FreeBSD ZFS
The Zettabyte File System
|
00001 /* 00002 * CDDL HEADER START 00003 * 00004 * The contents of this file are subject to the terms of the 00005 * Common Development and Distribution License (the "License"). 00006 * You may not use this file except in compliance with the License. 00007 * 00008 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 00009 * or http://www.opensolaris.org/os/licensing. 00010 * See the License for the specific language governing permissions 00011 * and limitations under the License. 00012 * 00013 * When distributing Covered Code, include this CDDL HEADER in each 00014 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 00015 * If applicable, add the following below this CDDL HEADER, with the 00016 * fields enclosed by brackets "[]" replaced with your own identifying 00017 * information: Portions Copyright [yyyy] [name of copyright owner] 00018 * 00019 * CDDL HEADER END 00020 */ 00021 /* 00022 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 00023 * Copyright (c) 2012 by Delphix. All rights reserved. 00024 */ 00025 00026 #include <sys/zfs_context.h> 00027 #include <sys/dbuf.h> 00028 #include <sys/dnode.h> 00029 #include <sys/dmu.h> 00030 #include <sys/dmu_impl.h> 00031 #include <sys/dmu_tx.h> 00032 #include <sys/dmu_objset.h> 00033 #include <sys/dsl_dir.h> 00034 #include <sys/dsl_dataset.h> 00035 #include <sys/spa.h> 00036 #include <sys/zio.h> 00037 #include <sys/dmu_zfetch.h> 00038 00039 static int free_range_compar(const void *node1, const void *node2); 00040 00041 static kmem_cache_t *dnode_cache; 00046 #ifdef DEBUG 00047 #define DNODE_STATS 00048 #endif /* DEBUG */ 00049 00050 #ifdef DNODE_STATS 00051 #define DNODE_STAT_ADD(stat) ((stat)++) 00052 #else 00053 #define DNODE_STAT_ADD(stat) /* nothing */ 00054 #endif /* DNODE_STATS */ 00055 00056 static dnode_phys_t dnode_phys_zero; 00057 00058 int zfs_default_bs = SPA_MINBLOCKSHIFT; 00059 int zfs_default_ibs = DN_MAX_INDBLKSHIFT; 00060 00061 #ifdef sun 00062 static kmem_cbrc_t dnode_move(void *, void *, size_t, void *); 00063 #endif 00064 00065 /* ARGSUSED */ 00066 static int 00067 dnode_cons(void *arg, void *unused, int kmflag) 00068 { 00069 dnode_t *dn = arg; 00070 int i; 00071 00072 rw_init(&dn->dn_struct_rwlock, NULL, RW_DEFAULT, NULL); 00073 mutex_init(&dn->dn_mtx, NULL, MUTEX_DEFAULT, NULL); 00074 mutex_init(&dn->dn_dbufs_mtx, NULL, MUTEX_DEFAULT, NULL); 00075 cv_init(&dn->dn_notxholds, NULL, CV_DEFAULT, NULL); 00076 00077 refcount_create(&dn->dn_holds); 00078 refcount_create(&dn->dn_tx_holds); 00079 list_link_init(&dn->dn_link); 00080 00081 bzero(&dn->dn_next_nblkptr[0], sizeof (dn->dn_next_nblkptr)); 00082 bzero(&dn->dn_next_nlevels[0], sizeof (dn->dn_next_nlevels)); 00083 bzero(&dn->dn_next_indblkshift[0], sizeof (dn->dn_next_indblkshift)); 00084 bzero(&dn->dn_next_bonustype[0], sizeof (dn->dn_next_bonustype)); 00085 bzero(&dn->dn_rm_spillblk[0], sizeof (dn->dn_rm_spillblk)); 00086 bzero(&dn->dn_next_bonuslen[0], sizeof (dn->dn_next_bonuslen)); 00087 bzero(&dn->dn_next_blksz[0], sizeof (dn->dn_next_blksz)); 00088 00089 for (i = 0; i < TXG_SIZE; i++) { 00090 list_link_init(&dn->dn_dirty_link[i]); 00091 avl_create(&dn->dn_ranges[i], free_range_compar, 00092 sizeof (free_range_t), 00093 offsetof(struct free_range, fr_node)); 00094 list_create(&dn->dn_dirty_records[i], 00095 sizeof (dbuf_dirty_record_t), 00096 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 00097 } 00098 00099 dn->dn_allocated_txg = 0; 00100 dn->dn_free_txg = 0; 00101 dn->dn_assigned_txg = 0; 00102 dn->dn_dirtyctx = 0; 00103 dn->dn_dirtyctx_firstset = NULL; 00104 dn->dn_bonus = NULL; 00105 dn->dn_have_spill = B_FALSE; 00106 dn->dn_zio = NULL; 00107 dn->dn_oldused = 0; 00108 dn->dn_oldflags = 0; 00109 dn->dn_olduid = 0; 00110 dn->dn_oldgid = 0; 00111 dn->dn_newuid = 0; 00112 dn->dn_newgid = 0; 00113 dn->dn_id_flags = 0; 00114 00115 dn->dn_dbufs_count = 0; 00116 list_create(&dn->dn_dbufs, sizeof (dmu_buf_impl_t), 00117 offsetof(dmu_buf_impl_t, db_link)); 00118 00119 dn->dn_moved = 0; 00120 POINTER_INVALIDATE(&dn->dn_objset); 00121 return (0); 00122 } 00123 00124 /* ARGSUSED */ 00125 static void 00126 dnode_dest(void *arg, void *unused) 00127 { 00128 int i; 00129 dnode_t *dn = arg; 00130 00131 rw_destroy(&dn->dn_struct_rwlock); 00132 mutex_destroy(&dn->dn_mtx); 00133 mutex_destroy(&dn->dn_dbufs_mtx); 00134 cv_destroy(&dn->dn_notxholds); 00135 refcount_destroy(&dn->dn_holds); 00136 refcount_destroy(&dn->dn_tx_holds); 00137 ASSERT(!list_link_active(&dn->dn_link)); 00138 00139 for (i = 0; i < TXG_SIZE; i++) { 00140 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 00141 avl_destroy(&dn->dn_ranges[i]); 00142 list_destroy(&dn->dn_dirty_records[i]); 00143 ASSERT0(dn->dn_next_nblkptr[i]); 00144 ASSERT0(dn->dn_next_nlevels[i]); 00145 ASSERT0(dn->dn_next_indblkshift[i]); 00146 ASSERT0(dn->dn_next_bonustype[i]); 00147 ASSERT0(dn->dn_rm_spillblk[i]); 00148 ASSERT0(dn->dn_next_bonuslen[i]); 00149 ASSERT0(dn->dn_next_blksz[i]); 00150 } 00151 00152 ASSERT0(dn->dn_allocated_txg); 00153 ASSERT0(dn->dn_free_txg); 00154 ASSERT0(dn->dn_assigned_txg); 00155 ASSERT0(dn->dn_dirtyctx); 00156 ASSERT3P(dn->dn_dirtyctx_firstset, ==, NULL); 00157 ASSERT3P(dn->dn_bonus, ==, NULL); 00158 ASSERT(!dn->dn_have_spill); 00159 ASSERT3P(dn->dn_zio, ==, NULL); 00160 ASSERT0(dn->dn_oldused); 00161 ASSERT0(dn->dn_oldflags); 00162 ASSERT0(dn->dn_olduid); 00163 ASSERT0(dn->dn_oldgid); 00164 ASSERT0(dn->dn_newuid); 00165 ASSERT0(dn->dn_newgid); 00166 ASSERT0(dn->dn_id_flags); 00167 00168 ASSERT0(dn->dn_dbufs_count); 00169 list_destroy(&dn->dn_dbufs); 00170 } 00171 00172 void 00173 dnode_init(void) 00174 { 00175 ASSERT(dnode_cache == NULL); 00176 dnode_cache = kmem_cache_create("dnode_t", 00177 sizeof (dnode_t), 00178 0, dnode_cons, dnode_dest, NULL, NULL, NULL, 0); 00179 kmem_cache_set_move(dnode_cache, dnode_move); 00180 } 00181 00182 void 00183 dnode_fini(void) 00184 { 00185 kmem_cache_destroy(dnode_cache); 00186 dnode_cache = NULL; 00187 } 00188 00189 00190 #ifdef ZFS_DEBUG 00191 void 00192 dnode_verify(dnode_t *dn) 00193 { 00194 int drop_struct_lock = FALSE; 00195 00196 ASSERT(dn->dn_phys); 00197 ASSERT(dn->dn_objset); 00198 ASSERT(dn->dn_handle->dnh_dnode == dn); 00199 00200 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 00201 00202 if (!(zfs_flags & ZFS_DEBUG_DNODE_VERIFY)) 00203 return; 00204 00205 if (!RW_WRITE_HELD(&dn->dn_struct_rwlock)) { 00206 rw_enter(&dn->dn_struct_rwlock, RW_READER); 00207 drop_struct_lock = TRUE; 00208 } 00209 if (dn->dn_phys->dn_type != DMU_OT_NONE || dn->dn_allocated_txg != 0) { 00210 int i; 00211 ASSERT3U(dn->dn_indblkshift, >=, 0); 00212 ASSERT3U(dn->dn_indblkshift, <=, SPA_MAXBLOCKSHIFT); 00213 if (dn->dn_datablkshift) { 00214 ASSERT3U(dn->dn_datablkshift, >=, SPA_MINBLOCKSHIFT); 00215 ASSERT3U(dn->dn_datablkshift, <=, SPA_MAXBLOCKSHIFT); 00216 ASSERT3U(1<<dn->dn_datablkshift, ==, dn->dn_datablksz); 00217 } 00218 ASSERT3U(dn->dn_nlevels, <=, 30); 00219 ASSERT(DMU_OT_IS_VALID(dn->dn_type)); 00220 ASSERT3U(dn->dn_nblkptr, >=, 1); 00221 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 00222 ASSERT3U(dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 00223 ASSERT3U(dn->dn_datablksz, ==, 00224 dn->dn_datablkszsec << SPA_MINBLOCKSHIFT); 00225 ASSERT3U(ISP2(dn->dn_datablksz), ==, dn->dn_datablkshift != 0); 00226 ASSERT3U((dn->dn_nblkptr - 1) * sizeof (blkptr_t) + 00227 dn->dn_bonuslen, <=, DN_MAX_BONUSLEN); 00228 for (i = 0; i < TXG_SIZE; i++) { 00229 ASSERT3U(dn->dn_next_nlevels[i], <=, dn->dn_nlevels); 00230 } 00231 } 00232 if (dn->dn_phys->dn_type != DMU_OT_NONE) 00233 ASSERT3U(dn->dn_phys->dn_nlevels, <=, dn->dn_nlevels); 00234 ASSERT(DMU_OBJECT_IS_SPECIAL(dn->dn_object) || dn->dn_dbuf != NULL); 00235 if (dn->dn_dbuf != NULL) { 00236 ASSERT3P(dn->dn_phys, ==, 00237 (dnode_phys_t *)dn->dn_dbuf->db.db_data + 00238 (dn->dn_object % (dn->dn_dbuf->db.db_size >> DNODE_SHIFT))); 00239 } 00240 if (drop_struct_lock) 00241 rw_exit(&dn->dn_struct_rwlock); 00242 } 00243 #endif 00244 00245 void 00246 dnode_byteswap(dnode_phys_t *dnp) 00247 { 00248 uint64_t *buf64 = (void*)&dnp->dn_blkptr; 00249 int i; 00250 00251 if (dnp->dn_type == DMU_OT_NONE) { 00252 bzero(dnp, sizeof (dnode_phys_t)); 00253 return; 00254 } 00255 00256 dnp->dn_datablkszsec = BSWAP_16(dnp->dn_datablkszsec); 00257 dnp->dn_bonuslen = BSWAP_16(dnp->dn_bonuslen); 00258 dnp->dn_maxblkid = BSWAP_64(dnp->dn_maxblkid); 00259 dnp->dn_used = BSWAP_64(dnp->dn_used); 00260 00261 /* 00262 * dn_nblkptr is only one byte, so it's OK to read it in either 00263 * byte order. We can't read dn_bouslen. 