FreeBSD ZFS
The Zettabyte File System
|
00001 /* 00002 * CDDL HEADER START 00003 * 00004 * The contents of this file are subject to the terms of the 00005 * Common Development and Distribution License (the "License"). 00006 * You may not use this file except in compliance with the License. 00007 * 00008 * You can obtain a copy of the license at usr/src/OPENSOLARIS.LICENSE 00009 * or http://www.opensolaris.org/os/licensing. 00010 * See the License for the specific language governing permissions 00011 * and limitations under the License. 00012 * 00013 * When distributing Covered Code, include this CDDL HEADER in each 00014 * file and include the License file at usr/src/OPENSOLARIS.LICENSE. 00015 * If applicable, add the following below this CDDL HEADER, with the 00016 * fields enclosed by brackets "[]" replaced with your own identifying 00017 * information: Portions Copyright [yyyy] [name of copyright owner] 00018 * 00019 * CDDL HEADER END 00020 */ 00021 00022 /* 00023 * Copyright (c) 2005, 2010, Oracle and/or its affiliates. All rights reserved. 00024 * Copyright (c) 2012 by Delphix. All rights reserved. 00025 */ 00026 00134 #include <sys/zfs_context.h> 00135 #include <sys/spa.h> 00136 #include <sys/spa_impl.h> 00137 #include <sys/dmu.h> 00138 #include <sys/zap.h> 00139 #include <sys/vdev.h> 00140 #include <sys/vdev_impl.h> 00141 #include <sys/uberblock_impl.h> 00142 #include <sys/metaslab.h> 00143 #include <sys/zio.h> 00144 #include <sys/dsl_scan.h> 00145 #include <sys/trim_map.h> 00146 #include <sys/fs/zfs.h> 00147 00152 uint64_t 00153 vdev_label_offset(uint64_t psize, int l, uint64_t offset) 00154 { 00155 ASSERT(offset < sizeof (vdev_label_t)); 00156 ASSERT(P2PHASE_TYPED(psize, sizeof (vdev_label_t), uint64_t) == 0); 00157 00158 return (offset + l * sizeof (vdev_label_t) + (l < VDEV_LABELS / 2 ? 00159 0 : psize - VDEV_LABELS * sizeof (vdev_label_t))); 00160 } 00161 00165 int 00166 vdev_label_number(uint64_t psize, uint64_t offset) 00167 { 00168 int l; 00169 00170 if (offset >= psize - VDEV_LABEL_END_SIZE) { 00171 offset -= psize - VDEV_LABEL_END_SIZE; 00172 offset += (VDEV_LABELS / 2) * sizeof (vdev_label_t); 00173 } 00174 l = offset / sizeof (vdev_label_t); 00175 return (l < VDEV_LABELS ? l : -1); 00176 } 00177 00178 static void 00179 vdev_label_read(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 00180 uint64_t size, zio_done_func_t *done, void *private, int flags) 00181 { 00182 ASSERT(spa_config_held(zio->io_spa, SCL_STATE_ALL, RW_WRITER) == 00183 SCL_STATE_ALL); 00184 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 00185 00186 zio_nowait(zio_read_phys(zio, vd, 00187 vdev_label_offset(vd->vdev_psize, l, offset), 00188 size, buf, ZIO_CHECKSUM_LABEL, done, private, 00189 ZIO_PRIORITY_SYNC_READ, flags, B_TRUE)); 00190 } 00191 00192 static void 00193 vdev_label_write(zio_t *zio, vdev_t *vd, int l, void *buf, uint64_t offset, 00194 uint64_t size, zio_done_func_t *done, void *private, int flags) 00195 { 00196 ASSERT(spa_config_held(zio->io_spa, SCL_ALL, RW_WRITER) == SCL_ALL || 00197 (spa_config_held(zio->io_spa, SCL_CONFIG | SCL_STATE, RW_READER) == 00198 (SCL_CONFIG | SCL_STATE) && 00199 dsl_pool_sync_context(spa_get_dsl(zio->io_spa)))); 00200 ASSERT(flags & ZIO_FLAG_CONFIG_WRITER); 00201 00202 zio_nowait(zio_write_phys(zio, vd, 00203 vdev_label_offset(vd->vdev_psize, l, offset), 00204 size, buf, ZIO_CHECKSUM_LABEL, done, private, 00205 ZIO_PRIORITY_SYNC_WRITE, flags, B_TRUE)); 00206 } 00207 00211 nvlist_t * 00212 vdev_config_generate(spa_t *spa, vdev_t *vd, boolean_t getstats, 00213 vdev_config_flag_t flags) 00214 { 00215 nvlist_t *nv = NULL; 00216 00217 VERIFY(nvlist_alloc(&nv, NV_UNIQUE_NAME, KM_SLEEP) == 0); 00218 00219 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_TYPE, 00220 vd->vdev_ops->vdev_op_type) == 0); 00221 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE))) 00222 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ID, vd->vdev_id) 00223 == 0); 00224 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_GUID, vd->vdev_guid) == 0); 00225 00226 if (vd->vdev_path != NULL) 00227 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PATH, 00228 vd->vdev_path) == 0); 00229 00230 if (vd->vdev_devid != NULL) 00231 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_DEVID, 00232 vd->vdev_devid) == 0); 00233 00234 if (vd->vdev_physpath != NULL) 00235 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_PHYS_PATH, 00236 vd->vdev_physpath) == 