FreeBSD ZFS
The Zettabyte File System
|
00001 /* 00002 * CDDL HEADER START 00003 * 00004 * The contents of this file are subject to the terms of the 00005 * Common Development and Distribution License (the "License"). 00006 * You may not use this file except in compliance with the License. 00007 * 00008 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 00009 * or http://www.opensolaris.org/os/licensing. 00010 * See the License for the specific language governing permissions 00011 * and limitations under the License. 00012 * 00013 * When distributing Covered Code, include this CDDL HEADER in each 00014 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 00015 * If applicable, add the following below this CDDL HEADER, with the 00016 * fields enclosed by brackets "[]" replaced with your own identifying 00017 * information: Portions Copyright [yyyy] [name of copyright owner] 00018 * 00019 * CDDL HEADER END 00020 */ 00021 00022 /* 00023 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 00024 * Copyright (c) 2012 by Delphix. All rights reserved. 00025 */ 00026 00027 #include <sys/zfs_context.h> 00028 #include <sys/dbuf.h> 00029 #include <sys/dnode.h> 00030 #include <sys/dmu.h> 00031 #include <sys/dmu_tx.h> 00032 #include <sys/dmu_objset.h> 00033 #include <sys/dsl_dataset.h> 00034 #include <sys/spa.h> 00035 00036 static void 00037 dnode_increase_indirection(dnode_t *dn, dmu_tx_t *tx) 00038 { 00039 dmu_buf_impl_t *db; 00040 int txgoff = tx->tx_txg & TXG_MASK; 00041 int nblkptr = dn->dn_phys->dn_nblkptr; 00042 int old_toplvl = dn->dn_phys->dn_nlevels - 1; 00043 int new_level = dn->dn_next_nlevels[txgoff]; 00044 int i; 00045 00046 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 00047 00048 /* this dnode can't be paged out because it's dirty */ 00049 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 00050 ASSERT(RW_WRITE_HELD(&dn->dn_struct_rwlock)); 00051 ASSERT(new_level > 1 && dn->dn_phys->dn_nlevels > 0); 00052 00053 db = dbuf_hold_level(dn, dn->dn_phys->dn_nlevels, 0, FTAG); 00054 ASSERT(db != NULL); 00055 00056 dn->dn_phys->dn_nlevels = new_level; 00057 dprintf("os=%p obj=%llu, increase to %d\n", dn->dn_objset, 00058 dn->dn_object, dn->dn_phys->dn_nlevels); 00059 00060 /* check for existing blkptrs in the dnode */ 00061 for (i = 0; i < nblkptr; i++) 00062 if (!BP_IS_HOLE(&dn->dn_phys->dn_blkptr[i])) 00063 break; 00064 if (i != nblkptr) { 00065 /* transfer dnode's block pointers to new indirect block */ 00066 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED|DB_RF_HAVESTRUCT); 00067 ASSERT(db->db.db_data); 00068 ASSERT(arc_released(db->db_buf)); 00069 ASSERT3U(sizeof (blkptr_t) * nblkptr, <=, db->db.db_size); 00070 bcopy(dn->dn_phys->dn_blkptr, db->db.db_data, 00071 sizeof (blkptr_t) * nblkptr); 00072 