00264 */ 00265 ASSERT(dnp->dn_indblkshift <= SPA_MAXBLOCKSHIFT); 00266 ASSERT(dnp->dn_nblkptr <= DN_MAX_NBLKPTR); 00267 for (i = 0; i < dnp->dn_nblkptr * sizeof (blkptr_t)/8; i++) 00268 buf64[i] = BSWAP_64(buf64[i]); 00269 00270 /* 00271 * OK to check dn_bonuslen for zero, because it won't matter if 00272 * we have the wrong byte order. This is necessary because the 00273 * dnode dnode is smaller than a regular dnode. 00274 */ 00275 if (dnp->dn_bonuslen != 0) { 00276 /* 00277 * Note that the bonus length calculated here may be 00278 * longer than the actual bonus buffer. This is because 00279 * we always put the bonus buffer after the last block 00280 * pointer (instead of packing it against the end of the 00281 * dnode buffer). 00282 */ 00283 int off = (dnp->dn_nblkptr-1) * sizeof (blkptr_t); 00284 size_t len = DN_MAX_BONUSLEN - off; 00285 ASSERT(DMU_OT_IS_VALID(dnp->dn_bonustype)); 00286 dmu_object_byteswap_t byteswap = 00287 DMU_OT_BYTESWAP(dnp->dn_bonustype); 00288 dmu_ot_byteswap[byteswap].ob_func(dnp->dn_bonus + off, len); 00289 } 00290 00291 /* Swap SPILL block if we have one */ 00292 if (dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) 00293 byteswap_uint64_array(&dnp->dn_spill, sizeof (blkptr_t)); 00294 00295 } 00296 00297 void 00298 dnode_buf_byteswap(void *vbuf, size_t size) 00299 { 00300 dnode_phys_t *buf = vbuf; 00301 int i; 00302 00303 ASSERT3U(sizeof (dnode_phys_t), ==, (1<<DNODE_SHIFT)); 00304 ASSERT((size & (sizeof (dnode_phys_t)-1)) == 0); 00305 00306 size >>= DNODE_SHIFT; 00307 for (i = 0; i < size; i++) { 00308 dnode_byteswap(buf); 00309 buf++; 00310 } 00311 } 00312 00313 static int 00314 free_range_compar(const void *node1, const void *node2) 00315 { 00316 const free_range_t *rp1 = node1; 00317 const free_range_t *rp2 = node2; 00318 00319 if (rp1->fr_blkid < rp2->fr_blkid) 00320 return (-1); 00321 else if (rp1->fr_blkid > rp2->fr_blkid) 00322 return (1); 00323 else return (0); 00324 } 00325 00326 void 00327 dnode_setbonuslen(dnode_t *dn, int newsize, dmu_tx_t *tx) 00328 { 00329 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 00330 00331 dnode_setdirty(dn, tx); 00332 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 00333 ASSERT3U(newsize, <=, DN_MAX_BONUSLEN - 00334 (dn->dn_nblkptr-1) * sizeof (blkptr_t)); 00335 dn->dn_bonuslen = newsize; 00336 if (newsize == 0) 00337 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = DN_ZERO_BONUSLEN; 00338 else 00339 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 00340 rw_exit(&dn->dn_struct_rwlock); 00341 } 00342 00343 void 00344 dnode_setbonus_type(dnode_t *dn, dmu_object_type_t newtype, dmu_tx_t *tx) 00345 { 00346 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 00347 dnode_setdirty(dn, tx); 00348 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 00349 dn->dn_bonustype = newtype; 00350 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 00351 rw_exit(&dn->dn_struct_rwlock); 00352 } 00353 00354 void 00355 dnode_rm_spill(dnode_t *dn, dmu_tx_t *tx) 00356 { 00357 ASSERT3U(refcount_count(&dn->dn_holds), >=, 1); 00358 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 00359 dnode_setdirty(dn, tx); 00360 dn->dn_rm_spillblk[tx->tx_txg&TXG_MASK] = DN_KILL_SPILLBLK; 00361 dn->dn_have_spill = B_FALSE; 00362 } 00363 00364 static void 00365 dnode_setdblksz(dnode_t *dn, int size) 00366 { 00367 ASSERT0(P2PHASE(size, SPA_MINBLOCKSIZE)); 00368 ASSERT3U(size, <=, SPA_MAXBLOCKSIZE); 00369 ASSERT3U(size, >=, SPA_MINBLOCKSIZE); 00370 ASSERT3U(size >> SPA_MINBLOCKSHIFT, <, 00371 1<<(sizeof (dn->dn_phys->dn_datablkszsec) * 8)); 00372 dn->dn_datablksz = size; 00373 dn->dn_datablkszsec = size >> SPA_MINBLOCKSHIFT; 00374 dn->dn_datablkshift = ISP2(size) ? highbit(size - 1) : 0; 00375 } 00376 00377 static dnode_t * 00378 dnode_create(objset_t *os, dnode_phys_t *dnp, dmu_buf_impl_t *db, 00379 uint64_t object, dnode_handle_t *dnh) 00380 { 00381 dnode_t *dn = kmem_cache_alloc(dnode_cache, KM_SLEEP); 00382 00383 ASSERT(!POINTER_IS_VALID(dn->dn_objset)); 00384 dn->dn_moved = 0; 00385 00386 /* 00387 * Defer setting dn_objset until the dnode is ready to be a candidate 00388 * for the dnode_move() callback. 00389 */ 00390 dn->dn_object = object; 00391 dn->dn_dbuf = db; 00392 dn->dn_handle = dnh; 00393 dn->dn_phys = dnp; 00394 00395 if (dnp->dn_datablkszsec) { 00396 dnode_setdblksz(dn, dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 00397 } else { 00398 dn->dn_datablksz = 0; 00399 dn->dn_datablkszsec = 0; 00400 dn->dn_datablkshift = 0; 00401 } 00402 dn->dn_indblkshift = dnp->dn_indblkshift; 00403 dn->dn_nlevels = dnp->dn_nlevels; 00404 dn->dn_type = dnp->dn_type; 00405 dn->dn_nblkptr = dnp->dn_nblkptr; 00406 dn->dn_checksum = dnp->dn_checksum; 00407 dn->dn_compress = dnp->dn_compress; 00408 dn->dn_bonustype = dnp->dn_bonustype; 00409 dn->dn_bonuslen = dnp->dn_bonuslen; 00410 dn->dn_maxblkid = dnp->dn_maxblkid; 00411 dn->dn_have_spill = ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) != 0); 00412 dn->dn_id_flags = 0; 00413 00414 dmu_zfetch_init(&dn->dn_zfetch, dn); 00415 00416 ASSERT(DMU_OT_IS_VALID(dn->dn_phys->dn_type)); 00417 00418 mutex_enter(&os->os_lock); 00419 list_insert_head(&os->os_dnodes, dn); 00420 membar_producer(); 00421 /* 00422 * Everything else must be valid before assigning dn_objset makes the 00423 * dnode eligible for dnode_move(). 00424 */ 00425 dn->dn_objset = os; 00426 mutex_exit(&os->os_lock); 00427 00428 arc_space_consume(sizeof (dnode_t), ARC_SPACE_OTHER); 00429 return (dn); 00430 } 00431 00435 static void 00436 dnode_destroy(dnode_t *dn) 00437 { 00438 objset_t *os = dn->dn_objset; 00439 00440 ASSERT((dn->dn_id_flags & DN_ID_NEW_EXIST) == 0); 00441 00442 mutex_enter(&os->os_lock); 00443 POINTER_INVALIDATE(&dn->dn_objset); 00444 list_remove(&os->os_dnodes, dn); 00445 mutex_exit(&os->os_lock); 00446 00447 /* the dnode can no longer move, so we can release the handle */ 00448 zrl_remove(&dn->dn_handle->dnh_zrlock); 00449 00450 dn->dn_allocated_txg = 0; 00451 dn->dn_free_txg = 0; 00452 dn->dn_assigned_txg = 0; 00453 00454 dn->dn_dirtyctx = 0; 00455 if (dn->dn_dirtyctx_firstset != NULL) { 00456 kmem_free(dn->dn_dirtyctx_firstset, 1); 00457 dn->dn_dirtyctx_firstset = NULL; 00458 } 00459 if (dn->dn_bonus != NULL) { 00460 mutex_enter(&dn->dn_bonus->db_mtx); 00461 dbuf_evict(dn->dn_bonus); 00462 dn->dn_bonus = NULL; 00463 } 00464 dn->dn_zio = NULL; 00465 00466 dn->dn_have_spill = B_FALSE; 00467 dn->dn_oldused = 0; 00468 dn->dn_oldflags = 0; 00469 dn->dn_olduid = 0; 00470 dn->dn_oldgid = 0; 00471 dn->dn_newuid = 0; 00472 dn->dn_newgid = 0; 00473 dn->dn_id_flags = 0; 00474 00475 dmu_zfetch_rele(&dn->dn_zfetch); 00476 kmem_cache_free(dnode_cache, dn); 00477 arc_space_return(sizeof (dnode_t), ARC_SPACE_OTHER); 00478 } 00479 00480 void 00481 dnode_allocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, int ibs, 00482 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 00483 { 00484 int i; 00485 00486 if (blocksize == 0) 00487 blocksize = 1 << zfs_default_bs; 00488 else if (blocksize > SPA_MAXBLOCKSIZE) 00489 blocksize = SPA_MAXBLOCKSIZE; 00490 else 00491 blocksize = P2ROUNDUP(blocksize, SPA_MINBLOCKSIZE); 00492 00493 if (ibs == 0) 00494 ibs = zfs_default_ibs; 00495 00496 ibs = MIN(MAX(ibs, DN_MIN_INDBLKSHIFT), DN_MAX_INDBLKSHIFT); 00497 00498 dprintf("os=%p obj=%llu txg=%llu blocksize=%d ibs=%d\n", dn->dn_objset, 00499 dn->dn_object, tx->tx_txg, blocksize, ibs); 00500 00501 ASSERT(dn->dn_type == DMU_OT_NONE); 00502 ASSERT(bcmp(dn->dn_phys, &dnode_phys_zero, sizeof (dnode_phys_t)) == 0); 00503 ASSERT(dn->dn_phys->dn_type == DMU_OT_NONE); 00504 ASSERT(ot != DMU_OT_NONE); 00505 ASSERT(DMU_OT_IS_VALID(ot)); 00506 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 00507 (bonustype == DMU_OT_SA && bonuslen == 0) || 00508 (bonustype != DMU_OT_NONE && bonuslen != 0)); 00509 ASSERT(DMU_OT_IS_VALID(bonustype)); 00510 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 00511 ASSERT(dn->dn_type == DMU_OT_NONE); 00512 ASSERT0(dn->dn_maxblkid); 00513 ASSERT0(dn->dn_allocated_txg); 00514 ASSERT0(dn->dn_assigned_txg); 00515 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 00516 ASSERT3U(refcount_count(&dn->dn_holds), <=, 1); 00517 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 00518 00519 for (i = 0; i < TXG_SIZE; i++) { 00520 ASSERT0(dn->dn_next_nblkptr[i]); 00521 ASSERT0(dn->dn_next_nlevels[i]); 00522 ASSERT0(dn->dn_next_indblkshift[i]); 00523 ASSERT0(dn->dn_next_bonuslen[i]); 00524 ASSERT0(dn->dn_next_bonustype[i]); 00525 ASSERT0(dn->dn_rm_spillblk[i]); 00526 ASSERT0(dn->dn_next_blksz[i]); 00527 ASSERT(!list_link_active(&dn->dn_dirty_link[i])); 00528 ASSERT3P(list_head(&dn->dn_dirty_records[i]), ==, NULL); 00529 ASSERT0(avl_numnodes(&dn->dn_ranges[i])); 00530 } 00531 00532 dn->dn_type = ot; 00533 dnode_setdblksz(dn, blocksize); 00534 dn->dn_indblkshift = ibs; 00535 dn->dn_nlevels = 1; 00536 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 00537 dn->dn_nblkptr = 1; 00538 else 00539 dn->dn_nblkptr = 1 + 00540 ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 00541 dn->dn_bonustype = bonustype; 00542 dn->dn_bonuslen = bonuslen; 00543 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 00544 dn->dn_compress = ZIO_COMPRESS_INHERIT; 00545 dn->dn_dirtyctx = 0; 00546 00547 dn->dn_free_txg = 0; 00548 if (dn->dn_dirtyctx_firstset) { 00549 kmem_free(dn->dn_dirtyctx_firstset, 1); 00550 dn->dn_dirtyctx_firstset = NULL; 00551 } 00552 00553 dn->dn_allocated_txg = tx->tx_txg; 00554 dn->dn_id_flags = 0; 00555 00556 dnode_setdirty(dn, tx); 00557 dn->dn_next_indblkshift[tx->tx_txg & TXG_MASK] = ibs; 00558 dn->dn_next_bonuslen[tx->tx_txg & TXG_MASK] = dn->dn_bonuslen; 00559 dn->dn_next_bonustype[tx->tx_txg & TXG_MASK] = dn->dn_bonustype; 00560 dn->dn_next_blksz[tx->tx_txg & TXG_MASK] = dn->dn_datablksz; 00561 } 00562 00563 void 00564 dnode_reallocate(dnode_t *dn, dmu_object_type_t ot, int blocksize, 00565 dmu_object_type_t bonustype, int bonuslen, dmu_tx_t *tx) 00566 { 00567 int nblkptr; 00568 00569 ASSERT3U(blocksize, >=, SPA_MINBLOCKSIZE); 00570 ASSERT3U(blocksize, <=, SPA_MAXBLOCKSIZE); 00571 ASSERT0(blocksize % SPA_MINBLOCKSIZE); 00572 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT || dmu_tx_private_ok(tx)); 00573 ASSERT(tx->tx_txg != 0); 00574 ASSERT((bonustype == DMU_OT_NONE && bonuslen == 0) || 00575 (bonustype != DMU_OT_NONE && bonuslen != 0) || 00576 (bonustype == DMU_OT_SA && bonuslen == 0)); 00577 ASSERT(DMU_OT_IS_VALID(bonustype)); 00578 ASSERT3U(bonuslen, <=, DN_MAX_BONUSLEN); 00579 00580 /* clean up any unreferenced dbufs */ 00581 dnode_evict_dbufs(dn); 00582 00583 dn->dn_id_flags = 0; 00584 00585 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 00586 dnode_setdirty(dn, tx); 00587 if (dn->dn_datablksz != blocksize) { 00588 /* change blocksize */ 00589 ASSERT(dn->dn_maxblkid == 0 && 00590 (BP_IS_HOLE(&dn->dn_phys->dn_blkptr[0]) || 00591 dnode_block_freed(dn, 0))); 00592 dnode_setdblksz(dn, blocksize); 00593 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = blocksize; 00594 } 00595 if (dn->dn_bonuslen != bonuslen) 00596 dn->dn_next_bonuslen[tx->tx_txg&TXG_MASK] = bonuslen; 00597 00598 if (bonustype == DMU_OT_SA) /* Maximize bonus space for SA */ 00599 nblkptr = 1; 00600 else 00601 nblkptr = 1 + ((DN_MAX_BONUSLEN - bonuslen) >> SPA_BLKPTRSHIFT); 00602 if (dn->dn_bonustype != bonustype) 00603 dn->dn_next_bonustype[tx->tx_txg&TXG_MASK] = bonustype; 00604 if (dn->dn_nblkptr != nblkptr) 00605 dn->dn_next_nblkptr[tx->tx_txg&TXG_MASK] = nblkptr; 00606 if (dn->dn_phys->dn_flags & DNODE_FLAG_SPILL_BLKPTR) { 00607 dbuf_rm_spill(dn, tx); 00608 dnode_rm_spill(dn, tx); 00609 } 00610 rw_exit(&dn->dn_struct_rwlock); 00611 00612 /* change type */ 00613 dn->dn_type = ot; 00614 00615 /* change bonus size and type */ 00616 mutex_enter(&dn->dn_mtx); 00617 dn->dn_bonustype = bonustype; 00618 dn->dn_bonuslen = bonuslen; 00619 dn->dn_nblkptr = nblkptr; 00620 dn->dn_checksum = ZIO_CHECKSUM_INHERIT; 00621 dn->dn_compress = ZIO_COMPRESS_INHERIT; 00622 ASSERT3U(dn->dn_nblkptr, <=, DN_MAX_NBLKPTR); 00623 00624 /* fix up the bonus db_size */ 00625 if (dn->dn_bonus) { 00626 dn->dn_bonus->db.db_size = 00627 DN_MAX_BONUSLEN - (dn->dn_nblkptr-1) * sizeof (blkptr_t); 00628 ASSERT(dn->dn_bonuslen <= dn->dn_bonus->db.db_size); 00629 } 00630 00631 dn->dn_allocated_txg = tx->tx_txg; 00632 mutex_exit(&dn->dn_mtx); 00633 } 00634 00635 #ifdef DNODE_STATS 00636 static struct { 00637 uint64_t dms_dnode_invalid; 00638 uint64_t dms_dnode_recheck1; 00639 uint64_t dms_dnode_recheck2; 00640 uint64_t dms_dnode_special; 00641 uint64_t dms_dnode_handle; 00642 uint64_t dms_dnode_rwlock; 00643 uint64_t dms_dnode_active; 00644 } dnode_move_stats; 00645 #endif /* DNODE_STATS */ 00646 00647 static void 00648 dnode_move_impl(dnode_t *odn, dnode_t *ndn) 00649 { 00650 int i; 00651 00652 ASSERT(!RW_LOCK_HELD(&odn->dn_struct_rwlock)); 00653 ASSERT(MUTEX_NOT_HELD(&odn->dn_mtx)); 00654 ASSERT(MUTEX_NOT_HELD(&odn->dn_dbufs_mtx)); 00655 ASSERT(!RW_LOCK_HELD(&odn->dn_zfetch.zf_rwlock)); 00656 00657 /* Copy fields. */ 00658 ndn->dn_objset = odn->dn_objset; 00659 ndn->dn_object = odn->dn_object; 00660 ndn->dn_dbuf = odn->dn_dbuf; 00661 ndn->dn_handle = odn->dn_handle; 00662 ndn->dn_phys = odn->dn_phys; 00663 ndn->dn_type = odn->dn_type; 00664 ndn->dn_bonuslen = odn->dn_bonuslen; 00665 ndn->dn_bonustype = odn->dn_bonustype; 00666 ndn->dn_nblkptr = odn->dn_nblkptr; 00667 ndn->dn_checksum = odn->dn_checksum; 00668 ndn->dn_compress = odn->dn_compress; 00669 ndn->dn_nlevels = odn->dn_nlevels; 00670 ndn->dn_indblkshift = odn->dn_indblkshift; 00671 ndn->dn_datablkshift = odn->dn_datablkshift; 00672 ndn->dn_datablkszsec = odn->dn_datablkszsec; 00673 ndn->dn_datablksz = odn->dn_datablksz; 00674 ndn->dn_maxblkid = odn->dn_maxblkid; 00675 bcopy(&odn->dn_next_nblkptr[0], &ndn->dn_next_nblkptr[0], 00676 sizeof (odn->dn_next_nblkptr)); 00677 bcopy(&odn->dn_next_nlevels[0], &ndn->dn_next_nlevels[0], 00678 sizeof (odn->dn_next_nlevels)); 00679 bcopy(&odn->dn_next_indblkshift[0], &ndn->dn_next_indblkshift[0], 00680 sizeof (odn->dn_next_indblkshift)); 00681 bcopy(&odn->dn_next_bonustype[0], &ndn->dn_next_bonustype[0], 00682 sizeof (odn->dn_next_bonustype)); 00683 bcopy(&odn->dn_rm_spillblk[0], &ndn->dn_rm_spillblk[0], 00684 sizeof (odn->dn_rm_spillblk)); 00685 bcopy(&odn->dn_next_bonuslen[0], &ndn->dn_next_bonuslen[0], 00686 sizeof (odn->dn_next_bonuslen)); 00687 bcopy(&odn->dn_next_blksz[0], &ndn->dn_next_blksz[0], 00688 sizeof (odn->dn_next_blksz)); 00689 for (i = 0; i < TXG_SIZE; i++) { 00690 list_move_tail(&ndn->dn_dirty_records[i], 00691 &odn->dn_dirty_records[i]); 00692 } 00693 bcopy(&odn->dn_ranges[0], &ndn->dn_ranges[0], sizeof (odn->dn_ranges)); 00694 ndn->dn_allocated_txg = odn->dn_allocated_txg; 00695 ndn->dn_free_txg = odn->dn_free_txg; 00696 ndn->dn_assigned_txg = odn->dn_assigned_txg; 