encoding task
TSTAT	00 IDLE - The task is idle
	01 ACTIVE - The primary flow of this task is currently active
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready
5–4 PP_TSTAT	Status of the post processing task
_	00 IDLE - The task is idle
	01 ACTIVE - The primary flow of this task is currently active
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready
3–2 VF_TSTAT	Status of the viewfinder task
	00 IDLE - The task is idle
	01 ACTIVE - The primary flow of this task is currently active
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready
ENC_TSTAT	Status of the encoding task
	00 IDLE - The task is idle
	01 ACTIVE - The primary flow of this task is currently active
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready

37.5.73 Display Tasks Status Register (IPUx_DISP_TASKS_STAT)

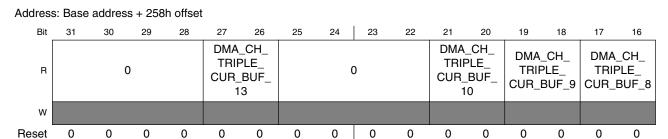
This register contains status bits for IPU's tasks.

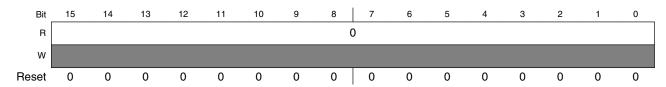
Chapter 37 Image Processing Unit (IPU)

IPUx_DISP_TASKS_STAT field descriptions

Field	Description					
31–12 Reserved	his read-only field is reserved and always has the value 0.					
11 DC_ASYNC2_ CUR_FLOW	Current asynchronous #2 flow via the DC 1 alternate flow 0 main flow					
10–8 DC_ASYNCH2_ STAT	Status of the Asynchronous flow #2 through the DC 000 IDLE - the task is idle 001 PRIM_ACTIVE - The primary flow of this task is currently active 010 ALT_ACTIVE - The alternate flow of this task is currently active 011 UPDATE_PARAM - The FSU is busy updating parameters from the SRM 100 PAUSE - The task is paused 101 Reserved 110 Reserved					
7–6 Reserved	This read-only field is reserved and always has the value 0.					

Table continues on the next page...

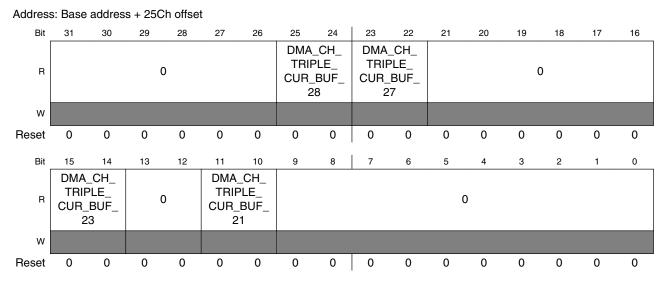

IPUx_DISP_TASKS_STAT field descriptions (continued)


Field	Description						
5–4	Status of the Asynchronous flow #1 through the DC (ch 28)						
DC_ASYNC1_	0 IDLE - The task is idle						
STAT							
	01 ACTIVE - This task is currently active						
	10 WAIT_FOR_ READY - The task is waiting for a buffer to be ready						
3	Current asynchronous flow via the DP						
DP_ASYNC_							
CUR_FLOW	1 alternate flow						
	0 main flow						
DP_ASYNC_	Status of the Asynchronous flow through the DP						
STAT							
	000 IDLE - the task is idle						
	001 PRIM_ACTIVE - The primary flow of this task is currently active						
	010 ALT_ACTIVE - The alternate flow of this task is currently active						
	011 UPDATE_PARAM - The FSU is busy updating parameters from the SRM						
	100 PAUSE - The task is paused						
	101 Reserved						
	110 Reserved						
	111 Reserved						

37.5.74 Triple Current Buffer Register 0 (IPUx_TRIPLE_CUR_BUF_0)

This register contains the current buffer status information for triple buffer mode for each DMA channel.

- Hide VPU_SUB_FRAME_SYNC for all versions
- Show VPU_SUB_FRAME_SYNC for IPUv3H version.
- The table below tagged with other settings (like IPU3M_only) should be hidden in IPUv3H version.
- This requires some sophisticated conditional tag settings



IPUx_TRIPLE_CUR_BUF_0 field descriptions

Field	Description						
31–28 Reserved	This read-only field is reserved and always has the value 0.						
27–26 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.						
TRIPLE_CUR_ BUF_13	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)						
	11 NA						
	00 Current buffer used by DMA is buffer 0.						
	01 Current buffer used by DMA is buffer 1.						
	10 Current buffer used by DMA is buffer 2.						
25–22 Reserved	This read-only field is reserved and always has the value 0.						
21-20 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.						
TRIPLE_CUR_ BUF_10	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)						
	11 NA						
	00 Current buffer used by DMA is buffer 0.						
	01 Current buffer used by DMA is buffer 1.						
	10 Current buffer used by DMA is buffer 2.						
19-18 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.						
TRIPLE_CUR_ BUF_9	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)						
	11 NA						
	00 Current buffer used by DMA is buffer 0.						
	01 Current buffer used by DMA is buffer 1.						
	10 Current buffer used by DMA is buffer 2.						
17-16 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.						
TRIPLE_CUR_ BUF_8	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)						
	11 NA						
	00 Current buffer used by DMA is buffer 0.						
	01 Current buffer used by DMA is buffer 1.						
	10 Current buffer used by DMA is buffer 2.						
Reserved	This read-only field is reserved and always has the value 0.						

37.5.75 Triple Current Buffer Register 1 (IPUx_TRIPLE_CUR_BUF_1)

This register contains the current buffer status information for triple buffer mode for each DMA channel.

IPUx_TRIPLE_CUR_BUF_1 field descriptions

Field	Description						
31–26 Reserved	This read-only field is reserved and always has the value 0.						
25–24 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.						
TRIPLE_CUR_ BUF_28	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)						
	11 NA						
	00 Current buffer used by DMA is buffer 0.						
	01 Current buffer used by DMA is buffer 1.						
	10 Current buffer used by DMA is buffer 2.						
23-22 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.						
TRIPLE_CUR_ BUF_27	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)						
	11 NA						
	00 Current buffer used by DMA is buffer 0.						
	01 Current buffer used by DMA is buffer 1.						
	10 Current buffer used by DMA is buffer 2.						

IPUx_TRIPLE_CUR_BUF_1 field descriptions (continued)

Field	Description
21–16 Reserved	This read-only field is reserved and always has the value 0.
15–14 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.
TRIPLE_CUR_ BUF_23	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)
	11 NA
	00 Current buffer used by DMA is buffer 0.
	01 Current buffer used by DMA is buffer 1.
	10 Current buffer used by DMA is buffer 2.
13–12 Reserved	This read-only field is reserved and always has the value 0.
11-10 DMA_CH_	Current Buffer for triple buffer mode. This bits indicate which buffer is in use by the DMA when triple buffer mode is selected.
TRIPLE_CUR_ BUF_21	Each pair of bits indicate the corresponding DMA channel (bits [1:0] correspond to ch #0; (bits [3:2] correspond to ch #1, etc.)
	11 NA
	00 Current buffer used by DMA is buffer 0.
	01 Current buffer used by DMA is buffer 1.
	10 Current buffer used by DMA is buffer 2.
Reserved	This read-only field is reserved and always has the value 0.

37.5.76 IPU Channels Buffer 0 Ready 0 Register (IPUx_CH_BUF0_RDY0)

The register contains buffer 0 ready control information for 32 IPU's DMA channels (31-0). This register can be a write one to set or a write one to clear according to the IPU_CH_BUF0_RDY0_CLR bit.

The register is shown in IPU Channels Buffer 0 Ready 0 Register (IPU_CH_BUF0_RDY0), and the register fields are described in IPU Channels Buffer 0 Ready 0 Register (IPU_CH_BUF0_RDY0).

Address: Base address + 268h offset

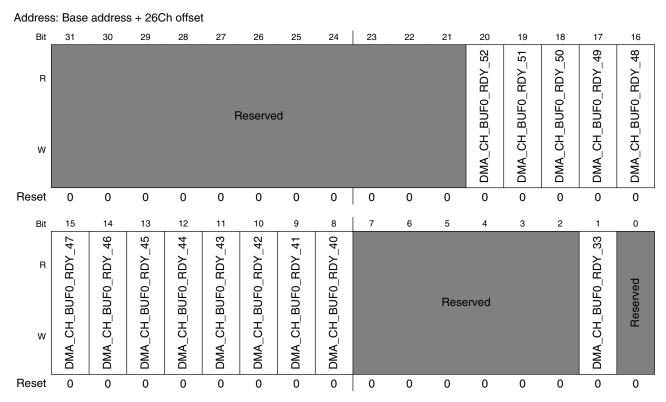
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	1A_CH_BUF0_RDY_31	Reserved	IA_CH_BUF0_RDY_29	1A_CH_BUF0_RDY_28	1A_CH_BUF0_RDY_27	Rese	erved	DMA_CH_BUF0_RDY_24	IA_CH_BUF0_RDY_23	A_CH_BUF0_RDY_22	1A_CH_BUF0_RDY_21	1A_CH_BUF0_RDY_20	Reserved	DMA_CH_BUF0_RDY_18	1A_CH_BUF0_RDY_17	Reserved
	DMA		DMA	DMA	DMA			۵	DMA	DMA	DMA	DMA			DMA	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	BUF0_RDY_15	BUF0_RDY_14	BUF0_RDY_13	BUF0_RDY_12	FO_RDY_11	FO_RDY_10	BUF0_RDY_9	BUF0_RDY_8	BUF0_RDY_7	BUF0_RDY_6	_BUF0_RDY_5	BUF0_RDY_4	BUF0_RDY_3	BUF0_RDY_2	BUF0_RDY_1	CH_BUF0_RDY_0
w	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BUF0_	DMA_CH_BUF0_	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BU	DMA_CH_BL
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_CH_BUF0_RDY0 field descriptions

Field	Description
31 DMA_CH_BUF0_ RDY 31	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready.
1.51_61	1 Buffer 0 is ready.
30 -	This field is reserved. Reserved.
29 DMA_CH_BUF0_ RDY_29	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
28 DMA_CH_BUF0_ RDY_28	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
27 DMA_CH_BUF0_ RDY_27	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
26–25 -	This field is reserved. Reserved.
24 DMA_CH_BUF0_ RDY_24	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.

IPUx_CH_BUF0_RDY0 field descriptions (continued)

Field	Description
23 DMA_CH_BUF0_ RDY_23	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
22 DMA_CH_BUF0_ RDY_22	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
21 DMA_CH_BUF0_ RDY_21	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
20 DMA_CH_BUF0_ RDY_20	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
19 -	This field is reserved. Reserved.
18 DMA_CH_BUF0_ RDY_18	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
17 DMA_CH_BUF0_ RDY_17	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
16 -	This field is reserved. Reserved.
15 DMA_CH_BUF0_ RDY_15	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
14 DMA_CH_BUF0_ RDY_14	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
13 DMA_CH_BUF0_ RDY_13	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
12 DMA_CH_BUF0_ RDY_12	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
11 DMA_CH_BUF0_ RDY_11	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.


Table continues on the next page...

IPUx_CH_BUF0_RDY0 field descriptions (continued)

Field	Description
10 DMA_CH_BUF0_ RDY_10	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
9 DMA_CH_BUF0_ RDY_9	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
8 DMA_CH_BUF0_ RDY_8	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
7 DMA_CH_BUF0_ RDY_7	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
6 DMA_CH_BUF0_ RDY_6	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
5 DMA_CH_BUF0_ RDY_5	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
4 DMA_CH_BUF0_ RDY_4	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
3 DMA_CH_BUF0_ RDY_3	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
2 DMA_CH_BUF0_ RDY_2	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
1 DMA_CH_BUF0_ RDY_1	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
0 DMA_CH_BUF0_ RDY_0	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.

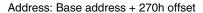
37.5.77 IPU Channels Buffer 0 Ready 1 Register (IPUx_CH_BUF0_RDY1)

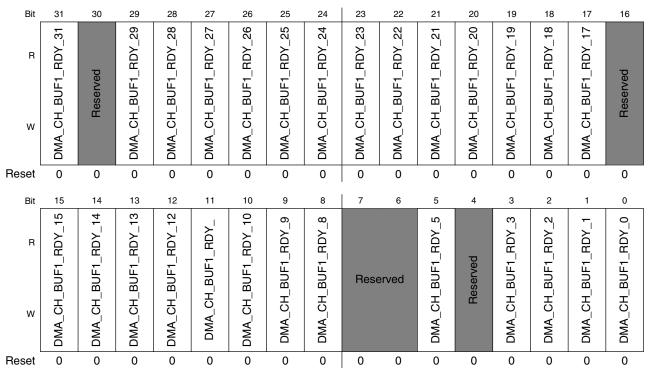
The register contains buffer 0 ready control information for 32 IPU's DMA channels (63-32). This register can be a write one to set or a write one to clear according to the IPU_CH_BUF0_RDY1_CLR bit.

IPUx CH BUF0 RDY1 field descriptions

Field	Description
31–21 -	This field is reserved. Reserved.
20 DMA_CH_BUF0_ RDY_52	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
19 DMA_CH_BUF0_ RDY_51	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.

IPUx_CH_BUF0_RDY1 field descriptions (continued)


Field	Description
18 DMA_CH_BUF0_ RDY_50	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready.
HD1_50	1 Buffer 0 is ready.
17 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_49	0 Buffer 0 is not ready.1 Buffer 0 is ready.
16 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_48	0 Buffer 0 is not ready.1 Buffer 0 is ready.
15 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_47	0 Buffer 0 is not ready.1 Buffer 0 is ready.
14 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_46	0 Buffer 0 is not ready.1 Buffer 0 is ready.
13	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF0_ RDY_45	0 Buffer 0 is not ready.
1151_10	1 Buffer 0 is ready.
12 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_44	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
11 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_43	0 Buffer 0 is not ready.1 Buffer 0 is ready.
10	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF0_ RDY_42	0 Buffer 0 is not ready.
_	1 Buffer 0 is ready.
9	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF0_ RDY_41	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
8 DMA_CH_BUF0_	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
RDY_40	0 Buffer 0 is not ready.1 Buffer 0 is ready.
7–2	This field is reserved.
	Reserved.
1 DMA_CH_BUF0_ RDY_33	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.


IPUx_CH_BUF0_RDY1 field descriptions (continued)

Field	Description					
	0 Buffer 0 is not ready.					
	1 Buffer 0 is ready.					
0	This field is reserved.					
-	Reserved.					

37.5.78 IPU Channels Buffer 1 Ready 0 Register (IPUx_CH_BUF1_RDY0)

The register contains buffer 1 ready control information for 32 IPU's DMA channels (31-0). This register can be a write one to set or a write one to clear according to the IPU_CH_BUF1_RDY0_CLR bit.

IPUx_CH_BUF1_RDY0 field descriptions

Field	Description
31	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1_	
RDY_31	

Table continues on the next page...

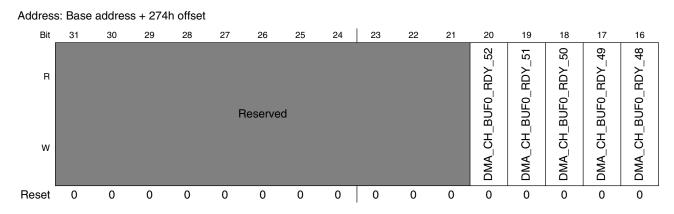
IPUx_CH_BUF1_RDY0 field descriptions (continued)

DMA_CH_BUF1_RDY_29 DMA_CH_BUF1_RDY_29 DMA_CH_BUF1_RDY_29 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_27 DMA_CH_BUF1_RDY_28 DMA_CH_BUF1_RDY_28 DMA_CH_BUF1_RDY_28 DMA_CH_BUF1_RDY_29 DMA_CH	Field	Description
This field is reserved. Reserved. 29 DMA_CH_BUF1 RDY_29 28 DMA_CH_BUF1 RDY_28 27 DMA_CH_BUF1 RDY_27 28 DMA_CH_BUF1 RDY_27 29 DMA_CH_BUF1 RDY_28 20 DMA_CH_BUF1 RDY_28 20 DMA_CH_BUF1 RDY_28 21 DMA_CH_BUF1 RDY_28 25 DMA_CH_BUF1 RDY_28 26 DMA_CH_BUF1 RDY_26 27 DMA_CH_BUF1 RDY_27 28 DMA_CH_BUF1 RDY_28 29 DMA_CH_BUF1 RDY_29 20 DMA_CH_BUF1 RDY_25 20 DMA_CH_BUF1 RDY_25 21 DMA_CH_BUF1 RDY_24 21 DMA_CH_BUF1 RDY_24 22 DMA_CH_BUF1 RDY_24 23 DMA_CH_BUF1 RDY_25 25 DMA_CH_BUF1 RDY_26 26 DMA_CH_BUF1 RDY_27 27 DMA_CH_BUF1 RDY_28 28 DMA_CH_BUF1 RDY_29 29 DMA_CH_BUF1 RDY_29 20 DMA_CH_BUF1 RDY_29 20 DMA_CH_BUF1 RDY_29 21 DMA_CH_BUF1 RDY_29 22 DMA_CH_BUF1 RDY_29 30 DMA_CH_		
Page 29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_28 DMA_CH_BUF1 RDY_28 DMA_CH_BUF1 RDY_28 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_27 DMA_CH_BUF1 RDY_27 DMA_CH_BUF1 RDY_27 DMA_CH_BUF1 RDY_28 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_25 DMA_CH_BUF1 RDY_25 DMA_CH_BUF1 RDY_25 DMA_CH_BUF1 RDY_26 DMA_CH_BUF1 RDY_26 DMA_CH_BUF1 RDY_27 DMA_CH_BUF1 RDY_28 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_23 DMA_CH_BUF1 RDY_23 DMA_CH_BUF1 RDY_24 DMA_CH_BUF1 RDY_29 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_21 DMA_C		1 Buffer 0 is ready.
DMA_CH_BUF1_RDY_29 0 Buffer 0 is not ready. 28 DMA_CH_BUF1_RDY_28 1 Buffer 0 is ready. 27 DMA_CH_BUF1_RDY_27 0 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 28 DMA_CH_BUF1_RDY_27 0 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 28 DMA_CH_BUF1_RDY_27 1 Buffer 0 is not ready. 29 DMA_CH_BUF1_RDY_26 1 Buffer 0 is not ready. 20 DMA_CH_BUF1_RDY_25 1 Buffer 0 is not ready. 21 DMA_CH_BUF1_RDY_26 1 Buffer 0 is not ready. 22 DMA_CH_BUF1_RDY_24 1 Buffer 0 is not ready. 23 DMA_CH_BUF1_RDY_24 1 Buffer 0 is ready. 24 DMA_CH_BUF1_RDY_23 1 Buffer 0 is not ready. 25 DMA_CH_BUF1_RDY_23 1 Buffer 0 is not ready. 27 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 28 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 29 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 20 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 21 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 22 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 23 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 24 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 25 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 26 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 27 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 28 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 29 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 30 Buffer 0 is not ready. 31 Buffer 0 is not ready. 32 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 32 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 33 Buffer 0 is not ready. 34 Buffer 0 is not ready. 35 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 36 Buffer 0 is not ready. 37 Buffer 0 is not ready. 38 Buffer 0 is not ready. 39 Buffer 0 is not ready. 40 Buffer 0 is not ready. 41 Buffer 0 is not ready. 42 Buffer 0 is not ready. 43 Buffer 0 is not ready. 44 Buffer 0 is not ready. 45 Buffer 0 is not ready. 46 Buffer 0 is no		
BDY_29 0 Buffer 0 is not ready. 28 DMA_CH_BUF1 RDY_28 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 27 DMA_CH_BUF1 RDY_27 1 Buffer 0 is not ready. 28 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 29 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 29 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 29 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 29 Buffer 0 is not ready. 20 Buffer 0 is not ready. 30 Buffer 0 is not ready. 31 Buffer 0 is ready. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 32 Buffer 0 is not ready. 33 Buffer 0 is ready. 34 Buffer 0 is ready. 35 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 36 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 37 Buffer 0 is ready. 38 Buffer 0 is not ready. 39 Buffer 0 is not ready. 40 Buffer 0 is not ready. 41 Buffer 0 is ready. 42 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 42 Buffer 0 is ready. 43 Buffer 0 is not ready. 44 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 45 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 46 Buffer 0 is ready. 47 Buffer 0 is ready. 48 Buffer 0 is not ready. 49 Buffer 0 is not ready. 40 Buffer 0 is not ready. 40 Buffer 0 is not ready. 40 Buffer 0 is not ready. 41 Buffer 0 is not ready. 42 Buffer 0 is not ready. 43 Buffer 0 is not ready. 44 Buffer 0 is not ready. 45 Buffer 0 is not ready. 46 Buffer 0 is not ready. 47 Buffer 0 is not ready. 48 Buffer 0 is not ready. 49 Buffer 0 is not ready. 40 Buffer 0		Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 27 DMA_CH_BUF1_RDY_27 1 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 28 DMA_CH_BUF1_RDY_27 1 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 28 DMA_CH_BUF1_RDY_28 29 DMA_CH_BUF1_RDY_29 1 Buffer 0 is not ready. 21 DMA_CH_BUF1_RDY_28 23 DMA_CH_BUF1_RDY_29 24 DMA_CH_BUF1_RDY_29 25 DMA_CH_BUF1_RDY_29 26 DMA_CH_BUF1_RDY_29 27 DMA_CH_BUF1_RDY_29 28 DMA_CH_BUF1_RDY_29 29 DMA_CH_BUF1_RDY_29 20 DMA_CH_BUF1_RDY_21 21 DMA_CH_BUF1_RDY_21 21 DMA_CH_BUF1_RDY_21 21 DMA_CH_BUF1_RDY_21 21 DMA_CH_BUF1_RDY_21 21 DMA_CH_BUF1_RDY_21 22 DMA_CH_BUF1_RDY_21 23 DMA_CH_BUF1_RDY_21 24 DMA_CH_BUF1_RDY_29 25 DMA_CH_BUF1_RDY_29 26 DMA_CH_BUF1_RDY_29 27 DMA_CH_BUF1_RDY_29 28 Duffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 29 DMA_CH_BUF1_RDY_21 30 DMA_CH_BUF1_RDY_21 31 DMA_CH_BUF1_RDY_20 32 DMA_CH_BUF1_RDY_21 34 DMFT 0 is not ready. 35 DMA_CH_BUF1_RDY_21 36 DMFT 0 is not ready. 36 DMFT 0 is ready. 37 DMA_CH_BUF1_RDY_21 38 DMFT 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 38 DMFT 0 is ready. 39 DMA_CH_BUF1_RDY_20 30 DMA_CH_BUF		
DMA_CH_BUF1_ RDY_28	28	·
27 DMA_CH_BUF1 RDY_23 28 DMA_CH_BUF1 RDY_24 29 DMA_CH_BUF1 RDY_25 20 DMA_CH_BUF1 RDY_26 21 DMA_CH_BUF1 RDY_27 22 DMA_CH_BUF1 RDY_28 23 DMA_CH_BUF1 RDY_28 23 DMA_CH_BUF1 RDY_28 24 DMA_CH_BUF1 RDY_29 25 DMA_CH_BUF1 RDY_29 26 DMA_CH_BUF1 RDY_29 27 DMA_CH_BUF1 RDY_29 28 DMA_CH_BUF1 RDY_29 29 DMA_CH_BUF1 RDY_29 20 DMA_CH_BUF1 RDY_29 21 DMA_CH_BUF1 RDY_29 22 DMA_CH_BUF1 RDY_29 23 DMA_CH_BUF1 RDY_29 24 DMA_CH_BUF1 RDY_29 25 DMA_CH_BUF1 RDY_29 26 DMA_CH_BUF1 RDY_29 27 DMA_CH_BUF1 RDY_29 28 DMA_CH_BUF1 RDY_29 29 DMA_CH_BUF1 RDY_29 20 DMA_CH_BUF1 RDY_20 30 Buffer 0 is not ready. 31 Buffer 0 is paday. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 33 Buffer 0 is not ready. 34 Buffer 0 is not ready. 35 Buffer 0 is not ready. 36 Buffer 0 is not ready. 37 Buffer 0 is not ready. 38 Buffer 0 is not ready. 39 Buffer 0 is not ready. 30 Buffer 0 is not ready. 30 Buffer 0 is not ready. 31 Buffer 0 is not ready. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 30 Buffer 0 is not ready. 31 Buffer 0 is not ready. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 31 Buffer 0 is not ready. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 31 Buffer 0 is not ready. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 32 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 34 Buffer 0 is not ready. 35 Buffer 0 is not ready. 36 Buffer 0 is not ready. 37 Buffer 0 is not ready. 38 Buffer 0 is not ready. 39 Buffer 0 is not ready. 30 Buffer 0 is not ready. 30 Buffer 0 is not ready. 31 Buffer 0 is not ready. 31 Buffer 0 is not ready. 32 Buffer 0 is not ready. 34 Buffer 0 is not ready. 35 Buffer 0 is not ready. 36 Buffer 0 is not ready. 37 Buffer 0 is not ready. 38 Buffer 0 is not ready. 39 Buffer 0 is not ready. 30 Buffer 0 is not	DMA_CH_BUF1_	
DMA_CH_BUF1 RDY_27 RDY_28 Buffer 0 is not ready. 1 Buffer 0 is not ready. 26 DMA_CH_BUF1 RDY_28 Buffer 0 is not ready. 1 Buffer 0 is not ready. 27 DMA_CH_BUF1 RDY_29 Buffer 0 is not ready. 28 DMA_CH_BUF1 RDY_29 Buffer 0 is not ready. 1 Buffer 0 is not ready. 29 DMA_CH_BUF1 RDY_29 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1 RDY_21 0 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1 RDY_20 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1 RDY_19 Buffer 0 is not ready. 1	1101_20	
RDY_27 0 Buffer 0 is not ready. 1 Buffer 0 is ready. 28 DMA_CH_BUF1 RDY_28 1 Buffer 0 is ready. 2 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 2 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 2 Buffer 0 is not ready. 1 Buffer 0 is not ready. 2 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 2 Buffer 0 is not ready. 1 Buffer 0 is not ready.		Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
26 DMA_CH_BUF1_RDY_26		0 Buffer 0 is not ready.
DMA_CH_BUF1_RDY_26 0 Buffer 0 is not ready. 1 Buffer 1 is ready. Buffer 1 is ready. 1 Buffer 0 is not ready. 25 DMA_CH_BUF1_RDY_25 0 Buffer 0 is not ready. 1 Buffer 0 is not ready. 24 DMA_CH_BUF1_RDY_24 0 Buffer 0 is ready. 27 DMA_CH_BUF1_RDY_24 0 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 28 DMA_CH_BUF1_RDY_23 DMA_CH_BUF1_RDY_23 DMA_CH_BUF1_RDY_23 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 20 DMA_CH_BUF1_RDY_20 21 DMA_CH_BUF1_RDY_20 22 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 20 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 21 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 22 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 25 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 26 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 DMA_CH_BUF1_RDY_19 DMA_CH_BU	_	
RDY_26	_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1 RDY_25 DMA_CH_BUF1 RDY_24 DMA_CH_BUF1 RDY_24 DMA_CH_BUF1 RDY_24 DMA_CH_BUF1 RDY_23 DMA_CH_BUF1 RDY_23 DMA_CH_BUF1 RDY_22 DMA_CH_BUF1 RDY_22 DMA_CH_BUF1 RDY_22 DMA_CH_BUF1 RDY_22 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_22 DMA_CH_BUF1 RDY_21 DMA_CH_BUF1 RDY_20 DMA_CH_BUF1 RDY_19 DMA_CH		
DMA_CH_BUF1_RDY_25 Buffer 0 is not ready. 24 DMA_CH_BUF1_RDY_24 23 DMA_CH_BUF1_RDY_23 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 2 Buffer 0 is not ready. 1 Buffer 0 is not ready. 2 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 2 Buffer 0 is not ready. 3 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 4 Buffer 0 is ready. 5 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 6 Buffer 0 is not ready. 7 Buffer 0 is ready. 8 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 8 Buffer 0 is not ready. 8 Buffer 0 is not ready. 8 Buffer 0 is ready. 8 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 9 Buffer 0 is ready. 1 Buffer 0 is not ready.		,
1 Buffer 0 is ready. 24 DMA_CH_BUF1_RDY_24 DMA_CH_BUF1_RDY_24 23 DMA_CH_BUF1_RDY_23 DMA_CH_BUF1_RDY_23 DMA_CH_BUF1_RDY_24 20 DMA_CH_BUF1_RDY_22 DMA_CH_BUF1_RDY_22 DMA_CH_BUF1_RDY_22 DMA_CH_BUF1_RDY_22 DMA_CH_BUF1_RDY_22 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 DMA_CH_BUF1_RDY_21 Buffer 0 is not ready. 1 Buffer 0 is not ready. 1 Buffer 0 is ready. DMA_CH_BUF1_RDY_21 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready. DMA_CH_BUF1_RDY_20 DMA_CH_BUF1_RDY_20 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_RDY_20 DMA_CH_BUF1_RDY_19 Buffer 0 is not ready. 1 Buffer 0 is not ready.		Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1_RDY_24 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.		
DMA_CH_BUF1_ RDY_24 0 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_23 DMA_CH_BUF1_ RDY_24 0 Buffer 0 is not ready. 1 Buffer 0 is ready. DMA_CH_BUF1_ RDY_25 DMA_CH_BUF1_ RDY_26 DMA_CH_BUF1_ RDY_21 DMA_CH_BUF1_ RDY_21 0 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_21 0 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_20 DMA_CH_BUF1_ RDY_20 Buffer 0 is not ready. 1 Buffer 0 is not ready. 1 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.	0.4	•
1 Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_RDY_23 Buffer 0 is not ready. 1 Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. 1 Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.		
DMA_CH_BUF1_ RDY_23 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_22 Buffer 0 is not ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is not ready. Buffer 0 is ready. Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_21 Buffer 0 is not ready. Buffer 0 is not ready. Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.	RDY_24	
DMA_CH_BUF1_RDY_23	23	•
1 Buffer 0 is ready. 22 DMA_CH_BUF1_RDY_22 DMA_CH_BUF1_RDY_22 0 Buffer 0 is not ready. 1 Buffer 0 is ready. 21 DMA_CH_BUF1_RDY_21 0 Buffer 0 is ready. 21 DMA_CH_BUF1_RDY_21 0 Buffer 0 is not ready. 20 DMA_CH_BUF1_RDY_20 20 DMA_CH_BUF1_RDY_20 Buffer 0 is not ready. 20 DMA_CH_BUF1_RDY_20 DMA_CH_BUF1_RDY_20 0 Buffer 0 is not ready. 21 Buffer 0 is ready. 22 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 23 Buffer 0 is ready. 3 Buffer 0 is not ready. 4 Buffer 0 is not ready. 5 Buffer 0 is not ready. 6 Buffer 0 is not ready. 7 Buffer 0 is not ready. 8 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 8 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 8 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 8 Buffer 1 is ready. 9 Buffer 0 is not ready.	DMA_CH_BUF1_	
DMA_CH_BUF1_ RDY_22 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_21 Buffer 0 is not ready. DMA_CH_BUF1_ RDY_21 DMA_CH_BUF1_ RDY_20 Buffer 0 is not ready. 0 Buffer 0 is not ready. 1 Buffer 0 is not ready. 0 Buffer 0 is not ready. 1 Buffer 0 is not ready. 1 Buffer 0 is not ready. 1 Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_20 Buffer 0 is not ready. 1 Buffer 0 is not ready.	RDY_23	
DMA_CH_BUF1_ RDY_22 0 Buffer 0 is not ready. 1 Buffer 0 is ready. 21 DMA_CH_BUF1_ RDY_21 0 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready. 20 DMA_CH_BUF1_ RDY_20 0 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is not ready. 1 Buffer 0 is ready. 1 Buffer 0 is ready. 1 Buffer 0 is ready. 0 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 0 Buffer 0 is not ready.	22	·
21 DMA_CH_BUF1_ RDY_21 20 DMA_CH_BUF1_ RDY_20 Buffer 0 is not ready. 20 DMA_CH_BUF1_ RDY_20 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_20 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. 1 Buffer 0 is not ready. Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is ready. 19 DMA_CH_BUF1_ RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 Buffer 0 is not ready.	DMA_CH_BUF1_	
DMA_CH_BUF1_ RDY_21 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_21 Buffer 0 is not ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_20 Buffer 0 is not ready. Buffer 0 is not ready. Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 1 is ready. Buffer 0 is not ready.	RDY_22	
DMA_CH_BUF1_ RDY_21	21	·
1 Buffer 0 is ready. 20 DMA_CH_BUF1_ RDY_20 19 DMA_CH_BUF1_ RDY_19 10 Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is ready. 1 Buffer 0 is not ready. 1 Buffer 0 is ready. DMA_CH_BUF1_ RDY_19 0 Buffer 0 is not ready. 0 Buffer 0 is not ready.	DMA_CH_BUF1_	
20 DMA_CH_BUF1_ RDY_20 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.	RDY_21	
DMA_CH_BUF1_ RDY_20 0 Buffer 0 is not ready. 1 Buffer 0 is ready. 19 DMA_CH_BUF1_ RDY_19 0 Buffer 0 is not ready. 0 Buffer 0 is not ready. 10 Buffer 0 is not ready. 10 Buffer 0 is not ready.	20	
1 Buffer 0 is ready. 19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. DMA_CH_BUF1_ RDY_19 0 Buffer 0 is not ready.	DMA_CH_BUF1_	
19 DMA_CH_BUF1_ RDY_19 Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready.		·
DMA_CH_BUF1_ RDY_19 0 Buffer 0 is not ready.	19	
	DMA_CH_BUF1_	

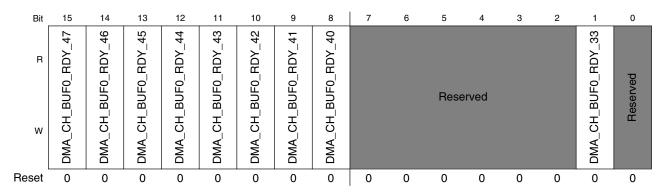
IPUx_CH_BUF1_RDY0 field descriptions (continued)

Field	Description
18 DMA_CH_BUF1_ RDY_18	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
17 DMA_CH_BUF1_ RDY_17	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
16 -	This field is reserved. Reserved.
15 DMA_CH_BUF1_ RDY_15	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
14 DMA_CH_BUF1_ RDY_14	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
13 DMA_CH_BUF1_ RDY_13	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
12 DMA_CH_BUF1_ RDY_12	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
11 DMA_CH_BUF1_ RDY_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
10 DMA_CH_BUF1_ RDY_10	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
9 DMA_CH_BUF1_ RDY_9	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
8 DMA_CH_BUF1_ RDY_8	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.
7–6 -	This field is reserved. Reserved.
5 DMA_CH_BUF1_ RDY_5	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. Buffer 0 is not ready. Buffer 0 is ready.

Table continues on the next page...


IPUx_CH_BUF1_RDY0 field descriptions (continued)

Field	Description
4	This field is reserved.
-	Reserved.
3	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1_	
RDY_3	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
2	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1_	
RDY_2	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
1	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1_	
RDY_1	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
0	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_BUF1_	
RDY_0	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.

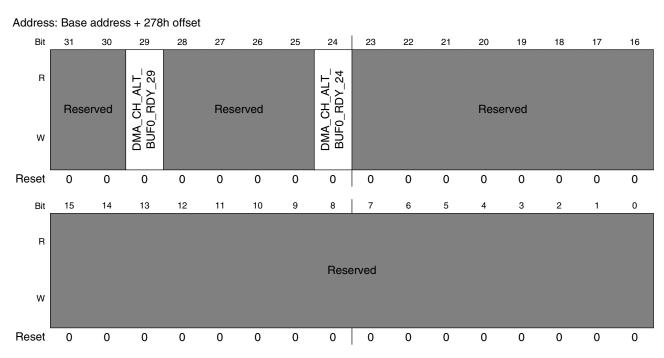

37.5.79 IPU Channels Buffer 1 Ready 1Register (IPUx_CH_BUF1_RDY1)

The register contains buffer 0 ready control information for 32 IPU's DMA channels (63-32). This register can be a write one to set or a write one to clear according to the IPU_CH_BUF1_RDY1_CLR bit.

The register is shown in IPU Channels Buffer 1 Ready 1Register (IPU_CH_BUF1_RDY1), and the register fields are described in IPU Channels Buffer 1 Ready 1Register (IPU_CH_BUF1_RDY1).

Chapter 37 Image Processing Unit (IPU)

IPUx_CH_BUF1_RDY1 field descriptions

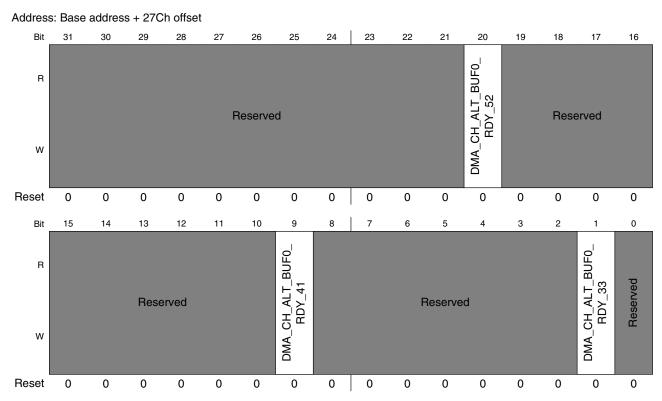

Field	Description
31–21 -	This field is reserved. Reserved.
20 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory. 0 buffer 1 is not ready.
RDY_52	1 Buffer 1 is ready.
19 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_51	0 buffer 1 is not ready.1 Buffer 1 is ready.
18	Buffer 1 is ready. Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
DMA_CH_BUF0_ RDY 50	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
17 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_49	0 buffer 1 is not ready.1 Buffer 1 is ready.
16	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
DMA_CH_BUF0_ RDY_48	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
15 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_47	buffer 1 is not ready. Buffer 1 is ready.
14	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
DMA_CH_BUF0_ RDY_46	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
13 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_45	0 buffer 1 is not ready.
	1 Buffer 1 is ready.

IPUx_CH_BUF1_RDY1 field descriptions (continued)

Field	Description
12 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_44	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
11 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_43	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
10 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_42	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
9 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_41	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
8 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_40	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
7–2 -	This field is reserved. Reserved.
1 DMA_CH_BUF0_	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
RDY_33	0 buffer 1 is not ready.
	1 Buffer 1 is ready.
0	This field is reserved.
-	Reserved.

37.5.80 IPU Alternate Channels Buffer 0 Ready 0 Register (IPUx_ALT_CH_BUF0_RDY0)

The register contains buffer 0 ready control information for 32 IPU's DMA channels (31-0). Writing "1" to each field will set each bit. Writing "0" to each field simultaneously will clear all the bits.



IPUx_ALT_CH_BUF0_RDY0 field descriptions

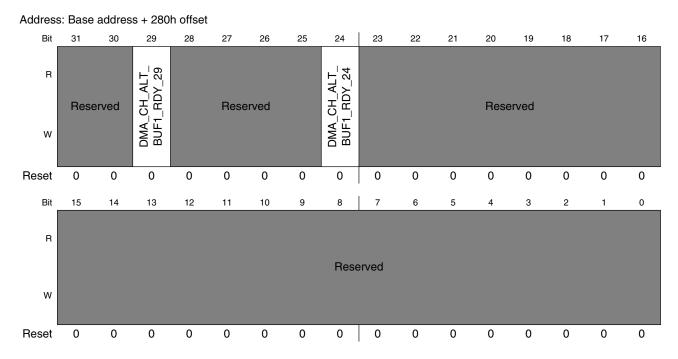
Field	Description
31–30	This field is reserved.
-	Reserved.
29	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_ALT_	
BUF0_RDY_29	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
28–25	This field is reserved.
-	Reserved.
24	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory.
DMA_CH_ALT_	
BUF0_RDY_24	0 Buffer 0 is not ready.
	1 Buffer 0 is ready.
-	This field is reserved.
	Reserved.

37.5.81 IPU Alternate Channels Buffer 0 Ready 1 Register (IPUx_ALT_CH_BUF0_RDY1)

The register contains buffer 0 ready control information for 32 IPU's DMA channels (63-32). Writing "1" to each field will set each bit. Writing "0" to each field simultaneously will clear all the bits.

IPUx ALT CH BUF0 RDY1 field descriptions

Field	Description
31–21 -	This field is reserved. Reserved.
20 DMA_CH_ALT_ BUF0_RDY_52	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
19–10 -	This field is reserved. Reserved.
9 DMA_CH_ALT_ BUF0_RDY_41	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.

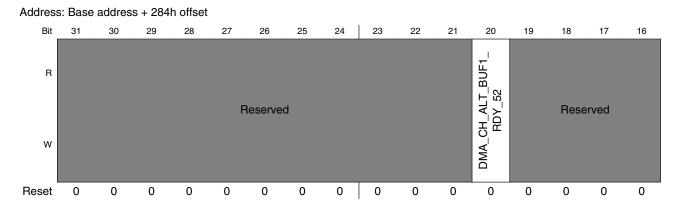

IPUx_ALT_CH_BUF0_RDY1 field descriptions (continued)

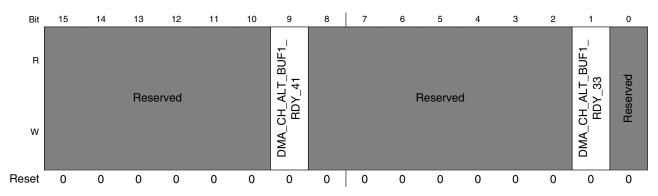
Field	Description
8–2 -	This field is reserved. Reserved.
1 DMA_CH_ALT_ BUF0_RDY_33	Buffer 0 is ready. This bit indicates that ARM platform finished/writing reading buffer 0 in memory. 0 Buffer 0 is not ready. 1 Buffer 0 is ready.
0 -	This field is reserved. Reserved.

37.5.82 IPU Alternate Channels Buffer1 Ready 0 Register (IPUx_ALT_CH_BUF1_RDY0)

The register contains buffer 1 ready control information for 32 IPU's DMA channels (31-0). Writing "1" to each field will set each bit. Writing "0" to each field simultaneously will clear all the bits.

The register is shown in IPU Alternate Channels Buffer1 Ready 0 Register (IPU_ALT_CH_BUF1_RDY0), and the register fields are described in IPU Alternate Channels Buffer1 Ready 0 Register (IPU_ALT_CH_BUF1_RDY0).


IPUx_ALT_CH_BUF1_RDY0 field descriptions

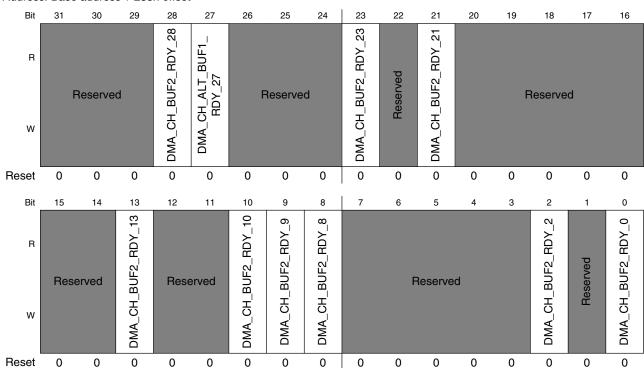

Field	Description
31–30	This field is reserved.
-	Reserved.
29	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
DMA_CH_ALT_	
BUF1_RDY_29	0 buffer 1 is not ready.
	1 buffer 1 is ready.
28–25	This field is reserved.
-	Reserved.
24	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory.
DMA_CH_ALT_	
BUF1_RDY_24	0 buffer 1 is not ready.
	1 buffer 1 is ready.
-	This field is reserved.
	Reserved.

37.5.83 IPU Alternate Channels Buffer 1 Ready 1 Register (IPUx_ALT_CH_BUF1_RDY1)

The register contains buffer 0 ready control information for 32 IPU's DMA channels (63-32). Writing "1" to each field will set each bit. Writing "0" to each field simultaneously will clear all the bits.

The register is shown in IPU Alternate Channels Buffer 1 Ready 1 Register (IPU_ALT_CH_BUF1_RDY1), and the register fields are described in IPU Alternate Channels Buffer 1 Ready 1 Register (IPU_ALT_CH_BUF1_RDY1).

IPUx_ALT_CH_BUF1_RDY1 field descriptions


Field	Description
31–21 -	This field is reserved. Reserved.
20 DMA_CH_ALT_ BUF1_RDY_52	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory. 0 buffer 1 is not ready. 1 buffer 1 is ready.
19–10 -	This field is reserved. Reserved.
9 DMA_CH_ALT_ BUF1_RDY_41	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory. 0 buffer 1 is not ready. 1 buffer 1 is ready.
8–2 -	This field is reserved. Reserved.
1 DMA_CH_ALT_ BUF1_RDY_33	Buffer 1 is ready. This bit indicates that ARM platform finished/writing reading buffer 1 in memory. 0 buffer 1 is not ready. 1 buffer 1 is ready.
0 -	This field is reserved. Reserved.

37.5.84 IPU Channels Buffer 2 Ready 0 Register (IPUx_CH_BUF2_RDY0)

The register contains buffer 2 ready control information for 32 IPU's DMA channels (31-0). This register can be a write one to set or a write one to clear according to the IPU_CH_BUF2_RDY0_CLR bit.

The register is shown in IPU Channels Buffer 2 Ready 0 Register (IPU_CH_BUF2_RDY0), and the register fields are described in IPU Channels Buffer 2 Ready 0 Register (IPU_CH_BUF2_RDY0).

Address: Base address + 288h offset

IPUx_CH_BUF2_RDY0 field descriptions

Field	Description
31–29 -	This field is reserved. Reserved.
28 DMA_CH_BUF2_ RDY_28	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory. 0 Buffer 2 is not ready. 1 Buffer 2 is ready.
27 DMA_CH_ALT_ BUF1_RDY_27	buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory. 0 buffer 2 is not ready. 1 buffer 2 is ready.
26–24 -	This field is reserved. Reserved.
23 DMA_CH_BUF2_ RDY_23	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory. 0 Buffer 2 is not ready. 1 Buffer 2 is ready.
22 -	This field is reserved. Reserved.
21 DMA_CH_BUF2_ RDY_21	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory. 0 Buffer 2 is not ready. 1 Buffer 2 is ready.
20–14	This field is reserved. Reserved.

IPUx_CH_BUF2_RDY0 field descriptions (continued)

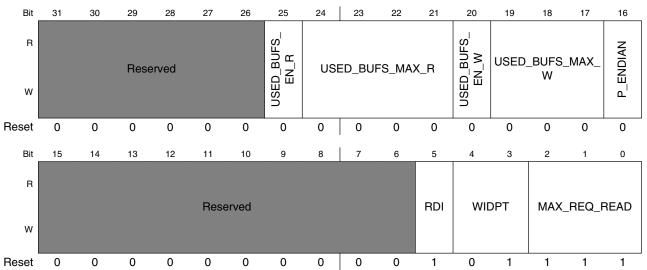

Field	Description
13 DMA_CH_BUF2_	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory.
RDY_13	0 Buffer 2 is not ready.1 Buffer 2 is ready.
12–11	This field is reserved. Reserved.
10 DMA_CH_BUF2_ RDY_10	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory. 0 Buffer 2 is not ready.
HD1_IU	1 Buffer 2 is ready.
9 DMA_CH_BUF2_	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory.
RDY_9	0 Buffer 2 is not ready.1 Buffer 2 is ready.
8 DMA_CH_BUF2_	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory.
RDY_8	0 Buffer 2 is not ready.1 Buffer 2 is ready.
7–3 -	This field is reserved. Reserved.
2 DMA_CH_BUF2_	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory.
RDY_2	0 Buffer 2 is not ready.1 Buffer 2 is ready.
1 -	This field is reserved. Reserved.
0 DMA_CH_BUF2_	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory.
RDY_0	0 Buffer 2 is not ready.1 Buffer 2 is ready.

37.5.85 IPU Channels Buffer 2 Ready 1 Register (IPUx_CH_BUF2_RDY1)

The register contains buffer 2 ready control information for 32 IPU's DMA channels (63-32). This register can be a write one to set or a write one to clear according to the IPU_CH_BUF2_RDY1_CLR bit.

The register is shown in IPU Channels Buffer 2 Ready 1 Register (IPU_CH_BUF2_RDY1), and the register fields are described in IPU Channels Buffer 2 Ready 1 Register (IPU_CH_BUF2_RDY1).

Address: Base address + 28Ch offset



IPUx_CH_BUF2_RDY1 field descriptions

Field	Description
	Buffer 2 is ready. This bit indicates that ARM platform finished/writing reading buffer 2 in memory.
RDY_x	
	0 Buffer 2 is not ready.
	1 Buffer 2 is ready.

37.5.86 IDMAC Configuration Register (IPUx_IDMAC_CONF)

Address: Base address + 8000h offset

IPUx_IDMAC_CONF field descriptions

Field	Description
31–26 -	This field is reserved. Reserved, should be cleared.
25 USED_BUFS_ EN_R	Enables the limit on the number of pending non real time read requests.
24–21 USED_BUFS_ MAX_R	Limit the number of pending non real time read requests. The value can be between 0 to 8. This field has no affect if USED_BUFS_EN_R is cleared
20 USED_BUFS_ EN_W	Enables the limit on the number of pending non real time write requests.

IPUx_IDMAC_CONF field descriptions (continued)

Field	Description
19–17	Limit the number of pending non real time write requests. The value can be between 0 to 6.
USED_BUFS_ MAX_W	This field has no affect if USED_BUFS_EN_W is cleared
16 P_ENDIAN	Pixel Endianness. The pixel Endianness must not be changed while any of the IDMAC channels is enabled.
	0 little endian
	1 Big endian
15–6 -	This field is reserved. Reserved, should be cleared.
5	Read Data Interleaving.
RDI	This bit must match the slave read data interleaving support. If the AXI slave connected to the IPU supports read data interleaving then this bit must be set. If the AXI slave does not support read data interleaving then the IDMAC can utilize this and issue more address phases on read. In that case it is recommended to have this bit cleared.
	0 The AXI slave does not support read data interleaving
	1 The AXI slave supports read data interleaving
4–3	Write Interleaving Depth
WIDPT	These 2 bits define the Write Interleaving Depth of the AXI port. This bits should be configured by the user according to the AXI slave's Write Interleaving Depth.
	WIDPT defines the maximal number of active bursts (yet to be responded) with different IDs. IDMAC will block data phase if the next data's ID is new (no such ID active) and the number of active IDs is equal to WIDPT. 00 Write Interleaving Depth of 1
	01 Write Interleaving Depth of 2
	10 Write Interleaving Depth of 3
	11 Write Interleaving Depth of 4
MAX_REQ_	Maximum Read Requests.
READ	This fields sets the maximum pending requests allowed in the AXI Read requests queue.

37.5.87 IDMAC Channel Enable 1 Register (IPUx_IDMAC_CH_EN_1)

Addrage.	Raca	address +	8004h	offeat
AUULESS.	Dase	auuless +	000411	UllSet

Addiesa	. Dasc	addies	3 + 000	- 11 01130	5 L											
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	:H_EN_31	Reserved	_CH_EN_29	_CH_EN_28	_CH_EN_27	_CH_EN_26	_CH_EN_25	CH_EN_24	CH_EN_23	_CH_EN_22	_CH_EN_21	CH_EN_20	CH_EN_19	CH_EN_18	CH_EN_17	Reserved
w	IDMAC_CH	Rese	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	IDMAC_C	Rese
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	IDMAC_CH_EN_15	IDMAC_CH_EN_14	IDMAC_CH_EN_13	IDMAC_CH_EN_12	IDMAC_CH_EN_11	IDMAC_CH_EN_10	IDMAC_CH_EN_9	IDMAC_CH_EN_8	Rese	erved	IDMAC_CH_EN_5	Reserved	IDMAC_CH_EN_3	IDMAC_CH_EN_2	IDMAC_CH_EN_1	IDMAC_CH_EN_0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

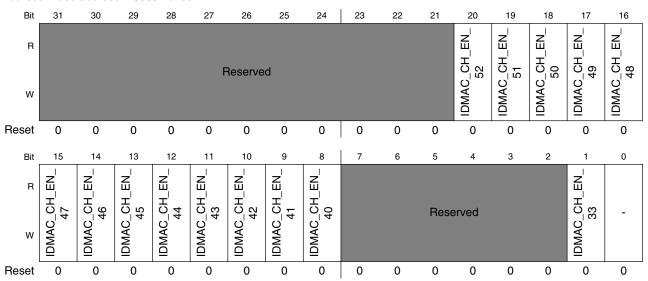
IPUx_IDMAC_CH_EN_1 field descriptions

Field	Description
31	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
31	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
30	This field is reserved.
-	Reserved.
29	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
29	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
28	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
28	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
27	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
27	0 IDMAC channel is disabled
	1 IDMAC channel is enabled

IPUx_IDMAC_CH_EN_1 field descriptions (continued)

Field	Description
26	IDMAC Channel enable bit [i]
IDMAC_CH_EN_ 26	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
25	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	0 IDMAC channel is disabled
25	1 IDMAC channel is enabled
24	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
24	0 IDMAC channel is disabled 1 IDMAC channel is enabled
23	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	DIVIAC Channel enable bit [i]
23	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
22 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
22	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
21 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
21	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
20	IDMAC Channel enable bit [i]
IDMAC_CH_EN_ 20	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
19	IDMAC Channel enable bit [i]
IDMAC_CH_EN_ 19	0 IDMAC channel is disabled
13	1 IDMAC channel is enabled
18	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	0 IDMAC channel is disabled
18	IDMAC channel is disabled IDMAC channel is enabled
17	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
17	0 IDMAC channel is disabled 1 IDMAC channel is enabled
16	This field is reserved.
-	Reserved.
15	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	0 IDMAC channel is disabled
15	1 IDMAC channel is disabled
14	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
14	


IPUx_IDMAC_CH_EN_1 field descriptions (continued)

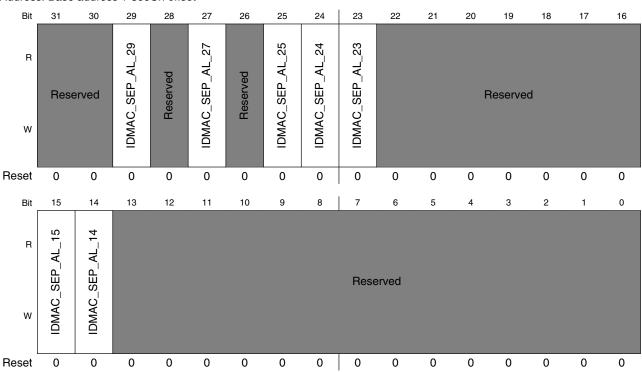

Field	Description
	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
13 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
13	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
12 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
12	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
11 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
11	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
10 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
10	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
9 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
9	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
8 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
8	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
7–6 -	This field is reserved. Reserved.
5 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
5	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
4 -	This field is reserved. Reserved.
3 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
3	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
2 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
2	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
1 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
1	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
0	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
0	I I

IPUx_IDMAC_CH_EN_1 field descriptions (continued)

Field	Description
	0 IDMAC channel is disabled
	1 IDMAC channel is enabled

37.5.88 IDMAC Channel Enable 2 Register (IPUx_IDMAC_CH_EN_2)

IPUx_IDMAC_CH_EN_2 field descriptions


Field	Description
31–21	This field is reserved.
-	Reserved.
20	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
52	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
19	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
51	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
18	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
50	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
17	IDMAC Channel enable bit [i]
IDMAC_CH_EN_	
49	

IPUx_IDMAC_CH_EN_2 field descriptions (continued)

Field	Description
	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
16 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
48	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
15 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
47	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
14 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
46	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
13 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
45	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
12 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
44	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
11 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
43	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
10 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
42	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
9 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
41	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
8 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
40	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
7–2 -	This field is reserved. Reserved.
1 IDMAC_CH_EN_	IDMAC Channel enable bit [i]
33	0 IDMAC channel is disabled
	1 IDMAC channel is enabled
0 -	Reserved.

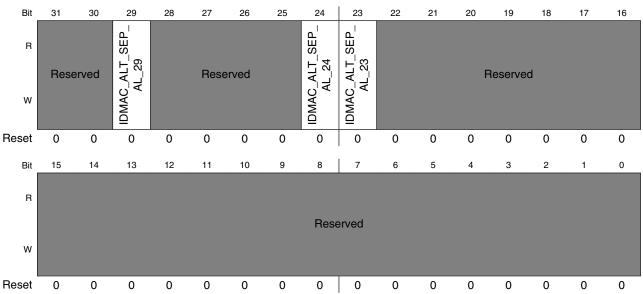
37.5.89 IDMAC Separate Alpha Indication Register (IPUx_IDMAC_SEP_ALPHA)

IPUx_IDMAC_SEP_ALPHA field descriptions

Field	Description					
31–30 -	This field is reserved. Reserved.					
29	IDMAC Separate alpha indication bit [i]					
IDMAC_SEP_ AL_29	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.					
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.					
	0 Channel [i] does not read Alpha transparency data from a separate buffer.					
	1 Channel [i] reads Alpha transparency data from a separate buffer.					
28 -	This field is reserved. Reserved.					
27	IDMAC Separate alpha indication bit [i]					
IDMAC_SEP_ AL_27	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.					

Table continues on the next page...

IPUx_IDMAC_SEP_ALPHA field descriptions (continued)


Field	Description						
	In a case where the alpha should be read from a separate buffer, the user should set the channels						
	corresponding.						
	0 Channel [i] does not read Alpha transparency data from a separate buffer.						
	1 Channel [i] reads Alpha transparency data from a separate buffer.						
26 -	This field is reserved. Reserved.						
25	IDMAC Separate alpha indication bit [i]						
IDMAC_SEP_ AL_25	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.						
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.						
	0 Channel [i] does not read Alpha transparency data from a separate buffer.						
	Channel [i] reads Alpha transparency data from a separate buffer.						
24	IDMAC Separate alpha indication bit [i]						
IDMAC_SEP_ AL_24	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.						
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.						
	Channel [i] does not read Alpha transparency data from a separate buffer.Channel [i] reads Alpha transparency data from a separate buffer.						
23	IDMAC Separate alpha indication bit [i]						
IDMAC_SEP_ AL_23	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.						
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.						
	Channel [i] does not read Alpha transparency data from a separate buffer.Channel [i] reads Alpha transparency data from a separate buffer.						
22–16 -	This field is reserved. Reserved.						
15	IDMAC Separate alpha indication bit [i]						
IDMAC_SEP_ AL_15	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.						
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.						
	0 Channel [i] does not read Alpha transparency data from a separate buffer.						
	1 Channel [i] reads Alpha transparency data from a separate buffer.						
14 IDMAC_SEP_ AL_14	IDMAC Separate alpha indication bit [i]						

IPUx_IDMAC_SEP_ALPHA field descriptions (continued)

Field	Description
	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.
	0 Channel [i] does not read Alpha transparency data from a separate buffer.
	1 Channel [i] reads Alpha transparency data from a separate buffer.
-	This field is reserved. Reserved.

37.5.90 IDMAC Alternate Separate Alpha Indication Register (IPUx_IDMAC_ALT_SEP_ALPHA)

IPUx_IDMAC_ALT_SEP_ALPHA field descriptions

Field	Description
31–30 -	This field is reserved. Reserved.
29 IDMAC_ALT_ SEP_AL_29	IDMAC Alternate Separate alpha indication bit [i] A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.

Table continues on the next page...

IPUx_IDMAC_ALT_SEP_ALPHA field descriptions (continued)

Field	Description				
	For channels that may have alternate flow and may use separate alpha. This bit indicates the mode of the alpha for the alternate flow				
	O Channel [i] does not read Alpha transparency data from a separate buffer.				
	1 Channel [i] reads Alpha transparency data from a separate buffer.				
28–25 -	This field is reserved. Reserved.				
24	IDMAC Alternate Separate alpha indication bit [i]				
IDMAC_ALT_ SEP_AL_24	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.				
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.				
	For channels that may have alternate flow and may use separate alpha. This bit indicates the mode of the alpha for the alternate flow				
	O Channel [i] does not read Alpha transparency data from a separate buffer.				
	1 Channel [i] reads Alpha transparency data from a separate buffer.				
23	IDMAC Alternate Separate alpha indication bit [i]				
IDMAC_ALT_ SEP_AL_23	A sub block may need to read data from the system's memory where the pixel data and the alpha transparency data are located in separate buffers. In that case the Alpha transparency data is read by the special Alpha channel.				
	In a case where the alpha should be read from a separate buffer, the user should set the channels corresponding.				
	For channels that may have alternate flow and may use separate alpha. This bit indicates the mode of the alpha for the alternate flow				
	 Channel [i] does not read Alpha transparency data from a separate buffer. Channel [i] reads Alpha transparency data from a separate buffer. 				
-	This field is reserved. Reserved.				

37.5.91 IDMAC Channel Priority 1 Register (IPUx_IDMAC_CH_PRI_1)

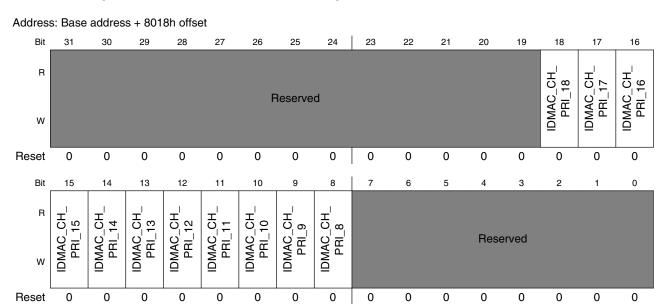
Addrage:	Raca	address +	201/h	offeat

Reserved	,	. D aoo	aaaioo	0 . 00 .	000	,,											
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
Reset 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	R	Res	arved	PRI	PRI_	PR	PRI		PRI	PRI	PA'	PRI_2			Rese	arved	
Bit 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0 R	w	11636	arveu												11636	arveu	
CH_PRI_15 CH_PRI_13 CH_PRI_11 CH_PRI_11 CH_PRI_11 CH_PRI_12 CH_PRI_2	Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
CH_PRI_1 CH_PRI_2 CH_PRI_2	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
		PRI_1		PRI_1	PRI	l I			_PRI_	Rese	erved	l I	Reserved	PRI	PRI	_PRI_	IDMAC_CH_PRI_0

IPUx_IDMAC_CH_PRI_1 field descriptions

Field	Description					
31–30	This field is reserved.					
-	Reserved.					
29 IDMAC_CH_	IDMAC Channel enable bit [i]					
PRI_29	0 IDMAC channel [i] is in low priority					
	1 IDMAC channel [i] is in high priority					
28 IDMAC_CH_	IDMAC Channel enable bit [i]					
PRI_28	0 IDMAC channel [i] is in low priority					
	1 IDMAC channel [i] is in high priority					
27 IDMAC_CH_	IDMAC Channel enable bit [i]					
PRI_27	0 IDMAC channel [i] is in low priority					
	1 IDMAC channel [i] is in high priority					
26 IDMAC_CH_	IDMAC Channel enable bit [i]					
PRI_26	0 IDMAC channel [i] is in low priority					
	1 IDMAC channel [i] is in high priority					

Table continues on the next page...