arc_buf_freeze(db->db_buf); 00073 } 00074 00075 /* set dbuf's parent pointers to new indirect buf */ 00076 for (i = 0; i < nblkptr; i++) { 00077 dmu_buf_impl_t *child = dbuf_find(dn, old_toplvl, i); 00078 00079 if (child == NULL) 00080 continue; 00081 #ifdef DEBUG 00082 DB_DNODE_ENTER(child); 00083 ASSERT3P(DB_DNODE(child), ==, dn); 00084 DB_DNODE_EXIT(child); 00085 #endif /* DEBUG */ 00086 if (child->db_parent && child->db_parent != dn->dn_dbuf) { 00087 ASSERT(child->db_parent->db_level == db->db_level); 00088 ASSERT(child->db_blkptr != 00089 &dn->dn_phys->dn_blkptr[child->db_blkid]); 00090 mutex_exit(&child->db_mtx); 00091 continue; 00092 } 00093 ASSERT(child->db_parent == NULL || 00094 child->db_parent == dn->dn_dbuf); 00095 00096 child->db_parent = db; 00097 dbuf_add_ref(db, child); 00098 if (db->db.db_data) 00099 child->db_blkptr = (blkptr_t *)db->db.db_data + i; 00100 else 00101 child->db_blkptr = NULL; 00102 dprintf_dbuf_bp(child, child->db_blkptr, 00103 "changed db_blkptr to new indirect %s", ""); 00104 00105 mutex_exit(&child->db_mtx); 00106 } 00107 00108 bzero(dn->dn_phys->dn_blkptr, sizeof (blkptr_t) * nblkptr); 00109 00110 dbuf_rele(db, FTAG); 00111 00112 rw_exit(&dn->dn_struct_rwlock); 00113 } 00114 00115 static int 00116 free_blocks(dnode_t *dn, blkptr_t *bp, int num, dmu_tx_t *tx) 00117 { 00118 dsl_dataset_t *ds = dn->dn_objset->os_dsl_dataset; 00119 uint64_t bytesfreed = 0; 00120 int i, blocks_freed = 0; 00121 00122 dprintf("ds=%p obj=%llx num=%d\n", ds, dn->dn_object, num); 00123 00124 for (i = 0; i < num; i++, bp++) { 00125 if (BP_IS_HOLE(bp)) 00126 continue; 00127 00128 bytesfreed += dsl_dataset_block_kill(ds, bp, tx, B_FALSE); 00129 ASSERT3U(bytesfreed, <=, DN_USED_BYTES(dn->dn_phys)); 00130 bzero(bp, sizeof (blkptr_t)); 00131 blocks_freed += 1; 00132 } 00133 dnode_diduse_space(dn, -bytesfreed); 00134 return (blocks_freed); 00135 } 00136 00137 #ifdef ZFS_DEBUG 00138 static void 00139 free_verify(dmu_buf_impl_t *db, uint64_t start, uint64_t end, dmu_tx_t *tx) 00140 { 00141 int off, num; 00142 int i, err, epbs; 00143 uint64_t txg = tx->tx_txg; 00144 dnode_t *dn; 00145 00146 DB_DNODE_ENTER(db); 00147 dn = DB_DNODE(db); 00148 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 00149 off = start - (db->db_blkid * 1<<epbs); 00150 num = end - start + 1; 00151 00152 ASSERT3U(off, >=, 0); 00153 ASSERT3U(num, >=, 0); 00154 ASSERT3U(db->db_level, >, 0); 00155 ASSERT3U(db->db.db_size, ==, 1 << dn->dn_phys->dn_indblkshift); 00156 ASSERT3U(off+num, <=, db->db.db_size >> SPA_BLKPTRSHIFT); 00157 ASSERT(db->db_blkptr != NULL); 00158 00159 for (i = off; i < off+num; i++) { 00160 uint64_t *buf; 00161 dmu_buf_impl_t *child; 00162 dbuf_dirty_record_t *dr; 00163 int j; 00164 00165 ASSERT(db->db_level == 1); 00166 00167 