0); 00237 00238 if (vd->vdev_fru != NULL) 00239 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_FRU, 00240 vd->vdev_fru) == 0); 00241 00242 if (vd->vdev_nparity != 0) { 00243 ASSERT(strcmp(vd->vdev_ops->vdev_op_type, 00244 VDEV_TYPE_RAIDZ) == 0); 00245 00246 /* 00247 * Make sure someone hasn't managed to sneak a fancy new vdev 00248 * into a crufty old storage pool. 00249 */ 00250 ASSERT(vd->vdev_nparity == 1 || 00251 (vd->vdev_nparity <= 2 && 00252 spa_version(spa) >= SPA_VERSION_RAIDZ2) || 00253 (vd->vdev_nparity <= 3 && 00254 spa_version(spa) >= SPA_VERSION_RAIDZ3)); 00255 00256 /* 00257 * Note that we'll add the nparity tag even on storage pools 00258 * that only support a single parity device -- older software 00259 * will just ignore it. 00260 */ 00261 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NPARITY, 00262 vd->vdev_nparity) == 0); 00263 } 00264 00265 if (vd->vdev_wholedisk != -1ULL) 00266 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_WHOLE_DISK, 00267 vd->vdev_wholedisk) == 0); 00268 00269 if (vd->vdev_not_present) 00270 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_NOT_PRESENT, 1) == 0); 00271 00272 if (vd->vdev_isspare) 00273 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_SPARE, 1) == 0); 00274 00275 if (!(flags & (VDEV_CONFIG_SPARE | VDEV_CONFIG_L2CACHE)) && 00276 vd == vd->vdev_top) { 00277 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_ARRAY, 00278 vd->vdev_ms_array) == 0); 00279 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_METASLAB_SHIFT, 00280 vd->vdev_ms_shift) == 0); 00281 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASHIFT, 00282 vd->vdev_ashift) == 0); 00283 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ASIZE, 00284 vd->vdev_asize) == 0); 00285 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_LOG, 00286 vd->vdev_islog) == 0); 00287 if (vd->vdev_removing) 00288 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVING, 00289 vd->vdev_removing) == 0); 00290 } 00291 00292 if (vd->vdev_dtl_smo.smo_object != 0) 00293 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DTL, 00294 vd->vdev_dtl_smo.smo_object) == 0); 00295 00296 if (vd->vdev_crtxg) 00297 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_CREATE_TXG, 00298 vd->vdev_crtxg) == 0); 00299 00300 if (getstats) { 00301 vdev_stat_t vs; 00302 pool_scan_stat_t ps; 00303 00304 vdev_get_stats(vd, &vs); 00305 VERIFY(nvlist_add_uint64_array(nv, ZPOOL_CONFIG_VDEV_STATS, 00306 (uint64_t *)&vs, sizeof (vs) / sizeof (uint64_t)) == 0); 00307 00308 /* provide either current or previous scan information */ 00309 if (spa_scan_get_stats(spa, &ps) == 0) { 00310 VERIFY(nvlist_add_uint64_array(nv, 00311 ZPOOL_CONFIG_SCAN_STATS, (uint64_t *)&ps, 00312 sizeof (pool_scan_stat_t) / sizeof (uint64_t)) 00313 == 0); 00314 } 00315 } 00316 00317 if (!vd->vdev_ops->vdev_op_leaf) { 00318 nvlist_t **child; 00319 int c, idx; 00320 00321 ASSERT(!vd->vdev_ishole); 00322 00323 child = kmem_alloc(vd->vdev_children * sizeof (nvlist_t *), 00324 KM_SLEEP); 00325 00326 for (c = 0, idx = 0; c < vd->vdev_children; c++) { 00327 vdev_t *cvd = vd->vdev_child[c]; 00328 00329 /* 00330 * If we're generating an nvlist of removing 00331 * vdevs then skip over any device which is 00332 * not being removed. 00333 */ 00334 if ((flags & VDEV_CONFIG_REMOVING) && 00335 !cvd->vdev_removing) 00336 continue; 00337 00338 child[idx++] = vdev_config_generate(spa, cvd, 00339 getstats, flags); 00340 } 00341 00342 if (idx) { 00343 VERIFY(nvlist_add_nvlist_array(nv, 00344 ZPOOL_CONFIG_CHILDREN, child, idx) == 0); 00345 } 00346 00347 for (c = 0; c < idx; c++) 00348 nvlist_free(child[c]); 00349 00350 kmem_free(child, vd->vdev_children * sizeof (nvlist_t *)); 00351 00352 } else { 00353 const char *aux = NULL; 00354 00355 if (vd->vdev_offline && !vd->vdev_tmpoffline) 00356 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_OFFLINE, 00357 B_TRUE) == 0); 00358 if (vd->vdev_resilvering) 00359 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_RESILVERING, 00360 B_TRUE) == 0); 00361 if (vd->vdev_faulted) 00362 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_FAULTED, 00363 B_TRUE) == 0); 00364 if (vd->vdev_degraded) 00365 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_DEGRADED, 00366 B_TRUE) == 0); 00367 if (vd->vdev_removed) 00368 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_REMOVED, 00369 B_TRUE) == 0); 00370 if (vd->vdev_unspare) 00371 