IPUx_IDMAC_CH_PRI_1 field descriptions (continued)

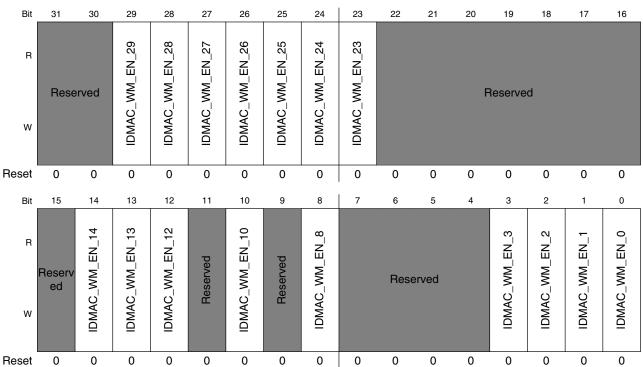
Field	Description						
25	IDMAC Channel enable bit [i]						
IDMAC_CH_ PRI_25	0 IDMAC channel [i] is in low priority						
	1 IDMAC channel [i] is in high priority						
24 IDMAC_CH_	IDMAC Channel enable bit [i]						
PRI_24	0 IDMAC channel [i] is in low priority						
	1 IDMAC channel [i] is in high priority						
23 IDMAC_CH_	IDMAC Channel enable bit [i]						
PRI_23	0 IDMAC channel [i] is in low priority						
	1 IDMAC channel [i] is in high priority						
22 IDMAC_CH_	IDMAC Channel enable bit [i]						
PRI_22	0 IDMAC channel [i] is in low priority						
21	1 IDMAC channel [i] is in high priority						
IDMAC_CH_	IDMAC Channel enable bit [i]						
PRI_21	IDMAC channel [i] is in low priority IDMAC channel [i] is in high priority						
20	IDMAC Channel enable bit [i]						
IDMAC_CH_							
PRI_20	IDMAC channel [i] is in low priority IDMAC channel [i] is in high priority						
19–16	This field is reserved.						
-	Reserved.						
15 IDMAC_CH_	IDMAC Channel enable bit [i]						
PRI_15	0 IDMAC channel [i] is in low priority						
	1 IDMAC channel [i] is in high priority						
14 IDMAC_CH_	IDMAC Channel enable bit [i]						
PRI_14	0 IDMAC channel [i] is in low priority						
13	IDMAC channel [i] is in high priority IDMAC Channel enable bit [i]						
IDMAC_CH_	.,						
PRI_13	0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority						
12	IDMAC Channel enable bit [i]						
IDMAC_CH_ PRI_12							
	0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority						
11	IDMAC Channel enable bit [i]						
IDMAC_CH_ PRI_11	0 IDMAC channel [i] is in low priority						
	1 IDMAC channel [i] is in high priority						
10	IDMAC Channel enable bit [i]						
IDMAC_CH_ PRI_10							

IPUx_IDMAC_CH_PRI_1 field descriptions (continued)

Field	Description
	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
9 IDMAC_CH_	IDMAC Channel enable bit [i]
PRI_9	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
8	IDMAC Channel enable bit [i]
IDMAC_CH_ PRI_8	0 IDMAC channel [i] is in low priority
1111_0	1 IDMAC channel [i] is in high priority
7–6	This field is reserved.
-	Reserved.
5 IDMAC_CH_	IDMAC Channel enable bit [i]
PRI_5	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
4	This field is reserved.
-	Reserved.
3 IDMAC_CH_	IDMAC Channel enable bit [i]
PRI_3	0 IDMAC channel [i] is in low priority
_	1 IDMAC channel [i] is in high priority
2 IDMAC_CH_	IDMAC Channel enable bit [i]
PRI_2	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
1 IDMAC_CH_	IDMAC Channel enable bit [i]
PRI_1	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
0	IDMAC Channel enable bit [i]
IDMAC_CH_ PRI_0	0 IDMAC channel [i] is in low priority
1 11-2	1 IDMAC channel [i] is in high priority

37.5.92 IDMAC Channel Priority 2 Register (IPUx_IDMAC_CH_PRI_2)

IPUx_IDMAC_CH_PRI_2 field descriptions


Field	Description
31–19	This field is reserved.
-	Reserved.
18	IDMAC Channel enable bit [i]
IDMAC_CH_	O LIDMA O Alexand Fit for the Land State
PRI_18	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
17	IDMAC Channel enable bit [i]
IDMAC_CH_	0 IDMAC channel [i] is in low priority
PRI_17	1 IDMAC channel [i] is in high priority
16	IDMAC Channel enable bit [i]
IDMAC_CH_ PRI_16	0 IDMAC channel [i] is in low priority
1111_10	1 IDMAC channel [i] is in high priority
15	IDMAC Channel enable bit [i]
IDMAC_CH_	IDWAC Channel enable bit [i]
PRI_15	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority
14	IDMAC Channel enable bit [i]
IDMAC_CH_	
PRI_14	0 IDMAC channel [i] is in low priority
	1 IDMAC channel [i] is in high priority

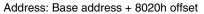
IPUx_IDMAC_CH_PRI_2 field descriptions (continued)

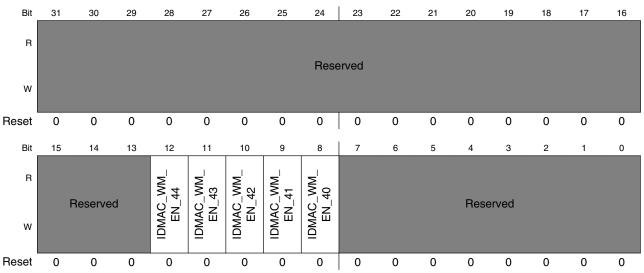
Field	Description
13 IDMAC_CH_ PRI_13	IDMAC Channel enable bit [i] 0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority
12 IDMAC_CH_ PRI_12	IDMAC Channel enable bit [i] 0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority
11 IDMAC_CH_ PRI_11	IDMAC Channel enable bit [i] 0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority
10 IDMAC_CH_ PRI_10	IDMAC Channel enable bit [i] 0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority
9 IDMAC_CH_ PRI_9	IDMAC Channel enable bit [i] 0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority
8 IDMAC_CH_ PRI_8	IDMAC Channel enable bit [i] 0 IDMAC channel [i] is in low priority 1 IDMAC channel [i] is in high priority
-	This field is reserved. Reserved.

37.5.93 IDMAC Channel Watermark Enable 1 Register (IPUx_IDMAC_WM_EN_1)

IPUx_IDMAC_WM_EN_1 field descriptions

Field	Description
31–30	This field is reserved.
-	Reserved.
29	IDMAC Watermark enable bit [i]
IDMAC_WM_	O IDMAC share at 61 waterways to disable d
EN_29	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled
28	IDMAC Watermark enable bit [i]
IDMAC_WM_	O IDMAC share at 61 waterways to disable d
EN_28	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled
27	IDMAC Watermark enable bit [i]
IDMAC_WM_	O IDMAC channel (i) watermark feature is disabled
EN_27	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled
26	IDMAC Watermark enable bit [i]
IDMAC_WM_	O IDMAC sharped (i) watermark facture is disabled
EN_26	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled


IPUx_IDMAC_WM_EN_1 field descriptions (continued)

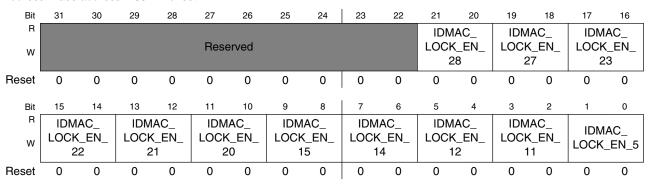

Field	Description
25	IDMAC Watermark enable bit [i]
IDMAC_WM_ EN_25	0 IDMAC channel [i] watermark feature is disabled
LIV_23	1 IDMAC channel [i] watermark feature is enabled
24	IDMAC Watermark enable bit [i]
IDMAC_WM_	2 IDMAC described for the first of the blad
EN_24	IDMAC channel [i] watermark feature is disabled IDMAC channel [i] watermark feature is enabled
23	IDMAC Watermark enable bit [i]
IDMAC_WM_	IDWAO Watermark enable bit [i]
EN_23	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled
22–15	This field is reserved. Reserved.
14	IDMAC Watermark enable bit [i]
IDMAC_WM_ EN_14	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled
13	IDMAC Watermark enable bit [i]
IDMAC_WM_	O IDMAO sharmal fill watermark feature is disabled
EN_13	IDMAC channel [i] watermark feature is disabled IDMAC channel [i] watermark feature is enabled
12	IDMAC Watermark enable bit [i]
IDMAC_WM_	IDWAG Watermark Graphe bit [i]
EN_12	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled
11	This field is reserved. Reserved.
10	IDMAC Watermark enable bit [i]
IDMAC_WM_ EN_10	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled
9	This field is reserved.
-	Reserved.
8 IDMAC_WM_	IDMAC Watermark enable bit [i]
EN_8	0 IDMAC channel [i] watermark feature is disabled
_	1 IDMAC channel [i] watermark feature is enabled
7–4 -	This field is reserved. Reserved.
3	IDMAC Watermark enable bit [i]
IDMAC_WM_	
EN_3	IDMAC channel [i] watermark feature is disabled IDMAC channel [i] watermark feature is enabled
2	IDMAC Watermark enable bit [i]
IDMAC_WM_	-
EN_2	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled

IPUx_IDMAC_WM_EN_1 field descriptions (continued)

Field	Description
1	IDMAC Watermark enable bit [i]
IDMAC_WM_	
EN_1	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled
0	IDMAC Watermark enable bit [i]
IDMAC WM	
EN_0	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled

37.5.94 IDMAC Channel Watermark Enable 2 Register (IPUx_IDMAC_WM_EN_2)

IPUx_IDMAC_WM_EN_2 field descriptions


Field	Description
31–13 -	This field is reserved. Reserved.
12 IDMAC_WM_ EN_44	IDMAC Watermark enable bit [i] 0 IDMAC channel [i] watermark feature is disabled 1 IDMAC channel [i] watermark feature is enabled
11 IDMAC_WM_ EN_43	IDMAC Watermark enable bit [i] 0 IDMAC channel [i] watermark feature is disabled 1 IDMAC channel [i] watermark feature is enabled

IPUx_IDMAC_WM_EN_2 field descriptions (continued)

Field	Description
10	IDMAC Watermark enable bit [i]
IDMAC_WM_	
EN_42	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled
9	IDMAC Watermark enable bit [i]
IDMAC_WM_	
EN_41	0 IDMAC channel [i] watermark feature is disabled
	IDMAC channel [i] watermark feature is enabled
8	IDMAC Watermark enable bit [i]
IDMAC_WM_	
EN_40	0 IDMAC channel [i] watermark feature is disabled
	1 IDMAC channel [i] watermark feature is enabled
-	This field is reserved.
	Reserved.

37.5.95 IDMAC Channel Lock Enable 1Register (IPUx_IDMAC_LOCK_EN_1)

Address: Base address + 8024h offset

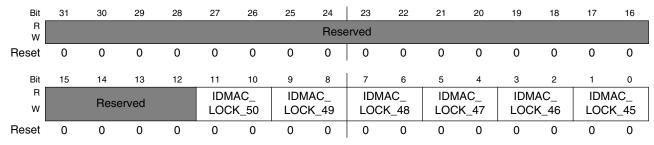
IPUx_IDMAC_LOCK_EN_1 field descriptions

Field	Description
31–22	This field is reserved. Reserved.
21–20 IDMAC_LOCK_	IDMAC lock bits for channel [i]
EN_28	 The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request. The IDMAC will generate two AXI bursts upon the assertion of the DMA request. The IDMAC will generate four AXI bursts upon the assertion of the DMA request. The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
19-18 IDMAC_LOCK_ EN_27	IDMAC lock bits for channel [i]

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_IDMAC_LOCK_EN_1 field descriptions (continued)


Field	Description
	The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
17–16	IDMAC lock bits for channel [i]
IDMAC_LOCK_	is in the reservation of a single full
EN_23	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
15–14 IDMAC_LOCK_	IDMAC lock bits for channel [i]
EN_22	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
13-12 IDMAC_LOCK_	IDMAC lock bits for channel [i]
EN_21	On The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
11-10 IDMAC_LOCK_	IDMAC lock bits for channel [i]
EN_20	On The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
9–8 IDMAC_LOCK_	IDMAC lock bits for channel [i]
EN_15	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
7–6 IDMAC_LOCK_	IDMAC lock bits for channel [i]
EN_14	On The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.

IPUx_IDMAC_LOCK_EN_1 field descriptions (continued)

Field	Description
5–4	IDMAC lock bits for channel [i]
IDMAC_LOCK_	00 The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA
EN_12	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
3–2	IDMAC lock bits for channel [i]
IDMAC_LOCK_	
EN_11	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
IDMAC_LOCK_ EN_5	IDMAC lock bits for channel [i]
	OD The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.

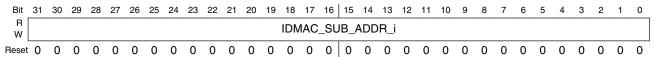
37.5.96 IDMAC Channel Lock Enable 2Register (IPUx_IDMAC_LOCK_EN_2)

Address: Base address + 8028h offset

IPUx_IDMAC_LOCK_EN_2 field descriptions

Field	Description
31–12	This field is reserved.
-	Reserved
11–10	IDMAC lock bits for channel [i]
IDMAC_LOCK_ 50	00 The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA
	request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.

Table continues on the next page...

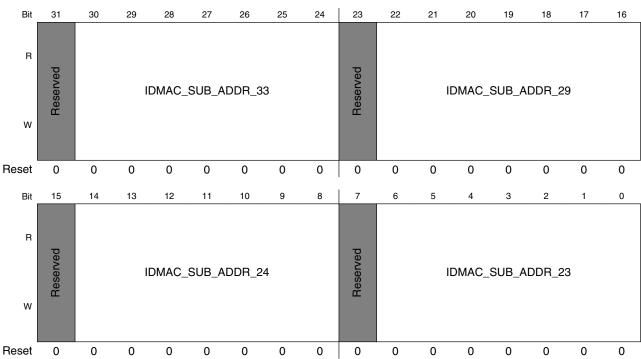

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_IDMAC_LOCK_EN_2 field descriptions (continued)

Field	Description
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
9–8 IDMAC LOCK	IDMAC lock bits for channel [i]
49	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
7–6 IDMAC_LOCK_	IDMAC lock bits for channel [i]
48	On The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
5–4 IDMAC_LOCK_	IDMAC lock bits for channel [i]
47	The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
3–2 IDMAC LOCK	IDMAC lock bits for channel [i]
46	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.
IDMAC_LOCK_ 45	IDMAC lock bits for channel [i]
	OO The lock feature is disabled. The IDMAC will generate one AXI burst upon the assertion of the DMA request.
	01 The IDMAC will generate two AXI bursts upon the assertion of the DMA request.
	10 The IDMAC will generate four AXI bursts upon the assertion of the DMA request.
	11 The IDMAC will generate eight AXI bursts upon the assertion of the DMA request.

37.5.97 IDMAC Channel Alternate Address 0 Register (IPUx_IDMAC_SUB_ADDR_0)

Address: Base address + 802Ch offset

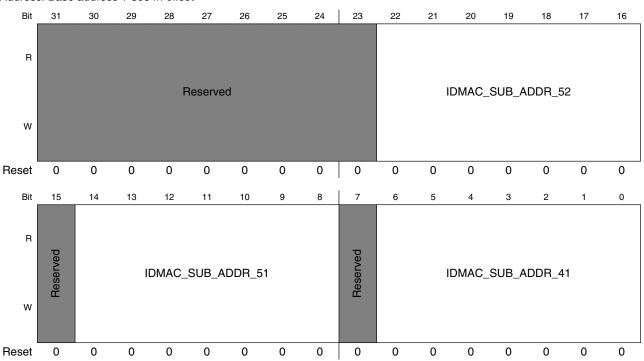


IPUx_IDMAC_SUB_ADDR_0 field descriptions

Field	Description
IDMAC_SUB_ ADDR_i	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.

37.5.98 IDMAC Channel Alternate Address 1 Register (IPUx_IDMAC_SUB_ADDR_1)

IPUx_IDMAC_SUB_ADDR_1 field descriptions

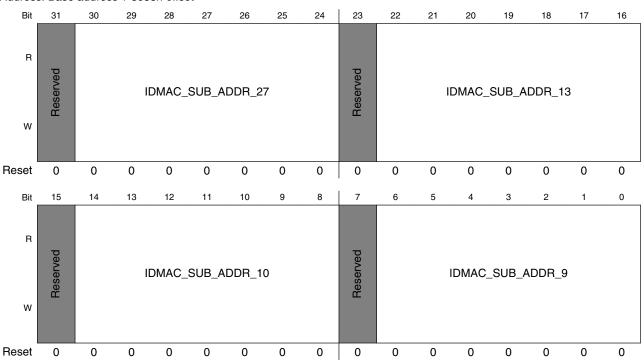

Field	Description
31	This field is reserved. Reserved.
30-24 IDMAC_SUB_ ADDR_33	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
23 -	This field is reserved. Reserved.
22-16 IDMAC_SUB_ ADDR_29	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.

IPUx_IDMAC_SUB_ADDR_1 field descriptions (continued)

Field	Description
15 -	This field is reserved. Reserved.
14–8 IDMAC_SUB_ ADDR_24	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
7 -	This field is reserved. Reserved.
IDMAC_SUB_ ADDR_23	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.

37.5.99 IDMAC Channel Alternate Address 2 Register (IPUx_IDMAC_SUB_ADDR_2)

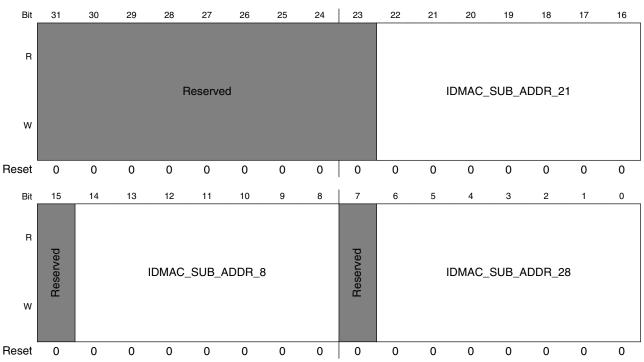
IPUx_IDMAC_SUB_ADDR_2 field descriptions


Field	Description
31–23 -	This field is reserved. Reserved.

IPUx_IDMAC_SUB_ADDR_2 field descriptions (continued)

Field	Description
22–16 IDMAC_SUB_ ADDR_52	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
15 -	This field is reserved. Reserved.
14-8 IDMAC_SUB_ ADDR_51	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
7 -	This field is reserved. Reserved.
IDMAC_SUB_ ADDR_41	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.

37.5.100 IDMAC Channel Alternate Address 3 Register (IPUx_IDMAC_SUB_ADDR_3)



IPUx_IDMAC_SUB_ADDR_3 field descriptions

Field	Description
31 -	This field is reserved. Reserved.
30-24 IDMAC_SUB_ ADDR_27	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
23 -	This field is reserved. Reserved.
22-16 IDMAC_SUB_ ADDR_13	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
15 -	This field is reserved. Reserved.
14-8 IDMAC_SUB_ ADDR_10	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
7 -	This field is reserved. Reserved.
IDMAC_SUB_ ADDR_9	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.

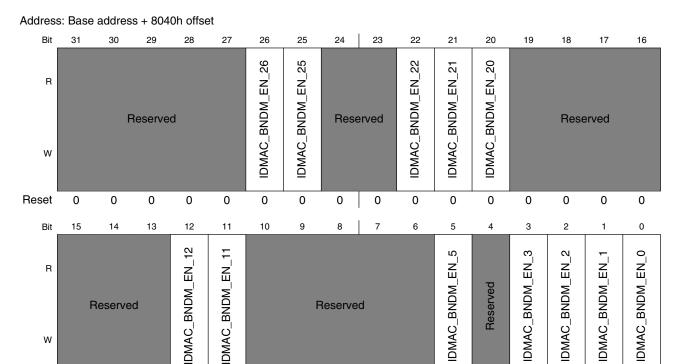
37.5.101 IDMAC Channel Alternate Address 4 Register (IPUx_IDMAC_SUB_ADDR_4)

IPUx_IDMAC_SUB_ADDR_4 field descriptions

Field	Description
31–23 -	This field is reserved. Reserved.
22-16 IDMAC_SUB_ ADDR_21	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
15 -	This field is reserved. Reserved.
14–8 IDMAC_SUB_ ADDR_8	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.
7 -	This field is reserved. Reserved.
IDMAC_SUB_ ADDR_28	The CPMEM alternative entry [i] holds the parameters of the channel that is number appears in IDMAC_SUB_ADDR_i. The user must set each IDMAC_SUB_ADDR_i field to a unique channel. Alternative CPMEM entry is relevant only for channels supporting alternate flows.

37.5.102 **IDMAC Band Mode Enable 1 Register** (IPUx_IDMAC_BNDM_EN_1)

0


0

0

0

0

0

IPUx_IDMAC_BNDM_EN_1 field descriptions

0

0

0

0

0

Field	Description
31–27	This field is reserved.
-	Reserved.
26	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_26	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
25	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_25	This bit controls if the channel currently works in band mode.
_	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode

Table continues on the next page...

W

Reset

0

0

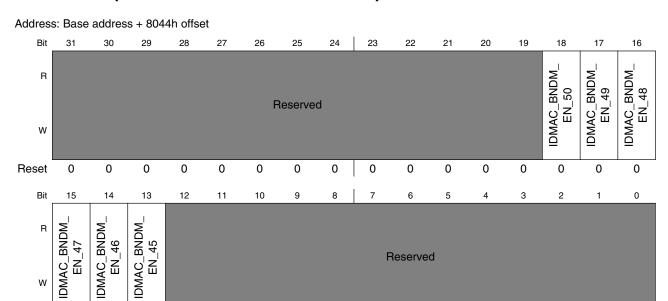
0

IPUx_IDMAC_BNDM_EN_1 field descriptions (continued)

Field	Description
24–23 -	This field is reserved. Reserved.
22	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_22	This bit controls if the channel currently works in band mode.
LIV_LL	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
21 IDMAC_BNDM_	IDMAC Band Mode Enable bit [i]
EN_21	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
20 IDMAC_BNDM_	IDMAC Band Mode Enable bit [i]
EN_20	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
19–13 -	This field is reserved. Reserved.
12	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_12	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
11	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_11	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
10–6 -	This field is reserved. Reserved.
5	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_5	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014


IPUx_IDMAC_BNDM_EN_1 field descriptions (continued)

Field	Description
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
4	This field is reserved.
-	Reserved.
3 IDMAC_BNDM_	IDMAC Band Mode Enable bit [i]
EN_3	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
2	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN 2	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
1	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_1	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
0 IDMAC_BNDM_ EN_0	IDMAC Band Mode Enable bit [i]
	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode

0

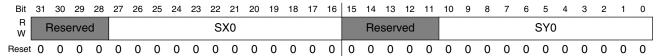
0

37.5.103 IDMAC Band Mode Enable 2 Register (IPUx_IDMAC_BNDM_EN_2)

IPUx_IDMAC_BNDM_EN_2 field descriptions

Field	Description
31–19	This field is reserved.
-	Reserved.
18	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_50	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
17	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_49	This bit controls if the channel currently works in band mode.
_	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
16	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_48	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.

Table continues on the next page...


Reset

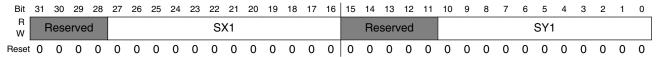
IPUx_IDMAC_BNDM_EN_2 field descriptions (continued)

Field	Description
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
15	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_47	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
14	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN_46	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
13	IDMAC Band Mode Enable bit [i]
IDMAC_BNDM_ EN 45	This bit controls if the channel currently works in band mode.
	When alternate flow is running via this channel, both the main flow and the alternate flow should have the same band mode configuration.
	0 IDMAC channel [i] is not in band mode
	1 IDMAC channel [i] is in band mode
-	This field is reserved.
	i lesei veu.

37.5.104 IDMAC Scroll Coordinations Register (IPUx_IDMAC_SC_CORD)

Address: Base address + 8048h offset

IPUx_IDMAC_SC_CORD field descriptions


Field	Description
31–28 -	This field is reserved. Reserved, should be cleared.
27–16 SX0	Scroll X coordination This field indicates the X coordinate of the scroll. This parameter has an affect on continuos scroll mode only. Units are pixels. When the alpha buffer resides in a separate buffer and the alpha is different than 8 BPP this field should be 0.

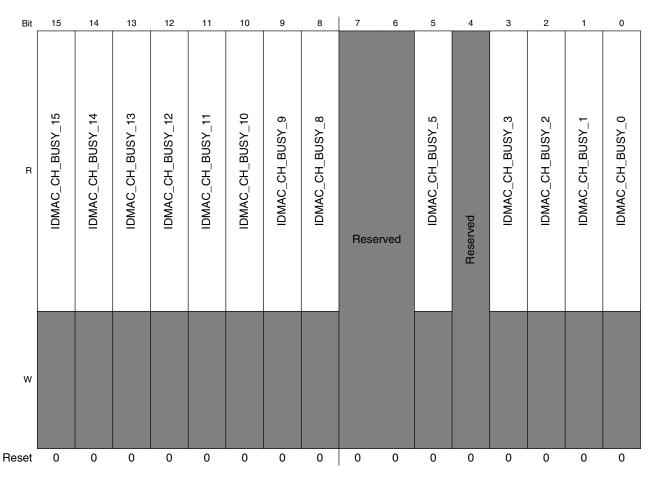
IPUx_IDMAC_SC_CORD field descriptions (continued)

Field	Description
15–11 -	This field is reserved. Reserved, should be cleared.
SY0	Scroll Y coordination This field indicates the Y coordinate of the scroll. This parameter has an affect on continuos scroll mode only. Units are pixels. When the alpha buffer resides in a separate buffer and the alpha is different than 8
	BPP this field should be 0.

37.5.105 IDMAC Scroll Coordinations Register 1 (IPUx_IDMAC_SC_CORD_1)

Address: Base address + 804Ch offset

IPUx_IDMAC_SC_CORD_1 field descriptions


Field	Description
31–28 -	This field is reserved. Reserved, should be cleared.
27–16 SX1	Scroll X coordination (2nd set) This field indicates the X coordinate of the scroll. This parameter has an affect on continuos scroll mode only. Units are pixels. When the alpha buffer resides in a separate buffer and the alpha is different than 8 BPP this field should be 0.
15–11 -	This field is reserved. Reserved, should be cleared.
SY1	Scroll Y coordination (2nd set) This field indicates the Y coordinate of the scroll. This parameter has an affect on continuos scroll mode only. Units are pixels. When the alpha buffer resides in a separate buffer and the alpha is different than 8 BPP this field should be 0.

37.5.106 IDMAC Channel Busy 1 Register (IPUx_IDMAC_CH_BUSY_1)

Address: Base address + 8100h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	IDMAC_CH_BUSY_	Reserved	IDMAC_CH_BUSY_29	IDMAC_CH_BUSY_28	IDMAC_CH_BUSY_27	IDMAC_CH_BUSY_26	IDMAC_CH_BUSY_25	IDMAC_CH_BUSY_24	IDMAC_CH_BUSY_23	IDMAC_CH_BUSY_22	IDMAC_CH_BUSY_21	IDMAC_CH_BUSY_20	Reserved	IDMAC_CH_BUSY_18	IDMAC_CH_BUSY_17	Reserved
W	0		0	0	0	0	0	0	0	0	0	0	0	0	0	0
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

Chapter 37 Image Processing Unit (IPU)

IPUx_IDMAC_CH_BUSY_1 field descriptions

Field	Description
31	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
30	This field is reserved.
-	Reserved.
29	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_29	This bit indicates if the channel is currently served by the IDMAC.
_	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
28	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_28	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

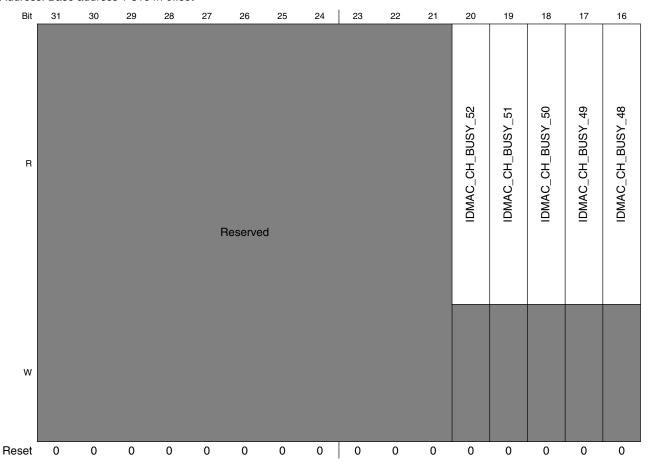
IPUx_IDMAC_CH_BUSY_1 field descriptions (continued)

Field	Description
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
27 IDMAC_CH_	IDMAC Channel busy bit [i]
BUSY_27	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
26	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_26	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
25	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_25	This bit indicates if the channel is currently served by the IDMAC.
5001_20	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
24	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_24	This bit indicates if the channel is currently served by the IDMAC.
5001_21	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
23	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_23	This bit indicates if the channel is currently served by the IDMAC.
5001_20	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
22	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_22	This bit indicates if the channel is currently served by the IDMAC.
2001_22	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
21	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_21	This bit indicates if the channel is currently served by the IDMAC.
_	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy

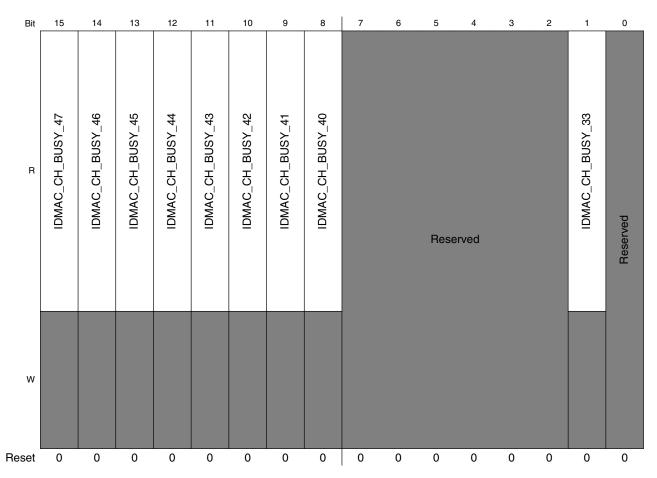
IPUx_IDMAC_CH_BUSY_1 field descriptions (continued)

Field	Description
20	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_20	This bit indicates if the channel is currently served by the IDMAC.
2001_20	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
19 -	This field is reserved. Reserved.
18	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_18	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
17	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_17	This bit indicates if the channel is currently served by the IDMAC.
_	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
16 -	This field is reserved. Reserved.
15	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_15	This bit indicates if the channel is currently served by the IDMAC.
B001_10	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
14	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_14	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
13	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_13	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
12 IDMAC_CH_	IDMAC Channel busy bit [i]
BUSY_12	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.

IPUx_IDMAC_CH_BUSY_1 field descriptions (continued)


Field	Description
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
11	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_11	This bit indicates if the channel is currently served by the IDMAC.
2001_11	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
10	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_10	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
9	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_9	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
8 IDMAC CH	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_8	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
7–6 -	This field is reserved. Reserved.
5	IDMAC Channel busy bit [i]
IDMAC_CH_	This bit indicates if the channel is currently served by the IDMAC.
BUSY_5	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
4	This field is reserved.
-	Reserved.
3 IDMAC_CH_ BUSY_3	IDMAC Channel busy bit [i]
	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
2	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_2	This bit indicates if the channel is currently served by the IDMAC.
	ı

IPUx_IDMAC_CH_BUSY_1 field descriptions (continued)


Field	Description
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
1	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_1	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
0	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_0	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy

37.5.107 IDMAC Channel Busy 2 Register (IPUx_IDMAC_CH_BUSY_2)

Chapter 37 Image Processing Unit (IPU)

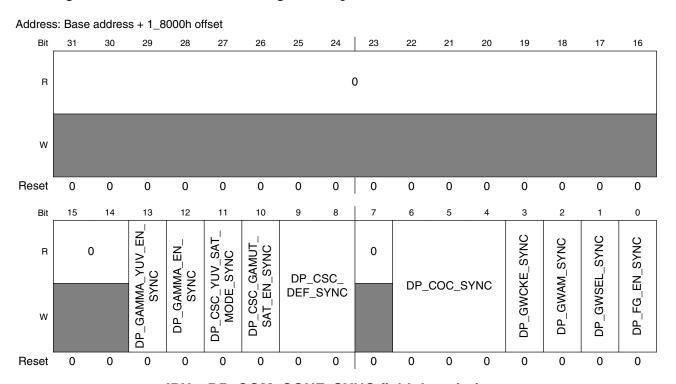
IPUx_IDMAC_CH_BUSY_2 field descriptions

Field	Description
31–21	This field is reserved.
-	Reserved.
20	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_52	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
19	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_51	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
18	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_50	This bit indicates if the channel is currently served by the IDMAC.
_	This bit is self cleared by the IDMAC.

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_IDMAC_CH_BUSY_2 field descriptions (continued)


Field	Description
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
17 IDMAC_CH_	IDMAC Channel busy bit [i]
BUSY_49	This bit indicates if the channel is currently served by the IDMAC.
_	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
16	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_48	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
15	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_47	This bit indicates if the channel is currently served by the IDMAC.
_	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
14	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_46	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
13	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_45	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
12	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_44	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy
11	IDMAC Channel busy bit [i]
IDMAC_CH_ BUSY_43	This bit indicates if the channel is currently served by the IDMAC.
	This bit is self cleared by the IDMAC.
	0 IDMAC channel [i] is not busy
	1 IDMAC channel [i] is busy

IPUx_IDMAC_CH_BUSY_2 field descriptions (continued)

Field	Description								
10	IDMAC Channel busy bit [i]								
IDMAC_CH_ BUSY_42	This bit indicates if the channel is currently served by the IDMAC.								
B031_42	This bit is self cleared by the IDMAC.								
	0 IDMAC channel [i] is not busy								
	1 IDMAC channel [i] is busy								
9	IDMAC Channel busy bit [i]								
IDMAC_CH_ BUSY_41	This bit indicates if the channel is currently served by the IDMAC.								
B001_41	This bit is self cleared by the IDMAC.								
	0 IDMAC channel [i] is not busy								
	1 IDMAC channel [i] is busy								
8	IDMAC Channel busy bit [i]								
IDMAC_CH_ BUSY_40	This bit indicates if the channel is currently served by the IDMAC.								
	This bit is self cleared by the IDMAC.								
	0 IDMAC channel [i] is not busy								
	1 IDMAC channel [i] is busy								
7–2 -	This field is reserved. Reserved.								
1	IDMAC Channel busy bit [i]								
IDMAC_CH_ BUSY_33	This bit indicates if the channel is currently served by the IDMAC.								
	This bit is self cleared by the IDMAC.								
	0 IDMAC channel [i] is not busy								
	1 IDMAC channel [i] is busy								
0	This field is reserved.								
-	Reserved.								

37.5.108 DP Common Configuration Sync Flow Register (IPUx_DP_COM_CONF_SYNC)

This register contains common configuration parameters for the DP.

IPUx_DP_COM_CONF_SYNC field descriptions

Field	Description								
31–14 Reserved	his read-only field is reserved and always has the value 0.								
13 DP_GAMMA_	GAMMA's YUV mode enable for sync flow								
YUV_EN_SYNC	0 YUV mode is OFF.								
	1 YUV mode is ON.								
12	GAMMA_EN - Gamma correction block enable bit								
DP_GAMMA_	O disable								
EN_SYNC	0 disable								
	1 enable								
11	CSC_YUV_SAT_MODE								
DP_CSC_YUV_ SAT_MODE_	YUV saturation mode for color space conversion								
SYNC	0 Y/U/V range 0 -255								
	1 Y range 16-235, U/V range 16-240								

IPUx_DP_COM_CONF_SYNC field descriptions (continued)

Field	Description
10	CSC_GAMUT_SAT_EN
DP_CSC_ GAMUT_SAT_	Indicate if GAMUT saturation is enabled
EN_SYNC	0 disable GAMUT mapping
	1 enable GAMUT mapping
9–8	CSC_DEF
DP_CSC_DEF_ SYNC	Enable or disable Color Space Conversion.
	00 CSC disable
	01 CSC enable after combining
	10 CSC enable before combining on BG channel
	11 CSC enable before combining on FG channel
7	This read-only field is reserved and always has the value 0.
Reserved	
6–4 DP_COC_SYNC	COC - Cursor Operation Control
2000_01.110	Controls the format of the cursor and the type of arithmetic operations
	000 Transparent, cursor is disabled.
	001 Full cursor.
	010 Reversed cursor.
	011 AND between full plane and cursor.
	100 Reserved
	101 OR between full plane and cursor.110 XOR between full plane and cursor.
	111 Reserved.
3	GWCKE - Graphic Window Color Keying Enable
DP_GWCKE_ SYNC	Enable or disable graphic window color keying.
	1 Enable color keying of graphic window
	0 Disable color keying of graphic window
2	GWAM - Graphic Window Alpha Mode
DP_GWAM_ SYNC	Select the use of Alpha to be global or local.
	1 Global Alpha.
	0 Local Alpha.
1 DP_GWSEL_	GWSEL - Graphic Window Select
SYNC	Select graphic window to be on partial plane or full plane.
	1 Graphic window is partial plane.
	0 Graphic window is full plane.
0 DP_FG_EN_	FG_EN - partial plane Enable.
SYNC	This bit enables the partial plane channel.
	1 partial plane channel is enabled.
	0 partial plane channel is disabled.

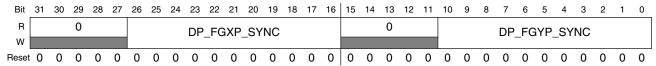
37.5.109 DP Graphic Window Control Sync Flow Register (IPUx_DP_Graph_Wind_CTRL_SYNC)

This register contains common configuration parameters for the DP.

Address: Base address + 1_8004h offset

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R DP_GWAV_SYNC DP_) G	MOI	VCKR_SYNC D						DP_GWCKG_SYNC						DP GWCKB SYNC												
W DF_GWAV_STNC					וט	u	vvOi	νι ι <u> </u>	011	1 0			וט	_u	7701	\U_	.011	1 0			וט	_u	vvOi	\D_	.011						
Reset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_DP_Graph_Wind_CTRL_SYNC field descriptions


Field	Description										
31–24	GWAV - Graphic Window Alpha Value										
DP_GWAV_ SYNC	Defines the alpha value of graphic window used for alpha blending between graphic window and full plane. The Value the number that writing to GWAV register. The Actual Value the number, that insert to calculation in Combining Module. If Value = < 0.5- 1/256 (01111111) then Actual Value = Value. If Value >= 0.5 (10000000), then Actual Value = Value + 1/256.										
	00000000 Actual value is 00000000; Graphic window totally opaque i.e. overlay on LCD screen										
	01111111 Actual value is 011111111;										
	10000000 Actual value is 10000001										
	10000001 Actual value is 10000010										
	11111110 Actual value is 11111111										
	11111111 Actual value is 100000000;Graphic window totally transparent i.e. not displayed on LCD screen										
23–16	GWCKR - Graphic Window Color Keying Red Component										
DP_GWCKR_ SYNC	Defines the red component of graphic window color keying.										
	00000000 No red										
	11111111 Full red										
15–8	GWCKG - Graphic Window Color Keying Green Component										
DP_GWCKG_ SYNC	Defines the green component of graphic window color keying.										
	00000000 No Green										
	11111111 Full Green										
DP_GWCKB_	GWCKB - Graphic Window Color Keying Blue Component										
SYNC	Defines the blue component of graphic window color keying.										
	00000000 No blue										
	11111111 Full blue										

37.5.110 DP Partial Plane Window Position Sync Flow Register (IPUx_DP_FG_POS_SYNC)

The DP partial plane Window Position Register is used to determine the starting position of the partial plane window relative to BG window position.

This Register is used for the synchronous flow only.

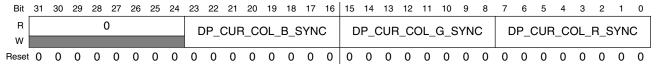
IPUx_DP_FG_POS_SYNC field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 DP_FGXP_ SYNC	FGXP partial plane Window X Position. partial plane Window X Position - Specifies the number of pixels between the start of full plane window X position and the beginning of the first data of new line.
15–11 Reserved	This read-only field is reserved and always has the value 0.
DP_FGYP_ SYNC	FGYP partial plane window Y position partial plane Window Y Position - Specifies the number of lines between the start of full plane windows Y position and the beginning of the first data.

37.5.111 DP Cursor Position and Size Sync Flow Register (IPUx_DP_CUR_POS_SYNC)

The LCD Cursor Position Register is used to determine the starting position of the cursor relative to BG windows position.

Address: Base address + 1_800Ch offset


IPUx_DP_CUR_POS_SYNC field descriptions

Field	Description
31–27	CYP - Cursor Y Position
DP_CYP_SYNC	Represents the cursors vertical starting position Y in pixel count (from 0 to CYH).Live View Resolution Mode.
26–16	CYH - Cursor Height
DP_CYH_SYNC	Specifies the height of the hardware cursor in pixels.
15–11	CXP - Cursor X Position
DP_CXP_SYNC	Represents the cursors horizontal starting position X in pixel count (from 0 to CXW).
DP_CXW_SYNC	CXW - Cursor Width.
	Specifies the width of the hardware cursor in pixels.

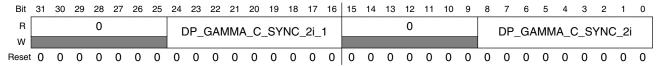
37.5.112 DP Color Cursor Mapping Sync Flow Register (IPUx_DP_CUR_MAP_SYNC)

The LCD Color Cursor Mapping Register defines the color of the cursor in passive or TFT color modes.

Address: Base address + 1_8010h offset

IPUx_DP_CUR_MAP_SYNC field descriptions

Field	Description										
31–24 Reserved	This read-only field is reserved and always has the value 0.										
23–16	CUR_COL_B - Cursor Blue Field										
DP_CUR_COL_ B_SYNC	Defines the Blue component of the cursor color in color mode										
	00000000 No Blue.										
	11111111 Full Blue.										
15–8	CUR_COL_G - Cursor Green Field										
DP_CUR_COL_ G_SYNC	Defines the Green component of the cursor color in color mode										
	00000000 No Green.										
	11111111 Full Green.										
	CUR_COL_B - Cursor Red Field										
R_SYNC	Defines the Red component of the cursor color in color mode										

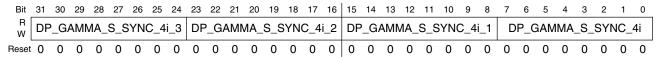

IPUx_DP_CUR_MAP_SYNC field descriptions (continued)

Field	Description
	00000000 No Red.
	11111111 Full Red.

37.5.113 DP Gamma Constants Sync Flow Register i (IPUx DP GAMMA C SYNC i)

This registers contains CONSTANTi parameters used for gamma correction inside the display processor (DP).

Address: Base address + 1_8014h offset

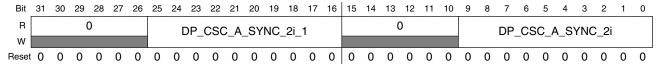

IPUx_DP_GAMMA_C_SYNC_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 DP_GAMMA_C_ SYNC_2i_1	CONSTANTi+1 parameter of Gamma Correction.
15–9 Reserved	This read-only field is reserved and always has the value 0.
DP_GAMMA_C_ SYNC_2i	CONSTANTi parameter of Gamma Correction.

37.5.114 DP Gamma Correction Slope Sync Flow Register i (IPUx_DP_GAMMA_S_SYNC_i)

This registers contains SLOPEi parameters used for Gamma Correction inside the display processor (DP).

Address: Base address + 1_8034h offset

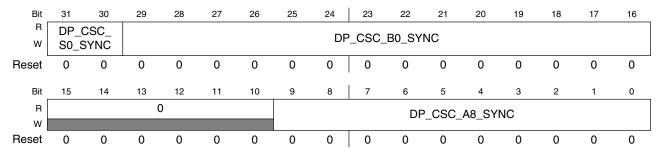


IPUx_DP_GAMMA_S_SYNC_i field descriptions

Field	Description									
31–24 DP_GAMMA_S_ SYNC_4i_3	SLOPE<4*i+3> parameter of Gamma Correction.									
23–16 DP_GAMMA_S_ SYNC_4i_2	SLOPE<4*i+2> parameter of Gamma Correction.									
15–8 DP_GAMMA_S_ SYNC_4i_1	SLOPE<4*i+1> parameter of Gamma Correction.									
DP_GAMMA_S_ SYNC_4i	SLOPE<4*i> parameter of Gamma Correction.									

37.5.115 DP Color Space Conversion Control Sync Flow Registers (IPUx_DP_CSCA_SYNC_i)

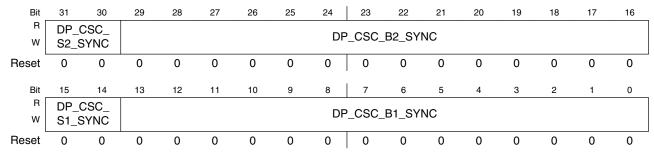
Address: Base address + 1_8044h offset



IPUx_DP_CSCA_SYNC_i field descriptions

Field	Description
31–26 Reserved	This read-only field is reserved and always has the value 0.
25-16 DP_CSC_A_ SYNC_2i_1	A<2*i+1> parameter of color conversion
15–10 Reserved	This read-only field is reserved and always has the value 0.
DP_CSC_A_ SYNC_2i	A<2*i> parameter of color conversion.

37.5.116 DP Color Conversion Control Sync Flow Register 0 (IPUx_DP_SCS_SYNC_0)

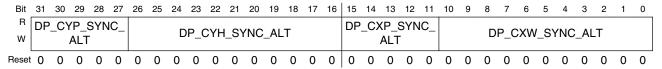


IPUx_DP_SCS_SYNC_0 field descriptions

Field	Description
31-30 DP_CSC_S0_ SYNC	S0 parameter of color conversion. 00 scale factor of 2 01 scale factor of 1 10 scale factor of 0
	11 scale factor of -1
29-16 DP_CSC_B0_ SYNC	B0 parameter of color conversion.
15–10 Reserved	This read-only field is reserved and always has the value 0.
DP_CSC_A8_ SYNC	A9 parameter of color conversion.

37.5.117 DP Color Conversion Control Sync Flow Register 1 (IPUx_DP_SCS_SYNC_1)

Address: Base address + 1_8058h offset


IPUx_DP_SCS_SYNC_1 field descriptions

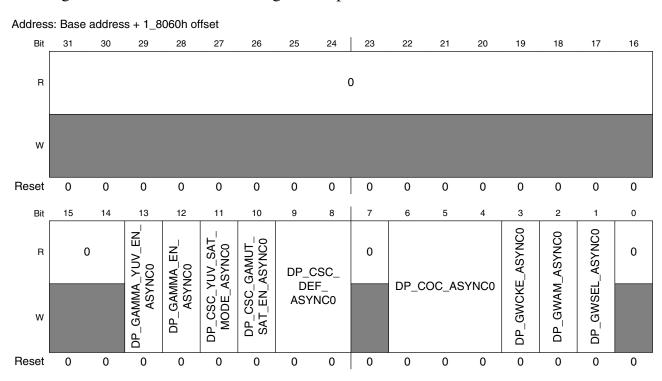
Field	Description											
31–30 DP_CSC_S2_	S0 parameter of color conversion.											
SYNC	00 scale factor of 2											
	01 scale factor of 1											
	10 scale factor of 0											
	11 scale factor of -1											
29–16 DP_CSC_B2_ SYNC	B0 parameter of color conversion.											
15-14 DP_CSC_S1_	S0 parameter of color conversion.											
SYNC	00 scale factor of 2											
	01 scale factor of 1											
	10 scale factor of 0											
	11 scale factor of -1											
DP_CSC_B1_ SYNC	B0 parameter of color conversion.											

37.5.118 DP Cursor Position and Size Alternate Register (IPUx_DP_CUR_POS_ALT)

The LCD Cursor Position Register is used to determine the starting position of the cursor relative to BG windows position for the alternative flow.

Address: Base address + 1_805Ch offset

IPUx_DP_CUR_POS_ALT field descriptions


Field	Description									
31–27 DP_CYP_SYNC_ ALT	CYP_ALT - Cursor Y Position Represents the cursors vertical starting position Y in pixel count (from 0 to CYH). Live View Resolution Mode for the alternative flow.									
26–16 DP_CYH_ SYNC_ALT	CYH_ALT - Cursor Height Specifies the height of the hardware cursor in pixels.									
15–11 DP_CXP_SYNC_ ALT	CXP_ALT - Cursor X Position Represents the cursors horizontal starting position X in pixel count (from 0 to CXW) for the alternative flow.									

IPUx_DP_CUR_POS_ALT field descriptions (continued)

Field	Description
	CXW_ALT - Cursor Width.
SYNC_ALT	Specifies the width of the hardware cursor in pixels for the alternative flow.

37.5.119 DP Common Configuration Async 0 Flow Register (IPUx_DP_COM_CONF_ASYNC0)

This register contains common configuration parameters for the DP.

IPUx_DP_COM_CONF_ASYNC0 field descriptions

Field	Description
31–14 Reserved	This read-only field is reserved and always has the value 0.
13 DP_GAMMA_ YUV_EN_ ASYNC0	GAMMA's YUV mode enable for async flow 0 O YUV mode is OFF. 1 YUV mode is ON.
12 DP_GAMMA_ EN_ASYNC0	GAMMA_EN - Gamma correction block enable bit

Table continues on the next page...

IPUx_DP_COM_CONF_ASYNC0 field descriptions (continued)

Field	Description												
	0 disable												
	1 enable												
11	CSC_YUV_SAT_MODE												
DP_CSC_YUV_ SAT_MODE_	YUV saturation mode for color space conversion												
ASYNC0	0 Y/U/V range 0 -255												
	1 Y range 16-235, U/V range 16-240												
10	CSC_GAMUT_SAT_EN												
DP_CSC_ GAMUT_SAT_	Indicate if GAMUT saturation is enabled												
EN_ASYNC0	0 disable GAMUT mapping												
	1 enable GAMUT mapping												
9–8	CSC_DEF												
DP_CSC_DEF_ ASYNC0	Enable or disable Color Space Conversion.												
	00 CSC disable												
	01 CSC enable after combining												
	10 CSC enable before combining on BG channel												
	11 CSC enable before combining on FG channel												
7 Reserved	This read-only field is reserved and always has the value 0.												
6–4	COC - Cursor Operation Control												
DP_COC_ ASYNC0	Controls the format of the cursor and the type of arithmetic operations												
	000 Transparent, cursor is disabled.												
	001 Full cursor.												
	010 Reversed cursor.												
	011 AND between full plane and cursor.												
	100 Reserved												
	101 OR between full plane and cursor. 110 XOR between full plane and cursor.												
	111 Reserved												
3	GWCKE - Graphic Window Color Keying Enable												
DP_GWCKE_ ASYNC0	Enable or disable graphic window color keying.												
	1 Enable color keying of graphic window												
	0 Disable color keying of graphic window												
2	GWAM - Graphic Window Alpha Mode												
DP_GWAM_ ASYNC0	Select the use of Alpha to be global or local.												
	1 Global Alpha.												
	0 Local Alpha.												
1	GWSEL - Graphic Window Select												
DP_GWSEL_ ASYNC0	Select graphic window to be on partial plane or full plane.												

IPUx_DP_COM_CONF_ASYNC0 field descriptions (continued)

Field	Description											
	1 Graphic window is partial plane.											
	0 Graphic window is full plane.5											
0 Reserved	This read-only field is reserved and always has the value 0.											

37.5.120 DP Graphic Window Control Async 0 Flow Register (IPUx_DP_GRAPH_WIND_CTRL_ASYNC0)

This register contains common configuration parameters for the DP.

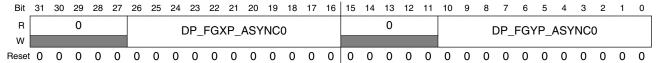
Address: Base address + 1_8064h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	DP_GWAV_ASYNC0 DP_GWCKR_ASYNC0								DP GWCKG ASYNC0								DP GWCKB ASYNC0															
w L	W Dr_dwav_astinco Di							<u>-</u> ات	_	Oiti	' '_/		100						u_,		100			<u>-</u> ات	_	OI						
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_DP_GRAPH_WIND_CTRL_ASYNC0 field descriptions

Field	Description									
31–24	GWAV - Graphic Window Alpha Value									
DP_GWAV_ ASYNC0	Defines the alpha value of graphic window used for alpha blending between graphic window and full plane. The Value the number that writing to GWAV register. The Actual Value the number, that insert calculation in Combining Module. If Value = < 0.5- 1/256 (01111111) then Actual Value = Value. If Val >= 0.5 (10000000), then Actual Value = Value + 1/256.									
	00000000 Actual value is 00000000; Graphic window totally opaque i.e. overlay on LCD screen									
	01111111 Actual value is 01111111;									
	10000000 Actual value is 10000001									
	10000001 Actual value is 10000010									
	11111110 Actual value is 11111111									
	11111111 Actual value is 100000000;Graphic window totally transparent i.e. not displayed on LCD screen									
23–16	GWCKR - Graphic Window Color Keying Red Component									
DP_GWCKR_ ASYNC0	Defines the red component of graphic window color keying.									
	00000000 No red									
	11111111 Full red									
15–8	GWCKG - Graphic Window Color Keying Green Component									
DP_GWCKG_ ASYNC0	Defines the green component of graphic window color keying.									
	0000000 No Green									
	11111111 Full Green									

IPUx_DP_GRAPH_WIND_CTRL_ASYNC0 field descriptions (continued)

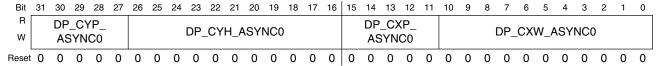

Field	Description							
	GWCKB - Graphic Window Color Keying Blue Component							
ASYNC0	Defines the blue component of graphic window color keying.							
	00000000 No blue							
	11111111 Full blue							

37.5.121 DP Partial Plane Window Position Async 0 Flow Register (IPUx_DP_FG_POS_ASYNC0)

The DP partial plane Window Position Register is used to determine the starting position of the partial plane window relative to BG window position.

This Register is used for the synchronous flow only.

Address: Base address + 1_8068h offset

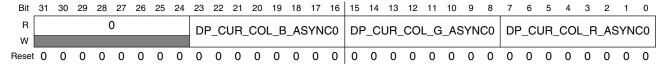

IPUx_DP_FG_POS_ASYNC0 field descriptions

Field	Description							
31–27 Reserved	This read-only field is reserved and always has the value 0.							
26–16 DP_FGXP_ ASYNC0	FGXP partial plane Window X Position. partial plane Window X Position - Specifies the number of pixels between the start of full plane window X position and the beginning of the first data of new line.							
15–11 Reserved	This read-only field is reserved and always has the value 0.							
DP_FGYP_ ASYNC0	FGYP partial plane window Y position partial plane Window Y Position - Specifies the number of lines between the start of full plane windows Y position and the beginning of the first data.							

37.5.122 DP Cursor Position and Size Async 0 Flow Register (IPUx_DP_CUR_POS_ASYNC0)

The LCD Cursor Position Register is used to determine the starting position of the cursor relative to BG windows position.

Address: Base address + 1_806Ch offset

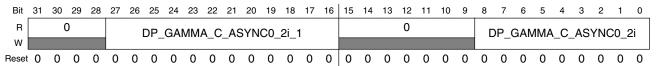

IPUx_DP_CUR_POS_ASYNC0 field descriptions

Field	Description							
31–27 DP_CYP_ ASYNC0	CYP - Cursor Y Position Represents the cursors vertical starting position Y in pixel count (from 0 to CYH).Live View Resolution Mode.							
26–16 DP_CYH_ ASYNC0	CYH - Cursor Height Specifies the height of the hardware cursor in pixels.							
15–11 DP_CXP_ ASYNC0	CXP - Cursor X Position Represents the cursors horizontal starting position X in pixel count (from 0 to CXW).							
DP_CXW_ ASYNC0 CXW - Cursor Width. Specifies the width of the hardware cursor in pixels.								

37.5.123 DP Color Cursor Mapping Async 0 Flow Register (IPUx_DP_CUR_MAP_ASYNC0)

The LCD Color Cursor Mapping Register defines the color of the cursor in passive or TFT color modes.

Address: Base address + 1_8070h offset

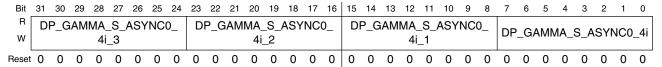

IPUx_DP_CUR_MAP_ASYNC0 field descriptions

Field	Description							
31–24 Reserved	nis read-only field is reserved and always has the value 0.							
23–16	CUR_COL_B - Cursor Blue Field							
DP_CUR_COL_ B_ASYNC0	Defines the Blue component of the cursor color in color mode							
	00000000 No Blue.							
	11111111 Full Blue.							
15–8	CUR_COL_G - Cursor Green Field							
DP_CUR_COL_ G_ASYNC0	Defines the Green component of the cursor color in color mode							
	00000000 No Green.							
	11111111 Full Green.							
DP_CUR_COL_	CUR_COL_R - Cursor Red Field							
R_ASYNC0	Defines the Red component of the cursor color in color mode							
	00000000 No Red.							
	11111111 Full Red.							

37.5.124 DP Gamma Constant Async 0 Flow Register i (IPUx_DP_GAMMA_C_ASYNC0_i)

This registers contains CONSTANTi parameters used for gamma correction inside the display processor (DP).

Address: Base address + 1_8074h offset

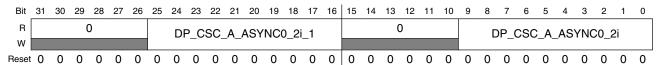

IPUx DP GAMMA C ASYNC0 i field descriptions

Field	Description						
31–28 Reserved	This read-only field is reserved and always has the value 0.						
27–16 DP_GAMMA_C_ ASYNC0_2i_1	CONSTANTi+1 parameter of Gamma Correction.						
15–9 Reserved	This read-only field is reserved and always has the value 0.						
DP_GAMMA_C_ ASYNC0_2i	CONSTANTi parameter of Gamma Correction.						

37.5.125 DP Gamma Correction Slope Async 0 Flow Register i (IPUx_DP_GAMMA_S_ASYNC0_i)

This registers contains SLOPEi parameters used for Gamma Correction inside the display processor (DP).

Address: Base address + 1_8094h offset



IPUx_DP_GAMMA_S_ASYNC0_i field descriptions

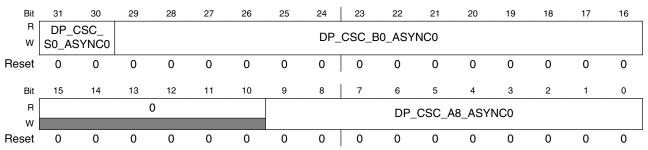
Field	Description						
31–24 DP_GAMMA_S_ ASYNC0_4i_3	SLOPE<4*i+3> parameter of Gamma Correction.						
23-16 DP_GAMMA_S_ ASYNC0_4i_2	IA_S_						
15-8 DP_GAMMA_S_ ASYNC0_4i_1	SLOPE<4*i+1> parameter of Gamma Correction.						
DP_GAMMA_S_ ASYNC0_4i	SLOPE<4*i> parameter of Gamma Correction.						

37.5.126 DP Color Space Conversion Control Async 0 Flow Register i (IPUx_DP_CSCA_ASYNC0_i)

Address: Base address + 1_80A4h offset

IPUx_DP_CSCA_ASYNC0_i field descriptions

Field	Description					
31–26 Reserved	This read-only field is reserved and always has the value 0.					


Table continues on the next page...

IPUx_DP_CSCA_ASYNC0_i field descriptions (continued)

Field	Description
25-16 DP_CSC_A_ ASYNC0_2i_1	A<2*i+1> parameter of color conversion
15–10 Reserved	This read-only field is reserved and always has the value 0.
DP_CSC_A_ ASYNC0_2i	A<2*i> parameter of color conversion.

37.5.127 DP Color Conversion Control Async 0 Flow Register 0 (IPUx_DP_CSC_ASYNC0_0)

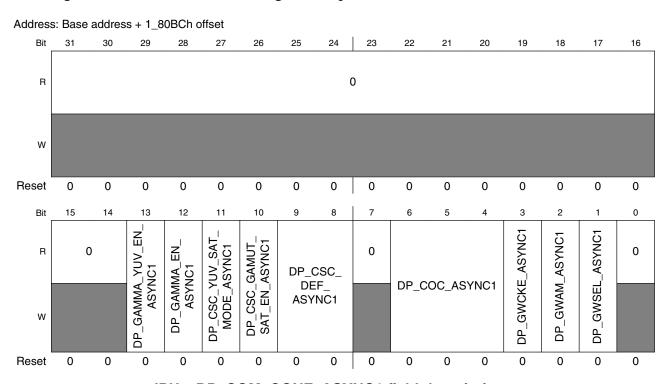
Address: Base address + 1_80B4h offset

IPUx_DP_CSC_ASYNC0_0 field descriptions

Field	Description							
31–30 DP_CSC_S0_	0 parameter of color conversion.							
ASYNC0	00 scale factor of 2							
	01 scale factor of 1							
	10 scale factor of 0							
	11 scale factor of -1							
29–16 DP_CSC_B0_ ASYNC0	B0 parameter of color conversion.							
15–10 Reserved	This read-only field is reserved and always has the value 0.							
DP_CSC_A8_ ASYNC0	A9 parameter of color conversion.							