rw_enter(&dn->dn_struct_rwlock, RW_READER); 00168 err = dbuf_hold_impl(dn, db->db_level-1, 00169 (db->db_blkid << epbs) + i, TRUE, FTAG, &child); 00170 rw_exit(&dn->dn_struct_rwlock); 00171 if (err == ENOENT) 00172 continue; 00173 ASSERT(err == 0); 00174 ASSERT(child->db_level == 0); 00175 dr = child->db_last_dirty; 00176 while (dr && dr->dr_txg > txg) 00177 dr = dr->dr_next; 00178 ASSERT(dr == NULL || dr->dr_txg == txg); 00179 00180 /* data_old better be zeroed */ 00181 if (dr) { 00182 buf = dr->dt.dl.dr_data->b_data; 00183 for (j = 0; j < child->db.db_size >> 3; j++) { 00184 if (buf[j] != 0) { 00185 panic("freed data not zero: " 00186 "child=%p i=%d off=%d num=%d\n", 00187 (void *)child, i, off, num); 00188 } 00189 } 00190 } 00191 00192 /* 00193 * db_data better be zeroed unless it's dirty in a 00194 * future txg. 00195 */ 00196 mutex_enter(&child->db_mtx); 00197 buf = child->db.db_data; 00198 if (buf != NULL && child->db_state != DB_FILL && 00199 child->db_last_dirty == NULL) { 00200 for (j = 0; j < child->db.db_size >> 3; j++) { 00201 if (buf[j] != 0) { 00202 panic("freed data not zero: " 00203 "child=%p i=%d off=%d num=%d\n", 00204 (void *)child, i, off, num); 00205 } 00206 } 00207 } 00208 mutex_exit(&child->db_mtx); 00209 00210 dbuf_rele(child, FTAG); 00211 } 00212 DB_DNODE_EXIT(db); 00213 } 00214 #endif 00215 00216 #define ALL -1 00217 00218 static int 00219 free_children(dmu_buf_impl_t *db, uint64_t blkid, uint64_t nblks, int trunc, 00220 dmu_tx_t *tx) 00221 { 00222 dnode_t *dn; 00223 blkptr_t *bp; 00224 dmu_buf_impl_t *subdb; 00225 uint64_t start, end, dbstart, dbend, i; 00226 int epbs, shift, err; 00227 int all = TRUE; 00228 int blocks_freed = 0; 00229 00230 /* 00231 * There is a small possibility that this block will not be cached: 00232 * 1 - if level > 1 and there are no children with level <= 1 00233 * 2 - if we didn't get a dirty hold (because this block had just 00234 * finished being written -- and so had no holds), and then this 00235 * block got evicted before we got here. 00236 */ 00237 if (db->db_state != DB_CACHED) 00238 (void) dbuf_read(db, NULL, DB_RF_MUST_SUCCEED); 00239 00240 dbuf_release_bp(db); 00241 bp = (blkptr_t *)db->db.db_data; 00242 00243 DB_DNODE_ENTER(db); 00244 dn = DB_DNODE(db); 00245 epbs = dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT; 00246 shift = (db->db_level - 1) * epbs; 00247 dbstart = db->db_blkid << epbs; 00248 start = blkid >> shift; 00249 if (dbstart < start) { 00250 bp += start - dbstart; 00251 all = FALSE; 00252 } else { 00253 start = dbstart; 00254 } 00255 dbend = ((db->db_blkid + 1) << epbs) - 1; 00256 end = (blkid + nblks - 1) >> shift; 00257 if (dbend <= end) 00258 end = dbend; 00259 else if (all) 00260 all = trunc; 00261 ASSERT3U(start, <=, end); 00262 00263 