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_UNSPARE, 00372 B_TRUE) == 0); 00373 if (vd->vdev_ishole) 00374 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_IS_HOLE, 00375 B_TRUE) == 0); 00376 00377 switch (vd->vdev_stat.vs_aux) { 00378 case VDEV_AUX_ERR_EXCEEDED: 00379 aux = "err_exceeded"; 00380 break; 00381 00382 case VDEV_AUX_EXTERNAL: 00383 aux = "external"; 00384 break; 00385 } 00386 00387 if (aux != NULL) 00388 VERIFY(nvlist_add_string(nv, ZPOOL_CONFIG_AUX_STATE, 00389 aux) == 0); 00390 00391 if (vd->vdev_splitting && vd->vdev_orig_guid != 0LL) { 00392 VERIFY(nvlist_add_uint64(nv, ZPOOL_CONFIG_ORIG_GUID, 00393 vd->vdev_orig_guid) == 0); 00394 } 00395 } 00396 00397 return (nv); 00398 } 00399 00406 void 00407 vdev_top_config_generate(spa_t *spa, nvlist_t *config) 00408 { 00409 vdev_t *rvd = spa->spa_root_vdev; 00410 uint64_t *array; 00411 uint_t c, idx; 00412 00413 array = kmem_alloc(rvd->vdev_children * sizeof (uint64_t), KM_SLEEP); 00414 00415 for (c = 0, idx = 0; c < rvd->vdev_children; c++) { 00416 vdev_t *tvd = rvd->vdev_child[c]; 00417 00418 if (tvd->vdev_ishole) 00419 array[idx++] = c; 00420 } 00421 00422 if (idx) { 00423 VERIFY(nvlist_add_uint64_array(config, ZPOOL_CONFIG_HOLE_ARRAY, 00424 array, idx) == 0); 00425 } 00426 00427 VERIFY(nvlist_add_uint64(config, ZPOOL_CONFIG_VDEV_CHILDREN, 00428 rvd->vdev_children) == 0); 00429 00430 kmem_free(array, rvd->vdev_children * sizeof (uint64_t)); 00431 } 00432 00441 nvlist_t * 00442 vdev_label_read_config(vdev_t *vd, uint64_t txg) 00443 { 00444 spa_t *spa = vd->vdev_spa; 00445 nvlist_t *config = NULL; 00446 vdev_phys_t *vp; 00447 zio_t *zio; 00448 uint64_t best_txg = 0; 00449 int error = 0; 00450 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 00451 ZIO_FLAG_SPECULATIVE; 00452 00453 ASSERT(spa_config_held(spa, SCL_STATE_ALL, RW_WRITER) == SCL_STATE_ALL); 00454 00455 if (!vdev_readable(vd)) 00456 return (NULL); 00457 00458 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 00459 00460 retry: 00461 for (int l = 0; l < VDEV_LABELS; l++) { 00462 nvlist_t *label = NULL; 00463 00464 zio = zio_root(spa, NULL, NULL, flags); 00465 00466 vdev_label_read(zio, vd, l, vp, 00467 offsetof(vdev_label_t, vl_vdev_phys), 00468 sizeof (vdev_phys_t), NULL, NULL, flags); 00469 00470 if (zio_wait(zio) == 0 && 00471 nvlist_unpack(vp->vp_nvlist, sizeof (vp->vp_nvlist), 00472 &label, 0) == 0) { 00473 uint64_t label_txg = 0; 00474 00475 /* 00476 * Auxiliary vdevs won't have txg values in their 00477 * labels and newly added vdevs may not have been 00478 * completely initialized so just return the 00479 * configuration from the first valid label we 00480 * encounter. 00481 */ 00482 error = nvlist_lookup_uint64(label, 00483 ZPOOL_CONFIG_POOL_TXG, &label_txg); 00484 if ((error || label_txg == 0) && !config) { 00485 config = label; 00486 break; 00487 } else if (label_txg <= txg && label_txg > best_txg) { 00488 best_txg = label_txg; 00489 nvlist_free(config); 00490 config = fnvlist_dup(label); 00491 } 00492 } 00493 00494 if (label != NULL) { 00495 nvlist_free(label); 00496 label = NULL; 00497 } 00498 } 00499 00500 if (config == NULL && !(flags & ZIO_FLAG_TRYHARD)) { 00501 flags |= ZIO_FLAG_TRYHARD; 00502 goto retry; 00503 } 00504 00505 zio_buf_free(vp, sizeof (vdev_phys_t)); 00506 00507 return (config); 00508 } 00509 00514 static boolean_t 00515 vdev_inuse(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason, 00516 uint64_t *spare_guid, uint64_t *l2cache_guid) 00517 { 00518 spa_t *spa = vd->vdev_spa; 00519 uint64_t state, pool_guid, device_guid, txg, spare_pool; 00520 uint64_t vdtxg = 0; 00521 nvlist_t *label; 00522 00523 if (spare_guid) 00524 *spare_guid = 0ULL; 00525 if (l2cache_guid) 00526 *l2cache_guid = 0ULL; 00527 00528 /* 00529 * Read the label, if any, and perform some basic sanity checks. 00530 */ 00531 if ((label = vdev_label_read_config(vd, -1ULL)) == NULL) 00532 return (B_FALSE); 00533 00534 (void) nvlist_lookup_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 00535 &vdtxg); 00536 00537 if (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_STATE, 00538 &state) != 0 || 00539 nvlist_lookup_uint64(label, ZPOOL_CONFIG_GUID, 00540 &device_guid) != 0) { 00541 nvlist_free(label); 00542 return (B_FALSE); 00543 } 00544 00545 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 00546 (nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_GUID, 00547 &pool_guid) != 0 || 00548 nvlist_lookup_uint64(label, ZPOOL_CONFIG_POOL_TXG, 00549 &txg) != 0)) { 00550 nvlist_free(label); 00551 return (B_FALSE); 00552 } 00553 00554 nvlist_free(label); 00555 00556 /* 00557 * Check to see if this device indeed belongs to the pool it claims to 00558 * be a part of. The only way this is allowed is if the device is a hot 00559 * spare (which we check for later on). 