37.5.128 DP Color Conversion Control Async 1 Flow Register (IPUx_DP_CSC_ASYNC_1)

Address: Base address + 1_80B8h offset


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	DP_0	CSC_						חח	CSC_B	0 VCV	NCO					
W	S2_AS	SYNC0						DF_	.030_6	2_A31	INCO					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	DP_0	CSC_						DD	CSC B	1 101	NCO					
W	S1_AS	SYNC0						DF_	_USU_B	I_AST	INCU					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

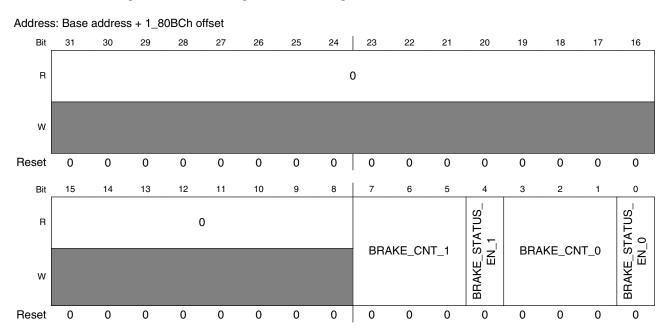
IPUx_DP_CSC_ASYNC_1 field descriptions

Field	Description									
31–30 DP_CSC_S2_	S0 parameter of color conversion.									
ASYNC0	00 scale factor of 2									
	01 scale factor of 1									
	10 scale factor of 0									
	11 scale factor of -1									
29–16 DP_CSC_B2_ ASYNC0	B0 parameter of color conversion.									
15-14 DP_CSC_S1_	S0 parameter of color conversion.									
ASYNC0	00 scale factor of 2									
	01 scale factor of 1									
	10 scale factor of 0									
	11 scale factor of -1									
DP_CSC_B1_ ASYNC0	B0 parameter of color conversion.									

37.5.129 DP Common Configuration Async 1 Flow Register (IPUx_DP_COM_CONF_ASYNC1)

This register contains common configuration parameters for the DP.

IPUx_DP_COM_CONF_ASYNC1 field descriptions


Field	Description
31–14 Reserved	This read-only field is reserved and always has the value 0.
13 DP_GAMMA_ YUV_EN_ ASYNC1	GAMMA's YUV mode enable for async flow 1 0 YUV mode is OFF. 1 YUV mode is ON.
12 DP_GAMMA_ EN_ASYNC1	GAMMA_EN - Gamma correction block enable bit 0 disable 1 enable
11 DP_CSC_YUV_ SAT_MODE_ ASYNC1	CSC_YUV_SAT_MODE YUV saturation mode for color space conversion 0 Y/U/V range 0 -255 1 Y range 16-235, U/V range 16-240

IPUx_DP_COM_CONF_ASYNC1 field descriptions (continued)

Field	Description
10	CSC_GAMUT_SAT_EN
DP_CSC_ GAMUT_SAT_	Indicate if GAMUT saturation is enabled
EN_ASYNC1	0 disable GAMUT mapping
	1 enable GAMUT mapping
9–8	CSC_DEF
DP_CSC_DEF_ ASYNC1	Enable or disable Color Space Conversion.
	00 CSC disable
	01 CSC enable after combining
	10 CSC enable before combining on BG channel
	11 CSC enable before combining on FG channel
7 Reserved	This read-only field is reserved and always has the value 0.
6–4	COC - Cursor Operation Control
DP_COC_ ASYNC1	Controls the format of the cursor and the type of arithmetic operations
	000 Transparent, cursor is disabled.
	001 Full cursor.
	010 Reversed cursor.
	011 AND between full plane and cursor.
	100 Reserved
	101 OR between full plane and cursor.
	110 XOR between full plane and cursor.
	111 Reserved
3 DP_GWCKE_ ASYNC1	GWCKE - Graphic Window Color Keying Enable Enable or disable graphic window color keying.
7.011.01	1 Enable color keying of graphic window
	Disable color keying of graphic window Disable color keying of graphic window
2	GWAM - Graphic Window Alpha Mode
DP_GWAM_ ASYNC1	Select the use of Alpha to be global or local.
	1 Global Alpha.
	0 Local Alpha.
1	GWSEL - Graphic Window Select
DP_GWSEL_ ASYNC1	Select graphic window to be on partial plane or full plane.
	1 Graphic window is partial plane.
	Graphic window is full plane.
0 Reserved	This read-only field is reserved and always has the value 0.

37.5.130 DP Debug Control Register (IPUx_DP_DEBUG_CNT)

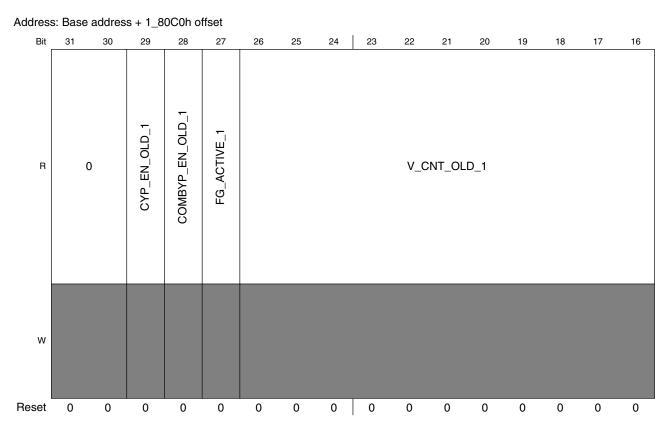
This is the debug unit control register. This register is not stored in the SRM.

IPUx_DP_DEBUG_CNT field descriptions

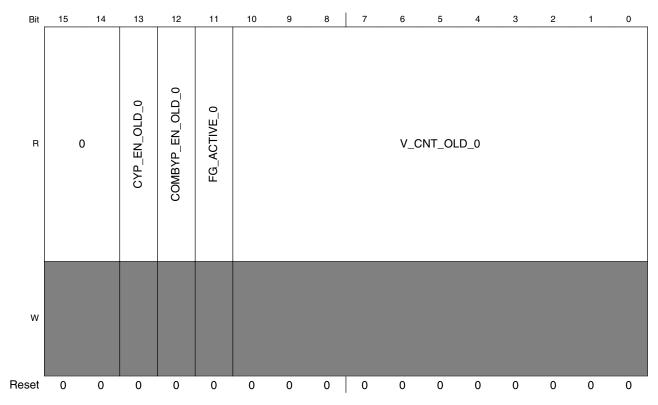
Field	Description
31–8 Reserved	This read-only field is reserved and always has the value 0.
7–5 BRAKE_CNT_1	The async flow can be broken multiple times. It possible to control which breaking event will cause the interrupt. This field counts the breaking events for unit #1
4 BRAKE_ STATUS_EN_1	This bit enables the break/status unit #1
3–1 BRAKE_CNT_0	The async flow can be broken multiple times. It possible to control which breaking event will cause the interrupt. This field counts the breaking events for unit #0
0 BRAKE_ STATUS_EN_0	This bit enables the break/status unit #0

37.5.131 DP Graphic Window Control Async 1 Flow Register (IPUx_DP_GRAPH_WIND_CTRL_ASYNC1)

This register contains common configuration parameters for the DP.


Address: Base address + 1_80C0h offset

Bit 3	1	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		DP	_G\	۷A۷		SYN	IC1			DP_	GW	/CKI	R_A	IY2	NC1			DP_	GW	CK	G_A	IYZ	NC1			DP_	GW	/CK	B_A	SYI	NC1	
Reset C)	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

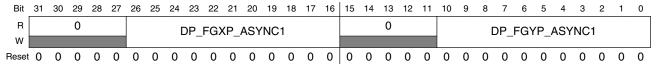

IPUx_DP_GRAPH_WIND_CTRL_ASYNC1 field descriptions

Field	Description									
31–24	GWAV - Graphic Window Alpha Value									
DP_GWAV_ ASYNC1	Defines the alpha value of graphic window used for alpha blending between graphic window and full plane. The Value the number that writing to GWAV register. The Actual Value the number, that insert to calculation in Combining Module. If Value = < 0.5- 1/256 (011111111) then Actual Value = Value. If Value >= 0.5 (10000000), then Actual Value = Value + 1/256.									
	00000000 Actual value is 00000000; Graphic window totally opaque i.e. overlay on LCD screen									
	01111111 Actual value is 011111111;									
	10000000 Actual value is 10000001									
	10000001 Actual value is 10000010									
	11111110 Actual value is 11111111									
	11111111 Actual value is 100000000;Graphic window totally transparent i.e. not displayed on LCD screen									
23–16	GWCKR - Graphic Window Color Keying Red Component									
DP_GWCKR_ ASYNC1	Defines the red component of graphic window color keying.									
	00000000 No red									
	11111111 Full red									
15–8	GWCKG - Graphic Window Color Keying Green Component									
DP_GWCKG_ ASYNC1	Defines the green component of graphic window color keying.									
	00000000 No Green									
	11111111 Full Green									
DP_GWCKB_	GWCKB - Graphic Window Color Keying Blue Component									
ASYNC1	Defines the blue component of graphic window color keying.									
	00000000 No blue									
	11111111 Full blue									

37.5.132 DP Debug Status Register (IPUx_DP_DEBUG_STAT)

Chapter 37 Image Processing Unit (IPU)

IPUx_DP_DEBUG_STAT field descriptions


Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.
29 CYP_EN_OLD_1	The async flow has been broken in the middle of a cursor (This filed is relevant for debug unit #1)
28 COMBYP_EN_ OLD_1	the async1 flow has been broken in the middle of combining (This filed is relevant for debug unit #1)
27 FG_ACTIVE_1	Displaying the partial frame has been started (This filed is relevant for debug unit #1)
26-16 V_CNT_OLD_1	The exact row where the async flow has been broken (This filed is relevant for debug unit #0)
15–14 Reserved	This read-only field is reserved and always has the value 0.
13 CYP_EN_OLD_0	The async flow has been broken in the middle of a cursor (This filed is relevant for debug unit #0)
12 COMBYP_EN_ OLD_0	the async flow has been broken in the middle of combining (This filed is relevant for debug unit #0)
11 FG_ACTIVE_0	Displaying the partial frame has been started for async flow (This filed is relevant for debug unit #0)
V_CNT_OLD_0	The exact row where the async flow has been broken (This filed is relevant for debug unit #0)

37.5.133 DP Partial Plane Window Position Async 1 Flow Register (IPUx_DP_FG_POS_ASYNC1)

The DP partial plane Window Position Register is used to determine the starting position of the partial plane window relative to BG window position.

This Register is used for the synchronous flow only.

IPUx_DP_FG_POS_ASYNC1 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 DP_FGXP_ ASYNC1	FGXP partial plane Window X Position. partial plane Window X Position - Specifies the number of pixels between the start of full plane window X position and the beginning of the first data of new line.
15–11 Reserved	This read-only field is reserved and always has the value 0.
DP_FGYP_ ASYNC1	FGYP partial plane window Y position partial plane Window Y Position - Specifies the number of lines between the start of full plane windows Y position and the beginning of the first data.

37.5.134 DP Cursor Postion and Size Async 1 Flow Register (IPUx_DP_CUR_POS_ASYNC1)

The LCD Cursor Position Register is used to determine the starting position of the cursor relative to BG windows position.

Address: Base address + 1_80C8h offset

IPUx_DP_CUR_POS_ASYNC1 field descriptions

Field	Description
31–27 DP_CYP_ ASYNC1	CYP - Cursor Y Position Represents the cursors vertical starting position Y in pixel count (from 0 to CYH).Live View Resolution Mode.
26-16 DP_CYH_ ASYNC1	CYH - Cursor Height Specifies the height of the hardware cursor in pixels.
15–11 DP_CXP_ ASYNC1	CXP - Cursor X Position Represents the cursors horizontal starting position X in pixel count (from 0 to CXW).
DP_CXW_ ASYNC1	CXW - Cursor Width. Specifies the width of the hardware cursor in pixels.

37.5.135 DP Color Cursor Mapping Async 1 Flow Register (IPUx_DP_CUR_MAP_ASYNC1)

The LCD Color Cursor Mapping Register defines the color of the cursor in passive or TFT color modes.

Address: Base address + 1_80CCh offset

IPUx_DP_CUR_MAP_ASYNC1 field descriptions

Field	Description
31–24 Reserved	This read-only field is reserved and always has the value 0.
23–16	CUR_COL_B - Cursor Blue Field
DP_CUR_COL_ B_ASYNC1	Defines the Blue component of the cursor color in color mode
	00000000 No Blue.
	11111111 Full Blue.
15–8	CUR_COL_G - Cursor Green Field
DP_CUR_COL_ G_ASYNC1	Defines the Green component of the cursor color in color mode
	00000000 No Green.
	11111111 Full Green.
	CUR_COL_R - Cursor Red Field
R_ASYNC1	Defines the Red component of the cursor color in color mode

Table continues on the next page...

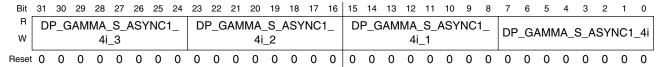
IPUx_DP_CUR_MAP_ASYNC1 field descriptions (continued)

Field	Description
	00000000 No Red.
	11111111 Full Red.

37.5.136 DP Gamma Constants Async 1 Flow Register i (IPUx_DP_GAMMA_C_ASYNC1_i)

This registers contains CONSTANTi parameters used for gamma correction inside the display processor (DP).

Address: Base address + 1_80D0h offset

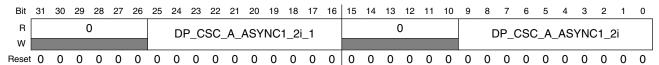

IPUx_DP_GAMMA_C_ASYNC1_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 DP_GAMMA_C_ ASYNC1_2i_1	CONSTANTi+1 parameter of Gamma Correction.
15–9 Reserved	This read-only field is reserved and always has the value 0.
DP_GAMMA_C_ ASYNC1_2i	CONSTANTi parameter of Gamma Correction.

37.5.137 DP Gamma Correction Slope Async 1 Flow Register i (IPUx_DP_GAMMA_S_ASYN1_i)

This registers contains SLOPEi parameters used for Gamma Correction inside the display processor (DP).

Address: Base address + 1_80F0h offset



IPUx_DP_GAMMA_S_ASYN1_i field descriptions

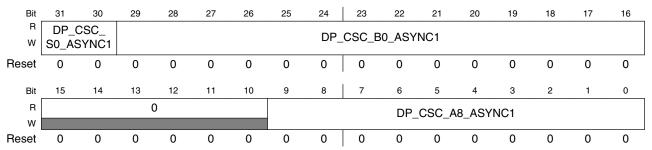
Field	Description
31–24 DP_GAMMA_S_ ASYNC1_4i_3	SLOPE<4*i+3> parameter of Gamma Correction.
23–16 DP_GAMMA_S_ ASYNC1_4i_2	SLOPE<4*i+2> parameter of Gamma Correction.
15–8 DP_GAMMA_S_ ASYNC1_4i_1	SLOPE<4*i+1> parameter of Gamma Correction.
DP_GAMMA_S_ ASYNC1_4i	SLOPE<4*i> parameter of Gamma Correction.

37.5.138 DP Color Space Converstion Control Async 1 Flow Register i (IPUx_DP_CSCA_ASYNC1_i)

Address: Base address + 1_8100h offset

IPUx_DP_CSCA_ASYNC1_i field descriptions

Field	Description
31–26 Reserved	This read-only field is reserved and always has the value 0.


Table continues on the next page...

IPUx_DP_CSCA_ASYNC1_i field descriptions (continued)

Field	Description
25-16 DP_CSC_A_ ASYNC1_2i_1	A<2*i+1> parameter of color conversion.
15–10 Reserved	This read-only field is reserved and always has the value 0.
DP_CSC_A_ ASYNC1_2i	A<2*i> parameter of color conversion.

37.5.139 DP Color Conversion Control Async 1 Flow Register 0 (IPUx_DP_CSC_ASYNC1_0)

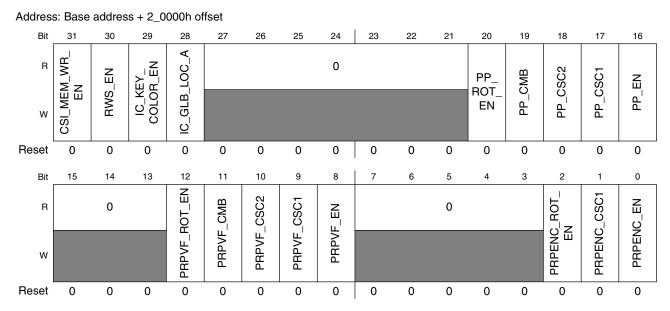
Address: Base address + 1_8110h offset

IPUx_DP_CSC_ASYNC1_0 field descriptions

Field	Description
31-30 DP_CSC_S0_ ASYNC1	S0 parameter of color conversion. 00 scale factor of 2 01 scale factor of 1 10 scale factor of 0
	11 scale factor of -1
29-16 DP_CSC_B0_ ASYNC1	B0 parameter of color conversion.
15–10 Reserved	This read-only field is reserved and always has the value 0.
DP_CSC_A8_ ASYNC1	A9 parameter of color conversion.

37.5.140 DP Color Conversion Control Async 1 Flow Register 1 (IPUx_DP_CSC_ASYNC1_1)

Address: Base address + 1_8114h offset


Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R	DP_0							DP	CSC B	32_ASY	NC1					
W	S2_A	SYNC1														
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	DP_0	CSC_							000 0	4 40)/	NO4					
W	S1_AS	SYNC1						DP_	CSC_B	31_ASY	NC1					
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_DP_CSC_ASYNC1_1 field descriptions

Field	Description
31–30 DP_CSC_S2_	S0 parameter of color conversion.
ASYNC1	00 scale factor of 2
	01 scale factor of 1
	10 scale factor of 0
	11 scale factor of -1
29–16 DP_CSC_B2_ ASYNC1	B0 parameter of color conversion.
15-14 DP_CSC_S1_	S0 parameter of color conversion.
ASYNC1	00 scale factor of 2
	01 scale factor of 1
	10 scale factor of 0
	11 scale factor of -1
DP_CSC_B1_ ASYNC1	B0 parameter of color conversion.

37.5.141 IC Configuration Register (IPUx_IC_CONF)

This register contains control parameter for IC 3 tasks (pre-processing for encoding, pre-processing for view-finder and post processing).

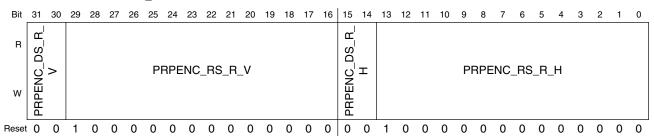
IPUx_IC_CONF field descriptions

Field	Description
31 CSI_MEM_WR_ EN	CSI direct memory write enable. This bit enables writing data from sensor directly to memory even when a raw sensor is not attached.
	0 CSI direct writing to memory is disabled.
	1 CSI direct writing to memory is enabled.
30	Raw sensor enable. This bit indicate if a Raw sensor is attached (Bayer format).
RWS_EN	This bit is used together with the CSI_MEM_WR_EN bit as follows:
	CSI_MEM_WR_EN=0, RWS_EN=0 - data is fed from the CSI to the IC for processing;
	CSI_MEM_WR_EN=1, RWS_EN=0 - data is fed from the CSI to the IC for processing and also for writing to the system memory;
	CSI_MEM_WR_EN=0, RWS_EN=1 - data is fed from the CSI to the system memory (via the IC) and from the system memory to the IC for processing;
	CSI_MEM_WR_EN=1, RWS_EN=1 - non-valid configuration.
	0 Raw sensor is not attached.
	1 Raw sensor is attached.
29 IC_KEY_ COLOR_EN	Key Color enable. This bit enables the key color feature.

IPUx_IC_CONF field descriptions (continued)

Field	Description
	Key color is disabled.
	1 Key color is enabled.
28 IC_GLB_LOC_A	Global Alpha. This bit select the source of Alpha parameter.
IO_GEB_EGG_A	0 Alpha parameter is local.
	1 Alpha parameter is global.
27–21 Reserved	This read-only field is reserved and always has the value 0.
20 PP_ROT_EN	Post-Processing Rotation Task enable. This bit enable Post-Processing Rotation Task.
	0 Rotation is disabled.
	1 Rotation is enabled.
19 PP_CMB	Post-Processing Task combining enable. This bit enables combining.
_	0 Combining is disabled.
	1 Combining is enabled.
18 PP_CSC2	Post-Processing Task color conversion RGB>YUV enable. This bit enables YUV>RGB.
	Reserved
	0 RGB>YUV is disabled.
	1 RGB>YUV is enabled.
17 PP_CSC1	Post-Processing Task color conversion YUV>RGB enable. This bit enables YUV>RGB.
_	0 YUV>RGB is disabled.
	1 YUV>RGB is enabled.
16 PP_EN	Post-Processing Task enable. This bit enables the Post-Processing task.
	0 Task is disabled.
	1 Task is enabled.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12 PRPVF_ROT_ EN	Preprocessing Rotation Task for viewfinder enable. This bit enable Preprocessing Rotation Task for viewfinder.
	0 Rotation is disabled.
	1 Rotation is enabled.
11 PRPVF_CMB	Preprocessing Task for View-Finder combining enable. This bit enables combining.
	0 Combining is disabled.
	1 Combining is enabled.
10 PRPVF_CSC2	Reserved
9 PRPVF_CSC1	Pre-processing task for view-finder first color conversion enable. This bit enables first color conversion.
_	0 First color conversion is disabled.
	1 First color conversion is enabled.
8	Preprocessing Task for View-Finder enable. This bit enables the View-Finder task.
PRPVF_EN	

Table continues on the next page...


IPUx_IC_CONF field descriptions (continued)

Field	Description
	0 Task is disabled.
	1 Task is enabled.
7–3 Reserved	This read-only field is reserved and always has the value 0.
2 PRPENC_ROT_ EN	Preprocessing Rotation Task for encoding enable. This bit enable Preprocessing Rotation Task for encoding.
	0 Rotation is disabled.
	1 Rotation is enabled.
1	Preprocessing Task for encoding color conversion enable. This bit enables color conversion.
PRPENC_CSC1	Color conversion is disabled. Color conversion is enabled.
0 DDDENC EN	Preprocessing Task for encoding enable. This bit enables the encoding task.
PRPENC_EN	0 Task is disabled.
	1 Task is enabled.

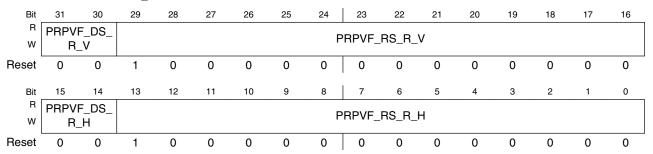
37.5.142 IC Preprocessing Encoder Resizing Coefficients Register (IPUx_IC_PRP_ENC_RSC)

This register contains the resizing and downsizing parameters for Preprocessing task for encoding.

Address: Base address + 2_0004h offset

IPUx_IC_PRP_ENC_RSC field descriptions

Field	Description
	Preprocessing task for encoding Downsizing vertical Ratio. This field contains the downsizing vertical coefficient of Preprocessing for Encoding.
PRPENC_RS_R_	Preprocessing task for encoding Resizing vertical Ratio. This field contains the resizing vertical coefficient of Preprocessing for Encoding. Resizing Ratio is equal to PRPENC_RS_R_V: M


IPUx_IC_PRP_ENC_RSC field descriptions (continued)

Field	Description						
	Where M = 2^13; SI - input size; SO - output size						
	$PRPENC_RS_R_V = floor(M*(SI-1)/(SO-1));$						
	Preprocessing task for encoding Downsizing horizontal Ratio. This field contains the downsizing horizontal coefficient of Preprocessing for Encoding.						
Н	Values:						
	00 1						
	01 2						
	10 4						
	11 RSV						
PRPENC_RS_R_ H	Preprocessing task for encoding Resizing horizontal Ratio. This field contains the resizing horizontal coefficient of Preprocessing for Encoding.						
	Resizing Ratio is equal to PRPENC_RS_R_H: M						
	Where M = 2^13; SI - input size; SO - output size						
	$PRPENC_RS_R_H = floor(M*(SI-1)/(SO-1));$						

37.5.143 IC Preprocessing View-Finder Resizing Coefficients Register (IPUx_IC_PRP_VF_RSC)

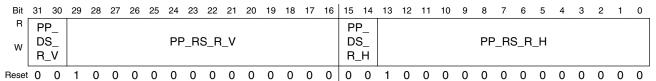
This register contains the resizing and downsizing parameters for preprocessing task for display.

Address: Base address + 2_0008h offset

IPUx_IC_PRP_VF_RSC field descriptions

Field	Description
	Preprocessing task for encoding Downsizing vertical Ratio. This field contains the downsizing vertical coefficient of Preprocessing for View-Finder.
	Preprocessing task for encoding Resizing vertical Ratio. This field contains the resizing vertical coefficient of Preprocessing for View-Finder.
	Resizing Ratio is equal to PRPVF_RS_R_V: M

Table continues on the next page...


IPUx_IC_PRP_VF_RSC field descriptions (continued)

Field	Description					
	Where M = 2^13; SI - input size; SO - output size					
	$PRPVF_RS_R_V = floor(M*(SI-1)/(SO-1));$					
15–14 PRPVF_DS_R_H	Preprocessing task for encoding Downsizing horizontal Ratio. This field contains the downsizing horizontal coefficient of Preprocessing for View-Finder.					
	Values:					
	00 1					
	01 2					
	10 4					
	11 RSV					
PRPVF_RS_R_H	Preprocessing task for view-finding resizing horizontal ratio. This field contains the resizing horizontal coefficient of preprocessing Task For View-finder.					
	Resizing Ratio is equal to PRPVF_RS_R_H: M					
	Where M = 2^13; SI - input size; SO - output size					
	$PRPVF_RS_R_H = floor(M*(SI-1)/(SO-1));$					

37.5.144 IC Postprocessing Encoder Resizing Coefficients Register (IPUx_IC_PP_RSC)

This register contains the resizing and downsizing parameters for Post-Processing task for display.

Address: Base address + 2_000Ch offset

IPUx_IC_PP_RSC field descriptions

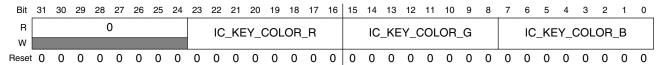
Field	Description
31–30 PP_DS_R_V	Post-Processing task Downsizing vertical Ratio. This field contains the downsizing vertical coefficient of Post-Processing.
29-16 PP_RS_R_V	Post-Processing task Resizing vertical Ratio. This field contains the resizing vertical coefficient of Post-Processing.
	Resizing Ratio is equal to PP_RS_R_V: M
	Where M = 2^13; SI - input size; SO - output size
	$PP_RS_R_V = floor(M^*(SI-1)/(SO-1));$

IPUx_IC_PP_RSC field descriptions (continued)

Field	Description
15-14 PP_DS_R_H	Post-Processing task Downsizing horizontal Ratio. This field contains the downsizing horizontal coefficient of Post-Processing.
	00 1
	01 2
	10 4
	11 RSV
PP_RS_R_H	Post-Processing task Resizing horizontal Ratio. This field contains the resizing horizontal coefficient of Post-Processing.
	Resizing Ratio is equal to PP_RS_R_H: M
	Where M = 2^13; SI - input size; SO - output size
	$PP_RS_R_H = floor(M*(SI-1)/(SO-1));$

37.5.145 IC Combining Parameters Register 1 (IPUx_IC_CMBP_1)

Address: Base address + 2_0010h offset

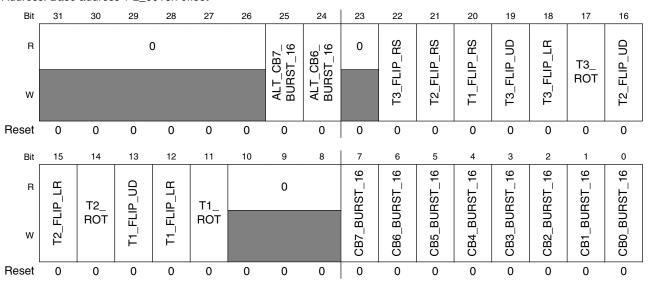


IPUx_IC_CMBP_1 field descriptions

Field	Description
31–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 IC_PP_ALPHA_ V	Post-Processing task Global Alpha. This field contains the Global Alpha value of Post-Processing.
IC_PRPVF_ ALPHA_V	Preprocessing task for viewfinder Global Alpha. This field contains the Global Alpha value of Preprocessing for viewfinder.

37.5.146 IC Combining Parameters Register 2 (IPUx_IC_CMBP_2)

Address: Base address + 2_0014h offset



IPUx_IC_CMBP_2 field descriptions

Field	Description
31–24 Reserved	This read-only field is reserved and always has the value 0.
23–16 IC_KEY_ COLOR_R	Key Color Red.
15–8 IC_KEY_ COLOR_G	Key Color Green.
IC_KEY_ COLOR_B	Key Color Blue.

37.5.147 IC IDMAC Parameters 1 Register (IPUx_IC_IDMAC_1)

IPUx_IC_IDMAC_1 field descriptions

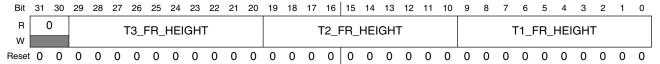
Field	Description
31–26 Reserved	This read-only field is reserved and always has the value 0.
25 ALT_CB7_ BURST_16	Reserved
24 ALT_CB6_ BURST_16	Reserved
23 Reserved	This read-only field is reserved and always has the value 0.

IPUx_IC_IDMAC_1 field descriptions (continued)

Field	Description
22	LEFT/RIGHT flip for Post Processing (PP) task; his bit affect the flipping done on the resizing unit.
T3_FLIP_RS	The value of this field must be identical to the corresponding channel's HF parameter in the IDMAC's CPMEM
	1 horizontal flip enabled
	0 no flip
21	LEFT/RIGHT flip for View Finder (VF) task; this bit affect the flipping done on the resizing unit.
T2_FLIP_RS	The value of this field must be identical to the corresponding channel's HF parameter in the IDMAC's CPMEM
	1 horizontal flip enabled
	0 no flip
20	LEFT/RIGHT flip for Encoding (ENC) task; this bit affect the flipping done on the resizing unit.
T1_FLIP_RS	The value of this field must be identical to the corresponding channel's HF parameter in the IDMAC's CPMEM
	1 horizontal flip enabled
	0 no flip
19	UP/DOWN flip for Post Processing (PP) task
T3_FLIP_UD	The value of this field must be identical to the corresponding channel's VF parameters in the IDMAC's CPMEM
	1 Vertical flip enable
	0 no flip
18	LEFT/RIGHT flip for Post Processing (PP) task; this bit affect the flipping done on the rotation unit
T3_FLIP_LR	The value of this field must be identical to the corresponding channel's HF parameter in the IDMAC's CPMEM
	1 horizontal flip enabled
	0 no flip
17 To DOT	Rotation for Post Processing (PP) task
T3_ROT	The value of this field must be identical to the corresponding channel's ROT parameters in the IDMAC's CPMEM
	1 90 degree rotation clockwise
	0 no rotation
16	UP/DOWN flip for View Finder (VF) task
T2_FLIP_UD	The value of this field must be identical to the corresponding channel's VF parameters in the IDMAC's CPMEM
	1 Vertical flip enable
	0 no flip
15	LEFT/RIGHT flip for View Finder (VF) task; this bit affect the flipping done on the rotation unit
T2_FLIP_LR	The value of this field must be identical to the corresponding channel's HF parameter in the IDMAC's CPMEM
	1 horizontal flip enabled
	0 no flip
•	•

Table continues on the next page...

IPUx_IC_IDMAC_1 field descriptions (continued)


Field	Description
14	Rotation for View Finder (VF) task
T2_ROT	The value of this field must be identical to the corresponding channel's ROT parameters in the IDMAC's CPMEM
	1 90 degree rotation clockwise
	0 no rotation
13 T1_FLIP_UD	UP/DOWN flip for Encoding (ENC) task
TI_FLIF_OD	The value of this field must be identical to the corresponding channel's VF parameters in the IDMAC's CPMEM
	1 Vertical flip enable
	0 no flip
12	LEFT/RIGHT flip for Encoding (ENC) task; this bit affect the flipping done on the rotation unit
T1_FLIP_LR	The value of this field must be identical to the corresponding channel's HF parameter in the IDMAC's CPMEM
	1 horizontal flip enabled 0 no flip
11	Rotation for Encoding (ENC) task
T1_ROT	The value of this field must be identical to the corresponding channel's ROT parameters in the IDMAC's CPMEM
	1 90 degree rotation clockwise
	0 no rotation
10–8 Reserved	This read-only field is reserved and always has the value 0.
7 CB7_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB7
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
6 CB6_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB6
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
5 CB5_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB5
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
4 CB4_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB4
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM

IPUx_IC_IDMAC_1 field descriptions (continued)

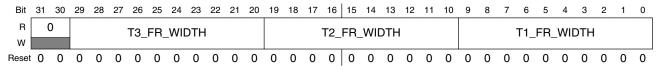
Field	Description
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
3 CB3_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB3
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
2 CB2_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB2
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
1 CB1_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB1
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111
0 CB0_BURST_16	This bit defines the number of active cycles within a burst (burst size) coming from the IDMAC for IC's CB0
	For pixel data the number of pixels should match the NPB[6:2] value on the IDMAC's CPMEM
	0 Burst size is 8 pixels; The Matching NPB[6:2] should be 00111
	1 Burst size is 16 pixels; The Matching NPB[6:2] should be 01111

37.5.148 IC IDMAC Parameters 2 Register (IPUx_IC_IDMAC_2)

Address: Base address + 2_001Ch offset

IPUx_IC_IDMAC_2 field descriptions

Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.
29–20 T3_FR_HEIGHT	Frame Height for Post Processing (PP) task The value of this field must be identical to the corresponding FH channel's parameters in the IDMAC's CPMEM. This parameter refers to the output's size -1
19–10 T2_FR_HEIGHT	Frame Height for View Finder (VF) task

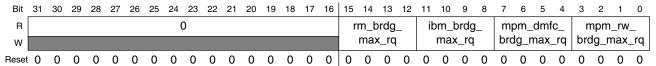

Table continues on the next page...

IPUx_IC_IDMAC_2 field descriptions (continued)

Field	Description
	The value of this field must be identical to the corresponding FH channel's parameters in the IDMAC's CPMEM. This parameter refers to the output's size -1
T1_FR_HEIGHT	Frame Height for Encoding (ENC) task
	The value of this field must be identical to corresponding FH channel's parameters in the IDMAC's CPMEM. This parameter refers to the output's size -1

37.5.149 IC IDMAC Parameters 3Register (IPUx_IC_IDMAC_3)

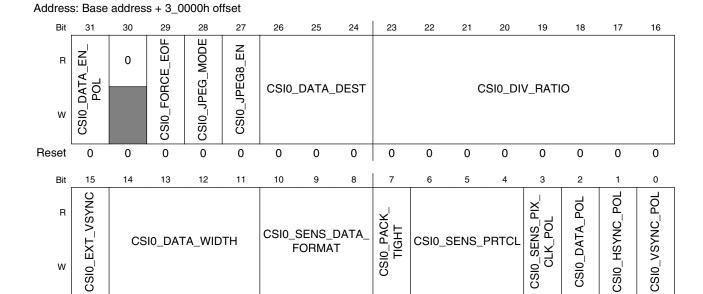
Address: Base address + 2_0020h offset



IPUx_IC_IDMAC_3 field descriptions

Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.
29–20	Frame Width for Post Processing (PP) task
T3_FR_WIDTH	The value of this field must be identical to the corresponding FW channel's parameters in the IDMAC's CPMEM. This parameter refers to the output's size -1
19–10	Frame Width for View Finder (VF) task
T2_FR_WIDTH	The value of this field must be identical to the corresponding FW channel's parameters in the IDMAC's CPMEM. This parameter refers to the output's size -1
T1_FR_WIDTH	Frame Width for Encoding (ENC) task
	The value of this field must be identical to corresponding FW channel's parameters in the IDMAC's CPMEM. This parameter refers to the output's size -1

37.5.150 IC IDMAC Parameters 4 Register (IPUx_IC_IDMAC_4)


Address: Base address + 2_0024h offset

IPUx_IC_IDMAC_4 field descriptions

Field	Description													
31–16 Reserved	This read-only field is reserved and always has the value 0.													
15–12	RM memory Bridge Max Requests													
rm_brdg_max_rq	0000 Feature is disabled													
	0001 Max request is 1													
	1111 Max request are 15													
11–8	IBM memory Bridge Max Requests													
ibm_brdg_max_ rq	0000 Feature is disabled													
14	0001 Max request is 1													
	1111 Max request are15													
7–4 mpm_dmfc_	MPM memory Bridge Max Requests for the IC DMFC interface													
brdg_max_rq	0000 Feature is disabled													
<u> </u>	0001 Max request is 1													
	1111 Max request are15													
mpm_rw_brdg_ max_rq	MPM memory Bridge Max Requests between MPM's read and writes													
	0000 Feature is disabled													
	0001 Max request is 1													
	1111 Max request are15													

CSI0 Sensor Configuration Register 37.5.151 (IPUx_CSI0_SENS_CONF)

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

0

0

0

0

0

0

FORMAT

0

0

0

0

0

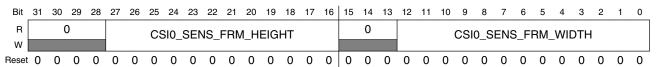
0

 $CSIO_{-}$

Reset

IPUx_CSI0_SENS_CONF field descriptions

Field	Description											
31 CSI0_DATA_ EN_POL	Invert IPP_IND_SENSB_DATA_EN input. This bit selects the polarity of IPP_IND_SENSB_DATA_EN signal. 0											
	1 IPP_IND_SENSB_DATA_EN is inverted before applied to internal circuitry.											
30 Reserved	This read-only field is reserved and always has the value 0.											
29	Force End of frame											
CSI0_FORCE_ EOF	This is a self clear bit allowing the user to force an End-of-frame event; This bit can be used in cases where the frame sent by the sensor was not completed.											
	1 force end of frame											
	0 no action											
28 CSI0_JPEG_	JPEG Mode - this bit defines the mode of the control signals when working in JPEG mode											
MODE	1 The data is valid as long as HSYNC and VSYNC signals are active; HSYNC is valid for single frame 0 The frame starts withe the assertion of VSYNC. The frame ends on the next VSYNC or by setting the CSI0_FORCE_EOF bit.											
27	JPEG8 enable bit											
CSI0_JPEG8_EN	1 JPEG8 detection is enabled											
	0 JPEG8 is disabled											
26–24	These bits enable the destination of the data coming from the CSI.											
CSI0_DATA_ DEST	CSI0_DATA_DEST[0] - Reserved											
	CSI0_DATA_DEST[1] - destination is IC											
	CSI0_DATA_DEST[2] - destination is IDMAC via SMFC											
23-16 CSI0_DIV_ RATIO	DIV Ratio Clock division ratio minus 1. This field defines the division ratio of HSP_CLK into SENSB_MCLK: SENSB_MCLK rate = HSP_CLK rate /(DIV_RATIO+1)											
15	External VSYNC enable. This bits select between external and internal VSYNC.											
CSI0_EXT_ VSYNC	0 Internal VSYNC mode.											
VSTNC	1 External VSYNC mode.											
14–11	Data width. This field defines the number of bits per color.											
CSI0_DATA_ WIDTH	Values:											
	0000 4 bits per color											
	0001 8 bits per color											
	0010 9 bits per color											
	0011 10 bits per color											
	0100 11 bits per color											
	0101 12 bits per color											
	0110 13 bits per color											
	0111 14 bits per color 1000 15 bits per color											
	1000 15 bits per color											
	1001 10010 pol 00101											

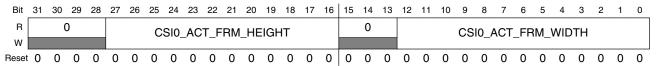

Table continues on the next page...

IPUx_CSI0_SENS_CONF field descriptions (continued)

Field	Description												
10-8 CSI0_SENS_ DATA_FORMAT	Data format from the sensor. This field defines the data format for the input of the CSI sensor. Values:												
	000 full RGB or YUV444 001 YUV422 (YUYV) 010 YUV422 (UYVY) 011 Bayer or Generic data 100 RGB565												
	101 RGB555 110 RGB444 111 JPEG												
7 CSI0_PACK_ TIGHT	CSI0 Pack Tight When the data format is YUV or RGB and the component's width is 9-16 bits, it can be sent to the memory in 2 different ways.												
	 Three 10 bits components are packed into a 32 bit word. Color extension/reduction is performed Each component is written as a 16 bit word where the MSB is written to bit #15, color extension is done for the remaining least significant bits. 												
6-4 CSI0_SENS_ PRTCL	Sensor Protocol. This bit defines the Sensor timing/data mode protocol. Values:												
	000 Gated clock mode 001 Non-gated clock mode 010 CCIR progressive mode (BT.656) 011 CCIR interlaced mode (BT.656) 100 CCIR progressive (BT.1120 DDR mode: data arrives on every edge of the clock) 101 CCIR progressive (BT.1120 SDR mode: data arrives only on the positive edge of the clock) 110 CCIR interlaced mode (BT.1120 DDR mode: data arrives on every edge of the clock) 111 CCIR interlaced mode (BT.1120 SDR mode: data arrives only on the positive edge of the clock)												
3 CSI0_SENS_ PIX_CLK_POL	Invert Pixel clock input. This bit selects the polarity of pixel clock. 0 pixel clock is directly applied to internal circuitry. 1 pixel clock is inverted before applied to internal circuitry.												
2 CSI0_DATA_ POL	Invert data input. This bit selects the polarity of data input. 0 data lines are directly applied to internal circuitry. 1 data lines are inverted before applied to internal circuitry.												
1 CSI0_HSYNC_ POL	Invert IPP_IND_SENSB_HSYNC input. This bit selects the polarity of IPP_IND_SENSB_HSYNC signal. 0												
0 CSI0_VSYNC_ POL	Invert IPP_IND_SENSB_VSYNC input. This bit selects the polarity of IPP_IND_SENSB_VSYNC signal. 0												

37.5.152 CSI0 Sense Frame Size Register (IPUx_CSI0_SENS_FRM_SIZE)

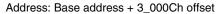
Address: Base address + 3_0004h offset

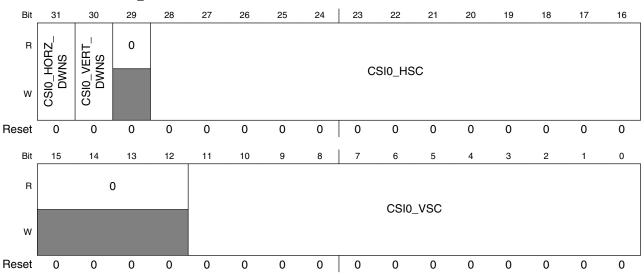


IPUx_CSI0_SENS_FRM_SIZE field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value 0.
27-16 CSI0_SENS_ FRM_HEIGHT	Sensor frame height minus 1. This field defines the sensor frame rows number minus 1.
15–13 Reserved	This read-only field is reserved and always has the value 0.
CSI0_SENS_ FRM_WIDTH	Sensor frame width minus 1. This field defines the sensor frame column number minus 1.

37.5.153 CSI0 Actual Frame Size Register (IPUx_CSI0_ACT_FRM_SIZE)

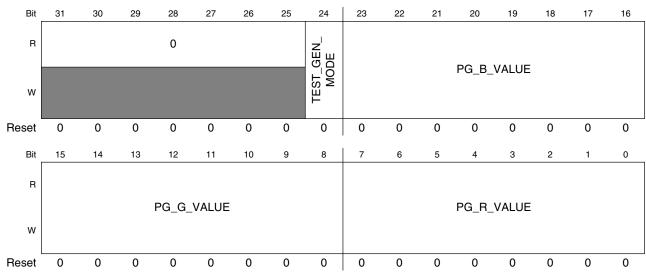

Address: Base address + 3_0008h offset



IPUx_CSI0_ACT_FRM_SIZE field descriptions

Field	Description												
31–28 Reserved	This read-only field is reserved and always has the value 0.												
27-16 CSI0_ACT_ FRM_HEIGHT	Actual frame height minus 1. This field defines the CSI output frame rows number minus 1.												
15–13 Reserved	This read-only field is reserved and always has the value 0.												
CSI0_ACT_ FRM_WIDTH	Actual frame width minus 1. This field defines the CSI output frame columns number minus 1.												

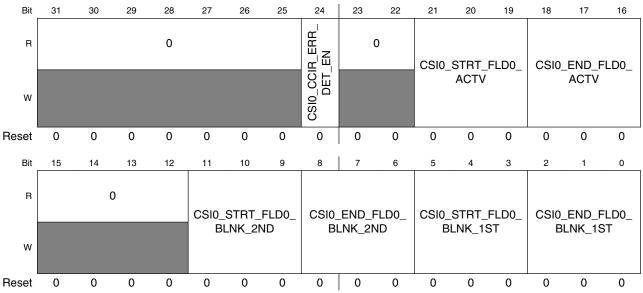
37.5.154 CSI0 Output Control Register (IPUx_CSI0_OUT_FRM_CTRL)



IPUx_CSI0_OUT_FRM_CTRL field descriptions

Field	Description								
31 CSI0 HORZ	Enable horizontal downsizing (decimation) by 2.								
DWNS	0 Downsizing disabled								
	1 Downsizing enabled								
30 CSI0_VERT_	Enable vertical downsizing (decimation) by 2.								
DWNS	0 Downsizing disabled								
	1 Downsizing enabled								
29 Reserved	This read-only field is reserved and always has the value 0.								
28-16 CSI0_HSC	Horizontal skip. This field defines the number of columns to skip. In Interlaced mode this number refers to the number of lines per field.								
15–12 Reserved	This read-only field is reserved and always has the value 0.								
CSI0_VSC	Vertical skip. This field defines the number of rows to skip.								

37.5.155 CSIO Test Control Register (IPUx_CSI0_TST_CTRL)



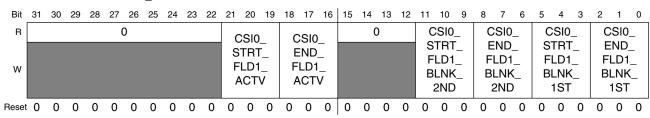
IPUx_CSI0_TST_CTRL field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24 TEST_GEN_ MODE	Test generator mode. This bit activates the signal generation. O Test signal generator is inactive. 1 Test signal generator is active.
23–16 PG_B_VALUE	Pattern generator B value. This field selects the B value for the generated pattern of even pixel.
15–8 PG_G_VALUE	Pattern generator G value. This field selects the G value for the generated pattern of even pixel.
PG_R_VALUE	Pattern generator R value. This field selects the R value for the generated pattern of even pixel.

37.5.156 CSIO CCIR Code Register 1 (IPUx_CSI0_CCIR_CODE_1)

IPUx_CSI0_CCIR_CODE_1 field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24 CSI0_CCIR_ ERR_DET_EN	Enable error detection and correction for CCIR interlaced mode with protection bit. 0 Error detection and correction is disabled. 1 Error detection and correction is enabled.
23–22 Reserved	This read-only field is reserved and always has the value 0.
21-19 CSI0_STRT_ FLD0_ACTV	Start of field 0 active line command (interlaces mode). (In progressive mode, start of active line command mode).
18-16 CSI0_END_ FLD0_ACTV	End of field 0 active line command (interlaces mode). (In progressive mode, end of active line command mode).
15–12 Reserved	This read-only field is reserved and always has the value 0.
11–9 CSI0_STRT_ FLD0_BLNK_ 2ND	Start of field 0 second blanking line command (interlaces mode). (In progressive mode this field is ignored).
8-6 CSI0_END_ FLD0_BLNK_ 2ND	End of field 0 second blanking line command (interlaces mode). (In progressive mode this field is ignored).


Table continues on the next page...

IPUx_CSI0_CCIR_CODE_1 field descriptions (continued)

Field	Description
5–3 CSI0_STRT_ FLD0_BLNK_ 1ST	Start of field 0 first blanking line command (interlaces mode). (In progressive mode this field indicates start of blanking line command).
CSI0_END_ FLD0_BLNK_ 1ST	End of field 0 first blanking line command (interlaces mode). (In progressive mode this field is ignored).

37.5.157 CSIO CCIR Code Register 2 (IPUx_CSI0_CCIR_CODE_2)

Address: Base address + 3_0018h offset

IPUx_CSI0_CCIR_CODE_2 field descriptions

Field	Description
31–22 Reserved	This read-only field is reserved and always has the value 0.
21-19 CSI0_STRT_ FLD1_ACTV	Start of field 1 active line command (interlaces mode). (In progressive mode this field is ignored).
18-16 CSI0_END_ FLD1_ACTV	End of field 1 active line command (interlaces mode). (In progressive mode this field is ignored).
15–12 Reserved	This read-only field is reserved and always has the value 0.
11-9 CSI0_STRT_ FLD1_BLNK_ 2ND	Start of field 1 second blanking line command (interlaces mode). (In progressive mode this field is ignored).
8–6	End of field 1 second blanking line command (interlaces mode).
CSI0_END_ FLD1_BLNK_ 2ND	(In progressive mode this field is ignored).
5-3 CSI0_STRT_ FLD1_BLNK_ 1ST	Start of field 1 first blanking line command (interlaces mode). (In progressive mode this field is ignored).
CSI0_END_ FLD1_BLNK_ 1ST	End of field 1 first blanking line command (interlaces mode). (In progressive mode this field is ignored).

37.5.158 CSIO CCIR Code Register 3 (IPUx_CSI0_CCIR_CODE_3)

Address: Base address + 3_001Ch offset

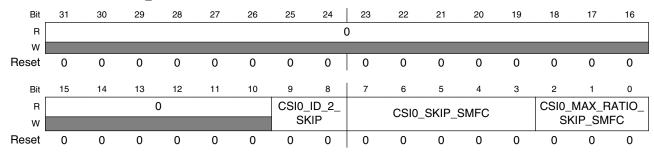
IPUx_CSI0_CCIR_CODE_3 field descriptions

Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.
PRECOM	CCIR pre command. This field defines the sequence which comes before the CCIR command. For BT.656 the code should be written to bits [23:0] while bits [29:24] are ignored (3X8bit) For BT.1120 the code should be written to bits [29:0] (3X10bit)

37.5.159 CSI0 Data Identifier Register (IPUx_CSI0_DI)

Address: Base address + 3_0020h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R [CSI0 MIPI DI3 CSI0 MIPI DI2									CSI0 MIPI DI1 CSI0 MIPI DI0																						
W	W CSIO_WIFI_DIS						CSIO_IVIII I_DIZ						0010_10111 1_D11								0310_IVIII 1_D10											
Reset	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1	1


IPUx_CSI0_DI field descriptions

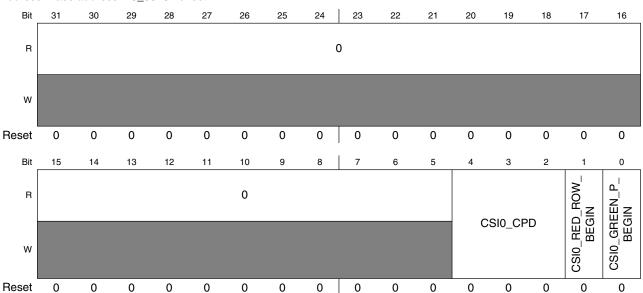
Field	Description										
31–24	CSI0_MIPI_DI3										
CSI0_MIPI_DI3	This field holds the Data Identifier #3 handled by the CSI.										
23–16	CSI0_MIPI_DI2										
CSI0_MIPI_DI2	nis field holds the Data Identifier #2 handled by the CSI.										
15–8	CSI0_MIPI_DI1										
CSI0_MIPI_DI1	This field holds the Data Identifier #1 handled by the CSI										
CSI0_MIPI_DI0	CSI0_MIPI_DI0										
	This field holds the Data Identifier #0 handled by the CSI; This is the main stream.										

37.5.160 CSI0 SKIP Register (IPUx_CSI0_SKIP)

This register controls the frame skipping supported between CSI0 and the SMFC.

IPUx_CSI0_SKIP field descriptions

Field	Description
31–10 Reserved	This read-only field is reserved and always has the value 0.
9–8 CSI0_ID_2_SKIP	CSI0 to SMFC Skipping ID. Data from the CSI0 to the SMFC has an ID associated with it. The ID is received from the MIPI interface. The skipping mechanism between the CSI0 and the SMFC can be used for only one ID. There is no skipping for data coming with ID different from the ID programed in this bits 00 - Skipping mechanism is activated on frames with ID equal to 00 01 - Skipping mechanism is activated on frames with ID equal to 01 10 - Skipping mechanism is activated on frames with ID equal to 10
7–3 CSI0_SKIP_ SMFC	CSI0 SKIP SMFC These 5 bits define the skipping pattern of the frames send to the SMFC. Skipping is done for a set of frames. The number of frames in a set is defined at CSI0_MAX_RATIO_SKIP_SMFC. when CSI0_MAX_RATIO_SKIP_SMFC = 1 => CSI0_SKIP_SMFC[0] is used; other bits are ignored when CSI0_MAX_RATIO_SKIP_SMFC = 2 => CSI0_SKIP_SMFC[1:0] are used; other bits are ignored when CSI0_MAX_RATIO_SKIP_SMFC = 3 => CSI0_SKIP_SMFC[2:0] are used; other bits are ignored when CSI0_MAX_RATIO_SKIP_SMFC = 4 => CSI0_SKIP_SMFC[3:0] are used; other bits are ignored when CSI0_MAX_RATIO_SKIP_SMFC = 5 => CSI0_SKIP_SMFC[4:0] are used; other bits are ignored when CSI0_MAX_RATIO_SKIP_SMFC = 5 => CSI0_SKIP_SMFC[4:0] are used; Setting bit #n of CSI0_SKIP_SMFC means that the #n frame in the set is skipped. For example: if CSI0_MAX_RATIO_SKIP_SMFC = 4 and CSI0_SKIP_SMFC = 11010 Frames #0 & Frame #2 will not be skipped as bit0 and bit2 are cleared Frames #1 & Frame #3 will be skipped as bit1 and bit3 are set bit #4 is ignored as CSI0_MAX_RATIO_SKIP_SMFC is set to 4


Table continues on the next page...

IPUx_CSI0_SKIP field descriptions (continued)

Field	Description
	CSI0 Maximum Ratio Skip for SMFC
RATIO_SKIP_ SMFC	These bits define the number of frames in a skipping set.
	The skipping number is equal to CSI0_MAX_RATIO_SKIP_SMFC+1; The maximum value of this bits is 5. When set to 0 the skipping is disabled.

37.5.161 CSI0 Compander Control Register (IPUx_CSIO_CPD_CTRL)

IPUx_CSIO_CPD_CTRL field descriptions

Field	Description									
31–5 Reserved	This read-only field is reserved and always has the value 0.									
4–2	CSI0_CPD									
CSI0_CPD	These bits enable the compander in the path to different destination.									
	CSI0_CPD[0] -									
	CSI0_CPD[1] - Enable for the compander for data sent to the IC									
	CSI0_CPD[2] - Enable for the compander for data sent to the IDMAC via SMFC									
	If all the 3 bits are zero the compander is disabled									
	Reserved									
1	Color of first row in the frame.									
CSI0_RED_ ROW_BEGIN	Reserved									

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_CSIO_CPD_CTRL field descriptions (continued)

Field	Description									
	0 First row in the frame is GBGB.1 First row in the frame is GRGR.									
0 CSI0_GREEN_ P_BEGIN	Color of first component in the frame. Reserved									
	First component in the frame is blue or red, depending from RED_ROW bit.First component in the frame is green									

37.5.162 CSI0 Red Component Compander Constants Register <i> (IPUx_CSIO_CPD_RC_i)

These registers contain CONSTANT <i> parameters used for companding of red component.

Address: Base address + 3 002Ch offset

IPUx_CSIO_CPD_RC_i field descriptions

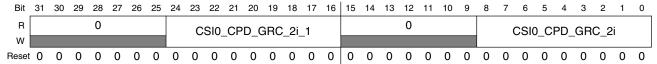
Field	Description						
31–25 Reserved	This read-only field is reserved and always has the value 0.						
24–16 CSI0_CPD_RC_ 2i_1	D_CPD_RC_						
15–9 Reserved	This read-only field is reserved and always has the value 0.						
CSI0_CPD_RC_ 2i	CONSTANT <2*i> parameter of Compander, Red component. Reserved						

37.5.163 CSI0 Red Component Compander SLOPE Register <i>(IPUx_CSIO_CPD_RS_i)

These registers contain SLOPE <i> parameters used for companding of red component.

Address: Base address + 3_004Ch offset

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		SIO	CPE) B	S 1	i 3			CS	ın ı	CPD) R	2 4	i 2				in i	CPL	ר א	S 4i	1				SIN	CP	D E	RS_4		
w			O1 L		<u></u>						O1 L								O1 L			<u>-'</u>				010	_01	<u></u> i		TI	
Reset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


IPUx_CSIO_CPD_RS_i field descriptions

Field	Description
31-24 CSI0_CPD_RS_ 4i_3	Reserved
23-16 CSI0_CPD_RS_ 4i_2	Reserved
15-8 CSI0_CPD_RS_ 4i_1	Reserved
CSI0_CPD_RS_ 4i	Reserved

37.5.164 CSI0 GR Component Compander Constants Register <i> (IPUx_CSIO_CPD_GRC_i)

These registers contain CONSTANTi parameters used for companding of green components in GRGR rows.

Address: Base address + 3_005Ch offset

IPUx_CSIO_CPD_GRC_i field descriptions

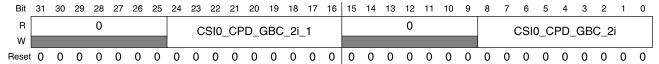
Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 CSI0_CPD_ GRC_2i_1	Reserved
15–9 Reserved	This read-only field is reserved and always has the value 0.
CSI0_CPD_ GRC_2i	Reserved

37.5.165 CSI0 GR Component Compander SLOPE Register <i>(IPUx_CSIO_CPD_GRS_i)

These registers contain SLOPEi parameters used for companding of green components in GRGR rows.

Address: Base address + 3_007Ch offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W		CSI	0_C	PD.	_GF	RS_4	4i_3			CSI	0_C	PD_	GR	S_4	4i_2			CSI	0_C	PD.	_GF	RS_4	li_1			CS	310_	CPE)_G	RS_	4i	
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

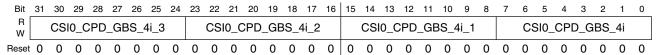

IPUx_CSIO_CPD_GRS_i field descriptions

Field	Description
31–24 CSI0_CPD_ GRS_4i_3	Reserved
23-16 CSI0_CPD_ GRS_4i_2	Reserved
15-8 CSI0_CPD_ GRS_4i_1	Reserved
CSI0_CPD_ GRS_4i	Reserved

37.5.166 CSI0 GB Component Compander Constants Register <i> (IPUx_CSIO_CPD_GBC_i)

These registers contain CONSTANTi parameters used for companding of green components in GBGB rows.

Address: Base address + 3_008Ch offset

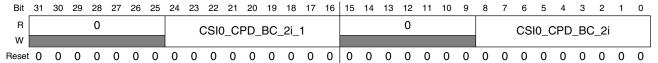

IPUx_CSIO_CPD_GBC_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 CSI0_CPD_ GBC_2i_1	Reserved
15–9 Reserved	This read-only field is reserved and always has the value 0.
CSI0_CPD_ GBC_2i	Reserved

37.5.167 CSI0 GB Component Compander SLOPE Register <i>(IPUx_CSIO_CPD_GBS_i)

These registers contain SLOPEi parameters used for companding of green components in GBGB rows.

Address: Base address + 3_00ACh offset


IPUx_CSIO_CPD_GBS_i field descriptions

Field	Description
31–24 CSI0_CPD_ GBS_4i_3	Reserved
23-16 CSI0_CPD_ GBS_4i_2	Reserved
15-8 CSI0_CPD_ GBS_4i_1	Reserved
CSI0_CPD_ GBS_4i	Reserved

37.5.168 CSI0 Blue Component Compander Constants Register <i>(IPUx_CSIO_CPD_BC_i)

These registers contain CONSTANTi parameters used for companding of blue component.

Address: Base address + 3_00BCh offset

IPUx_CSIO_CPD_BC_i field descriptions

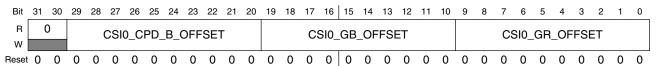
Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 CSI0_CPD_BC_ 2i_1	Reserved
15–9 Reserved	This read-only field is reserved and always has the value 0.
CSI0_CPD_BC_ 2i	Reserved

37.5.169 CSI0 Blue Component Compander SLOPE Register <i>(IPUx_CSIO_CPD_BS_i)

These registers contain SLOPEi parameters used for companding of red component.

Address: Base address + 3_00DCh offset

Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R CSI0_CPD_BS_4i_3 CSI0_CPD_BS_4				S_4i	_2			CS	10_0	CPE)_B	S_4i	_1			С	SI0	_CP	D_E	3S_4	4i										
Reset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0


IPUx_CSIO_CPD_BS_i field descriptions

Field	Description
31–24 CSI0_CPD_BS_ 4i_3	Reserved
23–16 CSI0_CPD_BS_ 4i_2	Reserved
15-8 CSI0_CPD_BS_ 4i_1	Reserved
CSI0_CPD_BS_ 4i	Reserved I

37.5.170 CSI0 Compander Offset Register 1 (IPUx_CSI0_CPD_OFFSET1)

These registers contain Offset parameters used for companding.

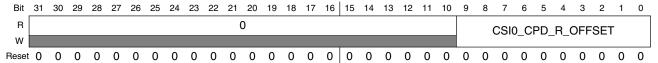
Address: Base address + 3_00ECh offset

IPUx_CSI0_CPD_OFFSET1 field descriptions

Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.

Table continues on the next page...

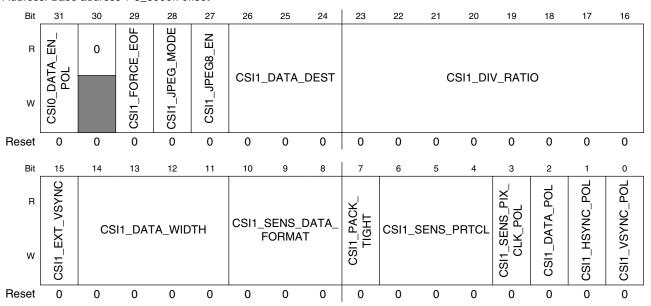
i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014


IPUx_CSI0_CPD_OFFSET1 field descriptions (continued)

Field	Description
29–20 CSI0_CPD_B_ OFFSET	Reserved
19–10 CSI0_GB_ OFFSET	Reserved
CSI0_GR_ OFFSET	Reserved

37.5.171 CSI0 Compander Offset Register 2 (IPUx_CSI0_CPD_OFFSET2)

This register contain Offset parameters used for companding.