if (db->db_level == 1) { 00264 FREE_VERIFY(db, start, end, tx); 00265 blocks_freed = free_blocks(dn, bp, end-start+1, tx); 00266 arc_buf_freeze(db->db_buf); 00267 ASSERT(all || blocks_freed == 0 || db->db_last_dirty); 00268 DB_DNODE_EXIT(db); 00269 return (all ? ALL : blocks_freed); 00270 } 00271 00272 for (i = start; i <= end; i++, bp++) { 00273 if (BP_IS_HOLE(bp)) 00274 continue; 00275 rw_enter(&dn->dn_struct_rwlock, RW_READER); 00276 err = dbuf_hold_impl(dn, db->db_level-1, i, TRUE, FTAG, &subdb); 00277 ASSERT0(err); 00278 rw_exit(&dn->dn_struct_rwlock); 00279 00280 if (free_children(subdb, blkid, nblks, trunc, tx) == ALL) { 00281 ASSERT3P(subdb->db_blkptr, ==, bp); 00282 blocks_freed += free_blocks(dn, bp, 1, tx); 00283 } else { 00284 all = FALSE; 00285 } 00286 dbuf_rele(subdb, FTAG); 00287 } 00288 DB_DNODE_EXIT(db); 00289 arc_buf_freeze(db->db_buf); 00290 #ifdef ZFS_DEBUG 00291 bp -= (end-start)+1; 00292 for (i = start; i <= end; i++, bp++) { 00293 if (i == start && blkid != 0) 00294 continue; 00295 else if (i == end && !trunc) 00296 continue; 00297 ASSERT0(bp->blk_birth); 00298 } 00299 #endif 00300 ASSERT(all || blocks_freed == 0 || db->db_last_dirty); 00301 return (all ? ALL : blocks_freed); 00302 } 00303 00308 static void 00309 dnode_sync_free_range(dnode_t *dn, uint64_t blkid, uint64_t nblks, dmu_tx_t *tx) 00310 { 00311 blkptr_t *bp = dn->dn_phys->dn_blkptr; 00312 dmu_buf_impl_t *db; 00313 int trunc, start, end, shift, i, err; 00314 int dnlevel = dn->dn_phys->dn_nlevels; 00315 00316 if (blkid > dn->dn_phys->dn_maxblkid) 00317 return; 00318 00319 ASSERT(dn->dn_phys->dn_maxblkid < UINT64_MAX); 00320 trunc = blkid + nblks > dn->dn_phys->dn_maxblkid; 00321 if (trunc) 00322 nblks = dn->dn_phys->dn_maxblkid - blkid + 1; 00323 00324 /* There are no indirect blocks in the object */ 00325 if (dnlevel == 1) { 00326 if (blkid >= dn->dn_phys->dn_nblkptr) { 00327 /* this range was never made persistent */ 00328 return; 00329 } 00330 ASSERT3U(blkid + nblks, <=, dn->dn_phys->dn_nblkptr); 00331 (void) free_blocks(dn, bp + blkid, nblks, tx); 00332 if (trunc) { 00333 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) * 00334 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 00335 dn->dn_phys->dn_maxblkid = (blkid ? blkid - 1 : 0); 00336 ASSERT(off < dn->dn_phys->dn_maxblkid || 00337 dn->dn_phys->dn_maxblkid == 0 || 00338 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 00339 } 00340 return; 00341 } 00342 00343 shift = (dnlevel - 1) * (dn->dn_phys->dn_indblkshift - SPA_BLKPTRSHIFT); 00344 start = blkid >> shift; 00345 ASSERT(start < dn->dn_phys->dn_nblkptr); 00346 end = (blkid + nblks - 1) >> shift; 00347 bp += start; 00348 for (i = start; i <= end; i++, bp++) { 00349 if (BP_IS_HOLE(bp)) 00350 continue; 00351 