00697 ndn->dn_dirtyctx = odn->dn_dirtyctx; 00698 ndn->dn_dirtyctx_firstset = odn->dn_dirtyctx_firstset; 00699 ASSERT(refcount_count(&odn->dn_tx_holds) == 0); 00700 refcount_transfer(&ndn->dn_holds, &odn->dn_holds); 00701 ASSERT(list_is_empty(&ndn->dn_dbufs)); 00702 list_move_tail(&ndn->dn_dbufs, &odn->dn_dbufs); 00703 ndn->dn_dbufs_count = odn->dn_dbufs_count; 00704 ndn->dn_bonus = odn->dn_bonus; 00705 ndn->dn_have_spill = odn->dn_have_spill; 00706 ndn->dn_zio = odn->dn_zio; 00707 ndn->dn_oldused = odn->dn_oldused; 00708 ndn->dn_oldflags = odn->dn_oldflags; 00709 ndn->dn_olduid = odn->dn_olduid; 00710 ndn->dn_oldgid = odn->dn_oldgid; 00711 ndn->dn_newuid = odn->dn_newuid; 00712 ndn->dn_newgid = odn->dn_newgid; 00713 ndn->dn_id_flags = odn->dn_id_flags; 00714 dmu_zfetch_init(&ndn->dn_zfetch, NULL); 00715 list_move_tail(&ndn->dn_zfetch.zf_stream, &odn->dn_zfetch.zf_stream); 00716 ndn->dn_zfetch.zf_dnode = odn->dn_zfetch.zf_dnode; 00717 ndn->dn_zfetch.zf_stream_cnt = odn->dn_zfetch.zf_stream_cnt; 00718 ndn->dn_zfetch.zf_alloc_fail = odn->dn_zfetch.zf_alloc_fail; 00719 00720 /* 00721 * Update back pointers. Updating the handle fixes the back pointer of 00722 * every descendant dbuf as well as the bonus dbuf. 00723 */ 00724 ASSERT(ndn->dn_handle->dnh_dnode == odn); 00725 ndn->dn_handle->dnh_dnode = ndn; 00726 if (ndn->dn_zfetch.zf_dnode == odn) { 00727 ndn->dn_zfetch.zf_dnode = ndn; 00728 } 00729 00730 /* 00731 * Invalidate the original dnode by clearing all of its back pointers. 00732 */ 00733 odn->dn_dbuf = NULL; 00734 odn->dn_handle = NULL; 00735 list_create(&odn->dn_dbufs, sizeof (dmu_buf_impl_t), 00736 offsetof(dmu_buf_impl_t, db_link)); 00737 odn->dn_dbufs_count = 0; 00738 odn->dn_bonus = NULL; 00739 odn->dn_zfetch.zf_dnode = NULL; 00740 00741 /* 00742 * Set the low bit of the objset pointer to ensure that dnode_move() 00743 * recognizes the dnode as invalid in any subsequent callback. 00744 */ 00745 POINTER_INVALIDATE(&odn->dn_objset); 00746 00747 /* 00748 * Satisfy the destructor. 00749 */ 00750 for (i = 0; i < TXG_SIZE; i++) { 00751 list_create(&odn->dn_dirty_records[i], 00752 sizeof (dbuf_dirty_record_t), 00753 offsetof(dbuf_dirty_record_t, dr_dirty_node)); 00754 odn->dn_ranges[i].avl_root = NULL; 00755 odn->dn_ranges[i].avl_numnodes = 0; 00756 odn->dn_next_nlevels[i] = 0; 00757 odn->dn_next_indblkshift[i] = 0; 00758 odn->dn_next_bonustype[i] = 0; 00759 odn->dn_rm_spillblk[i] = 0; 00760 odn->dn_next_bonuslen[i] = 0; 00761 odn->dn_next_blksz[i] = 0; 00762 } 00763 odn->dn_allocated_txg = 0; 00764 odn->dn_free_txg = 0; 00765 odn->dn_assigned_txg = 0; 00766 odn->dn_dirtyctx = 0; 00767 odn->dn_dirtyctx_firstset = NULL; 00768 odn->dn_have_spill = B_FALSE; 00769 odn->dn_zio = NULL; 00770 odn->dn_oldused = 0; 00771 odn->dn_oldflags = 0; 00772 odn->dn_olduid = 0; 00773 odn->dn_oldgid = 0; 00774 odn->dn_newuid = 0; 00775 odn->dn_newgid = 0; 00776 odn->dn_id_flags = 0; 00777 00778 /* 00779 * Mark the dnode. 00780 */ 00781 ndn->dn_moved = 1; 00782 odn->dn_moved = (uint8_t)-1; 00783 } 00784 00785 #ifdef sun 00786 #ifdef _KERNEL 00787 /*ARGSUSED*/ 00788 static kmem_cbrc_t 00789 dnode_move(void *buf, void *newbuf, size_t size, void *arg) 00790 { 00791 dnode_t *odn = buf, *ndn = newbuf; 00792 objset_t *os; 00793 int64_t refcount; 00794 uint32_t dbufs; 00795 00796 /* 00797 * The dnode is on the objset's list of known dnodes if the objset 00798 * pointer is valid. We set the low bit of the objset pointer when 00799 * freeing the dnode to invalidate it, and the memory patterns written 00800 * by kmem (baddcafe and deadbeef) set at least one of the two low bits. 00801 * A newly created dnode sets the objset pointer last of all to indicate 00802 * that the dnode is known and in a valid state to be moved by this 00803 * function. 00804 */ 00805 os = odn->dn_objset; 00806 if (!POINTER_IS_VALID(os)) { 00807 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_invalid); 00808 return (KMEM_CBRC_DONT_KNOW); 00809 } 00810 00811 /* 00812 * Ensure that the objset does not go away during the move. 00813 */ 00814 rw_enter(&os_lock, RW_WRITER); 00815 if (os != odn->dn_objset) { 00816 rw_exit(&os_lock); 00817 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck1); 00818 return (KMEM_CBRC_DONT_KNOW); 00819 } 00820 00821 /* 00822 * If the dnode is still valid, then so is the objset. We know that no 00823 * valid objset can be freed while we hold os_lock, so we can safely 00824 * ensure that the objset remains in use. 00825 */ 00826 mutex_enter(&os->os_lock); 00827 00828 /* 00829 * Recheck the objset pointer in case the dnode was removed just before 00830 * acquiring the lock. 00831 */ 00832 if (os != odn->dn_objset) { 00833 mutex_exit(&os->os_lock); 00834 rw_exit(&os_lock); 00835 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_recheck2); 00836 return (KMEM_CBRC_DONT_KNOW); 00837 } 00838 00839 /* 00840 * At this point we know that as long as we hold os->os_lock, the dnode 00841 * cannot be freed and fields within the dnode can be safely accessed. 00842 * The objset listing this dnode cannot go away as long as this dnode is 00843 * on its list. 00844 */ 00845 rw_exit(&os_lock); 00846 if (DMU_OBJECT_IS_SPECIAL(odn->dn_object)) { 00847 mutex_exit(&os->os_lock); 00848 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_special); 00849 return (KMEM_CBRC_NO); 00850 } 00851 ASSERT(odn->dn_dbuf != NULL); /* only "special" dnodes have no parent */ 00852 00853 /* 00854 * Lock the dnode handle to prevent the dnode from obtaining any new 00855 * holds. This also prevents the descendant dbufs and the bonus dbuf 00856 * from accessing the dnode, so that we can discount their holds. The 00857 * handle is safe to access because we know that while the dnode cannot 00858 * go away, neither can its handle. Once we hold dnh_zrlock, we can 00859 * safely move any dnode referenced only by dbufs. 00860 */ 00861 if (!zrl_tryenter(&odn->dn_handle->dnh_zrlock)) { 00862 mutex_exit(&os->os_lock); 00863 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_handle); 00864 return (KMEM_CBRC_LATER); 00865 } 00866 00867 /* 00868 * Ensure a consistent view of the dnode's holds and the dnode's dbufs. 00869 * We need to guarantee that there is a hold for every dbuf in order to 00870 * determine whether the dnode is actively referenced. Falsely matching 00871 * a dbuf to an active hold would lead to an unsafe move. It's possible 00872 * that a thread already having an active dnode hold is about to add a 00873 * dbuf, and we can't compare hold and dbuf counts while the add is in 00874 * progress. 00875 */ 00876 if (!rw_tryenter(&odn->dn_struct_rwlock, RW_WRITER)) { 00877 zrl_exit(&odn->dn_handle->dnh_zrlock); 00878 mutex_exit(&os->os_lock); 00879 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_rwlock); 00880 return (KMEM_CBRC_LATER); 00881 } 00882 00883 /* 00884 * A dbuf may be removed (evicted) without an active dnode hold. In that 00885 * case, the dbuf count is decremented under the handle lock before the 00886 * dbuf's hold is released. This order ensures that if we count the hold 00887 * after the dbuf is removed but before its hold is released, we will 00888 * treat the unmatched hold as active and exit safely. If we count the 00889 * hold before the dbuf is removed, the hold is discounted, and the 00890 * removal is blocked until the move completes. 00891 */ 00892 refcount = refcount_count(&odn->dn_holds); 00893 ASSERT(refcount >= 0); 00894 dbufs = odn->dn_dbufs_count; 00895 00896 /* We can't have more dbufs than dnode holds. */ 00897 ASSERT3U(dbufs, <=, refcount); 00898 DTRACE_PROBE3(dnode__move, dnode_t *, odn, int64_t, refcount, 00899 uint32_t, dbufs); 00900 00901 if (refcount > dbufs) { 00902 rw_exit(&odn->dn_struct_rwlock); 00903 zrl_exit(&odn->dn_handle->dnh_zrlock); 00904 mutex_exit(&os->os_lock); 00905 DNODE_STAT_ADD(dnode_move_stats.dms_dnode_active); 00906 return (KMEM_CBRC_LATER); 00907 } 00908 00909 rw_exit(&odn->dn_struct_rwlock); 00910 00911 /* 00912 * At this point we know that anyone with a hold on the dnode is not 00913 * actively referencing it. The dnode is known and in a valid state to 00914 * move. We're holding the locks needed to execute the critical section. 