IPUx_CSI0_CPD_OFFSET2 field descriptions

Field	Description
31–10 Reserved	This read-only field is reserved and always has the value 0.
CSI0_CPD_R_	CSI0 Red component offset
OFFSET	The value is between -512 to 511. The value is added to the red component before companding.
	Clipping:
	If the result of the red components value + the offset is smaller than 0, the result is zero
	If the result of the red components value + the offset is greater than 1023, the result is 1023
	Reserved

37.5.172 CSI1 Sensor Configuration Register (IPUx_CSI1_SENS_CONF)

IPUx_CSI1_SENS_CONF field descriptions

Field	Description
31 CSI0_DATA_ EN_POL	Invert IPP_IND_SENSB_DATA_EN input. This bit selects the polarity of IPP_IND_SENSB_DATA_EN signal.
	0 IPP_IND_SENSB_DATA_EN is directly applied to internal circuitry.
	IPP_IND_SENSB_DATA_EN is inverted before applied to internal circuitry.
30 Reserved	This read-only field is reserved and always has the value 0.
29	Force End of frame
CSI1_FORCE_ EOF	This is a self clear bit allowing the user to force an End-of-frame event; This bit can be used in cases where the frame sent by the sensor was not completed.
	1 force end of frame
	0 no action
28 CSI1_JPEG_	JPEG Mode - this bit defines the mode of the control signals when working in JPEG mode
MODE	1 The data is valid as long as HSYNC and VSYNC signals are active; HSYNC is valid for single frame
	The frame starts withe the assertion of VSYNC. The frame ends on the next VSYNC or by setting the CSI0_FORCE_EOF bit
27 CSI1_JPEG8_EN	JPEG8 enable bit
	1 JPEG8 detection is enabled
	0 JPEG8 is disabled

Table continues on the next page...

IPUx_CSI1_SENS_CONF field descriptions (continued)

Field	Description
26–24	These bits enable the destination of the data coming from the CSI.
CSI1_DATA_	CSI1_DATA_DEST[0] - Reserved
DEST	CSI1_DATA_DEST[1] - destination is IC
	CSI1_DATA_DEST[2] - destination is IDMAC via SMFC
23–16	DIV Ratio Clock division ratio minus 1. This field defines the division ratio of HSP_CLK into
CSI1_DIV_	SENSB_MCLK: SENSB_MCLK rate = HSP_CLK rate /(DIV_RATIO+1)
RATIO	Estamad VOVAIO anable. This hits adjust his trace and made and internal VOVAIO
15 CSI1_EXT_	External VSYNC enable. This bits select between external and internal VSYNC.
VSYNC	0 Internal VSYNC mode.
	1 External VSYNC mode.
14–11	Data width. This fields defines the number of bits per color.
CSI1_DATA_ WIDTH	Values:
VVIDIA	0000 4 hite year color
	0000 4 bits per color 0000 Reserved
	0001 8 bits per color
	0010 9 bits per color
	0010 Reserved
	0011 10 bits per color
	0100 11 bits per color
	0100 Reserved
	0101 12 bits per color
	0101 Reserved
	0110 13 bits per color
	0110 Reserved 0111 14 bits per color
	0111 14 bits per color 0111 Reserved
	1000 15 bits per color
	1000 Reserved
	1001 16 bits per color
10–8	Data format from the sensor. This field defines the data format for the input of the CSI sensor.
CSI1_SENS_ DATA_FORMAT	Values:
	000 full RGB or YUV444
	001 YUV422 (YUYV)
	010 YUV422 (UYVY)
	011 Bayer or Generic data
	100 RGB565
	101 RGB555
	110 RGB444
	111 JPEG
7	CSI1 Pack Tight
CSI1_PACK_ TIGHT	When the data format is YUV or RGB and the component's width is 9-16 bits, it can be sent to the memory in 2 different ways

Table continues on the next page...

IPUx_CSI1_SENS_CONF field descriptions (continued)

Field	Description
	1 Three 10 bits components are packed into a 32 bit word. Color extension/reduction is performed 0 Each component is written as a 16 bit word where the MSB is written to bit #15, color extension is
	done for the remaining least significant bits.
6–4	Sensor Protocol. This bit defines the Sensor timing/data mode protocol.
CSI1_SENS_ PRTCL	Values:
	000 Gated clock mode
	001 Non-gated clock mode
	010 CCIR progressive mode (BT.656)
	011 CCIR interlaced mode (BT.656)
	100 CCIR progressive (BT.1120 DDR mode: data arrives on every edge of the clock)
	101 CCIR progressive (BT.1120 SDR mode: data arrives only on the positive edge of the clock)
	110 CCIR interlaced mode (BT.1120 DDR mode: data arrives on every edge of the clock)
	111 CCIR interlaced mode (BT.1120 SDR mode: data arrives only on the positive edge of the clock)
3	Invert Pixel clock input. This bit selects the polarity of pixel clock.
CSI1_SENS_	0 pixel clock is directly applied to internal circuitry.
PIX_CLK_POL	1 pixel clock is inverted before applied to internal circuitry.
2 CSI1_DATA_	Invert data input. This bit selects the polarity of data input.
POL	0 data lines are directly applied to internal circuitry.
	data lines are inverted before applied to internal circuitry.
1 CSI1_HSYNC_	Invert IPP_IND_SENSB_HSYNC input. This bit selects the polarity of IPP_IND_SENSB_HSYNC signal.
POL	0 IPP_IND_SENSB_HSYNC is directly applied to internal circuitry.
	1 IPP_IND_SENSB_HSYNC is inverted before applied to internal circuitry.
0 CSI1_VSYNC_	Invert IPP_IND_SENSB_VSYNC input. This bit selects the polarity of IPP_IND_SENSB_VSYNC signal.
POL	0 IPP_IND_SENSB_VSYNC is not inverted before applied to internal circuitry.
	1 IPP_IND_SENSB_VSYNC is inverted before applied to internal circuitry.

37.5.173 CSI1 Sense Frame Size Register (IPUx_CSI1_SENS_FRM_SIZE)

Address: Base address + 3_8004h offset

IPUx_CSI1_SENS_FRM_SIZE field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value 0.

Table continues on the next page...

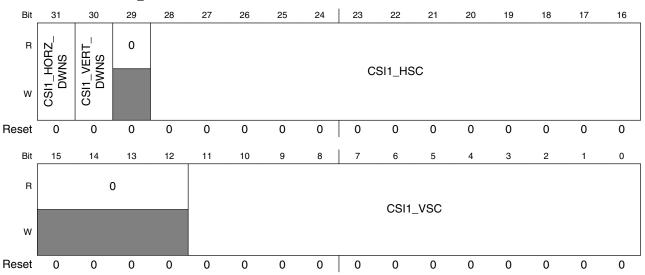
i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_CSI1_SENS_FRM_SIZE field descriptions (continued)

Field	Description
27-16 CSI1_SENS_ FRM_HEIGHT	Sensor frame height minus 1. This field defines the sensor frame rows number minus 1.
15–13 Reserved	This read-only field is reserved and always has the value 0.
CSI1_SENS_ FRM_WIDTH	Sensor frame width minus 1. This field defines the sensor frame column number minus 1.

37.5.174 CSI1 Actual Frame Size Register (IPUx_CSI1_ACT_FRM_SIZE)

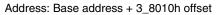
Address: Base address + 3_8008h offset

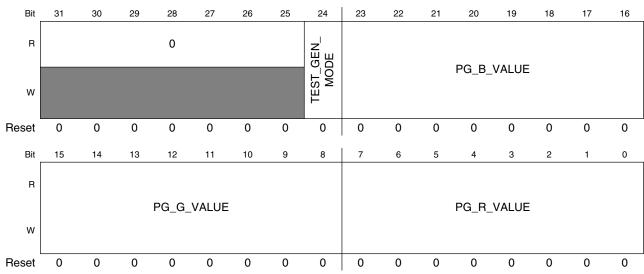


IPUx_CSI1_ACT_FRM_SIZE field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value 0.
27–16 CSI1_ACT_ FRM_HEIGHT	Actual frame height minus 1. This field defines the CSI output frame rows number minus 1.
15–13 Reserved	This read-only field is reserved and always has the value 0.
CSI1_ACT_ FRM_WIDTH	Actual frame width minus 1. This field defines the CSI output frame columns number minus 1.

37.5.175 CSI1 Output Control Register (IPUx_CSI1_OUT_FRM_CTRL)

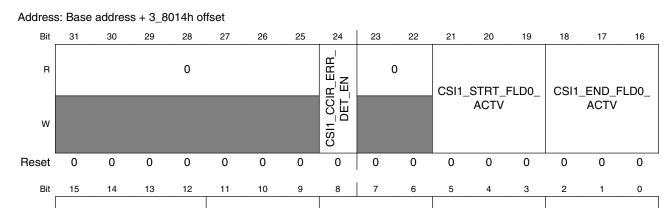




IPUx_CSI1_OUT_FRM_CTRL field descriptions

Field	Description
31 CSI1_HORZ_	Enable horizontal downsizing (decimation) by 2.
DWNS	0 Downsizing disabled
	1 Downsizing enabled
30 CSI1_VERT_	Enable vertical downsizing (decimation) by 2.
DWNS	0 Downsizing disabled
	1 Downsizing enabled
29 Reserved	This read-only field is reserved and always has the value 0.
28-16 CSI1_HSC	Horizontal skip. This field defines the number of columns to skip. In Interlaced mode this number refers to the number of lines per field
15–12 Reserved	This read-only field is reserved and always has the value 0.
CSI1_VSC	Vertical skip. This field defines the number of rows to skip.

37.5.176 CSI1 Test Control Register (IPUx_CSI1_TST_CTRL)



IPUx_CSI1_TST_CTRL field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24 TEST_GEN_ MODE	Test generator mode. This bit activates the signal generation. O Test signal generator is inactive. 1 Test signal generator is active.
23–16 PG_B_VALUE	Pattern generator B value. This field selects the B value for the generated pattern of even pixel.
15–8 PG_G_VALUE	Pattern generator G value. This field selects the G value for the generated pattern of even pixel.
PG_R_VALUE	Pattern generator R value. This field selects the R value for the generated pattern of even pixel.

37.5.177 CSI1 CCIR Code Register 1 (IPUx_CSI1_CCIR_CODE_1)

IPUx_CSI1_CCIR_CODE_1 field descriptions

CSI1_END_FLD0_

BLNK_2ND

CSI1_STRT_FLD0_

BLNK_1ST

CSI1_END_FLD0_

BLNK_1ST

0

CSI1_STRT_FLD0_

BLNK_2ND

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24 CSI1_CCIR_ ERR_DET_EN	Enable error detection and correction for CCIR interlaced mode with protection bit. O Error detection and correction is disabled. 1 Error detection and correction is enabled.
23–22 Reserved	This read-only field is reserved and always has the value 0.
21-19 CSI1_STRT_ FLD0_ACTV	Start of field 0 active line command (interlaces mode). (In progressive mode, start of active line command mode).
18-16 CSI1_END_ FLD0_ACTV	End of field 0 active line command (interlaces mode). (In progressive mode, end of active line command mode).
15–12 Reserved	This read-only field is reserved and always has the value 0.
11–9 CSI1_STRT_ FLD0_BLNK_ 2ND	Start of field 0 second blanking line command (interlaces mode). (In progressive mode this field is ignored).
8-6 CSI1_END_ FLD0_BLNK_ 2ND	End of field 0 second blanking line command (interlaces mode). (In progressive mode this field is ignored).

Table continues on the next page...

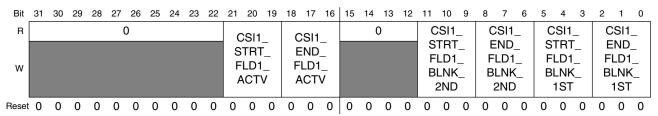
0

0

0

R

W


Reset

IPUx_CSI1_CCIR_CODE_1 field descriptions (continued)

Field	Description
5–3 CSI1_STRT_ FLD0_BLNK_ 1ST	Start of field 0 first blanking line command (interlaces mode). (In progressive mode this field indicates start of blanking line command).
CSI1_END_ FLD0_BLNK_ 1ST	End of field 0 first blanking line command (interlaces mode). (In progressive mode this field is ignored).

37.5.178 CSI1 CCIR Code Register 2 (IPUx_CSI1_CCIR_CODE_2)

Address: Base address + 3_8018h offset

IPUx_CSI1_CCIR_CODE_2 field descriptions

Field	Description
31–22 Reserved	This read-only field is reserved and always has the value 0.
21–19 CSI1_STRT_ FLD1_ACTV	Start of field 1 active line command (interlaces mode). (In progressive mode this field is ignored).
18-16 CSI1_END_ FLD1_ACTV	End of field 1 active line command (interlaces mode). (In progressive mode this field is ignored).
15–12 Reserved	This read-only field is reserved and always has the value 0.
11–9 CSI1_STRT_ FLD1_BLNK_ 2ND	Start of field 1 second blanking line command (interlaces mode). (In progressive mode this field is ignored).
8–6	End of field 1 second blanking line command (interlaces mode).
CSI1_END_ FLD1_BLNK_ 2ND	(In progressive mode this field is ignored).
5–3 CSI1_STRT_ FLD1_BLNK_ 1ST	Start of field 1 first blanking line command (interlaces mode). (In progressive mode this field is ignored).
CSI1_END_ FLD1_BLNK_ 1ST	End of field 1 first blanking line command (interlaces mode). (In progressive mode this field is ignored).

37.5.179 CSI1 CCIR Code Register 3 (IPUx_CSI1_CCIR_CODE_3)

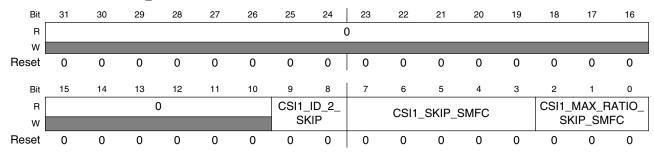
Address: Base address + 3_801Ch offset

IPUx_CSI1_CCIR_CODE_3 field descriptions

Field	Description
31–30 Reserved	This read-only field is reserved and always has the value 0.
CSI1_CCIR_ PRECOM	CCIR pre command. This field defines the sequence which comes before the CCIR command.
	For BT.656 the code should be written to bits [23:0] while bits [29:24] are ignored (3X8bit)
	For BT.1120 the code should be written to bits [29:0] (3X10bit)

37.5.180 CSI1 Data Identifier Register (IPUx_CSI1_DI)

Address: Base address + 3_8020h offset


IPUx_CSI1_DI field descriptions

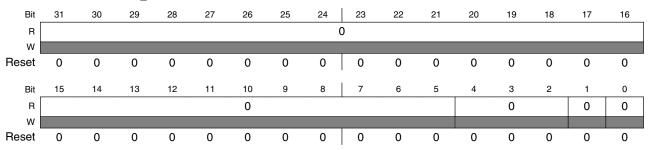
Field	Description
31-24 CSI1_MIPI_DI3	CSI1_MIPI_DI3
	This field holds the Data Identifier #3 handled by the CSI.
23–16	CSI1_MIPI_DI2
CSI1_MIPI_DI2	This field holds the Data Identifier #2 handled by the CSI.
15-8 CSI0_MIPI_DI1	CSI1_MIPI_DI1
	This field holds the Data Identifier #1 handled by the CSI
CSI1_MIPI_DI0	CSI1_MIPI_DI0
	This field holds the Data Identifier #0 handled by the CSI; This is the main stream.

37.5.181 CSI1 SKIP Register (IPUx_CSI1_SKIP)

This register control the frame skipping supported between CSI1 and the SMFC.

IPUx_CSI1_SKIP field descriptions

Field	Description
31–10 Reserved	This read-only field is reserved and always has the value 0.
9–8 CSI1_ID_2_SKIP	CSI1 to SMFC Skipping ID. Data from the CSI1 to the SMFC has an ID associated with it. The ID is received from the MIPI interface. The skipping mechanism between the CSI1 and the SMFC can be used for only one ID. There is no skipping for data coming with ID different from the ID programed in this bits 00 - Skipping mechanism is activated on frames with ID equal to 00
	 - Skipping mechanism is activated on frames with ID equal to 01 - Skipping mechanism is activated on frames with ID equal to 10 - Skipping mechanism is activated on frames with ID equal to 11
7–3 CSI1_SKIP_ SMFC	CSI1 SKIP SMFC These 5 bits define the skipping pattern of the frames send to the SMFC. Skipping is done for a set of frames. The number of frames in a set is defined at CSI1_MAX_RATIO_SKIP_SMFC.
	when CSI1_MAX_RATIO_SKIP_SMFC = 1 => CSI1_SKIP_SMFC[0] is used; other bits are ignored when CSI1_MAX_RATIO_SKIP_SMFC = 2 => CSI1_SKIP_SMFC[1:0] are used; other bits are ignored when CSI1_MAX_RATIO_SKIP_SMFC = 3 => CSI1_SKIP_SMFC[2:0] are used; other bits are ignored when CSI1_MAX_RATIO_SKIP_SMFC = 4 => CSI1_SKIP_SMFC[3:0] are used; other bits are ignored when CSI1_MAX_RATIO_SKIP_SMFC = 5 => CSI1_SKIP_SMFC[4:0] are used; other bits are ignored when CSI1_MAX_RATIO_SKIP_SMFC = 5 => CSI1_SKIP_SMFC[4:0] are used; Setting bit #n of CSI1_SKIP_SMFC means that the #n frame in the set is skipped. For example: if CSI1_MAX_RATIO_SKIP_SMFC = 4 and CSI1_SKIP_SMFC = 11010 Frames #0 & Frame #2 will not be skipped as bit0 and bit2 are cleared Frames #1 & Frame #3 will be skipped as bit1 and bit3 are set bit #4 is ignored as CSI1_MAX_RATIO_SKIP_SMFC is set to 4

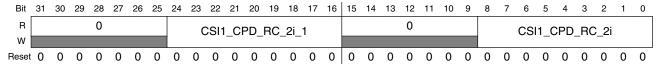

Table continues on the next page...

IPUx_CSI1_SKIP field descriptions (continued)

Field	Description
	CSI1 Maximum Ratio Skip for SMFC
RATIO_SKIP_ SMFC	These bits define the number of frames in a skipping set. These bits define the number of frames in a skipping set. The skipping number is equal to CSI1_MAX_RATIO_SKIP_SMFC+1;
	The maximum value of this bits is 5. When set to 0 the skipping is disabled.

37.5.182 CSI1 Compander Control Register (IPUx_CSI1_CPD_CTRL)

Address: Base address + 3_8028h offset

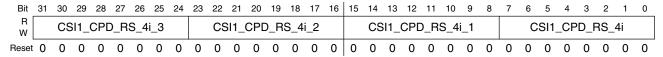

IPUx_CSI1_CPD_CTRL field descriptions

Field	Description
31–5 Reserved	This read-only field is reserved and always has the value 0.
4–2 Reserved	This read-only field is reserved and always has the value 0.
1 Reserved	This read-only field is reserved and always has the value 0.
0 Reserved	This read-only field is reserved and always has the value 0.

37.5.183 CSI1 Red Component Compander Constants Register <i> (IPUx_CSI1_CPD_RC_i)

These registers contain CONSTANT <i> parameters used for companding of red component.

Address: Base address + 3_802Ch offset


IPUx_CSI1_CPD_RC_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 CSI1_CPD_RC_ 2i_1	CONSTANT <2*i+1> parameter of Compander, Red component. Reserved
15–9 Reserved	This read-only field is reserved and always has the value 0.
CSI1_CPD_RC_ 2i	CONSTANT <2*i> parameter of Compander, Red component. Reserved

37.5.184 CSI1 Red Component Compander SLOPE Register <i>(IPUx_CSI1_CPD_RS_i)

These registers contain SLOPE <i> parameters used for companding of red component.

Address: Base address + 3_804Ch offset

IPUx_CSI1_CPD_RS_i field descriptions

Field	Description
31–24 CSI1_CPD_RS_ 4i_3	SLOPE<4*i+3> parameter of Compander, Red component. Reserved
23-16 CSI1_CPD_RS_ 4i_2	SLOPE<4*i+2> parameter of Compander, Red component. Reserved
15–8 CSI1_CPD_RS_ 4i_1	SLOPE<4*i+1> parameter of Compander, Red component. Reserved
CSI1_CPD_RS_ 4i	SLOPE<4*i> parameter of Compander, Red component. Reserved

37.5.185 CSI1 GR Component Compander Constants Register <i> (IPUx_CSI1_CPD_GRC_i)

These registers contain CONSTANTi parameters used for companding of green components in GRGR rows.

Address: Base address + 3_805Ch offset

IPUx_CSI1_CPD_GRC_i field descriptions

Field	Description								
31–25 Reserved	This read-only field is reserved and always has the value 0.								
24–16	CONST<2*i+1> parameter of Compander, GR component.								
CSI1_CPD_ GRC_2i_1	If the input format is RGB/YUV then CSI1_CPD_GRC should be equal to CSI1_CPD_GBC								
	Reserved								
15–9 Reserved	This read-only field is reserved and always has the value 0.								
CSI1_CPD_	CONSTANT<2*i> parameter of Compander, GR component.								
GRC_2i	If the input format is RGB/YUV then CSI1_CPD_GRC should be equal to CSI1_CPD_GBC								
	Reserved								

37.5.186 CSI1 GR Component Compander SLOPE Register <i>(IPUx_CSI1_CPD_GRS_i)

These registers contain SLOPEi parameters used for companding of green components in GRGR rows.

Address: Base address + 3_807Ch offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R		CSI	1 (:PD	GF	RS 4	4i_3			CSI	1 (:PD	GF	ıs 4	1i 2			CSI	1 C	:PD	GF	RS 4	1i 1			CS	311	СРГ) G	RS_	4i	
w			'	,, D.		10_	TI_U				'	,, D			TI				'	<i>'</i> ' D.		-	· '					01 -	<u></u>	-10_		
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_CSI1_CPD_GRS_i field descriptions

Field	Description							
31–24	SLOPE<4*i+3> parameter of Compander, GR component.							
CSI1_CPD_ GRS_4i_3	If the input format is RGB/YUV then CSI1_CPD_GRS should be equal to CSI1_CPD_GBS							
	Reserved							
23–16	SLOPE<4*i+2> parameter of Compander, GR component.							
CSI1_CPD_ GRS_4i_2	f the input format is RGB/YUV then CSI1_CPD_GRS should be equal to CSI1_CPD_GBS							
	Reserved							
15–8	SLOPE<4*i+1> parameter of Compander, GR component.							
CSI1_CPD_ GRS_4i_1	If the input format is RGB/YUV then CSI1_CPD_GRS should be equal to CSI1_CPD_GBS							
	Reserved							
CSI1_CPD_	SLOPE<4*i> parameter of Compander, GR component.							
GRS_4i	If the input format is RGB/YUV then CSI1_CPD_GRS should be equal to CSI1_CPD_GBS							
	Reserved							

37.5.187 CSI1 GB Component Compander Constants Register <i> (IPUx_CSI1_CPD_GBC_i)

These registers contain CONSTANTi parameters used for companding of green components in GBGB rows.

Address: Base address + 3_808Ch offset

IPUx_CSI1_CPD_GBC_i field descriptions

Field	Description									
31–25 Reserved	This read-only field is reserved and always has the value 0.									
24–16	CONSTi+1 parameter of Compander, GB component.									
CSI1_CPD_ GBC_2i_1	f the input format is RGB/YUV then CSI1_CPD_GBC should be equal to CSI1_CPD_GRC									
	Reserved									
15–9 Reserved	This read-only field is reserved and always has the value 0.									
CSI1_CPD_	CONSTANTi parameter of Compander, GB component.									
GBC_2i	If the input format is RGB/YUV then CSI1_CPD_GBC should be equal to CSI1_CPD_GRC									
	Reserved									

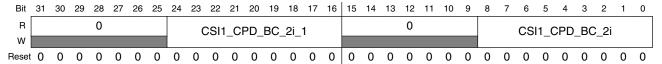
37.5.188 CSI1 GB Component Compander SLOPE Register <i>(IPUx_CSI1_CPD_GBS_i)

These registers contain SLOPEi parameters used for companding of green components in GBGB rows.

Address: Base address + 3_80ACh offset

Bit 31	1 30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	CS	l1_C	חםי	GE	25	1i 3			CSI	1 (PD	GB	25 /	1i 2			CSI	1 (חם	GE	ss 4	1i 1				211	CPE) G	BS	⁄li	
W		''_	<i>)</i>			+1_0			001	'_'	<i></i>	_		*1			001	'_C	л D,	_GL		<u> </u>				,,,,_	01 L	<u></u> u	DO_		
Reset 0	0	Ω	Λ	Ω	Λ	Ω	Ω	Ω	Λ	Ω	Λ	Λ	Λ	Ω	Ω	Ω	Λ	Λ	Ω	Ω	Λ	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω	Ω

IPUx_CSI1_CPD_GBS_i field descriptions

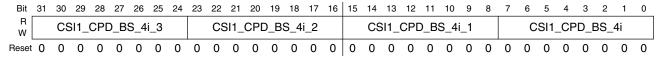

Field	Description										
31–24	SLOPE<4*i+3> parameter of Compander, GB component.										
CSI1_CPD_ GBS_4i_3	If the input format is RGB/YUV then CSI1_CPD_GBS should be equal to CSI1_CPD_GRS										
	Reserved										
23–16	SLOPE<4*i+2> parameter of Compander, GB component.										
CSI1_CPD_ GBS_4i_2	If the input format is RGB/YUV then CSI1_CPD_GBS should be equal to CSI1_CPD_GRS										
	Reserved										
15–8	SLOPE<4*i+1> parameter of Compander, GB component.										
CSI1_CPD_ GBS 4i 1	If the input format is RGB/YUV then CSI1_CPD_GBS should be equal to CSI1_CPD_GRS										
	Reserved										
CSI1_CPD_	SLOPE<4*i> parameter of Compander, GB component.										
GBS_4i	If the input format is RGB/YUV then CSI1_CPD_GBS should be equal to CSI1_CPD_GRS										
	Reserved										

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.5.189 CSI1 Blue Component Compander Constants Register <i>(IPUx_CSI1_CPD_BC_i)

These registers contend CONSTANTi parameters used for companding of blue component.

Address: Base address + 3_80BCh offset

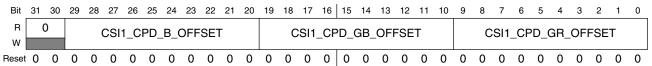

IPUx_CSI1_CPD_BC_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16 CSI1_CPD_BC_ 2i_1	CONSTANT<2*i+1> parameter of Compander, Blue component. Reserved
15–9 Reserved	This read-only field is reserved and always has the value 0.
	CONSTANT<2*i> parameter of Compander, Blue component.
2i	Reserved

37.5.190 CSI1 Blue Component Compander SLOPE Register <i>(IPUx_CSI1_CPD_BS_i)

This registers contain SLOPEi parameters used for companding of red component.

Address: Base address + 3_80DCh offset


IPUx_CSI1_CPD_BS_i field descriptions

Field	Description
31–24 CSI1_CPD_BS_ 4i_3	SLOPE<4*i+3> parameter of Compander, Blue component. Reserved
23–16 CSI1_CPD_BS_ 4i_2	SLOPE<4*i+2> parameter of Compander, Blue component. Reserved
15–8 CSI1_CPD_BS_ 4i_1	SLOPE<4*i+1> parameter of Compander, Blue component. Reserved
CSI1_CPD_BS_ 4i	SLOPE<4*i> parameter of Compander, Blue component. Reserved

37.5.191 CSI1 Compander Offset Register 1 (IPUx_CSI1_CPD_OFFSET1)

These registers contain Offset parameters used for companding.

Address: Base address + 3_80ECh offset

IPUx_CSI1_CPD_OFFSET1 field descriptions

Field	Description											
31–30 Reserved	This read-only field is reserved and always has the value 0.											
29–20	CSI1 Blue component offset											
CSI1_CPD_B_ OFFSET	The value is between -512 to 511. The value is added to the blue component before companding.											
352.	Clipping:											
	If the result of the blue components value + the offset is smaller than 0, the result is zero											
	If the result of the blue components value + the offset is greater than 1023, the result is 1023											
	Reserved											
19–10	CSI1 Green Blue component offset											
CSI1_CPD_GB_ OFFSET	The value is between -512 to 511. The value is added to the blue component before companding.											
002.	Clipping:											
	If the result of the green-blue components value + the offset is smaller than 0, the result is zero											
	If the result of the green-blue components value + the offset is greater than 1023, the result is 1023											

Table continues on the next page...

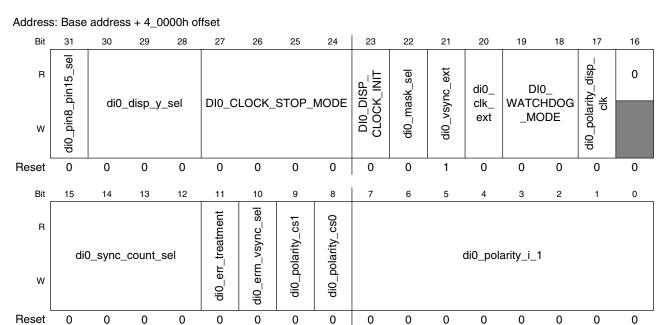
i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_CSI1_CPD_OFFSET1 field descriptions (continued)

Field	Description								
	If the input format is RGB/YUV then CSI1_GB_OFFSET must be equal to CSI1_GR_OFFSET								
	Reserved								
	CSI1 Green Red component offset								
OFFSET	The value is between -512 to 511. The value is added to the green-red component before companding.								
	Clipping:								
	If the result of the green-red components value + the offset is smaller than 0, the result is zero								
	If the result of the green-red components value + the offset is greater than 1023, the result is 1023								
	Reserved								

37.5.192 CSI1 Compander Offset Register 2 (IPUx_CSI1_CPD_OFFSET2)

These registers contain Offset parameters used for companding.


Address: Base address + 3_80F0h offset

IPUx_CSI1_CPD_OFFSET2 field descriptions

Field	Description									
31–10 Reserved	This read-only field is reserved and always has the value 0.									
CSI1_CPD_R_	CSI1 Red component offset									
OFFSET	The value is between -512 to 511. The value is added to the red component before companding.									
	Clipping:									
	If the result of the red components value + the offset is smaller than 0, the result is zero									
	If the result of the red components value + the offset is greater than 1023, the result is 1023									
	Reserved									

37.5.193 DI0 General Register (IPUx_DI0_GENERAL)

IPUx_DI0_GENERAL field descriptions

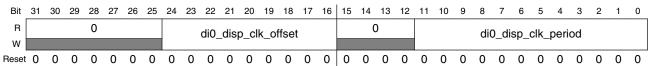
Field	Description			
31	This bit routes PIN8 over PIN15			
di0_pin8_pin15_	1 PIN8 is routed to PIN15, PIN8 is also routed to PIN8			
sel	0 PIN15 is routed to PIN15, PIN8 is routed to PIN8			
30–28	DI0 Display Vertical coordinate (Y) select.			
di0_disp_y_sel				
_ 1 _ 7 _	This field defines which one of the 8 counters will be used as a display's line counter.			
	000 counter #1 is selected			
	111 counter #8 is selected			
27–24	DI clock stop mode			
DI0_CLOCK_ STOP MODE	When performing a clock change. The DI stops the clock to the display.			
OTOT_INOBE	These field defines when the clock will be stopped.			
	Stopping at EOL/EOF is supported for the case where the data is coming from the IDMAC (DMA access). In case that only direct accesses is performed, the user should set this field to 0000			
	0001-1001 stop at the next event of one of the counters (counter #1 to counter #9)			
	0000 stop at the next edge of the display clock			
	1100 stop at EOL (end of a line), but if stop request is during blanking interval, stop now			
	1101 stop at EOF (end of a frame), but if stop request is during blanking interval, stop now			
	1110 stop at EOL (end of a line), but if stop request is during blanking interval, stop at the end of the next line			
	1111 stop at EOF (end of a frame), but if stop request is during blanking interval, stop at the end of the next frame			

Table continues on the next page...

IPU Memory Map/Register Definition

IPUx_DI0_GENERAL field descriptions (continued)

Field	Description
23	Display clock's initial mode
DI0_DISP_ CLOCK_INIT	For synchronization error conditions the display clock can be stopped on the next VSYNC
	1 The display's clock is running after the next VSYNC (indicating new frame)
	0 The display's clock is stopped after the next VSYNC (indicating new frame)
22	DI0 Mask select.
di0_mask_sel	IPP_PIN_2 output of the DI that functions as MASK signal can come from 2 sources: counter #2 or extracted from the MASK data coming from the memory.
	1 IPP_PIN_2 is coming from extracted MASK data coming from the memory
	0 IPP_PIN_2 is coming from counter #2
21	DI0 External VSYNC.
di0_vsync_ext	This bit selects the source of the VSYNC signal
	1 External to the IPU
	0 Internally generated by the IPU
20	DI0 External Clock.
di0_clk_ext	This bit selects the source of the DI0's clock
	This bit solods the source of the big solodic
	1 The source of the clock is external to the IPU
	0 The clock is internally generated by the IPU
19–18 DI0_ WATCHDOG_ MODE	DI0 watchdog mode In case of a display error where the DI clock is stopped (defined at di0_err_treatment). An internal watchdog counts DI clocks. If this timer reached its pre defined value the DI will skip the current frame and restart on the frame. This 2 bits define the number of DI clock cycles that the timer counts.
	00 The timer counts 4 DI cycles
	01 The timer counts 16 DI cycles
	10 The timer counts 64 DI cycles
	11 The timer counts 128 DI cycles
17	DI0 Output Clock's polarity
di0_polarity_ disp_clk	This bits define the polarity of the DI0's clock.
	1 The output clock is active high
	0 The output clock is active low
16 Reserved	This read-only field is reserved and always has the value 0.
15–12 di0_sync_count_ sel	For synchronous flow error: selects synchronous flow synchronization counter in DI:
11	In case of synchronous flow error there are 2 ways to handle the display
di0_err_treatment	1 to wait (stop clock)
	0 Drive the last component
10	DI0 error recovery block's VSYNC source select
di0_erm_vsync_ sel	The error recovery block detect a case where the DI's VSYNC is asserted before the EOF. This bit selects the source of the VSYNC signal monitored by this mechanism.

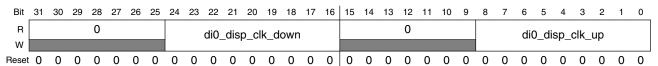

Table continues on the next page...

IPUx_DI0_GENERAL field descriptions (continued)

Field	Description	
	vsync_post - an internal VSYNC signal asserted 2 lines after the DI's VSYNC	
	0 vsync_pre - an internal VSYNC signal asserted 2 lines before the DI's VSYNC	
9	DI0 Chip Select's 1 polarity	
di0_polarity_cs1	This bits define the polarity of the DI's CS1.	
	1 The CS1 is active high	
	0 The CS1 is active low	
8	DI0 Chip Select's 0 polarity	
di0_polarity_cs0	This bits define the polarity of the DI's CS0.	
	1 The CS0 is active high	
	0 The CS0 is active low	
di0_polarity_i_1	DI0 output pin's polarity	
	This bits define the polarity of each of the DI's outputs.	
	1 The output pin is active high	
	0 The output pin is active low	

37.5.194 DI0 Base Sync Clock Gen 0 Register (IPUx_DI0_BS_CLKGEN0)

Address: Base address + 4_0004h offset

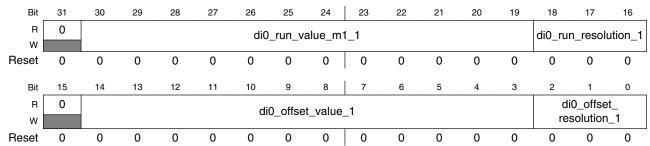


IPUx_DI0_BS_CLKGEN0 field descriptions

Field	Description		
31–25 Reserved	This read-only field is reserved and always has the value 0.		
24–16	DI0 Display Clock Offset		
di0_disp_clk_ offset	The DI has the ability to delay the display's clock		
	This field defines the amount of IPU's clock cycles added as delay on this clock.		
15–12 Reserved	This read-only field is reserved and always has the value 0.		
di0_disp_clk_	DI0 Display Clock Period		
period	This field defines the Display interface clock period for display write access. This parameter contains an integer part (bits 11:4) and a fractional part (bits 3:0). It defines a fractional division ratio of the HSP_CLK clock for generation of the display's interface clock.		

37.5.195 DI0 Base Sync Clock Gen 1 Register (IPUx_DI0_BS_CLKGEN1)

Address: Base address + 4_0008h offset



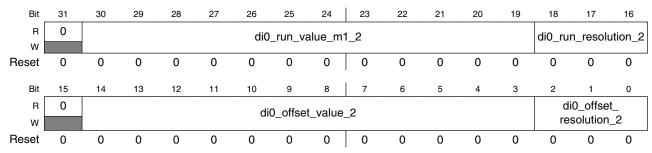
IPUx_DI0_BS_CLKGEN1 field descriptions

Field	Description	
31–25 Reserved	This read-only field is reserved and always has the value 0.	
24–16	DI0 display clock falling edge position	
di0_disp_clk_ down	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).	
	The position value is a time interval between display's access start point and display's interface clock falling edge.	
15–9 Reserved	This read-only field is reserved and always has the value 0.	
di0_disp_clk_up	DI0 display clock rising edge position	
	This parameter contains an integer part (bits 8:1) and a fractional part (bit 0).	
	The position value is a time interval between display's access start point and display's interface clock rising edge.	

37.5.196 DI0 Sync Wave Gen 1 Register 0 (IPUx_DI0_SW_GEN0_1)

Address: Base address + 4_000Ch offset

IPUx_DI0_SW_GEN0_1 field descriptions


Description
his read-only field is reserved and always has the value 0.
h

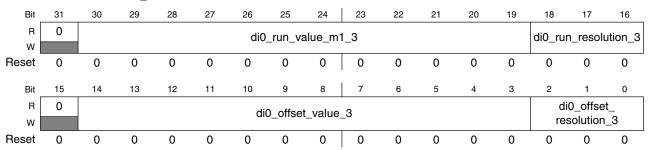
IPUx_DI0_SW_GEN0_1 field descriptions (continued)

Field	Description		
30–19	DI0 counter #1 pre defined value		
di0_run_value_ m1_1	This fields defines the counter #1 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_1 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.		
18–16	DI0 counter #1 Run Resolution		
di0_run_ resolution_1	This field defines the trigger causing the counter to increment.		
	000 Counter is disabled		
	O01 The counter is triggered by the same trigger that triggers the displays clock.		
	010 NA		
	011 NA		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSIs according to the CSI_VSYNC_DEST bit.		
	110 External VSYNC		
	111 Counter is always on.		
15 Reserved	This read-only field is reserved and always has the value 0.		
14–3	DI0 counter #1 offset value		
di0_offset_value_ 1	The counter can start counting after a pre defined delay		
	This field defines the amount of cycles that the counter will be delayed by		
di0_offset_	DI0 counter #1 offset Resolution		
resolution_1	This field defines the trigger causing the offset counter to increment		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock		
	010 NA		
	011 NA		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSIs according to the CSI_VSYNC_DEST bit. —		
	110 External VSYNC		
	111 Counter is always on.		

37.5.197 DI0 Sync Wave Gen 2 Register 0 (IPUx_DI0_SW_GEN0_2)

Address: Base address + 4_0010h offset

IPUx_DI0_SW_GEN0_2 field descriptions


Field	Description			
31 Reserved	This read-only field is reserved and always has the value 0.			
30–19	DI0 counter #2 pre defined value			
di0_run_value_ m1_2	This fields defines the counter #2 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_2 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.			
18–16	DI0 counter #2 Run Resolution			
di0_run_ resolution_2	This field defines the trigger causing the counter to increment.			
	000 Counter is disabled			
	001 The counter is triggered by the same trigger that triggers the displays clock			
	010 The Counter is triggered by counter #1			
	011 NA			
	100 NA			
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.			
	— 440 — F. I. W. I. VOVAIO			
	110 External VSYNC			
	111 Counter is always on.			
15 Reserved	This read-only field is reserved and always has the value 0.			
14–3	DI0 counter #2 offset value			
di0_offset_value_ 2	The counter can start counting after a pre defined delay			
	This field defines the amount of cycles that the counter will be delayed by			
di0_offset_	DI0 counter #2 offset Resolution			
resolution_2	This field defines the trigger causing the offset counter to increment			
	000 Counter is disabled			
	001 The counter is triggered by the same trigger that triggers the displays clock.			
	010 The Counter is triggered by counter #1			

IPUx_DI0_SW_GEN0_2 field descriptions (continued)

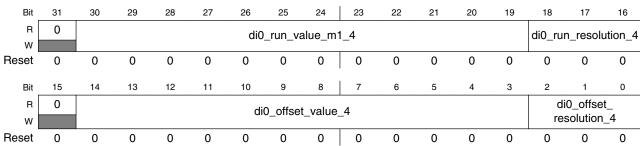
Field	Description	
	011	NA
	100	NA
	101	CSI VSYNC. The VSYNC is a trigger coming from one of the CSIs according to the CSI_VSYNC_DEST bit.
		_
	110	External VSYNC
	111	Counter is always on.

37.5.198 DI0 Sync Wave Gen 3 Register 0 (IPUx_DI0_SW_GEN0_3)

Address: Base address + 4_0014h offset

IPUx_DI0_SW_GEN0_3 field descriptions

Field	Description		
31 Reserved	This read-only field is reserved and always has the value 0.		
30–19 di0_run_value_ m1_3	ollo counter #3 pre defined value This fields defines the counter #3 pre defines value. When the counter is auto reload mode dio_cnt_auto_reload_3 bit is set), the counter automatically restarts. otherwise the counter restarts for the mount of time defined on the corresponding dio_step_repeat field.		
18–16 di0_run_ resolution_3	DI0 counter #3 Run Resolution This field defines the trigger causing the counter to increment.		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	011 The Counter is triggered by counter #2		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.		
	_		
	110 External VSYNC		
	111 Counter is always on.		


IPU Memory Map/Register Definition

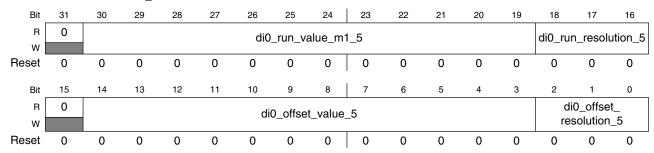
IPUx_DI0_SW_GEN0_3 field descriptions (continued)

Field	Description		
15 Reserved	This read-only field is reserved and always has the value 0.		
14–3	DI0 counter #3 offset value		
di0_offset_value_ 3	The counter can start counting after a pre defined delay		
	This field defines the amount of cycles that the counter will be delayed by		
di0_offset_	DI0 counter #3 offset Resolution		
resolution_3	This field defines the trigger causing the offset counter to increment		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	011 The Counter is triggered by counter #2		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.		
	_		
	110 External VSYNC		
	111 Counter is always on.		

37.5.199 DI0 Sync Wave Gen 4 Register 0 (IPUx_DI0_SW_GEN0_4)

Address: Base address + 4_0018h offset

IPUx_DI0_SW_GEN0_4 field descriptions

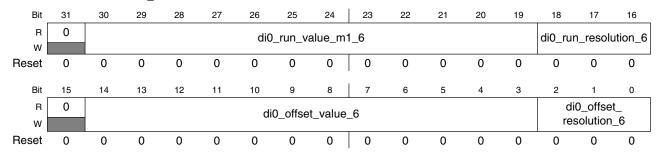

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19 di0_run_value_ m1_4	DIO counter #4 pre defined value This fields defines the counter #4 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_4 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.

IPUx_DI0_SW_GEN0_4 field descriptions (continued)

Field	Description
18–16 di0_run_ resolution_4	DI0 counter #4 Run Resolution
	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	_
	110 External VSYNC
	111 Counter is always on.
15	This read-only field is reserved and always has the value 0.
Reserved	
14–3	DI0 counter #4 offset value
di0_offset_value_ 4	The counter can start counting after a pre defined delay
·	This field defines the amount of cycles that the counter will be delayed by
di0_offset_	DI0 counter #4 offset Resolution
resolution_4	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	_
	110 External VSYNC
	111 Counter is always on.

37.5.200 DI0 Sync Wave Gen 5 Register 0 (IPUx_DI0_SW_GEN0_5)

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014


IPU Memory Map/Register Definition

IPUx_DI0_SW_GEN0_5 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI0 counter #5 pre defined value
di0_run_value_ m1_5	This fields defines the counter #5 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_5 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.
18–16	DI0 counter #5 Run Resolution
di0_run_ resolution_5	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC 111 Counter is always on.
4.5	,
15 Reserved	This read-only field is reserved and always has the value 0.
14–3	DI0 counter #5 offset value
di0_offset_value_ 5	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di0_offset_	DI0 counter #5 offset Resolution
resolution_5	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 -The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC
	111 Counter is always on.

37.5.201 DI0 Sync Wave Gen 6 Register 0 (IPUx_DI0_SW_GEN0_6)

Address: Base address + 4_0020h offset

IPUx_DI0_SW_GEN0_6 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI0 counter #6 pre defined value
di0_run_value_ m1_6	This fields defines the counter #6 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_6 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.
18–16	DI0 counter #6 Run Resolution
di0_run_ resolution_6	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15 Reserved	This read-only field is reserved and always has the value 0.
14–3	DI0 counter #6 offset value
di0_offset_value_ 6	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di0_offset_	DI0 counter #6 offset Resolution
resolution_6	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3

Table continues on the next page...


IPU Memory Map/Register Definition

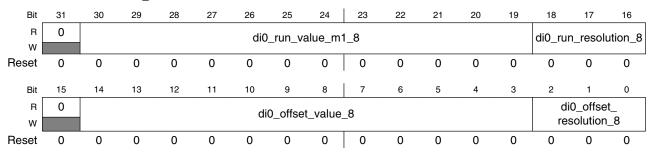
IPUx_DI0_SW_GEN0_6 field descriptions (continued)

Field	Description
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.202 DI0 Sync Wave Gen 7 Register 0 (IPUx_DI0_SW_GEN0_7)

Address: Base address + 4_0024h offset

IPUx_DI0_SW_GEN0_7 field descriptions


Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI0 counter #7 pre defined value
di0_run_value_ m1_7	This fields defines the counter #7 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_7 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.
18–16	DI0 counter #1 Run Resolution
di0_run_ resolution_7	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15 Reserved	This read-only field is reserved and always has the value 0.
14–3	DI0 counter #7 offset value
di0_offset_value_ 7	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by

IPUx_DI0_SW_GEN0_7 field descriptions (continued)

Field	Description
di0_offset_	DI0 counter #7 offset Resolution
resolution_1	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

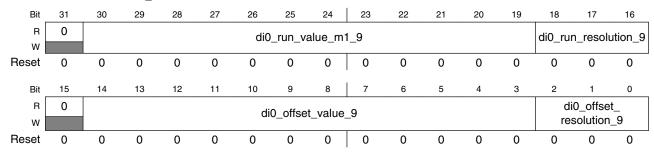
37.5.203 DI0 Sync Wave Gen 8 Register 0 (IPUx_DI0_SW_GEN0_8)

Address: Base address + 4_0028h offset

IPUx_DI0_SW_GEN0_8 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI0 counter #8 pre defined value
di0_run_value_ m1_8	This fields defines the counter #8 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_8 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.
18–16	DI0 counter #8 Run Resolution
di0_run_ resolution_8	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4

Table continues on the next page...


IPU Memory Map/Register Definition

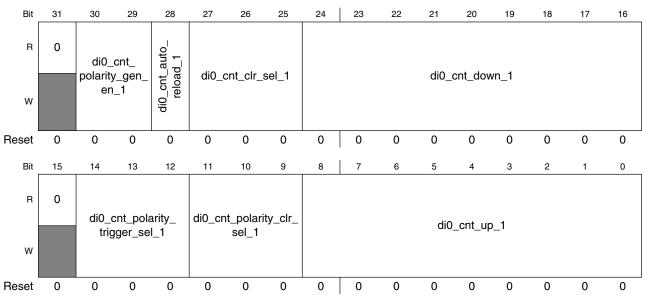
IPUx_DI0_SW_GEN0_8 field descriptions (continued)

Field	Description
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15	This read-only field is reserved and always has the value 0.
Reserved	
14–3	DI0 counter #8 offset value
di0_offset_value_ 8	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di0_offset_	DI0 counter #8 offset Resolution
resolution_8	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.204 DI0 Sync Wave Gen 9 Register 0 (IPUx_DI0_SW_GEN0_9)

Address: Base address + 4_002Ch offset


IPUx_DI0_SW_GEN0_9 field descriptions

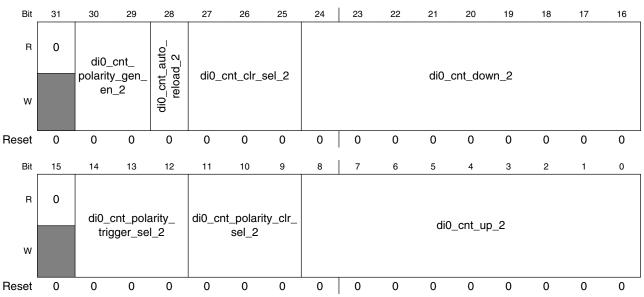

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19 di0_run_value_ m1_9	DI0 counter #9 pre defined value This fields defines the counter #9 pre defines value. When the counter is auto reload mode (di0_cnt_auto_reload_9 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di0_step_repeat field.

IPUx_DI0_SW_GEN0_9 field descriptions (continued)

Field	Description
18–16	DI0 counter #9 Run Resolution
di0_run_ resolution_9	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15	This read-only field is reserved and always has the value 0.
Reserved	
14–3	DI0 counter #9 offset value
di0_offset_value_ 9	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di0_offset_	DI0 counter #9 offset Resolution
resolution_9	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.205 DI0 Sync Wave Gen 1 Register 1 (IPUx_DI0_SW_GEN1_1)

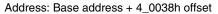

IPUx_DI0_SW_GEN1_1 field descriptions

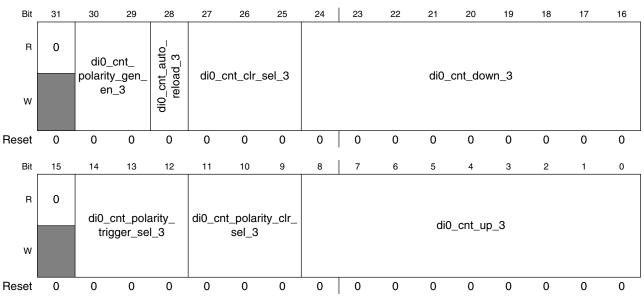

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_1	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	4. The country will outsmotically be releaded forever imposing the value of the difference report in field
reload_1	The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_1 field
27–25	Counter Clear select
di0_cnt_clr_sel_1	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 Reserved

IPUx_DI0_SW_GEN1_1 field descriptions (continued)

Field	Description
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the
	CSI_VSYNC_DEST bit.
	— 440 - F I I VOVAIO
	110 External VSYNC 111 Counter is always on.
04.40	•
24–16 di0_cnt_down_1	Counter falling edge position
dio_crit_down_1	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_1	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 Reserved
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	—
	110 External VSYNC
	111 Counter is always on.
11-9 di0_cnt_polarity_	DI0 counter's polarity Clear select
clr_sel_1	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Reserved
	011 Reserved
	100 Reserved
	101 Reserved 110 Reserved
	111 Reserved
di0_cnt_up_1	Counter rising edge position
aio_ont_up_1	
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.206 DI0 Sync Wave Gen 2 Register 1 (IPUx_DI0_SW_GEN1_2)

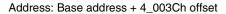

IPUx_DI0_SW_GEN1_2 field descriptions

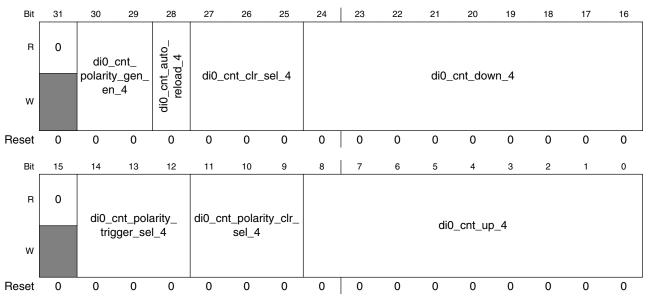

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_2	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	1. The country will outsmotically be releaded forever imposing the value of the difference report in field
reload_2	1 The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_2	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_2 field descriptions (continued)

Field	Description
	011 Reserved 100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_2	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_2	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled 001 The counter is triggered by the same trigger that triggers the displays clock.
	The counter is triggered by the same trigger that triggers the displays clock. The Counter is triggered by counter #1
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
11–9 di0_cnt_polarity_ clr_sel_2	DI0 counter's polarity Clear select This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Reserved
	011 Reserved
	100 Reserved
	101 Reserved
	110 Reserved
	111 Reserved
di0_cnt_up_2	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.207 DI0 Sync Wave Gen 3 Register 1 (IPUx_DI0_SW_GEN1_3)


IPUx_DI0_SW_GEN1_3 field descriptions

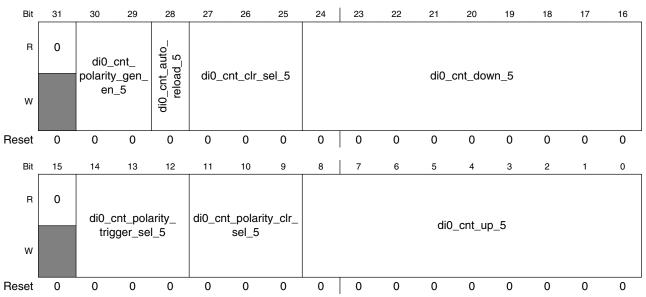

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_3	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	1. The country will outsmotically be releaded forever imposing the value of the difference report in field
reload_3	1 The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_3	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_3 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_3	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_3	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	On The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
11–9	DI0 counter's polarity Clear select
di0_cnt_polarity_ clr_sel_3	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	011 Output is inverted if the output of counter #2 is set
	100 Reserved
	101 Reserved
	110 Reserved
	111 Reserved
di0_cnt_up_3	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.208 DI0 Sync Wave Gen 4 Register 1 (IPUx_DI0_SW_GEN1_4)


IPUx_DI0_SW_GEN1_4 field descriptions

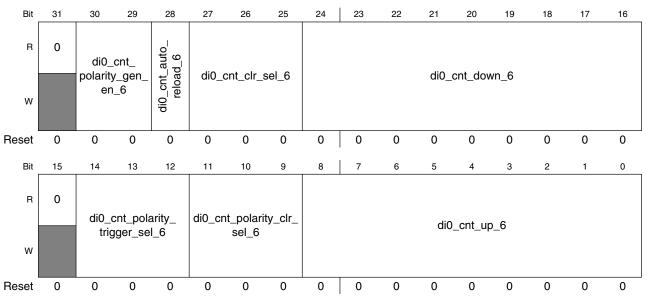

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_4	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	4. The country will outcomptically be releaded forever important the value of the difference in field
reload_4	1 The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field O The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_4	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_4 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	— 110 External VSYNC
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_4	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_4	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	410 Futernal VCVAIC
	110 External VSYNC 111 Counter is always on.
44.0	,
11–9 di0_cnt_polarity_ clr_sel_4	DI0 counter's polarity Clear select This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	011 Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Reserved
	110 Reserved
	111 Reserved
di0_cnt_up_4	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.209 DI0 Sync Wave Gen 5 Register 1 (IPUx_DI0_SW_GEN1_5)

IPUx_DI0_SW_GEN1_5 field descriptions

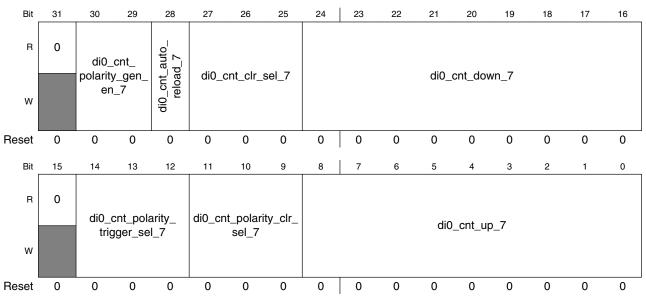

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_5	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	1. The country will outsmotically be releaded forever imposing the value of the difference report in field
reload_5	1 The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_5	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_5 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_5	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_5	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC 111 Counter is always on.
11–9	
di0_cnt_polarity_	DI0 counter's polarity Clear select
clr_sel_5	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Reserved
	111 Reserved
di0_cnt_up_5	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.210 DI0 Sync Wave Gen 6 Register 1 (IPUx_DI0_SW_GEN1_6)

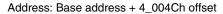
IPUx_DI0_SW_GEN1_6 field descriptions

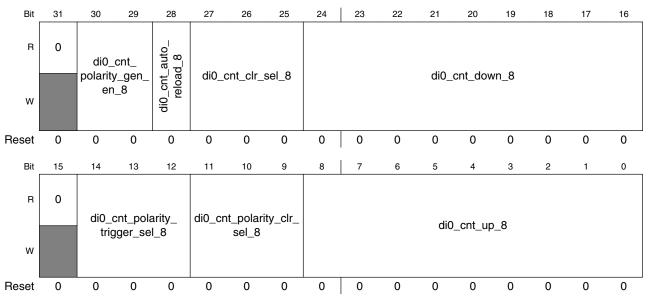

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_6	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	4. The country will outcomptically be releaded forever imposing the value of the difference report in field
reload_6	The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_6	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_6 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_6	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_6	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
11–9	DI0 counter's polarity Clear select
di0_cnt_polarity_ clr_sel_6	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Output is inverted if the output of counter #5 is set
10	111 Reserved
di0_cnt_up_6	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.211 DI0 Sync Wave Gen 7 Register 1 (IPUx_DI0_SW_GEN1_7)

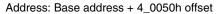

IPUx_DI0_SW_GEN1_7 field descriptions

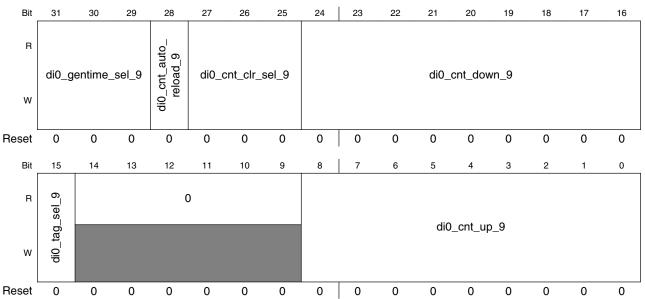

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI0 Counter polarity generator enable
di0_cnt_polarity_ gen_en_7	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di0_cnt_auto_	1. The country will outsmotically be releaded forever imposing the value of the difference report in field
reload_7	1 The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_7	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_7 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_7	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_7	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
11-9	DIO counter's polarity Clear select
di0_cnt_polarity_ clr_sel_7	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Output is inverted if the output of counter #5 is set 111 Output is inverted if the output of counter #6 is set
4:0	The state of the s
di0_cnt_up_7	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.212 DI0 Sync Wave Gen 8 Register 1 (IPUx_DI0_SW_GEN1_8)


IPUx_DI0_SW_GEN1_8 field descriptions

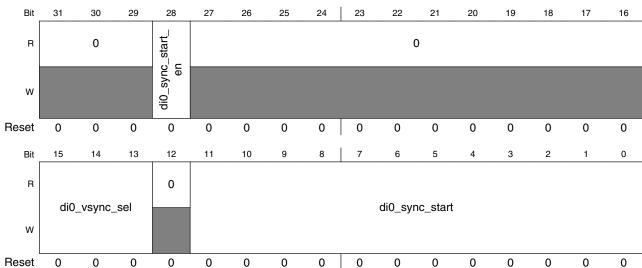

Field	Description	
31 Reserved	This read-only field is reserved and always has the value 0.	
30–29	DI0 Counter polarity generator enable	
di0_cnt_polarity_ gen_en_8	The counter's output polarity can be changed on the fly.	
	00 Dynamic polarity change is disabled	
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.	
	10 Dynamic polarity change is enabled	
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value	
28	Counter auto reload mode	
di0_cnt_auto_	The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field</i>	
reload_8	The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_<i> field</i></i>	
27–25	Counter Clear select	
di0_cnt_clr_sel_8	This field defines the source of the signals that clears the counter.	
	000 Counter is disabled	
	O01 The counter is triggered by the same trigger that triggers the displays clock.	
	010 The Counter is triggered by counter #1	

IPUx_DI0_SW_GEN1_8 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_8	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI0 Counter's toggling trigger select
di0_cnt_polarity_ trigger_sel_8	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5 111 Counter is always on.
11.0	
11–9 di0_cnt_polarity_	DI0 counter's polarity Clear select
clr_sel_8	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Output is inverted if the output of counter #5 is set
	111 Output is inverted if the output of counter #6 is set
di0_cnt_up_8	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.213 DI0 Sync Wave Gen 9 Register 1 (IPUx_DI0_SW_GEN1_9)


IPUx_DI0_SW_GEN1_9 field descriptions


Field	Description
31–29	Counter #9 main waveform select
di0_gentime_sel_ 9	This field defines the counter that counter #9's auxiliary waveform will be attached too.
	000 Counter #9's waveform is attached to counter #1's waveform
	001 Counter #9's waveform is attached to counter #2's waveform
	010 Counter #9's waveform is attached to counter #3's waveform
	011 Counter #9's waveform is attached to counter #4's waveform
	100 Counter #9's waveform is attached to counter #5's waveform
	101 Counter #9's waveform is attached to counter #6's waveform
	110 Counter #9's waveform is attached to counter #7's waveform
	111 Counter #9's waveform is attached to counter #8's waveform
28	Counter auto reload mode
di0_cnt_auto_	4. The country will outsmotically be releaded forever imposing the value of the difference was established.
reload_9	The counter will automatically be reloaded forever, ignoring the value of the di0_step_repeat_ <i> field</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di0_step_repeat_ <i> field</i>
27–25	Counter Clear select
di0_cnt_clr_sel_9	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI0_SW_GEN1_9 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di0_cnt_down_9	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 di0_tag_sel_9	Counter #9 can send a synchronous tag when counter #9 reach its predefined value or when it's triggering counter reaches its pre defined value.
	1 tag source is counter #9
	0 Tag's source is the triggering counter.
14–9 Reserved	This read-only field is reserved and always has the value 0.
di0_cnt_up_9	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.214 DI0 Sync Assistance Gen Register (IPUx_DI0_SYNC_AS_GEN)

IPU Memory Map/Register Definition

IPUx_DI0_SYNC_AS_GEN field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28 di0_sync_start_ en	di0_sync_start_en
27–16 Reserved	This read-only field is reserved and always has the value 0.
15–13 di0_vsync_sel	VSYNC select This field defines which of the counters functions as VSYNC signal 000 VSYNC is coming from counter #1 001 VSYNC is coming from counter #2 111 VSYNC is coming from counter #8
12 Reserved	This read-only field is reserved and always has the value 0.
di0_sync_start	DI0 Sync start
	This field defines the number of low (including blanking rows) on the which the DI0 starts preparing the data for the next frame.