rw_enter(&dn->dn_struct_rwlock, RW_READER); 00352 err = dbuf_hold_impl(dn, dnlevel-1, i, TRUE, FTAG, &db); 00353 ASSERT0(err); 00354 rw_exit(&dn->dn_struct_rwlock); 00355 00356 if (free_children(db, blkid, nblks, trunc, tx) == ALL) { 00357 ASSERT3P(db->db_blkptr, ==, bp); 00358 (void) free_blocks(dn, bp, 1, tx); 00359 } 00360 dbuf_rele(db, FTAG); 00361 } 00362 if (trunc) { 00363 uint64_t off = (dn->dn_phys->dn_maxblkid + 1) * 00364 (dn->dn_phys->dn_datablkszsec << SPA_MINBLOCKSHIFT); 00365 dn->dn_phys->dn_maxblkid = (blkid ? blkid - 1 : 0); 00366 ASSERT(off < dn->dn_phys->dn_maxblkid || 00367 dn->dn_phys->dn_maxblkid == 0 || 00368 dnode_next_offset(dn, 0, &off, 1, 1, 0) != 0); 00369 } 00370 } 00371 00375 void 00376 dnode_evict_dbufs(dnode_t *dn) 00377 { 00378 int progress; 00379 int pass = 0; 00380 00381 do { 00382 dmu_buf_impl_t *db, marker; 00383 int evicting = FALSE; 00384 00385 progress = FALSE; 00386 mutex_enter(&dn->dn_dbufs_mtx); 00387 list_insert_tail(&dn->dn_dbufs, &marker); 00388 db = list_head(&dn->dn_dbufs); 00389 for (; db != ▮ db = list_head(&dn->dn_dbufs)) { 00390 list_remove(&dn->dn_dbufs, db); 00391 list_insert_tail(&dn->dn_dbufs, db); 00392 #ifdef DEBUG 00393 DB_DNODE_ENTER(db); 00394 ASSERT3P(DB_DNODE(db), ==, dn); 00395 DB_DNODE_EXIT(db); 00396 #endif /* DEBUG */ 00397 00398 mutex_enter(&db->db_mtx); 00399 if (db->db_state == DB_EVICTING) { 00400 progress = TRUE; 00401 evicting = TRUE; 00402 mutex_exit(&db->db_mtx); 00403 } else if (refcount_is_zero(&db->db_holds)) { 00404 progress = TRUE; 00405 dbuf_clear(db); /* exits db_mtx for us */ 00406 } else { 00407 mutex_exit(&db->db_mtx); 00408 } 00409 00410 } 00411 list_remove(&dn->dn_dbufs, &marker); 00412 /* 00413 * NB: we need to drop dn_dbufs_mtx between passes so 00414 * that any DB_EVICTING dbufs can make progress. 00415 * Ideally, we would have some cv we could wait on, but 00416 * since we don't, just wait a bit to give the other 00417 * thread a chance to run. 00418 */ 00419 mutex_exit(&dn->dn_dbufs_mtx); 00420 if (evicting) 00421 delay(1); 00422 pass++; 00423 ASSERT(pass < 100); /* sanity check */ 00424 } while (progress); 00425 00426 rw_enter(&dn->dn_struct_rwlock, RW_WRITER); 00427 if (dn->dn_bonus && refcount_is_zero(&dn->dn_bonus->db_holds)) { 00428 mutex_enter(&dn->dn_bonus->db_mtx); 00429 dbuf_evict(dn->dn_bonus); 00430 dn->dn_bonus = NULL; 00431 } 00432 rw_exit(&dn->dn_struct_rwlock); 00433 } 00434 00435 static void 00436 dnode_undirty_dbufs(list_t *list) 00437 { 00438 dbuf_dirty_record_t *dr; 00439 00440 while (dr = list_head(list)) { 00441 dmu_buf_impl_t *db = dr->dr_dbuf; 00442 uint64_t txg = dr->dr_txg; 00443 00444 if (db->db_level != 0) 00445 dnode_undirty_dbufs(&dr->dt.di.dr_children); 00446 00447 mutex_enter(&db->db_mtx); 00448 /* XXX - use