00915 */ 00916 dnode_move_impl(odn, ndn); 00917 00918 list_link_replace(&odn->dn_link, &ndn->dn_link); 00919 /* If the dnode was safe to move, the refcount cannot have changed. */ 00920 ASSERT(refcount == refcount_count(&ndn->dn_holds)); 00921 ASSERT(dbufs == ndn->dn_dbufs_count); 00922 zrl_exit(&ndn->dn_handle->dnh_zrlock); /* handle has moved */ 00923 mutex_exit(&os->os_lock); 00924 00925 return (KMEM_CBRC_YES); 00926 } 00927 #endif /* _KERNEL */ 00928 #endif /* sun */ 00929 00930 void 00931 dnode_special_close(dnode_handle_t *dnh) 00932 { 00933 dnode_t *dn = dnh->dnh_dnode; 00934 00935 /* 00936 * Wait for final references to the dnode to clear. This can 00937 * only happen if the arc is asyncronously evicting state that 00938 * has a hold on this dnode while we are trying to evict this 00939 * dnode. 00940 */ 00941 while (refcount_count(&dn->dn_holds) > 0) 00942 delay(1); 00943 zrl_add(&dnh->dnh_zrlock); 00944 dnode_destroy(dn); /* implicit zrl_remove() */ 00945 zrl_destroy(&dnh->dnh_zrlock); 00946 dnh->dnh_dnode = NULL; 00947 } 00948 00949 dnode_t * 00950 dnode_special_open(objset_t *os, dnode_phys_t *dnp, uint64_t object, 00951 dnode_handle_t *dnh) 00952 { 00953 dnode_t *dn = dnode_create(os, dnp, NULL, object, dnh); 00954 dnh->dnh_dnode = dn; 00955 zrl_init(&dnh->dnh_zrlock); 00956 DNODE_VERIFY(dn); 00957 return (dn); 00958 } 00959 00960 static void 00961 dnode_buf_pageout(dmu_buf_t *db, void *arg) 00962 { 00963 dnode_children_t *children_dnodes = arg; 00964 int i; 00965 int epb = db->db_size >> DNODE_SHIFT; 00966 00967 ASSERT(epb == children_dnodes->dnc_count); 00968 00969 for (i = 0; i < epb; i++) { 00970 dnode_handle_t *dnh = &children_dnodes->dnc_children[i]; 00971 dnode_t *dn; 00972 00973 /* 00974 * The dnode handle lock guards against the dnode moving to 00975 * another valid address, so there is no need here to guard 00976 * against changes to or from NULL. 00977 */ 00978 if (dnh->dnh_dnode == NULL) { 00979 zrl_destroy(&dnh->dnh_zrlock); 00980 continue; 00981 } 00982 00983 zrl_add(&dnh->dnh_zrlock); 00984 dn = dnh->dnh_dnode; 00985 /* 00986 * If there are holds on this dnode, then there should 00987 * be holds on the dnode's containing dbuf as well; thus 00988 * it wouldn't be eligible for eviction and this function 00989 * would not have been called. 00990 */ 00991 ASSERT(refcount_is_zero(&dn->dn_holds)); 00992 ASSERT(refcount_is_zero(&dn->dn_tx_holds)); 00993 00994 dnode_destroy(dn); /* implicit zrl_remove() */ 00995 zrl_destroy(&dnh->dnh_zrlock); 00996 dnh->dnh_dnode = NULL; 00997 } 00998 kmem_free(children_dnodes, sizeof (dnode_children_t) + 00999 (epb - 1) * sizeof (dnode_handle_t)); 01000 } 01001 01010 int 01011 dnode_hold_impl(objset_t *os, uint64_t object, int flag, 01012 void *tag, dnode_t **dnp) 01013 { 01014 int epb, idx, err; 01015 int drop_struct_lock = FALSE; 01016 int type; 01017 uint64_t blk; 01018 dnode_t *mdn, *dn; 01019 dmu_buf_impl_t *db; 01020 dnode_children_t *children_dnodes; 01021 dnode_handle_t *dnh; 01022 01023 /* 01024 * If you are holding the spa config lock as writer, you shouldn't 01025 * be asking the DMU to do *anything* unless it's the root pool 01026 * which may require us to read from the root filesystem while 01027 * holding some (not all) of the locks as writer. 01028 */ 01029 ASSERT(spa_config_held(os->os_spa, SCL_ALL, RW_WRITER) == 0 || 01030 (spa_is_root(os->os_spa) && 01031 spa_config_held(os->os_spa, SCL_STATE, RW_WRITER))); 01032 01033 if (object == DMU_USERUSED_OBJECT || object == DMU_GROUPUSED_OBJECT) { 01034 dn = (object == DMU_USERUSED_OBJECT) ? 01035 DMU_USERUSED_DNODE(os) : DMU_GROUPUSED_DNODE(os); 01036 if (dn == NULL) 01037 return (ENOENT); 01038 type = dn->dn_type; 01039 if ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) 01040 return (ENOENT); 01041 if ((flag & DNODE_MUST_BE_FREE) && type != DMU_OT_NONE) 01042 return (EEXIST); 01043 DNODE_VERIFY(dn); 01044 (void) refcount_add(&dn->dn_holds, tag); 01045 *dnp = dn; 01046 return (0); 01047 } 01048 01049 if (object == 0 || object >= DN_MAX_OBJECT) 01050 return (EINVAL); 01051 01052 mdn = DMU_META_DNODE(os); 01053 ASSERT(mdn->dn_object == DMU_META_DNODE_OBJECT); 01054 01055 DNODE_VERIFY(mdn); 01056 01057 if (!RW_WRITE_HELD(&mdn->dn_struct_rwlock)) { 01058 rw_enter(&mdn->dn_struct_rwlock, RW_READER); 01059 drop_struct_lock = TRUE; 01060 } 01061 01062 blk = dbuf_whichblock(mdn, object * sizeof (dnode_phys_t)); 01063 01064 db = dbuf_hold(mdn, blk, FTAG); 01065 if (drop_struct_lock) 01066 rw_exit(&mdn->dn_struct_rwlock); 01067 if (db == NULL) 01068 return (EIO); 01069 err = dbuf_read(db, NULL, DB_RF_CANFAIL); 01070 if (err) { 01071 dbuf_rele(db, FTAG); 01072 return (err); 01073 } 01074 01075 ASSERT3U(db->db.db_size, >=, 1<<DNODE_SHIFT); 01076 epb = db->db.db_size >> DNODE_SHIFT; 01077 01078 idx = object & (epb-1); 01079 01080 ASSERT(DB_DNODE(db)->dn_type == DMU_OT_DNODE); 01081 children_dnodes = dmu_buf_get_user(&db->db); 01082 if (children_dnodes == NULL) { 01083 int i; 01084 dnode_children_t *winner; 01085 children_dnodes = kmem_zalloc(sizeof (dnode_children_t) + 01086 (epb - 1) * sizeof (dnode_handle_t), KM_SLEEP); 01087 children_dnodes->dnc_count = epb; 01088 dnh = &children_dnodes->dnc_children[0]; 01089 for (i = 0; i < epb; i++) { 01090 zrl_init(&dnh[i].dnh_zrlock); 01091 dnh[i].dnh_dnode = NULL; 01092 } 01093 if (winner = dmu_buf_set_user(&db->db, children_dnodes, NULL, 01094 dnode_buf_pageout)) { 01095 kmem_free(children_dnodes, sizeof (dnode_children_t) + 01096 (epb - 1) * sizeof (dnode_handle_t)); 01097 children_dnodes = winner; 01098 } 01099 } 01100 ASSERT(children_dnodes->dnc_count == epb); 01101 01102 dnh = &children_dnodes->dnc_children[idx]; 01103 zrl_add(&dnh->dnh_zrlock); 01104 if ((dn = dnh->dnh_dnode) == NULL) { 01105 dnode_phys_t *phys = (dnode_phys_t *)db->db.db_data+idx; 01106 dnode_t *winner; 01107 01108 dn = dnode_create(os, phys, db, object, dnh); 01109 winner = atomic_cas_ptr(&dnh->dnh_dnode, NULL, dn); 01110 if (winner != NULL) { 01111 zrl_add(&dnh->dnh_zrlock); 01112 dnode_destroy(dn); /* implicit zrl_remove() */ 01113 dn = winner; 01114 } 01115 } 01116 01117 mutex_enter(&dn->dn_mtx); 01118 type = dn->dn_type; 01119 if (dn->dn_free_txg || 01120 ((flag & DNODE_MUST_BE_ALLOCATED) && type == DMU_OT_NONE) || 01121 ((flag & DNODE_MUST_BE_FREE) && 01122 (type != DMU_OT_NONE || !refcount_is_zero(&dn->dn_holds)))) { 01123 mutex_exit(&dn->dn_mtx); 01124 zrl_remove(&dnh->dnh_zrlock); 01125 dbuf_rele(db, FTAG); 01126 return (type == DMU_OT_NONE ? ENOENT : EEXIST); 01127 } 01128 mutex_exit(&dn->dn_mtx); 01129 01130 if (refcount_add(&dn->dn_holds, tag) == 1) 01131 dbuf_add_ref(db, dnh); 01132 /* Now we can rely on the hold to prevent the dnode from moving. */ 01133 zrl_remove(&dnh->dnh_zrlock); 01134 01135 DNODE_VERIFY(dn); 01136 ASSERT3P(dn->dn_dbuf, ==, db); 01137 ASSERT3U(dn->dn_object, ==, object); 01138 dbuf_rele(db, FTAG); 01139 01140 *dnp = dn; 01141 return (0); 01142 } 01143 01147 int 01148 dnode_hold(objset_t *os, uint64_t object, void *tag, dnode_t **dnp) 01149 { 01150 return (dnode_hold_impl(os, object, DNODE_MUST_BE_ALLOCATED, tag, dnp)); 01151 } 01152 01159 boolean_t 01160 dnode_add_ref(dnode_t *dn, void *tag) 01161 { 01162 mutex_enter(&dn->dn_mtx); 01163 if (refcount_is_zero(&dn->dn_holds)) { 01164 mutex_exit(&dn->dn_mtx); 01165 return (FALSE); 01166 } 01167 VERIFY(1 < refcount_add(&dn->dn_holds, tag)); 01168 mutex_exit(&dn->dn_mtx); 01169 return (TRUE); 01170 } 01171 01172 void 01173 dnode_rele(dnode_t *dn, void *tag) 01174 { 01175 uint64_t refs; 01176 /* Get while the hold prevents the dnode from moving. */ 01177 dmu_buf_impl_t *db = dn->dn_dbuf; 01178 dnode_handle_t *dnh = dn->dn_handle; 01179 01180 mutex_enter(&dn->dn_mtx); 01181 refs = refcount_remove(&dn->dn_holds, tag); 01182 mutex_exit(&dn->dn_mtx); 01183 01184 /* 01185 * It's unsafe to release the last hold on a dnode by dnode_rele() or 01186 * indirectly by dbuf_rele() while relying on the dnode handle to 01187 * prevent the dnode from moving, since releasing the last hold could 01188 * result in the dnode's parent dbuf evicting its dnode handles. For 01189 * that reason anyone calling dnode_rele() or dbuf_rele() without some 01190 * other direct or indirect hold on the dnode must first drop the dnode 01191 * handle. 