37.5.215 DI0 Data Wave Gen <i> Register (IPUx_DI0_DW_GEN_i)

The DIO_DW_GEN_<i> register holds pointers for the waveform generators.

These registers have different bit arrangements for parallel and serial display. When using a parallel display VDI Plane Size Register 4 is applicable. When using a serial interface VDI Plane Size Register 4 is applicable.

Table 37-667. Register Field Descriptions for Serial Display

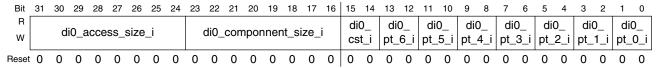

Field	Description
31-24	DI0 Serial Period <i></i>
di0_serial_period_ <i></i>	This field defines the period of the time base serial display clock. The units are the internal DI clock
23-16	DI0 start period
di0_start_period_ <i></i>	This field defines the amount of cycles between the point where the access is ready to be launched to the actual point where the time base serial display clock restarts. The units are the internal DI clock
15-14	DI0 Chip Select pointer for waveform <i></i>
di0_cst_ <i></i>	This field points to a register that defines the waveform of the CS pin.
	For serial displays the down value as defined on DI0_DW_SET*_ <i> is measured from the assertion of the last serial display time base clock.</i>
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>

Table continues on the next page...

Table 37-667. Register Field Descriptions for Serial Display (continued)

Field	Description
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
13-9	Reserved
8-4	DI0 Serial valid bits.
di0_serial_valid_bits <i></i>	This field defines the amount of valid bits to be transmitted within the 32 bits internal word aligned to bit[0].
	The actual amount of valid bits is di0_serial_valid_bits_ <i>+ 1</i>
3-2	DI0 Serial RS
di0_serial_rs_ <i></i>	This field points to a register that defines the waveform of the RS pin.
	For serial displays the down value as defined on DI0_DW_SET*_ <i> is measured from the assertion of the last serial display time base clock.</i>
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
1-0	DI0 serial clock <i></i>
di0_serial_clk_ <i></i>	This field points to a register that defines the waveform of the Serial clock pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>

Address: Base address + 4_0058h offset

IPUx_DI0_DW_GEN_i field descriptions

Field	Description
31–24 di0_access_size_ i	DIO Access Size <i> This field defines the amount of IPU cycles between any 2 accesses (an access may be a pixel or generic data that may have more one component)</i>
23-16 di0_ componnent_ size_i	DI0 component Size This field defines the amount of IPU cycles between any 2 components
15-14 di0_cst_i	DI0 Chip Select pointer for waveform <i> This field points to a register that defines the waveform of the CS pin. The CS is automatically mapped to a specific display</i>

Table continues on the next page...

IPU Memory Map/Register Definition

IPUx_DI0_DW_GEN_i field descriptions (continued)

Field	Description
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
13–12	DI0 PIN_17 pointer for waveform <i></i>
di0_pt_6_i	This field points to a register that defines the waveform of the PIN_17 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
11–10	DI0 PIN_16 pointer for waveform <i></i>
di0_pt_5_i	This field points to a register that defines the waveform of the PIN_16 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
9–8	DI0 PIN_15 pointer for waveform <i></i>
di0_pt_4_i	This field points to a register that defines the waveform of the PIN_15 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
7–6	DI0 PIN_14 pointer for waveform <i></i>
di0_pt_3_i	This field points to a register that defines the waveform of the PIN_14 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
5–4	DI0 PIN_13 pointer for waveform <i></i>
di0_pt_2_i	This field points to a register that defines the waveform of the PIN_13 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>
3–2	DI0 PIN_12 pointer for waveform <i></i>
di0_pt_1_i	This field points to a register that defines the waveform of the PIN_12 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>

IPUx_DI0_DW_GEN_i field descriptions (continued)

Field	Description
di0_pt_0_i	DI0 PIN_11 pointer for waveform <i></i>
	This field points to a register that defines the waveform of the PIN_11 pin.
	00 The waveform is defined according to the settings on DI0_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI0_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI0_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI0_DW_SET3_ <i></i>

37.5.216 DI0 Data Wave Set 0 <i> Register (IPUx_DI0_DW_SET0_i)

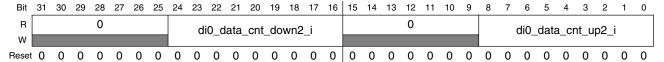
Address: Base address + 4_0088h offset

IPUx_DI0_DW_SET0_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24-16 di0_data_cnt_ down0_i	Waveform's falling edge position. This field defines the Waveform's falling edge position. The Waveform is mapped to a point according to the corresponding di0_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di0_data_cnt_ up0_i	Waveform's rising edge position. This field defines the Waveform's rising edge position. The Waveform is mapped to a point according to the corresponding di0_pt_*_ <i></i>

37.5.217 DI0 Data Wave Set 1 <i>Register (IPUx_DI0_DW_SET1_i)

Address: Base address + 4_00B8h offset

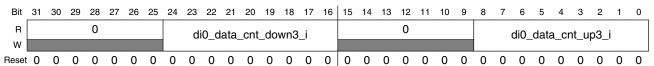


IPUx_DI0_DW_SET1_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16	Waveform's falling edge position.
di0_data_cnt_ down1_i	This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di0_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di0_data_cnt_ up1_i	Waveform's rising edge position.
	This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di0_pt_*_ <i></i>

37.5.218 DI0 Data Wave Set 2 <i> Register (IPUx_DI0_DW_SET2_i)

Address: Base address + 4_00E8h offset

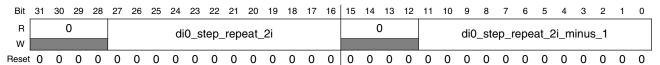


IPUx_DI0_DW_SET2_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24-16 di0_data_cnt_ down2_i	Waveform's falling edge position. This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di0_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di0_data_cnt_ up2_i	Waveform's rising edge position. This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di0_pt_*_ <i></i>

37.5.219 DI0 Data Wave Set 3 <i> Register (IPUx_DI0_DW_SET3_i)

Address: Base address + 4_0118h offset

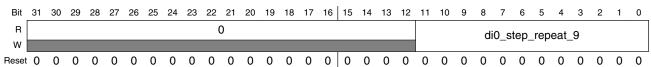


IPUx_DI0_DW_SET3_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16	Waveform's falling edge position.
di0_data_cnt_ down3_i	This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di0_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di0_data_cnt_	Waveform's rising edge position.
up3_i	This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di0_pt_*_ <i></i>

37.5.220 DI0 Step Repeat <i> Registers (IPUx_DI0_STP_REP_i)

Address: Base address + 4_0148h offset

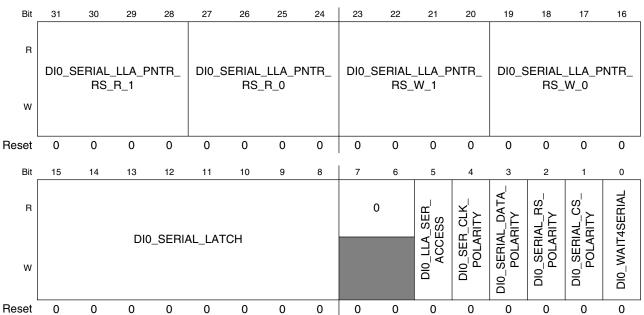


IPUx_DI0_STP_REP_i field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value 0.
27–16 di0_step_repeat_ 2i	Step Repeat <i> This fields defines the amount of repetitions that will be performed by the counter <i></i></i>
15–12 Reserved	This read-only field is reserved and always has the value 0.
di0_step_repeat_ 2i_minus_1	Step Repeat <i> This fields defines the amount of repetitions that will be performed by the counter <i></i></i>

37.5.221 DI0 Step Repeat 9 Registers (IPUx_DI0_STP_REP_9)

Address: Base address + 4_0158h offset

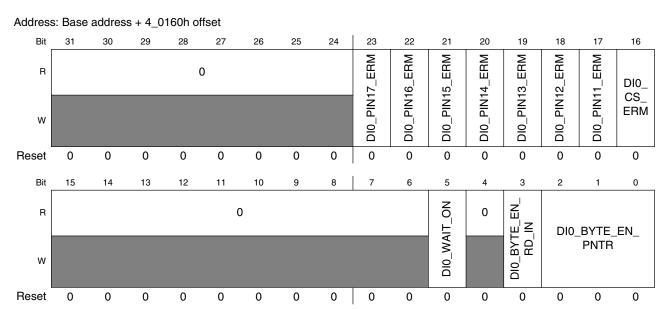


IPUx_DI0_STP_REP_9 field descriptions

Field	Description
31–12 Reserved	This read-only field is reserved and always has the value 0.
di0_step_repeat_ 9	Step Repeat 9 This fields defines the amount of repetitions that will be performed by the counter 9

37.5.222 DI0 Serial Display Control Register (IPUx_DI0_SER_CONF)

Address: Base address + 4_015Ch offset


IPUx_DI0_SER_CONF field descriptions

Field	Description
31–28	RS 3 waveform pointer for read low level access
DIO_SERIAL_	This pointer defines which waveform set will be chosen when the read low level access is targeted to RS
LLA_PNTR_RS_ R_1	group 1.
''_'	0000 Waveform set #1
	0000 Waveform set #1 0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
27–24	RS 2 waveform pointer for read low level access
DI0_SERIAL_	This pointer defines which waveform set will be chosen when the read low level access is targeted to RS
LLA_PNTR_RS_	group 0.
R_0	3.042 0.
	0000 Waveform set #1
	0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
23-20 DI0_SERIAL_	RS 1 waveform pointer for write low level access
LLA_PNTR_RS_	This pointer defines which waveform set will be chosen when the low level write access is targeted to RS
W_1	group 1.
	0000 Waveform set #1
	0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
19–16	RS 0 waveform pointer for write low level access
DIO_SERIAL_	This pointer defines which waveform set will be chosen when the low level write access is targeted to RS
LLA_PNTR_RS_ W_0	group 0.
•	0000 Waveform set #1
	0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
15–8	DI0 Serial Latch
DI0_SERIAL_	This field defines how many cycles to insert between serial read accesses start to data sampling in the
LATCH	This had domined now many cycles to insert between senai read accesses start to data sampling in the
7–6	This read-only field is reserved and always has the value 0.
Reserved	

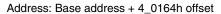
IPUx_DI0_SER_CONF field descriptions (continued)

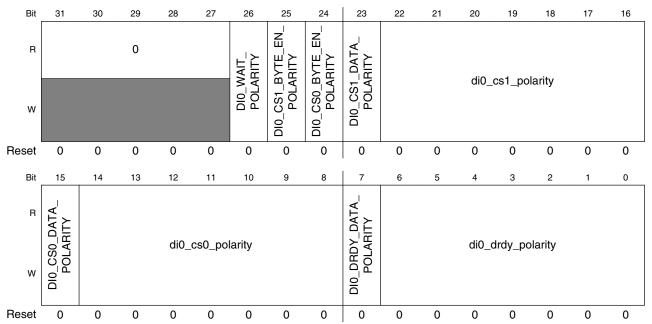
Field	Description
5 DI0_LLA_SER_	Direct Low Level Access to Serial display
ACCESS	ARM platform access is performed via a direct path to the serial display in LLA mode, in this mode only the ARM platform in LLA mode can access the serial port
	O ARM platform access to the serial display port is not done directly, hence other source are allowed to access the serial port. The arbitration is done automatically
4	Serial Clock Polarity
DI0_SER_CLK_ POLARITY	The output polarity of the SER_CLK pin
	1 The clock is inverted
	0 The clock is not inverted
3	Serial Data Polarity
DI0_SERIAL_ DATA_	The output polarity of the SER_DATA pin
POLARITY	1 The data is inverted
	0 The data is not inverted
2	Serial RS Polarity
DI0_SERIAL_ RS_POLARITY	The output polarity of the SER_RS pin
	1 The RS is inverted
	0 The RS is not inverted
1	Serial Chip Select Polarity
DI0_SERIAL_ CS_POLARITY	The output polarity of the SER_CS pin
	1 The CS is inverted
	0 The CS is not inverted
0	Wait for Serial
DI0_ WAIT4SERIAL	When the parallel display share pins with the serial port. Accessing the parallel port is not allowed till the serial port completes its access.
	The parallel port should wait to the serial port as the pins are shared
	The parallel port should not wait to the serial port as the pins are not shared

37.5.223 DI0 Special Signals Control Register (IPUx_DI0_SSC)

IPUx_DI0_SSC field descriptions

Field	Description
31–24 Reserved	This read-only field is reserved and always has the value 0.
23	DI0 PIN17 error recovery mode.
DI0_PIN17_ERM	This bit defines the error recovery mode of the PIN17 pin.
	The PIN17 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN17 pin following a display error detection
22	DI0 PIN16 error recovery mode.
DI0_PIN16_ERM	This bit defines the error recovery mode of the PIN16 pin.
	The PIN16 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN16 pin following a display error detection
21 DI0_PIN15_ERM	DI0 PIN15 error recovery mode.
	This bit defines the error recovery mode of the PIN15 pin.
	The PIN15 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN15 pin following a display error detection
20	DI0 PIN14 error recovery mode.
DI0_PIN14_ERM	This bit defines the error recovery mode of the PIN14 pin.


IPUx_DI0_SSC field descriptions (continued)


Field	Description
	1 The PIN14 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN14 pin following a display error detection
19	DI0 PIN13 error recovery mode.
DI0_PIN13_ERM	This bit defines the error recovery mode of the PIN13 pin.
	1 The PIN13 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN13 pin following a display error detection
18	DI0 PIN12 error recovery mode.
DI0_PIN12_ERM	This bit defines the error recovery mode of the PIN12 pin.
	1 The PIN12 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN12 pin following a display error detection
17	DI0 PIN11 error recovery mode.
DI0_PIN11_ERM	This bit defines the error recovery mode of the PIN11 pin.
	1 The PIN11 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC
	0 Nothing is done to the PIN11 pin following a display error detection
16	DI0 GLUELOGIC error recovery mode.
DI0_CS_ERM	This bit defines the error recovery mode of the GLUELOGIC.
	1 The GLUELOGIC is release in case of a synchronous display error. The release will be done on the next VSYNC
	0 Nothing is done to the GLUELOGIC following a display error detection
15–6 Reserved	This read-only field is reserved and always has the value 0.
5	Wait On
DI0_WAIT_ON	This field defines the DC's response to WAIT signal
	1 The DC holds the flow as long as WAIT is asserted
	0 The DC continues the flow regardless the WAIT signal
4 Reserved	This read-only field is reserved and always has the value 0.
3	Byte Enable Read In
DI0_BYTE_EN_ RD_IN	This bit selects the source of the byte enable pins
	1 The write byte enable signals are routed via bits [17:16] of the display's data, The read byte enable signals are routed via bits [19:18 of the display's data
	0 The byte enable signals are routed via bits [17:16] of the display's data for both read and write
DIO_BYTE_EN_	Byte Enable Pointer
PNTR	This pointer selects the pin asserted along with the byte enables signals
	000 wave form of byte enable as pin_11

IPUx_DI0_SSC field descriptions (continued)

Field	Description
	001 wave form of byte enable as pin_12
	111 wave form of byte enable as suitable CS pin

37.5.224 DI0 Polarity Register (IPUx_DI0_POL)

IPUx_DI0_POL field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26	WAIT polarity
DI0_WAIT_ POLARITY	This bit defines the polarity of the wait signal input coming from the displa1
	1 active high
	0 active low
25	Byte Enable associated with CS1 polarity
DI0_CS1_BYTE_ EN_POLARITY	This bit defines the polarity of the byte enable signals to the display
	1 active high
	0 active low
24	Byte Enable associated with CS0 polarity
DI0_CS0_BYTE_ EN_POLARITY	This bit defines the polarity of the byte enable signals to the display

Table continues on the next page...

IPUx_DI0_POL field descriptions (continued)

Field	Description
	1 active high 0 active low
23 DIO_CS1_DATA_ POLARITY	Data Polarity associated with CS1
22–16 di0_cs1_polarity	DI0 output pin's polarity for CS1 This bits define the polarity of each of the DI's outputs when CS1 is asserted
	1 The output pin is active high0 The output pin is active low
15 DI0_CS0_DATA_ POLARITY	Data Polarity associated with CS0
14–8 di0_cs0_polarity	DI0 output pin's polarity for CS1 This bits define the polarity of each of the DI's outputs when CS1 is asserted 1 The output pin is active high
	0 The output pin is active low
7 DI0_DRDY_ DATA_ POLARITY	Data Polarity associated with DRDY
di0_drdy_polarity	DI0 output dynamic pin's polarity for synchronous access
	This bits define the polarity of each of the DI's outputs when synchronous display access is asserted
	The pins' default polarity is the same as defined in the di0_drdy_polarity bits
	The output pin is active highThe output pin is active low

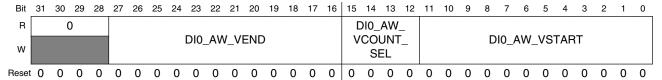
37.5.225 DI0 Active Window 0 Register (IPUx_DI0_AW0)

Address: Base address + 4_0168h offset

Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R	_	210															Е	010_	AW													
w	W TRIG_SEL			_					DI0_	_AW	/_HE	END)				Н	COI SE		_				D	10_ <i>F</i>	\W_	HS	TAR	Т			
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_DI0_AW0 field descriptions

Field	Description
31–28 DI0_AW_TRIG_	This field selects the trigger for sending data during the display's active window
SEL	000 disabled
	001 The trigger is the same trigger that triggers the displays clock.
	010 The trigger is counter #1


Table continues on the next page...

IPUx_DI0_AW0 field descriptions (continued)

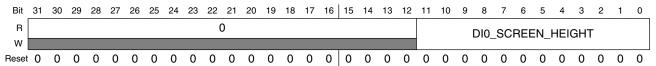
Field	Description									
	011 The trigger is counter #2									
	100 The trigger is counter #3									
	101 The trigger is counter #4									
	110 The trigger is counter #5									
	111 The trigger is always on.									
27–16 DI0_AW_HEND	This field defines the horizontal end of the active window									
15–12 DI0_AW_	GM: This field selects the counter that counts the horizontal position of the display's active window									
HCOUNT_SEL	0000 disabled									
	0001 reserved									
	0010 The counter is counter #1									
	0011 The counter is counter #2									
	0100 The counter is counter #3									
	0101 The counter is counter #4									
	0110 The counter is counter #5									
	1001 The counter is counter #8									
DIO_AW_	This field defines the horizontal start of the active window									
HSTART	DI0_AW_HSTART < DI0_AW_HEND									

37.5.226 DI0 Active Window 1 Register (IPUx_DI0_AW1)

Address: Base address + 4_016Ch offset

IPUx_DI0_AW1 field descriptions

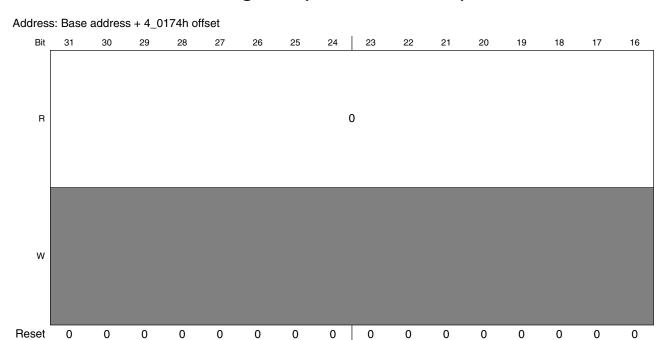
Field	Description									
31–28 Reserved	nis read-only field is reserved and always has the value 0.									
27–16 DI0_AW_VEND	This field defines the vertical end of the active window									
15–12 DIO_AW_ VCOUNT_SEL	This field selects the counter that counts the vertical position of the display's active window 0000 disabled 0001 reserved 0010 The counter is counter #1 0011 The counter is counter #2 0100 The counter is counter #3 0101 The counter is counter #4									

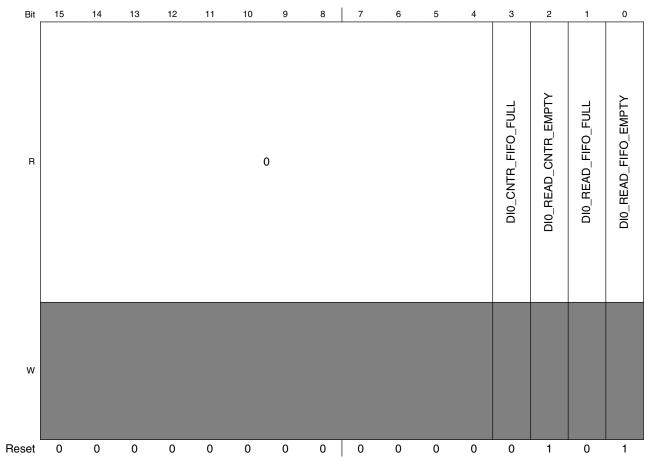

Table continues on the next page...

IPUx_DI0_AW1 field descriptions (continued)

Field	Description
	0110 The counter is counter #5
	1001 The counter is counter #8
DI0_AW_	This field defines the vertical start of the active window
VSTART	DIO_AW_VSTART < DIO_AW_VEND

37.5.227 DI0 Screen Configuration Register (IPUx_DI0_SCR_CONF)


Address: Base address + 4_0170h offset



IPUx_DI0_SCR_CONF field descriptions

Field	Description
31–12 Reserved	This read-only field is reserved and always has the value 0.
DI0_SCREEN_ HEIGHT	This field defines the number of display rows (Number_of_ROWS = DI0_SCREEN_HEIGHT+1) This field is used for VSYNC calculation and for anti-tearing

37.5.228 DI0 Status Register (IPUx_DI0_STAT)

IPUx_DI0_STAT field descriptions

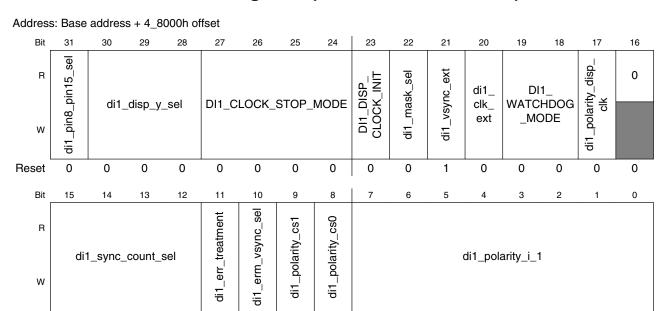
Field	Description
31–4 Reserved	This read-only field is reserved and always has the value 0.
3 DI0_CNTR_ FIFO_FULL	This bit indicates a full state of the DI0 FIFO. This FIFO is part of the DI0 synchronizer.
2 DI0_READ_ CNTR_EMPTY	This bit indicates an empty state of the DI0 FIFO. This FIFO is part of the DI0 synchronizer.
1 DI0_READ_ FIFO_FULL	This bit indicates a full state of the DI0 FIFO when performing a read. This FIFO is part of the DI0 synchronizer.
0 DI0_READ_ FIFO_EMPTY	This bit indicates an empty state of the DI0 FIFO when performing a read. This FIFO is part of the DI0 synchronizer.

0

0

0

0


37.5.229 DI1General Register (IPUx_DI1_GENERAL)

0

0

0

Reset

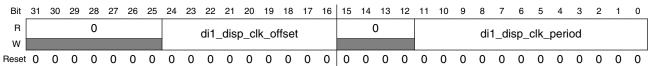
IPUx_DI1_GENERAL field descriptions

Field	Description										
31	This bit routes PIN8 over PIN15										
di1_pin8_pin15_ sel	PIN8 is routed to PIN15, PIN8 is also routed to PIN8 PIN15 is routed to PIN15, PIN8 is routed to PIN8										
	,										
30–28 di1_disp_y_sel	DI1 Display Vertical coordinate (Y) select.										
uri_uisp_y_ser	This field defines which one of the 8 counters will be used as a display's line counter.										
	000 counter #1 is selected										
	111 counter #8 is selected										
27–24	DI clock stop mode										
DI1_CLOCK_ STOP MODE	When performing a clock change. The DI stops the clock to the display.										
OTOT_MODE	These field defines when the clock will be stopped										
	Stopping at EOL/EOF is supported for the case where the data is coming from the IDMAC (DMA access). In case that only direct accesses is performed, the user should set this field to 0000										
	0001-1001 stop at the next event of one of the counters (counter #1 to counter #9)										
	0000 stop at the next edge of the display clock										
	1100 stop at EOL (end of a line), but if stop request is during blanking interval, stop now										
	1101 stop at EOF (end of a frame), but if stop request is during blanking interval, stop now										
	1110 stop at EOL (end of a line), but if stop request is during blanking interval, stop at the end of the next line										
	1111 stop at EOF (end of a frame), but if stop request is during blanking interval, stop at the end of the next frame										

Table continues on the next page...

0

IPUx_DI1_GENERAL field descriptions (continued)

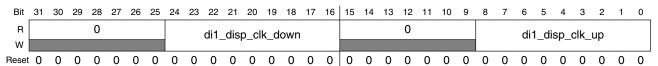

Field	Description
23	Display clock's initial mode
DI1_DISP_ CLOCK_INIT	For synchronization error conditions the display clock can be stopped on the next VSYNC
	1 The display's clock is running after the next VSYNC (indicating new frame)
	The display's clock is stopped after the next VSYNC (indicating new frame)
22	DI1 Mask select.
di1_mask_sel	IPP_PIN_2 output of the DI that functions as MASK signal can come from 2 sources: counter #2 or extracted from the MASK data coming from the memory.
	1 IPP_PIN_2 is coming from extracted MASK data coming from the memory
	0 IPP_PIN_2 is coming from counter #2
21	DI1 External VSYNC.
di1_vsync_ext	This bit selects the source of the VSYNC signal
	1 External to the IPU
	0 Internally generated by the IPU
20	DI1 External Clock.
di1_clk_ext	This bit selects the source of the DI's clock
	1 The source of the clock is external to the IPU
	0 The clock is internally generated by the IPU
19–18 DI1_ WATCHDOG_ MODE	DI1 watchdog mode In case of a display error where the DI clock is stopped (defined at di0_err_treatment). An internal watchdog counts DI clocks. If this timer reached its pre defined value the DI will skip the current frame and restart on the frame. This 2 bits define the number of DI clock cycles that the timer counts.
	00 The timer counts 4 DI cycles
	01 The timer counts 16 DI cycles
	10 The timer counts 64 DI cycles
	11 The timer counts 128 DI cycles
17	DI1 Output Clock's polarity
di1_polarity_ disp_clk	This bits define the polarity of the DI's clock.
	1 The output clock is active high
	0 The output clock is active low
16 Reserved	This read-only field is reserved and always has the value 0.
15–12 di1_sync_count_ sel	For synchronous flow error: selects synchronous flow synchronization counter in DI:
11	In case of synchronous flow error there are 2 ways to handle the display
di1_err_treatment	1 to wait (i.e. stop clock)
	0 Drive the last component
10	DI1 error recovery module's VSYNC source select
di1_erm_vsync_ sel	The error recovery block detect a case where the DI's VSYNC is asserted before the EOF. This bit selects the source of the VSYNC signal monitored by this mechanism.

IPUx_DI1_GENERAL field descriptions (continued)

Field	Description
	1 vsync_post - an internal VSYNC signal asserted 2 lines after the DI's VSYNC
	0 vsync_pre - an internal VSYNC signal asserted 2 lines before the DI's VSYNC
9	DI1 Chip Select's 1 polarity
di1_polarity_cs1	This bits define the polarity of the DI's CS1.
	1 The CS1 is active high
	0 The CS1 is active low
8	DI1 Chip Select's 0 polarity
di1_polarity_cs0	This bits define the polarity of the DI's CS0.
	1 The CS0 is active high
	0 The CS0 is active low
di1_polarity_i_1	DI1 output pin's polarity
	This bits define the polarity of each of the DI's outputs.
	1 The output pin is active high
	0 The output pin is active low

37.5.230 DI1 Base Sync Clock Gen 0 Register (IPUx_DI1_BS_CLKGEN0)

Address: Base address + 4_8004h offset



IPUx_DI1_BS_CLKGEN0 field descriptions

Field	Description	
31–25 Reserved	This read-only field is reserved and always has the value 0.	
24–16	DI1 Display Clock Offset	
di1_disp_clk_ offset	The DI has the ability to delay the display's clock	
	This field defines the amount of IPU's clock cycles added as delay on this clock.	
15–12 Reserved	This read-only field is reserved and always has the value 0.	
di1_disp_clk_	DI1 Display Clock Period	
period	This field defines the Display interface clock period for display write access. This parameter contains an integer part (bits 11:4) and a fractional part (bits 3:0). It defines a fractional division ratio of the HSP_CLK clock for generation of the display's interface clock.	

37.5.231 DI1 Base Sync Clock Gen 1 Register (IPUx_DI1_BS_CLKGEN1)

Address: Base address + 4_8008h offset

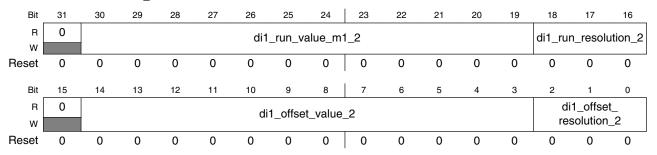
IPUx_DI1_BS_CLKGEN1 field descriptions

Field	Description	
31–25 Reserved	This read-only field is reserved and always has the value 0.	
24–16	DI1 display clock falling edge position	
di1_disp_clk_ down	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).	
	The position value is a time interval between display's access start point and display 's interface clock falling edge.	
15–9 Reserved	This read-only field is reserved and always has the value 0.	
di1_disp_clk_up	DI1 display clock rising edge position	
	This parameter contains an integer part (bits 8:1) and a fractional part (bit 0).	
	The position value is a time interval between display's access start point and display 's interface clock rising edge.	

37.5.232 DI1 Sync Wave Gen 1 Register 0 (IPUx_DI1_SW_GEN0_1)

Address: Base address + 4_800Ch offset

IPUx_DI1_SW_GEN0_1 field descriptions


Field	Description
31	This read-only field is reserved and always has the value 0.
Reserved	

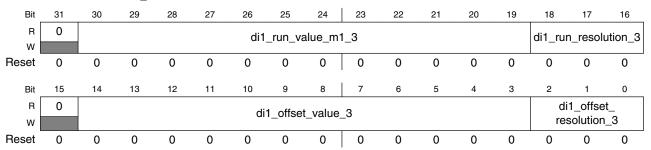
IPUx_DI1_SW_GEN0_1 field descriptions (continued)

Field	Description		
30–19	DI1 counter #1 pre defined value		
di1_run_value_ m1_1	This fields defines the counter #1 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_1 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.		
18–16	DI1 counter #1 Run Resolution		
di1_run_ resolution_1	This field defines the trigger causing the counter to increment.		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock.		
	010 NA		
	011 NA		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.		
	110 External VSYNC		
	111 Counter is always on.		
15 Reserved	This read-only field is reserved and always has the value 0.		
14–3	DI1 counter #1 offset value		
di1_offset_value_ 1	The counter can start counting after a pre defined delay		
	This field defines the amount of cycles that the counter will be delayed by		
di1_offset_	DI1 counter #1 offset Resolution		
resolution_1	This field defines the trigger causing the offset counter to increment		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock.		
	010 NA		
	011 NA		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.		
	110 External VSYNC		
	111 Counter is always on.		

37.5.233 DI1 Sync Wave Gen 2 Register 0 (IPUx_DI1_SW_GEN0_2)

Address: Base address + 4_8010h offset

IPUx_DI1_SW_GEN0_2 field descriptions


Field	Description		
31 Reserved	This read-only field is reserved and always has the value 0.		
30–19	DI1 counter #2 pre defined value		
di1_run_value_ m1_2	This fields defines the counter #2 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_2 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.		
18–16	DI1 counter #2 Run Resolution		
di1_run_ resolution_2	This field defines the trigger causing the counter to increment.		
	000 Counter is disabled		
	O01 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	011 NA		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.		
	110 External VSYNC		
	111 Counter is always on.		
15 Reserved	This read-only field is reserved and always has the value 0.		
14–3	DI1 counter #2 offset value		
di1_offset_value_ 2	The counter can start counting after a pre defined delay		
	This field defines the amount of cycles that the counter will be delayed by		
di1_offset_	DI1 counter #2 offset Resolution		
resolution_2	This field defines the trigger causing the offset counter to increment		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	Table and the second second		

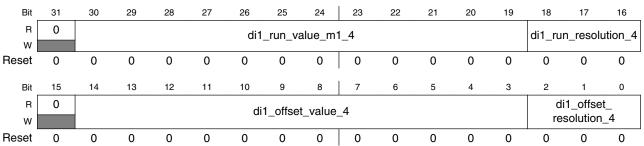
IPUx_DI1_SW_GEN0_2 field descriptions (continued)

Field		Description
	011	NA
	100	NA
	101	CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
		_
	110	External VSYNC
	111	Counter is always on.

37.5.234 DI1 Sync Wave Gen 3 Register 0 (IPUx_DI1_SW_GEN0_3)

Address: Base address + 4_8014h offset

IPUx_DI1_SW_GEN0_3 field descriptions


Field	Description	
31 Reserved	This read-only field is reserved and always has the value 0.	
30-19 di1_run_value_ m1_3	DI1 counter #3 pre defined value This fields defines the counter #3 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_3 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.	
18–16 di1_run_ resolution_3	DI1 counter #3 Run Resolution This field defines the trigger causing the counter to increment.	
	000 Counter is disabled	
	001 The counter is triggered by the same trigger that triggers the displays clock.	
	010 The Counter is triggered by counter #1	
	011 The Counter is triggered by counter #2	
	100 NA	
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.	
	_	
	110 External VSYNC	
	111 Counter is always on.	

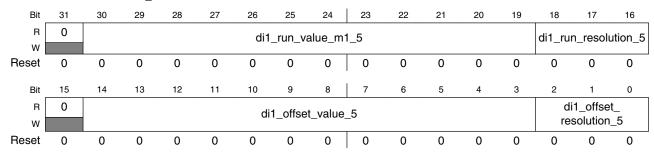
IPUx_DI1_SW_GEN0_3 field descriptions (continued)

Field	Description		
15 Reserved	This read-only field is reserved and always has the value 0.		
14–3	DI1 counter #3 offset value		
di1_offset_value_ 3	The counter can start counting after a pre defined delay		
	This field defines the amount of cycles that the counter will be delayed by		
di1_offset_	DI1 counter #3 offset Resolution		
resolution_3	This field defines the trigger causing the offset counter to increment		
	000 Counter is disabled		
	001 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	011 The Counter is triggered by counter #2		
	100 NA		
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.		
	-		
	110 External VSYNC		
	111 Counter is always on.		

37.5.235 DI1 Sync Wave Gen 4 Register 0 (IPUx_DI1_SW_GEN0_4)

Address: Base address + 4_8018h offset

IPUx_DI1_SW_GEN0_4 field descriptions

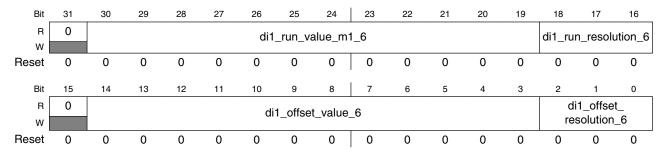

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19 di1_run_value_ m1_4	DI1 counter #4 pre defined value This fields defines the counter #4 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_4 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.

IPUx_DI1_SW_GEN0_4 field descriptions (continued)

Field	Description	
18–16	DI1 counter #4 Run Resolution	
di1_run_ resolution_4	This field defines the trigger causing the counter to increment.	
	000 Counter is disabled	
	O01 The counter is triggered by the same trigger that triggers the displays clock.	
	010 The Counter is triggered by counter #1	
	011 The Counter is triggered by counter #2	
	100 The Counter is triggered by counter #3	
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.	
	_	
	110 External VSYNC	
	111 Counter is always on.	
15	This read-only field is reserved and always has the value 0.	
Reserved		
14–3	DI1 counter #4 offset value	
di1_offset_value_ 4	The counter can start counting after a pre defined delay	
·	This field defines the amount of cycles that the counter will be delayed by	
di1_offset_	DI1 counter #4 offset Resolution	
resolution_4	This field defines the trigger causing the offset counter to increment	
	000 Counter is disabled	
	O01 The counter is triggered by the same trigger that triggers the displays clock.	
	010 The Counter is triggered by counter #1	
	011 The Counter is triggered by counter #2	
	100 The Counter is triggered by counter #3	
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.	
	_	
	110 External VSYNC	
	111 Counter is always on.	

37.5.236 DI1 Sync Wave Gen 5 Register 0 (IPUx_DI1_SW_GEN0_5)

Address: Base address + 4_801Ch offset


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DI1_SW_GEN0_5 field descriptions

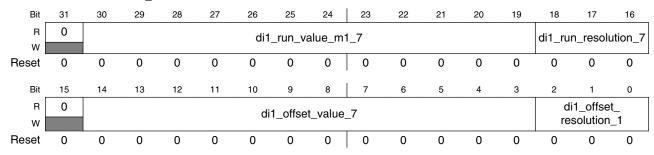
Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI1 counter #5 pre defined value
di1_run_value_ m1_5	This fields defines the counter #5 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_5 bit is set), the counter automatically restarts otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.
18–16	DI1 counter #5 Run Resolution
di1_run_ resolution_5	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC 111 Counter is always on.
4.5	
15 Reserved	This read-only field is reserved and always has the value 0.
14–3	DI1 counter #5 offset value
di1_offset_value_ 5	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di1_offset_	DI1 counter #5 offset Resolution
resolution_5	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 -The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC
	111 Counter is always on.

37.5.237 DI1 Sync Wave Gen 6 Register 0 (IPUx_DI1_SW_GEN0_6)

Address: Base address + 4_8020h offset

IPUx_DI1_SW_GEN0_6 field descriptions

Field	Description		
31 Reserved	This read-only field is reserved and always has the value 0.		
30–19	DI1 counter #6 pre defined value		
di1_run_value_ m1_6	This fields defines the counter #6 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_6 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.		
18–16 DI1 counter #6 Run Resolution			
di1_run_ resolution_6	This field defines the trigger causing the counter to increment.		
	000 Counter is disabled		
	O01 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	011 The Counter is triggered by counter #2		
	100 The Counter is triggered by counter #3		
	101 The Counter is triggered by counter #4		
	110 The Counter is triggered by counter #5		
	111 Counter is always on.		
15 Reserved	This read-only field is reserved and always has the value 0.		
14–3	DI1 counter #6 offset value		
di1_offset_value_ 6	The counter can start counting after a pre defined delay		
	This field defines the amount of cycles that the counter will be delayed by		
di1_offset_	DI1 counter #6 offset Resolution		
resolution_6	This field defines the trigger causing the offset counter to increment		
	000 Counter is disabled		
	O01 The counter is triggered by the same trigger that triggers the displays clock.		
	010 The Counter is triggered by counter #1		
	011 The Counter is triggered by counter #2		
	100 The Counter is triggered by counter #3		


Table continues on the next page...

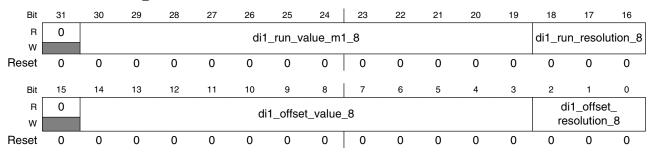
IPUx_DI1_SW_GEN0_6 field descriptions (continued)

Field	Description
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.238 DI1 Sync Wave Gen 7 Register 0 (IPUx_DI1_SW_GEN0_7)

Address: Base address + 4_8024h offset

IPUx_DI1_SW_GEN0_7 field descriptions


Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI1 counter #7 pre defined value
di1_run_value_ m1_7	This fields defines the counter #7 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_7 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.
18–16	DI1 counter #1 Run Resolution
di1_run_ resolution_7	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15	This read-only field is reserved and always has the value 0.
Reserved	
14–3	DI1 counter #7 offset value
di1_offset_value_ 7	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by

IPUx_DI1_SW_GEN0_7 field descriptions (continued)

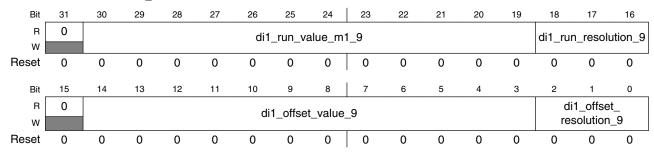
Field	Description
di1_offset_	DI1 counter #7 offset Resolution
resolution_1	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.239 DI1 Sync Wave Gen 8 Register 0 (IPUx_DI1_SW_GEN0_8)

Address: Base address + 4_8028h offset

IPUx_DI1_SW_GEN0_8 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19	DI1 counter #8 pre defined value
di1_run_value_ m1_8	This fields defines the counter #8 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_8 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.
18–16	DI1 counter #8 Run Resolution
di1_run_ resolution_8	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4

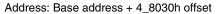

Table continues on the next page...

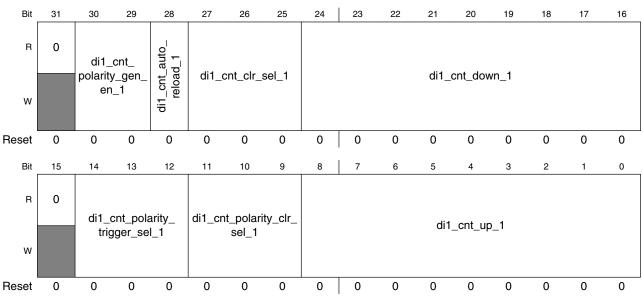
IPUx_DI1_SW_GEN0_8 field descriptions (continued)

Field	Description
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15	This read-only field is reserved and always has the value 0.
Reserved	
14–3	DI1 counter #8 offset value
di1_offset_value_ 8	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di1_offset_	DI1 counter #8 offset Resolution
resolution_8	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.240 DI1Sync Wave Gen 9 Register 0 (IPUx_DI1_SW_GEN0_9)

Address: Base address + 4_802Ch offset


IPUx_DI1_SW_GEN0_9 field descriptions

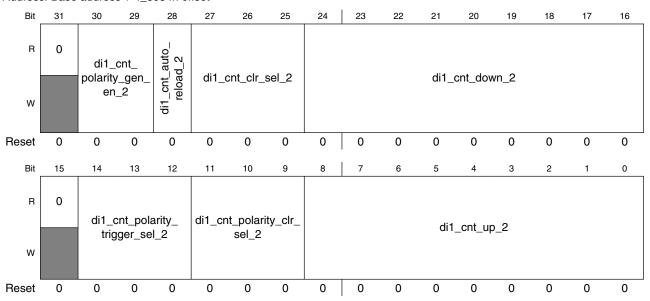

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–19 di1_run_value_ m1_9	DI1 counter #9 pre defined value This fields defines the counter #9 pre defines value. When the counter is auto reload mode (di1_cnt_auto_reload_9 bit is set), the counter automatically restarts. otherwise the counter restarts for the amount of time defined on the corresponding di1_step_repeat field.

IPUx_DI1_SW_GEN0_9 field descriptions (continued)

Field	Description
18–16	DI1 counter #9 Run Resolution
di1_run_ resolution_9	This field defines the trigger causing the counter to increment.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
15	This read-only field is reserved and always has the value 0.
Reserved	
14–3	DI1 counter #9 offset value
di1_offset_value_ 9	The counter can start counting after a pre defined delay
	This field defines the amount of cycles that the counter will be delayed by
di1_offset_	DI1 counter #9 offset Resolution
resolution_9	This field defines the trigger causing the offset counter to increment
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.

37.5.241 DI1 Sync Wave Gen 1 Register 1 (IPUx_DI1_SW_GEN1_1)


IPUx_DI1_SW_GEN1_1 field descriptions

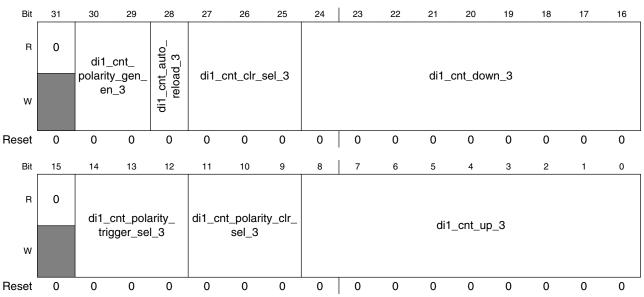

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_1	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	4. The country will outcomptically be valended forevery important the value of the diff stem venest, it fields
reload_1	1 The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field O The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_1 field
27–25	Counter Clear select
di1_cnt_clr_sel_1	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 Reserved

IPUx_DI1_SW_GEN1_1 field descriptions (continued)

Field	Description
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the
	CSI_VSYNC_DEST bit.
	110 External VSYNC
0.1.10	111 Counter is always on.
24–16 di1_cnt_down_1	Counter falling edge position
dii_ciit_dowii_i	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_1	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 Reserved
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	— 110 External VSYNC
	111 Counter is always on.
11.0	•
11–9 di1_cnt_polarity_	DI1 counter's polarity Clear select
clr_sel_1	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted 001 Output is kept the same (no inversion)
	001 Output is kept the same (no inversion) 010 Reserved
	011 Reserved
	100 Reserved
	101 Reserved
	110 Reserved
	111 Reserved
di1_cnt_up_1	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.242 DI1 Sync Wave Gen 2 Register 1 (IPUx_DI1_SW_GEN1_2)

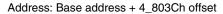

IPUx_DI1_SW_GEN1_2 field descriptions

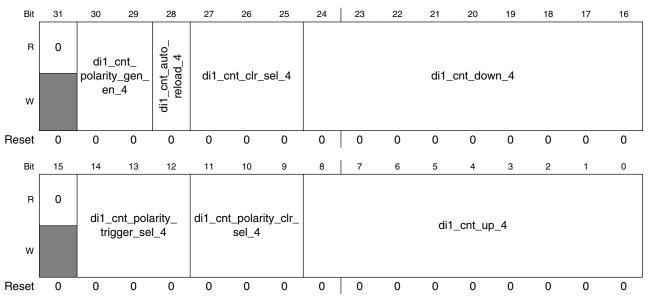

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_2	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	1. The country will outsmotically be releaded forever imposing the value of the difference report in field
reload_2	The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times.</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_2	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_2 field descriptions (continued)

Field	Description
	011 Reserved
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_2	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_2	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 Reserved
	100 Reserved 101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the
	CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
11–9	DI1 counter's polarity Clear select
di1_cnt_polarity_ clr_sel_2	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Reserved
	011 Reserved
	100 Reserved
	101 Reserved
	110 Reserved
	111 Reserved
di1_cnt_up_2	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.243 DI1 Sync Wave Gen 3 Register 1 (IPUx_DI1_SW_GEN1_3)


IPUx_DI1_SW_GEN1_3 field descriptions

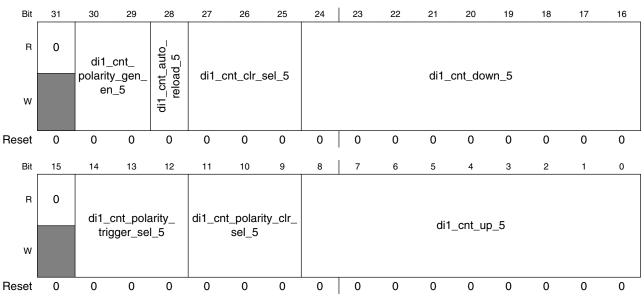

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_3	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	1. The sounday will outenestically be valeeded forevery important the value of the different values in field
reload_3	1 The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_3	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_3 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_3	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_3	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 Reserved
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	—
	110 External VSYNC
44.0	111 Counter is always on.
11–9 di1_cnt_polarity_ clr_sel_3	DI1 counter's polarity Clear select This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	011 Output is inverted if the output of counter #2 is set
	100 Reserved
	101 Reserved
	110 Reserved
	111 Reserved
di1_cnt_up_3	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.244 DI1 Sync Wave Gen 4 Register 1 (IPUx_DI1_SW_GEN1_4)

IPUx_DI1_SW_GEN1_4 field descriptions

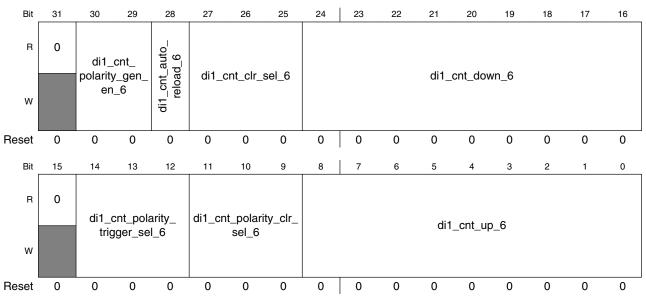

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_4	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	1. The country will outerwatically be releaded forever imposing the value of the difference report in field
reload_4	1 The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_4	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_4 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	410 Futernal VCVAIC
	110 External VSYNC 111 Counter is always on.
24–16	,
di1_cnt_down_4	Counter falling edge position
arr_om_aown_r	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_4	This field selects the counter's trigger causing the output to toggle
	000 - Counter is disabled
	001 - The counter is triggered by the same trigger that triggers the displays clock.
	010 - The Counter is triggered by counter #1
	011 - The Counter is triggered by counter #2
	100 - The Counter is triggered by counter #3
	101 - CSI VSYNC. The VSYNC is a trigger coming from one of the CSI's according to the CSI_VSYNC_DEST bit.
	110 External VSYNC
	111 Counter is always on.
11–9	DI1 counter's polarity Clear select
di1_cnt_polarity_ clr_sel_4	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	Output is kept the same (no inversion)
	Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set 101 Reserved
	110 Reserved
	111 Reserved
di1_cnt_up_4	Counter rising edge position
di1_ciii_up_4	
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.245 DI1 Sync Wave Gen 5 Register 1 (IPUx_DI1_SW_GEN1_5)


IPUx_DI1_SW_GEN1_5 field descriptions

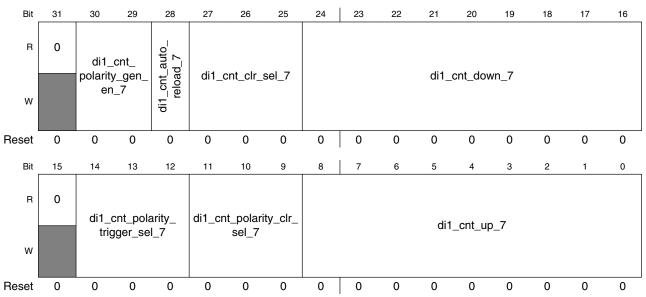

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_5	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	1. The sounday will outenestically be valeeded forevery important the value of the different values in field
reload_5	1 The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_5	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_5 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_5	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_5	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 External VSYNC 111 Counter is always on.
11–9	
di1_cnt_polarity_	DI1 counter's polarity Clear select
clr_sel_5	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Reserved
	111 Reserved
di1_cnt_up_5	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.246 DI1 Sync Wave Gen 6 Register 1 (IPUx_DI1_SW_GEN1_6)

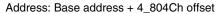

IPUx_DI1_SW_GEN1_6 field descriptions

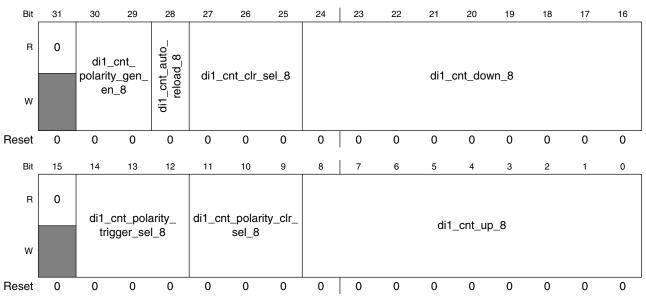

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_6	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	d The country will be transferable by male and force on investigation when well a file did star was at it field
reload_6	1 The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field 0 The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_6	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_6 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_6	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_6	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
44.0	111 Counter is always on.
11-9 di1_cnt_polarity_	DI1 counter's polarity Clear select
clr_sel_6	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Output is inverted if the output of counter #5 is set
	111 Reserved
di1_cnt_up_6	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.247 DI1Sync Wave Gen 7 Register 1 (IPUx_DI1_SW_GEN1_7)

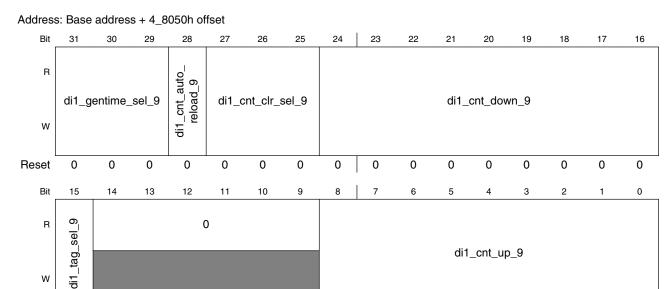

IPUx_DI1_SW_GEN1_7 field descriptions


Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_7	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_	1. The country will outerwate ally be releaded forever imposing the value of the difference report in field
reload_7	The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field The counter will not be automatically reloaded. It will be reloaded for the amount of repeat times.</i>
	The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_7	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_7 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_7	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_7	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
44.0	111 Counter is always on.
11-9 di1_cnt_polarity_	DI1 counter's polarity Clear select
clr_sel_7	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Output is inverted if the output of counter #5 is set 111 Output is inverted if the output of counter #6 is set
al:4 a.a.t . =	The state of the s
di1_cnt_up_7	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.248 DI1 Sync Wave Gen 8 Register 1 (IPUx_DI1_SW_GEN1_8)


IPUx_DI1_SW_GEN1_8 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–29	DI1 Counter polarity generator enable
di1_cnt_polarity_ gen_en_8	The counter's output polarity can be changed on the fly.
	00 Dynamic polarity change is disabled
	O1 The counters UP and DOWN value are calculated according to the trigger selected by cnt_polarity_trigger_sel field. When selecting this mode the UP and DOWN values has to be a multiple of 2.
	10 Dynamic polarity change is enabled
	11 Outputs polarity is dynamically changed every time the counter reaches its pre defined value
28	Counter auto reload mode
di1_cnt_auto_ reload_8	1 The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field</i>
	0 The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_8	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

IPUx_DI1_SW_GEN1_8 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_8	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 Reserved	This read-only field is reserved and always has the value 0.
14–12	DI1 Counter's toggling trigger select
di1_cnt_polarity_ trigger_sel_8	This field selects the counter's trigger causing the output to toggle
	000 Counter is disabled
	O01 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
11-9	DI1 counter's polarity Clear select
di1_cnt_polarity_ clr_sel_8	This field selects the input to the counter telling the counter wether to invert the output
	000 Output is always inverted
	001 Output is kept the same (no inversion)
	010 Output is inverted if the output of counter #1 is set
	Output is inverted if the output of counter #2 is set
	100 Output is inverted if the output of counter #3 is set
	101 Output is inverted if the output of counter #4 is set
	110 Output is inverted if the output of counter #5 is set
	111 Output is inverted if the output of counter #6 is set
di1_cnt_up_8	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.249 DI1 Sync Wave Gen 9 Register 1 (IPUx_DI1_SW_GEN1_9)

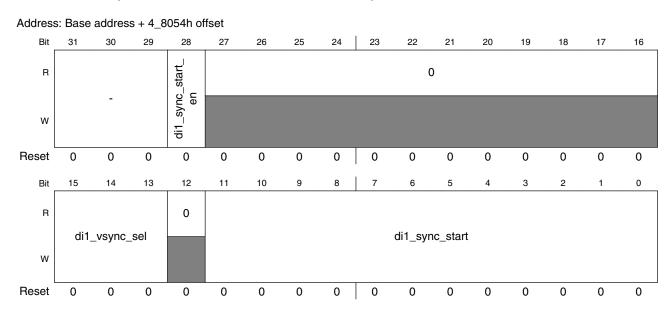
IPUx_DI1_SW_GEN1_9 field descriptions

Field	Description
31–29	Counter #9 main waveform select
di1_gentime_sel_ 9	This field defines the counter that counter #9's auxiliary waveform will be attached too.
	000 Counter #9's waveform is attached to counter #1's waveform
	001 Counter #9's waveform is attached to counter #2's waveform
	010 Counter #9's waveform is attached to counter #3's waveform
	011 Counter #9's waveform is attached to counter #4's waveform
	100 Counter #9's waveform is attached to counter #5's waveform
	101 Counter #9's waveform is attached to counter #6's waveform
	110 Counter #9's waveform is attached to counter #7's waveform
	111 Counter #9's waveform is attached to counter #8's waveform
28	Counter auto reload mode
di1_cnt_auto_	4. The country will outsmotically be releaded forever imposing the value of the did stop report in field
reload_9	The counter will automatically be reloaded forever, ignoring the value of the di1_step_repeat_ <i> field</i>
	O The counter will not be automatically reloaded, It will be reloaded for the amount of repeat times defined on the di1_step_repeat_ <i> field</i>
27–25	Counter Clear select
di1_cnt_clr_sel_9	This field defines the source of the signals that clears the counter.
	000 Counter is disabled
	001 The counter is triggered by the same trigger that triggers the displays clock.
	010 The Counter is triggered by counter #1

Table continues on the next page...

Reset

0


0

0

IPUx_DI1_SW_GEN1_9 field descriptions (continued)

Field	Description
	011 The Counter is triggered by counter #2
	100 The Counter is triggered by counter #3
	101 The Counter is triggered by counter #4
	110 The Counter is triggered by counter #5
	111 Counter is always on.
24–16	Counter falling edge position
di1_cnt_down_9	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's falling edge.
15 di1_tag_sel_9	Counter #9 can send a synchronous tag when counter #9 reach its predefined value or when it's triggering counter reaches its pre defined value.
	1 tag source is counter #9
	0 Tag's source is the triggering counter.
14–9 Reserved	This read-only field is reserved and always has the value 0.
di1_cnt_up_9	Counter rising edge position
	This parameter contains an integer part (bits 24:17) and a fractional part (bit 16).
	The position value is the amount of cycles between the trigger's start point and the waveform's rising edge.

37.5.250 DI1 Sync Assistance Gen Register (IPUx_DI1_SYNC_AS_GEN)

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

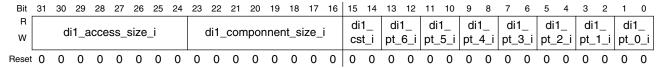
IPUx_DI1_SYNC_AS_GEN field descriptions

Field	Description
31–29	Reserve
-	
28	di1_sync_start_en
di1_sync_start_	
en	
27–16	This read-only field is reserved and always has the value 0.
Reserved	
15–13	VSYNC select
di1_vsync_sel	This field defines which of the counters functions as VSYNC signal
	000 VSYNC is coming from counter #1
	001 VSYNC is coming from counter #2
	111 VSYNC is coming from counter #8
12	This read-only field is reserved and always has the value 0.
Reserved	
di1_sync_start	DI1 Sync start
	This field defines the number of low (including blanking rows) on the which the DI1 starts preparing the data for the next frame.

37.5.251 DI1 Data Wave Gen <i> Register (IPUx_DI1_DW_GEN_i)

The DI1_DW_GEN_<i> register holds pointers for the waveform generators.

These registers have different bit arrangements for parallel and serial display. When using a parallel display VDI Plane Size Register 4 is applicable. When using a serial interface VDI Plane Size Register 4 is applicable.