00560 */ 00561 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 00562 !spa_guid_exists(pool_guid, device_guid) && 00563 !spa_spare_exists(device_guid, NULL, NULL) && 00564 !spa_l2cache_exists(device_guid, NULL)) 00565 return (B_FALSE); 00566 00567 /* 00568 * If the transaction group is zero, then this an initialized (but 00569 * unused) label. This is only an error if the create transaction 00570 * on-disk is the same as the one we're using now, in which case the 00571 * user has attempted to add the same vdev multiple times in the same 00572 * transaction. 00573 */ 00574 if (state != POOL_STATE_SPARE && state != POOL_STATE_L2CACHE && 00575 txg == 0 && vdtxg == crtxg) 00576 return (B_TRUE); 00577 00578 /* 00579 * Check to see if this is a spare device. We do an explicit check for 00580 * spa_has_spare() here because it may be on our pending list of spares 00581 * to add. We also check if it is an l2cache device. 00582 */ 00583 if (spa_spare_exists(device_guid, &spare_pool, NULL) || 00584 spa_has_spare(spa, device_guid)) { 00585 if (spare_guid) 00586 *spare_guid = device_guid; 00587 00588 switch (reason) { 00589 case VDEV_LABEL_CREATE: 00590 case VDEV_LABEL_L2CACHE: 00591 return (B_TRUE); 00592 00593 case VDEV_LABEL_REPLACE: 00594 return (!spa_has_spare(spa, device_guid) || 00595 spare_pool != 0ULL); 00596 00597 case VDEV_LABEL_SPARE: 00598 return (spa_has_spare(spa, device_guid)); 00599 } 00600 } 00601 00602 /* 00603 * Check to see if this is an l2cache device. 00604 */ 00605 if (spa_l2cache_exists(device_guid, NULL)) 00606 return (B_TRUE); 00607 00608 /* 00609 * We can't rely on a pool's state if it's been imported 00610 * read-only. Instead we look to see if the pools is marked 00611 * read-only in the namespace and set the state to active. 00612 */ 00613 if ((spa = spa_by_guid(pool_guid, device_guid)) != NULL && 00614 spa_mode(spa) == FREAD) 00615 state = POOL_STATE_ACTIVE; 00616 00617 /* 00618 * If the device is marked ACTIVE, then this device is in use by another 00619 * pool on the system. 00620 */ 00621 return (state == POOL_STATE_ACTIVE); 00622 } 00623 00632 int 00633 vdev_label_init(vdev_t *vd, uint64_t crtxg, vdev_labeltype_t reason) 00634 { 00635 spa_t *spa = vd->vdev_spa; 00636 nvlist_t *label; 00637 vdev_phys_t *vp; 00638 char *pad2; 00639 uberblock_t *ub; 00640 zio_t *zio; 00641 char *buf; 00642 size_t buflen; 00643 int error; 00644 uint64_t spare_guid, l2cache_guid; 00645 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 00646 00647 ASSERT(spa_config_held(spa, SCL_ALL, RW_WRITER) == SCL_ALL); 00648 00649 for (int c = 0; c < vd->vdev_children; c++) 00650 if ((error = vdev_label_init(vd->vdev_child[c], 00651 crtxg, reason)) != 0) 00652 return (error); 00653 00654 /* Track the creation time for this vdev */ 00655 vd->vdev_crtxg = crtxg; 00656 00657 if (!vd->vdev_ops->vdev_op_leaf) 00658 return (0); 00659 00660 /* 00661 * Dead vdevs cannot be initialized. 00662 */ 00663 if (vdev_is_dead(vd)) 00664 return (EIO); 00665 00666 /* 00667 * Determine if the vdev is in use. 00668 */ 00669 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPLIT && 00670 vdev_inuse(vd, crtxg, reason, &spare_guid, &l2cache_guid)) 00671 return (EBUSY); 00672 00673 /* 00674 * If this is a request to add or replace a spare or l2cache device 00675 * that is in use elsewhere on the system, then we must update the 00676 * guid (which was initialized to a random value) to reflect the 00677 * actual GUID (which is shared between multiple pools). 00678 */ 00679 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_L2CACHE && 00680 spare_guid != 0ULL) { 00681 uint64_t guid_delta = spare_guid - vd->vdev_guid; 00682 00683 vd->vdev_guid += guid_delta; 00684 00685 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 00686 pvd->vdev_guid_sum += guid_delta; 00687 00688 /* 00689 * If this is a replacement, then we want to fallthrough to the 00690 * rest of the code. If we're adding a spare, then it's already 00691 * labeled appropriately and we can just return. 