01192 */ 01193 ASSERT(refs > 0 || dnh->dnh_zrlock.zr_owner != curthread); 01194 01195 /* NOTE: the DNODE_DNODE does not have a dn_dbuf */ 01196 if (refs == 0 && db != NULL) { 01197 /* 01198 * Another thread could add a hold to the dnode handle in 01199 * dnode_hold_impl() while holding the parent dbuf. Since the 01200 * hold on the parent dbuf prevents the handle from being 01201 * destroyed, the hold on the handle is OK. We can't yet assert 01202 * that the handle has zero references, but that will be 01203 * asserted anyway when the handle gets destroyed. 01204 */ 01205 dbuf_rele(db, dnh); 01206 } 01207 } 01208 01209 void 01210 dnode_setdirty(dnode_t *dn, dmu_tx_t *tx) 01211 { 01212 objset_t *os = dn->dn_objset; 01213 uint64_t txg = tx->tx_txg; 01214 01215 if (DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 01216 dsl_dataset_dirty(os->os_dsl_dataset, tx); 01217 return; 01218 } 01219 01220 DNODE_VERIFY(dn); 01221 01222 #ifdef ZFS_DEBUG 01223 mutex_enter(&dn->dn_mtx); 01224 ASSERT(dn->dn_phys->dn_type || dn->dn_allocated_txg); 01225 ASSERT(dn->dn_free_txg == 0 || dn->dn_free_txg >= txg); 01226 mutex_exit(&dn->dn_mtx); 01227 #endif 01228 01229 /* 01230 * Determine old uid/gid when necessary 01231 */ 01232 dmu_objset_userquota_get_ids(dn, B_TRUE, tx); 01233 01234 mutex_enter(&os->os_lock); 01235 01236 /* 01237 * If we are already marked dirty, we're done. 01238 */ 01239 if (list_link_active(&dn->dn_dirty_link[txg & TXG_MASK])) { 01240 mutex_exit(&os->os_lock); 01241 return; 01242 } 01243 01244 ASSERT(!refcount_is_zero(&dn->dn_holds) || list_head(&dn->dn_dbufs)); 01245 ASSERT(dn->dn_datablksz != 0); 01246 ASSERT0(dn->dn_next_bonuslen[txg&TXG_MASK]); 01247 ASSERT0(dn->dn_next_blksz[txg&TXG_MASK]); 01248 ASSERT0(dn->dn_next_bonustype[txg&TXG_MASK]); 01249 01250 dprintf_ds(os->os_dsl_dataset, "obj=%llu txg=%llu\n", 01251 dn->dn_object, txg); 01252 01253 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= txg) { 01254 list_insert_tail(&os->os_free_dnodes[txg&TXG_MASK], dn); 01255 } else { 01256 list_insert_tail(&os->os_dirty_dnodes[txg&TXG_MASK], dn); 01257 } 01258 01259 mutex_exit(&os->os_lock); 01260 01261 /* 01262 * The dnode maintains a hold on its containing dbuf as 01263 * long as there are holds on it. Each instantiated child 01264 * dbuf maintains a hold on the dnode. When the last child 01265 * drops its hold, the dnode will drop its hold on the 01266 * containing dbuf. We add a "dirty hold" here so that the 01267 * dnode will hang around after we finish processing its 01268 * children. 01269 */ 01270 VERIFY(dnode_add_ref(dn, (void *)(uintptr_t)tx->tx_txg)); 01271 01272 (void) dbuf_dirty(dn->dn_dbuf, tx); 01273 01274 dsl_dataset_dirty(os->os_dsl_dataset, tx); 01275 } 01276 01277 void 01278 dnode_free(dnode_t *dn, dmu_tx_t *tx) 01279 { 01280 int txgoff = tx->tx_txg & TXG_MASK; 01281 01282 dprintf("dn=%p txg=%llu\n", dn, tx->tx_txg); 01283 01284 /* we should be the only holder... hopefully */ 01285 /* ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); */ 01286 01287 mutex_enter(&dn->dn_mtx); 01288 if (dn->dn_type == DMU_OT_NONE || dn->dn_free_txg) { 01289 mutex_exit(&dn->dn_mtx); 01290 return; 01291 } 01292 dn->dn_free_txg = tx->tx_txg; 01293 mutex_exit(&dn->dn_mtx); 01294 01295 /* 01296 * If the dnode is already dirty, it needs to be moved from 01297 * the dirty list to the free list. 01298 */ 01299 mutex_enter(&dn->dn_objset->os_lock); 01300 if (list_link_active(&dn->dn_dirty_link[txgoff])) { 01301 list_remove(&dn->dn_objset->os_dirty_dnodes[txgoff], dn); 01302 list_insert_tail(&dn->dn_objset->os_free_dnodes[txgoff], dn); 01303 mutex_exit(&dn->dn_objset->os_lock); 01304 } else { 01305 mutex_exit(&dn->dn_objset->os_lock); 01306 dnode_setdirty(dn, tx); 01307 } 01308 } 01309 01314 int 01315 dnode_set_blksz(dnode_t *dn, uint64_t size, int ibs, dmu_tx_t *tx) 01316 { 01317 dmu_buf_impl_t *db, *db_next; 01318 int err; 01319 01320 if (size == 0) 01321 size = SPA_MINBLOCKSIZE; 01322 if (size > SPA_MAXBLOCKSIZE) 01323 size = SPA_MAXBLOCKSIZE; 01324 else 01325 size = P2ROUNDUP(size, SPA_MINBLOCKSIZE); 01326 01327 if (ibs == dn->dn_indblkshift) 01328 ibs = 0; 01329 01330 if (size >> SPA_MINBLOCKSHIFT == dn->dn_datablkszsec && ibs == 0) 01331 return (0); 01332 01333 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 01334 01335 /* Check for any allocated blocks beyond the first */ 01336 if (dn->dn_phys->dn_maxblkid != 0) 01337 goto fail; 01338 01339 mutex_enter(&dn->dn_dbufs_mtx); 01340 for (db = list_head(&dn->dn_dbufs); db; db = db_next) { 01341 db_next = list_next(&dn->dn_dbufs, db); 01342 01343 if (db->db_blkid != 0 && db->db_blkid != DMU_BONUS_BLKID && 01344 db->db_blkid != DMU_SPILL_BLKID) { 01345 mutex_exit(&dn->dn_dbufs_mtx); 01346 goto fail; 01347 } 01348 } 01349 mutex_exit(&dn->dn_dbufs_mtx); 01350 01351 if (ibs && dn->dn_nlevels != 1) 01352 goto fail; 01353 01354 /* resize the old block */ 01355 err = dbuf_hold_impl(dn, 0, 0, TRUE, FTAG, &db); 01356 if (err == 0) 01357 dbuf_new_size(db, size, tx); 01358 else if (err != ENOENT) 01359 goto fail; 01360 01361 dnode_setdblksz(dn, size); 01362 dnode_setdirty(dn, tx); 01363 dn->dn_next_blksz[tx->tx_txg&TXG_MASK] = size; 01364 if (ibs) { 01365 dn->dn_indblkshift = ibs; 01366 dn->dn_next_indblkshift[tx->tx_txg&TXG_MASK] = ibs; 01367 } 01368 /* rele after we have fixed the blocksize in the dnode */ 01369 if (db) 01370 dbuf_rele(db, FTAG); 01371 01372 rw_exit(&dn->dn_struct_rwlock); 01373 return (0); 01374 01375 fail: 01376 rw_exit(&dn->dn_struct_rwlock); 01377 return (ENOTSUP); 01378 } 01379 01381 void 01382 dnode_new_blkid(dnode_t *dn, uint64_t blkid, dmu_tx_t *tx, boolean_t have_read) 01383 { 01384 uint64_t txgoff = tx->tx_txg & TXG_MASK; 01385 int epbs, new_nlevels; 01386 uint64_t sz; 01387 01388 ASSERT(blkid != DMU_BONUS_BLKID); 01389 01390 ASSERT(have_read ? 01391 RW_READ_HELD(&dn->dn_struct_rwlock) : 01392 RW_WRITE_HELD(&dn->dn_struct_rwlock)); 01393 01394 /* 01395 * if we have a read-lock, check to see if we need to do any work 01396 * before upgrading to a write-lock. 01397 */ 01398 if (have_read) { 01399 if (blkid <= dn->dn_maxblkid) 01400 return; 01401 01402 if (!rw_tryupgrade(&dn->dn_struct_rwlock)) { 01403 rw_exit(&dn->dn_struct_rwlock); 01404 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 01405 } 01406 } 01407 01408 if (blkid <= dn->dn_maxblkid) 01409 goto out; 01410 01411 dn->dn_maxblkid = blkid; 01412 01413 /* 01414 * Compute the number of levels necessary to support the new maxblkid. 