Table 37-704. Register Field Descriptions for Serial display

Field	Description
31-24	DI1 Serial Period <i></i>
di1_serial_period_ <i></i>	This field defines the period of the time base serial display clock. The units are the internal DI clock
23-16	DI1 start period
di1_start_period_ <i></i>	This field defines the amount of cycles between the point where the access is ready to be launched to the actual point where the time base serial display clock restarts. The units are the internal DI clock.
15-14	DI1 Chip Select pointer for waveform <i></i>
di1_cst_ <i></i>	This field points to a register that defines the waveform of the CS pin.
	For serial displays the down value as defined on DI1_DW_SET*_ <i> is measured from the assertion of the last serial display time base clock.</i>
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>

Table 37-704. Register Field Descriptions for Serial display (continued)

Field	Description
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
13-9	Reserved
8-4	DI1 Serial valid bits.
di1_serial_valid_bits_ <i></i>	This field defines the amount of valid bits to be transmitted within the 32 bits internal word aligned to bit[0].
	The actual amount of valid bits is di1_serial_valid_bits_ <i>+ 1</i>
3-2	DI1 Serial RS
di1_serial_rs_ <i></i>	This field points to a register that defines the waveform of the RS pin.
	For serial displays the down value as defined on DI1_DW_SET*_ <i> is measured from the assertion of the last serial display time base clock.</i>
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
1-0	DI1 serial clock <i></i>
di1_serial_clk_ <i></i>	This field points to a register that defines the waveform of the Serial clock pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>

Address: Base address + 4_8058h offset

IPUx_DI1_DW_GEN_i field descriptions

Field	Description
31–24 di1_access_size_ i	DI1 Access Size <i> This field defines the amount of IPU cycles between any 2 accesses (an access may be a pixel or generic data that may have more one component)</i>
23-16 di1_ componnent_ size_i	DI1 component Size This field defines the amount of IPU cycles between any 2 components
15–14 di1_cst_i	DI1 Chip Select pointer for waveform <i> This field points to a register that defines the waveform of the CS pin. The CS is automatically mapped to a specific display</i>

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DI1_DW_GEN_i field descriptions (continued)

Field	Description
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
13–12	DI1 PIN_17 pointer for waveform <i></i>
di1_pt_6_i	This field points to a register that defines the waveform of the PIN_17 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
11–10	DI1 PIN_16 pointer for waveform <i></i>
di1_pt_5_i	This field points to a register that defines the waveform of the PIN_16 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
9–8	DI1 PIN_15 pointer for waveform <i></i>
di1_pt_4_i	This field points to a register that defines the waveform of the PIN_15 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
7–6	DI1 PIN_14 pointer for waveform <i></i>
di1_pt_3_i	This field points to a register that defines the waveform of the PIN_14 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
5–4	DI1 PIN_13 pointer for waveform <i></i>
di1_pt_2_i	This field points to a register that defines the waveform of the PIN_13 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>
3–2	DI1 PIN_12 pointer for waveform <i></i>
di1_pt_1_i	This field points to a register that defines the waveform of the PIN_12 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>

IPUx_DI1_DW_GEN_i field descriptions (continued)

Field	Description
di1_pt_0_i	DI1 PIN_11 pointer for waveform <i></i>
	This field points to a register that defines the waveform of the PIN_11 pin.
	00 The waveform is defined according to the settings on DI1_DW_SET0_ <i></i>
	01 The waveform is defined according to the settings on DI1_DW_SET1_ <i></i>
	10 The waveform is defined according to the settings on DI1_DW_SET2_ <i></i>
	11 - The waveform is defined according to the settings on DI1_DW_SET3_ <i></i>

37.5.252 DI1 Data Wave Set 0 <i> Register (IPUx_DI1_DW_SET0_i)

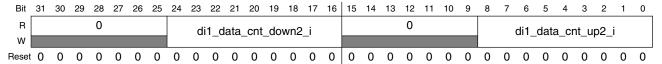
Address: Base address + 4_8088h offset

IPUx_DI1_DW_SET0_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24-16 di1_data_cnt_ down0_i	Waveform's falling edge position.
	This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di1_data_cnt_ up0_i	Waveform's rising edge position.
	This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>

37.5.253 DI1 Data Wave Set 1 <i>Register (IPUx_DI1_DW_SET1_i)

Address: Base address + 4_80B8h offset

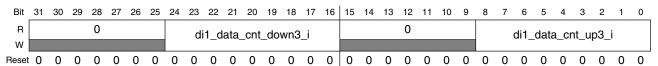


IPUx_DI1_DW_SET1_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16	Waveform's falling edge position.
di1_data_cnt_ down1_i	This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di1_data_cnt_	Waveform's rising edge position.
up1_i	This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>

37.5.254 DI1 Data Wave Set 2 <i> Register (IPUx_DI1_DW_SET2_i)

Address: Base address + 4_80E8h offset

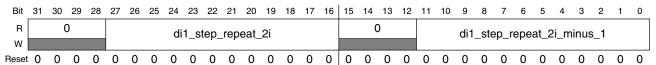


IPUx_DI1_DW_SET2_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24-16 di1_data_cnt_ down2_i	Waveform's falling edge position. This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di1_data_cnt_ up2_i	Waveform's rising edge position. This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>

37.5.255 DI1 Data Wave Set 3 <i> Register (IPUx_DI1_DW_SET3_i)

Address: Base address + 4_8118h offset

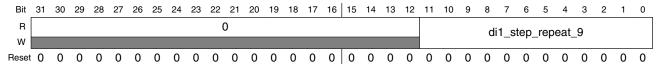


IPUx_DI1_DW_SET3_i field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24–16	Waveform's falling edge position.
di1_data_cnt_ down3_i	This field defines the Waveform's falling edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>
15–9 Reserved	This read-only field is reserved and always has the value 0.
di1_data_cnt_	Waveform's rising edge position.
up3_i	This field defines the Waveform's rising edge position. The Waveform is mapped to a pint according to the corresponding di1_pt_*_ <i></i>

37.5.256 DI1 Step Repeat <i> Registers (IPUx_D1_STP_REP_i)

Address: Base address + 4_8148h offset

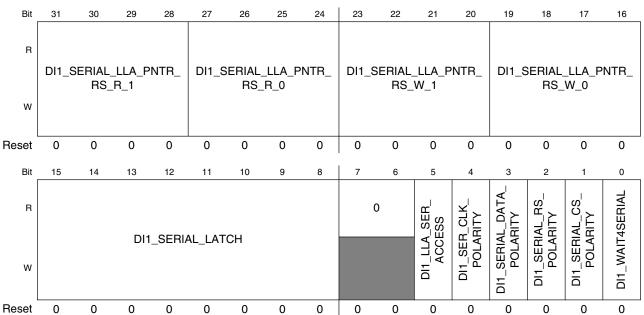

IPUx_D1_STP_REP_i field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value 0.
27–16 di1_step_repeat_ 2i	Step Repeat <i> This fields defines the amount of repetitions that will be performed by the counter <i></i></i>
15–12 Reserved	This read-only field is reserved and always has the value 0.
di1_step_repeat_ 2i_minus_1	Step Repeat <i> This fields defines the amount of repetitions that will be performed by the counter <i></i></i>

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

37.5.257 DI1Step Repeat 9 Registers (IPUx_DI1_STP_REP_9)

Address: Base address + 4_8158h offset

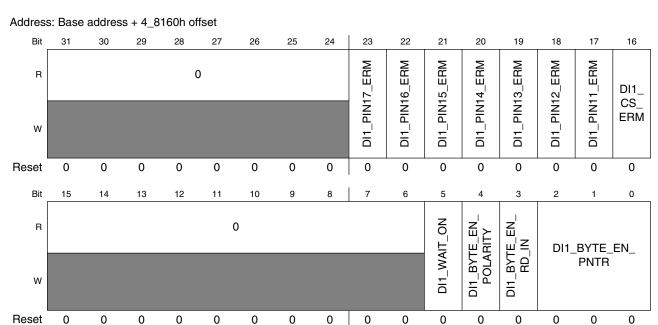


IPUx_DI1_STP_REP_9 field descriptions

Field	Description
31–12 Reserved	This read-only field is reserved and always has the value 0.
di1_step_repeat_ 9	Step Repeat 9 This fields defines the amount of repetitions that will be performed by the counter 9.

37.5.258 DI1 Serial Display Control Register (IPUx_DI1_SER_CONF)

Address: Base address + 4_815Ch offset


IPUx_DI1_SER_CONF field descriptions

Field	Description
31–28	RS 3 waveform pointer for read low level access
DI1_SERIAL_	This pointer defines which waveform set will be chosen when the read low level access is targeted to RS
LLA_PNTR_RS_ R_1	group 1.
''_'	0000 Waveform set #1
	0000 Waveform set #1 0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
27–24	RS 2 waveform pointer for low level access
DI1_SERIAL_	
LLA_PNTR_RS_	This pointer defines which waveform set will be chosen when the read low level access is targeted to RS group 0.
R_0	group o.
	0000 Waveform set #1
	0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
23–20	RS 1 waveform pointer for write low level access
DI1_SERIAL_ LLA_PNTR_RS_	This pointer defines which waveform set will be chosen when the write low level access is targeted to RS
W_1	group 1.
	0000 Waveform set #1
	0001 Waveform set #2
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
19–16	RS 0 waveform pointer for write low level access
DI1_SERIAL_	This pointer defines which waveform set will be chosen when the write low level access is targeted to RS
LLA_PNTR_RS_ W_0	group 0.
**_0	0000 Waveform set #1
	0001 Waveform set #1
	1011 Waveform set #12
	1100 Reserved
	1101 Reserved
	1100 Reserved
15–8	DI1 Serial Latch
DI1_SERIAL_	This field defines how many cycles to insert between serial read accesses start to data sampling in the
LATCH	This held defines now many cycles to insert between senal read accesses start to data sampling in the
7–6	This read-only field is reserved and always has the value 0.
Reserved	

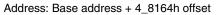
IPUx_DI1_SER_CONF field descriptions (continued)

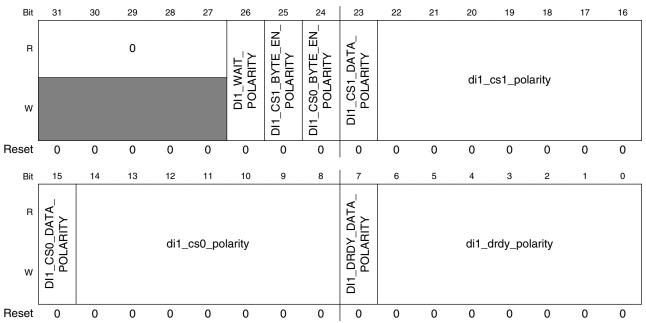
Field	Description
5 DI1_LLA_SER_	Direct Low Level Access to Serial display
ACCESS	ARM platform access is performed via a direct path to the serial display in LLA mode, in this mode only the ARM platform in LLA mode can access the serial port
	O ARM platform access to the serial display port is not done directly, hence other source are allowed to access the serial port. The arbitration is done automatically
4	Serial Clock Polarity
DI1_SER_CLK_ POLARITY	The output polarity of the SER_CLK pin
	1 The clock is inverted
	0 The clock is not inverted
3	Serial Data Polarity
DI1_SERIAL_ DATA_	The output polarity of the SER_DATA pin
POLARITY	1 The data is inverted
	0 The data is not inverted
2	Serial RS Polarity
DI1_SERIAL_ RS_POLARITY	The output polarity of the SER_RS pin
	1 The RS is inverted
	0 The RS is not inverted
1	Serial Chip Select Polarity
DI1_SERIAL_ CS_POLARITY	The output polarity of the SER_CS pin
	1 The CS is inverted
	0 The CS is not inverted
0	Wait for Serial
DI1_ WAIT4SERIAL	When the parallel display share pins with the serial port. Accessing the parallel port is not allowed till the serial port completes its access.
	The parallel port should wait to the serial port as the pins are shared
	0 The parallel port should not wait to the serial port as the pins are not shared

37.5.259 DI1 Special Signals Control Register (IPUx_DI1_SSC)

IPUx_DI1_SSC field descriptions

Field	Description
31–24 Reserved	This read-only field is reserved and always has the value 0.
23 DI1_PIN17_ERM	DI1 PIN17 error recovery mode. This bit defines the error recovery mode of the PIN17 pin.
	The PIN17 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC.
	Nothing is done to the PIN17 pin following a display error detection.
22 DI1_PIN16_ERM	DI1 PIN16 error recovery mode. This bit defines the error recovery mode of the PIN16 pin.
	The PIN16 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC.
	0 Nothing is done to the PIN16 pin following a display error detection.
21	DI1 PIN15 error recovery mode.
DI1_PIN15_ERM	This bit defines the error recovery mode of the PIN15 pin.
	The PIN15 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC.
	0 Nothing is done to the PIN15 pin following a display error detection.
20	DI1 PIN14 error recovery mode.
DI1_PIN14_ERM	This bit defines the error recovery mode of the PIN14 pin.


IPUx_DI1_SSC field descriptions (continued)

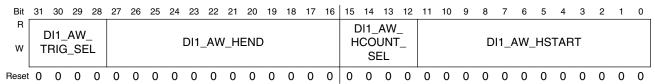

Field	Description
	1 The PIN14 pin is cleared in case of a synchronous display error. The clear will be done on the next
	VSYNC.
40	Nothing is done to the PIN14 pin following a display error detection. PIA PINAS
19 DI1_PIN13_ERM	DI1 PIN13 error recovery mode.
	This bit defines the error recovery mode of the PIN13 pin.
	1 The PIN13 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC.
	Nothing is done to the PIN13 pin following a display error detection.
18	DI1 PIN12 error recovery mode.
DI1_PIN12_ERM	This bit defines the error recovery mode of the PIN12 pin.
	1 The PIN12 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC.
	Nothing is done to the PIN12 pin following a display error detection.
17	DI1 PIN11 error recovery mode.
DI1_PIN11_ERM	This bit defines the error recovery mode of the PIN11 pin.
	1 The PIN11 pin is cleared in case of a synchronous display error. The clear will be done on the next VSYNC.
	0 Nothing is done to the PIN11 pin following a display error detection.
16	DI1 GLUELOGIC error recovery mode.
DI1_CS_ERM	This bit defines the error recovery mode of the GLUELOGIC.
	1 The GLUELOGIC is release in case of a synchronous display error. The release will be done on the next VSYNC.
	Nothing is done to the GLUELOGIC following a display error detection.
15–6 Reserved	This read-only field is reserved and always has the value 0.
5	Wait On
DI1_WAIT_ON	This field defines the DC's response to WAIT signal
	1 The DC holds the flow as long as WAIT is asserted.
	0 The DC continues the flow regardless the WAIT signal.
4	Byte Enable polarity
DI1_BYTE_EN_ POLARITY	This bit defines the polarity of the byte enable signals to the display.
	1 active high.
3	0 active low.
DI1_BYTE_EN_	Byte Enable Read In This bit solects the source of the bute enable pins
RD_IN	This bit selects the source of the byte enable pins
	1 The write byte enable signals are routed via bits [17:16] of the display's data, The read byte enable signals are routed via bits [19:18 of the display's data
	0 The byte enable signals are routed via bits [17:16] of the display's data for both read and write
DI1_BYTE_EN_	Byte Enable Pointer
PNTR	This pointer selects the pin asserted along with the byte enables signals

IPUx_DI1_SSC field descriptions (continued)

Field	Description
	000 wave form of byte enable as pin_11
	001 wave form of byte enable as pin_12
	111 wave form of byte enable as suitable CS pin

37.5.260 DI1 Polarity Register (IPUx_DI1_POL)

IPUx_DI1_POL field descriptions

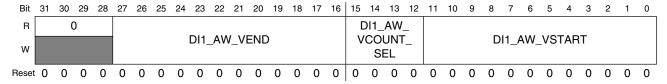

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26 DI1_WAIT_ POLARITY	WAIT polarity This bit defines the polarity of the wait signal input coming from the displa1
	1 active high 0 active low
25 DI1_CS1_BYTE_ EN_POLARITY	Byte Enable associated with CS1 polarity This bit defines the polarity of the byte enable signals to the display
	1 active high 0 active low

IPUx_DI1_POL field descriptions (continued)

Field	Description
24 DI1_CS0_BYTE_	Byte Enable associated with CS0 polarity This bit defines the polarity of the byte enable signals to the display
EN_POLARITY	1 active high
	0 active low
23 DI1_CS1_DATA_ POLARITY	Data Polarity associated with CS1
22–16	DI1 output pin's polarity for CS1
di1_cs1_polarity	This bits define the polarity of each of the DI's outputs when CS1 is asserted
	1 The output pin is active high
	0 The output pin is active low
15 DI1_CS0_DATA_ POLARITY	Data Polarity associated with CS0
14–8	DI1 output pin's polarity for CS1
di1_cs0_polarity	This bits define the polarity of each of the DI's outputs when CS1 is asserted
	1 The output pin is active high
	0 The output pin is active low
7 DI1_DRDY_ DATA_ POLARITY	Data Polarity associated with DRDY
di1_drdy_polarity	DI1 output dynamic pin's polarity for synchronous access
	This bits define the polarity of each of the DI's outputs when synchronous display access is asserted
	The pins' default polarity is the same as defined in the di0_drdy_polarity bits
	1 The output pin is active high
	0 The output pin is active low

37.5.261 DI1Active Window 0 Register (IPUx_DI1_AW0)

Address: Base address + 4_8168h offset



IPUx_DI1_AW0 field descriptions

Field	Description
31–28	This field selects the trigger for sending data during the display's active window
DI1_AW_TRIG_	000 disabled
SEL	000 disabled
	001 The trigger is the same trigger that triggers the displays clock.
	010 The trigger is counter #1
	011 The trigger is counter #2
	100 The trigger is counter #3
	101 The trigger is counter #4
	110 The trigger is counter #5
	111 The trigger is always on.
27–16	This field defines the horizontal end of the active window
DI1_AW_HEND	
15–12 DI1 AW	This field selects the counter that counts the horizontal position of the display's active window
HCOUNT_SEL	0000 disabled
	0001 reserved
	0010 The counter is counter #1
	0011 The counter is counter #2
	0100 The counter is counter #3
	0101 The counter is counter #4
	0110 The counter is counter #5
	1001 The counter is counter #8
DI1_AW_	This field defines the horizontal start of the active window
HSTART	DI1_AW_HSTART < DI1_AW_HEND

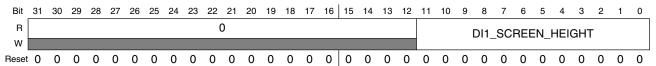
37.5.262 DI1 Active Window 1 Register (IPUx_DI1_AW1)

Address: Base address + 4_816Ch offset

IPUx_DI1_AW1 field descriptions

Field	Description
31–28 Reserved	This read-only field is reserved and always has the value 0.
27–16 DI1_AW_VEND	This field defines the vertical end of the active window
15–12 DI1_AW_ VCOUNT_SEL	This field selects the counter that counts the vertical position of the display's active window 0000 disabled 0001 reserved

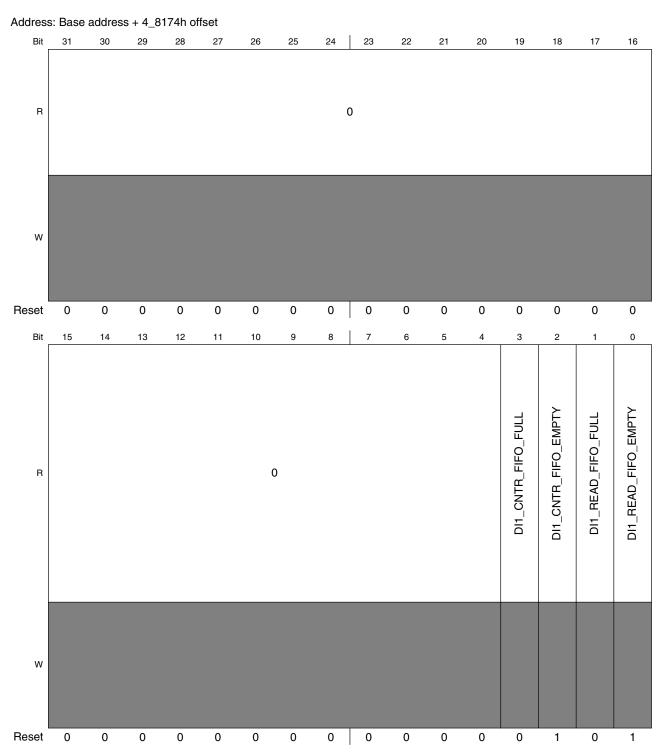
Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DI1_AW1 field descriptions (continued)

Field	Description
	0010 The counter is counter #1
	0011 The counter is counter #2
	0100 The counter #3
	0101 The counter is counter #4
	0110 The counter #5
	1001 The counter #8
DI1_AW_ VSTART	This field defines the vertical start of the active window
	DI1_AW_VSTART < DI1_AW_VEND

37.5.263 DI1 Screen Configuration Register (IPUx_DI1_SCR_CONF)


Address: Base address + 4_8170h offset

IPUx_DI1_SCR_CONF field descriptions

Field	Description
31–12 Reserved	This read-only field is reserved and always has the value 0.
DI1_SCREEN_ HEIGHT	This field defines the number of display rows (Number_of_ROWS = DI1_SCREEN_HEIGHT+1) This field is used for VSYNC calculation and for anti-tearing

37.5.264 DI1 Status Register (IPUx_DI1_STAT)

IPUx_DI1_STAT field descriptions

Field	Description
31–4 Reserved	This read-only field is reserved and always has the value 0.
3 DI1_CNTR_ FIFO_FULL	This bit indicates a full state of the DI1 FIFO. This FIFO is part of the DI1 synchronizer.
2 DI1_CNTR_ FIFO_EMPTY	This bit indicates an empty state of the DI1 FIFO. This FIFO is part of the DI1 synchronizer.
1 DI1_READ_ FIFO_FULL	This bit indicates a full state of the DI1 FIFO when performing a read. This FIFO is part of the DI1 synchronizer.
0 DI1_READ_ FIFO_EMPTY	This bit indicates an empty state of the DI1 FIFO when performing a read. This FIFO is part of the DI1 synchronizer.

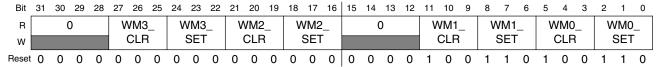
37.5.265 SMFC Mapping Register (IPUx_SMFC_MAP)

The purpose of this register is to map CSI frames to IDMAC channels.

Address: Base address + 5_0000h offset

IPUx_SMFC_MAP field descriptions

Field	Description
31–12 Reserved	This read-only field is reserved and always has the value 0.
11–9 MAP_CH3	DMASMFC channel 3mapping bits.
_	000 CSI0, ID=0 mapped to DMASMFC channel 3.
	001 CSI0, ID=1 mapped to DMASMFC channel 3.
	010 CSI0, ID=2 mapped to DMASMFC channel 3.
	011 CSI0, ID=3 mapped to DMASMFC channel 3.
	100 CSI1, ID=0 mapped to DMASMFC channel 3.
	101 CSI1, ID=1 mapped to DMASMFC channel 3.
	110 CSI1, ID=2 mapped to DMASMFC channel 3.
	111 CSI1, ID=3 mapped to DMASMFC channel 3.
8–6 MAP_CH2	DMASMFC channel 2 mapping bits.
	000 CSI0, ID=0 mapped to DMASMFC channel 2.


IPUx_SMFC_MAP field descriptions (continued)

Field		Description
	001	CSI0, ID=1 mapped to DMASMFC channel 2.
	010	CSI0, ID=2 mapped to DMASMFC channel 2.
	011	CSI0, ID=3 mapped to DMASMFC channel 2.
	100	CSI1, ID=0 mapped to DMASMFC channel 2.
	101	CSI1, ID=1 mapped to DMASMFC channel 2.
	110	CSI1, ID=2 mapped to DMASMFC channel 2.
	111	CSI1, ID=3 mapped to DMASMFC channel 2.
5–3	DMA	SMFC channel 1 mapping bits.
MAP_CH1	000	CSI0, ID=0 mapped to DMASMFC channel 1.
	001	CSI0, ID=1 mapped to DMASMFC channel 1.
	010	CSI0, ID=2 mapped to DMASMFC channel 1.
	011	CSI0, ID=3 mapped to DMASMFC channel 1.
	100	CSI1, ID=0 mapped to DMASMFC channel 1.
	101	CSI1, ID=1 mapped to DMASMFC channel 1.
	110	CSI1, ID=2 mapped to DMASMFC channel 1.
	111	CSI1, ID=3 mapped to DMASMFC channel 1.
MAP_CH0	DMA	SMFC channel 0 mapping bits.
	000	CSI0, ID=0 mapped to DMASMFC channel 0.
	001	CSI0, ID=1 mapped to DMASMFC channel 0.
	010	CSI0, ID=2 mapped to DMASMFC channel 0.
	011	CSI0, ID=3 mapped to DMASMFC channel 0.
	100	CSI1, ID=0 mapped to DMASMFC channel 0.
	101	CSI1, ID=1 mapped to DMASMFC channel 0.
	110	CSI1, ID=2 mapped to DMASMFC channel 0.
	111	CSI1, ID=3 mapped to DMASMFC channel 0.

37.5.266 SMFC Watermark Control Register (IPUx_SMFC_WMC)

The purpose of this register is to control watermarks levels of DMA channels. The bit setting given relative to FIFO size and not in number of words since FIFO size depend from number of enabled DMA channels.

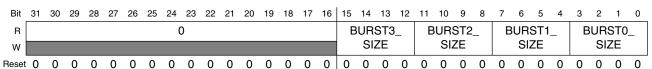
Address: Base address + 5_0004h offset

IPUx_SMFC_WMC field descriptions

Field	Description		
31–28 Reserved	This read-only field is reserved and always has the value 0.		
27–25 WM3_CLR	Watermark "clear" level of DMASMFC channel 3.		
	000 clear watermark level when FIFO is full on 1/8 of their size.		
	001 clear watermark level when FIFO is full on 2/8 of their size.		
	110 clear watermark level when FIFO is full on 7/8 of their size.		
	111 clear watermark level when FIFO is full.		
24-22 WM3_SET	Watermark "set" level of DMASMFC channel 3		
	000 set watermark level when FIFO is full on 1/8 of their size.		
	001 set watermark level when FIFO is full on 2/8 of their size.		
	110 set watermark level when FIFO is full on 7/8 of their size.		
	111 set watermark level when FIFO is full.		
21-19 WM2_CLR	Watermark "clear" level of DMASMFC channel 2.		
	000 clear watermark level when FIFO is full on 1/8 of their size.		
	001 clear watermark level when FIFO is full on 2/8 of their size.		
	110 clear watermark level when FIFO is full on 7/8 of their size.		
	111 clear watermark level when FIFO is full.		
18–16 WM2_SET	Watermark "set" level of DMASMFC channel 2.		
	000 set watermark level when FIFO is full on 1/8 of their size.		
	001 set watermark level when FIFO is full on 2/8 of their size.		
	110 set watermark level when FIFO is full on 7/8 of their size.		
	111 set watermark level when FIFO is full.		
15–12 Reserved	This read-only field is reserved and always has the value 0.		
11–9 WM1_CLR	Watermark "clear" level of DMASMFC channel 1.		
	000 clear watermark level when FIFO is full on 1/8 of their size.		
	001 clear watermark level when FIFO is full on 2/8 of their size.		
	110 clear watermark level when FIFO is full on 7/8 of their size.		
	111 clear watermark level when FIFO is full.		
8–6 WM1_SET	Watermark "set" level of DMASMFC channel 1.		
	000 set watermark level when FIFO is full on 1/8 of their size.		
	001 set watermark level when FIFO is full on 2/8 of their size.		
	110 set watermark level when FIFO is full on 7/8 of their size.		
	111 set watermark level when FIFO is full.		
5–3 WM0_CLR	Watermark "clear" level of DMASMFC channel 0.		
	000 clear watermark level when FIFO is full on 1/8 of their size.		
	001 clear watermark level when FIFO is full on 2/8 of their size.		
	110 clear watermark level when FIFO is full on 7/8 of their size.		
	111 clear watermark level when FIFO is full.		
WM0_SET	Watermark "set" level of DMASMFC channel 0.		

IPUx_SMFC_WMC field descriptions (continued)

Field	Description	
	000 set watermark level when FIFO is full on 1/8 of their size.	
	001 set watermark level when FIFO is full on 2/8 of their size.	
	110 set watermark level when FIFO is full on 7/8 of their size.	
	111 set watermark level when FIFO is full.	


37.5.267 SMFC Burst Size Register (IPUx_SMFC_BS)

This register holds the burst size value for each DMASMFC channel. The burst size is the number of IDMAC's active accesses that will done for each IDMAC's burst. This number is a function of PFS, BPP & NPB parameters in the IDMAC's CPMEM. These are the parameters corresponding to the IDMAC's channel used. The table below describes what should be the burst size according to PFS, BPP & NPB settings

Table 37-721. SMFC Burst Size

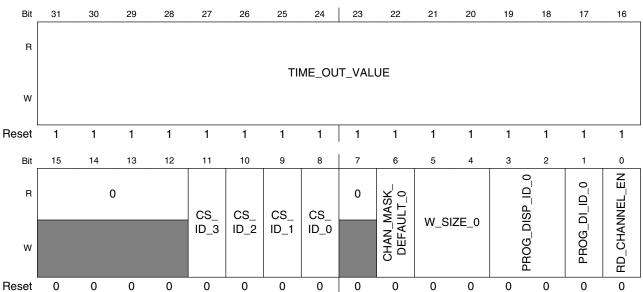
ВРР	PFS	BURST_SIZE
8	6	NPB[6:4]
16	6	NPB[6:3]
All other	All other	NPB[6:2]

Address: Base address + 5_0008h offset

IPUx_SMFC_BS field descriptions

Field	Description	
31–16 Reserved	This read-only field is reserved and always has the value 0.	
15–12 BURST3_SIZE	Burst Size of SMFCDMA channel 3. The value programed here should be BURST_SIZE-1 (for example: for a burst size of 1, write 0 to these bits)	
11–8 BURST2_SIZE	Burst Size of SMFCDMA channel 2. The value programed here should be BURST_SIZE-1 (for example: for a burst size of 1, write 0 to these bits)	
7–4 BURST1_SIZE	Burst Size of SMFCDMA channel 1. The value programed here should be BURST_SIZE-1 (for example: for a burst size of 1, write 0 to these bits)	
BURST0_SIZE	Burst Size of SMFCDMA channel 0.	

Table continues on the next page...

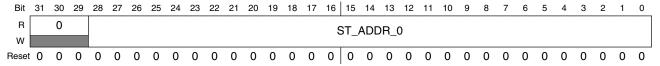

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_SMFC_BS field descriptions (continued)

Field	Description	
	The value programed here should be BURST_SIZE-1 (for example: for a burst size of 1, write 0 to these bits)	

37.5.268 DC Read Channel Configuration Register (IPUx_DC_READ_CH_CONF)

IPUx_DC_READ_CH_CONF field descriptions

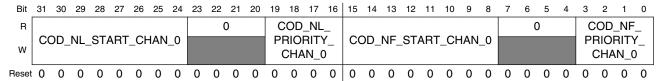

Field	Description		
31–16	Time out value.		
TIME_OUT_ VALUE	In case of a error during read accesses to the display, where no response from the display was received. A time-out counter will terminate the current access and perform the next commend defined in the microcode.		
	This field defines the amount of the hsp_clk cycles counted before the time-out event is issued.		
	This event is tied to the interrupt controller and can generate an error interrupt.		
15–12 Reserved	This read-only field is reserved and always has the value 0.		
11 CS_ID_3	This bit maps an asynchronous display to a chip select		
00_10_0	1 display #3 is connected to CS1		
	0 display #3 is connected to CS0		
10 CS_ID_2	This bit maps an asynchronous display to a chip select		
00_10_2	1 display #2 is connected to CS1		
	0 display #2 is connected to CS0		

IPUx_DC_READ_CH_CONF field descriptions (continued)

Field	Description	
9	This bit maps an asynchronous display to a chip select	
CS_ID_1	1 display #1 is connected to CS1	
	0 display #1 is connected to CS0	
8	This bit maps an asynchronous display to a chip select	
CS_ID_0		
	1 display #0 is connected to CS1 0 display #0 is connected to CS0	
7	This read-only field is reserved and always has the value 0.	
Reserved	This read-only field is reserved and always has the value o.	
6	Event mask bit for the read channel	
CHAN_MASK_ DEFAULT_0	When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event	
	1 All the events are used - no mask	
	0 Only the highest priority event is used, the rest are masked	
5–4	Word Size	
W_SIZE_0	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC	
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.	
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.	
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC	
	11 32 bits are used	
3–2 PROG_DISP_	The field defines which one of the 4 displays can be read.	
ID_0	00 display #0	
	01 display #1	
	10 display #2	
	11 display #3	
1	This bit select the DI which a read transaction can be performed through	
PROG_DI_ID_0	1 DI #1	
	0 DI #0	
0	This bit enables the read channel.	
RD_CHANNEL_	4. The Dand sharped is suchled	
EN	1 The Read channel is enabled 0 The Read channel is disabled	
	o the head didillers disabled	

37.5.269 DC Read Channel Start Address Register (IPUx_DC_READ_SH_ADDR)

Address: Base address + 5_8004h offset


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

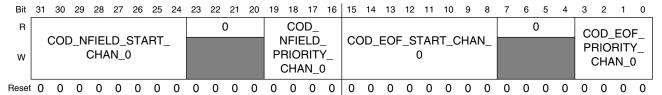
IPUx_DC_READ_SH_ADDR field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
ST_ADDR_0	This field defines the start address within the display's memory space where the read transactions will be done from.

37.5.270 DC Routine Link Register 0 Channel 0 (IPUx_DC_RL0_CH_0)

Address: Base address + 5_8008h offset

IPUx_DC_RL0_CH_0 field descriptions


Field	Description		
31–24 COD_NL_ START_CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the new line event (NL) resides		
23–20 Reserved	This read-only field is reserved and always has the value 0.		
19–16	This field defines the priority of the new line (NL) event		
COD_NL_ PRIORITY_ CHAN_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)		
	0000 disable		
	0001 Priority #1 (lowest)		
	0010 Priority #2		
	1101 Priority #13 (highest)		
	1110 Reserved 1111 Reserved		
15–8 COD_NF_ START_CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the new Frame event (NF) resides		
7–4 Reserved	This read-only field is reserved and always has the value 0.		
COD_NF_	This field defines the priority of the new frame (NF) event		
PRIORITY_ CHAN_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)		
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2		

IPUx_DC_RL0_CH_0 field descriptions (continued)

Field	Description	
	1101	Priority #13 (highest)
	1110	Reserved
	1111	Reserved

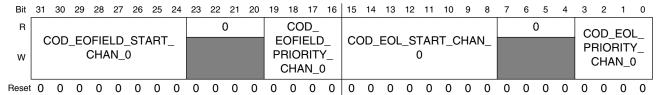
37.5.271 DC Routine Link Register 1 Channel 0 (IPUx_DC_RL1_CH_0)

Address: Base address + 5_800Ch offset

IPUx_DC_RL1_CH_0 field descriptions

Field	Description		
31–24 COD_NFIELD_ START_CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the new field event resides		
23–20 Reserved	This read-only field is reserved and always has the value 0.		
19–16	This field defines the priority of the new field event		
COD_NFIELD_ PRIORITY_ CHAN_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)		
	0000 disable		
	0001 Priority #1 (lowest)		
	0010 Priority #2		
	1101 Priority #13 (highest)		
	1110 Reserved		
	1111 Reserved		
15–8 COD_EOF_ START_CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the end- of-frame event (EOF) resides		
7–4 Reserved	This read-only field is reserved and always has the value 0.		
COD_EOF_	This field defines the priority of the end-of-frame event (EOF) event		
PRIORITY_ CHAN_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)		
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2		

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

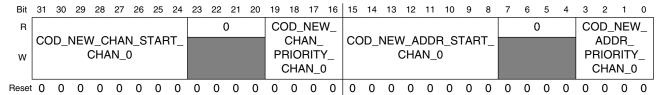
IPUx_DC_RL1_CH_0 field descriptions (continued)

Field	Description	
	1101	Priority #13 (highest)
	1110	Reserved
	1111	Reserved

37.5.272 DC Routine Link Register2 Channel 0 (IPUx_DC_RL2_CH_0)

Address: Base address + 5_8010h offset

IPUx_DC_RL2_CH_0 field descriptions


Field	Description		
31–24 COD_EOFIELD_ START_CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the end- of-field event resides		
23–20 Reserved	This read-only field is reserved and always has the value 0.		
19–16	This field defines the priority of the end-of-field event		
COD_EOFIELD_ PRIORITY_ CHAN_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)		
	0000 disable		
	0001 Priority #1 (lowest)		
	0010 Priority #2		
	1101 Priority #13 (highest)		
	1110 Reserved		
	1111 Reserved		
15–8 COD_EOL_ START_CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the end- of-line event (EOL) resides		
7–4 Reserved	This read-only field is reserved and always has the value 0.		
COD_EOL_ PRIORITY_ CHAN_0	This field defines the priority of the end-of-line event (EOL) event		
	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)		
	0000 disable		
	0001 Priority #1 (lowest)		
	0010 Priority #2		

IPUx_DC_RL2_CH_0 field descriptions (continued)

Field		Description
	1101	Priority #13 (highest)
	1110	Reserved
	1111	Reserved

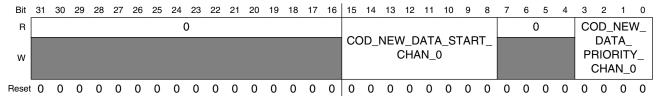
37.5.273 DC Routine Link Registe3 Channel 0 (IPUx_DC_RL3_CH_0)

Address: Base address + 5_8014h offset

IPUx_DC_RL3_CH_0 field descriptions

Field	Description	
31–24 COD_NEW_ CHAN_START_ CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides	
23–20 Reserved	This read-only field is reserved and always has the value 0.	
19–16	This field defines the priority of the new channel event	
COD_NEW_ CHAN_ PRIORITY_	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)	
CHAN_0	0000 disable	
	0001 Priority #1 (lowest)	
	0010 Priority #2	
	1101 Priority #13 (highest)	
	1110 Reserved	
	1111 Reserved	
15–8 COD_NEW_ ADDR_START_ CHAN_0	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides	
7–4 Reserved	This read-only field is reserved and always has the value 0.	
COD_NEW_	This field defines the priority of the new address event	
ADDR_ PRIORITY_ CHAN_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)	
	0000 disable	

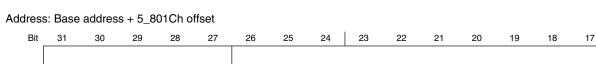
Table continues on the next page...

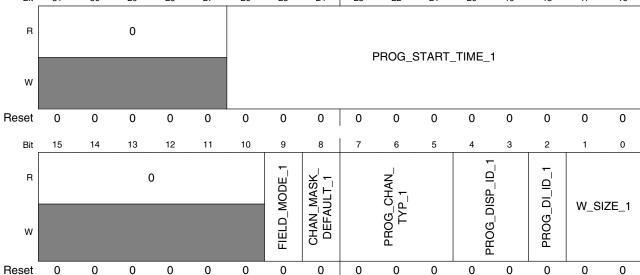

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_RL3_CH_0 field descriptions (continued)

Field		Description
	0001	Priority #1 (lowest)
	0010	Priority #2
	1101	Priority #13 (highest)
	1110	Reserved
	1111	Reserved

37.5.274 DC Routine Link Register 4 Channel 0 (IPUx_DC_RL4_CH_0)


Address: Base address + 5_8018h offset



IPUx_DC_RL4_CH_0 field descriptions

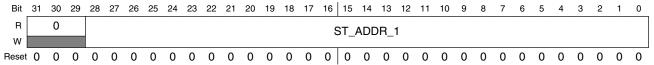
Description	
This read-only field is reserved and always has the value 0.	
This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides	
This read-only field is reserved and always has the value 0.	
This field defines the priority of the new data event The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved	

37.5.275 DC Write Channel 1 Configuration Register (IPUx_DC_WR_CH_CONF_1)

IPUx_DC_WR_CH_CONF_1 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 PROG_START_ TIME_1	This field defines the delay between display 's vertical synchronization pulse and the start time point of DC's channel 1 window. The delay is defined in pairs of rows. It is used for tearing elimination
15–10 Reserved	This read-only field is reserved and always has the value 0.
9	Field mode bit for channel #1
FIELD_MODE_1	This bit defines if the channel works in field mode or frame mode; This bit is relevant if the flow is sync flow
	1 Field mode
	0 Frame mode
8	Event mask bit for channel #1
CHAN_MASK_ DEFAULT_1	When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event
	1 All the events are used - no mask
	0 Only the highest priority event is used, the rest are masked
7–5 PROG_CHAN_	This field define the mode of operation of channel #1
TYP_1	000 Disable
	001 Reserved

Table continues on the next page...

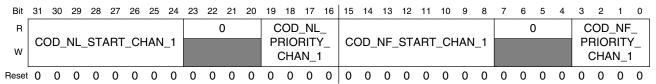

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_WR_CH_CONF_1 field descriptions (continued)

Field	Description
	010 Reserved
	100 Normal mode without anti-tearing. For sync display this is the only mode allowed
	101 Normal mode with anti-tearing
	110 Reserved
	111 Additional command channel is added to the flow handled by DC channel #1
4–3	The field defines which one of the 4 displays is associated with channel #1.
PROG_DISP_	
ID_1	00 display #0
	01 display #1
	10 display #2
	11 display #3
2	This bit select the DI which a transaction associated with channel #1 can be performed to
PROG_DI_ID_1	1 DI#1
	0 DI#0
W 017E 4	
W_SIZE_1	Word Size associated with channel #1
	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC
	11 32 bits are used

37.5.276 DC Write Channel 1 Address Configuration Register (IPUx_DC_WR_CH_ADDR_1)

Address: Base address + 5_8020h offset

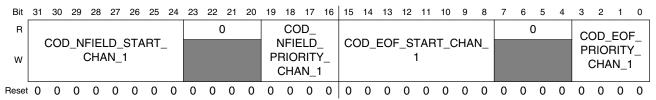


IPUx_DC_WR_CH_ADDR_1 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	This field defines the start address within the display's memory space where the write transactions will be done to for channel #1.

37.5.277 DC Routine Link Register 0 Channel 1 (IPUx_DC_RL0_CH_1)

Address: Base address + 5_8024h offset

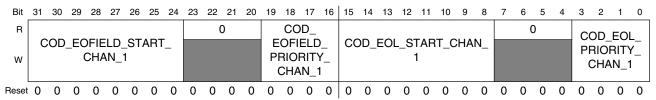


IPUx_DC_RL0_CH_1 field descriptions

Field	Description
31–24 COD_NL_ START_CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the new line event resides (associated with channel #1)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NL_	This field defines the priority of the new line event (associated with channel #1) The priority between the events should be set to a unique value. i.e. two events must not have the same
PRIORITY_ CHAN_1	priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved
15–8 COD_NF_ START_CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the new frame event resides (associated with channel #1)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NF_	This field defines the priority of the new frame event (associated with channel #1)
PRIORITY_ CHAN_1	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.278 DC Routine Link Register 1 Channel 1 (IPUx_DC_RL1_CH_1)

Address: Base address + 5_8028h offset

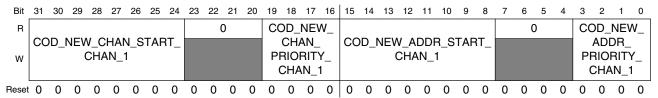


IPUx_DC_RL1_CH_1 field descriptions

Field	Description
31–24 COD_NFIELD_ START_CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the new field event resides (associated with channel #1)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NFIELD_ PRIORITY_ CHAN_1	This field defines the priority of the new field event (associated with channel #1) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest)
	0010 Priority #2 1101 Priority #13 (highest)
	1110 Reserved 1111 Reserved
15–8 COD_EOF_ START_CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the end of frame event resides (associated with channel #1)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_EOF_	This field defines the priority of the end of frame event (associated with channel #1)
PRIORITY_ CHAN_1	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.279 DC Routine Link Register 2 Channel 1 (IPUx_DC_RL2_CH_1)

Address: Base address + 5_8030h offset

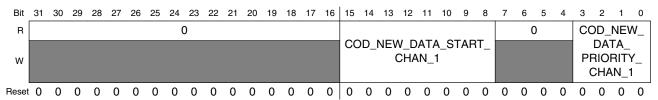


IPUx_DC_RL2_CH_1 field descriptions

Field	Description
31–24 COD_EOFIELD_ START_CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the end of field event resides (associated with channel #1)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19-16 COD_EOFIELD_ PRIORITY_ CHAN_1	This field defines the priority of the end of field event (associated with channel #1) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved
15–8 COD_EOL_ START_CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the end of line event resides (associated with channel #1)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_EOL_	This field defines the priority of the end of line event (associated with channel #1)
PRIORITY_ CHAN_1	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.280 DC Routine Link Register 3 Channel 1 (IPUx_DC_RL3_CH_1)

Address: Base address + 5_8032h offset

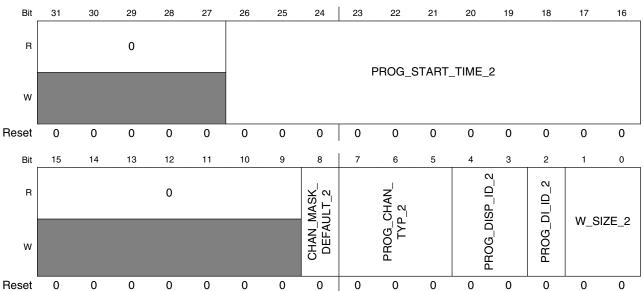


IPUx_DC_RL3_CH_1 field descriptions

Field	Description
31–24 COD_NEW_ CHAN_START_ CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #1)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NEW_ CHAN_ PRIORITY_ CHAN_1	This field defines the priority of the new channel event (associated with channel #1) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved
15–8 COD_NEW_ ADDR_START_ CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #1)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ ADDR_ PRIORITY_ CHAN_1	This field defines the priority of the new address event (associated with channel #1) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved

37.5.281 DC Routine Link Register 4 Channel 1 (IPUx_DC_RL4_CH_1)

Address: Base address + 5_8034h offset



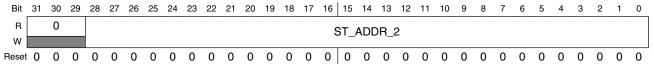
IPUx_DC_RL4_CH_1 field descriptions

Field	Description	
31–16 Reserved	This read-only field is reserved and always has the value 0.	
15–8 COD_NEW_ DATA_START_ CHAN_1	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #1)	
7–4 Reserved	This read-only field is reserved and always has the value 0.	
COD_NEW_	This field defines the priority of the new data event (associated with channel #1)	
DATA_ PRIORITY_ CHAN_1	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)	
	0000 disable	
	0001 Priority #1 (lowest)	
	0010 Priority #2	
	1101 Priority #13 (highest)	
	1110 Reserved	
	1111 Reserved	

37.5.282 DC Write Channel 2 Configuration Register (IPUx_DC_WR_CH_CONF_2)

IPUx_DC_WR_CH_CONF_2 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 PROG_START_ TIME_2	This field defines the delay between display 's vertical synchronization pulse and the start time point of DC's channel 2 window. The delay is defined in pairs of rows. It is used for tearing elimination
15–9 Reserved	This read-only field is reserved and always has the value 0.
8	Event mask bit for channel #2
CHAN_MASK_ DEFAULT_2	When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event
	1 All the events are used - no mask
	0 Only the highest priority event is used, the rest are masked
7–5 PROG_CHAN_	This field define the mode of operation of channel #2
TYP_2	000 Disable
	001 Reserved
	010 Reserved
	100 Normal mode without anti-tearing. For sync display this is the only mode allowed
	101 Normal mode with anti-tearing
	110 Reserved
	111 Additional command channel is added to the flow handled by DC channel #2

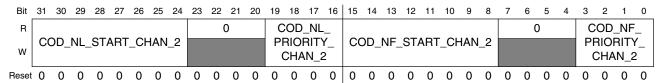

Table continues on the next page...

IPUx_DC_WR_CH_CONF_2 field descriptions (continued)

Field	Description
4–3 PROG DISP	The field defines which one of the 4 displays is associated with channel #2.
ID_2	00 display #0
	01 display #1
	10 display #2
	11 display #3
2	This bit select the DI which a transaction associated with channel #2 can be performed to
PROG_DI_ID_2	
	1 DI #1
	0 DI #0
W_SIZE_2	Word Size
	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC
	11 32 bits are used

37.5.283 DC Write Channel 2 Address Configuration Register (IPUx_DC_WR_CH_ADDR_2)

Address: Base address + 5_803Ch offset



IPUx_DC_WR_CH_ADDR_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
ST_ADDR_2	This field defines the start address within the display's memory space where the write transactions will be done to for channel #2.

37.5.284 DC Routine Link Register 0 Channel 2 (IPUx_DC_RL0_CH_2)

Address: Base address + 5_8040h offset

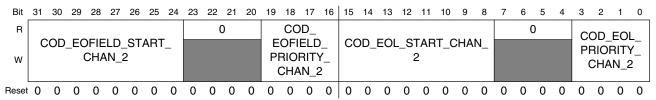


IPUx_DC_RL0_CH_2 field descriptions

Field	Description
31–24 COD_NL_ START_CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the new line event resides (associated with channel #2)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NL_ PRIORITY_ CHAN_2	This field defines the priority of the new line event (associated with channel #2) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved
	1111 Reserved
15–8 COD_NF_ START_CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the new frame event resides (associated with channel #2)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NF_ PRIORITY_ CHAN_2	This field defines the priority of the new frame event (associated with channel #2) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved

37.5.285 DC Routine Link Register 1 Channel 2 (IPUx_DC_RL1_CH_2)

Address: Base address + 5_8044h offset

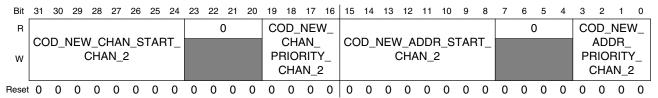


IPUx_DC_RL1_CH_2 field descriptions

Field	Description
31–24 COD_NFIELD_ START_CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the new field event resides (associated with channel #2)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NFIELD_ PRIORITY_ CHAN_2	This field defines the priority of the new field event (associated with channel #2) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest)
	0010 Priority #2 1101 Priority #13 (highest)
	1110 Reserved 1111 Reserved
15–8 COD_EOF_ START_CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the end of frame event resides (associated with channel #2)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_EOF_	This field defines the priority of the end of frame event (associated with channel #2)
PRIORITY_ CHAN_2	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.286 DC Routine Link Register 2 Channel 2 (IPUx_DC_RL2_CH_2)

Address: Base address + 5_8048h offset

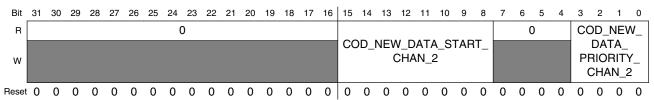


IPUx_DC_RL2_CH_2 field descriptions

Field	Description
31–24 COD_EOFIELD_ START_CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the end of field event resides (associated with channel #2)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19-16 COD_EOFIELD_ PRIORITY_ CHAN_2	This field defines the priority of the end of field event (associated with channel #2) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved 1111 Reserved
15–8 COD_EOL_ START_CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the end of line event resides (associated with channel #2)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_EOL_	This field defines the priority of the end of line event (associated with channel #2)
PRIORITY_ CHAN_2	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.287 DC Routine Link Register 3 Channel 2 (IPUx_DC_RL3_CH_2)

Address: Base address + 5_804Ch offset

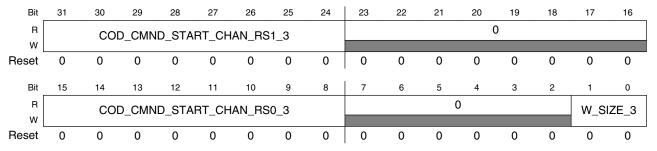


IPUx_DC_RL3_CH_2 field descriptions

Field	Description
31–24 COD_NEW_ CHAN_START_ CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #2)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NEW_ CHAN_ PRIORITY_ CHAN_2	This field defines the priority of the end of line event (associated with channel #2) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved
15–8 COD_NEW_ ADDR_START_ CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #2)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ ADDR_ PRIORITY_ CHAN_2	This field defines the priority of the end of line event (associated with channel #2) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved

37.5.288 DC Routine Link Register 4 Channel 2 (IPUx_DC_RL4_CH_2)

Address: Base address + 5_8050h offset

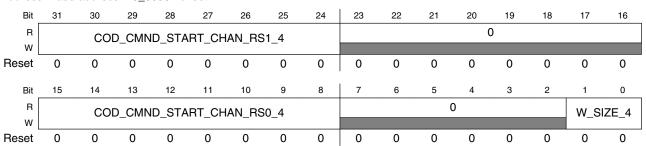


IPUx_DC_RL4_CH_2 field descriptions

Field	Description
31–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ DATA_START_ CHAN_2	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #2)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ DATA	This field defines the priority of the end of line event (associated with channel #2)
PRIORITY_ CHAN_2	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.289 DC Command Channel 3 Configuration Register (IPUx DC CMD CH CONF 3)

Address: Base address + 5_8054h offset



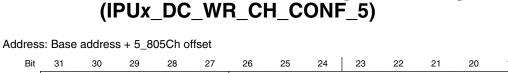
IPUx_DC_CMD_CH_CONF_3 field descriptions

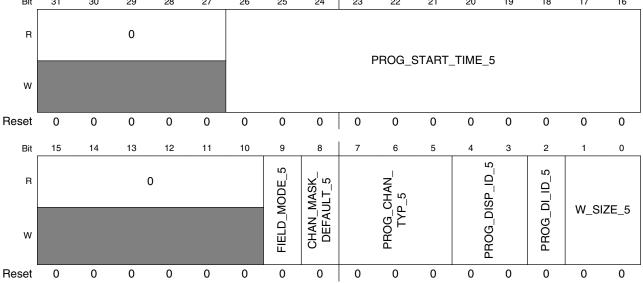
Field	Description
31-24 COD_CMND_ START_CHAN_ RS1_3	This field is a pointer to the address within the microcode memory where the routine that handles the command start event resides (associated with channel #3); This field is relevant when RS is equal to 1
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_CMND_ START_CHAN_ RS0_3	This field is a pointer to the address within the microcode memory where the routine that handles the command start event resides (associated with channel #3); This field is relevant when RS is equal to 0
7–2 Reserved	This read-only field is reserved and always has the value 0.
W_SIZE_3	Word Size associated with channel #3
	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC
	11 32 bits are used

37.5.290 DC Command Channel 4 Configuration Register (IPUx_DC_CMD_CH_CONF_4)

Address: Base address + 5_8058h offset

IPUx_DC_CMD_CH_CONF_4 field descriptions


Field	Description
31–24 COD_CMND_ START_CHAN_ RS1_4	This field is a pointer to the address within the microcode memory where the routine that handles the command start event resides (associated with channel #4); This field is relevant when RS is equal to 1
23–16 Reserved	This read-only field is reserved and always has the value 0.


Table continues on the next page...

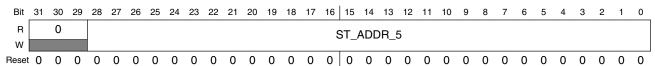
IPUx_DC_CMD_CH_CONF_4 field descriptions (continued)

Field	Description
15–8 COD_CMND_ START_CHAN_ RS0_4	This field is a pointer to the address within the microcode memory where the routine that handles the command start event resides (associated with channel #4); This field is relevant when RS is equal to 0
7–2 Reserved	This read-only field is reserved and always has the value 0.
W_SIZE_4	Word Size associated with channel #4
	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC
	11 32 bits are used

37.5.291 DC Write Channel 5Configuration Register (IPUx_DC_WR_CH_CONF_5)

IPUx_DC_WR_CH_CONF_5 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 PROG_START_ TIME_5	This field defines the delay between display 's vertical synchronization pulse and the start time point of DC's channel 5 window. The delay is defined in pairs of rows. It is used for tearing elimination

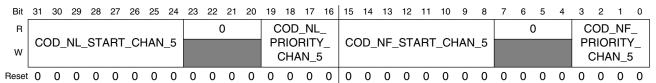

Table continues on the next page...

IPUx_DC_WR_CH_CONF_5 field descriptions (continued)

Field	Description			
15–10 Reserved	This read-only field is reserved and always has the value 0.			
9	Field mode bit for channel #5			
FIELD_MODE_5	This bit defines if the channel works in field mode or frame mode; This bit is relevant if the flow is sync flow			
	1 Field mode			
	0 Frame mode			
8	Event mask bit for channel #5			
CHAN_MASK_ DEFAULT_5	When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event			
	1 All the events are used - no mask			
	Only the highest priority event is used, the rest are masked			
7–5 PROG_CHAN_	This field define the mode of operation of channel #5			
TYP_5	000 Disable			
	001 Reserved			
	010 Reserved			
	Normal mode without anti-tearing. For sync display this is the only mode allowed			
	101 Normal mode with anti-tearing			
	110 Reserved 111 Additional command channel is added to the flow handled by DC channel #5			
4–3	-			
PROG_DISP_	The field defines which one of the 4 displays is associated with channel #5.			
ID_5	00 display #0			
	01 display #1			
	10 display #2			
	11 display #3			
2	This bit select the DI which a transaction associated with channel #5 can be performed to.			
PROG_DI_ID_5	When channel 28 is connected to DI0, channel 23 must be connected to DI1 even if ch23 is not used. This is done by writing 1 to this bit.			
	1 DI #1			
	0 DI#0			
W_SIZE_5	Word Size associated with channel #5			
	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC			
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.			
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.			
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC			
	11 32 bits are used			

37.5.292 DC Write Channel 5Address Configuration Register (IPUx_DC_WR_CH_ADDR_5)

Address: Base address + 5_8060h offset



IPUx_DC_WR_CH_ADDR_5 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	This field defines the start address within the display's memory space where the write transactions will be done to for channel #5.

37.5.293 DC Routine Link Register 0 Channel 5 (IPUx_DC_RL0_CH_5)

Address: Base address + 5_8064h offset

IPUx_DC_RL0_CH_5 field descriptions

Field	Description			
31–24 COD_NL_ START_CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the new line event resides (associated with channel #5)			
23–20 Reserved	his read-only field is reserved and always has the value 0.			
19–16	This field defines the priority of the new line event (associated with channel #5)			
COD_NL_ PRIORITY_ CHAN_5	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)			
	0000 disable			
	0001 Priority #1 (lowest)			
	0010 Priority #2			
	1101 Priority #13 (highest)			
	1110 Reserved			
	1111 Reserved			


Table continues on the next page...

IPUx_DC_RL0_CH_5 field descriptions (continued)

Field	Description			
15–8 COD_NF_ START_CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the new rame event resides (associated with channel #5)			
7–4 Reserved	his read-only field is reserved and always has the value 0.			
COD_NF_ PRIORITY_ CHAN_5	This field defines the priority of the new line event (associated with channel #5) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)			
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved			

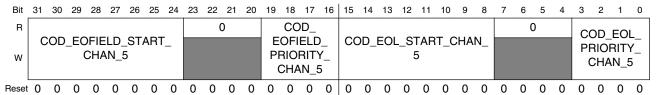
37.5.294 DC Routine Link Register 1 Channel 5 (IPUx_DC_RL1_CH_5)

Address: Base address + 5_8068h offset

IPUx_DC_RL1_CH_5 field descriptions

Field	Description				
31–24 COD_NFIELD_ START_CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the new field event resides (associated with channel #5)				
23–20 Reserved	This read-only field is reserved and always has the value 0.				
19–16	This field defines the priority of the new line event (associated with channel #5)				
COD_NFIELD_ PRIORITY_ CHAN_5	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)				
	0000 disable				
	0001 Priority #1 (lowest)				
	0010 Priority #2				
	1101 Priority #13 (highest)				
	1110 Reserved				
	1111 Reserved				

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_RL1_CH_5 field descriptions (continued)

Field	Description			
15–8 COD_EOF_ START_CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the end of frame event resides (associated with channel #5)			
7–4 Reserved	his read-only field is reserved and always has the value 0.			
COD_EOF_	This field defines the priority of the new line event (associated with channel #5)			
PRIORITY_ CHAN_5	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)			
	0000 disable			
	0001 Priority #1 (lowest)			
	0010 Priority #2			
	1101 Priority #13 (highest)			
	1110 Reserved			
	1111 Reserved			

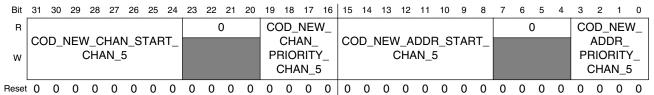
37.5.295 DC Routine Link Register 2 Channel 5 (IPUx_DC_RL2_CH_5)

Address: Base address + 5_806Ch offset

IPUx_DC_RL2_CH_5 field descriptions

Field	Description				
31–24 COD_EOFIELD_ START_CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the end of field event resides (associated with channel #5)				
23–20 Reserved	This read-only field is reserved and always has the value 0.				
19–16	This field defines the priority of the new line event (associated with channel #5)				
COD_EOFIELD_ PRIORITY_ CHAN_5	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)				
	0000 disable				
	0001 Priority #1 (lowest)				
	0010 Priority #2				
	1101 Priority #13 (highest)				
	1110 Reserved				
	1111 Reserved				

Table continues on the next page...


Chapter 37 Image Processing Unit (IPU)

IPUx_DC_RL2_CH_5 field descriptions (continued)

Field	Description			
15–8 COD_EOL_ START_CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the end of line event resides (associated with channel #5)			
7–4 Reserved	his read-only field is reserved and always has the value 0.			
COD_EOL_ PRIORITY_ CHAN_5	This field defines the priority of the new line event (associated with channel #5) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)			
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved			

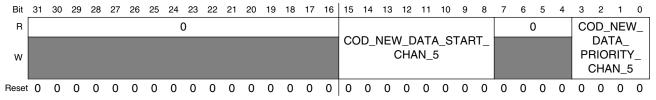
37.5.296 DC Routine Link Register3 Channel 5 (IPUx_DC_RL3_CH_5)

Address: Base address + 5_8070h offset

IPUx_DC_RL3_CH_5 field descriptions

Field	Description			
31–24 COD_NEW_ CHAN_START_ CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #5)			
23–20 Reserved	his read-only field is reserved and always has the value 0.			
19–16 COD_NEW_ CHAN_ PRIORITY_ CHAN_5	This field defines the priority of the new line event (associated with channel #5) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest)			

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_RL3_CH_5 field descriptions (continued)

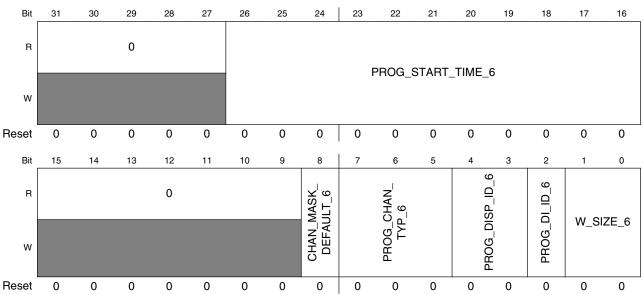
Field	Description			
	1110 Reserved 1111 Reserved			
15–8 COD_NEW_ ADDR_START_ CHAN_5	his field is a pointer to the address within the microcode memory where the routine that handles the new ddress event resides (associated with channel #5)			
7–4 Reserved	his read-only field is reserved and always has the value 0.			
COD_NEW_	This field defines the priority of the new line event (associated with channel #5)			
ADDR_ PRIORITY_ CHAN_5	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)			
	0000 disable			
	0001 Priority #1 (lowest)			
	0010 Priority #2			
	1101 Priority #13 (highest)			
	1110 Reserved			
	1111 Reserved			

37.5.297 DC Routine Link Register 4 Channel 5 (IPUx_DC_RL4_CH_5)

Address: Base address + 5_8074h offset

IPUx_DC_RL4_CH_5 field descriptions

Field	Description			
31–16 Reserved	This read-only field is reserved and always has the value 0.			
15–8 COD_NEW_ DATA_START_ CHAN_5	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #5)			
7–4 Reserved	This read-only field is reserved and always has the value 0.			
COD_NEW_ DATA_ PRIORITY_ CHAN_5	This field defines the priority of the new line event (associated with channel #5) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)			


Table continues on the next page...

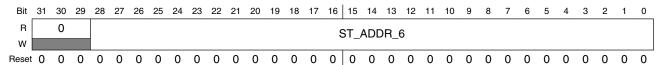
IPUx_DC_RL4_CH_5 field descriptions (continued)

Field	Description	
	0000	disable
	0001	Priority #1 (lowest)
	0010	Priority #2
	1101	Priority #13 (highest)
	1110	Reserved
	1111	Reserved

37.5.298 DC Write Channel 6 Configuration Register (IPUx_DC_WR_CH_CONF_6)

IPUx_DC_WR_CH_CONF_6 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 PROG_START_ TIME_6	This field defines the delay between display 's vertical synchronization pulse and the start time point of DC's channel 6 window. The delay is defined in pairs of rows. It is used for tearing elimination
15–9 Reserved	This read-only field is reserved and always has the value 0.
8 CHAN_MASK_ DEFAULT_6	Event mask bit for channel #6 When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event

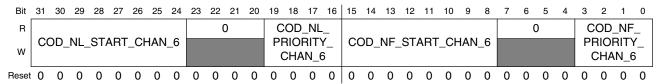

Table continues on the next page...