dbuf_undirty()? */ 00449 list_remove(list, dr); 00450 ASSERT(db->db_last_dirty == dr); 00451 db->db_last_dirty = NULL; 00452 db->db_dirtycnt -= 1; 00453 if (db->db_level == 0) { 00454 ASSERT(db->db_blkid == DMU_BONUS_BLKID || 00455 dr->dt.dl.dr_data == db->db_buf); 00456 dbuf_unoverride(dr); 00457 } else { 00458 list_destroy(&dr->dt.di.dr_children); 00459 mutex_destroy(&dr->dt.di.dr_mtx); 00460 } 00461 kmem_free(dr, sizeof (dbuf_dirty_record_t)); 00462 dbuf_rele_and_unlock(db, (void *)(uintptr_t)txg); 00463 } 00464 } 00465 00466 static void 00467 dnode_sync_free(dnode_t *dn, dmu_tx_t *tx) 00468 { 00469 int txgoff = tx->tx_txg & TXG_MASK; 00470 00471 ASSERT(dmu_tx_is_syncing(tx)); 00472 00473 /* 00474 * Our contents should have been freed in dnode_sync() by the 00475 * free range record inserted by the caller of dnode_free(). 00476 */ 00477 ASSERT0(DN_USED_BYTES(dn->dn_phys)); 00478 ASSERT(BP_IS_HOLE(dn->dn_phys->dn_blkptr)); 00479 00480 dnode_undirty_dbufs(&dn->dn_dirty_records[txgoff]); 00481 dnode_evict_dbufs(dn); 00482 ASSERT3P(list_head(&dn->dn_dbufs), ==, NULL); 00483 00484 /* 00485 * XXX - It would be nice to assert this, but we may still 00486 * have residual holds from async evictions from the arc... 00487 * 00488 * zfs_obj_to_path() also depends on this being 00489 * commented out. 00490 * 00491 * ASSERT3U(refcount_count(&dn->dn_holds), ==, 1); 00492 */ 00493 00494 /* Undirty next bits */ 00495 dn->dn_next_nlevels[txgoff] = 0; 00496 dn->dn_next_indblkshift[txgoff] = 0; 00497 dn->dn_next_blksz[txgoff] = 0; 00498 00499 /* ASSERT(blkptrs are zero); */ 00500 ASSERT(dn->dn_phys->dn_type != DMU_OT_NONE); 00501 ASSERT(dn->dn_type != DMU_OT_NONE); 00502 00503 ASSERT(dn->dn_free_txg > 0); 00504 if (dn->dn_allocated_txg != dn->dn_free_txg) 00505 dbuf_will_dirty(dn->dn_dbuf, tx); 00506 bzero(dn->dn_phys, sizeof (dnode_phys_t)); 00507 00508 mutex_enter(&dn->dn_mtx); 00509 dn->dn_type = DMU_OT_NONE; 00510 dn->dn_maxblkid = 0; 00511 dn->dn_allocated_txg = 0; 00512 dn->dn_free_txg = 0; 00513 dn->dn_have_spill = B_FALSE; 00514 mutex_exit(&dn->dn_mtx); 00515 00516 ASSERT(dn->dn_object != DMU_META_DNODE_OBJECT); 00517 00518 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 00519 /* 00520 * Now that we've released our hold, the dnode may 00521 * be evicted, so we musn't access it. 00522 */ 00523 } 00524 00528 void 00529 dnode_sync(dnode_t *dn, dmu_tx_t *tx) 00530 { 00531 free_range_t *rp; 00532 dnode_phys_t *dnp = dn->dn_phys; 00533 int txgoff = tx->tx_txg & TXG_MASK; 00534 list_t *list = &dn->dn_dirty_records[txgoff]; 00535 static const dnode_phys_t zerodn = { 0 }; 00536 boolean_t kill_spill = B_FALSE; 00537 00538 ASSERT(dmu_tx_is_syncing(tx)); 00539 ASSERT(dnp->dn_type != DMU_OT_NONE || dn->dn_allocated_txg); 00540 