01415 */ 01416 new_nlevels = 1; 01417 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 01418 for (sz = dn->dn_nblkptr; 01419 sz <= blkid && sz >= dn->dn_nblkptr; sz <<= epbs) 01420 new_nlevels++; 01421 01422 if (new_nlevels > dn->dn_nlevels) { 01423 int old_nlevels = dn->dn_nlevels; 01424 dmu_buf_impl_t *db; 01425 list_t *list; 01426 dbuf_dirty_record_t *new, *dr, *dr_next; 01427 01428 dn->dn_nlevels = new_nlevels; 01429 01430 ASSERT3U(new_nlevels, >, dn->dn_next_nlevels[txgoff]); 01431 dn->dn_next_nlevels[txgoff] = new_nlevels; 01432 01433 /* dirty the left indirects */ 01434 db = dbuf_hold_level(dn, old_nlevels, 0, FTAG); 01435 ASSERT(db != NULL); 01436 new = dbuf_dirty(db, tx); 01437 dbuf_rele(db, FTAG); 01438 01439 /* transfer the dirty records to the new indirect */ 01440 mutex_enter(&dn->dn_mtx); 01441 mutex_enter(&new->dt.di.dr_mtx); 01442 list = &dn->dn_dirty_records[txgoff]; 01443 for (dr = list_head(list); dr; dr = dr_next) { 01444 dr_next = list_next(&dn->dn_dirty_records[txgoff], dr); 01445 if (dr->dr_dbuf->db_level != new_nlevels-1 && 01446 dr->dr_dbuf->db_blkid != DMU_BONUS_BLKID && 01447 dr->dr_dbuf->db_blkid != DMU_SPILL_BLKID) { 01448 ASSERT(dr->dr_dbuf->db_level == old_nlevels-1); 01449 list_remove(&dn->dn_dirty_records[txgoff], dr); 01450 list_insert_tail(&new->dt.di.dr_children, dr); 01451 dr->dr_parent = new; 01452 } 01453 } 01454 mutex_exit(&new->dt.di.dr_mtx); 01455 mutex_exit(&dn->dn_mtx); 01456 } 01457 01458 out: 01459 if (have_read) 01460 rw_downgrade(&dn->dn_struct_rwlock); 01461 } 01462 01463 void 01464 dnode_clear_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 01465 { 01466 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 01467 avl_index_t where; 01468 free_range_t *rp; 01469 free_range_t rp_tofind; 01470 uint64_t endblk = blkid + nblks; 01471 01472 ASSERT(MUTEX_HELD(&dn->dn_mtx)); 01473 ASSERT(nblks <= UINT64_MAX - blkid); /* no overflow */ 01474 01475 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 01476 blkid, nblks, tx->tx_txg); 01477 rp_tofind.fr_blkid = blkid; 01478 rp = avl_find(tree, &rp_tofind, &where); 01479 if (rp == NULL) 01480 rp = avl_nearest(tree, where, AVL_BEFORE); 01481 if (rp == NULL) 01482 rp = avl_nearest(tree, where, AVL_AFTER); 01483 01484 while (rp && (rp->fr_blkid <= blkid + nblks)) { 01485 uint64_t fr_endblk = rp->fr_blkid + rp->fr_nblks; 01486 free_range_t *nrp = AVL_NEXT(tree, rp); 01487 01488 if (blkid <= rp->fr_blkid && endblk >= fr_endblk) { 01489 /* clear this entire range */ 01490 avl_remove(tree, rp); 01491 kmem_free(rp, sizeof (free_range_t)); 01492 } else if (blkid <= rp->fr_blkid && 01493 endblk > rp->fr_blkid && endblk < fr_endblk) { 01494 /* clear the beginning of this range */ 01495 rp->fr_blkid = endblk; 01496 rp->fr_nblks = fr_endblk - endblk; 01497 } else if (blkid > rp->fr_blkid && blkid < fr_endblk && 01498 endblk >= fr_endblk) { 01499 /* clear the end of this range */ 01500 rp->fr_nblks = blkid - rp->fr_blkid; 01501 } else if (blkid > rp->fr_blkid && endblk < fr_endblk) { 01502 /* clear a chunk out of this range */ 01503 free_range_t *new_rp = 01504 kmem_alloc(sizeof (free_range_t), KM_SLEEP); 01505 01506 new_rp->fr_blkid = endblk; 01507 new_rp->fr_nblks = fr_endblk - endblk; 01508 avl_insert_here(tree, new_rp, rp, AVL_AFTER); 01509 rp->fr_nblks = blkid - rp->fr_blkid; 01510 } 01511 /* there may be no overlap */ 01512 rp = nrp; 01513 } 01514 } 01515 01516 void 01517 dnode_free_range(dnode_t *dn, uint64_t off, uint64_t len, dmu_tx_t *tx) 01518 { 01519 dmu_buf_impl_t *db; 01520 uint64_t blkoff, blkid, nblks; 01521 int blksz, blkshift, head, tail; 01522 int trunc = FALSE; 01523 int epbs; 01524 01525 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 01526 blksz = dn->dn_datablksz; 01527 blkshift = dn->dn_datablkshift; 01528 epbs = dn->dn_indblkshift - SPA_BLKPTRSHIFT; 01529 01530 if (len == -1ULL) { 01531 len = UINT64_MAX - off; 01532 trunc = TRUE; 01533 } 01534 01535 /* 01536 * First, block align the region to free: 01537 */ 01538 if (ISP2(blksz)) { 01539 head = P2NPHASE(off, blksz); 01540 blkoff = P2PHASE(off, blksz); 01541 if ((off >> blkshift) > dn->dn_maxblkid) 01542 goto out; 01543 } else { 01544 ASSERT(dn->dn_maxblkid == 0); 01545 if (off == 0 && len >= blksz) { 01546 /* Freeing the whole block; fast-track this request */ 01547 blkid = 0; 01548 nblks = 1; 01549 goto done; 01550 } else if (off >= blksz) { 01551 /* Freeing past end-of-data */ 01552 goto out; 01553 } else { 01554 /* Freeing part of the block. */ 01555 head = blksz - off; 01556 ASSERT3U(head, >, 0); 01557 } 01558 blkoff = off; 01559 } 01560 /* zero out any partial block data at the start of the range */ 01561 if (head) { 01562 ASSERT3U(blkoff + head, ==, blksz); 01563 if (len < head) 01564 head = len; 01565 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off), TRUE, 01566 FTAG, &db) == 0) { 01567 caddr_t data; 01568 01569 /* don't dirty if it isn't on disk and isn't dirty */ 01570 if (db->db_last_dirty || 01571 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 01572 rw_exit(&dn->dn_struct_rwlock); 01573 dbuf_will_dirty(db, tx); 01574 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 01575 data = db->db.db_data; 01576 bzero(data + blkoff, head); 01577 } 01578 dbuf_rele(db, FTAG); 01579 } 01580 off += head; 01581 len -= head; 01582 } 01583 01584 /* If the range was less than one block, we're done */ 01585 if (len == 0) 01586 goto out; 01587 01588 /* If the remaining range is past end of file, we're done */ 01589 if ((off >> blkshift) > dn->dn_maxblkid) 01590 goto out; 01591 01592 ASSERT(ISP2(blksz)); 01593 if (trunc) 01594 tail = 0; 01595 else 01596 tail = P2PHASE(len, blksz); 01597 01598 ASSERT0(P2PHASE(off, blksz)); 01599 /* zero out any partial block data at the end of the range */ 01600 if (tail) { 01601 if (len < tail) 01602 tail = len; 01603 if (dbuf_hold_impl(dn, 0, dbuf_whichblock(dn, off+len), 01604 TRUE, FTAG, &db) == 0) { 01605 /* don't dirty if not on disk and not dirty */ 01606 if (db->db_last_dirty || 01607 (db->db_blkptr && !BP_IS_HOLE(db->db_blkptr))) { 01608 rw_exit(&dn->dn_struct_rwlock); 01609 dbuf_will_dirty(db, tx); 01610 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 01611 bzero(db->db.db_data, tail); 01612 } 01613 dbuf_rele(db, FTAG); 01614 } 01615 len -= tail; 01616 } 01617 01618 /* If the range did not include a full block, we are done */ 01619 if (len == 0) 01620 goto out; 01621 01622 ASSERT(IS_P2ALIGNED(off, blksz)); 01623 ASSERT(trunc || IS_P2ALIGNED(len, blksz)); 01624 blkid = off >> blkshift; 01625 nblks = len >> blkshift; 01626 if (trunc) 01627 nblks += 1; 01628 01629 /* 01630 * Read in and mark all the level-1 indirects dirty, 01631 * so that they will stay in memory until syncing phase. 01632 * Always dirty the first and last indirect to make sure 01633 * we dirty all the partial indirects. 01634 */ 01635 if (dn->dn_nlevels > 1) { 01636 uint64_t i, first, last; 01637 int shift = epbs + dn->dn_datablkshift; 01638 01639 first = blkid >> epbs; 01640 if (db = dbuf_hold_level(dn, 1, first, FTAG)) { 01641 dbuf_will_dirty(db, tx); 01642 dbuf_rele(db, FTAG); 01643 } 01644 if (trunc) 01645 last = dn->dn_maxblkid >> epbs; 01646 else 01647 last = (blkid + nblks - 1) >> epbs; 01648 if (last > first && (db = dbuf_hold_level(dn, 1, last, FTAG))) { 01649 dbuf_will_dirty(db, tx); 01650 dbuf_rele(db, FTAG); 01651 } 01652 for (i = first + 1; i < last; i++) { 01653 uint64_t ibyte = i << shift; 01654 int err; 01655 01656 err = dnode_next_offset(dn, 01657 DNODE_FIND_HAVELOCK, &ibyte, 1, 1, 0); 01658 i = ibyte >> shift; 01659 if (err == ESRCH || i >= last) 01660 break; 01661 ASSERT(err == 0); 01662 db = dbuf_hold_level(dn, 1, i, FTAG); 01663 if (db) { 01664 dbuf_will_dirty(db, tx); 01665 dbuf_rele(db, FTAG); 01666 } 01667 } 01668 } 01669 done: 01670 /* 01671 * Add this range to the dnode range list. 01672 * We will finish up this free operation in the syncing phase. 