IPUx_DC_WR_CH_CONF_6 field descriptions (continued)

Field	Description
	1 All the events are used - no mask
	0 Only the highest priority event is used, the rest are masked
7–5 PROG_CHAN_	This field define the mode of operation of channel #6
TYP_6	000 Disable
	001 Reserved
	010 Reserved
	100 Normal mode without anti-tearing. For sync display this is the only mode allowed
	101 Normal mode with anti-tearing
	110 Reserved
	111 Additional command channel is added to the flow handled by DC channel #6
4–3 PROG_DISP_	The field defines which one of the 4 displays is associated with channel #6.
ID_6	00 display #0
_	01 display #1
	10 display #2
	11 display #3
2	This bit select the DI which a transaction associated with channel #6 can be performed to
PROG_DI_ID_6	1 DI #1
	1 DI #1 0 DI #0
W 017E 0	2 2 2 2
W_SIZE_6	Word Size associated with channel #6
	The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC
	00 8 bits are used - a 32 bit words includes 4X8bit valid words.
	01 16 LSB bits - a 32 bit words includes 2 X16bit valid words.
	10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC
	11 32 bits are used

37.5.299 DC Write Channel 6 Address Configuration Register (IPUx_DC_WR_CH_ADDR_6)

Address: Base address + 5_807Ch offset

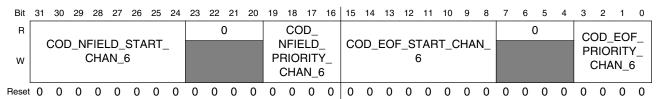


IPUx_DC_WR_CH_ADDR_6 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
ST_ADDR_6	This field defines the start address within the display's memory space where the write transactions will be done to for channel #6.

37.5.300 DC Routine Link Register 0Channel 6 (IPUx_DC_RL0_CH_6)

Address: Base address + 5_8080h offset

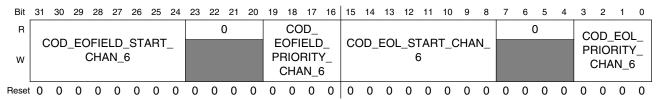


IPUx_DC_RL0_CH_6 field descriptions

Field	Description
31–24 COD_NL_ START_CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the new line event resides (associated with channel #6)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19-16 COD_NL_ PRIORITY_ CHAN_6	This field defines the priority of the new line event (associated with channel #6) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved
15–8 COD_NF_ START_CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the new frame event resides (associated with channel #6)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NF_ PRIORITY_ CHAN_6	This field defines the priority of the new frame event (associated with channel #6) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved

37.5.301 DC Routine Link Register 1 Channel 6 (IPUx_DC_RL1_CH_6)

Address: Base address + 5_8084h offset

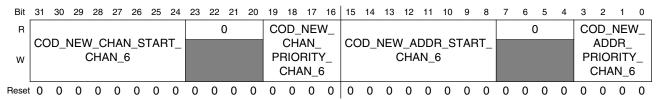


IPUx_DC_RL1_CH_6 field descriptions

Field	Description
31–24 COD_NFIELD_ START_CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the new field event resides (associated with channel #6)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NFIELD_ PRIORITY_ CHAN_6	This field defines the priority of the new field event (associated with channel #6) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest)
	0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved
	1111 Reserved
15–8 COD_EOF_ START_CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the end of frame event resides (associated with channel #6)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_EOF_	This field defines the priority of the new field event (associated with channel #6)
PRIORITY_ CHAN_6	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.302 DC Routine Link Register 2 Channel 6 (IPUx_DC_RL2_CH_6)

Address: Base address + 5_8088h offset

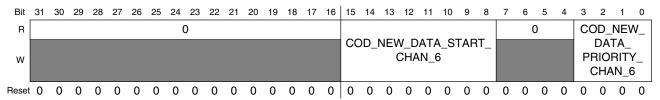


IPUx_DC_RL2_CH_6 field descriptions

Field	Description
31–24 COD_EOFIELD_ START_CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the end of field event resides (associated with channel #6)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19-16 COD_EOFIELD_ PRIORITY_ CHAN_6	This field defines the priority of the new field event (associated with channel #6) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest)
	0010 Priority #2 1101 Priority #13 (highest)
	1110 Reserved 1111 Reserved
15–8 COD_EOL_ START_CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the end of line event resides (associated with channel #6)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_EOL_	This field defines the priority of the new field event (associated with channel #6)
PRIORITY_ CHAN_6	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.303 DC Routine Link Register 3 Channel 6 (IPUx_DC_RL3_CH_6)

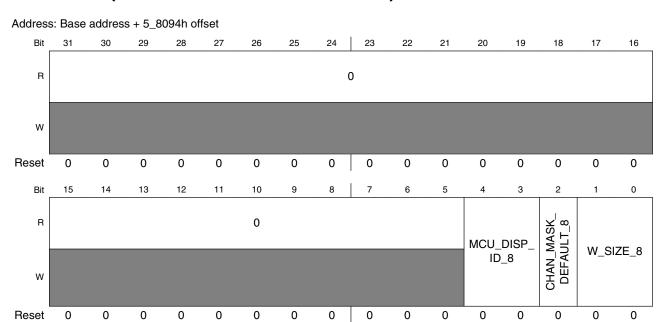
Address: Base address + 5_808Ch offset



IPUx_DC_RL3_CH_6 field descriptions

Field	Description
31–24 COD_NEW_ CHAN_START_ CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #6)
23–20 Reserved	This read-only field is reserved and always has the value 0.
19–16 COD_NEW_ CHAN_ PRIORITY_ CHAN_6	This field defines the priority of the new field event (associated with channel #6) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved
15–8 COD_NEW_ ADDR_START_ CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #6)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ ADDR_ PRIORITY_ CHAN_6	This field defines the priority of the new field event (associated with channel #6) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved

37.5.304 DC Routine Link Register 4 Channel 6 (IPUx_DC_RL4_CH_6)


Address: Base address + 5_8090h offset

IPUx_DC_RL4_CH_6 field descriptions

Field	Description
31–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ DATA_START_ CHAN_6	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #6)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_	This field defines the priority of the new field event (associated with channel #6)
DATA_ PRIORITY_ CHAN_6	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

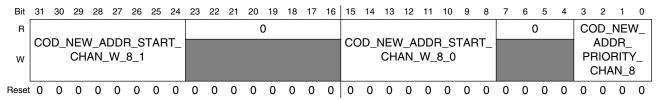
37.5.305 DC Write Channel 8 Configuration 1Register (IPUx_DC_WR_CH_CONF1_8)

IPUx_DC_WR_CH_CONF1_8 field descriptions

Field	Description
31–5 Reserved	This read-only field is reserved and always has the value 0.
4–3 MCU_DISP_ID_8	The field defines which one of the 4 displays is associated with channel #8. 00 display #0 01 display #1 10 display #2
	11 display #3
2 CHAN_MASK_ DEFAULT_8	Event mask bit for channel #8 When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event 1 All the events are used - no mask
	Only the highest priority event is used, the rest are masked
W_SIZE_8	Word Size associated with channel #8 The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC
	 8 bits are used - a 32 bit words includes 4X8bit valid words. 16 LSB bits - a 32 bit words includes 2 X16bit valid words. 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC 32 bits are used

37.5.306 DC Write Channel 8 Configuration 2 Register (IPUx_DC_WR_CH_CONF2_8)

Address: Base address + 5_8098h offset



IPUx_DC_WR_CH_CONF2_8 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	Channel #8 is used for ARM platform direct access to the display. This field defines the base address of the second region accessible on the display

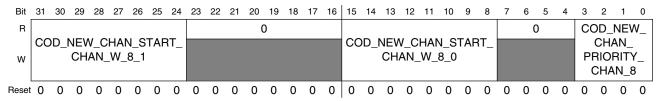
37.5.307 DC Routine Link Register 1 Channel 8 (IPUx_DC_RL1_CH_8)

Address: Base address + 5_809Ch offset

IPUx_DC_RL1_CH_8 field descriptions

Field	Description
31–24 COD_NEW_ ADDR_START_ CHAN_W_8_1	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #8, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ ADDR_START_ CHAN_W_8_0	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #8, first region)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ ADDR_	This field defines the priority of the new address event (associated with channel #8, both regions)

Table continues on the next page...

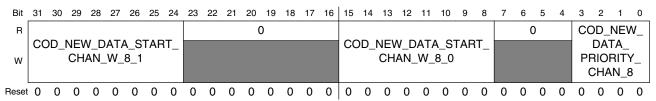

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_RL1_CH_8 field descriptions (continued)

Field	Description
PRIORITY_ CHAN_8	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.308 DC Routine Link Register 2 Channel 8 (IPUx_DC_RL2_CH_8)

Address: Base address + 5_80A0h offset

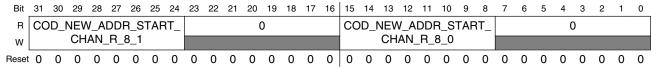


IPUx_DC_RL2_CH_8 field descriptions

Field	Description
31–24 COD_NEW_ CHAN_START_ CHAN_W_8_1	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #8, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ CHAN_START_ CHAN_W_8_0	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #8, first region)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ CHAN_ PRIORITY_ CHAN_8	This field defines the priority of the new address event (associated with channel #8, both regions) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable) 0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved
	1111 Reserved

37.5.309 DC Routine Link Register 3 Channel 8 (IPUx_DC_RL3_CH_8)

Address: Base address + 5_80A4h offset

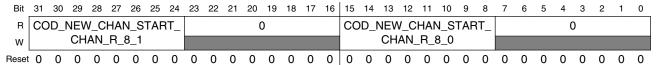


IPUx_DC_RL3_CH_8 field descriptions

Field	Description
31–24 COD_NEW_ DATA_START_ CHAN_W_8_1	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #8,second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ DATA_START_ CHAN_W_8_0	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #8, first region)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ DATA_ PRIORITY_ CHAN_8	This field defines the priority of the new address event (associated with channel #8, both regions)
	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.310 DC Routine Link Register 4 Channel 8 (IPUx_DC_RL4_CH_8)

Address: Base address + 5_80A8h offset

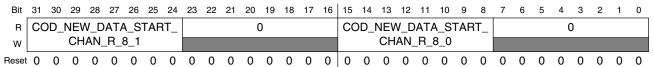

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_RL4_CH_8 field descriptions

Field	Description
31–24 COD_NEW_ ADDR_START_ CHAN_R_8_1	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #8, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ ADDR_START_ CHAN_R_8_0	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #8, first region)
Reserved	This read-only field is reserved and always has the value 0.

37.5.311 DC Routine Link Register 5 Channel 8 (IPUx_DC_RL5_CH_8)

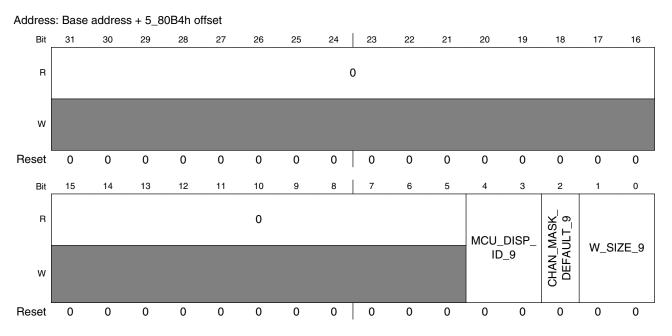
Address: Base address + 5_80ACh offset



IPUx_DC_RL5_CH_8 field descriptions

Field	Description
31–24 COD_NEW_ CHAN_START_ CHAN_R_8_1	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #8, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ CHAN_START_ CHAN_R_8_0	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #8, first region)
Reserved	This read-only field is reserved and always has the value 0.

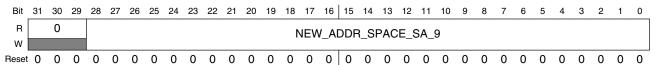
37.5.312 DC Routine Link Register 6 Channel 8 (IPUx_DC_RL6_CH_8)


Address: Base address + 5_80B0h offset

IPUx_DC_RL6_CH_8 field descriptions

Field	Description
31–24 COD_NEW_ DATA_START_ CHAN_R_8_1	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #8, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ DATA_START_ CHAN_R_8_0	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #8, first region)
Reserved	This read-only field is reserved and always has the value 0.

37.5.313 DC Write Channel 9 Configuration 1Register (IPUx_DC_WR_CH_CONF1_9)

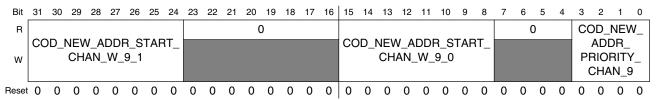

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_WR_CH_CONF1_9 field descriptions

Field	Description
31–5 Reserved	This read-only field is reserved and always has the value 0.
4–3 MCU_DISP_ID_9	The field defines which one of the 4 displays is associated with channel #9. 00 display #0 01 display #1 10 display #2 11 display #3
2 CHAN_MASK_ DEFAULT_9	Event mask bit for channel #9 When more then one event is used during a flow (EOF, EOL, NL, NF, EOFIELD, etc.) masks all the event besides the event that is defined as the highest priority event 1 All the events are used - no mask 0 Only the highest priority event is used, the rest are masked
W_SIZE_9	Word Size associated with channel #9 The data coming from the IDMAC is 32bit wide. This field defines the size of the word used by the DC 00 8 bits are used - a 32 bit words includes 4X8bit valid words. 01 16 LSB bits - a 32 bit words includes 2 X16bit valid words. 10 24 MSB bits are used (RGB) - 8 LSB bits are ignored by the DC 11 32 bits are used

37.5.314 DC Write Channel 9Configuration 2Register (IPUx_DC_WR_CH_CONF2_9)

Address: Base address + 5_80B8h offset

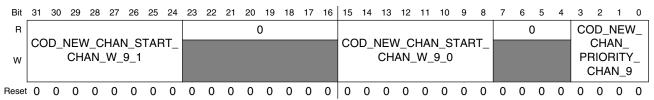


IPUx_DC_WR_CH_CONF2_9 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	Channel #8 is used for ARM platform direct access to the display. This field defines the base address of the second region accessible on the display

37.5.315 DC Routine Link Register 1 Channel 9 (IPUx_DC_RL1_CH_9)

Address: Base address + 5_80BCh offset

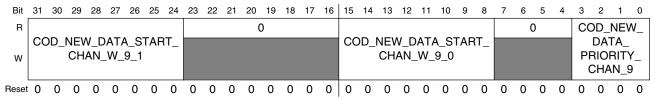


IPUx_DC_RL1_CH_9 field descriptions

Field	Description
31–24 COD_NEW_ ADDR_START_ CHAN_W_9_1	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #9, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ ADDR_START_ CHAN_W_9_0	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #9, first region)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_	This field defines the priority of the new address event (associated with channel #9, both regions)
ADDR_ PRIORITY_ CHAN_9	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved

37.5.316 DC Routine Link Register 2 Channel 9 (IPUx_DC_RL2_CH_9)

Address: Base address + 5_80C0h offset


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_RL2_CH_9 field descriptions

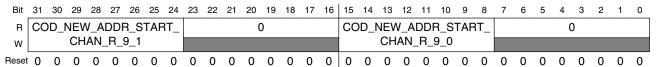
Field	Description
31-24 COD_NEW_ CHAN_START_ CHAN_W_9_1	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #9, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ CHAN_START_ CHAN_W_9_0	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #9, first region)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ CHAN_ PRIORITY_	This field defines the priority of the new address event (associated with channel #9, both regions) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
CHAN_9	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved

37.5.317 DC Routine Link Register 3Channel 9 (IPUx_DC_RL3_CH_9)

Address: Base address + 5_80C4h offset

IPUx_DC_RL3_CH_9 field descriptions

Field	Description
31–24 COD_NEW_ DATA_START_ CHAN_W_9_1	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #9, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.

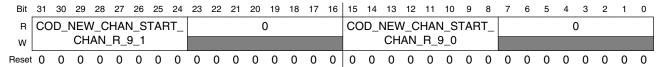

Chapter 37 Image Processing Unit (IPU)

IPUx_DC_RL3_CH_9 field descriptions (continued)

Field	Description
15–8 COD_NEW_ DATA_START_ CHAN_W_9_0	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #9, first region)
7–4 Reserved	This read-only field is reserved and always has the value 0.
COD_NEW_ DATA_ PRIORITY_ CHAN_9	This field defines the priority of the new address event (associated with channel #9, both regions) The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable 0001 Priority #1 (lowest) 0010 Priority #2 1101 Priority #13 (highest) 1110 Reserved 1111 Reserved

37.5.318 DC Routine Link Register 4 Channel 9 (IPUx_DC_RL4_CH_9)

Address: Base address + 5_80C8h offset

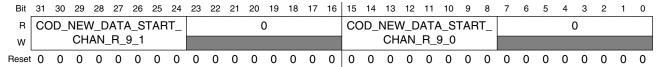


IPUx_DC_RL4_CH_9 field descriptions

Field	Description
31–24 COD_NEW_ ADDR_START_ CHAN_R_9_1	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #9, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ ADDR_START_ CHAN_R_9_0	This field is a pointer to the address within the microcode memory where the routine that handles the new address event resides (associated with channel #9, first region)
Reserved	This read-only field is reserved and always has the value 0.

37.5.319 DC Routine Link Register 5 Channel 9 (IPUx_DC_RL5_CH_9)

Address: Base address + 5_80CCh offset



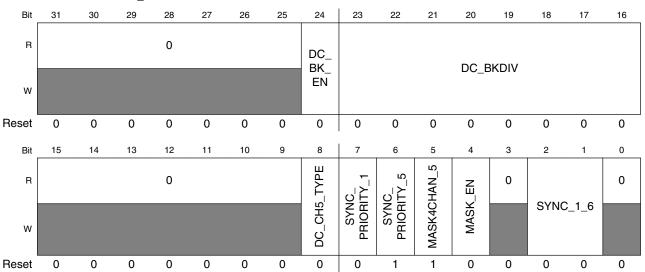
IPUx_DC_RL5_CH_9 field descriptions

Field	Description
31–24 COD_NEW_ CHAN_START_ CHAN_R_9_1	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #9, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.
15–8 COD_NEW_ CHAN_START_ CHAN_R_9_0	This field is a pointer to the address within the microcode memory where the routine that handles the new channel event resides (associated with channel #9, first region)
Reserved	This read-only field is reserved and always has the value 0.

37.5.320 DC Routine Link Register 6 Channel 9 (IPUx_DC_RL6_CH_9)

Address: Base address + 5_80D0h offset

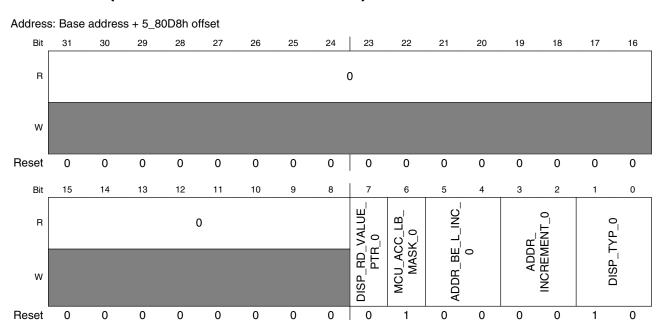
IPUx_DC_RL6_CH_9 field descriptions


Field	Description
31–24 COD_NEW_ DATA_START_ CHAN_R_9_1	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #9, second region)
23–16 Reserved	This read-only field is reserved and always has the value 0.

IPUx_DC_RL6_CH_9 field descriptions (continued)

Field	Description
15–8 COD_NEW_ DATA_START_ CHAN_R_9_0	This field is a pointer to the address within the microcode memory where the routine that handles the new data event resides (associated with channel #9, first region)
Reserved	This read-only field is reserved and always has the value 0.

37.5.321 DC General Register (IPUx_DC_GEN)

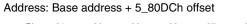

IPUx_DC_GEN field descriptions

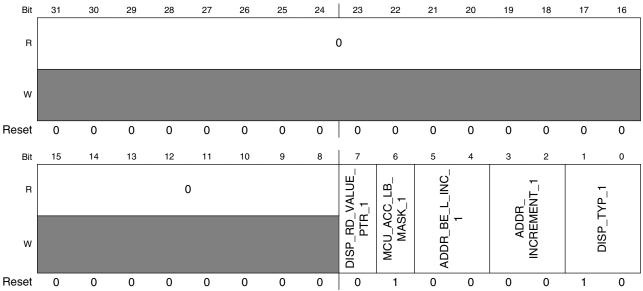
Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24 DC_BK_EN	Cursor blinking enable
	1 blinking is enabled
	0 blinking is disabled
23–16	Blinking Rate
DC_BKDIV	This field defines the blinking rate.
	The blinking occurs every N-th frame
	While N is defined by DC_BKDIV
15–9	This read-only field is reserved and always has the value 0.
Reserved	
8	Channel 5 is used for synchronous flow. When this channel is used for accessing asynchronous display
DC_CH5_TYPE	that is activated in a synchronous way

IPUx_DC_GEN field descriptions (continued)

Field	Description
	1 Enable the asynchronous interface via channel 5
	0 normal mode, synchronous flow via channel 5
7	When 2 sync flows are running, this bit sets the priority of channel #1.
SYNC_ PRIORITY_1	both SYNC_PRIORITY_5 and SYNC_PRIORITY_1 should not have the value of 0
	This bit should be
	1 high Priority
	0 low Priority
6	When 2 sync flows are running, this bit sets the priority of channel #5.
SYNC_ PRIORITY_5	both SYNC_PRIORITY_5 and SYNC_PRIORITY_1 should not have the value of 0
1111011111_0	This bit should be
	1 high priority
	0 low Priority
5	Sync flow can be associated with a mask channel. Only one sync flow can have a mask.
MASK4CHAN_5	This bit is ignored if MASK_EN is clear
	1 mask channel is associated to the sync flow via DP
	0 mask channel is associated to the sync flow via DC (without DP)
4	Enable of the mask channel
MASK_EN	1 mask channel is enabled
	0 mask channel is disabled
3 .	This read-only field is reserved and always has the value 0.
Reserved	
2–1 SYNC_1_6	This field
	00 Channel 1 of the DC handles async flow
	01 Illegal
	10 Channel 1 of the DC handles sync flow
	11 illegal
0	This read-only field is reserved and always has the value 0.
Reserved	

37.5.322 DC Display Configuration 1 Register 0 (IPUx_DC_DISP_CONF1_0)

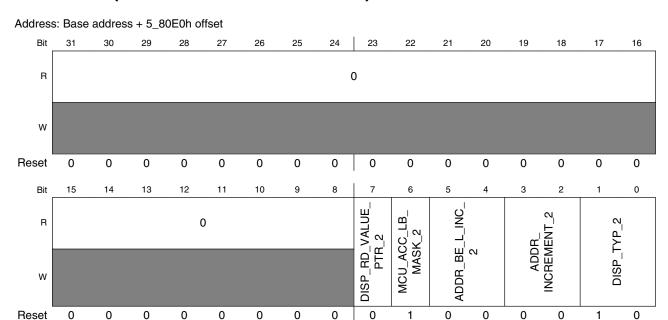

IPUx_DC_DISP_CONF1_0 field descriptions


Field	Description
31–8 Reserved	This read-only field is reserved and always has the value 0.
7 DISP_RD_ VALUE_PTR_0	When the display works in wait for status mode. The IPU polls the display and compare the value to the value stored on the status DI_READ_DATA_ACK_VALUE and mask it with DI_READ_DATA_MASK. The DC holds 2 sets of mask and value. This field holds a pointer to the corresponding set of mask and value.
	1 DI_READ_DATA_ACK_VALUE_1 & DI_READ_DATA_MASK_1 are used for display 0
	0 DI_READ_DATA_ACK_VALUE_0 & DI_READ_DATA_MASK_0 are used for display 0
6 MCU_ACC_LB_ MASK_0	The DC compares between the current access to the a calculated address. The calculated address is the next consecutive address following the last address. This bit defines the comparing mode
	1 The 2 addresses are fully compared
	0 The 2 addresses are compared, but the ADDR[0] bit of the new address is ignored
5–4 ADDR_BE_L_ INC_0	This bits define the increment mode when the latest access was done with some of the byte enable signals are low, in that case different increment should be done instead of the normal auto increment of the address
	IF MCU_ACC_LB_MASK_0 is 0 then only 00 and 10 values are allowed.
	00 No increment
	01 Increment by 1
	10 Increment by 2
	11 Increment by 3

IPUx_DC_DISP_CONF1_0 field descriptions (continued)

Field	Description
3–2	This field is the increment step for auto increment mode
ADDR_	
INCREMENT_0	00 Increment the address by 1
	01 Increment the address by 2
	10 Increment the address by 3
	11 Increment the address by 4
DISP_TYP_0	This field defines the type of the display
	00 Serial accesses display
	01 Reserved
	10 parallel display, without byte_enable support
	11 parallel display, with byte_enable support

37.5.323 DC Display Configuration 1 Register 1 (IPUx_DC_DISP_CONF1_1)


IPUx_DC_DISP_CONF1_1 field descriptions

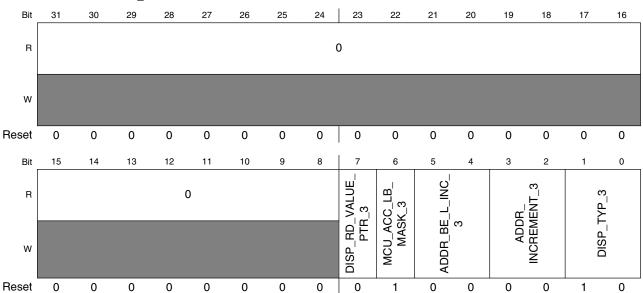
Field	Description
31–8 Reserved	This read-only field is reserved and always has the value 0.
DISP_RD_	When the display works in wait for status mode. The IPU polls the display and compare the value to the value stored on the status DI_READ_DATA_ACK_VALUE and mask it with DI_READ_DATA_MASK. The DC holds 2 sets of mask and value. This field holds a pointer to the corresponding set of mask and value.

IPUx_DC_DISP_CONF1_1 field descriptions (continued)

Field	Description
	1 DI_READ_DATA_ACK_VALUE_1 & DI_READ_DATA_MASK_1 are used for display 1
	0 DI_READ_DATA_ACK_VALUE_0 & DI_READ_DATA_MASK_0 are used for display 1
6 MCU_ACC_LB_ MASK 1	The DC compares between the current access to the a calculated address. The calculated address is the next consecutive address following the last address. This bit defines the comparing mode
IIII CIT_I	1 The 2 addresses are fully compared
	0 The 2 addresses are compared, but the ADDR[0] bit of the new address is ignored
5–4 ADDR_BE_L_ INC_1	This bits define the increment mode when the latest access was done with some of the byte enable signals are low, in that case different increment should be done instead of the normal auto increment of the address
	IF MCU_ACC_LB_MASK_1 is 0 then only 00 and 10 values are allowed.
	00 No increment
	01 Increment by 1
	10 Increment by 2
	11 Increment by 3
3–2 ADDR	This field is the increment step for auto increment mode
INCREMENT_1	00 Increment the address by 1
	01 Increment the address by 2
	10 Increment the address by 3
	11 Increment the address by 4
DISP_TYP_1	This field defines the type of the display
	00 Serial accesses display
	01 Reserved
	10 parallel display, without byte_enable support
	11 parallel display, with byte_enable support

37.5.324 DC Display Configuration 1 Register 2 (IPUx_DC_DISP_CONF1_2)

IPUx_DC_DISP_CONF1_2 field descriptions

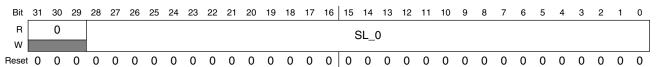

Field	Description
31–8 Reserved	This read-only field is reserved and always has the value 0.
7 DISP_RD_ VALUE_PTR_2	When the display works in wait for status mode. The IPU polls the display and compare the value to the value stored on the status DI_READ_DATA_ACK_VALUE and mask it with DI_READ_DATA_MASK. The DC holds 2 sets of mask and value. This field holds a pointer to the corresponding set of mask and value. 1 DI_READ_DATA_ACK_VALUE_1 & DI_READ_DATA_MASK_1 are used for display 2 0 DI_READ_DATA_ACK_VALUE_0 & DI_READ_DATA_MASK_0 are used for display 2
6 MCU_ACC_LB_ MASK_2	The DC compares between the current access to the a calculated address. The calculated address is the next consecutive address following the last address. This bit defines the comparing mode 1 The 2 addresses are fully compared 0 The 2 addresses are compared, but the ADDR[0] bit of the new address is ignored
5–4 ADDR_BE_L_ INC_2	This bits define the increment mode when the latest access was done with some of the byte enable signals are low, in that case different increment should be done instead of the normal auto increment of the address IF MCU_ACC_LB_MASK_2 is 0 then only 00 and 10 values are allowed.
	00 No increment 01 Increment by 1 10 Increment by 2 11 Increment by 3

IPUx_DC_DISP_CONF1_2 field descriptions (continued)

Field	Description
3–2	This field is the increment step for auto increment mode
ADDR_	
INCREMENT_2	00 Increment the address by 1
	01 Increment the address by 2
	10 Increment the address by 3
	11 Increment the address by 4
DISP_TYP_2	This field defines the type of the display
	00 Serial accesses display
	01 Reserved
	10 parallel display, without byte_enable support
	11 parallel display, with byte_enable support

37.5.325 DC Display Configuration 1 Register 3 (IPUx_DC_DISP_CONF1_3)

IPUx_DC_DISP_CONF1_3 field descriptions

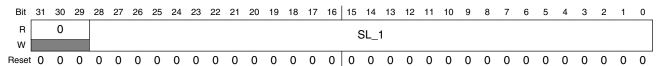

Field	Description
31–8 Reserved	This read-only field is reserved and always has the value 0.
DISP_RD_	When the display works in wait for status mode. The IPU polls the display and compare the value to the value stored on the status DI_READ_DATA_ACK_VALUE and mask it with DI_READ_DATA_MASK. The DC holds 2 sets of mask and value. This field holds a pointer to the corresponding set of mask and value.

IPUx_DC_DISP_CONF1_3 field descriptions (continued)

Field	Description
	1 DI_READ_DATA_ACK_VALUE_1 & DI_READ_DATA_MASK_1 are used for display 3
	0 DI_READ_DATA_ACK_VALUE_0 & DI_READ_DATA_MASK_0 are used for display 3
6 MCU_ACC_LB_ MASK 3	The DC compares between the current access to the a calculated address. The calculated address is the next consecutive address following the last address. This bit defines the comparing mode
WASK_S	1 The 2 addresses are fully compared
	0 The 2 addresses are compared, but the ADDR[0] bit of the new address is ignored
5–4 ADDR_BE_L_ INC_3	This bits define the increment mode when the latest access was done with some of the byte enable signals are low, in that case different increment should be done instead of the normal auto increment of the address
	IF MCU_ACC_LB_MASK_3 is 0 then only 00 and 10 values are allowed.
	00 No increment
	01 Increment by 1
	10 Increment by 2
	11 Increment by 3
3–2 ADDR	This field is the increment step for auto increment mode
INCREMENT_3	00 Increment the address by 1
	01 Increment the address by 2
	10 Increment the address by 3
	11 Increment the address by 4
DISP_TYP_3	This field defines the type of the display
	00 Serial accesses display
	01 Reserved
	10 parallel display, without byte_enable support
	11 parallel display, with byte_enable support

37.5.326 DC Display Configuration 2 Register 0 (IPUx_DC_DISP_CONF2_0)

Address: Base address + 5_80E8h offset

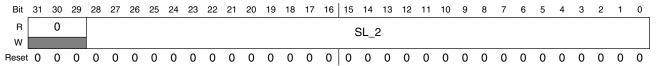


IPUx_DC_DISP_CONF2_0 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
SL_0	Stride line of display 0

37.5.327 DC Display Configuration 2 Register 1 (IPUx_DC_DISP_CONF2_1)

Address: Base address + 5_80ECh offset

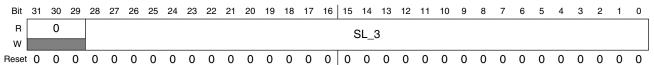


IPUx_DC_DISP_CONF2_1 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
SL_1	Stride line of display 1

37.5.328 DC Display Configuration 2 Register 2 (IPUx_DC_DISP_CONF2_2)

Address: Base address + 5_80F0h offset

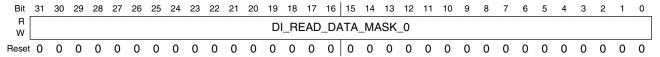


IPUx_DC_DISP_CONF2_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
SL_2	Stride line of display 2

37.5.329 DC Display Configuration 2 Register 3 (IPUx_DC_DISP_CONF2_3)

Address: Base address + 5_80F4h offset


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_DISP_CONF2_3 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
SL_3	Stride line of display 3

37.5.330 DC DI0Configuration Register 1 (IPUx_DC_DI0_CONF_1)

Address: Base address + 5_80F8h offset

IPUx_DC_DI0_CONF_1 field descriptions

Field	Description
DI_READ_ DATA_MASK_0	This field defines the mask value of the data read from the display.

37.5.331 DC DI0Configuration Register 2 (IPUx_DC_DI0_CONF_2)

Address: Base address + 5_80FCh offset

IPUx DC DI0 CONF 2 field descriptions

Field	Description
DATA_ACK_	This is the expected data to be read from the display. The value reads from the display is anded with the DI_READ_DATA_MASK_0 and compared with the DI_READ_DATA_ACK_VALUE_0. This field is used for the READ_STATUS task of the DC

37.5.332 DC DI1Configuration Register 1 (IPUx_DC_DI1_CONF_1)

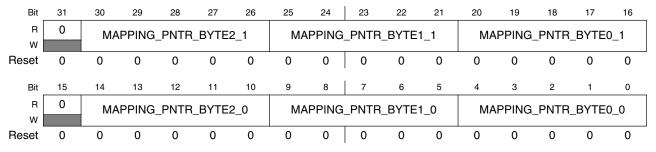
Address: Base address + 5_8100h offset

IPUx_DC_DI1_CONF_1 field descriptions

Field	Description
DI_READ_ DATA_MASK_1	This field defines the mask value of the data read from the display.

37.5.333 DC DI1Configuration Register 2 (IPUx_DC_DI1_CONF_2)

Address: Base address + 5_8104h offset



IPUx_DC_DI1_CONF_2 field descriptions

Field	Description
	This is the expected data to be read from the display. The value reads from the display is anded with the DI_READ_DATA_MASK_1 and compared with the DI_READ_DATA_ACK_VALUE_1 This field is used for the READ_STATUS task of the DC

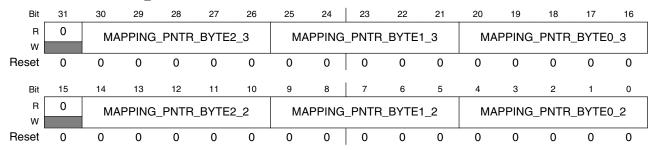
37.5.334 DC Mapping Configuration Register 0 (IPUx_DC_MAP_CONF_0)

Address: Base address + 5_8108h offset

IPUx_DC_MAP_CONF_0 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_1	Mapping pointer #1 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_1	Mapping pointer #1 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

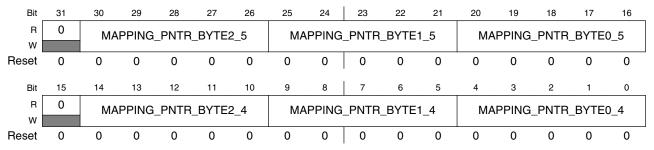
IPUx_DC_MAP_CONF_0 field descriptions (continued)

Field	Description
MAPPING	Mapping pointer #1 for Byte 0
PNTR_BYTE0_1	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_0	Mapping pointer #0 for Byte 2
	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_0	Mapping pointer #0 for Byte 1
	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_0	Mapping pointer #0 for Byte 0
	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.335 DC Mapping Configuration Register 1 (IPUx_DC_MAP_CONF_1)

Address: Base address + 5_810Ch offset

IPUx_DC_MAP_CONF_1 field descriptions


Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_3	Mapping pointer #3 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_3	Mapping pointer #3 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_3	Mapping pointer #3 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.

IPUx_DC_MAP_CONF_1 field descriptions (continued)

Field	Description
14–10 MAPPING	Mapping pointer #1 for Byte 2
PNTR_BYTE2_2	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_2	Mapping pointer #1 for Byte 1
	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
DNITD DVTEO 2	Mapping pointer #1 for Byte 0
	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

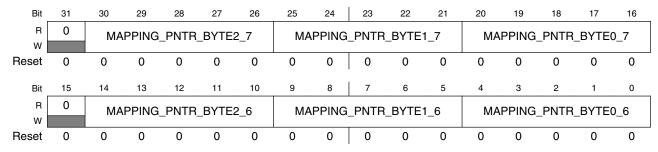
37.5.336 DC Mapping Configuration Register 2 (IPUx_DC_MAP_CONF_2)

Address: Base address + 5_8110h offset

IPUx_DC_MAP_CONF_2 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_5	Mapping pointer #5 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_5	Mapping pointer #5 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_5	Mapping pointer #5 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_4	Mapping pointer #4 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_4	Mapping pointer #4 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>

Table continues on the next page...

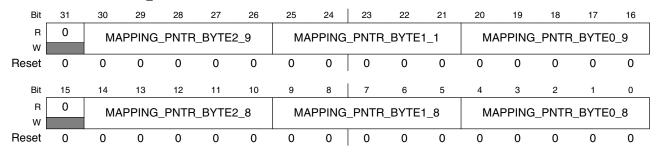

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_MAP_CONF_2 field descriptions (continued)

Field	Description
	Mapping pointer #4 for Byte 0
PNTR_BYTE0_4	This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.337 DC Mapping Configuration Register 3 (IPUx_DC_MAP_CONF_3)

Address: Base address + 5_8114h offset

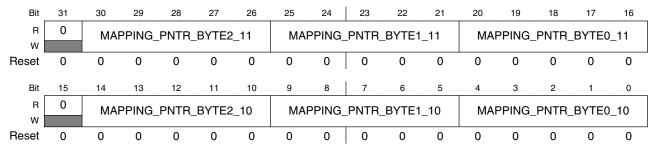


IPUx_DC_MAP_CONF_3 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_7	Mapping pointer #7 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_7	Mapping pointer #7 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_7	Mapping pointer #7 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_6	Mapping pointer #6 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_6	Mapping pointer #6 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_6	Mapping pointer #6 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.338 DC Mapping Configuration Register 4 (IPUx_DC_MAP_CONF_4)

Address: Base address + 5_8118h offset

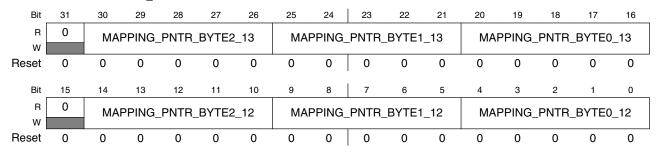


IPUx_DC_MAP_CONF_4 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_9	Mapping pointer #9 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_1	Mapping pointer #9 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_9	Mapping pointer #9 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_8	Mapping pointer #8 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_8	Mapping pointer #8 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_8	Mapping pointer #8 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.339 DC Mapping Configuration Register 5 (IPUx_DC_MAP_CONF_5)

Address: Base address + 5_811Ch offset

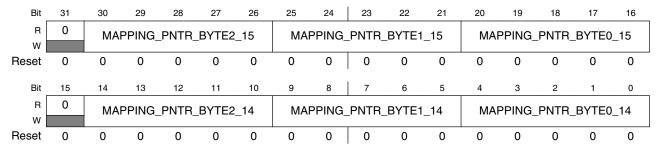


IPUx_DC_MAP_CONF_5 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 11	Mapping pointer #11 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 11	Mapping pointer #11 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 11	Mapping pointer #11 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 10	Mapping pointer #10 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 10	Mapping pointer #10 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 10	Mapping pointer #10 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.340 DC Mapping Configuration Register 6 (IPUx_DC_MAP_CONF_6)

Address: Base address + 5_8120h offset

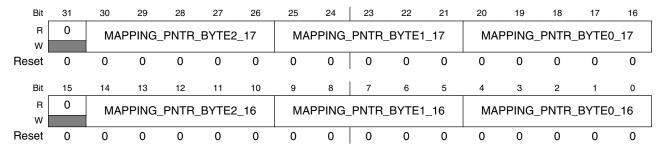


IPUx_DC_MAP_CONF_6 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 13	Mapping pointer #13 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 13	Mapping pointer #13 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 13	Mapping pointer #13 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 12	Mapping pointer #12 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 12	Mapping pointer #12 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 12	Mapping pointer #12 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.341 DC Mapping Configuration Register 7 (IPUx_DC_MAP_CONF_7)

Address: Base address + 5_8124h offset

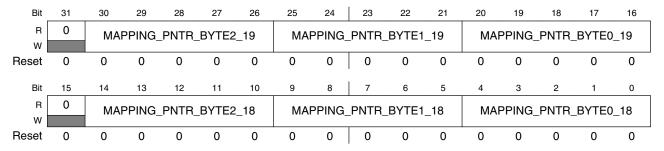


IPUx_DC_MAP_CONF_7 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 15	Mapping pointer #15 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 15	Mapping pointer #15 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 15	Mapping pointer #15 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 14	Mapping pointer #14 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 14	Mapping pointer #14 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 14	Mapping pointer #14 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.342 DC Mapping Configuration Register 8 (IPUx_DC_MAP_CONF_8)

Address: Base address + 5_8128h offset

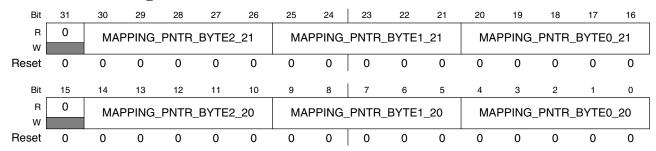


IPUx_DC_MAP_CONF_8 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 17	Mapping pointer #17 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 17	Mapping pointer #17 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 17	Mapping pointer #17 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 16	Mapping pointer #16 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 16	Mapping pointer #16 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 16	Mapping pointer #16 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.343 DC Mapping Configuration Register 9 (IPUx_DC_MAP_CONF_9)

Address: Base address + 5_812Ch offset

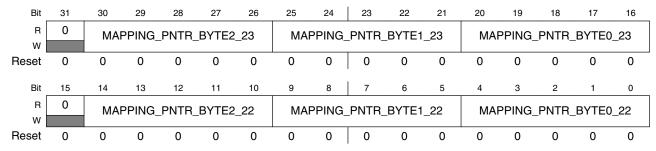


IPUx_DC_MAP_CONF_9 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 19	Mapping pointer #19 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 19	Mapping pointer #19 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 19	Mapping pointer #19 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 18	Mapping pointer #18 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 18	Mapping pointer #18 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 18	Mapping pointer #18 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.344 DC Mapping Configuration Register 10 (IPUx_DC_MAP_CONF_10)

Address: Base address + 5_8130h offset

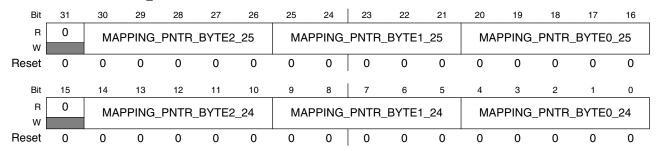


IPUx_DC_MAP_CONF_10 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 21	Mapping pointer #21 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 21	Mapping pointer #21 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 21	Mapping pointer #21 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 20	Mapping pointer #20 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 20	Mapping pointer #20 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 20	Mapping pointer #20 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.345 DC Mapping Configuration Register 11 (IPUx_DC_MAP_CONF_11)

Address: Base address + 5_8134h offset

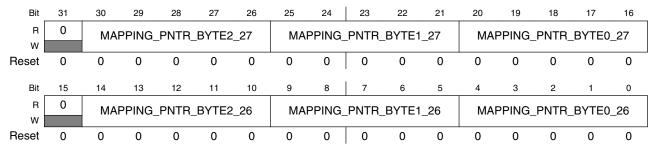


IPUx_DC_MAP_CONF_11 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 23	Mapping pointer #23 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 23	Mapping pointer #23 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 23	Mapping pointer #23 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 22	Mapping pointer #22 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 22	Mapping pointer #22 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 22	Mapping pointer #22 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.346 DC Mapping Configuration Register 12 (IPUx_DC_MAP_CONF_12)

Address: Base address + 5_8138h offset

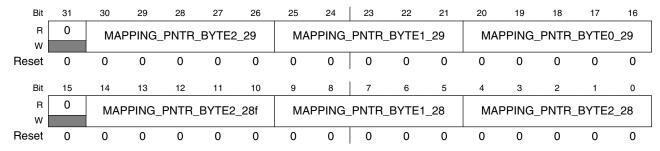


IPUx_DC_MAP_CONF_12 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 25	Mapping pointer #25 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 25	Mapping pointer #25 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 25	Mapping pointer #25 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 24	Mapping pointer #24 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 24	Mapping pointer #24 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 24	Mapping pointer #24 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.347 DC Mapping Configuration Register 13 (IPUx_DC_MAP_CONF_13)

Address: Base address + 5_813Ch offset



IPUx_DC_MAP_CONF_13 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 27	Mapping pointer #27 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 27	Mapping pointer #27 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 27	Mapping pointer #27 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 26	Mapping pointer #26 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 26	Mapping pointer #26 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE0_ 26	Mapping pointer #26 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.348 DC Mapping Configuration Register 14 (IPUx_DC_MAP_CONF_14)

Address: Base address + 5_8140h offset

IPUx_DC_MAP_CONF_14 field descriptions

Field	Description
31 Reserved	This read-only field is reserved and always has the value 0.
30–26 MAPPING_ PNTR_BYTE2_ 29	Mapping pointer #29 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
25–21 MAPPING_ PNTR_BYTE1_ 29	Mapping pointer #29 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
20–16 MAPPING_ PNTR_BYTE0_ 29	Mapping pointer #29 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>
15 Reserved	This read-only field is reserved and always has the value 0.
14–10 MAPPING_ PNTR_BYTE2_ 28f	Mapping pointer #28 for Byte 2 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #2</i></i>
9–5 MAPPING_ PNTR_BYTE1_ 28	Mapping pointer #28 for Byte 1 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #1</i></i>
MAPPING_ PNTR_BYTE2_ 28	Mapping pointer #28 for Byte 0 This field is a pointer to the set of MD_OFFSET_ <i> and MD_MASK_<i> used for mapping byte #0</i></i>

37.5.349 DC Mapping Configuration Register 15 (IPUx_DC_MAP_CONF_15)

Address: Base address + 5_8144h offset

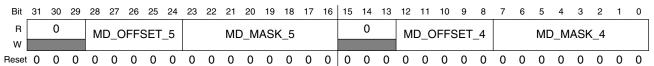
IPUx_DC_MAP_CONF_15 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24	Mapping unit's offset parameter #1
MD_OFFSET_1	This field defines the offset parameter #1 within the 24bit word coming from the DC.
23–16	Mapping unit's mask value #1
MD_MASK_1	This field defines the mask value #1 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_0	Mapping unit's offset parameter #0
	This field defines the offset parameter #0 within the 24bit word coming from the DC.
MD_MASK_0	Mapping unit's mask value #0
	This field defines the mask value #0 within the 8bit word coming from the DC.

37.5.350 DC Mapping Configuration Register 16 (IPUx_DC_MAP_CONF_16)

Address: Base address + 5_8148h offset

IPUx_DC_MAP_CONF_16 field descriptions

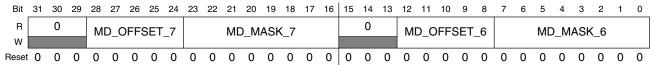

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
MD OFFCET A	Mapping unit's offset parameter #3 This field defines the offset parameter #3 within the 24bit word coming from the DC.

IPUx_DC_MAP_CONF_16 field descriptions (continued)

Field	Description
23-16 MD_MASK_3	Mapping unit's mask value #3
	This field defines the mask value #3 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_2	Mapping unit's offset parameter #2
	This field defines the offset parameter #2 within the 24bit word coming from the DC.
MD_MASK_0	Mapping unit's mask value #2
	This field defines the mask value #2 within the 8bit word coming from the DC.

37.5.351 DC Mapping Configuration Register 17 (IPUx_DC_MAP_CONF_17)

Address: Base address + 5_814Ch offset



IPUx_DC_MAP_CONF_17 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24 MD_OFFSET_5	Mapping unit's offset parameter #5
	This field defines the offset parameter #5 within the 24bit word coming from the DC.
23-16 MD_MASK_5	Mapping unit's mask value #5
	This field defines the mask value #5 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_4	Mapping unit's offset parameter #4
	This field defines the offset parameter #4 within the 24bit word coming from the DC.
MD_MASK_4	Mapping unit's mask value #4
	This field defines the mask value #4 within the 8bit word coming from the DC.

37.5.352 DC Mapping Configuration Register 18 (IPUx_DC_MAP_CONF_18)

Address: Base address + 5_8150h offset

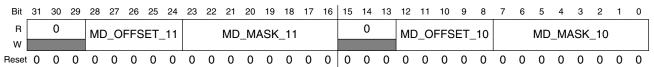
IPUx_DC_MAP_CONF_18 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24 MD_OFFSET_7	Mapping unit's offset parameter #7
	This field defines the offset parameter #7 within the 24bit word coming from the DC.
23-16 MD_MASK_7	Mapping unit's mask value #7
	This field defines the mask value #7 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_6	Mapping unit's offset parameter #6
	This field defines the offset parameter #6 within the 24bit word coming from the DC.
MD_MASK_6	Mapping unit's mask value #6
	This field defines the mask value #6 within the 8bit word coming from the DC.

37.5.353 DC Mapping Configuration Register 19 (IPUx_DC_MAP_CONF_19)

Address: Base address + 5_8154h offset

IPUx_DC_MAP_CONF_19 field descriptions

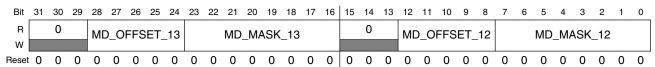

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
MD OFFCET O	Mapping unit's offset parameter #9 This field defines the offset parameter #9 within the 24bit word coming from the DC.

IPUx_DC_MAP_CONF_19 field descriptions (continued)

Field	Description
23-16 MD_MASK_9	Mapping unit's mask value #9
	This field defines the mask value #9 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_8	Mapping unit's offset parameter #8
	This field defines the offset parameter #8 within the 24bit word coming from the DC.
MD_MASK_8	Mapping unit's mask value #8
	This field defines the mask value #8 within the 8bit word coming from the DC.

37.5.354 DC Mapping Configuration Register 20 (IPUx_DC_MAP_CONF_20)

Address: Base address + 5_8158h offset



IPUx_DC_MAP_CONF_20 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24 MD_OFFSET_11	Mapping unit's offset parameter #11
	This field defines the offset parameter #11 within the 24bit word coming from the DC.
23-16 MD_MASK_11	Mapping unit's mask value #11
	This field defines the mask value #11 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_10	Mapping unit's offset parameter #10
	This field defines the offset parameter #10 within the 24bit word coming from the DC.
MD_MASK_10	Mapping unit's mask value #10
	This field defines the mask value #10 within the 8bit word coming from the DC.

37.5.355 DC Mapping Configuration Register 21 (IPUx_DC_MAP_CONF_21)

Address: Base address + 5_815Ch offset

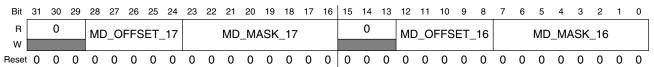
IPUx_DC_MAP_CONF_21 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24 MD_OFFSET_13	Mapping unit's offset parameter #13
	This field defines the offset parameter #13 within the 24bit word coming from the DC.
23-16 MD_MASK_13	Mapping unit's mask value #13
	This field defines the mask value #13 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_12	Mapping unit's offset parameter #12
	This field defines the offset parameter #12 within the 24bit word coming from the DC.
MD_MASK_12	Mapping unit's mask value #12
	This field defines the mask value #12 within the 8bit word coming from the DC.

37.5.356 DC Mapping Configuration Register 22 (IPUx_DC_MAP_CONF_22)

Address: Base address + 5_8160h offset

IPUx_DC_MAP_CONF_22 field descriptions

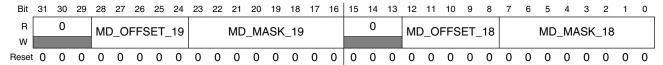

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	Mapping unit's offset parameter #15 This field defines the offset parameter #15 within the 24bit word coming from the DC.

IPUx_DC_MAP_CONF_22 field descriptions (continued)

Field	Description
23–16	Mapping unit's mask value #15
MD_MASK_15	This field defines the mask value #15 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_14	Mapping unit's offset parameter #14
	This field defines the offset parameter #14 within the 24bit word coming from the DC.
MD_MASK_14	Mapping unit's mask value #14
	This field defines the mask value #14 within the 8bit word coming from the DC.

37.5.357 DC Mapping Configuration Register 23 (IPUx_DC_MAP_CONF_23)

Address: Base address + 5_8164h offset



IPUx_DC_MAP_CONF_23 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24	Mapping unit's offset parameter #17
MD_OFFSET_17	This field defines the offset parameter #17 within the 24bit word coming from the DC.
23–16	Mapping unit's mask value #17
MD_MASK_17	This field defines the mask value #17 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_16	Mapping unit's offset parameter #16
	This field defines the offset parameter #16 within the 24bit word coming from the DC.
MD_MASK_16	Mapping unit's mask value #16
	This field defines the mask value #16 within the 8bit word coming from the DC.

37.5.358 DC Mapping Configuration Register 24 (IPUx_DC_MAP_CONF_24)

Address: Base address + 5_8168h offset

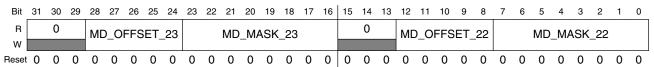
IPUx_DC_MAP_CONF_24 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24	Mapping unit's offset parameter #19
MD_OFFSET_19	This field defines the offset parameter #19 within the 24bit word coming from the DC.
23–16	Mapping unit's mask value #19
MD_MASK_19	This field defines the mask value #19 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_18	Mapping unit's offset parameter #18
	This field defines the offset parameter #18 within the 24bit word coming from the DC.
MD_MASK_18	Mapping unit's mask value #18
	This field defines the mask value #18 within the 8bit word coming from the DC.

37.5.359 DC Mapping Configuration Register 25 (IPUx_DC_MAP_CONF_25)

Address: Base address + 5_816Ch offset

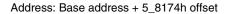
IPUx_DC_MAP_CONF_25 field descriptions


Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
MD OFFCET 01	Mapping unit's offset parameter #21 This field defines the offset parameter #21 within the 24bit word coming from the DC.

IPUx_DC_MAP_CONF_25 field descriptions (continued)

Field	Description
23–16	Mapping unit's mask value #21
MD_MASK_21	This field defines the mask value #21 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8 MD_OFFSET_20	Mapping unit's offset parameter #20
	This field defines the offset parameter #20 within the 24bit word coming from the DC.
MD_MASK_20	Mapping unit's mask value #20
	This field defines the mask value #20 within the 8bit word coming from the DC.

37.5.360 DC Mapping Configuration Register 26 (IPUx_DC_MAP_CONF_26)


Address: Base address + 5_8170h offset



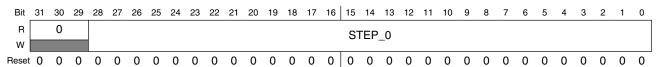
IPUx_DC_MAP_CONF_26 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–24	Mapping unit's offset parameter #23
MD_OFFSET_23	This field defines the offset parameter #23 within the 24bit word coming from the DC.
23–16	Mapping unit's mask value #23
MD_MASK_23	This field defines the mask value #23 within the 8bit word coming from the DC.
15–13 Reserved	This read-only field is reserved and always has the value 0.
12–8	Mapping unit's offset parameter #22
MD_OFFSET_22	This field defines the offset parameter #22 within the 24bit word coming from the DC.
MD_MASK_22	Mapping unit's mask value #22
	This field defines the mask value #22 within the 8bit word coming from the DC.

37.5.361 DC User General Data Event 0 Register 0 (IPUx_DC_UGDE0_0)

IPUx_DC_UGDE0_0 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–27 NF_NL_0	the user may attach his general event #0 to New-line New-Frame and New-field events. One of these event triggers the user's general event #0's counter. The actual internal trigger is the pixel following the occurrence of the selected event. ON New Line New Frame New Frame
26	11 Reserved User's general event #0 auto restart mode
AUTORESTART_	0 disable
0	1 User's general event #0's counter is automatically restarted.
25 ODD_EN_0	The user's general event #0 may be split into 2 internal signals. One one mode all the events are sent on one signal, on the second mode odd events are sent over one signal while even events are sent over the other signal (ODD_MODE) 1 ODD_MODE is enabled 0 ODD_MODE is disabled
24 Reserved	This read-only field is reserved and always has the value 0.
23–16 COD_ODD_ START_0	This field holds a pointer in the microcode holding the routine to be performed following the user general event #0. When ODD_MODE is enabled, only the odd events will use this pointer

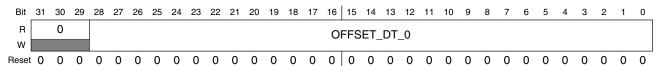

Chapter 37 Image Processing Unit (IPU)

IPUx_DC_UGDE0_0 field descriptions (continued)

Field	Description
	When ODD_MODE is disabled this field is ignored
15–8 COD_EV_	This field holds a pointer in the microcode holding the routine to be performed following the user general event #0. When ODD_MODE is enabled, only the even events will use this pointer
START_0	When ODD_MODE is disabled, all the events will use this pointer
7 Reserved	This read-only field is reserved and always has the value 0.
6–3	This field defines the priority of the user general event #0
COD_EV_ PRIORITY_0	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved
ID_CODED_0	This field defines the number of DC channel number that user's general event #0 will be associated to.
	000 DC channel_0
	001 DC channel_1
	010 DC channel_2
	011 DC channel_5 (DP_SYNC)
	100 DC channel_6 (DP ASYNC)
	101 Reserved
	110 Reserved.
	111 Reserved.

37.5.362 DC User General Data Event 0 Register 1 (IPUx_DC_UGDE0_1)

Address: Base address + 5_8178h offset


IPUx_DC_UGDE0_1 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
STEP_0	This field holds the pre defined value that the counter counts too.

