
The Next Revolutions in 

Open Source
George V. Neville-Neil (gnn@freebsd.org, gnn@cs.yale.edu, etc.)

COSCUP 2024

Taipei, Taiwan

mailto:gnn@freebsd.org
mailto:gnn@cs.yale.edu


I guess we’re feeling pretty smug…



We Shouldn’t Be

 Most modern Operating Systems built on old 

models of computation

1970s

 Built on unsafe hardware

 With unsafe languages

C/C++

Aka Assembly Language with for() loops



A brief history of operating systems

 1950s

 SABRE and others

 1960s

 ATLAS: ASM

 MULTICS: ESPOL

 OS/360: ASM

 1970s

 UNIX: C

 DOS: ASM

 Home Computers: ASM

 1980s

 UNIX: C

 Windows: C

 Mach: C

 …

 2024

 No real changes

 Why?



ATLAS (Special Mention)

 System Calls

 Protection

 Nearly every feature you see in UNIX started here!

 If you want to know about the history of operating 

systems then read

 The Atlas Supervisor

T Kilburn, R B Payne, D J Howarth 1962



A Computer (Circa 1972)



Hardware Evolution



A recent pocket 

computer



Drivers of Change

(Moore’s Law and Economics)

 One computer to support many 

people (Cost dominates)

 Mainframe (Company)

 Mini-Computer (Work Group)

 One computer (CPU) per person

 Home Computing Revolution

 Early Workstations

 PCs, Laptops, etc.

 Many computers per person (with 

many cores)

 Cell Phone

 Watch

 Car

 …



What Has Really Changed in Hardware?

 Too Many Transistors (Moore’s Law)

 Same Frequency (end of Dennard Scaling)

 More cores

 More memory

 More offloaded processing

 More “features”



How Do We Take Advantage of this 

Embarrassment of Riches?

 Exploit the Hardware

 Try new programming models

 Retry old ones

 Learn from the Past to Build the Future

 Languages

 Tools

 Operating Systems

 Applications



Tooling Matters

 Compilers

LLVM

 Debuggers

…

 Formal Verification

CoQ et al

 Tracing

Dtrace

eBPF

 IDEs

Eclipse

VSCode



The Language Explosion

 Rust

 Go

 ???

 Enabled by LLVM

Tooling Matters!



New Life for Old Models

(3 Examples)

 Capabilities

 Micro-Kernels

 Message Passing



Capabilities

 Pointers are dangers (see first slide!)

 Capabilities confer access based on cryptographic 
operations

 Only the valid owner has the right to make 
changes.

 Increased Pointer Size (Memory, TLB, etc.)

Use those transistors!

 Enforced by Hardware (see CHERI)



1976 2023



 CAP Computer

 CISC

 TTL Logic

 Completely Custom

 32 bit processor

 256 Kilobytes of RAM

 Operating System

 File Systems

 Coded in Assembler

Then and Now

 Arm Morello

 RISC

 VLSI

 Modified ARM design

 64 bit ARMv8 Processor

 64G and more of RAM

 PCI-E and other standard busses



Capability Enhanced, Open Source Desktop Operating System

www.cheribsd.org



Message Passing

 Mach, QNX and others in the 1990s

 Micro-Kernel Designs

 Even in macOS (BSD and Mach based) these features were 

removed

 Why?

 Performance

 But on uniprocessor machines!



Message passing on a uniprocessor

(You’re Playing against Yourself!)



On a multiprocessor…

(Everyone can do more work!)



New Areas to Explore

 Capability Systems for Embedded

 Data Centric Programming Models

 Kernel as Database

 Isolation First



CherIOT

Capability based IOT

 Capabilities for Small Systems

 Hardware and Software

 C++/C Code

 MIT License

 Initially Developed at Microsoft

 https://cheriot.org

 https://github.com/microsoft/cheriot-rtos

https://cheriot.org/


Twizzler

A Data Centric Operating System

 Data Dominates not Code

 Written 100% in Rust

 Actively developed

 BSD 2 Clause License

 https://twizzler.io

 https://github.com/twizzler-operating-

system/twizzler

https://twizzler.io/


Kernel Data as Database

 Tracing (DTrace, eBPF)

 Shows who called whom

 Data

 The state of the system at any point in time

 Kernel Data is Relatively Simple

 Lists of Structures

 Some trees, but not many

 OSDB

 SQLite + FreeBSD

 First paper submitted this week!



Zero

Isolation First 

 No Sharing without Prior Agreement

 Femto Kernel

 Choose Your Bindings

 Open Research

 Green and Brown Field

Occupy BSD! (and Linux too)

 Implemented in Rust



Green Field vs. Brown Field

 Green

 Amoeba

 Sprite

 Sel4

 V

 Brown

 Mach

 Linux

 BSDs

 Windows Whatever…



The Ship of Theseus
If we replace every component, piece by piece, is the new system the same as the old one?



If you’re not a Greek Mythology nerd consider this…



Conclusions

Where to from here?

 Exploit the Hardware

 Try new programming models

 Retry old ones

 Learn from the Past to Build the Future

 New Languages

 New Tools

 New Operating Systems

 New Applications


	Slide 1: The Next Revolutions in Open Source
	Slide 2: I guess we’re feeling pretty smug…
	Slide 3: We Shouldn’t Be
	Slide 4: A brief history of operating systems
	Slide 5: ATLAS (Special Mention)
	Slide 6: A Computer (Circa 1972)
	Slide 7: Hardware Evolution
	Slide 8: A recent pocket computer
	Slide 9: Drivers of Change (Moore’s Law and Economics)
	Slide 10: What Has Really Changed in Hardware?
	Slide 11: How Do We Take Advantage of this Embarrassment of Riches?
	Slide 12: Tooling Matters 
	Slide 13: The Language Explosion
	Slide 14: New Life for Old Models (3 Examples)
	Slide 15: Capabilities 
	Slide 16
	Slide 17: Then and Now
	Slide 18: Capability Enhanced, Open Source Desktop Operating System www.cheribsd.org
	Slide 19: Message Passing
	Slide 20: Message passing on a uniprocessor (You’re Playing against Yourself!)
	Slide 21: On a multiprocessor… (Everyone can do more work!)
	Slide 22: New Areas to Explore
	Slide 23: CherIOT Capability based IOT
	Slide 24: Twizzler A Data Centric Operating System
	Slide 25: Kernel Data as Database
	Slide 26: Zero Isolation First 
	Slide 27: Green Field vs. Brown Field
	Slide 28: The Ship of Theseus
	Slide 29: If you’re not a Greek Mythology nerd consider this…
	Slide 30: Conclusions Where to from here?