00692 */ 00693 if (reason == VDEV_LABEL_SPARE) 00694 return (0); 00695 ASSERT(reason == VDEV_LABEL_REPLACE || 00696 reason == VDEV_LABEL_SPLIT); 00697 } 00698 00699 if (reason != VDEV_LABEL_REMOVE && reason != VDEV_LABEL_SPARE && 00700 l2cache_guid != 0ULL) { 00701 uint64_t guid_delta = l2cache_guid - vd->vdev_guid; 00702 00703 vd->vdev_guid += guid_delta; 00704 00705 for (vdev_t *pvd = vd; pvd != NULL; pvd = pvd->vdev_parent) 00706 pvd->vdev_guid_sum += guid_delta; 00707 00708 /* 00709 * If this is a replacement, then we want to fallthrough to the 00710 * rest of the code. If we're adding an l2cache, then it's 00711 * already labeled appropriately and we can just return. 00712 */ 00713 if (reason == VDEV_LABEL_L2CACHE) 00714 return (0); 00715 ASSERT(reason == VDEV_LABEL_REPLACE); 00716 } 00717 00718 /* 00719 * TRIM the whole thing so that we start with a clean slate. 00720 * It's just an optimization, so we don't care if it fails. 00721 * Don't TRIM if removing so that we don't interfere with zpool 00722 * disaster recovery. 00723 */ 00724 if (!zfs_notrim && (reason == VDEV_LABEL_CREATE || 00725 reason == VDEV_LABEL_SPARE || reason == VDEV_LABEL_L2CACHE)) 00726 zio_wait(zio_trim(NULL, spa, vd, 0, vd->vdev_psize)); 00727 00728 /* 00729 * Initialize its label. 00730 */ 00731 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 00732 bzero(vp, sizeof (vdev_phys_t)); 00733 00734 /* 00735 * Generate a label describing the pool and our top-level vdev. 00736 * We mark it as being from txg 0 to indicate that it's not 00737 * really part of an active pool just yet. The labels will 00738 * be written again with a meaningful txg by spa_sync(). 00739 */ 00740 if (reason == VDEV_LABEL_SPARE || 00741 (reason == VDEV_LABEL_REMOVE && vd->vdev_isspare)) { 00742 /* 00743 * For inactive hot spares, we generate a special label that 00744 * identifies as a mutually shared hot spare. We write the 00745 * label if we are adding a hot spare, or if we are removing an 00746 * active hot spare (in which case we want to revert the 00747 * labels). 00748 */ 00749 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 00750 00751 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 00752 spa_version(spa)) == 0); 00753 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 00754 POOL_STATE_SPARE) == 0); 00755 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 00756 vd->vdev_guid) == 0); 00757 } else if (reason == VDEV_LABEL_L2CACHE || 00758 (reason == VDEV_LABEL_REMOVE && vd->vdev_isl2cache)) { 00759 /* 00760 * For level 2 ARC devices, add a special label. 00761 */ 00762 VERIFY(nvlist_alloc(&label, NV_UNIQUE_NAME, KM_SLEEP) == 0); 00763 00764 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_VERSION, 00765 spa_version(spa)) == 0); 00766 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_POOL_STATE, 00767 POOL_STATE_L2CACHE) == 0); 00768 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_GUID, 00769 vd->vdev_guid) == 0); 00770 } else { 00771 uint64_t txg = 0ULL; 00772 00773 if (reason == VDEV_LABEL_SPLIT) 00774 txg = spa->spa_uberblock.ub_txg; 00775 label = spa_config_generate(spa, vd, txg, B_FALSE); 00776 00777 /* 00778 * Add our creation time. This allows us to detect multiple 00779 * vdev uses as described above, and automatically expires if we 00780 * fail. 00781 */ 00782 VERIFY(nvlist_add_uint64(label, ZPOOL_CONFIG_CREATE_TXG, 00783 crtxg) == 0); 00784 } 00785 00786 buf = vp->vp_nvlist; 00787 buflen = sizeof (vp->vp_nvlist); 00788 00789 error = nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP); 00790 if (error != 0) { 00791 nvlist_free(label); 00792 zio_buf_free(vp, sizeof (vdev_phys_t)); 00793 /* EFAULT means nvlist_pack ran out of room */ 00794 return (error == EFAULT ? ENAMETOOLONG : EINVAL); 00795 } 00796 00797 /* 00798 * Initialize uberblock template. 00799 */ 00800 ub = zio_buf_alloc(VDEV_UBERBLOCK_RING); 00801 bzero(ub, VDEV_UBERBLOCK_RING); 00802 *ub = spa->spa_uberblock; 00803 ub->ub_txg = 0; 00804 00805 /* Initialize the 2nd padding area. */ 00806 pad2 = zio_buf_alloc(VDEV_PAD_SIZE); 00807 bzero(pad2, VDEV_PAD_SIZE); 00808 00809 /* 00810 * Write everything in parallel. 00811 */ 00812 retry: 00813 zio = zio_root(spa, NULL, NULL, flags); 00814 00815 for (int l = 0; l < VDEV_LABELS; l++) { 00816 00817 vdev_label_write(zio, vd, l, vp, 00818 offsetof(vdev_label_t, vl_vdev_phys), 00819 sizeof (vdev_phys_t), NULL, NULL, flags); 00820 00821 /* 00822 * Skip the 1st padding area. 00823 * Zero out the 2nd padding area where it might have 00824 * left over data from previous filesystem format. 