ASSERT(dnp->dn_type != DMU_OT_NONE || 00541 bcmp(dnp, &zerodn, DNODE_SIZE) == 0); 00542 DNODE_VERIFY(dn); 00543 00544 ASSERT(dn->dn_dbuf == NULL || arc_released(dn->dn_dbuf->db_buf)); 00545 00546 if (dmu_objset_userused_enabled(dn->dn_objset) && 00547 !DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 00548 mutex_enter(&dn->dn_mtx); 00549 dn->dn_oldused = DN_USED_BYTES(dn->dn_phys); 00550 dn->dn_oldflags = dn->dn_phys->dn_flags; 00551 dn->dn_phys->dn_flags |= DNODE_FLAG_USERUSED_ACCOUNTED; 00552 mutex_exit(&dn->dn_mtx); 00553 dmu_objset_userquota_get_ids(dn, B_FALSE, tx); 00554 } else { 00555 /* Once we account for it, we should always account for it. */ 00556 ASSERT(!(dn->dn_phys->dn_flags & 00557 DNODE_FLAG_USERUSED_ACCOUNTED)); 00558 } 00559 00560 mutex_enter(&dn->dn_mtx); 00561 if (dn->dn_allocated_txg == tx->tx_txg) { 00562 /* The dnode is newly allocated or reallocated */ 00563 if (dnp->dn_type == DMU_OT_NONE) { 00564 /* this is a first alloc, not a realloc */ 00565 dnp->dn_nlevels = 1; 00566 dnp->dn_nblkptr = dn->dn_nblkptr; 00567 } 00568 00569 dnp->dn_type = dn->dn_type; 00570 dnp->dn_bonustype = dn->dn_bonustype; 00571 dnp->dn_bonuslen = dn->dn_bonuslen; 00572 } 00573 00574 ASSERT(dnp->dn_nlevels > 1 || 00575 BP_IS_HOLE(&dnp->dn_blkptr[0]) || 00576 BP_GET_LSIZE(&dnp->dn_blkptr[0]) == 00577 dnp->dn_datablkszsec << SPA_MINBLOCKSHIFT); 00578 00579 if (dn->dn_next_blksz[txgoff]) { 00580 ASSERT(P2PHASE(dn->dn_next_blksz[txgoff], 00581 SPA_MINBLOCKSIZE) == 0); 00582 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[0]) || 00583 dn->dn_maxblkid == 0 || list_head(list) != NULL || 00584 avl_last(&dn->dn_ranges[txgoff]) || 00585 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT == 00586 dnp->dn_datablkszsec); 00587 dnp->dn_datablkszsec = 00588 dn->dn_next_blksz[txgoff] >> SPA_MINBLOCKSHIFT; 00589 dn->dn_next_blksz[txgoff] = 0; 00590 } 00591 00592 if (dn->dn_next_bonuslen[txgoff]) { 00593 if (dn->dn_next_bonuslen[txgoff] == DN_ZERO_BONUSLEN) 00594 dnp->dn_bonuslen = 0; 00595 else 00596 dnp->dn_bonuslen = dn->dn_next_bonuslen[txgoff]; 00597 ASSERT(dnp->dn_bonuslen <= DN_MAX_BONUSLEN); 00598 dn->dn_next_bonuslen[txgoff] = 0; 00599 } 00600 00601 if (dn->dn_next_bonustype[txgoff]) { 00602 ASSERT(DMU_OT_IS_VALID(dn->dn_next_bonustype[txgoff])); 00603 dnp->dn_bonustype = dn->dn_next_bonustype[txgoff]; 00604 dn->dn_next_bonustype[txgoff] = 0; 00605 } 00606 00607 /* 00608 * We will either remove a spill block when a file is being removed 00609 * or we have been asked to remove it. 00610 */ 00611 if (dn->dn_rm_spillblk[txgoff] || 00612 ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR) && 00613 dn->dn_free_txg > 0 && dn->dn_free_txg <= tx->tx_txg)) { 00614 if ((dnp->dn_flags & DNODE_FLAG_SPILL_BLKPTR)) 00615 kill_spill = B_TRUE; 00616 dn->dn_rm_spillblk[txgoff] = 0; 00617 } 00618 00619 if (dn->dn_next_indblkshift[txgoff]) { 00620 ASSERT(dnp->dn_nlevels == 1); 00621 dnp->dn_indblkshift = dn->dn_next_indblkshift[txgoff]; 00622 dn->dn_next_indblkshift[txgoff] = 0; 00623 } 00624 00625 /* 00626 * Just take the live (open-context) values for checksum and compress. 