01673 */ 01674 mutex_enter(&dn->dn_mtx); 01675 dnode_clear_range(dn, blkid, nblks, tx); 01676 { 01677 free_range_t *rp, *found; 01678 avl_index_t where; 01679 avl_tree_t *tree = &dn->dn_ranges[tx->tx_txg&TXG_MASK]; 01680 01681 /* Add new range to dn_ranges */ 01682 rp = kmem_alloc(sizeof (free_range_t), KM_SLEEP); 01683 rp->fr_blkid = blkid; 01684 rp->fr_nblks = nblks; 01685 found = avl_find(tree, rp, &where); 01686 ASSERT(found == NULL); 01687 avl_insert(tree, rp, where); 01688 dprintf_dnode(dn, "blkid=%llu nblks=%llu txg=%llu\n", 01689 blkid, nblks, tx->tx_txg); 01690 } 01691 mutex_exit(&dn->dn_mtx); 01692 01693 dbuf_free_range(dn, blkid, blkid + nblks - 1, tx); 01694 dnode_setdirty(dn, tx); 01695 out: 01696 if (trunc && dn->dn_maxblkid >= (off >> blkshift)) 01697 dn->dn_maxblkid = (off >> blkshift ? (off >> blkshift) - 1 : 0); 01698 01699 rw_exit(&dn->dn_struct_rwlock); 01700 } 01701 01702 static boolean_t 01703 dnode_spill_freed(dnode_t *dn) 01704 { 01705 int i; 01706 01707 mutex_enter(&dn->dn_mtx); 01708 for (i = 0; i < TXG_SIZE; i++) { 01709 if (dn->dn_rm_spillblk[i] == DN_KILL_SPILLBLK) 01710 break; 01711 } 01712 mutex_exit(&dn->dn_mtx); 01713 return (i < TXG_SIZE); 01714 } 01715 01720 uint64_t 01721 dnode_block_freed(dnode_t *dn, uint64_t blkid) 01722 { 01723 free_range_t range_tofind; 01724 void *dp = spa_get_dsl(dn->dn_objset->os_spa); 01725 int i; 01726 01727 if (blkid == DMU_BONUS_BLKID) 01728 return (FALSE); 01729 01730 /* 01731 * If we're in the process of opening the pool, dp will not be 01732 * set yet, but there shouldn't be anything dirty. 01733 */ 01734 if (dp == NULL) 01735 return (FALSE); 01736 01737 if (dn->dn_free_txg) 01738 return (TRUE); 01739 01740 if (blkid == DMU_SPILL_BLKID) 01741 return (dnode_spill_freed(dn)); 01742 01743 range_tofind.fr_blkid = blkid; 01744 mutex_enter(&dn->dn_mtx); 01745 for (i = 0; i < TXG_SIZE; i++) { 01746 free_range_t *range_found; 01747 avl_index_t idx; 01748 01749 range_found = avl_find(&dn->dn_ranges[i], &range_tofind, &idx); 01750 if (range_found) { 01751 ASSERT(range_found->fr_nblks > 0); 01752 break; 01753 } 01754 range_found = avl_nearest(&dn->dn_ranges[i], idx, AVL_BEFORE); 01755 if (range_found && 01756 range_found->fr_blkid + range_found->fr_nblks > blkid) 01757 break; 01758 } 01759 mutex_exit(&dn->dn_mtx); 01760 return (i < TXG_SIZE); 01761 } 01762 01766 void 01767 dnode_diduse_space(dnode_t *dn, int64_t delta) 01768 { 01769 uint64_t space; 01770 dprintf_dnode(dn, "dn=%p dnp=%p used=%llu delta=%lld\n", 01771 dn, dn->dn_phys, 01772 (u_longlong_t)dn->dn_phys->dn_used, 01773 (longlong_t)delta); 01774 01775 mutex_enter(&dn->dn_mtx); 01776 space = DN_USED_BYTES(dn->dn_phys); 01777 if (delta > 0) { 01778 ASSERT3U(space + delta, >=, space); /* no overflow */ 01779 } else { 01780 ASSERT3U(space, >=, -delta); /* no underflow */ 01781 } 01782 space += delta; 01783 if (spa_version(dn->dn_objset->os_spa) < SPA_VERSION_DNODE_BYTES) { 01784 ASSERT((dn->dn_phys->dn_flags & DNODE_FLAG_USED_BYTES) == 0); 01785 ASSERT0(P2PHASE(space, 1<<DEV_BSHIFT)); 01786 dn->dn_phys->dn_used = space >> DEV_BSHIFT; 01787 } else { 01788 dn->dn_phys->dn_used = space; 01789 dn->dn_phys->dn_flags |= DNODE_FLAG_USED_BYTES; 01790 } 01791 mutex_exit(&dn->dn_mtx); 01792 } 01793 01799 void 01800 dnode_willuse_space(dnode_t *dn, int64_t space, dmu_tx_t *tx) 01801 { 01802 objset_t *os = dn->dn_objset; 01803 dsl_dataset_t *ds = os->os_dsl_dataset; 01804 01805 if (space > 0) 01806 space = spa_get_asize(os->os_spa, space); 01807 01808 if (ds) 01809 dsl_dir_willuse_space(ds->ds_dir, space, tx); 01810 01811 dmu_tx_willuse_space(tx, space); 01812 } 01813 01831 static int 01832 dnode_next_offset_level(dnode_t *dn, int flags, uint64_t *offset, 01833 int lvl, uint64_t blkfill, uint64_t txg) 01834 { 01835 dmu_buf_impl_t *db = NULL; 01836 void *data = NULL; 01837 uint64_t epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 01838 uint64_t epb = 1ULL << epbs; 01839 uint64_t minfill, maxfill; 01840 boolean_t hole; 01841 int i, inc, error, span; 01842 01843 dprintf("probing object %llu offset %llx level %d of %u\n", 01844 dn->dn_object, *offset, lvl, dn->dn_phys->dn_nlevels); 01845 01846 hole = ((flags & DNODE_FIND_HOLE) != 0); 01847 inc = (flags & DNODE_FIND_BACKWARDS) ? -1 : 1; 01848 ASSERT(txg == 0 || !hole); 01849 01850 if (lvl == dn->dn_phys->dn_nlevels) { 01851 error = 0; 01852 epb = dn->dn_phys->dn_nblkptr; 01853 data = dn->dn_phys->dn_blkptr; 01854 } else { 01855 uint64_t blkid = dbuf_whichblock(dn, *offset) >> (epbs * lvl); 01856 error = dbuf_hold_impl(dn, lvl, blkid, TRUE, FTAG, &db); 01857 if (error) { 01858 if (error != ENOENT) 01859 return (error); 01860 if (hole) 01861 return (0); 01862 /* 01863 * This can only happen when we are searching up 01864 * the block tree for data. We don't really need to 01865 * adjust the offset, as we will just end up looking 01866 * at the pointer to this block in its parent, and its 01867 * going to be unallocated, so we will skip over it. 01868 */ 01869 return (ESRCH); 01870 } 01871 error = dbuf_read(db, NULL, DB_RF_CANFAIL | DB_RF_HAVESTRUCT); 01872 if (error) { 01873 dbuf_rele(db, FTAG); 01874 return (error); 01875 } 01876 data = db->db.db_data; 01877 } 01878 01879 if (db && txg && 01880 (db->db_blkptr == NULL || db->db_blkptr->blk_birth <= txg)) { 01881 /* 01882 * This can only happen when we are searching up the tree 01883 * and these conditions mean that we need to keep climbing. 01884 */ 01885 error = ESRCH; 01886 } else if (lvl == 0) { 01887 dnode_phys_t *dnp = data; 01888 span = DNODE_SHIFT; 01889 ASSERT(dn->dn_type == DMU_OT_DNODE); 01890 01891 for (i = (*offset >> span) & (blkfill - 1); 01892 i >= 0 && i < blkfill; i += inc) { 01893 if ((dnp[i].dn_type == DMU_OT_NONE) == hole) 01894 break; 01895 *offset += (1ULL << span) * inc; 01896 } 01897 if (i < 0 || i == blkfill) 01898 error = ESRCH; 01899 } else { 01900 blkptr_t *bp = data; 01901 uint64_t start = *offset; 01902 span = (lvl - 1) * epbs + dn->dn_datablkshift; 01903 minfill = 0; 01904 maxfill = blkfill << ((lvl - 1) * epbs); 01905 01906 if (hole) 01907 maxfill--; 01908 else 01909 minfill++; 01910 01911 *offset = *offset >> span; 01912 for (i = BF64_GET(*offset, 0, epbs); 01913 i >= 0 && i < epb; i += inc) { 01914 if (bp[i].blk_fill >= minfill && 01915 bp[i].blk_fill <= maxfill && 01916 (hole || bp[i].blk_birth > txg)) 01917 break; 01918 if (inc > 0 || *offset > 0) 01919 *offset += inc; 01920 } 01921 *offset = *offset << span; 01922 if (inc < 0) { 01923 /* traversing backwards; position offset at the end */ 01924 ASSERT3U(*offset, <=, start); 01925 *offset = MIN(*offset + (1ULL << span) - 1, start); 01926 } else if (*offset < start) { 01927 *offset = start; 01928 } 01929 if (i < 0 || i >= epb) 01930 error = ESRCH; 01931 } 01932 01933 if (db) 01934 dbuf_rele(db, FTAG); 01935 01936 return (error); 01937 } 01938 01962 int 01963 dnode_next_offset(dnode_t *dn, int flags, uint64_t *offset, 01964 int minlvl, uint64_t blkfill, uint64_t txg) 01965 { 01966 uint64_t initial_offset = *offset; 01967 int lvl, maxlvl; 01968 int error = 0; 01969 01970 if (!(flags & DNODE_FIND_HAVELOCK)) 01971 rw_enter(&dn->dn_struct_rwlock, RW_READER); 01972 01973 if (dn->dn_phys->dn_nlevels == 0) { 01974 error = ESRCH; 01975 goto out; 01976 } 01977 01978 if (dn->dn_datablkshift == 0) { 01979 if (*offset < dn->dn_datablksz) { 01980 if (flags & DNODE_FIND_HOLE) 01981 *offset = dn->dn_datablksz; 01982 } else { 01983 error = ESRCH; 01984 } 01985 goto out; 01986 } 01987 01988 maxlvl = dn->dn_phys->dn_nlevels; 01989 01990 for (lvl = minlvl; lvl <= maxlvl; lvl++) { 01991 error = dnode_next_offset_level(dn, 01992 flags, offset, lvl, blkfill, txg); 01993 if (error != ESRCH) 01994 break; 01995 } 01996 01997 while (error == 0 && --lvl >= minlvl) { 01998 error = dnode_next_offset_level(dn, 01999 flags, offset, lvl, blkfill, txg); 02000 } 02001 02002 if (error == 0 && (flags & DNODE_FIND_BACKWARDS ? 02003 initial_offset < *offset : initial_offset > *offset)) 02004 error = ESRCH; 02005 out: 02006 if (!(flags & DNODE_FIND_HAVELOCK)) 02007 rw_exit(&dn->dn_struct_rwlock); 02008 02009 return (error); 02010 }