00825 */ 00826 vdev_label_write(zio, vd, l, pad2, 00827 offsetof(vdev_label_t, vl_pad2), 00828 VDEV_PAD_SIZE, NULL, NULL, flags); 00829 00830 vdev_label_write(zio, vd, l, ub, 00831 offsetof(vdev_label_t, vl_uberblock), 00832 VDEV_UBERBLOCK_RING, NULL, NULL, flags); 00833 } 00834 00835 error = zio_wait(zio); 00836 00837 if (error != 0 && !(flags & ZIO_FLAG_TRYHARD)) { 00838 flags |= ZIO_FLAG_TRYHARD; 00839 goto retry; 00840 } 00841 00842 nvlist_free(label); 00843 zio_buf_free(pad2, VDEV_PAD_SIZE); 00844 zio_buf_free(ub, VDEV_UBERBLOCK_RING); 00845 zio_buf_free(vp, sizeof (vdev_phys_t)); 00846 00847 /* 00848 * If this vdev hasn't been previously identified as a spare, then we 00849 * mark it as such only if a) we are labeling it as a spare, or b) it 00850 * exists as a spare elsewhere in the system. Do the same for 00851 * level 2 ARC devices. 00852 */ 00853 if (error == 0 && !vd->vdev_isspare && 00854 (reason == VDEV_LABEL_SPARE || 00855 spa_spare_exists(vd->vdev_guid, NULL, NULL))) 00856 spa_spare_add(vd); 00857 00858 if (error == 0 && !vd->vdev_isl2cache && 00859 (reason == VDEV_LABEL_L2CACHE || 00860 spa_l2cache_exists(vd->vdev_guid, NULL))) 00861 spa_l2cache_add(vd); 00862 00863 return (error); 00864 } 00865 00866 /* 00867 * ========================================================================== 00868 * uberblock load/sync 00869 * ========================================================================== 00870 */ 00871 00882 static int 00883 vdev_uberblock_compare(uberblock_t *ub1, uberblock_t *ub2) 00884 { 00885 if (ub1->ub_txg < ub2->ub_txg) 00886 return (-1); 00887 if (ub1->ub_txg > ub2->ub_txg) 00888 return (1); 00889 00890 if (ub1->ub_timestamp < ub2->ub_timestamp) 00891 return (-1); 00892 if (ub1->ub_timestamp > ub2->ub_timestamp) 00893 return (1); 00894 00895 return (0); 00896 } 00897 00898 struct ubl_cbdata { 00899 uberblock_t *ubl_ubbest; /* Best uberblock */ 00900 vdev_t *ubl_vd; /* vdev associated with the above */ 00901 }; 00902 00903 static void 00904 vdev_uberblock_load_done(zio_t *zio) 00905 { 00906 vdev_t *vd = zio->io_vd; 00907 spa_t *spa = zio->io_spa; 00908 zio_t *rio = zio->io_private; 00909 uberblock_t *ub = zio->io_data; 00910 struct ubl_cbdata *cbp = rio->io_private; 00911 00912 ASSERT3U(zio->io_size, ==, VDEV_UBERBLOCK_SIZE(vd)); 00913 00914 if (zio->io_error == 0 && uberblock_verify(ub) == 0) { 00915 mutex_enter(&rio->io_lock); 00916 if (ub->ub_txg <= spa->spa_load_max_txg && 00917 vdev_uberblock_compare(ub, cbp->ubl_ubbest) > 0) { 00918 /* 00919 * Keep track of the vdev in which this uberblock 00920 * was found. We will use this information later 00921 * to obtain the config nvlist associated with 00922 * this uberblock. 00923 */ 00924 *cbp->ubl_ubbest = *ub; 00925 cbp->ubl_vd = vd; 00926 } 00927 mutex_exit(&rio->io_lock); 00928 } 00929 00930 zio_buf_free(zio->io_data, zio->io_size); 00931 } 00932 00933 static void 00934 vdev_uberblock_load_impl(zio_t *zio, vdev_t *vd, int flags, 00935 struct ubl_cbdata *cbp) 00936 { 00937 for (int c = 0; c < vd->vdev_children; c++) 00938 vdev_uberblock_load_impl(zio, vd->vdev_child[c], flags, cbp); 00939 00940 if (vd->vdev_ops->vdev_op_leaf && vdev_readable(vd)) { 00941 for (int l = 0; l < VDEV_LABELS; l++) { 00942 for (int n = 0; n < VDEV_UBERBLOCK_COUNT(vd); n++) { 00943 vdev_label_read(zio, vd, l, 00944 zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)), 00945 VDEV_UBERBLOCK_OFFSET(vd, n), 00946 VDEV_UBERBLOCK_SIZE(vd), 00947 vdev_uberblock_load_done, zio, flags); 00948 } 00949 } 00950 } 00951 } 00952 00959 void 00960 vdev_uberblock_load(vdev_t *rvd, uberblock_t *ub, nvlist_t **config) 00961 { 00962 zio_t *zio; 00963 spa_t *spa = rvd->vdev_spa; 00964 struct ubl_cbdata cb; 00965 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL | 00966 ZIO_FLAG_SPECULATIVE | ZIO_FLAG_TRYHARD; 00967 00968 ASSERT(ub); 00969 ASSERT(config); 00970 00971 bzero(ub, sizeof (uberblock_t)); 00972 *config = NULL; 00973 00974 cb.ubl_ubbest = ub; 00975 cb.ubl_vd = NULL; 00976 00977 spa_config_enter(spa, SCL_ALL, FTAG, RW_WRITER); 00978 zio = zio_root(spa, NULL, &cb, flags); 00979 vdev_uberblock_load_impl(zio, rvd, flags, &cb); 00980 (void) zio_wait(zio); 00981 00982 /* 00983 * It's possible that the best uberblock was discovered on a label 00984 * that has a configuration which was written in a future txg. 00985 * Search all labels on this vdev to find the configuration that 00986 * matches the txg for our uberblock. 