
The Next Revolutions in 

Open Source
George V. Neville-Neil (gnn@freebsd.org, gnn@cs.yale.edu, etc.)

COSCUP 2024

Taipei, Taiwan

mailto:gnn@freebsd.org
mailto:gnn@cs.yale.edu


I guess we’re feeling pretty smug…



We Shouldn’t Be

 Most modern Operating Systems built on old 

models of computation

1970s

 Built on unsafe hardware

 With unsafe languages

C/C++

Aka Assembly Language with for() loops



A brief history of operating systems

 1950s

 SABRE and others

 1960s

 ATLAS: ASM

 MULTICS: ESPOL

 OS/360: ASM

 1970s

 UNIX: C

 DOS: ASM

 Home Computers: ASM

 1980s

 UNIX: C

 Windows: C

 Mach: C

 …

 2024

 No real changes

 Why?



ATLAS (Special Mention)

 System Calls

 Protection

 Nearly every feature you see in UNIX started here!

 If you want to know about the history of operating 

systems then read

 The Atlas Supervisor

T Kilburn, R B Payne, D J Howarth 1962



A Computer (Circa 1972)



Hardware Evolution



A recent pocket 

computer



Drivers of Change

(Moore’s Law and Economics)

 One computer to support many 

people (Cost dominates)

 Mainframe (Company)

 Mini-Computer (Work Group)

 One computer (CPU) per person

 Home Computing Revolution

 Early Workstations

 PCs, Laptops, etc.

 Many computers per person (with 

many cores)

 Cell Phone

 Watch

 Car

 …



What Has Really Changed in Hardware?

 Too Many Transistors (Moore’s Law)

 Same Frequency (end of Dennard Scaling)

 More cores

 More memory

 More offloaded processing

 More “features”



How Do We Take Advantage of this 

Embarrassment of Riches?

 Exploit the Hardware

 Try new programming models

 Retry old ones

 Learn from the Past to Build the Future

 Languages

 Tools

 Operating Systems

 Applications



Tooling Matters

 Compilers

LLVM

 Debuggers

…

 Formal Verification

CoQ et al

 Tracing

Dtrace

eBPF

 IDEs

Eclipse

VSCode



The Language Explosion

 Rust

 Go

 ???

 Enabled by LLVM

Tooling Matters!



New Life for Old Models

(3 Examples)

 Capabilities

 Micro-Kernels

 Message Passing



Capabilities

 Pointers are dangers (see first slide!)

 Capabilities confer access based on cryptographic 
operations

 Only the valid owner has the right to make 
changes.

 Increased Pointer Size (Memory, TLB, etc.)

Use those transistors!

 Enforced by Hardware (see CHERI)



1976 2023



 CAP Computer

 CISC

 TTL Logic

 Completely Custom

 32 bit processor

 256 Kilobytes of RAM

 Operating System

 File Systems

 Coded in Assembler

Then and Now

 Arm Morello

 RISC

 VLSI

 Modified ARM design

 64 bit ARMv8 Processor

 64G and more of RAM

 PCI-E and other standard busses



Capability Enhanced, Open Source Desktop Operating System

www.cheribsd.org



Message Passing

 Mach, QNX and others in the 1990s

 Micro-Kernel Designs

 Even in macOS (BSD and Mach based) these features were 

removed

 Why?

 Performance

 But on uniprocessor machines!



Message passing on a uniprocessor

(You’re Playing against Yourself!)



On a multiprocessor…

(Everyone can do more work!)



New Areas to Explore

 Capability Systems for Embedded

 Data Centric Programming Models

 Kernel as Database

 Isolation First



CherIOT

Capability based IOT

 Capabilities for Small Systems

 Hardware and Software

 C++/C Code

 MIT License

 Initially Developed at Microsoft

 https://cheriot.org

 https://github.com/microsoft/cheriot-rtos

https://cheriot.org/


Twizzler

A Data Centric Operating System

 Data Dominates not Code

 Written 100% in Rust

 Actively developed

 BSD 2 Clause License

 https://twizzler.io

 https://github.com/twizzler-operating-

system/twizzler

https://twizzler.io/


Kernel Data as Database

 Tracing (DTrace, eBPF)

 Shows who called whom

 Data

 The state of the system at any point in time

 Kernel Data is Relatively Simple

 Lists of Structures

 Some trees, but not many

 OSDB

 SQLite + FreeBSD

 First paper submitted this week!



Zero

Isolation First 

 No Sharing without Prior Agreement

 Femto Kernel

 Choose Your Bindings

 Open Research

 Green and Brown Field

Occupy BSD! (and Linux too)

 Implemented in Rust



Green Field vs. Brown Field

 Green

 Amoeba

 Sprite

 Sel4

 V

 Brown

 Mach

 Linux

 BSDs

 Windows Whatever…



The Ship of Theseus
If we replace every component, piece by piece, is the new system the same as the old one?



If you’re not a Greek Mythology nerd consider this…



Conclusions

Where to from here?

 Exploit the Hardware

 Try new programming models

 Retry old ones

 Learn from the Past to Build the Future

 New Languages

 New Tools

 New Operating Systems

 New Applications


	Slide 1: The Next Revolutions in Open Source
	Slide 2: I guess we’re feeling pretty smug…
	Slide 3: We Shouldn’t Be
	Slide 4: A brief history of operating systems
	Slide 5: ATLAS (Special Mention)
	Slide 6: A Computer (Circa 1972)
	Slide 7: Hardware Evolution
	Slide 8: A recent pocket computer
	Slide 9: Drivers of Change (Moore’s Law and Economics)
	Slide 10: What Has Really Changed in Hardware?
	Slide 11: How Do We Take Advantage of this Embarrassment of Riches?
	Slide 12: Tooling Matters 
	Slide 13: The Language Explosion
	Slide 14: New Life for Old Models (3 Examples)
	Slide 15: Capabilities 
	Slide 16
	Slide 17: Then and Now
	Slide 18: Capability Enhanced, Open Source Desktop Operating System www.cheribsd.org
	Slide 19: Message Passing
	Slide 20: Message passing on a uniprocessor (You’re Playing against Yourself!)
	Slide 21: On a multiprocessor… (Everyone can do more work!)
	Slide 22: New Areas to Explore
	Slide 23: CherIOT Capability based IOT
	Slide 24: Twizzler A Data Centric Operating System
	Slide 25: Kernel Data as Database
	Slide 26: Zero Isolation First 
	Slide 27: Green Field vs. Brown Field
	Slide 28: The Ship of Theseus
	Slide 29: If you’re not a Greek Mythology nerd consider this…
	Slide 30: Conclusions Where to from here?