00627 * Strictly speaking it's a future leak, but nothing bad happens if we 00628 * start using the new checksum or compress algorithm a little early. 00629 */ 00630 dnp->dn_checksum = dn->dn_checksum; 00631 dnp->dn_compress = dn->dn_compress; 00632 00633 mutex_exit(&dn->dn_mtx); 00634 00635 if (kill_spill) { 00636 (void) free_blocks(dn, &dn->dn_phys->dn_spill, 1, tx); 00637 mutex_enter(&dn->dn_mtx); 00638 dnp->dn_flags &= ~DNODE_FLAG_SPILL_BLKPTR; 00639 mutex_exit(&dn->dn_mtx); 00640 } 00641 00642 /* process all the "freed" ranges in the file */ 00643 while (rp = avl_last(&dn->dn_ranges[txgoff])) { 00644 dnode_sync_free_range(dn, rp->fr_blkid, rp->fr_nblks, tx); 00645 /* grab the mutex so we don't race with dnode_block_freed() */ 00646 mutex_enter(&dn->dn_mtx); 00647 avl_remove(&dn->dn_ranges[txgoff], rp); 00648 mutex_exit(&dn->dn_mtx); 00649 kmem_free(rp, sizeof (free_range_t)); 00650 } 00651 00652 if (dn->dn_free_txg > 0 && dn->dn_free_txg <= tx->tx_txg) { 00653 dnode_sync_free(dn, tx); 00654 return; 00655 } 00656 00657 if (dn->dn_next_nblkptr[txgoff]) { 00658 /* this should only happen on a realloc */ 00659 ASSERT(dn->dn_allocated_txg == tx->tx_txg); 00660 if (dn->dn_next_nblkptr[txgoff] > dnp->dn_nblkptr) { 00661 /* zero the new blkptrs we are gaining */ 00662 bzero(dnp->dn_blkptr + dnp->dn_nblkptr, 00663 sizeof (blkptr_t) * 00664 (dn->dn_next_nblkptr[txgoff] - dnp->dn_nblkptr)); 00665 #ifdef ZFS_DEBUG 00666 } else { 00667 int i; 00668 ASSERT(dn->dn_next_nblkptr[txgoff] < dnp->dn_nblkptr); 00669 /* the blkptrs we are losing better be unallocated */ 00670 for (i = dn->dn_next_nblkptr[txgoff]; 00671 i < dnp->dn_nblkptr; i++) 00672 ASSERT(BP_IS_HOLE(&dnp->dn_blkptr[i])); 00673 #endif 00674 } 00675 mutex_enter(&dn->dn_mtx); 00676 dnp->dn_nblkptr = dn->dn_next_nblkptr[txgoff]; 00677 dn->dn_next_nblkptr[txgoff] = 0; 00678 mutex_exit(&dn->dn_mtx); 00679 } 00680 00681 if (dn->dn_next_nlevels[txgoff]) { 00682 dnode_increase_indirection(dn, tx); 00683 dn->dn_next_nlevels[txgoff] = 0; 00684 } 00685 00686 dbuf_sync_list(list, tx); 00687 00688 if (!DMU_OBJECT_IS_SPECIAL(dn->dn_object)) { 00689 ASSERT3P(list_head(list), ==, NULL); 00690 dnode_rele(dn, (void *)(uintptr_t)tx->tx_txg); 00691 } 00692 00693 /* 00694 * Although we have dropped our reference to the dnode, it 00695 * can't be evicted until its written, and we haven't yet 00696 * initiated the IO for the dnode's dbuf. 00697 */ 00698 }