00987 */ 00988 if (cb.ubl_vd != NULL) 00989 *config = vdev_label_read_config(cb.ubl_vd, ub->ub_txg); 00990 spa_config_exit(spa, SCL_ALL, FTAG); 00991 } 00992 00997 static void 00998 vdev_uberblock_sync_done(zio_t *zio) 00999 { 01000 uint64_t *good_writes = zio->io_private; 01001 01002 if (zio->io_error == 0 && zio->io_vd->vdev_top->vdev_ms_array != 0) 01003 atomic_add_64(good_writes, 1); 01004 } 01005 01009 static void 01010 vdev_uberblock_sync(zio_t *zio, uberblock_t *ub, vdev_t *vd, int flags) 01011 { 01012 uberblock_t *ubbuf; 01013 int n; 01014 01015 for (int c = 0; c < vd->vdev_children; c++) 01016 vdev_uberblock_sync(zio, ub, vd->vdev_child[c], flags); 01017 01018 if (!vd->vdev_ops->vdev_op_leaf) 01019 return; 01020 01021 if (!vdev_writeable(vd)) 01022 return; 01023 01024 n = ub->ub_txg & (VDEV_UBERBLOCK_COUNT(vd) - 1); 01025 01026 ubbuf = zio_buf_alloc(VDEV_UBERBLOCK_SIZE(vd)); 01027 bzero(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 01028 *ubbuf = *ub; 01029 01030 for (int l = 0; l < VDEV_LABELS; l++) 01031 vdev_label_write(zio, vd, l, ubbuf, 01032 VDEV_UBERBLOCK_OFFSET(vd, n), VDEV_UBERBLOCK_SIZE(vd), 01033 vdev_uberblock_sync_done, zio->io_private, 01034 flags | ZIO_FLAG_DONT_PROPAGATE); 01035 01036 zio_buf_free(ubbuf, VDEV_UBERBLOCK_SIZE(vd)); 01037 } 01038 01042 int 01043 vdev_uberblock_sync_list(vdev_t **svd, int svdcount, uberblock_t *ub, int flags) 01044 { 01045 spa_t *spa = svd[0]->vdev_spa; 01046 zio_t *zio; 01047 uint64_t good_writes = 0; 01048 01049 zio = zio_root(spa, NULL, &good_writes, flags); 01050 01051 for (int v = 0; v < svdcount; v++) 01052 vdev_uberblock_sync(zio, ub, svd[v], flags); 01053 01054 (void) zio_wait(zio); 01055 01056 /* 01057 * Flush the uberblocks to disk. This ensures that the odd labels 01058 * are no longer needed (because the new uberblocks and the even 01059 * labels are safely on disk), so it is safe to overwrite them. 01060 */ 01061 zio = zio_root(spa, NULL, NULL, flags); 01062 01063 for (int v = 0; v < svdcount; v++) 01064 zio_flush(zio, svd[v]); 01065 01066 (void) zio_wait(zio); 01067 01068 return (good_writes >= 1 ? 0 : EIO); 01069 } 01070 01074 static void 01075 vdev_label_sync_done(zio_t *zio) 01076 { 01077 uint64_t *good_writes = zio->io_private; 01078 01079 if (zio->io_error == 0) 01080 atomic_add_64(good_writes, 1); 01081 } 01082 01086 static void 01087 vdev_label_sync_top_done(zio_t *zio) 01088 { 01089 uint64_t *good_writes = zio->io_private; 01090 01091 if (*good_writes == 0) 01092 zio->io_error = EIO; 01093 01094 kmem_free(good_writes, sizeof (uint64_t)); 01095 } 01096 01100 static void 01101 vdev_label_sync_ignore_done(zio_t *zio) 01102 { 01103 kmem_free(zio->io_private, sizeof (uint64_t)); 01104 } 01105 01109 static void 01110 vdev_label_sync(zio_t *zio, vdev_t *vd, int l, uint64_t txg, int flags) 01111 { 01112 nvlist_t *label; 01113 vdev_phys_t *vp; 01114 char *buf; 01115 size_t buflen; 01116 01117 for (int c = 0; c < vd->vdev_children; c++) 01118 vdev_label_sync(zio, vd->vdev_child[c], l, txg, flags); 01119 01120 if (!vd->vdev_ops->vdev_op_leaf) 01121 return; 01122 01123 if (!vdev_writeable(vd)) 01124 return; 01125 01126 /* 01127 * Generate a label describing the top-level config to which we belong. 01128 */ 01129 label = spa_config_generate(vd->vdev_spa, vd, txg, B_FALSE); 01130 01131 vp = zio_buf_alloc(sizeof (vdev_phys_t)); 01132 bzero(vp, sizeof (vdev_phys_t)); 01133 01134 buf = vp->vp_nvlist; 01135 buflen = sizeof (vp->vp_nvlist); 01136 01137 if (nvlist_pack(label, &buf, &buflen, NV_ENCODE_XDR, KM_SLEEP) == 0) { 01138 for (; l < VDEV_LABELS; l += 2) { 01139 vdev_label_write(zio, vd, l, vp, 01140 offsetof(vdev_label_t, vl_vdev_phys), 01141 sizeof (vdev_phys_t), 01142 vdev_label_sync_done, zio->io_private, 01143 flags | ZIO_FLAG_DONT_PROPAGATE); 01144 } 01145 } 01146 01147 zio_buf_free(vp, sizeof (vdev_phys_t)); 01148 nvlist_free(label); 01149 } 01150 01151 int 01152 vdev_label_sync_list(spa_t *spa, int l, uint64_t txg, int flags) 01153 { 01154 list_t *dl = &spa->spa_config_dirty_list; 01155 vdev_t *vd; 01156 zio_t *zio; 01157 int error; 01158 01159 /* 01160 * Write the new labels to disk. 01161 */ 01162 zio = zio_root(spa, NULL, NULL, flags); 01163 01164 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) { 01165 uint64_t *good_writes = kmem_zalloc(sizeof (uint64_t), 01166 KM_SLEEP); 01167 01168 ASSERT(!vd->vdev_ishole); 01169 01170 zio_t *vio = zio_null(zio, spa, NULL, 01171 (vd->vdev_islog || vd->vdev_aux != NULL) ? 