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

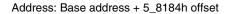
37.5.363 DC User General Data Event 0 Register2 (IPUx_DC_UGDE0_2)

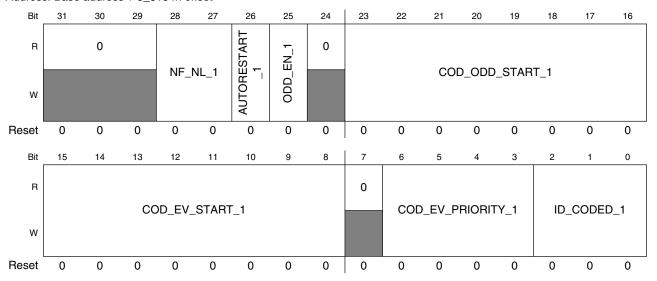
Address: Base address + 5_817Ch offset

IPUx_DC_UGDE0_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
OFFSET_DT_0	This field defines the offset value from which the counter of user general event #0 will start counting from

37.5.364 DC User General Data Event 0 Register 3 (IPUx_DC_UGDE0_3)


Address: Base address + 5_8180h offset



IPUx_DC_UGDE0_3 field descriptions

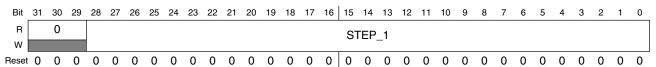
Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	When auto reload mode is disabled this field defines the number of events that will be generated by the user general event #0 mechanism

37.5.365 DC User General Data Event 1Register0 (IPUx_DC_UGDE1_0)

IPUx_DC_UGDE1_0 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–27 NF_NL_1	the user may attach his general event #1 to New-line New-Frame and New-field events. One of these event triggers the user's general event #1's counter. The actual internal trigger is the pixel following the occurrence of the selected event. ON New Line New Frame New Field
	11 Reserved
26 AUTORESTART_ 1	User's general event #1 auto restart mode 0 disable 1 User's general event #1's counter is automatically restarted.
25 ODD_EN_1	The user's general event #1 may be split into 2 internal signals. One one mode all the events are sent on one signal, on the second mode odd events are sent over one signal while even events are sent over the other signal (ODD_MODE) 1 ODD_MODE is enabled 0 ODD_MODE is disabled
24 Reserved	This read-only field is reserved and always has the value 0.
23–16 COD_ODD_ START_1	This field holds a pointer in the microcode holding the routine to be performed following the user general event #1. When ODD_MODE is enabled, only the odd events will use this pointer

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_UGDE1_0 field descriptions (continued)

Field	Description
	When ODD_MODE is disabled this field is ignored
15–8 COD_EV_	This field holds a pointer in the microcode holding the routine to be performed following the user general event #1. When ODD_MODE is enabled, only the even events will use this pointer
START_1	When ODD_MODE is disabled, all the events will use this pointer
7 Reserved	This read-only field is reserved and always has the value 0.
6–3	This field defines the priority of the user general event #1
COD_EV_ PRIORITY_1	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved
ID_CODED_1	This field defines the number of DC channel number that user's general event #1 will be associated to
	000 DC channel_0
	001 DC channel_1
	010 DC channel_2
	011 DC channel_5 (DP_SYNC)
	100 DC channel_6 (DP ASYNC)
	101 Reserved
	110 Reserved
	111 Reserved

37.5.366 DC User General Data Event 1 Register 1 (IPUx_DC_UGDE1_1)

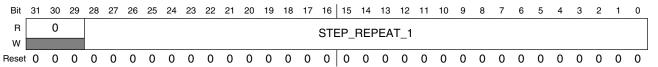
Address: Base address + 5_8188h offset

IPUx_DC_UGDE1_1 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
STEP_1	This field hold the pre defined value that the counter counts too

37.5.367 DC User General Data Event 1Register 2 (IPUx_DC_UGDE1_2)

Address: Base address + 5_818Ch offset

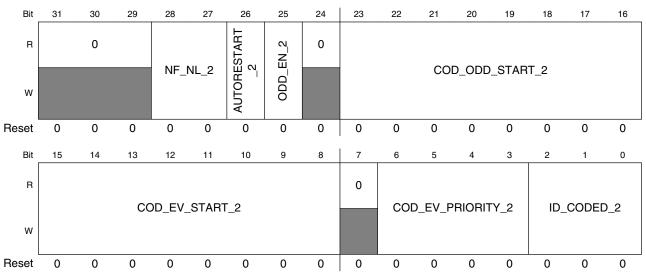


IPUx_DC_UGDE1_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
OFFSET_DT_1	This field defines the offset value from which the counter of user general event #1 will start counting from

37.5.368 DC User General Data Event 1Register 3 (IPUx_DC_UGDE1_3)


Address: Base address + 5_8190h offset



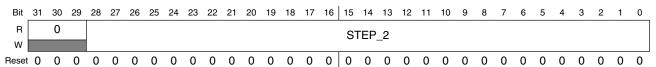
IPUx_DC_UGDE1_3 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	When auto reload mode is disabled this field defines the number of events that will be generated by the user general event #1 mechanism

37.5.369 DC User General Data Event 2 Register 0 (IPUx_DC_UGDE2_0)

IPUx_DC_UGDE2_0 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–27 NF_NL_2	the user may attach his general event #2 to New-line New-Frame and New-field events. One of these event triggers the user's general event #2's counter. The actual internal trigger is the pixel following the occurrence of the selected event. ON New Line New Frame New Field
	11 Reserved
26 AUTORESTART_ 2	User's general event #2 auto restart mode 0 disable 1 User's general event #2's counter is automatically restarted.
25 ODD_EN_2	The user's general event #2 may be split into 2 internal signals. One one mode all the events are sent on one signal, on the second mode odd events are sent over one signal while even events are sent over the other signal (ODD_MODE) 1 ODD_MODE is enabled 0 ODD_MODE is disabled
24 Reserved	This read-only field is reserved and always has the value 0.
23-16 COD_ODD_ START_2	This field holds a pointer in the microcode holding the routine to be performed following the user general event #2 When ODD_MODE is enabled, only the odd events will use this pointer

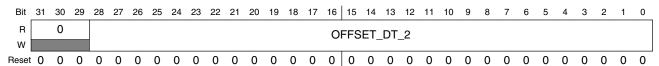

Chapter 37 Image Processing Unit (IPU)

IPUx_DC_UGDE2_0 field descriptions (continued)

Field	Description
	When ODD_MODE is disabled this field is ignored
15–8 COD_EV_	This field holds a pointer in the microcode holding the routine to be performed following the user general event #2. When ODD_MODE is enabled, only the even events will use this pointer
START_2	When ODD_MODE is disabled, all the events will use this pointer
7 Reserved	This read-only field is reserved and always has the value 0.
6–3	This field defines the priority of the user general event #2
COD_EV_ PRIORITY_2	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0000 disable
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved
ID_CODED_2	This field defines the number of DC channel number that user's general event #2 will be associated to
	000 DC channel_0
	001 DC channel_1
	010 DC channel_2
	011 DC channel_5 (DP_SYNC)
	100 DC channel_6 (DP ASYNC)
	101 Reserved
	110 Reserved
	111 Reserved

37.5.370 DC User General Data Event 2 Register 1 (IPUx_DC_UGDE2_1)

Address: Base address + 5_8198h offset



IPUx_DC_UGDE2_1 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
STEP_2	This field hold the pre defined value that the counter counts too

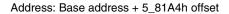
37.5.371 DC User General Data Event 2Register 2 (IPUx_DC_UGDE2_2)

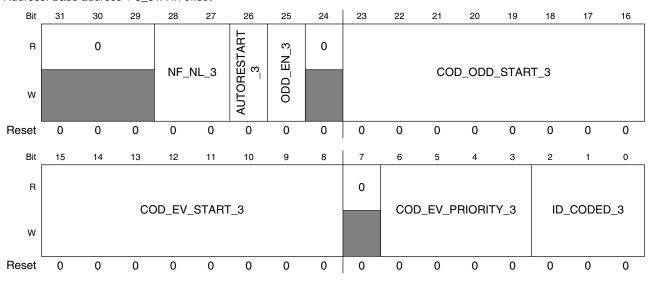
Address: Base address + 5_819Ch offset

IPUx_DC_UGDE2_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
OFFSET_DT_2	This field defines the offset value from which the counter of user general event #2 will start counting from

37.5.372 DC User General Data Event 2Register 3 (IPUx_DC_UGDE2_3)


Address: Base address + 5_81A0h offset



IPUx_DC_UGDE2_3 field descriptions

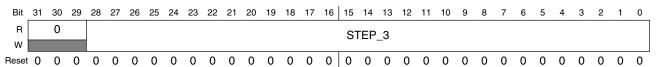
Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	When auto reload mode is disabled this field defines the number of events that will be generated by the user general event #2 mechanism

37.5.373 DC User General Data Event 3Register 0 (IPUx_DC_UGDE3_0)

IPUx_DC_UGDE3_0 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–27 NF_NL_3	the user may attach his general event #3 to New-line New-Frame and New-field events. One of these event triggers the user's general event #3's counter. The actual internal trigger is the pixel following the occurrence of the selected event. ON New Line ON New Frame ON New Field
	11 Reserved
26 AUTORESTART_ 3	User's general event #3 auto restart mode 0 disable 1 User's general event #3's counter is automatically restarted.
25 ODD_EN_3	The user's general event #3 may be split into 2 internal signals. One one mode all the events are sent on one signal, on the second mode odd events are sent over one signal while even events are sent over the other signal (ODD_MODE) 1 ODD_MODE is enabled 0 ODD_MODE is disabled
24 Reserved	This read-only field is reserved and always has the value 0.
23–16 COD_ODD_ START_3	This field holds a pointer in the microcode holding the routine to be performed following the user general event #3. When ODD_MODE is enabled, only the odd events will use this pointer

Table continues on the next page...

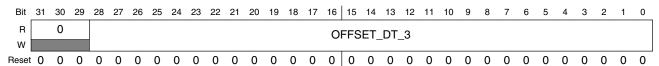

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_UGDE3_0 field descriptions (continued)

Field	Description
	When ODD_MODE is disabled this field is ignored
15–8 COD_EV_	This field holds a pointer in the microcode holding the routine to be performed following the user general event #3. When ODD_MODE is enabled, only the even events will use this pointer
START_3	When ODD_MODE is disabled, all the events will use this pointer
7 Reserved	This read-only field is reserved and always has the value 0.
6–3	This field defines the priority of the user general event #3
COD_EV_ PRIORITY_3	0000 disable
	The priority between the events should be set to a unique value. i.e. two events must not have the same priority (except 0000 - disable)
	0001 Priority #1 (lowest)
	0010 Priority #2
	1101 Priority #13 (highest)
	1110 Reserved
	1111 Reserved
ID_CODED_3	This field defines the number of DC channel number that user's general event #3 will be associated to
	000 DC channel_0
	001 DC channel_1
	010 DC channel_2
	011 DC channel_5 (DP_SYNC)
	100 DC channel_6 (DP ASYNC)
	101 Reserved
	110 Reserved
	111 Reserved.

37.5.374 DC User General Data Event 3Register 1 (IPUx_DC_UGDE3_1)

Address: Base address + 5_81A8h offset



IPUx_DC_UGDE3_1 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
STEP_3	This field hold the pre defined value that the counter counts too

37.5.375 DC User General Data Event 3Register 2 (IPUx_DC_UGDE3_2)

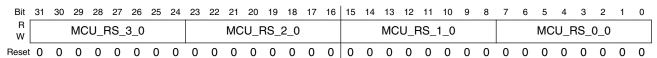
Address: Base address + 5_81ACh offset

IPUx_DC_UGDE3_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
OFFSET_DT_3	This field defines the offset value from which the counter of user general event #3 will start counting from

37.5.376 DC User General Data Event 3Register 2 (IPUx_DC_UGDE3_3)

Address: Base address + 5_81B0h offset



IPUx_DC_UGDE3_3 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
	When auto reload mode is disabled this field defines the number of events that will be generated by the user general event #3 mechanism

37.5.377 DC Low Level Access Control Register 0 (IPUx_DC_LLA0)

Address: Base address + 5_81B4h offset

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DC_LLA0 field descriptions

Field	Description
31-24 MCU_RS_3_0	This field holds a pointer in the microcode handling the RS_3 routine for the display defined at DISP_ID_8, when in Low level access mode,
23-16 MCU_RS_2_0	This field holds a pointer in the microcode handling the RS_2 routine for the display defined at DISP_ID_8, when in Low level access mode,
15-8 MCU_RS_1_0	This field holds a pointer in the microcode handling the RS_1 routine for the display defined at DISP_ID_8, when in Low level access mode,
MCU_RS_0_0	This field holds a pointer in the microcode handling the RS_0 routine for the display defined at DISP_ID_8, when in Low level access mode,

37.5.378 DC Low Level Access Control Register 1 (IPUx_DC_LLA1)

Address: Base address + 5_81B8h offset

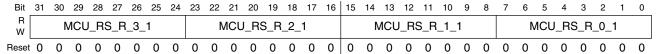
Bit 31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W MCU_RS_3_1				MCU_RS_2_1							MCU_RS_1_1								MCU_RS_0_1												
Reset 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_DC_LLA1 field descriptions

Field	Description
31-24 MCU_RS_3_1	This field holds a pointer in the microcode handling the RS_3 routine for the display defined at DISP_ID_9, when in Low level access mode,
23-16 MCU_RS_2_1	This field holds a pointer in the microcode handling the RS_2 routine for the display defined at DISP_ID_9, when in Low level access mode,
15-8 MCU_RS_1_1	This field holds a pointer in the microcode handling the RS_1 routine for the display defined at DISP_ID_9, when in Low level access mode,
MCU_RS_0_1	This field holds a pointer in the microcode handling the RS_0 routine for the display defined at DISP_ID_9, when in Low level access mode,

37.5.379 DC Read Low Level Read Access Control Register 0 (IPUx_DC_R_LLA0)

Address: Base address + 5_81BCh offset

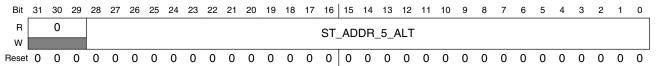

Bit 3	1 3	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R 🗆	I MICH DC 3 A					MCU RS 2 0								MCU RS R 1 0									MCU RS R 0 0									
w L	W MCO_H3_3_0							IVIC	<u></u> i	10_4	0				- 1	100		J_1 1	_'_				- 10	100	_' '							
Reset () (0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

IPUx_DC_R_LLA0 field descriptions

Field	Description
31-24 MCU_RS_3_0	This field holds a pointer in the microcode handling the RS_3 routine for the display defined at DISP_ID_8, when in Read Low level access mode,
23-16 MCU_RS_2_0	This field holds a pointer in the microcode handling the RS_2 routine for the display defined at DISP_ID_8, when in Read Low level access mode,
15-8 MCU_RS_R_1_0	This field holds a pointer in the microcode handling the RS_1 routine for the display defined at DISP_ID_8, when in Read Low level access mode,
MCU_RS_R_0_0	This field holds a pointer in the microcode handling the RS_0 routine for the display defined at DISP_ID_8, when in Read Low level access mode,

37.5.380 DC Read Low Level Read Access Control Register1 (IPUx_DC_R_LLA1)

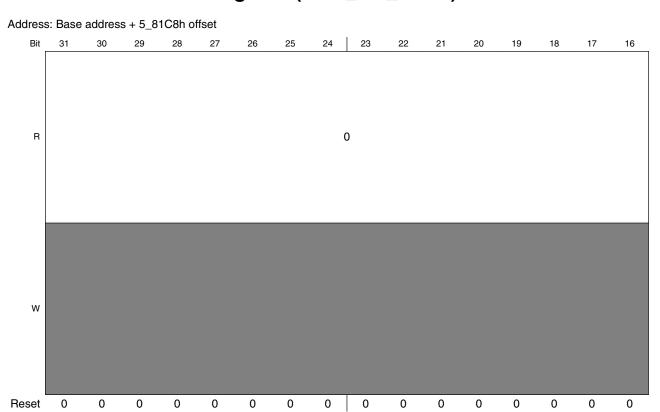
Address: Base address + 5_81C0h offset

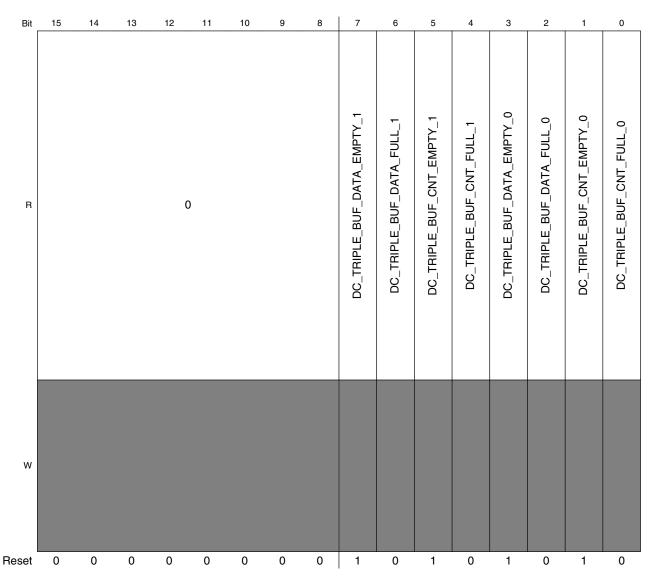


IPUx_DC_R_LLA1 field descriptions

Field	Description
31-24 MCU_RS_R_3_1	This field holds a pointer in the microcode handling the RS_3 routine for the display defined at DISP_ID_9, when in Read Low level access mode,
23-16 MCU_RS_R_2_1	This field holds a pointer in the microcode handling the RS_2 routine for the display defined at DISP_ID_9, when in Read Low level access mode,
15-8 MCU_RS_R_1_1	This field holds a pointer in the microcode handling the RS_1 routine for the display defined at DISP_ID_9, when in Read Low level access mode,
MCU_RS_R_0_1	This field holds a pointer in the microcode handling the RS_0 routine for the display defined at DISP_ID_9, when in Read Low level access mode,

37.5.381 DC Write Channel 5 Configuration Register (IPUx_DC_WR_CH_ADDR_5_ALT)


Address: Base address + 5_81C4h offset

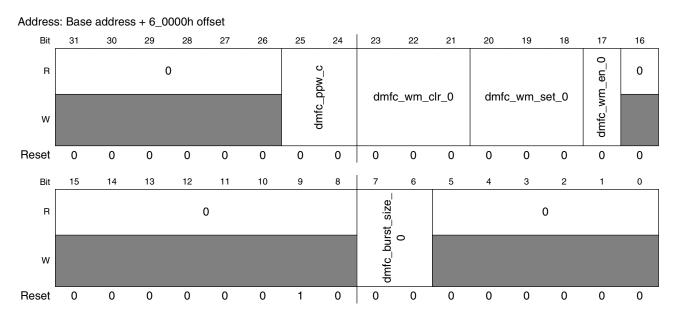


IPUx_DC_WR_CH_ADDR_5_ALT field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
ST_ADDR_5_ ALT	This field defines the start address within the display's memory space where the write transactions will be done to for channel #5, when alternate flow is performed via channel #5

37.5.382 DC Status Register (IPUx_DC_STAT)

IPUx_DC_STAT field descriptions


Field	Description
31–8 Reserved	This read-only field is reserved and always has the value 0.
7 DC_TRIPLE_ BUF_DATA_ EMPTY_1	This bit indicates a FIFO full state on the DC FIFO accessing DI1 when write to the display flow is used
6 DC_TRIPLE_ BUF_DATA_ FULL_1	This bit indicates a FIFO empty state on the DC FIFO accessing DI1 when read from the display flow is used

Chapter 37 Image Processing Unit (IPU)

IPUx_DC_STAT field descriptions (continued)

Field	Description
5 DC_TRIPLE_ BUF_CNT_ EMPTY_1	This bit indicates a FIFO empty state on the DC FIFO accessing DI1 when write to the display flow is used
4 DC_TRIPLE_ BUF_CNT_ FULL_1	This bit indicates a FIFO full state on the DC FIFO accessing DI1 when write to the display flow is used
3 DC_TRIPLE_ BUF_DATA_ EMPTY_0	This bit indicates a FIFO empty state on the DC FIFO accessing DI0 when read from the display flow is used
2 DC_TRIPLE_ BUF_DATA_ FULL_0	This bit indicates a FIFO full state on the DC FIFO accessing DI0 when read from the display flow is used
1 DC_TRIPLE_ BUF_CNT_ EMPTY_0	This bit indicates a FIFO empty state on the DC FIFO accessing DI0 when write to the display flow is used
0 DC_TRIPLE_ BUF_CNT_ FULL_0	This bit indicates a FIFO full state on the DC FIFO accessing DI0 when write to the display flow is used

37.5.383 DMFC Read Channel Register (IPUx_DMFC_RD_CHAN)

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DMFC_RD_CHAN field descriptions

Field	Description												
31–26 Reserved	This read-only field is reserved and always has the value 0.												
25–24	Pixel Per Word coded.												
dmfc_ppw_c	This field defines the size of the read data from the display.												
	00 8 bit per pixel												
	01 16 bit per pixel												
	10 24 (rgb) bit per pixel or 32 bit per pixel												
	11 Reserved												
23–21	Watermark Clear												
dmfc_wm_clr_0	This field defines the watermark's level of the DMFC read FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of free bursts at the FIFO (dmfc_wm_clr_0 > dmfc_wm_set_0)												
20–18	Watermark Set												
dmfc_wm_set_0	This field defines the watermark's level of the DMFC read FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of free bursts at the FIFO (dmfc_wm_clr_0 > dmfc_wm_set_0)												
17	Watermark enable.												
dmfc_wm_en_0	This bit enables the watermark feature of the FIFO												
	1 WM feature is enabled												
	0 WM feature is disabled												
16–8 Reserved	This read-only field is reserved and always has the value 0.												
7–6	Read burst Size												
dmfc_burst_size_ 0	This field defines the burst size of the DMFC's read accesses. This settings must match the settings in the corresponding IDMAC channel's settings.												
	00 32 words of 128 bit (4 pixels of 32 bit each, going to the IDMAC)												
	01 16 words of 128 bit												
	10 8 words of 128 bit												
	11 4 words of 128 bit												
Reserved	This read-only field is reserved and always has the value 0.												

37.5.384 DMFC Write Channel Register (IPUx_DMFC_WR_CHAN)

Address: Base address + 6_0004h offset

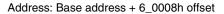
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R W	dmfc_ size	burst_ e_2c	dmfc_	_fifo_siz	ze_2c	dmfc	_st_ado	dr_2c	dmfc_ size	burst_ e_1c	dmfc_	_fifo_siz	ze_1c	dmfc	_st_ado	dr_1c
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	4	0
ы	15	14	13	12	11	10	9	0	/	О	5	4	3	2	1	U
R W	dmfc_ size	burst_ e_2	dmfc	_fifo_si	ze_2	dmfd	_st_ad	dr_2	dmfc_ size		dmfc	_fifo_si	ze_1	dmfc	_st_ad	dr_1
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

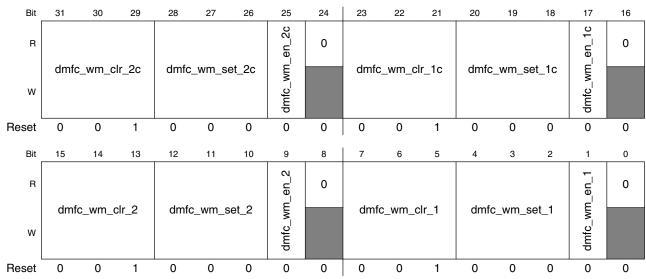
IPUx_DMFC_WR_CHAN field descriptions

Field	Description								
31–30	Burst size of IDMAC's channel 43								
dmfc_burst_size_ 2c	This field defines the burst size of the IDMAC's channel 43 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.								
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)								
	01 16 words of 128 bit								
	10 8 words of 128 bit								
	11 4 words of 128 bit								
29–27	DMFC FIFO size for IDMAC's channel 43								
dmfc_fifo_size_ 2c	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 43								
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel								
	001 256X128 words are allocated to this channel								
	010 128X128 words are allocated to this channel								
	011 64X128 words are allocated to this channel								
	100 32X128 words are allocated to this channel								
	101 16X128 words are allocated to this channel								
	110 8X128 words are allocated to this channel								
	111 4X128 words are allocated to this channel								
26–24	DMFC Start Address for IDMAC's channel 43								
dmfc_st_addr_2c	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 43. The FIFO is partitioned to 8 equal segments.								
	Each segment is 64X128 words								
	The value of this field is the number of the segment								
	000 Segment 0								
	001 Segment 1								
	111 Segment 7								
23–22	Burst size of IDMAC's channel 42								
dmfc_burst_size_ 1c	This field defines the burst size of the IDMAC's channel 42 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.								
	-								

Table continues on the next page...

i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014


IPUx_DMFC_WR_CHAN field descriptions (continued)


Field	Description
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
21–19	DMFC FIFO size for IDMAC's channel 42
dmfc_fifo_size_ 1c	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 42
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
18–16	DMFC Start Address for IDMAC's channel 42
dmfc_st_addr_1c	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 42. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7
15–14	Burst size of IDMAC's channel 41
dmfc_burst_size_ 2	This field defines the burst size of the IDMAC's channel 41 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
13–11	DMFC FIFO size for IDMAC's channel 41
dmfc_fifo_size_2	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 41
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
10–8	DMFC Start Address for IDMAC's channel 41
dmfc_st_addr_2	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 41. The FIFO is partitioned to 8 equal segments.

IPUx_DMFC_WR_CHAN field descriptions (continued)

Field	Description
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7
7–6	Burst size of IDMAC's channel 28
dmfc_burst_size_	
1	This field defines the burst size of the IDMAC's channel 28 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 1hbit
5–3	DMFC FIFO size for IDMAC's channel 28
dmfc_fifo_size_1	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 28
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
dmfc_st_addr_1	DMFC Start Address for IDMAC's channel 28
	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 28. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7

37.5.385 DMFC Write Channel Definition Register (IPUx_DMFC_WR_CHAN_DEF)

IPUx_DMFC_WR_CHAN_DEF field descriptions

Field	Description							
31–29	Watermark Clear							
dmfc_wm_clr_2c	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)							
28–26	Watermark Set							
dmfc_wm_set_2c	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set							
25	Watermark enable.							
dmfc_wm_en_2c	This bit enables the watermark feature of the FIFO							
	1 WM feature is enabled							
	0 WM feature is disabled							
24 Reserved	This read-only field is reserved and always has the value 0.							
23–21	Watermark Clear							
dmfc_wm_clr_1c	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)							
20–18	Watermark Set							
dmfc_wm_set_1c								

IPUx_DMFC_WR_CHAN_DEF field descriptions (continued)

Field	Description								
	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set								
17	Watermark enable.								
dmfc_wm_en_1c	This bit enables the watermark feature of the FIFO								
	WM feature is enabled WM feature is disabled								
16 Reserved	This read-only field is reserved and always has the value 0.								
15–13	Watermark Clear								
dmfc_wm_clr_2	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)								
12–10	Watermark Set								
dmfc_wm_set_2	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set								
9	Watermark enable.								
dmfc_wm_en_2	This bit enables the watermark feature of the FIFO								
	1 WM feature is enabled								
	0 WM feature is disabled								
8 Reserved	This read-only field is reserved and always has the value 0.								
7–5	Watermark Clear								
dmfc_wm_clr_1	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)								
4–2	Watermark Set								
dmfc_wm_set_1	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set								
1	Watermark enable.								
dmfc_wm_en_1	This bit enables the watermark feature of the FIFO								
	1 WM feature is enabled								
	0 WM feature is disabled								
0 Reserved	This read-only field is reserved and always has the value 0.								

37.5.386 DMFC Display Processor Channel Register (IPUx_DMFC_DP_CHAN)

Address: Base address + 6_000Ch offset

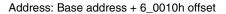
Bit	31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
R W	dmfc_ size	burst_ e_6f	dmfc	_fifo_si	ze_6f	dmfc	_st_ado	dr_6f	dmfc_ size	burst_ _6b	dmfc_	_fifo_siz	:e_6b	dmfc	_st_adc	lr_6b
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
R W	dmfc_ size	burst_ e_5f	dmfc	_fifo_si	ze_5f	dmfc	_st_ado	dr_5f	dmfc_ size	burst_ _5b	dmfc_	_fifo_siz	:e_5b	dmfc	_st_adc	lr_5b
Reset	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

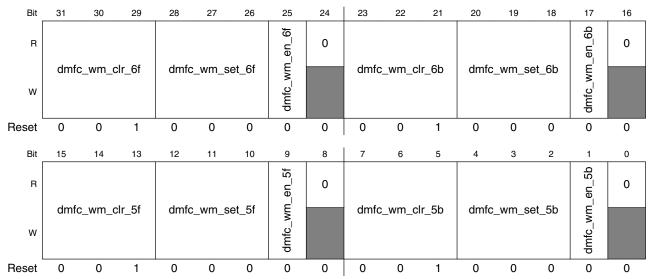
IPUx_DMFC_DP_CHAN field descriptions

Field	Description								
31–30	Burst size of IDMAC's channel 29								
dmfc_burst_size_ 6f	This field defines the burst size of the IDMAC's channel 29 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.								
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC) 01 16 words of 128 bit								
	10 8 words of 128 bit								
	11 4 words of 128 bit								
29–27	DMFC FIFO size for IDMAC's channel 29								
dmfc_fifo_size_6f	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 29								
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel								
	001 256X128 words are allocated to this channel								
	010 128X128 words are allocated to this channel								
	011 64X128 words are allocated to this channel								
	100 32X128 words are allocated to this channel								
	101 16X128 words are allocated to this channel								
	110 8X128 words are allocated to this channel								
	111 4X128 words are allocated to this channel								
26–24	DMFC Start Address for IDMAC's channel 29								
dmfc_st_addr_6f	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 29. The FIFO is partitioned to 8 equal segments.								
	Each segment is 64X128 words								
	The value of this field is the number of the segment								
	000 Segment 0								
	001 Segment 1								
	111 Segment 7								

IPUx_DMFC_DP_CHAN field descriptions (continued)

Field	Description
23–22	Burst size of IDMAC's channel 24
dmfc_burst_size_ 6b	This field defines the burst size of the IDMAC's channel 24 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
21–19	DMFC FIFO size for IDMAC's channel 24
dmfc_fifo_size_ 6b	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 24
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel 011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
18–16	DMFC Start Address for IDMAC's channel 24
dmfc_st_addr_6b	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 24. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7
15–14	Burst size of IDMAC's channel 27
dmfc_burst_size_ 5f	This field defines the burst size of the IDMAC's channel 27 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
13–11	DMFC FIFO size for IDMAC's channel 27
dmfc_fifo_size_5f	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 27
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel 110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
	THE TAILS WOLDS ALE ALLOCATED TO THIS CHAILING

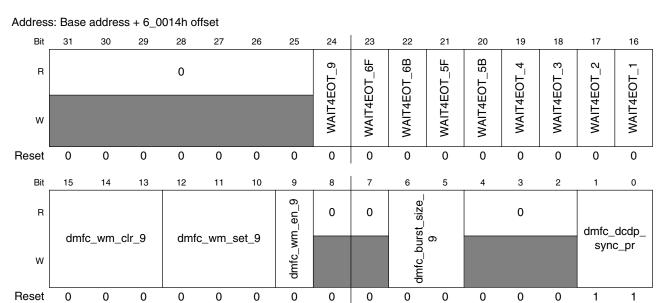

Table continues on the next page...


i.MX 6Dual/6Quad Applications Processor Reference Manual, Rev. 2, 06/2014

IPUx_DMFC_DP_CHAN field descriptions (continued)

Field	Description								
10–8	DMFC Start Address for IDMAC's channel 27								
dmfc_st_addr_5f	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 27. The FIFO is partitioned to 8 equal segments.								
	Each segment is 64X128 words								
	The value of this field is the number of the segment								
	000 Segment 0								
	001 Segment 1								
	111 Segment 7								
7–6	Burst size of IDMAC's channel 23								
dmfc_burst_size_ 5b	This field defines the burst size of the IDMAC's channel 23 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.								
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)								
	01 16 words of 128 bit								
	10 8 words of 128 bit								
	11 4 words of 128 bit								
5–3	DMFC FIFO size for IDMAC's channel 23								
dmfc_fifo_size_ 5b	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 23								
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel								
	001 256X128 words are allocated to this channel								
	010 128X128 words are allocated to this channel								
	011 64X128 words are allocated to this channel 100 32X128 words are allocated to this channel								
	101 16X128 words are allocated to this channel								
	110 8X128 words are allocated to this channel								
	111 4X128 words are allocated to this channel								
dmfc_st_addr_5b	DMFC Start Address for IDMAC's channel 23								
	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 23. The FIFO is partitioned to 8 equal segments.								
	Each segment is 64X128 words								
	The value of this field is the number of the segment								
	000 Segment 0								
	001 Segment 1								
	111 Segment 7								

37.5.387 DMFC Display Processor Channel Definition Register (IPUx_DMFC_DP_CHAN_DEF)


IPUx_DMFC_DP_CHAN_DEF field descriptions

Field	Description								
31–29	Watermark Clear								
dmfc_wm_clr_6f	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)								
28–26	Watermark Set								
dmfc_wm_set_6f	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set								
25	Watermark enable.								
dmfc_wm_en_6f	This bit enables the watermark feature of the FIFO								
	1 WM feature is enabled								
	0 WM feature is disabled								
24 Reserved	This read-only field is reserved and always has the value 0.								
23–21	Watermark Clear								
dmfc_wm_clr_6b	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)								
20–18	Watermark Set								
dmfc_wm_set_6b									

IPUx_DMFC_DP_CHAN_DEF field descriptions (continued)

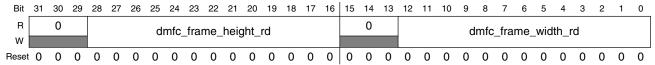
Field	Description
	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
17	Watermark enable.
dmfc_wm_en_6b	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled 0 WM feature is disabled
16 Reserved	This read-only field is reserved and always has the value 0.
15–13	Watermark Clear
dmfc_wm_clr_5f	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)
12–10	Watermark Set
dmfc_wm_set_5f	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
9	Watermark enable.
dmfc_wm_en_5f	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
8 Reserved	This read-only field is reserved and always has the value 0.
7–5	Watermark Clear
dmfc_wm_clr_5b	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)
4–2	Watermark Set
dmfc_wm_set_5b	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
1	Watermark enable.
dmfc_wm_en_5b	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
0 Reserved	This read-only field is reserved and always has the value 0.

37.5.388 DMFC General 1 Register (IPUx_DMFC_GENERAL_1)

IPUx_DMFC_GENERAL_1 field descriptions

Field	Description
31–25 Reserved	This read-only field is reserved and always has the value 0.
24 WAIT4EOT_9	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #9 is in wait4eot mode
	0 FIFO #9 is in normal mode
23 WAIT4EOT_6F	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #6F is in wait4eot mode 0 FIFO #6F is in normal mode
22 WAIT4EOT_6B	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #6B is in wait4eot mode 0 FIFO #6B is in normal mode

IPUx_DMFC_GENERAL_1 field descriptions (continued)

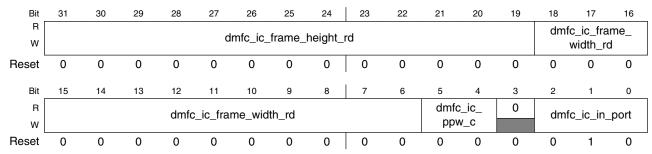

	Field	Description
When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #5F is in wait4eot mode 0 FIFO #5F is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #5B is in wait4eot mode 0 FIFO #5B is in wait4eot mode 1 In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in wait4eot mode 0 FIFO #4 is in normal mode 1 FIFO #3 is in wait4eot mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in wait4eot mode 1 FIFO #3 is in mormal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in wait4eot mode 1 FIFO #3 is in mormal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in mormal mode 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in wait4eot mode 0 FIFO #3 is in ormal mode 1 FIFO #4 is in wait4eot mode 0 FIFO #3 is in ormal mode 1 FIFO #4 is in wait4eot mode 0 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #4 is in wait4eot mode 0 FIFO #4 is in normal mode 1 FIFO #4 is in wait4eot mode 0 FIFO #4 is in normal mode 1 FIFO #4 is in normal mode 15-13 Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark s		In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
1 FIFO #5F is in wait4eot mode 2 FIFO #5F is in normal mode 3 FIFO #5F is in normal mode 4 FIFO #5F is in normal mode 5 FIFO #5F is in normal mode 6 FIFO #5F is in normal mode 8 WAIT4EOT_5 8 When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) 9 When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #5B is in wait4eot mode 0 FIFO #5B is in normal mode 8 WAIT4EOT_4 9 When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. 9 When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in wait4eot mode 0 FIFO #4 is in normal mode 1 In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. 1 When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 1 FIFO #3 is in normal mode 1 In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. 1 When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. 1 When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. 1 When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in wait4eot mode 1 FIFO #3 is in wait4eot mode 2 FIFO #1 is in wait4eot mode 3 FIFO #1 is in wait4eot mode 4 FIFO #1 is in wait4eot mode 5 FIFO #1 is in wait4eot mode 6 FIFO #1 is in wait4eot mode 7 FIFO #1 is in wait4eot mode 8 FIFO #1 is in wait4eot mode 9 FIFO #1 is in normal mode 1 FIFO #1 is in wait4eot mode 1 FIFO #1 i	WAIT4EOT_5F	
No FIFO #5F is in normal mode		When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode.		1 FIFO #5F is in wait4eot mode
When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #5B is in wait4eot mode 0 FIFO #5B is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO #3 is in wait4eot mode 1 FIFO #3 is in wait4eot mode 2 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO #3 is in wait4eot mode 1 FIFO #2 is in wait4eot mode 2 FIFO #2 is in wait4eot mode 3 FIFO #2 is in wait4eot mode 4 FIFO #2 is in wait4eot mode 5 FIFO #2 is in wait4eot mode 6 FIFO #3 is normal mode 1 FIFO #3 is in wait4eot mode 7 FIFO #3 is in wait4eot mode 8 FIFO #3 is in wait4eot mode 9 FIFO #3 is in wait4eot mode 1 FIFO #3 is in wait4eot mode 2 FIFO #3 is in mormal mode When		0 FIFO #5F is in normal mode
when this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO #5B is in wait4eot mode In formal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO #4 is in wait4eot mode FIFO #4 is in wait4eot mode In formal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO #3 is in wait4eot mode FIFO #3 is in wait4eot mode FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. FIFO #2 is in wait4eot mode FIFO #2 is in wait4eot mode FIFO #2 is in normal mode When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) FIFO #1 is in wait4eot mode FIFO #1 is in wait4eot mode FIFO #1 is in wait4eot mode FIFO #1 is in in ormal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr	_	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
19 WAIT4EOT_4 In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in normal mode In normal operation the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr	WAIT4EOT_3B	
19 WAIT4EOT_4 When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) FIFO #1 is in wait4eot mode 0 FIFO #1 is in wait4eot mode 1 FIFO #1 is in mormal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends request only after the current transfer is terminated, (wait4eot mode) When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		1 FIFO #5B is in wait4eot mode
When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode		
when the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #4 is in wait4eot mode 0 FIFO #4 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) In normal operation the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) If FIFO #1 is in wait4eot mode If FIFO #1 is in wait4eot mode Watermark is in normal mode Watermark clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr_		In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
1 FIFO #4 is in wait4eot mode 0 FIFO #4 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr_watermark) is the power of the power in the power in the FIFO (dmfc_wm_clr_watermark) is the power in the power i	WAIT4EOT_4	
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		1 FIFO #4 is in wait4eot mode
When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr_		0 FIFO #4 is in normal mode
When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in wait4eot mode 15-13 dmfc_wm_clr_9 Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
1 FIFO #3 is in wait4eot mode 0 FIFO #3 is in normal mode 17 WAIT4EOT_2 In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr	WAIT4EOT_3	
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		1 FIFO #3 is in wait4eot mode
When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		0 FIFO #3 is in normal mode
When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
1 FIFO #2 is in wait4eot mode 0 FIFO #2 is in normal mode In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr	WAIT4EOT_2	
16 WAIT4EOT_1 In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		1 FIFO #2 is in wait4eot mode
WAIT4EOT_1 When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		0 FIFO #2 is in normal mode
when this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
1 FIFO #1 is in wait4eot mode 0 FIFO #1 is in normal mode 15–13 dmfc_wm_clr_9 Watermark Clear This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		
0 FIFO #1 is in normal mode 15–13 dmfc_wm_clr_9 This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
15–13 dmfc_wm_clr_9 This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		1 FIFO #1 is in wait4eot mode
dmfc_wm_clr_9 This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		0 FIFO #1 is in normal mode
watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr		Watermark Clear
> dmfc_wm_set)		watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr

IPUx_DMFC_GENERAL_1 field descriptions (continued)

Field	Description
12–10	Watermark Set
dmfc_wm_set_9	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
9	Watermark enable.
dmfc_wm_en_9	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
8 Reserved	This read-only field is reserved and always has the value 0.
7 Reserved	This read-only field is reserved and always has the value 0.
6–5	Burst size of IDMAC's channel 44
dmfc_burst_size_ 9	This field defines the burst size of the IDMAC's channel 44 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	This channel is targeted for MASK - the FIFO size is always 32X128; The base address is always the upper half of the 8th segment
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
4–2 Reserved	This read-only field is reserved and always has the value 0.
dmfc_dcdp_ sync_pr	DMFC's memory access priority settings for simultaneous synchronous flows from DC & DP
	00 Forbidden - should not be used.
	01 DC has higher priority over DP
	10 DP has higher priority over DC
	11 Round Robin

37.5.389 DMFC General 2 Register (IPUx_DMFC_GENERAL_2)

Address: Base address + 6_0018h offset

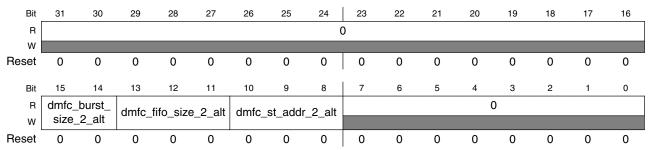


IPUx_DMFC_GENERAL_2 field descriptions

Field	Description
31–29 Reserved	This read-only field is reserved and always has the value 0.
28–16 dmfc_frame_ height_rd	Frame height for read channel from the display to the IDMAC; Units are pixels
15–13 Reserved	This read-only field is reserved and always has the value 0.
dmfc_frame_ width_rd	Frame width for read channel from the display to the IDMAC; Units are pixels

37.5.390 DMFC IC Interface Control Register (IPUx_DMFC_IC_CTRL)

IPUx_DMFC_IC_CTRL field descriptions


Field	Description
31-19 dmfc_ic_frame_ height_rd	Frame's height for the channel coming from IC. Units are lines
18-6 dmfc_ic_frame_ width_rd	Frame's width for the channel coming from IC. Units are pixels
5–4	Pixel Per Word coded from IC.
dmfc_ic_ppw_c	This field defines the size of the data coming from the IC.
	00 8 bit per pixel
	01 16 bit per pixel
	10 24 bit per pixel
	11 Reserved
3	This read-only field is reserved and always has the value 0.
Reserved	
dmfc_ic_in_port	DMFC input port

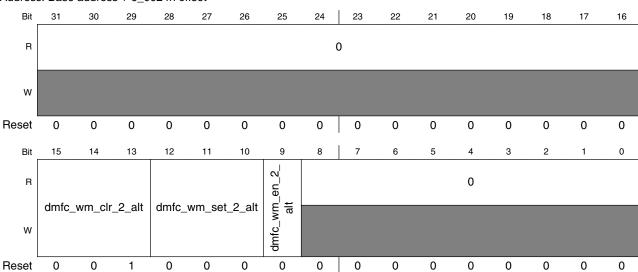
IPUx_DMFC_IC_CTRL field descriptions (continued)

Field	Description
	en data is coming from the IC, the IC channel replaces one of the IDMAC's channels connected to the FC. This field defines which IDMAC's channel is replaced by the IC channel.
000	CH28
001	CH41
010	Reserved, IC channel is disabled
011	Reserved, IC channel is disabled
100	CH23
101	CH27
110	CH24
111	CH29

37.5.391 DMFC Write Channel Alternate Register (IPUx_DMFC_WR_CHAN_ALT)

IPUx_DMFC_WR_CHAN_ALT field descriptions

Field	Description
31–16 Reserved	This read-only field is reserved and always has the value 0.
15–14	Burst size of IDMAC's channel 41 (for alternate flow)
dmfc_burst_size_ 2_alt	This field defines the burst size of the IDMAC's channel 41 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
13–11	DMFC FIFO size for IDMAC's channel 41 (for alternate flow)
dmfc_fifo_size_ 2_alt	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 41
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel

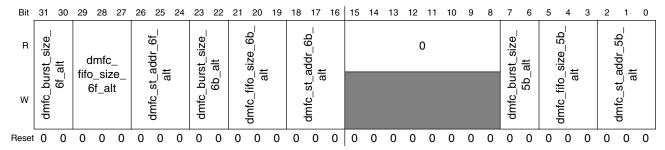

Table continues on the next page...

IPUx_DMFC_WR_CHAN_ALT field descriptions (continued)

Field	Description
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
10–8	DMFC Start Address for IDMAC's channel 41 (for alternate flow)
dmfc_st_addr_2_ alt	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 41. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7
Reserved	This read-only field is reserved and always has the value 0.

37.5.392 DMFC Write Channel Definition Alternate Register (IPUx_DMFC_WR_CHAN_DEF_ALT)

IPUx_DMFC_WR_CHAN_DEF_ALT field descriptions


Field	Description
31–16 Reserved	This read-only field is reserved and always has the value 0.

IPUx_DMFC_WR_CHAN_DEF_ALT field descriptions (continued)

Field	Description
15–13 dmfc_wm_clr_2_ alt	Watermark Clear (for alternate flow)
	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)
12–10	Watermark Set (for alternate flow)
dmfc_wm_set_2_ alt	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
9	Watermark enable. (for alternate flow)
dmfc_wm_en_2_ alt	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
Reserved	This read-only field is reserved and always has the value 0.

37.5.393 DMFC MFC Display Processor Channel Alternate Register (IPUx_DMFC_DP_CHAN_ALT)

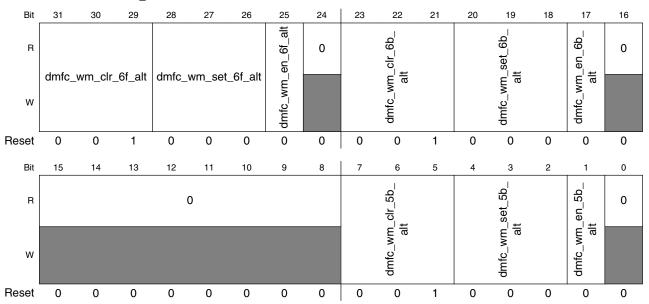
Address: Base address + 6_0028h offset

IPUx_DMFC_DP_CHAN_ALT field descriptions

Field	Description
31–30	Burst size of IDMAC's channel 29 (for alternate flow)
dmfc_burst_size_ 6f_alt	This field defines the burst size of the IDMAC's channel 29 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
29–27	DMFC FIFO size for IDMAC's channel 29 (for alternate flow)
dmfc_fifo_size_ 6f_alt	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 29
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel

Table continues on the next page...

IPUx_DMFC_DP_CHAN_ALT field descriptions (continued)

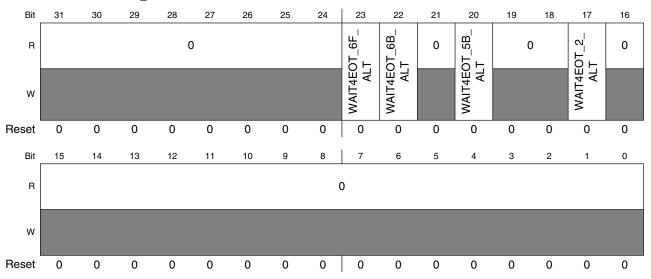

Field	Description
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
26–24	DMFC Start Address for IDMAC's channel 29 (for alternate flow)
dmfc_st_addr_ 6f_alt	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 29. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7
23–22	Burst size of IDMAC's channel 24 (for alternate flow)
dmfc_burst_size_ 6b_alt	This field defines the burst size of the IDMAC's channel 24 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
21–19	DMFC FIFO size for IDMAC's channel 24 (for alternate flow)
dmfc_fifo_size_ 6b_alt	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 24
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel 111 4X128 words are allocated to this channel
10.10	
18–16 dmfc_st_addr_ 6b_alt	DMFC Start Address for IDMAC's channel 24 (for alternate flow) This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 24. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7
15–8 Reserved	This read-only field is reserved and always has the value 0.

IPUx_DMFC_DP_CHAN_ALT field descriptions (continued)

Field	Description
7–6	Burst size of IDMAC's channel 23 (for alternate flow)
dmfc_burst_size_ 5b_alt	This field defines the burst size of the IDMAC's channel 23 write accesses. This settings must match the settings in the corresponding IDMAC channel's settings.
	00 32 words of 128 bit (4 pixels of 32 bit each, coming from the IDMAC)
	01 16 words of 128 bit
	10 8 words of 128 bit
	11 4 words of 128 bit
5–3	DMFC FIFO size for IDMAC's channel 23 (for alternate flow)
dmfc_fifo_size_ 5b_alt	This field defines the FIFO partition for the DMFC channel connected to IDMAC's channel 23
	000 All (512X128 words) the DMFC's FIFO is allocated to this channel
	001 256X128 words are allocated to this channel
	010 128X128 words are allocated to this channel
	011 64X128 words are allocated to this channel
	100 32X128 words are allocated to this channel
	101 16X128 words are allocated to this channel
	110 8X128 words are allocated to this channel
	111 4X128 words are allocated to this channel
dmfc_st_addr_	DMFC Start Address for IDMAC's channel 23 (for alternate flow)
5b_alt	This field defines the base address at the DMFC's FIFO of the partition allocated to the channel connected to IDMAC's channel 23. The FIFO is partitioned to 8 equal segments.
	Each segment is 64X128 words
	The value of this field is the number of the segment
	000 Segment 0
	001 Segment 1
	111 Segment 7

37.5.394 DMFC Display Channel Definition Alternate Register (IPUx_DMFC_DP_CHAN_DEF_ALT)

IPUx_DMFC_DP_CHAN_DEF_ALT field descriptions

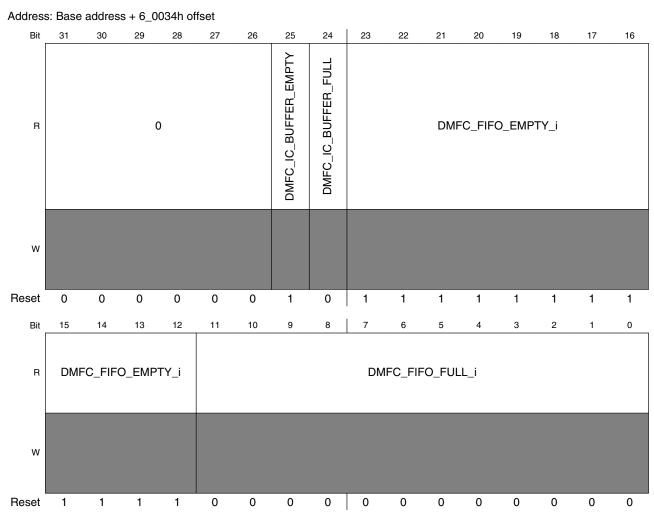

Field	Description
31–29	Watermark Clear (for alternate flow)
dmfc_wm_clr_6f_ alt	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)
28–26	Watermark Set (for alternate flow)
dmfc_wm_set_ 6f_alt	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
25	Watermark enable. (for alternate flow)
dmfc_wm_en_6f_ alt	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
24 Reserved	This read-only field is reserved and always has the value 0.
23–21	Watermark Clear (for alternate flow)
dmfc_wm_clr_ 6b_alt	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)

IPUx_DMFC_DP_CHAN_DEF_ALT field descriptions (continued)

Field	Description
20–18	Watermark Set (for alternate flow)
dmfc_wm_set_ 6b_alt	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
17	Watermark enable. (for alternate flow)
dmfc_wm_en_ 6b_alt	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
16–8 Reserved	This read-only field is reserved and always has the value 0.
7–5	Watermark Clear (for alternate flow)
dmfc_wm_clr_ 5b_alt	This field defines the watermark's level of the DMFC's write FIFO. Crossing this level will clear the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set)
4–2	Watermark Set (for alternate flow)
dmfc_wm_set_ 5b_alt	This field defines the watermark's level of the DMFC write FIFO. Crossing this level will send the watermark signal to the IDMAC. The WM level is the amount of occupied bursts at the FIFO (dmfc_wm_clr > dmfc_wm_set
1	Watermark enable. (for alternate flow)
dmfc_wm_en_ 5b_alt	This bit enables the watermark feature of the FIFO
	1 WM feature is enabled
	0 WM feature is disabled
0 Reserved	This read-only field is reserved and always has the value 0.

37.5.395 DMFC General 1 Alternate Register (IPUx_DMFC_GENERAL1_ALT)

IPUx_DMFC_GENERAL1_ALT field descriptions


Field	Description
31–24 Reserved	This read-only field is reserved and always has the value 0.
23 WAIT4EOT_6F_ ALT	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #6F is in wait4eot mode (for alternate flow) 0 FIFO #6F is in normal mode (for alternate flow)
22 WAIT4EOT_6B_ ALT	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode. 1 FIFO #6B is in wait4eot mode (for alternate flow) 0 FIFO #6B is in normal mode (for alternate flow)
21 Reserved	This read-only field is reserved and always has the value 0.
20 WAIT4EOT_5B_ ALT	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO. When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode) When the FIFO is larger then the size of the line, the user should work in wait4eot mode.

IPUx_DMFC_GENERAL1_ALT field descriptions (continued)

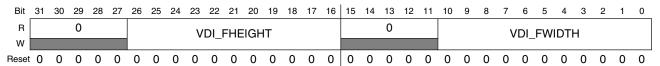
Field	Description
	1 FIFO #5B is in wait4eot mode (for alternate flow)
	0 FIFO #5B is in normal mode (for alternate flow)
19–18 Reserved	This read-only field is reserved and always has the value 0.
17	In normal operation the DMFC sends requests to the IDMAC whenever there is room in the FIFO.
WAIT4EOT_2_ ALT	When this bit is set the DMFC sends the request only after the current transfer is terminated, (wait4eot mode)
	When the FIFO is larger then the size of the line, the user should work in wait4eot mode.
	1 FIFO #2 is in wait4eot mode (for alternate flow)
	0 FIFO #2 is in normal mode (for alternate flow)
Reserved	This read-only field is reserved and always has the value 0.

37.5.396 DMFC Status Register (IPUx_DMFC_STAT)

This register contains DMFC's status bits. All the bits in this register are read-only.

IPUx_DMFC_STAT field descriptions

Field	Description
31–26 Reserved	This read-only field is reserved and always has the value 0.
25 DMFC_IC_ BUFFER_ EMPTY	This bit indicates on a IC FIFO, inside the DMFC, empty condition. 0 IC FIFO not empty 1 IC FIFO is empty


IPUx_DMFC_STAT field descriptions (continued)

Field	Description
24	This bit indicates on a IC FIFO, inside the DMFC, full condition.
DMFC_IC_ BUFFER FULL	0 IC FIFO not full
	1 IC FIFO is full
23–12	This bit indicates on a DMFC FIFO# <i> empty condition.</i>
DMFC_FIFO_ EMPTY_i	Mapping of these bit to an actual FIFO number is as follows: bit 0 => 0 bit 1=> 1 bit 2 => 2 bit 3 =>1c bit 4 => 2c bit 5 => 5b bit 6 => 5f bit 7 => 6b bit 8 => 6f bit 9 => 9 bit 10 => 10 (ARM platform access) bit 11 => 11 (ARM platform access)
	0 FIFO # <i> is not empty</i>
	1 FIFO # <i> is empty</i>
DMFC_FIFO_	This bit indicates on a DMFC FIFO# <i> full condition.</i>
FULL_i	Mapping of these bit to an actual FIFO number is as follows: bit 0 => 0 bit 1=> 1 bit 2 => 2 bit 3 =>1c bit 4 => 2c bit 5 => 5b bit 6 => 5f bit 7 => 6b bit 8 => 6f bit 9 => 9 bit 10 => 10 (ARM platform access) bit 11 => 11 (ARM platform access)
	0 FIFO # <i> is not full</i>
	1 FIFO # <i> is full</i>

37.5.397 VDI Field Size Register (IPUx_VDI_FSIZE)

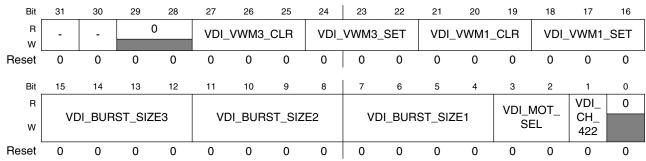
The register used to control size of VDIC input fields.

Address: Base address + 6_8000h offset

IPUx_VDI_FSIZE field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16	Frame height
VDI_FHEIGHT	The value to be written to this register is the frame's height minus 1.
	The frame height should not be smaller than 16.
	When VDI_CMB_EN bit is clear:
	 The frame height should not be greater than 1080. The frame's height must be even (which means that both fields have the same height) The frame's height in 4:2:0 format, must be multiple of 4 (which means that both chroma fields have the same height)

Table continues on the next page...


IPUx_VDI_FSIZE field descriptions (continued)

Field	Description
	When VDI_CMB_EN bit is set:
	The frame height should not be greater than 1200.
15–11 Reserved	This read-only field is reserved and always has the value 0.
VDI_FWIDTH	Frame width.
	The value to be written to this register is the frame's width minus 1.
	The Frame width should not be smaller than 16.
	The width must be even.
	When VDI_CMB_EN bit is clear
	The Frame width should not be greater than 720968.
	When VDI_CMB_EN bit is set:
	The Frame width should not be greater than 1920.

37.5.398 VDI Control Register (IPUx_VDI_C)

The register used to control modes of operations of VDIC module.

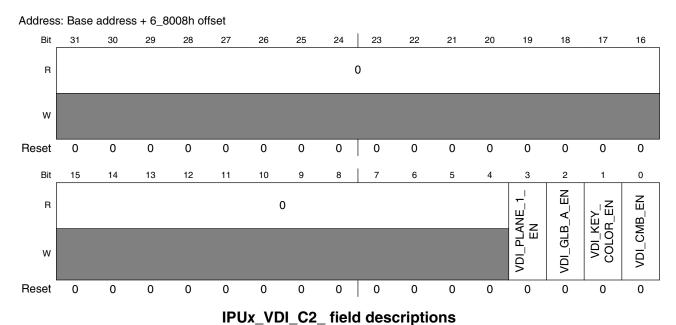
Address: Base address + 6_8004h offset

IPUx_VDI_C field descriptions

Field	Description
31	VDIC top filed (automatic)
-	This defines what would be the top field to be processed when the data is coming from the CSI
	0 top field is field 0
	1 top field is field 1
30	VDIC top filed (manual)
-	This defines what would be the next top field to be processed when the data is coming from the memory

IPUx_VDI_C field descriptions (continued)

Field	Description
	0 top field is field 0
	1 top field is field 1
29–28 Reserved	This read-only field is reserved and always has the value 0.
27–25 VDI_VWM3_CLR	VDIC WaterMark "clear" level for channel 3.
	0 clear watermark level when FIFO3 is full on 1/8 of their size.
	clear watermark level when FIFO3 is full on 2/8 of their size. clear watermark level when FIFO3 is full.
04.00	
24–22 VDI_VWM3_SET	VDIC WaterMark "set" level for channel 3.
	0 set watermark level when FIFO3 is full on 1/8 of their size.
	1 set watermark level when FIFO3 is full on 2/8 of their size.
	7 set watermark level when FIFO3 is full.
21–19 VDI_VWM1_CLR	VDIC WaterMark "clear" level for channel 1 or channel 4 (channels 1 and 4 are not working simultaneously).
	0 clear watermark level when FIFO1 is full on 1/8 of their size.
	1 clear watermark level when FIFO1 is full on 2/8 of their size.
	7 clear watermark level when FIFO1 is full.
18-16 VDI_VWM1_SET	VDIC WaterMark "set" level for channel 1 or channel 2 (channels 1 and 4 are not working simultaneously).
	0 set watermark level when FIFO1 is full on 1/8 of their size.
	1 set watermark level when FIFO1 is full on 2/8 of their size.
15.10	7 set watermark level when FIFO1 is full.
15–12 VDI_BURST_	Burst Size for channel 3.
SIZE3	The VDIC's burst size is restrict by the IDMAC's restriction - This value must match the IDMAC settings and follow the IDMAC's restrictions
	0 Burst size is 1 access.
	1 Burst size is 2 accesses.
	15 Burst size is 16 accesses.
11–8	Burst Size for channel 2.
VDI_BURST_ SIZE2	The VDIC's burst size is restrict by the IDMAC's restriction - This value must match the IDMAC settings and follow the IDMAC's restrictions
	0 Burst size is 1 access.
	1 Burst size is 2 accesses.
	15 Burst size is 16 accesses.
7–4	Burst Size for channels 1 or 4 (channels 1 and 4 are not working simultaneously).
VDI_BURST_ SIZE1	The VDIC's burst size is restrict by the IDMAC's restriction - This value must match the IDMAC settings and follow the IDMAC's restrictions
	0 Burst size is 1 access.
	1 Burst size is 2 accesses.
	15 Burst size is 16 accesses.
3–2 VDI_MOT_SEL	Motion select.


Table continues on the next page...

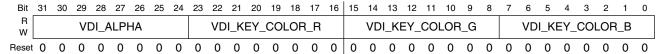
IPUx_VDI_C field descriptions (continued)

Field	Description
	0 Motion determined by ROM "1" (shared toward medium/high motion).
	1 Motion determined by ROM "2" (This option will not work well for high motion).
	2 Full motion, only vertical filter is used
	3 Forbidden.
1	Chroma format at input and output of VDIC.
VDI_CH_422	
	0 Chroma format is 420.
	1 Chroma format is 422.
0	This read-only field is reserved and always has the value 0.
Reserved	

37.5.399 VDI Control Register 2 (IPUx_VDI_C2_)

The register used to control modes of operations of VDIC module.

Field	Description
31–4 Reserved	This read-only field is reserved and always has the value 0.
3 VDI_PLANE_1_	Plane 1 enable
EN	0 plane #1 is disabled 1 plane #1 is enabled


IPUx_VDI_C2_ field descriptions (continued)

Field	Description
2	Global alpha enable
VDI_GLB_A_EN	
	0 Alpha is local
	1 Alpha is global
1	Key Color Enable
VDI_KEY_	
COLOR_EN	0 Key Color disabled.
	1 Key color enabled
0	Combining enable
VDI_CMB_EN	
	0 Combining disabled. The VDIC works in de-interlacing mode
	1 Combining enabled. The de-interlacing mode is not functional

37.5.400 VDI Combining Parameters Register 1 (IPUx_VDI_CMDP_1)

The register holds combining paramemters.

Address: Base address + 6_800Ch offset

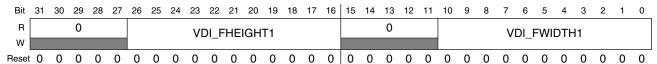
IPUx_VDI_CMDP_1 field descriptions

Field	Description
31–24 VDI_ALPHA	Global Alpha Actual value of the alpha is VDI_ALPHA + VDI_ALPHA[7]
23–16 VDI_KEY_ COLOR_R	Red component of Key Color
15–8 VDI_KEY_ COLOR_G	Green component of Key Color
VDI_KEY_ COLOR_B	Blue component of Key Color

37.5.401 VDI Combining Parameters Register 2 (IPUx_VDI_CMDP_2)

The register holds combining paramemters.

Address: Base address + 6_8010h offset


IPUx_VDI_CMDP_2 field descriptions

Field	Description
31–24 Reserved	This read-only field is reserved and always has the value 0.
23–16 VDI_KEY_ COLOR_R	Red component of background Color
15–8 VDI_KEY_ COLOR_G	Green component of background Color
VDI_KEY_ COLOR_B	Blue component of background Color

37.5.402 VDI Plane Size Register 1 (IPUx_VDI_PS_1)

The register holds the plane size's paramemters.

Address: Base address + 6_8014h offset

IPUx VDI PS 1 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 VDI_FHEIGHT1	Plane 1 height

Table continues on the next page...

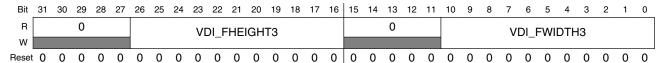
IPUx_VDI_PS_1 field descriptions (continued)

Field	Description
	The value to be written to this register is the plane's height minus 1.
	The Plane height should not be smaller than 16.
	The Plane height should not be greater than 1200.
	The Plane's height must be even
15–11 Reserved	This read-only field is reserved and always has the value 0.
VDI_FWIDTH1	Plane 1 width.
	The value to be written to this register is the plane's width minus 1.
	The Plane width should not be smaller than 16.
	The Plane width should not be greater than 1920.
	The width must be even.

37.5.403 VDI Plane Size Register 2 (IPUx_VDI_PS_2)

The register holds the plane's offset paramemters.

Address: Base address + 6_8018h offset

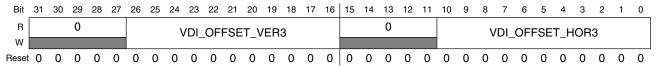

IPUx_VDI_PS_2 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 VDI_OFFSET_ VER1	Vertical offset of plane 1
15–11 Reserved	This read-only field is reserved and always has the value 0.
VDI_OFFSET_ HOR1	Horizontal offset of plane 1

37.5.404 VDI Plane Size Register 3 (IPUx_VDI_PS_3)

The register holds the plane size's paramemters.

Address: Base address + 6_801Ch offset


IPUx_VDI_PS_3 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 VDI_FHEIGHT3	Plane 3 height
	The value to be written to this register is the plane's height minus 1.
	The Plane height should not be smaller than 16.
	The Plane height should not be greater than 1200.
	The Plane's height must be even
15–11 Reserved	This read-only field is reserved and always has the value 0.
VDI_FWIDTH3	Plane 3 width.
	The value to be written to this register is the plane's width minus 1.
	The Plane width should not be smaller than 16.
	The Plane width should not be greater than 1920.
	The width must be even.

37.5.405 VDI Plane Size Register 4 (IPUx_VDI_PS_4)

The register holds the plane's offset paramemters.

Address: Base address + 6_8020h offset

Chapter 37 Image Processing Unit (IPU)

IPUx_VDI_PS_4 field descriptions

Field	Description
31–27 Reserved	This read-only field is reserved and always has the value 0.
26–16 VDI_OFFSET_ VER3	Vertical offset of plane 3
15–11 Reserved	This read-only field is reserved and always has the value 0.
VDI_OFFSET_ HOR3	Horizontal offset of plane 3

Chapter 38 Keypad Port (KPP)