01172 vdev_label_sync_ignore_done : vdev_label_sync_top_done, 01173 good_writes, flags); 01174 vdev_label_sync(vio, vd, l, txg, flags); 01175 zio_nowait(vio); 01176 } 01177 01178 error = zio_wait(zio); 01179 01180 /* 01181 * Flush the new labels to disk. 01182 */ 01183 zio = zio_root(spa, NULL, NULL, flags); 01184 01185 for (vd = list_head(dl); vd != NULL; vd = list_next(dl, vd)) 01186 zio_flush(zio, vd); 01187 01188 (void) zio_wait(zio); 01189 01190 return (error); 01191 } 01192 01204 int 01205 vdev_config_sync(vdev_t **svd, int svdcount, uint64_t txg, boolean_t tryhard) 01206 { 01207 spa_t *spa = svd[0]->vdev_spa; 01208 uberblock_t *ub = &spa->spa_uberblock; 01209 vdev_t *vd; 01210 zio_t *zio; 01211 int error; 01212 int flags = ZIO_FLAG_CONFIG_WRITER | ZIO_FLAG_CANFAIL; 01213 01214 /* 01215 * Normally, we don't want to try too hard to write every label and 01216 * uberblock. If there is a flaky disk, we don't want the rest of the 01217 * sync process to block while we retry. But if we can't write a 01218 * single label out, we should retry with ZIO_FLAG_TRYHARD before 01219 * bailing out and declaring the pool faulted. 01220 */ 01221 if (tryhard) 01222 flags |= ZIO_FLAG_TRYHARD; 01223 01224 ASSERT(ub->ub_txg <= txg); 01225 01226 /* 01227 * If this isn't a resync due to I/O errors, 01228 * and nothing changed in this transaction group, 01229 * and the vdev configuration hasn't changed, 01230 * then there's nothing to do. 01231 */ 01232 if (ub->ub_txg < txg && 01233 uberblock_update(ub, spa->spa_root_vdev, txg) == B_FALSE && 01234 list_is_empty(&spa->spa_config_dirty_list)) 01235 return (0); 01236 01237 if (txg > spa_freeze_txg(spa)) 01238 return (0); 01239 01240 ASSERT(txg <= spa->spa_final_txg); 01241 01242 /* 01243 * Flush the write cache of every disk that's been written to 01244 * in this transaction group. This ensures that all blocks 01245 * written in this txg will be committed to stable storage 01246 * before any uberblock that references them. 01247 */ 01248 zio = zio_root(spa, NULL, NULL, flags); 01249 01250 for (vd = txg_list_head(&spa->spa_vdev_txg_list, TXG_CLEAN(txg)); vd; 01251 vd = txg_list_next(&spa->spa_vdev_txg_list, vd, TXG_CLEAN(txg))) 01252 zio_flush(zio, vd); 01253 01254 (void) zio_wait(zio); 01255 01256 /* 01257 * Sync out the even labels (L0, L2) for every dirty vdev. If the 01258 * system dies in the middle of this process, that's OK: all of the 01259 * even labels that made it to disk will be newer than any uberblock, 01260 * and will therefore be considered invalid. The odd labels (L1, L3), 01261 * which have not yet been touched, will still be valid. We flush 01262 * the new labels to disk to ensure that all even-label updates 01263 * are committed to stable storage before the uberblock update. 01264 */ 01265 if ((error = vdev_label_sync_list(spa, 0, txg, flags)) != 0) 01266 return (error); 01267 01268 /* 01269 * Sync the uberblocks to all vdevs in svd[]. 01270 * If the system dies in the middle of this step, there are two cases 01271 * to consider, and the on-disk state is consistent either way: 01272 * 01273 * (1) If none of the new uberblocks made it to disk, then the 01274 * previous uberblock will be the newest, and the odd labels 01275 * (which had not yet been touched) will be valid with respect 01276 * to that uberblock. 01277 * 01278 * (2) If one or more new uberblocks made it to disk, then they 01279 * will be the newest, and the even labels (which had all 01280 * been successfully committed) will be valid with respect 01281 * to the new uberblocks. 01282 */ 01283 if ((error = vdev_uberblock_sync_list(svd, svdcount, ub, flags)) != 0) 01284 return (error); 01285 01286 /* 01287 * Sync out odd labels for every dirty vdev. If the system dies 01288 * in the middle of this process, the even labels and the new 01289 * uberblocks will suffice to open the pool. The next time 01290 * the pool is opened, the first thing we'll do -- before any 01291 * user data is modified -- is mark every vdev dirty so that 01292 * all labels will be brought up to date. We flush the new labels 01293 * to disk to ensure that all odd-label updates are committed to 01294 * stable storage before the next transaction group begins. 01295 */ 01296 if ((error = vdev_label_sync_list(spa, 1, txg, flags)) != 0) 01297 return (error); 01298 01299 trim_thread_wakeup(spa); 01300 01301 return (0); 01302 }